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Introduction

The hippocampus is amongst the most widely studied of mammalian brain regions
hypothesized to play a role in the short-term storage of declarative memories.
Recent years have witnessed a dramatic accumulation of knowledge about the mor-
phological, physiological and molecular characteristics as well as the connectivity
and synaptic properties of the various cell types found in the hippocampus. The
microcircuits these cells form exhibit different rhythmic states such as theta (4–
7 Hz) and gamma (30–100 Hz) oscillations in different behavioural conditions.
This dynamic complexity presumably corresponds to specific functional processing
of information. Much work has been devoted to trying to understand the cellular
and network properties that generate these and other complex network patterns, but
much is still to be done to decipher the function of the detailed microcircuits.

Microcircuits can be thought as functional modules that act as elementary
processing units bridging the gap between single-cell activity, network activity and
global brain function. Microcircuits can be found in many parts of mammalian
nervous systems consisting of a complex architecture involving many different
neuronal types connected in feedforward and feedback loops. Synaptic connections
may be excitatory or inhibitory and target specific spatial compartments of a
neuron. In addition to synaptic input, a neuron and the microcircuit it is a part of
are subject to diffuse neuromodulatory signals. Neural synaptic transmission and
neuromodulation combine to provide a complex dynamics of neural activity and
presumed information processing in a neuronal microcircuit.

This book is the second edition of the 2010 Hippocampal Microcircuits and
provides an updated snapshot and resumé of the current state of the art of the
ongoing research avenues concerning the hippocampal microcircuits. The central
aim of the volume is to provide a methodology to anyone interested in developing
microcircuit-level models of the hippocampus. The book is divided into two
thematic areas: (1) experimental background and (2) computational analysis. In the
first thematic area, leading experimental neuroscientists discuss the morphological,
physiological and molecular characteristics as well as the connectivity and synaptic
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vi Introduction

properties of the various cell types found in the hippocampus. Behaviour-related
ensemble activity patterns of morphologically identified neurons in anaesthetized
and freely moving animals provide insights on the function of the hippocampal
areas. In the second thematic area, computational neuroscientists present models of
hippocampal microcircuits at various levels of detail (e.g. single-cell level, network
level). These models make use of the knowledge presented in the first thematic
area to discuss the overall global function of hippocampal microcircuits (in areas
CA1, CA3, dentate gyrus and entorhinal cortex). Synaptomics and connectomics
models of hippocampal structures are initially discussed. Then, network models
of memory, rhythm generation and spatial navigation are presented, followed
by abstract and biophysical models of synaptic plasticity. Network models of
hippocampal implicated disorders (epilepsy and schizophrenia) are then detailed
and how their network topologies, connectivities and activities change in these
diseases. Finally, two chapters are dedicated to describing simulator environments
of single neurons and networks currently used by computational neuroscientists in
developing their models and modelling tools to parametrically constrain them.

This engaging volume is invaluable to experimental and computational neuro-
scientists, electrical engineers, physicists, mathematicians and others interested in
developing microcircuit models of the hippocampus. Graduate-level students and
trainees in all of these fields will find this book a significant source of information.
The following unique features make this volume distinct:

• It provides concise snapshots of experimental evidence rather than lengthy
and detailed descriptions of the morphological, physiological and molecular
characteristics as well as the connectivity and synaptic properties of the various
cell types found in the hippocampus are presented. This evidence is often
provided in either tabular and/or pictorial form.

• In contrast to previous editorial attempts in which main target audience was either
the entire hippocampus neuroscience disciplines, this volume is targeting exper-
imental and computational neuroscientists interested in developing microcircuit
models of the hippocampus.

• Aside from presenting up-to-date experimental evidence on the hippocampal
microcircuits, this second edition also suggests a didactic methodology approach
of modelling microcircuits necessary to all computational neuroscientists inter-
ested in bridging the gap between the single-cell level, the network level and the
behavioural level.
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• All chapters not only discuss the current state of the art of experimental and
computational research avenues regarding the hippocampal microcircuits but
also provide a section on outstanding questions and areas in need of further
clarification that will guide future research to be carried out by young and/or
senior computational neuroscientists.

School of Computer Science Vassilis Cutsuridis
University of Lincoln, Lincoln, UK
Department of Computing Science & Mathematics Bruce P. Graham
University of Stirling, Stirling, UK
Centre for Discovery Brain Sciences Stuart Cobb
University of Edinburgh, Edinburgh, UK
Institute for Integrative Neuroanatomy Imre Vida
Charité – Universitätsmedizin Berlin, Berlin, Germany
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Part I
Experimental Background

Stuart Cobb and Imre Vida

The hippocampus is one of the most intensely studied structures in the brain.
It has been investigated at many different levels in an attempt to understand
the neurobiology of cognitive functions, including learning and spatial coding.
The accumulated knowledge of hippocampal anatomy, physiology, and function
provides a rich repository of information that presents enormous opportunity to
model different aspects of neuronal signaling and information processing within
this structure. As a primary focus in neurobiology over many decades, studies of
the hippocampus have also helped reveal elementary properties of neurons, their
synapses, and the microcircuits they are embedded.

There are several reasons why the study of the hippocampus has been at the
forefront of neurobiology research. These include the involvement of this brain
structure in memory processes, spatial navigation, as well as major disease states.
Another reason is the ability to readily recognize the hippocampus as well as target it
in vivo and isolate it for in vitro investigations. Finally, a major impetus for focusing
basic studies of the nervous system on the hippocampus owes to its apparently
simple cytoarchitecture and circuitry and thus its tractability as a cortical “model”
system.

The hippocampal formation is a highly organized structure and has a striking
appearance at the gross anatomical level. The complexity of the system can appear
overwhelming at first. Nevertheless, there continues an evolution in our understand-
ing of the constituent cells, their connectivity, their neurochemical and biophysical
properties, and the emergent properties of these in terms of hippocampal-dependent
behavior. However, many of the details remain to be established, and indeed
significant gaps persist in our understanding of some key concepts.

S. Cobb
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK

I. Vida
Institute for Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany



2 I Experimental Background

In this section, experimental neuroscientists discuss the salient structural and
functional properties of the hippocampus. This includes morphological, physiologi-
cal, and molecular characteristics as well as the connectivity and synaptic properties
of the various cell types found in the hippocampus. We provide concise overviews
of each aspect of hippocampal structure and function and, where possible, provide
quantitative descriptions of the experimental findings. While we believe this will be
a valuable summary for all readers interested in the biology of the hippocampus, by
conveying often quantitative experimental data from different levels of complexity
into a coherent picture, we hope this section will provide a valuable resource for
researchers embarking on modeling different aspects of this system. In this second
edition of Hippocampal Microcircuits: A computational Modeler’s Resource Book,
we have updated each chapter to reflect the most recent advances in understanding
hippocampal cells and circuits.

In the first chapter “Connectivity of the Hippocampus,” Menno Witter provides a
comprehensive description of the major connectivity of the hippocampal formation.
In this, he goes beyond the simplified classical models of anatomical organization to
produce an updated and extended connectional scheme that incorporates important
new as well as some older but hitherto overlooked details. In the chapter “Morphol-
ogy of Hippocampal Neurons,” Imre Vida and colleagues extend this overview to
the microcircuit and single-cell levels. The chapter provides detailed quantitative
descriptions of the morphology, major molecular markers, as well as connectivity
of hippocampal neuron types. While the most detailed quantitative information is
available for principal cells, this chapter provides a comprehensive summary of
the major anatomically defined classes of interneurons, a rapidly developing area
of hippocampal biology. In the chapter “Physiological Properties of Hippocampal
Neurons,” Marco Martina and Cheng-Chang Lien provide a detailed overview of
the physiological properties of the different classes of hippocampal neurons from a
single-cell biophysics perspective. Where possible, they provide detailed quantita-
tive descriptions of the passive and active properties together with a discussion of
the significance of these in shaping the electrical behavior of respective cell types.
In the chapter “Glutamatergic Neurotransmission in the Hippocampus,” Katalin
Tóth moves from individual cells to consider excitatory synaptic communication
between neurons in the hippocampus. In this, she provides a detailed yet accessible
overview of glutamatergic transmission at different synapses in the hippocampus
including key qualitative and quantitative differences in the physiology, biophysics,
and pharmacology at different synapses and pathways. In the chapter “Fast and Slow
GABAergic Transmission in Hippocampal Circuits,” Marlene Bartos and colleagues
provide an overview of GABAergic transmissions in hippocampal circuits. In this,
they introduce a variety of different forms of GABAergic inhibition and discuss
functional differences between ionotropic and metabotropic forms of GABAergic
inhibition at different inhibitory synapses. In the chapter “Synaptic Plasticity at
Hippocampal Synapses – Experimental Background,” Jack Mellor reviews the
divergent forms of synaptic plasticity that are characteristic of different hippocampal
synapses. Ranging from short-term frequency facilitation to more enduring forms of
synaptic plasticity, he provides a succinct summary of the experimental background
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and highlights key literature in this area, as well as quantitative descriptions of
plasticity at some major synapses. In the chapter “Neuromodulation of Hippocampal
Cells and Circuits,” Stuart Cobb and Josh Lawrence introduce the concept of
neuromodulation and the many ways by which hippocampal cells and circuits can
be regulated. Thereafter, they provide a detailed yet condensed summary of the
main neuromodulator systems ranging from classical modulators (monoamines and
acetylcholine) to neuropeptide modulators and paracrine/autocrine substances. In
the chapter “Neuronal Activity Patterns During Hippocampal Network Oscillations
In Vitro,” Tengis Gloveli and colleagues describe the importance and relevance
of neuronal activity patterns during hippocampal network oscillations in vitro. He
provides a detailed account of the emergent electrical behavior of hippocampal
networks including the importance of intrinsic cellular and synaptic properties in
their genesis and modulation. In the chapter “Recording Identified Neurons in
Awake and Anesthetized Rodents,” John Tukker extends the concept of patterned
neuronal activities by describing physiological patterns of neuronal activity that
occur in vivo under anesthetic and conscious conditions. Under these circumstances,
it is possible to observe highly stereotyped patterns of behavior within different
morphologically identified principal and interneuronal cell types when viewed with
respect to ongoing EEG states. This precise sculpting of neuronal activity in the
temporal domain provides important insights into the spatial and temporal process-
ing of synaptic signals during hippocampal activity in the intact network. In the final
experimental chapter “Spatial and Behavioral Correlates of Hippocampal Neuronal
Activity: A Primer for Computational Analysis,” the late Howard Eichenbaum
described spatial and behavioral correlates of hippocampal neuronal activity. By
providing a succinct overview of the literature, this chapter offers a framework for
considering the relationship between behavior, the activity of hippocampal neurons,
and how these might be modeled.



Connectivity of the Hippocampus

Menno P. Witter

Abstract The aim of this chapter is to extend the standard simplified diagram of
the connectional organization of the hippocampus found in many current textbooks,
by adding details on the connectivity of area CA2 and on entorhinal intrinsic wiring.
In the chapter, some of the ‘traditional wisdoms’ on hippocampal connectivity
are discussed, emphasizing the need for a more inclusive framework to model the
hippocampus. The chapter focusses on intrinsic connections, and many of the well-
known extrinsic connections of the hippocampus will not be covered in this chapter,
for two reasons. First, the information is already available at a summarized (meta)
level, and a new summary would not assist those who need anatomical details to
contribute to the explanation of the functional outcome of a study. Second, this
chapter is meant to provide a framework of knowledge to support computational
modelling of the region, and therefore only the most relevant and quantitative data
on the connectivity of the hippocampus are covered.

Overview

In the first edition of this book, I pointed to the increasingly complex intrinsic wiring
diagram of the hippocampus and that new data are being added at an increasing
speed. With the emergence of cell-specific viral tracing techniques, the potential
for a data explosion has become eminent, going hand in hand with an increase of
the potential for false-positive or incomplete data. The relevance of interneurons
in the local network, as well as the fact that interneurons contribute to long-range
projections, has been integrated into current conceptualizations of the ‘Connectivity
of the Hippocampus’. Several comprehensive reviews have been published to which
the reader is referred for many of the connections not covered in this chapter or for
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more details on the connections described here. An excellent, much more detailed
resource can be found in a recent book chapter (Cappaert et al. 2015). Several online
databases contribute to making this wealth of connectional data accessible as well
(see further reading).

In contrast to this ever-expanding connectional knowledge base, many functional
papers and reviews still use a simplified diagram of the connectional organization of
the hippocampus as their reference, which we will here refer to as the standard view.
The aim of this chapter is to extend this standard view, adding details that have been
known for some time or have recently been provided, but apparently have not yet
been incorporated in the commonly accepted connectional scheme for the region.
For example, the increased insights on the connectivity of area CA2 are added in
this second edition, as well as many new details on entorhinal intrinsic wiring.

I further aim to reinterpret some of the ‘traditional wisdoms’ on hippocampal
connectivity, potentially pointing to the need of a changed functional framework for
the hippocampus. The use will be made of a standardized scheme of connections
which hopefully will facilitate easy dissemination of these adapted connectional
concepts for the region. Many of the very well-known connections, such as all
extrinsic connections of the HF and EC, will not be covered in this chapter, for two
reasons. First, the information is already available at a summarized (meta) level, and
a new summary would not assist those who need anatomical details to contribute to
the explanation of the functional outcome of a study. Second, this chapter is meant
to provide a framework of knowledge to support computational modelling of the
region, and therefore I have selected what I consider the most relevant new data on
the connectivity of the hippocampus, not of the brain.

Microscopical Anatomy and Nomenclature

Throughout the chapter, reference will be made to the hippocampal formation
(HF) and the entorhinal cortex (EC) as the two main areas of interest. The HF
in turn comprises three distinct subregions (Fig. 1): the dentate gyrus (DG), the
hippocampus proper (consisting of CA3, CA2 and CA1) and the subiculum (Sub).
The HF is a three-layered cortex that is easily differentiated from the EC, since
the latter has more than three layers (see below). The deepest layer of the HF
houses basal dendrites of principal cells and a mixture of afferent and efferent fibres
and local circuitry – interneurons. Superficial to this polymorph layer is the cell
layer, which is composed of principal cells and interneurons. On top, the most
superficial layer or molecular layer contains the apical dendrites of the neurons
and the large majority of axons that provide inputs. In the dentate gyrus, these
layers are, respectively, referred to as the hilus, granular (cell) layer and molecular
layer (stratum moleculare). In the CA-region, we find the deep polymorph layer
(stratum oriens), followed by the pyramidal layer (stratum pyramidale), topped by
the superficial or molecular layer. The latter is subdivided into a number of sub-
layers. In CA3, three sub-layers are distinguished: stratum lucidum, representing
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the mossy fibre input from DG; stratum radiatum, i.e. the apical dendrites of the
neurons in stratum pyramidale; and, most superficially, the stratum lacunosum-
moleculare comprising the apical tufts of the apical dendrites. The lamination in
CA2 and CA1 is similar to that in CA3, with the exception that the stratum lucidum
is missing in CA1 and absent or much less evident in CA2. In Sub, the superficial
layer is generally referred to as molecular layer, sometimes divided into an outer
and inner portion, and the remaining two layers are referred to as the pyramidal
(cell) layer (stratum pyramidale) and stratum oriens. The latter is very thin and
quite often not specifically differentiated from the underlying white matter of the
brain. The EC, commonly subdivided into a medial (MEC) and a lateral (LEC)
part,1 is generally described as having six layers, a molecular layer (layer I), the
superficial cell layer (layer II), the superficial pyramidal cell layer (layer III), a cell-
sparse lamina dissecans (layer IV), the deep pyramidal cell layer (layer V) and a
polymorph cell layer (layer VI).2

In order to understand the anatomical organization, it is relevant to describe the
coordinate systems that define position within the HF and PHR (Fig. 1). For the
HF, there are three relevant axes: the long axis, the transverse or proximodistal
axis, which runs in parallel to the cell layer, starting at the DG; and the radial
or superficial-to-deep axis, which is defined perpendicular to the transverse axis.
In the EC, a similar superficial-to-deep axis is used in addition to mediolateral
(proximodistal) and anteroposterior (rostrocaudal) axes.

1The lateral and medial entorhinal cortex or Brodmann’s areas 28a and 28b, respectively, have been
further subdivided by a large number of authors (for a more detailed description and comparison
of different nomenclatures used in the rat and in other species, the reader is referred to a number
of reviews (cf. Witter et al., 1989)). In the rat, and likewise in the mouse, a further division into
dorsolateral (DLE), dorsal-intermediate (DIE), ventral-intermediate (VIE), caudal (CE) and medial
(ME) subdivisions have been proposed (Insausti et al., 1997, Hippocampus 7:146; van Groen
et al., 2003, Hippocampus 13: 133–149). In monkeys, humans and in other species in which the
entorhinal cortex was described, such as cat, dog, guinea pig and bat (Amaral et al., 1987 J Comp
Neurol 264: 326–355; Witter et al., 1989, Progr Neurobiol 33:161–254; Buhl and Dann 1991,
Hippocampus 1: 131–152; Insausti et al., 1995, J Comp Neurol 355: 171–198; Uva et al., 2004 J
Comp Neurol 474: 289–303; Woznicka et al. 2006, Brain Res Rev. 52: 346–367), comparable
partitioning schemes have been proposed. However, in case of most species, there is a tendency
to consider the entorhinal cortex as composed of two primary components, the lateral and medial
entorhinal cortex, most likely reflecting functional differences (see further Witter et al. 2017a,
Front Syst Neurosci 11:46).
2Note that some authors have adopted a slightly different nomenclature in which the lamina
dissecans is either without number or considered to be the deep part of layer III (layer IIIb), such
that layer IV is used to designate the superficial part of layer V, characterized by the presence of
rather large pyramidal cells that stain strongly for Nissl substance.
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Fig. 1 Schematic representation of the position of the HF and the EC and main topological axes.
(a) Posterior view of the rat brain showing the position of the LEC (light green) and MEC (dark
green; modified with permission from Fyhn et al., 2004, Science 305: 1258–1264. (b) Lateral view
of a partially dissected brain showing the shape and position of the HF and the longitudinal or
dorsoventral axis, as well as the position and extent of the pre- and parasubiculum (PrS and PaS,
respectively) and entorhinal cortex (EC) (Modified with permission from Boccara et al. 2010 Nat
Neurosci.13:987. (c) Schematic drawing of a horizontal section illustrating the main nomenclature.
(d) Horizontal section stained for the neuronal marker NeuN, illustrating the main subdivisions of
HF and the EC
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The Standard Connectional View

According to the standard view (Fig. 2), neocortical projections eventually reach
the EC, which in turn provides the main source of input to DG of the hippocampal
formation. All subregions of the hippocampal formation are sequentially connected
by a serial chain of connections. In short, the dentate granule cells give rise to the
mossy fibre pathway which targets the CA3. Axons from CA3 neurons form the so-
called Schaffer collateral projection, targeting CA1 and lastly, CA1 projects to Sub.
Output from the hippocampal formation arises in CA1 and the Sub and is directed to
the parahippocampal region, mainly, but not exclusively to the deep layers of the EC.
This series of unidirectional connections has also been referred to as the extended
trisynaptic circuit. In a more complex version, EC mediates two parallel projection
streams by way of LEC and MEC, respectively, that each reflect major input/output
differences. The EC is the source of the perforant pathway, which projects to all
subregions of the hippocampal formation. Entorhinal layer II projects to the dentate
gyrus, CA3 and CA2, whereas layer III projects to CA1 and Sub. CA2 has been
added to the circuitry. Whether or not CA2 receives mossy fibre input is still debated,
but recent data indicate that species differences might exist. For now, we assume
that the mossy fibre projection is a characterizing feature of CA3. In turn, CA2 has
strong projections to both CA3 and CA1. The projections to CA1 and subiculum
show a complex topographical organization (Fig. 3). In the following sections, each
of the connections of the more extended scheme will be reviewed, detailed and

Fig. 2 The standard view of the entorhinal-hippocampal network. Layer II of EC originates the
perforant pathway to DG. DG in turn sends the mossy fibre projection to CA3, where neurons
originate the autoassociative projection as well as Schaffer collaterals to CA1. CA1 projects to Sub
and both of them send return projections back to layer V of EC
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Fig. 3 The extended version of the standard view of the entorhinal-hippocampal network. CA2
was added to the network, as well as additional projections for Layer II of EC to CA3 and CA2
and the layer III projections to CA1 and Sub. The differential distribution of the projections from
the LEC and the MEC along the transverse axis of the CA1 and the Sub has been included, as well
as the organization of the projections from the CA1 to the Sub and from both back to LEC and
MEC. The longitudinal topologies of neither connections are represented

when appropriate appended, starting with the entorhinal projections to the individual
subdivisions of the HF.

Entorhinal-Hippocampal Projections

The elaborate Golgi studies of Ramon y Cajal and Lorente de Nó first demonstrated
that EC is the origin of an immensely strong projection to HF. The latter became
generally known as the perforant path(way). These observations were subsequently
corroborated and extended in a seemingly continuous stream of tracing studies
that drew attention to the many parallel entry routes for entorhinal inputs to
HF, providing us with the contemporary image of EC projections to DG, the
hippocampal fields CA1–CA3 and Sub. The total component of fibres was originally
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named the perforant (temporo-ammonic) pathway by Cajal,3 since the axons from
EC perforated the pyramidal cell layer of the Sub. In the molecular layer of Sub,
axons subsequently travel towards DG, crossing the hippocampal fissure, or course
in stratum lacunosum-moleculare of CA1, CA2 and CA3, while making en passant
synapses on the pyramidal neurons and interneurons in the CA fields, and continue
into the tip of the molecular layer of the DG. There is an additional route for
entorhinal fibres to reach targets in the hippocampus, referred to as the temporo-
alvear tract. Axons in this pathway, which does not perforate the Sub, travel in the
alveus and to some extent in stratum oriens below Sub and CA1–CA3 and will
eventually traverse the pyramidal cells layer of the CA fields at specific points and
continue to stratum lacunosum-moleculare where they terminate. Note that these
axons target basal and apical dendrites of pyramidal cells as well as interneurons in
strata oriens, pyramidale and radiatum.4

EC Projections to DG, CA3 and CA2

Cells in layer II of EC give rise to projections to DG, CA3 and CA2, and this
observation has been made in most if not all species studied, including humans.
It is likely that both the projections to DG and CA3 originate as collaterals from
the same neuron and that the majority of neurons that project to DG and CA3
express marked levels of the protein Reelin, one of the two main cell markers
for neurons in layer II. Details regarding the origin of CA2 projecting cells are
unknown, but it is likely that these neurons also belong to the reelin-positive class
of neurons. The other neuron class stains positive for the calcium-binding protein
calbindin. These neurons give rise to widespread projections to the forebrain, but
interestingly, about half of the population of EC layer II calbindin-positive neurons
apparently issues local axon collaterals, contributing to an extensive, though yet
now well-analysed intrinsic projection system. Only a small percentage of these
neurons contribute to the projections to the hippocampus. Although the organization
of the EC projection to DG has been described in much more detail than the EC to
CA3 projection, the latter appears to follow organization principles like those that
govern the projection from entorhinal layer II to DG. Generally, two components
are differentiated which have their exclusive origin in LEC or MEC, respectively.

3See Witter et al. 2017 Brain Behav Evol 90:15–24 for details on the complex and sometimes
confusing terminology used to describe EC-HF projections.
4Note that the term temporo-ammonic tract is often used to refer to all of the entorhinal projections
to the CA fields but more commonly only to all fibres that reach CA1. In the temporal portion of
the hippocampus, most of the entorhinal fibres reach CA1 after perforating the subiculum (classical
perforant pathway). At more septal levels, however, the number of entorhinal fibres that take the
alvear temporo-ammonic pathway increases. A third route taken by fibres from the entorhinal
cortex involves the molecular layers of the entorhinal cortex, para- and presubiculum, continuing
into the molecular layer of the subiculum. The latter route has not been given a specific name.
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Fig. 4 Wiring diagram, illustrating the organization of the projections from layers II, III and V of
the MEC and the LEC to the various subdivisions of the HF. Note the laminar terminal distribution
of the layer II component to the DG and the CA3 and the restricted transverse terminal distribution
of the layer III projection to the CA1 and the Sub

Projections from LEC terminate in the outer half of the stratum moleculare of
DG and the stratum lacunosum-moleculare of CA3 and CA2, whereas those from
MEC terminate deep to the lateral fibres (Figs. 3 and 4). In DG, the entorhinal
terminal zone occupies the outer two-thirds of the molecular layer, and in CA3/CA2,
the entire radial dimension of stratum lacunosum-moleculare contains entorhinal
fibres.5

There are conflicting papers on the transverse distribution of the layer II perforant
path projection. Whereas in some studies no differences were reported, others
reported that the lateral perforant pathway preferentially projects to the enclosed
blade of the dentate gyrus and the medial component either does not show a
preference or predominantly targets the exposed blade. In CA3 no indications have
been found for a further transverse organization, although it should be mentioned
that the distribution of apical dendrites makes it likely that neurons in the most
proximal portion of CA3 are largely devoid of entorhinal input since their dendrites
do not reach into the terminal zone in CA3. In the mouse and the monkey, no
transverse organization has been described in either the DG or the CA3 projection.

5The laminar pattern has been extensively described in the rat and available data in mice, guinea
pigs and cats indicate a similar laminar terminal differentiation between the lateral and medial
components of the perforant path. In contrast, in the macaque monkey the situation is different
in that irrespective of the origin in EC, at all levels of the dentate gyrus, projections have been
reported to distribute throughout the extent of the outer two-thirds of the molecular layer and
stratum lacunosum –moleculare in CA3. It is important though that in all species information from
functionally different entorhinal domains converges onto a single population of dentate and CA3
cells.
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EC Projections to CA1 and Sub

Layer III of the EC contributes a second component to the perforant path that
selectively targets CA1 and the Sub (Fig. 3). Axons originating from the LEC
and the MEC show strikingly different terminal patterns, but unlike the layer II
projections, the difference is not along the radial axis but along the transverse axis.
The projection that arises from the LEC selectively targets neurons in the distal part
of CA1 (the part closest to the Sub) and in the adjacent proximal part of the Sub. In
contrast, the projection from the MEC distributes selectively to the proximal CA1
and the distal Sub (Figs. 3, 4).6 In their respective target domain, entorhinal fibres
completely cover the radial extent of stratum lacunosum-moleculare of CA1 and the
other portion of the molecular layer of the Sub.

In addition to the main innervations arising from layers II and III in the EC,
a projection originating from deep layers has been described as well. In the DG,
this deep layer component preferentially distributes to the inner portion of the
molecular layer, the granule cell layer as well as the subgranular, hilar zone, where
it establishes asymmetrical synapses onto granule cell dendrites as well as on their
somata and onto spine-free dendrites in the subgranular zone. The latter most likely
represent dendrites of interneurons (Fig. 4). In the other divisions of the HF, details
on the distribution of this deep pathway are lacking.

Also, weak inputs from the PrS and PaS reach all hippocampal subfields, where
they terminate throughout stratum moleculare/lacunosum-moleculare, overlapping
with the inputs from the EC. The CA1 and Sub receive additional inputs from the
perirhinal (PER) and postrhinal cortices (POR). The inputs from the PER and POR
show a topology along the transverse axis comparable to that seen in case of the
projections from the LEC and MEC, respectively. However, both projections have a
strong preference for the extremes, such that the PER project to the most distal part
of CA1 and the most proximal part of the SUB and the projections from the POR
favour the opposite extremes.

Synaptic Organization

In the rat, a majority of the terminals of the perforant path fibres (around 90%) form
asymmetric synapses and thus likely are excitatory, and no major differences have
been reported between the lateral and medial components of the pathway. Fibres
contact most frequently dendritic spines of dentate granule cells or of pyramidal
cells in the CA fields and the Sub. A small proportion of the presumed excitatory

6In rodents, the layer II components from the LEC and the MEC apparently do not overlap with
respect to their respective terminal zone in the molecular layer of the DG and likely the same holds
true for CA3. It has not been established whether the same holds true for the respective layer III
components, i.e. whether or not they have a zone of overlap in the centre part of CA1 or the Sub.
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perforant path fibres terminate on non-spiny dendrites of presumed interneurons. In
addition, a small proportion of the perforant path synapses is symmetrical, indicative
of their inhibitory nature, and these likely target both interneurons and principal cells
alike.

In the DG, entorhinal synapses make up at least 85% of the total synaptic
population, and they target mainly apical dendrites of granule cells. Interneurons
that are innervated are those positive for parvalbumin, as well as those positive
for somatostatin and NPY. No details have been reported for the CA3, but on
the basis of quantitative analyses on reconstructed single neurons (Matsuda et al.,
2004), one may assume that a large majority of the excitatory entorhinal fibres
terminate on spines, i.e. indicating synapses with pyramidal cells, and only a
minor percentage terminate on shafts, taken to indicate presumed contacts with
interneurons. Although in the stratum lacunosum-moleculare of the CA3 inhibitory
terminals make up approximately 10% of the total population, it has not been
established whether these all belong to local interneurons or whether part of them
have an entorhinal origin. No studies to date have looked into possible interneuron
targets for perforant path fibres in the CA3. In stratum lacunosum-moleculare of
the CA1, about 15% of the total population of synapses is inhibitory, and the
other 85% are excitatory. Unlike the situation in the DG and CA3 where most
if not all of the synapses in stratum moleculare/lacunosum-moleculare are of
entorhinal origin, in the CA1 the total population of excitatory terminals likely have
three different origins, the EC, thalamic midline nuclei such as nucleus reuniens
and the amygdala.7 Regarding entorhinal inputs, over 90% is asymmetrical, i.e.
excitatory terminating on spines, and around 5% is excitatory terminating on shafts.
Almost no symmetrical, i.e. inhibitory entorhinal fibres have been reported in CA1.
The terminals on shafts likely indicate that interneurons are among the targets
and recently interneurons that reside at the interface between strata lacunosum-
moleculare and radiatum have been identified as recipients of entorhinal input.

In the Sub, the situation in the superficial half of the molecular layer is likely to
be comparable to that in stratum lacunosum-moleculare of CA1 with the adding
complexity of having even more inputs distributing here, including those from
PrS and PER/POR. Of the entorhinal synapses, over 90% is excitatory and 80%
terminates on spines and 10% on dendritic shafts, likely of interneurons, including
those containing the calcium-binding protein parvalbumin, and the remaining are
symmetrical terminals. The postsynaptic targets have not been identified anatomi-
cally, but electrophysiological data indicate that pyramidal cells that project back
to EC are among the targets, an observation that has not been corroborated by
anatomical findings (own unpublished data).

7Amygdala inputs reach only the ventral two-thirds of the CA1 and the Sub. The dorsal one-third
of both fields is devoid of input from the amygdala.
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Projections from CA1 and Subiculum to Entorhinal Cortex

Transverse and Laminar Organization

The dentate gyrus and CA3 field of the hippocampus do not project back to EC.
Thus, the recipients of the layer II projection do not have any direct influence over
the activities of EC. It is only after the layer II and layer III projection systems are
combined in CA1 and Sub that return projections to EC are generated. The return
projections mainly terminate in the deep layers (V and VI) although a component
ascends into the superficial layers. The main targets of these output projections
are in layer V, where likely two or three different subgroups of principal neurons
reside. The cells in the deeper part, referred to as layer Vb, stain positive for the
transcription factor Ctip 2, whereas those in the superficial layer Va stain for Etv1.
Projections from CA1 mainly target neurons in layer Vb, whereas subicular output
seems to target both layers. Whereas neurons in Va originate the main extrinsic
projection system of EC, those in Vb project preferentially intrinsically, targeting
layers Va, III and II (Fig. 5). In case of the projections from the Sub, up to 93% of
fibres form asymmetrical, i.e. excitatory synapses onto dendritic spines (68%) and

Fig. 5 Wiring diagram of some of the main intrinsic and extrinsic connections of EC. Reelin-
positive layer II neurons project to DG, CA3 (and CA2), whereas neurons in layer III project to
CA1 (and subiculum). Return projections from CA1 target mainly neurons in layer Vb, whereas
those from the subiculum distribute to both Vb and Va. Neurons in layer Vb give rise to strong
intrinsic connections to layers Va, III-I. Note that the intrinsic component originating from layer
II calbindin-positive neurons is not indicated (Modified with permission from Witter et al. 2017a,
Front Syst Neurosci. 11: 46)
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onto shafts (23%). A small proportion (7%) forms symmetrical synapses, equally
onto dendritic shafts and spines.

In addition, electrophysiological evidence indicates that among the target cells
are neurons in layer V that project to layers II and III of the EC (see section on
“Entorhinal Associational and Commissural System”). It is relevant to point to the
fact that the projections from CA1 and the Sub to the EC show a topology along the
transverse or proximodistal axis. The projections from the proximal part of CA1 and
the distal part of the Sub distribute exclusively to the MEC, whereas cells located in
the distal part of CA1 and the proximal part of the Sub project mainly to the LEC. In
this way the return projections thus maintain the topography displayed by the input
projections from the MEC and the LEC (Figs. 3 and 4).

Longitudinal Organization

In addition to the radial and transverse organization of the layer II and layer III
projections, respectively, as described above, all connections between the EC and
the HF show a striking topology along the long axis of the HF. Both the projections
from and to the EC follow the same principle in that lateral and posterior parts of the
EC are connected to the dorsal portion of the HF, whereas increasingly more medial
and anterior parts of the EC are connected to more ventral parts of the HF (Fig. 6).
It is relevant to point out that this topographical organization is indeed a gradual one
such that a small portion of the EC may distribute axons over up to 25–30% of the
long axis of the HF and likewise a small part of CA1 and the Sub may distribute
axons to a rather extensive area of the EC.

When taking the transverse and longitudinal organization into account, the
important point emerges that these return projections from CA1 and the Sub are

Fig. 6 Longitudinal organization of entorhinal-hippocampal connectivity. A dorsolateral–to–
ventromedial gradient in the EC (left-hand side; magenta to blue) corresponds to a dorsal–to–
ventral gradient in the HF (right-hand side). Note that the topology in the EC cuts across the
MEC-LEC border indicated with the yellow line (left-hand side, modified with permission from
Fyhn et al. 2004, Science 305: 1258–1264; right-hand side, modified with permission from Amaral
and Witter 1989, Neuroscience 31: 571–591)
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exactly in register, i.e. they are point-to-point reciprocal, with the entorhinal inputs
to these areas. This remarkable topography confirms the critical role of the EC with
respect to the input to, and output from, the HF.

Entorhinal Associational and Commissural System

The EC harbours an extensive, well-developed, yet largely underestimated network
of intrinsic connections. There are three prevailing organizational principles that
govern the overall organization. First, columnar-like projections emanate from
layer Vb pyramidal cells distributing to the superficial layers Va, III-I (Fig. 5).
This projection consists mainly of asymmetrical synapses (95%) which target
presumed principal neurons and interneurons in almost equal proportions. Second,
longitudinal connectivity prevails over transverse connectivity. The longitudinal
projections that originate from a particular layer will preferentially innervate more
superficial layers and they tend to be stronger from posterior (i.e. MEC) to anterior
(i.e. LEC) than those that travel into the reverse direction. These longitudinal
connections seem to originate preferentially from layers Vb and the calbindin-
positive neurons in layer II. The transverse connections are much more restricted,
and mostly confined to the layer of origin. Fairly strong homotopic commissural
projections exist that terminate predominantly in layers I and II.

Connections of the Dentate Gyrus

Mossy Fibre Projections to Hilus and CA3

Dentate granule cells issue a massive projection of so-called mossy fibres to the
entire transverse or proximodistal extent of CA3. Mossy fibres provide en passant
presynaptic terminals that are unique with respect to size, anatomical complexity
and the fact that they are correlated with likely complex postsynaptic specializations
called thorny excrescences. On their way to field CA3, these fibres contact a fairly
large cell type in the hilus called mossy cells. They also give rise to many small
collaterals that target a wide variety of presumed interneurons in the hilus (Fig. 7).

The projections from a single neuron or from a small group of neighbouring
neurons distribute axons within a fairly limited longitudinal extent that hardly ever
covers more than 400–500 μm and coincides with their level of origin. There is
however a noticeable exception, in that mossy fibres abruptly change their course
from an overall transverse orientation to a longitudinal one, once they reach the
distal end of CA3. The extent of the longitudinal component depends on the
dorsoventral level of origin in that granule cells at dorsal levels distribute mossy
fibres ventrally for about 2 mm. The more ventral the origin, the less the longitudinal
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Fig. 7 Wiring diagram, extended version of Fig. 4, illustrating the organization of the intrinsic
connections of the HF. Indicated are the mossy fibre projections to the hilus and to the CA3, the
return projection from proximal CA3 to the DG and the diminished contribution of proximal CA3
cells to the associate projection (stippled line). Also indicated is the proximodistal organization of
the CA1-to-Sub projections as well as the calbindin-positive associative connection in the CA1.
Finally, the intrinsic entorhinal connections from layer V to more superficial layers are indicated.
(Note that additional associative networks in the CA1 and the Sub have not been indicated; see text
for further details)

projection is developed such that granule cells at the ventral DG have little or no
longitudinal component. The longitudinal component of the mossy fibre projection
appears synaptically indifferent from the transverse component.

The anatomical organization of the mossy fibre projections along the transverse
axis indicates that the influence exerted by granule cells on CA3 pyramidals depends
on the position along the transverse axis of DG, since the proximal portion of CA3
is innervated preferentially by neurons in the exposed (infrapyramidal) blade, the
crest and the adjacent portion of the enclosed (suprapyramidal) blade of the DG.
The distal portion of CA3 receives mossy fibre input preferentially from granule
cells in the enclosed blade of DG.

Current conceptions of CA3 as having a homogeneously wired architecture
are incorrect or at least incomplete. Cells at different transverse positions receive
inputs from cells in the DG that in turn are either different in their connectivity
or functionally. In addition, at the most distal end of the dorsal part of CA3, a
population of CA3 pyramidal cells most likely integrate inputs from the entire dorsal
tip of the DG, a feature which is absent at proximal and mid-transverse levels as well
as at ventral CA3 levels.

The DG Associational and Commissural System

The mossy cells in turn give rise to axons that bilaterally innervate the inner
molecular layer of the DG, thus providing a powerful excitatory input to the
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proximal dendrites of the dentate granule cells. Interesting feature of this associ-
ational/commissural connection is that it may innervate as much of 65% of the long
axis of the DG, but the innervation is weak at the level of origin and increases
in density with increasing distance from the origin. Local hilar interneurons
provide an inhibitory projection to the outer portions of the molecular layer, and
this innervation is largely restricted to the level of origin, thus complimenting
the excitatory associational system (see also section on “Neurons, Numbers and
Connections”).

Connections of CA3

The CA3 to Dentate Projections

In contrast to the well-accepted view that projections within the hippocampal
formation are largely if not exclusively unidirectional, implying that CA3 does not
project to the DG, there is now substantial evidence to support such projections.
These connections have not been described in the initial Golgi and subsequent
tracing studies. However, intracellular filling consistently showed that pyramidal
cells in the most proximal portion of CA3 embedded within the blades of the dentate
granule cell layer issue collaterals that reach the hilar region (Fig. 7). Described as
sparse, true at more dorsal levels of the hippocampal formation, at more ventral
levels, CA3 neurons actually densely innervate the DG; not only the hilus but
numerous CA3 axon collaterals also terminate in the most inner portions of the
dentate molecular layer. The increase in density of projections to the DG at ventral
levels goes hand in hand with a decreased contribution to the more traditionally
known projections to CA1 (see below). Note that also GABAergic projections from
CA3 to the DG have been reported.

The CA3 Associational/Commissural System

Local axon collaterals of CA3 axons make preferentially asymmetrical, thus most
likely representing excitatory synapses, contacting dendrites of interneurons and
importantly also spines of pyramidal cells, thus forming the strong autoassociative
network considered to be the characteristic feature of the CA3 network (Fig.
7). The organization of the associational projections from CA3 to CA3 follows
a few systematic principles that have been described essentially in two detailed
tracing studies using either larger injections of anterogradely transported tracers or
intracellular filling of individual CA3 pyramidal cells. Density and extent of local
connectivity in CA3 is inversely related to the origin along the proximodistal axis.
Irrespective of their dorsoventral position, CA3 pyramidals embedded within the
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extent of the DG that, as described contribute to the projection to the DG, do not
seem to contribute much to the intrinsic associative system. The associative fibres
that do emerge from these CA3 cells are restricted both along the proximodistal
axis and along the longitudinal (dorsoventral) axis to the level of the parent cell(s).
Cells with an increasingly more distal position in CA3 tend to exhibit increased
associational axonal collaterals, extending several hundred microns anterior and
posterior to the cell body but restricted along the transverse axis to the region
of the parent cell body. The proximodistal origin also apparently relates to the
radial distribution of the axons, such that proximal neurons preferentially project to
stratum radiatum, whereas axons from increasingly more distal cells distribute more
to stratum oriens. To further complicate the connectional matrix, the transverse-
radial relation varies along the longitudinal axis.

Single pyramidal cells in CA3 not only distribute axonal branches ipsilaterally
but also contralaterally. The detailed topography of the commissural connections
has not been as thoroughly investigated as the ipsilateral connections, but it appears
an image of the ipsilateral organization for both the projections to CA3 as to CA1
(see below). Also, the synaptic organization of both ipsilateral and commissural
projections is quite similar. Note that species differences are present with respect to
whether or not the commissural connections are present and if present, how they are
organized with respect to their longitudinal and radial distribution.

The CA3 to CA1 System: Schaffer Collaterals

Comparable to the situation in CA3, the postsynaptic targets in CA1 for CA3
fibres comprise both interneurons and pyramidal cells. CA3 projections distribute in
stratum radiatum and stratum oriens of CA1, whereas almost no fibres are present in
the pyramidal cell layer (Fig. 7). Almost without exception, the longitudinal extent
of the projections to CA1 is larger than that of the corresponding associative CA3
projections. Irrespective of the level of origin, projections do extent to levels both
dorsal and ventral to the level of origin; however there is a preferential direction of
the projections that relates to the transverse level of origin. Neurons with a proximal
location, close to or inside the hilus, preferentially project to more dorsal levels,
whereas more distal origins result in a shift to more ventral levels. Irrespective of
the location of the neuron of origin though, the projections exhibit differences in
radial distribution along the long axis of CA1. At more dorsal levels, collaterals
tend to be located deeper in stratum radiatum and in stratum oriens, whereas at
progressively more ventral levels, the fibres shift towards a more superficial position
in stratum radiatum and less dense innervation in stratum oriens. This pattern is
thus similar to that described above for the associative CA3-CA3 projections. The
transverse position of the parent CA3 neuron does relate, at and around the level of
origin to two other features. First, proximal projections tend to distribute somewhat
more distally in CA1, and more distal CA3 cells project with some preference to
more proximal portions of CA1. Furthermore, proximally originating projections
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terminate more superficially in stratum radiatum than distal projections, which
distribute deeper in strata radiatum and oriens.

Connections of CA1

The CA1 to CA3 Projection

No excitatory projections from CA1 have been described that systematically target
neurons in CA3. All the projections that run counter to the traditional unidirectional
view apparently arise from a specific group of long-range GABAergic neurons that
are prominently present in CA1. These neurons also provide projections of the DG,
the EC and the lateral septum.

The CA1 Associational and Commissural System

Although much weaker than in CA3, there are recurrent connections in CA1.
Anterograde tracing and intracellular filling date all consistently show that pyrami-
dal cells in CA1 issue collaterals that distribute throughout strata oriens, pyramidale
and radiatum of CA1. Of similar interest are reports on a narrow calbindin-positive
bundle of fibres located at the exact border between lacunosum-moleculare and
radiatum most likely emerging from calbindin-positive pyramidal cells in the distal
part of CA (Fig. 7). The physiological nature and terminal distribution of any of
these associational connections need further study before any functional inferences
are intelligible.

The CA1 to Subiculum Projection

Principal cells in CA1 give rise to a strong projection to the Sub, terminating on
proximal distal and apical dendrites of subicular pyramidal cells, not innervating
the outer half of the molecular layer. Both intracellular fills and tracing studies
have convincingly shown that this projection shows a marked topology along the
transverse axis such that a cell or group of cells in the proximal one-third of CA1
project to the distal one-third of the Sub. Vice versa, cells in the distal CA1 will
exclusively target cells in the proximal portion of the Sub, and cells in the centre of
CA1 will reach cells in the centre of the Sub. Note that although a single cell will
provide a set of axonal collaterals spanning about one-third of the transverse extent
of the Sub, a cell with a slightly shifted position will also slightly shift its axonal
pattern slightly in the opposite direction (Fig. 7).
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The CA1 to Entorhinal Projection

The projection from all parts of the CA1 to the EC and the complex transverse
and longitudinal topology have been dealt with already (see section “Projection
from CA1 and Subiculum to Entorhinal Cortex”). Also the striking similarities with
respect to these topologies with the reciprocal EC-to-CA1 projection have been
mentioned (see also below in the next section on “Connections of the Subiculum”).

Connections of Subiculum

The Subiculum to CA1 Projection

According to at least two studies, neurons in the pyramidal cell layer of the Sub
send axon collaterals into all layers of CA1. The origin of this projection includes
superficial pyramidal cells and is likely to form both excitatory and inhibitory termi-
nals on spines and dendritic shafts, respectively. Although no detailed information
is available on spread along the transverse or longitudinal axes, the data indicate no
marked transverse topography and a restricted longitudinal spread, comparable to
the CA1 to CA3 projection.

The Subiculum Associational System

There are at least two types of pyramidal cell types in the Sub that both belong to the
group of projection neurons. Both types, the so-called bursters and regular-spiking
neurons, contribute to an extensive intrinsic innervation in the Sub. Intracellular
filling of electrophysiologically identified bursting cells reveals an axonal distri-
bution that remains within the region circumscribed by their apical dendrites. In
contrast, the regular-spiking cells give rise to an axon that shows more widespread
distribution along the transverse axis. Since these data have been generated in in
vitro slices, it is not known whether similar differences exist with respect to a
possible longitudinal spread. The longitudinal spread of the average population of
neurons covers approximately 0.5–0.7 mm which is about 7% of the long axis.

The Subiculum to Entorhinal Projection

The projections from the Sub to the EC and the complex transverse and longitudinal
topology have been described already (see section “Projection from CA1 and
Subiculum to Entorhinal Cortex”). Also the striking similarities with the topological
organization of the reciprocal EC-to-Sub projection have been referenced.
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Table 1 Quantitative data on principal neurons in the HF and the EC

# of principal
neurons

Dendritic
length in μm

% exc and inh
synapses

# of
synapses/connection

DG Gcl 1.200.000 3.100
DG hilus 50.000
CA3 250.000 16.000 88 exc

12 inb
CA2 12.000 cassell 1980
CA1 390.000 12.600 95 exc 2.000–3.000 exc EC

5 inh 12.000 exc CA3
Sub 290.000
PrS/PaS 700.000
EC II 110.000
LEC II 46.000–59.500 Fan 9.300

65% fan Multipol 7.500
Pyr 9.800

MEC II 36.000–66.000
67% stellate

EC III 250.000
LEC III 153.000 Pyr 11.400
MEC III 105.000
EC V and VI 330.000
LEC V and VI 184.000 Pyr 7.800

Hor 8.200
Polym 10.900

MEC V and VI 125.000 Pyr 5.200
Hor 7.800
Polym 8.300

Indicated are total number of neurons (# neurons), the average total dendritic length, the percentage
of excitatory and inhibitory synapses that impinge on the dendrites and the estimated total number
of synapses/input (# synapses/connection)
Sources for information: Amaral et al. (1990), Cameron and McKay (2001), Gatome et al. (2010),
Hamam et al. (2000, 2002), Lavenex and Amaral (2007), Matsuda et al. (2004), Megias et al.
(2001), Merril et al. (2001), Rapp and Gallagher (1996), Rapp et al. (2002), Rasmussen et al.
(1996), Tahvildari and Alonso (2005), West et al. (1991)

Neurons, Numbers and Connections

A number of estimates are available on how many neurons there are in the different
areas of the HF and the EC as well as on total dendritic length and number of
synapses leading to a number of published attempts addressing questions like how
many cells converge on to a single cell and what is the level of divergence for a
single cell axons. Although far from complete, in the following section, an attempt
is made to summarize those data in rats (Table 1). Note that possible age and strain
differences as well as methodological differences are not taken into account.
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Numerical estimates have indicated that the population of granule cells may
carry a total number of 4.6 × 109 spines of which 77%, i.e. 3.542 × 109, would
belong to entorhinal synapses. Taken the total number of entorhinal layer II cells,
each of them could potentially contact 32,200 spines. If we would know how many
entorhinal inputs target a single granule cell, we would be able to estimate how
many granule cells would be innervated by a single layer II cell in the EC, i.e. we
should have a numerical estimate of the divergence of this connection. By using
published estimations of the number of spines on granular cell dendrites (4600), we
could estimate that each granule cell can receive input from maximally 0.77 × 4600
is 3542 cells in EC or 3542/110.000 is 3.2% of the total layer II population (based
on Amaral et al. 1990). Using comparable lines of reasoning, it has been inferred
that a single mossy fibre can make as many as 37 synaptic contacts with dendrites of
a single CA3 pyramidal cell, a single granule cell may innervate 15 CA3 pyramidal
cells, and a single CA3 pyramidal cell may receive convergent input from 72 granule
cells. A single CA3 neuron might be innervated by 6000 other CA3 neurons, and
a single CA1 cell receives input from 5500 CA3 cells. Details on the Sub and the
EC are currently lacking. A final word of caution would be in place since all these
numerical estimates assume homogeneity of the network, which most likely will
turn out to be a false assumption. For example, it is known that the absolute numbers
as well as the percentages of the total population of principal cells and interneurons
vary along the long axis of the hippocampus. Also differences in numbers of neurons
are obvious for the LEC versus the MEC (Table 1).

A complementary approach would be to look at the overall distribution of the
individual connections that make up the region of interest. A single entorhinal
neuron may distribute its axon along approximately 25% of the long axis of the
HF. It has been estimated that in adult animals, this axis extends for up to 10 mm,
so a single axon targets 2.5 mm of the length of the HF. Axons from granular cells
are fairly limited in their longitudinal distribution, extending for about 400 μm in
CA3c-b but up to 1.5 mm in CA3a. The associational projection from the hilus back
into the inner molecular layer extends over 6.5 mm, exhibiting a dramatic drop in
density around the level of its origin. Note that some other hilar projections, such
as those originating from somatostatin-positive interneurons to the outer portions
of the molecular layer, fill that gap. The subsequent projection from CA3 to CA1
shows a longitudinal extent similar to that of the DG association system, whereas
the autoassociative connections are slightly more restricted. The projections from
a single cell in CA1 to the Sub extend up to 2 mm along the long axis forming a
slab-like innervated strip. The associative connections within CA1 apparently are
rather restricted along the long axis, whereas currently no data are available for the
associational connections in the Sub, be it that they at least extend for 400 μm.
Finally the projections from CA1 and the Sub to the EC cover a narrow strip in EC
that extends for at least along 60% of the longitudinal extent of either the LEC or the
MEC, depending on whether the injection is in proximal or distal part of the Sub,
respectively.
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Experimental Techniques

Most of what is known today about the pathways that connect neurons in dif-
ferent brain regions has been discovered by using neuroanatomical tract-tracing
techniques. Tracers are molecules that are either applied extracellularly or intra-
cellularly. In case of extracellular application, the tracer is taken up by neurons at
the injection site and transported or diffused within cells. A tracer substance can be
transported anterogradely (e.g. Phaseolus vulgaris leucoagglutinin), from the soma
towards the axon terminals, retrogradely (e.g. Fast Blue) and from the axon termi-
nals towards the soma, or it can be transported in both directions (e.g. horseradish
peroxidase). In case of intracellular application, both autofluorescent dyes (e.g.
Lucifer yellow, Alexa dyes) and biotin-conjugated dyes are most often used, since
they can be easily visualized for fluorescent or transmitted light microscopy (LM).
All these methods can be analysed using a variety of microscopical techniques,
including to some extent electron microscopy (EM). In the latter case, one quite
often combines them with lesions. Small lesions (mechanical, toxins, electrolytic)
will result in local degeneration of axon terminals that show up as electron dense
material in the EM.

Standard light and confocal techniques, when applied to extracellular tracer
deposits, allow the visualization of distribution patterns, including laminar dis-
tribution, topologies as well as the identification of likely synaptic relationships.
They are poor with respect to quantitative resolution since it is very difficult to
control or estimate the number of neurons that take up and transport the tracer. A
much more reliable but very time-consuming method is the intracellular filling of
single neurons in vivo and the subsequent complete reconstruction of its dendritic
and axonal arborizations. This technique can be combined with anterograde or
retrograde tracing to identify projection targets and synaptic inputs. A recently
added tool is to make use of retrograde labelling with genetically modified viruses
that carry the genes for certain fluorescent proteins such that infected cells express
the protein throughout their dendritic and sometimes even axonal arborizations.
The viral toolkit has expanded enormously and now comprises a number of ways
to selectively visualize monosynaptic inputs to identified neurons both at the
population and single cell level.

Another powerful approach is to use in vitro slice electrophysiology combined
with viral expression of light-sensitive channels. This facilitates the analysis of
postsynaptic targets of distant inputs, i.e. those that are difficult, if not impossible to
maintain in a slice preparation.

Electron microscopy can be used to visualize whether a presynaptic axon con-
tacts a postsynaptic identified neuron. This is a very accurate but time-consuming
method because only small pieces of tissue can be examined at one time. A promis-
ing development may be the use of automated systems to do serial reconstructions, at
the EM level but also at the LM level, but in all instances, our limited understanding
of the mechanisms underlying labelling and transport of tracers seriously hampers
our aims to generate quantitative data. The only exception is the high standard of
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unbiased methods to count number of cells, synapses and actually any identifiable
element in the nervous system, using stereological approaches. But even when
applying such sophisticated methods, one has to be aware of differences between
strains, effects of age, environment and gender on quantitative estimates. A recent
and promising addition is the use of serial EM techniques which have now provided
the first very large quantitative datasets on connectivity of small volumes of brain,
for example, a recent reconstruction of part of the entorhinal cortex (Schmidt et al.
2017, Nature 549:469).

The Future: Open Questions and How to Address Them

Many conceptual or theoretical accounts and modelling attempts use a rather
simple and generalized representation of what we actually know as their starting
point. This may eventually lead to disuse of available data, such that these data
eventually will be forgotten. Our attempts to understand structure needs to take
into account all the subtle differences in topology and densities of projections,
the many parallel pathways that are so characteristic of the brain and the many
different levels of integration that may occur within the different networks that
constitute the HF. It will become relevant to integrate our current insights in the
connectional organization of the hippocampus into a new functional framework.
To give one example, the current traditional view of the hippocampal network as a
unidirectional, sequential series of connections does not credit the wealth of data on
parallel EC inputs to all components of HF and the well-established backprojections
in the system. The addition of CA2 to the network provides a further complicating
factor.

During the last decade, we have learned a lot about EC, the types of principal
neurons and their specific connectivity. In addition to data on layer II, more recently
data on layer V have become available. Data on layer III are still very sparse as
are data on intralaminar interactions. By adding the complexity of the very many
specific types of interneurons, our task to describe, to model and to understand EC
is still a major challenge. The combination of anatomical and electrophysiological
studies, with the use of promising new genetic tools and computational modelling,
will provide the foundation for further detailed functional studies in freely behaving
animals, which in turn form the ground work to understand the human hippocampus,
both when it is healthy and when it starts to break down, as seen in ageing and in
several neurodegenerative diseases.
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Resources

http://www.temporal-lobe.com/: online searchable database of hippocampus connectivity and
visualization tools

http://www.rbwb.org/: online atlas tools with detailed description of the anatomy of the hippocam-
pal region in the rat

http://neuromorpho.org/index.jsp: index of morphologies of hippocampal neurons
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Morphology of Hippocampal Neurons

Imre Vida, Claudius E. Degro, and Sam A. Booker

Overview

“Form follows function” states the credo of modern architecture, defining how the
shape of an object should be determined by its function. While natural objects, such
as neurons, have not taken their shape from design boards, the inquisitive observer
can nevertheless gain insights about their function by studying morphological
features. This teleological mindset was the main driving force behind the early
neuroanatomical investigations, which culminated in the work of Cajal and formed
the foundation of modern neuroscience. Neuroanatomical analysis remains an
essential part of neuroscience research today and computational neuroscientists
particularly benefit from the flow of morphological data, with increasing detail and
resolution.

Nerve cells or neurons are the structural and functional units of the nervous sys-
tem and come in various sizes and shapes, conceivably reflecting differences in the
functional roles played by them in brain circuits. On the one hand, the distribution
of dendrites and axon determines the synaptic inputs and available targets to cells.
On the other hand, the three-dimensional structure of neuronal processes constitutes
the cable structure in which signals are integrated and processed.

Neurons in cortical areas, including the hippocampus, can be broadly divided
into two major classes: principal cells and non-principal cells or interneurons.
Principal cells comprise the majority (∼80–90%) of the neuronal population with
area-specific morphological features. While they are regarded largely homogeneous
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within an area, there is increasing evidence for position-dependent differences in
their properties. Cortical principal cells are excitatory glutamatergic neurons and
are considered to be the workhorse of information processing. They send axon
collaterals to other brain areas and therefore are also referred to as “projection
neurons.” Interneurons are inhibitory, GABAergic, cells and are characterized by
dense local axonal arbor which enables them to control and coordinate the activity
of large populations of local neurons. Although interneurons comprise only a small
proportion of the neuronal population (∼10–20%), they display a high degree of
morphological heterogeneity and can be subdivided into a number of types. The
diversity of the interneurons conceivably serves a division of labor in spatiotemporal
control of principal cell activity, much like a conductor leading an orchestra.

In this chapter we will review the morphological characteristics and local
connectivity of the various neuron types in the hippocampus of rodents. Although
due to the possibilities offered by genetically modified organisms and elegant
optogenetic approaches, studies more commonly use mice nowadays, the majority
of the cellular level data available in the literature are still from the rat hippocampus.

The Data

Anatomical Structure and Nomenclature

The hippocampus is a phylogenetically ancient cortical structure (“archicortex”)
which evolved from the dorsomedial aspects of the cerebral hemispheres. It consists
of two interlocked folds of the cortical mantel, the hippocampus proper and the
dentate gyrus (DG; Cajal 1968; Lorente de Nó 1934). Macroscopically the curved
structure of the hippocampus bears some resemblance to the horns of a ram, hence
the Latin cornu ammonis (CA). Its cranial (“septal”) pole is located close to the
midline in the dorsal part of the hemisphere, below the corpus callosum, whereas its
caudal (“temporal”) pole extends ventrolaterally into the temporal lobes (see Fig. 1
in the chapter “Connectivity of the Hippocampus”).

In cross section, the hippocampus proper (CA areas) and the DG form two
interlocked “C” shapes (Fig. 1). The hippocampus proper features pyramidal cells
and can be cytoarchitecturally divided into the CA1, CA2, and CA3 areas. Lorente
de Nó (1934) further subdivided the CA1 and CA3 areas to three zones along
the transverse axis: “a” (closer to the subiculum), “b,” and “c” (closer to the
hilus) on the basis of their anatomical connectivity. In contrast to the CA regions,
the DG comprises a population of granule cells (GC) as principal neurons. The
interface between the DG and CA areas is called the hilus which contains a third
population of principal cells, the mossy cells. The hilus differs from other parts of
the hippocampus in that it shows no clear lamination, and the ratio of principal cells
and interneurons is close to equal. It has been a matter of some controversy whether
it belongs to the hippocampus proper as a CA4 area (Lorente de Nó 1934) or to the

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Fig. 1 Areas and layering of the hippocampus. (a)Transverse section from the ventral mouse
hippocampus immunolabeled for the calcium-binding proteins calbindin (CB, green) and calretinin
(CR, red). CB is expressed by GCs and a subset of CA1 pyramidal cells. Therefore the DG and the
CA1 area show labeling of the cell bodies and a homogeneous staining of the dendritic layers. In the
CA3 area, the narrow band of GC axons (the mossy fibers) is labeled in the str. lucidum (luc.). CR
immunostaining labels mossy cells in the hilus (hil.) and delineates the termination of their axon
in the inner third of the molecular layer (m.l.) of the mouse hippocampus. In addition to principal
cells, a subset of interneurons scattered throughout the hippocampus can be seen labeled by either
CB or CR. (b) Schematic drawing of the areas and layers of the hippocampus. Abbreviations: alv.,
alveus; ori., str. oriens; pyr., str. pyramidale; rad., str. radiatum; l-m., str. lacunosum-moleculare;
g.c.l., granule cell layer. Dashed lines indicate borders between the CA areas

DG as a “polymorphic layer” (Blackstad 1956; Amaral 1978). Because of the tight
mutual connectivity, the general consensus seems to favor the latter hypothesis, with
the term CA4 no longer used. Nevertheless, the hilus is often silently regarded as an
area on its own right.

The hippocampus displays a strict laminar structure (Förster et al. 2006; Fig. 1).
Principal cells are tightly aligned and their somata form well-defined layers, the
stratum (str.) pyramidale in the CA areas and the granule cell layer in the DG.
The multiple curvatures of the hippocampus mean that the orientation of principal
cells depends on their position along the septotemporal and transverse axes. Vertical
positions are therefore referenced to the main axis of the principal neurons. The
neuropil in the CA areas is subdivided into three major layers (from basal to apical
direction): (1) the str. oriens, which is below the cell body layer; (2) the str. radiatum
above the cell body layer; and (3) the str. lacunosum-moleculare. The str. oriens and
radiatum are the innervation zones for the ipsilateral associational fibers (including
the Schaffer collaterals) and the contralateral commissural axons originating in
the CA3 areas. The str. lacunosum-moleculare is the layer in which the perforant
and temporoammonic path axons from the entorhinal cortex terminate. The str.
lacunosum-moleculare can be further divided into the str. lacunosum (being the
common location of dendritic bifurcation) and the str. moleculare (location of distal
dendritic tuft). In the CA3 area, there is an additional narrow layer, the str. lucidum,



32 I. Vida et al.

immediately above the cell body layer where projections from the mossy fibers of
the DG terminate (for further details on connectivity, see chapter “Connectivity
of the Hippocampus”). Finally, a layer of white matter consisting of afferent and
efferent axons, the alveus, is found below str. oriens.

In the DG, the neuropil above the granule cell layer forms the molecular layer
(ML). Similar to CA3, commissural/associational axons originating primarily from
hilar mossy cells terminate proximally in the inner third of the molecular layer
(inner molecular layer, iML) and perforant path axons from either lateral or medial
entorhinal cortex innervate the middle (mML) and the outer third (oML) of the ML,
respectively. As noted above, the area beneath the cell body layer is regarded as the
polymorphic layer (or hilus) of the DG; however, GCs have no basal dendrites and
only their axons extend into that region.

Principal Cells

Principal cells of the hippocampus include the pyramidal cells of the CA areas, GCs
of the DG, and mossy cells of the hilus, each of which is largely homogeneous, but
each possesses subtle anatomical, molecular, and genetic variations.

CA1 Pyramidal Cells

Pyramidal cells of the CA1 are one of the most-investigated types of neurons in
the brain. The number of pyramidal cells in the rat CA1 has been estimated to be
on the order of 3.2–3.5 × 105 (unilateral values from male Wistar rats, Hosseini-
Sharifabad and Nyengaard 2007, or Sprague-Dawley rats, Miettinen et al. 2012).
These neurons are characterized by a pyramid-shaped or ovoid soma, a large-
caliber apical dendrite, and a number of small-caliber basal dendrites (Fig. 2a, b).
Cell bodies of CA1 pyramidal cells are typically found in the cell body layer (str.
pyramidale) or in proximal str. oriens. The str. pyramidale of the CA1 area has been
subdivided in a superficial compact layer with one to two dense rows of pyramidal
cells and a deep loosely packed layer of scattered cell bodies (Lorente de Nó 1934;
Slomianka et al. 2011). As mentioned above, increasing evidence indicate that CA1
pyramidal cells do not constitute a uniform cell type throughout the region, rather
differ remarkably in their physiological characteristics (Graves et al. 2012). Beyond
that, superficial and deep cells have been recently found to differ in their internal and
external excitatory and inhibitory connectivity as well as their functional properties
(Mizuseki et al. 2011; Lee et al. 2014; Masurkar et al. 2017). Moreover, a population
of displaced pyramidal cells has been identified in str. radiatum (Cajal 1968; Gulyás
et al. 1998), which possess certain unique physiological properties and projection
patterns (Christie et al. 2000; Bullis et al. 2007).

The cell bodies of CA1 pyramidal cells have a diameter of ∼15 μm and a surface
area of 465 ± 50 μm2 (Megías et al. 2001). The apical dendrites (typically 1,

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Fig. 2 Morphology of hippocampal principal cells. (a) Pyramidal cells of the CA1, CA2, and
CA3 area. (b) Three-dimensional structure of a CA1 pyramidal cell illustrated from frontal, side,
and top views. (c) Morphological diversity of DG GCs. Values adjacent to the cells indicate
the total dendritic length. Note the difference between the upper (suprapyramidal) and lower
(infrapyramidal) blades. (d) Three-dimensional structure of a GC illustrated from frontal, side,
and top views (a, b from Ishizuka et al. 1995; c, d from Claiborne et al. 1990, reproduced with
permission. © J. Wiley & Sons)

occasionally 2, or even 3 primary branches) extend into str. radiatum with between
9 and 30 oblique side branches in this layer (Bannister and Larkman 1995a). They
end with a bifurcation at the border of str. radiatum and str. lacunosum and form
a dendritic tuft in str. lacunosum-moleculare. Two to eight basal dendrites emerge
from the base of the cell body in the str. oriens. These dendrites bifurcate repeatedly
close to the soma and the long terminal branches run toward the alveus.

The total dendritic length of CA1 pyramidal cells has been reported to be in the
range of 11.5 and 17.5 mm (Table 1). The considerable variability could be due
to differences in the strain, sex, and age of the rats, as well as the experimental
approach used in the studies (i.e., in vitro vs. in vivo labeling, correction for
shrinkage). Corresponding estimates of the somatodendritic surface area are 28,860
and 36,000 μm2, excluding dendritic spines (Bannister and Larkman 1995b,
Cannon et al. 1999; Table 1). However, dendrites of CA1 pyramidal cells are densely
covered with spines and they can significantly influence the calculated surface area.
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The total number of spines has been estimated to be over 30,000 (Bannister and
Larkman 1995b, Megías et al. 2001; see Table 2). Bannister and Larkman (1995b)
calculated that spines increase the dendritic surface area by a factor of 0.89 in CA1
pyramidal cells. The distribution of spines is not homogeneous on the dendritic
surface: spine density is highest in str. oriens and radiatum with values between 1.26
and 1.43 μm−2 and lower with 0.6 μm−2 in str. lacunosum-moleculare (Bannister
and Larkman 1995b). These surface density values correspond to a linear, length
density of 7.5 μm−1 on the apical trunk, 2.4–3.2 μm−1 on basal and oblique
dendrites, and 1.4 μm−1 on dendrites of the apical tuft (Bannister and Larkman
1995b); these values are in good agreement with electron microscopic estimates of
spine density (Harris et al. 1992). Interestingly, spines in str. lacunosum-moleculare
are more often contacted by the same presynaptic axon, forming clustered synapses,
than for str. radiatum spines (Bloss et al. 2018).

Spines serve as postsynaptic targets primarily for glutamatergic terminals;
therefore their high numbers indicate a massive excitatory synaptic input to these
cells. In fact, in a detailed morphological study, Megías et al. (2001) showed that
on average ∼30,600 terminals converge and form asymmetrical, putative excitatory
synapses onto a single CA1 pyramidal cell in the rat (Table 2), whereas in the
mouse, this value is substantially lower on the order of 10,000 (Bloss et al. 2016;
Table 3). Over 99% of these asymmetrical synapses are located on dendritic spines,
although in the str. lacunosum-moleculare, up to 17% of the synapses can be found
on dendritic shafts. Somata of pyramidal cells are devoid of excitatory synapses
(Fig. 3). Interestingly, superficial and deep pyramidal cells in the mouse differ with
respect to the density of spines in str. lacunosum-moleculare: deep pyramidal cells
have 50% fewer spines in CA1a corresponding to fewer medial entorhinal cortex
inputs, whereas in CA1c deep pyramidal cells have higher spine density, reflecting
a higher incidence of medial entorhinal inputs (Masurkar et al. 2017).

The number of symmetrical, putative inhibitory synapses formed by GABA-
immunopositive boutons is much lower. A single neuron receives ∼1700 symmet-
rical synapses, which correspond to only 5.6% of the total number (Megías et al.
2001). In contrast to excitatory synapses, a large proportion (40%) of inhibitory
synapses are found in the perisomatic domain, with 7% of the synapses located on
the soma and the axon initial segment and 33% on proximal dendrites. In these
compartments, inhibitory synapses comprise 50–100% of all synapses. In contrast,
on dendrites in the str. radiatum and oriens, the proportion of these synapses is only
4–5%. Interestingly, on distal apical dendrites in the str. lacunosum-moleculare,
the proportion increases again to 16% (see Table 2). On the dendrites, almost all
(>98%) inhibitory terminals form contacts with shafts. However, as an exception to
this rule, in the str. lacunosum-moleculare, 10–20% of the inhibitory synapses have
been found on spines (Megías et al. 2001).

The axon of CA1 pyramidal cells with origin at the axon initial segment (AIS)
emerges from either the soma or a proximal dendrite, with equal likelihood (Thome
et al. 2014). Action potentials are preferentially generated in AIS, with the initiation
site localized in the distal half, and backpropagate to the soma and dendrites (Stuart
and Sakmann 1994; Palmer and Stuart 2006). If the AIS is found on a dendrite,
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Table 3 Laminar distribution of excitatory and inhibitory synapses on CA1 pyramidal cells in the
mouse

Layer Spines % of total GABA(+) synapses % within layer

Total 9537 560 5.3%
L-M 1300 13.6% 287 (51,3%) 51.3%
Rad 4998 52.4% 113 (20,2%) 20.2%
Ori 3239 34.0% 160 (28,6%) 28.6%
Soma N/A
AIS N/A

Values represent estimated numbers of synapses D. Percentage values for the spines indicate the
proportions found in the different layers. Data from Bloss et al. (2016)

action potentials will occur earlier in the “privileged” dendrite than in the soma or
other dendrites of the neuron (Thome et al. 2014). The main axon collateral runs in
the alveus and is directed toward the fimbria/fornix, forming long-range connections
with the subiculum, entorhinal cortex, amygdala, prefrontal cortex, as well as
many other cortical regions (see chapter “Connectivity of the Hippocampus”).
Although the extent of local arborization is limited, axon collaterals are present
in the str. oriens and to a lesser degree in the radiatum. These collaterals provide a
major excitatory input to interneurons providing feedback inhibition, in particular
to somatostatin-immunopositive O-LM interneurons (Blasco-Ibáñez and Freund
1995; Katona et al. 1999a; Csicsvari et al. 1998; Maccaferri et al. 2000) but
other interneuron subtypes as well (Ali and Thomson 1998, Takács et al. 2012).
Additionally, these collaterals also form synapses onto neighboring pyramidal cells;
however this recurrent connectivity in the CA1 area is very low at only ∼1%
(Deuchars and Thomson 1996).

Positional Differences in the Anatomical, Molecular, and Functional
Properties of CA1 Pyramidal Cells Along the Medio-Distal
and Septotemporal Axes

CA1 pyramidal cells were long considered to constitute a largely homogeneous
population; however, increasing evidence points to a stronger heterogeneity of these
neurons. In particular, position-dependent effects were observed along all three

�
Fig. 3 (continued) In the str. lacunosum-moleculare, three subclasses of dendrites were identified
on the basis of diameter and spine density: thick dendrites possessed fewer spines (l-m/thick),
intermediate sparsely spinous (l-m/medium), and more distal thin and nearly spine-free dendrites
(l-m/thin). For every dendritic subclass, the density of asymmetrical, putative excitatory and
symmetrical, putative inhibitory synapses (boxes, left and middle numbers, respectively [μm−1

]) and the proportion of symmetrical synapses (boxes, right number) are shown. Values below the
boxes indicate total length (mean ± S.D.) and diameter (mean and range in μm) (Modified from
Megías et al. 2001 with permission. © Elsevier)

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Fig. 3 Distribution of synapses on the dendrites of CA1 pyramidal cells. The drawing
illustrates the subclasses of dendrites distinguished in the study by Megías et al.
(2001). In the str. oriens, two types of dendritic processes were classified: first-order
proximal basal dendrites with low spine density (oriens/proximal) and higher-order distal
dendrites with high spine density (oriens/distal). In the str. radiatum, four subclasses
of dendrites were distinguished. The thick apical dendritic trunk was divided into three
segments: a proximal part with no spines (radiatum/thick/proximal), a medial sparsely
spiny part (radiatum/thick/medial), and a densely spiny distal part (radiatum/thick/distal).
The fourth type corresponds to the thin oblique side branches (radiatum/thin).
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axes of the CA1 area in terms of anatomical, molecular, and functional properties
of pyramidal cells. In fact, Lorente de Nó in his early study of the hippocampus
introduced the “a, b, and c” subdivisions of the CA1 area along the transverse axis
based on differences in the anatomical connectivity of pyramidal cells (Lorente de
Nó 1934; see chapter “Connectivity of the Hippocampus”). More recent in vitro
and in vivo electrophysiological studies revealed further divergence in the intrinsic
properties, discharge pattern, and place field properties along this axis (Igarashi et al.
2014). Furthermore, as noted above, superficial and deep cells differ in their internal
and external excitatory and inhibitory connectivity (Mizuseki et al. 2011; Lee et al.
2014; Masurkar et al. 2017).

Similar but not tightly correlated gradients were observed in neurochemical
properties of CA1 pyramidal cells, in particular in the expression of the calcium-
binding protein calbindin (CB, see Fig. 1), which labels a subset of CA1 PCs. In
proximal CA1 (i.e., the CA1c, closest to CA2), a relatively sparse population of
pyramidal cells is labeled, while in distal CA1 (CA1a, closest to subiculum), almost
all neurons express CB (Sloviter 1989). The functional ramifications of the CB are
yet to be fully understood, but the absence of CB leads to reduced plasticity and
impaired synaptic transmission (Jouvenceau et al. 1999). Interestingly, only very
few CA2 pyramidal cells are labeled for CB and almost no CA3 neurons either.
However, CB strongly labels mature dentate GCs and their axons, suggesting strong
calcium sequestration in mossy fiber axons (Dumas et al. 2004).

Genetic analysis, in particular single-cell reverse-transcriptase PCR and RNA
sequencing, at the level of the population and single cells, has further revealed a
diversity of principal cell populations, with respect to hippocampal position and
cell type (Cembrowski et al. 2016a, b; Fig. 4). This approach is redefining our
understanding of molecular composition in ways not possible in earlier studies,
producing exhaustive lists of neurochemical diversity within and between principal
cell types. One notable example is the divergence of CA1 pyramidal cells along
the dorsoventral axis of the hippocampus in terms of RNA expression gradients
(Fig. 4b), which is also reflected in their physiological and morphological properties
(Dougherty et al. 2012, 2013; Cembrowski et al. 2016a; Milior et al. 2016; Ruchi
et al. 2016; Fig. 5).

The list of known genes differing between different principal cell types is ever
increasing, with the known unique genes and proteins (see Table 4). Despite many
of these genes being associated with synaptic and intrinsic physiology, numerous
of the alternatively expressed genes are associated with cytoskeletal elements and
growth/transcription factors. For example, this genetic anatomical approach, thus,
reveals a greater subdivision of hippocampal subregions and helps to define their
borders (Thompson et al. 2008), plausibly reflecting functional differences. While
the role that these alternative gene expression patterns play in divergent morphology
and connectivity of principal cells is yet to be fully understood, they could serve as
markers as well as targets for genetic manipulations in future attempts to understand

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Fig. 4 Differential gene expression patterns along the dorsoventral axis of the CA1 area of
the hippocampus. (a), A subset of genes enriched in a pole-specific fashion with neuronal
relevance. Top and bottom three rows depict dorsal and ventral replicates, respectively. Range
is normalized to the highest replicate FPKM on a gene-by-gene basis. (b), Regionally restricted
gene expression along the dorsoventral axis of the CA1 area from the Allen Brain Atlas Brain
Explorer. CA1 areas of the left and right hippocampi are shown in green. Genes identified were
involved in neurotransmission (Grin3a), transcriptional regulation (Nr2f2), intrinsic excitability
(Kcnd2, Scn4b), and axon guidance (Epha7, Slit2). (Adapted from Cembrowski et al. 2016a with
permission. © Cell Press)

functional relevance of the identified neurons and the molecules (Cembrowski et al.
2016b; Mikulovic et al. 2015).

CA3 Pyramidal Cells

The number of pyramidal cells of the CA3 area is substantially lower at 1.88 ±
0.02 × 105 than that of CA1 neurons (male Wistar rats, Hosseini-Sharifabad and
Nyengaard 2007). In their morphology, CA3 pyramidal cells show many similarities
to CA1 pyramidal cells; however, there are a number of notable differences. The
cell bodies are larger and have a surface area approximately 2–4 times higher than
that of CA1 pyramidal cells. The apical dendrites bifurcate closer to str. pyramidale
and often two or three apical dendrites emerge from the apical pole of the elongated



42 I. Vida et al.

Fig. 5 Morphological differences between CA1 PCs from the dorsal (DHC) and ventral hip-
pocampal (VHC). (a), Representative morphological reconstructions of a DHC (left) and a
VHC (right) pyramidal neuron. (b, c), Summary bar charts of the total dendritic length (b) and
surface area (c) indicate significantly greater dendritic arbor for DHC neurons than VHC neurons
(Wilcoxon RS tests, P < 0.05). (Reproduced from Dougherty et al. 2012 with permission. © Wiley-
Blackwell)

soma. Finally, proximal dendrites of CA3 pyramidal cells bear large complex spines
(“thorny excrescences”); these complex spines are the postsynaptic targets of mossy
fiber boutons (Blackstad and Kjaerheim 1961; Frotscher et al. 1994; Claiborne et al.
1986; Chicurel and Harris 1992; Acsády et al. 1998).

The total dendritic length of CA3 pyramidal cells (Table 5) is comparable to
that in the CA1 area. However, the cell-to-cell variability is higher, partially due
to structural differences along the transverse axis of the CA3 (Ishizuka et al. 1995;
Turner et al. 1995); estimates of the somatodendritic surface without spines range
between 22,033 and 50,400 μm2 (Henze et al. 1996; Cannon et al. 1999). Spines
enlarge the dendritic surface by a factor of 0.88 (based on data by Major et al. 1994,
Table 5). The density (2.9 μm−1) and total number (33,200) of spines are also
similar to those in the CA1 area (Major et al. 1993).

Complex spines are found in small clusters on the proximal apical dendrite in
the str. lucidum, corresponding to the termination zone of mossy fibers (Gonzales
et al. 2001). In the CA3c, where mossy fibers form an infrapyramidal bundle, spines
can also be found on the proximal basal dendrites. Due to limitations of light
microscopy, the resolution of individual spines is difficult, but estimates suggest
that the number of complex spines on a single CA3 pyramidal cell can be up
to 41 (Gonzales et al. 2001). As each complex spine is contacted by a single
mossy fiber bouton (Chicurel and Harris 1992; Acsády et al. 1998), this number
defines the convergence of GCs onto CA3 pyramidal cells. Although there is
only limited information about other excitatory synaptic inputs to CA3 pyramidal
cells, the distribution of dendrites and the number of spines suggest that the total
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number of synapses made by commissural/associational and perforant path axons is
comparable to the numbers obtained for the pyramidal cells of the CA1 area.

The axon of CA3 pyramidal cells typically emanates from the soma or a proximal
dendrite, with 30% of AIS’s being found on a dendrite (Thome et al. 2014). Of
note, the AIS of CA3 PCs possesses axonal protrusions (similar to dendritic spines),
which were contacted by between 1 and 5 inhibitory synapses and occasionally also
excitatory synapses (Kosaka 1980). The main axonal projection is to the ipsi- and
contralateral hippocampi, forming the commissural/associational pathways to the
CA3, CA2, and CA1 areas; the latter is referred to as the “Schaffer collaterals”
(Ishizuka et al. 1990; Li et al. 1994). However, there are also collaterals, mostly
arising from the CA3c, which are directed to the hilus and the DG (Li et al. 1994;
Scharfman 2007). The length of the axon ipsilaterally ranges between 150 and
300 mm and may contact up to 30,000–60,000 postsynaptic neurons (Li et al.
1994). A recent in vivo labeling study found that the total axonal length of a
single CA3 pyramidal cell was more than 0.5 m, covering almost two-thirds of
the septotemporal extent of the area (Wittner et al. 2007). The majority of target
cells (85%) are innervated through a single synaptic contact (Sík et al. 1993; Gulyás
et al. 1993b). Axons originating in the CA3a area terminate to a larger degree in the
CA3 than in the CA1 area (ratio 3:1), whereas for the CA3c area, the termination
pattern is inverse (ratio 1:3, Li et al. 1994). Thus, local targets of a single CA3
pyramidal cell may vary between ∼7500 and 45,000 (i.e., 5–30% of the ∼150,000
neurons comprising the CA3 population). Postsynaptic targets include feedforward
interneurons, such as parvalbumin-containing basket cells, in proportion to their
occurrence (Sík et al. 1993; Gulyás et al. 1993b; Wittner et al. 2006).

Similar to the results obtained for the CA1, morphological and genetic analysis
of CA3 pyramidal cells reveals divergence along both the medio-distal and the
dorsoventral axis of the hippocampus (Ishizuka et al. 1995; Turner et al. 1995;
Thompson et al. 2008).

CA2 Pyramidal Cells

CA2 area was defined by Lorente de Nó (1934) as a small, distinct region between
the CA1 and CA3 based on its cytoarchitectural features. More recent analyses of
gene expression further demonstrated that CA2 area can be reliably identified by
selective molecular markers, including Purkinje cell protein 4 (PCP4), regulator of
G protein signaling 14 (RGS14), STEP, and MAP3K15, indicating a wider region
(∼300 μm) than what was cytoarchitecturally defined (∼100 μm) (Lein et al. 2005;
Lee et al. 2010; Kohara et al. 2014).

CA2 pyramidal cells show morphological features in between those of the CA1
and CA3 areas. Cell bodies of these neurons have similar size as those of CA3
pyramidal cells, and 2–3 times larger than CA1 pyramids, but the cells lack complex
spines and their dendritic arborization pattern is more similar to that of CA1
pyramids (Ishizuka et al. 1995; Mercer et al. 2007). Quantitative analysis of the
dendrites of in vitro labeled neurons indicates that CA2 pyramidal cells have the
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highest total dendritic length compared to CA1 and CA3 pyramidal cells in the same
study (Ishizuka et al. 1995; but see Mercer et al. 2007). The difference is primarily
due to the higher length of dendrites in the str. lacunosum-moleculare, whereas in
the str. radiatum and oriens, values are comparable (Ishizuka et al. 1995; Table
5). In fact, the dendritic arborization pattern of CA2 pyramidal neurons differ from
those of CA1 cells, in that the primary apical dendrite divides into several secondary
branches relatively close to the soma. The secondary branches give rise to very few
oblique branches in str. radiatum but extend deep into the str. lacunosum-moleculare
(Srinivas et al. 2017).

There is little information on the synaptic connectivity of these neurons. Two
major excitatory inputs are the commissural/associational fibers and the perforant
path with similar termination as in the CA1 and CA3 areas. However, they have
over twofold higher spine density, which, combined with a higher total dendritic
length, results in a near threefold larger entorhinal input (Srinivas et al. 2017).
However, the entorhinal input appears to originate from layer II but not from layer
III neurons (Kohara et al. 2014). In addition, the CA2 region receives a strong input
from the supramammillary nucleus (Maglóczky et al. 1994; Kohara et al. 2014).
Finally, despite their lack of complex spines, CA2 pyramidal cells have excitatory
synaptic input from the DG via the mossy fibers (Kohara et al. 2014). Inhibitory
innervation of the CA2 area is similar to both CA1 and the CA3 (Mercer et al. 2007);
however CA2 contains many more PV and Reelin immunopositive interneurons than
either CA1 or CA3 (Botcher et al. 2014). Axons of CA2 pyramidal cells, similar to
CA3 pyramids, project to the ipsi- and contralateral CA1–3 areas contributing to
the commissural/associational system (Tamamaki et al. 1988; Li et al. 1994; Mercer
et al. 2007). The ipsilateral length of axons was measured to be ∼150 mm, further
indicating that not only the distribution but also the number of postsynaptic targets is
comparable to those of CA3 pyramids (Li et al. 1994). In contrast to CA3 pyramidal
cells, however, CA2 neurons preferentially project to deep CA1 pyramidal cells
(Kohara et al. 2014).

DG Granule Cells

DG possesses a large population of unique principal cell type, the GCs, which
markedly differ in their anatomical properties from pyramidal cells of the CA
areas. The number of GCs has been estimated to be on the order of 106 (1.08 ±
0.09 × 106, unilateral value, male Wistar rats, Hosseini-Sharifabad and Nyengaard
2007). GCs show a moderate diversity, due in part to the fact that GCs are one of
only two known populations of adult-born neurons (Cameron et al. 1993, 2001);
as a result the population of mature GCs is interspersed with immature GCs with
divergent morphologies (Zhao 2006). GCs are characterized by a strictly bipolar
morphology: spiny dendrites originate from the upper pole of the soma and an axon
emerges from the base (Fig. 2c, d; Seress and Pokorny 1981; Claiborne et al. 1990;
Schmidt-Hieber et al. 2007). Mature GCs have small, round, or ovoid cell bodies
with a diameter of ∼10 μm and are located densely packed in the GC layer most
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proximal to the ML. One to four primary dendrites arise from the soma, bifurcating
3–6 times to form a dendritic tuft in the ML. Terminal branches extend mostly to
the hippocampal fissure, and the tuft occupies a conical-shaped volume within the
ML with a wider transverse (∼300 μm) and a narrower (∼180 μm) septotemporal
extent. Dendrites show a gradual taper with diameters changing from ∼1.5 μm on
proximal dendrites to 0.7 μm on distal dendrites (Schmidt-Hieber et al. 2007). The
total dendritic length ranges between 2324 and 4582 μm, thus, substantially shorter
than for pyramidal cells (Claiborne et al. 1990; Table 6). Quantitative differences
exist between GCs of the upper and the lower blades, as well as between superficial
(near the molecular layer) and deep cells (near the hilus; Claiborne et al. 1990).
However other studies have failed to confirm these differences (Beining et al. 2017).
Superficial neurons in the upper blade have the highest total dendritic length and the
widest arbor, whereas deep neurons in the lower blade have the shortest length and
the narrowest transverse extent (Table 6).

Similar to pyramidal cells, mature GC dendrites are densely covered with spines.
The total number was calculated to be between 3091 and 6830 on the basis of a
light microscopic estimate of spine density (2.39 ± 0.06 μm−1; Schmidt-Hieber
et al. 2007). Electron microscopic investigation obtained similar density values and
indicated moderate differences between proximal (3.36 ± 0.35 μm−1), mid-distal
(2.88 ± 0.33 μm−1), and distal (2.02 ± 0.28 μm−1) dendritic segments (Hama
et al. 1989). The differences in the density are largely explained by the decreasing
diameter and surface area of proximal to distal dendrites. In fact, the surface density
of spines was comparable in the dendritic compartments with values ranging from
0.79 to 0.88 μm−2 (Hama et al. 1989). Spine surface contributes by a factor of 0.91–
1.05 to the total surface area of the neurons (Schmidt-Hieber et al. 2007; Hama et al.
1989).

There are only limited quantitative data on the synaptic inputs to GCs. The
number of excitatory synapses can be estimated on the basis of spine densities. The
three main afferent systems, the commissural/associational path, the medial and the
lateral perforant path, terminate in a strictly laminated fashion in the inner, middle,
and outer molecular layers, respectively. The proportions of the dendrites falling
into these layers are ∼30, 30, and 40% (Claiborne et al. 1990; Schmidt-Hieber et
al. 2007). The corresponding spine numbers on the surface of GCs with a dendritic
length of ∼3200 μm (Claiborne et al. 1990), calculated using the spine density
estimates of Hama et al. (1989; see above), are 3250, 2780, and 2600. Thus, the
number of excitatory synapses onto a single GC could be as high as 8630.

The distribution of inhibitory terminals was analyzed in a combined
immunocytochemical and electron microscopic study (Halasy and Somogyi 1993a).
Results indicate that in the molecular layer, ∼7.5% of the synapses are GABA-
immunopositive, and these synapses comprise 75% of all inhibitory synapses,
with the remaining 25% located in the cell body layer. Therefore, the number
of inhibitory synapses onto a single granule cell can be estimated as ∼860, with
∼650 in the molecular layer and ∼190 in the cell body layer. The compartmental
distribution of the inhibitory input is broken down to 63–73% dendritic shafts and
27–37% spines in the molecular layer. In the cell body layer, the majority, between
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46 and 60%, are on somata, 25–28% on proximal dendritic shafts, 7–14% on spines,
and 7–9% on axon initial segments (Halasy and Somogyi 1993a).

The axons of GCs, the so-called mossy fibers, provide the major output of the
DG to the CA3. The unique features of mossy fibers are the 10–18 sparsely spaced
large varicosities (4–10 μm) or mossy fiber boutons that form synaptic contacts with
complex spines of CA3 pyramidal cells in the str. lucidum and mossy cells in the
hilus (Claiborne et al. 1986; Frotscher et al. 1994; Acsády et al. 1998; Rollenhagen
et al. 2007). Furthermore, mossy fibers innervate a large number of inhibitory
interneurons (Blasco-Ibáñez et al. 2000) in both regions through small, en passant
boutons (0.5–2 μm) and filopodial extensions emerging from the large boutons,
outnumbering of CA3 PCs contacted by 10:1 (Acsády et al. 1998), suggesting that
the mossy fiber may predominantly drive net inhibition.

A further subtype of GC was recently described, the so-called semilunar granule
cell (SLGC), which is predominantly found within the proximal iML. Despite
similar dendritic branching to regular GCs, SLGCs have a greater lateral extent
of their dendritic tree (420.3 ± 26.8 for SLGCs compared to 284.9 ± 33.7 μm
for GCs). Their often ovoid somata give rise to their name. SLGCs surprisingly
have axon collaterals which innervate the iML, forming an average of 1.8 branches
in this region, suggesting a role in feedback excitation onto other GCs. SLGCs
possess unique intrinsic excitability, as compared to typical GCs, and receive a
strong excitatory input from hilar mossy cells (Williams et al. 2007).

Adult-Born GCs

Immature, or adult-born, GCs are found on the border of the hilus and GCL. During
the weeks following neurogenesis, their dendrites are growing through the ML
(Kempermann et al. 2004), with dendritic lengths of ∼300 μm at 2 weeks reaching
full penetration of the ML by 3 weeks (Zhao 2006). Spines do not develop on these
adult-born GCs until 16 days post-differentiation, and they show strongly reduced
glutamatergic inputs from all entorhinal inputs (Dieni et al. 2016), but with a strong
input from hilar mossy cells (Vivar et al. 2012). The axon of adult-born GCs has
already infiltrated CA3 by 10 days post-differentiation (Zhao 2006) and can drive
strong inhibition (Drew et al. 2016).

Hilar Mossy Cells

Mossy cells share some morphological features with CA3 pyramidal cells. In partic-
ular, the presence of large complex spines on proximal dendrites and small, simple
spines on distal dendrites underpins this resemblance. However, major differences
in their morphology, connectivity, and physiological properties demonstrate that
mossy cells constitute a discrete cell population (Amaral 1978; Buckmaster et al.
1993; Scharfman 2016).
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The somata of the cells are slightly larger than those of CA3 pyramidal cells
and have a triangular or ovoid shape. Three to six primary dendrites arise from
the soma and bifurcate repeatedly to produce an extensive multipolar dendritic
arborization confined to the hilus. Dendrites very rarely invade the granule cell layer
or the molecular layer in mature rats (Amaral 1978; Ribak et al. 1985; Buckmaster
et al. 1993; Lübke et al. 1998; but see Scharfman 1991). In vitro labeled mossy
cells from mice have a total dendritic length of 5392 ± 313 μm (Kowalski et al.
2010), whereas in vivo labeled mossy cells from rats disclose a total dendritic
length of 8293± 361 μm (adapted from Buckmaster 2012). Although these values
are not directly comparable to those obtained for other types of hippocampal
neurons, the extent of mossy cell dendritic arbor appears to lie between GCs and
pyramidal cells.

Similarly, only limited quantitative data are available on synaptic inputs to mossy
cells. Proximal dendrites and the soma are covered by complex spines reflecting a
high degree of convergence of GC inputs onto electrotonically proximal locations
(Frotscher et al. 1991; Acsády et al. 1998). Additionally, mossy fibers make
synaptic contact with distal, simple dendritic spines (Frotscher et al. 1991). Other
excitatory inputs include the hilar collaterals of CA3 pyramidal cells (Scharfman
1994, 2007; Jinde et al. 2013) and mossy cell axons terminating mainly on distal
spines. However, data from paired intracellular recordings indicate that the mutual
connectivity between mossy cells is very low (∼0.5%; Larimer and Strowbridge
2008). The major source of inhibitory input is from hilar interneurons (Acsády et al.
2000; Larimer and Strowbridge 2008).

The axon of mossy cells forms an extensive arbor in the ipsi- and contralateral
hippocampi (Soltész et al. 1993; Buckmaster et al. 1996). While the extent of the
dendrites is restricted along the septotemporal axis (<500 μm), the axon can cover
53–61% of the hippocampus (Buckmaster et al. 1996). Thus, mossy cells provide
a distributed excitatory feedback to the DG. The ipsilateral length of the axon
is between 73 and 96 mm (uncorrected two-dimensional projection, Buckmaster
et al. 1996). Most of the axon is in the inner molecular layer (53–56%) and
the hilus (23–27%), but collaterals are also found in the granule cell layer, the
middle molecular layer, the CA3, and occasionally also the CA1 (Buckmaster et
al. 1996). In the molecular layer, the axon forms synapses every ∼2 μm and the
large majority of the postsynaptic targets are dendritic spines of GCs (Buckmaster
et al. 1996). While numerically low, synaptic contacts onto interneurons have
been suggested to play an important role in regulating the excitability of the
DG (Ratzliff et al. 2002; Sloviter et al. 2003). In the hilus, interestingly, the
density of synapses is five times lower along the axon (0.1 μm−1), and the main
targets are smooth dendrites of interneurons (Buckmaster et al. 1996; Larimer and
Strowbridge 2008).
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GABAergic Interneurons

Morphological Classification of Interneurons

Local inhibitory interneurons are characterized by extensive local axonal arboriza-
tions and can thereby provide inhibitory innervation and control the activity of large
sets of local neurons. In contrast to the largely uniform population of principal cells,
interneurons are extremely heterogeneous with respect to not only their morpho-
logical features but also their physiological characteristics and their expression of
neurochemical markers and transcription factors. Differences in their properties are
thought to reflect the functional diversity of interneurons in the network (Table 7).
A key determinant of interneuron types is their origin, i.e., in which ganglionic
eminence (either medial or caudal) are the cells formed during early embryonic
development. Indeed, unique genetic markers define interneuron type, origin, and
fate and their final location within the cerebral cortex (Kepecs and Fishell 2014). The
most distinct anatomical feature of interneurons is the layer-specific distribution of
their axon (Fig. 6). Correlated light and electron microscopic studies revealed that
the axon projection reflects the differential targeting of subcellular compartments
(e.g., soma, proximal, or distal dendrites) of the postsynaptic neurons (Han et al.
1993; Gulyás et al. 1993a; Buhl et al. 1994a). Additionally, termination of the
axon often parallels afferent pathways leading to co-alignment of excitatory and
inhibitory inputs.

However, not only the axon but also dendrites and cell bodies of interneurons
show variability in their laminar distribution. While some interneuron types have
a dendritic arbor spanning all layers, others have dendrites restricted to one or
more layers. The dendritic distribution determines what inputs are available to
an interneuron: whether it can be activated by one or more afferent system in a
feedforward manner or by recurrent collaterals of principal cells as part of feedback
inhibitory microcircuit (Fig. 6).

Thus, the precise localization of the interneurons, their dendrites, and axon within
the layered structure of the hippocampus determines their anatomical connectivity.
In turn, input and output connections define the functions that the cells can play
in the circuitry. Therefore, most classification schemes have considered these
anatomical features as defining criteria (Freund and Buzsáki 1996; McBain and
Fisahn 2001; Somogyi and Klausberger 2005). Although there is still some debate
regarding the terminology and identification of interneuron types (Maccaferri and
Lacaille 2003; Petilla Interneuron Nomenclature Group et al. 2008), two main
classes of interneurons can be distinguished on the basis of postsynaptic targets:
perisomatic and dendritic inhibitory cells (Fig. 6). In addition, a set of interneurons
that selectively target other interneurons (interneuron-specific [IS] cells; Acsády
et al. 1996a, b; Gulyás et al. 1996; Hájos et al. 1996) and interneurons with long-
range projections have been identified (Jinno et al. 2007; Melzer et al. 2012; Katona
et al. 2017).
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Fig. 6 Schematic representation of major interneuron types of the hippocampal CA1 area. Two
main classes can be distinguished on the basis of postsynaptic targets: (1) perisomatic inhibitory
interneurons include basket cells (BC, targets: soma and proximal dendrites) and axo-axonic cells
(AA, targets: axon initial segments). The axon of these interneurons terminates in and near the
str. pyramidale (pyr.). (2) Dendrite-inhibiting interneurons include many types. Here three well-
characterized types are illustrated: (i) bistratified cells (BS) innervate the mid-distal dendrites in
the str. radiatum (rad.) and oriens (ori.). (ii) Neurogliaform (NG) interneurons are found in the rad.
or str. lacunosum-moleculare (l-m.) and inhibit the apical dendrites in the same layers. NG cells
are mainly activated by the perforant path (PP) and the Schaffer collaterals (Sch) and therefore
provide feedforward inhibition. (iii) O-LM interneurons are found in the ori. and innervate the
distal apical dendrites in the l-m. O-LM cells receive strong recurrent excitation from pyramidal
cells and therefore mediate primarily feedback inhibition

Perisomatic inhibitory interneurons innervate soma, proximal dendrites, and
axon initial segments of principal cells. They include basket cells (BC) and axo-
axonic cells (AAC, also known as chandelier cells). The majority of these cells has
a vertically oriented dendritic tree and can mediate both feedforward and feedback
inhibition.

Dendrite-inhibiting interneurons comprise several distinct types (Fig. 6) which
innervate various portions of the dendritic tree of their target cells. The axon of
dendrite-inhibiting interneurons is often co-aligned with afferent pathways in the
dendritic layers (Han et al. 1993; Gulyás et al. 1993a; Vida et al. 1998; Vida
and Frotscher 2000; Booker et al. 2017b). Thus, the various interneuron types can
control excitatory postsynaptic responses in an input-specific manner (Miles et al.
1996; Maccaferri and Dingledine 2002). Furthermore, the co-alignment enables
mutual presynaptic interactions between glutamatergic and GABAergic axons (Vogt
and Nicoll 1999; Guetg et al. 2009; Min et al. 1999; Stafford et al. 2009; Urban-
Ciecko et al. 2015). While some dendrite-inhibiting interneurons have dendrites
spanning all layers and therefore can mediate feedforward and feedback inhibition,
the majority of these cells have dendrites restricted to one or two layers. Interneurons
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in the str. oriens and the hilus, such as O-LM interneurons, receive over 90% of their
excitation from local principal cells and mediate feedback inhibition. In contrast,
interneurons in the str. radiatum and lacunosum-moleculare are activated by the
Schaffer collaterals and/or the perforant path and thereby mediate feedforward
inhibition.

Neurochemical Classification of Interneurons

Interneuron types differentially express a wide range of molecular markers, includ-
ing calcium-binding proteins (parvalbumin, PV; calbindin, CB; and calretinin,
CR), neuropeptides (somatostatin, SOM; cholecystokinin, CCK; neuropeptide Y,
NPY; vasoactive intestinal peptide, VIP), and certain enzymes (NADPH-diaphorase;
neuronal nitric oxide synthase, nNOS). While the function of the molecules in these
cells is not yet fully understood, detection of the markers by immunocytochemistry,
in situ hybridization, single-cell RT-PCR, or RNA-seq investigations have been
successfully applied to identify and classify GABAergic neurons (for reviews see
Freund and Buzsáki 1996; Somogyi and Klausberger 2005; Jinno and Kosaka 2006;
Houser 2007; Klausberger and Somogyi 2008; Pelkey et al. 2017). Importantly, the
interneuron types defined on the basis of neurochemical identification converge well
with the morphological classification, when the combinatorial expression pattern of
multiple markers is considered (Table 8).

Interneurons of the CA1–3 Areas

Most interneuron types can be identified in all areas of the hippocampus on the basis
of their salient anatomical properties. However, due to differences in the layering
of the areas, some types may differ in certain anatomical properties, whereas a
few specific types may exist only in one area. As the structure and layering of the
CA1–CA3 areas are almost identical, we discuss interneuron types from these areas
together. The classification and descriptions are based on results from the CA1 as
this is the best study region of the hippocampus and possibly the whole cortex. But
published data from the CA3 (Gulyás et al. 1993a) and the CA2 areas (Mercer et al.
2007; Botcher et al. 2014) confirm that the classification, with some exceptions, can
be extrapolated to these regions.

Perisomatic Inhibitory Interneurons

(1) Fast-spiking parvalbumin-positive basket cells. PV-BCs form synapses with the
somata and proximal dendrites of pyramidal cells as well as other interneurons (Buhl
et al. 1994a; Halasy et al. 1996; Cobb et al. 1997; Pawelzik et al. 2002). At the light
microscopic level, this interneuron type is characterized by an axon terminating in
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Fig. 7 Morphology of CA1 perisomatic inhibitory interneurons. (a) A synaptically coupled fast-
spiking putative PV-positive BC-BC pair. The axons of both cells are found mainly in the cell body
layer (shaded area, initial segments indicated by arrows), whereas their dendrites extend into the
dendritic layers. (b) A BC with morphological feature of CCK-BCs with soma in the str. radiatum
(rad.). Note the dense axon (red) in and near the cell body layer (str. pyr.). (c) A horizontal PV-BC
with horizontally oriented dendrites restricted to the str. oriens (ori.) but with a typical BC axon
arbor in the cell body layer. (d) An AAC with a dense axon plexus at the border of the str. pyr. and
ori. Scale bars: 100 μm. (Reproduced with permission: (a) from Cobb et al. 1997, © Elsevier; (b)
from Vida et al. 1998, © Wiley-Blackwell; (c), from Booker et al. 2017b, © The authors; (d) from
Buhl et al. 1994b, © The American Physiological Society)

and near the cell body layer (Fig. 7a). In addition to PV, the cells express high levels
of the alpha-1 subunit of GABAA receptors (GABAA-α1; Table 8) as well as both
GABAB receptor subunits (GABAB1/2) and their effector Kir3 channels (Booker
et al. 2013). It is estimated that PV-BCs constitute ∼60% of all PV-immunoreactive
cells and ∼12% of all GABAergic interneurons in the CA1 area (Kosaka et al. 1987;
Baude et al. 2007).

Cell bodies of PV-BCs are located in the str. pyramidale or oriens, but a few
cells have been found in the str. radiatum. The dendrites are radially orientated and
span all layers (Buhl et al. 1995, 1996; Halasy et al. 1996). Work published by
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Gulyás et al. (1999) analyzed the distribution of dendrites and input synapses of
PV-immunoreactive neurons. Although they could not unequivocally identify the
cells as BCs, their results conceivably reflect characteristics of this predominant cell
type. Their quantitative data revealed that the total length of the dendrites (4348 μm)
is substantially shorter than that of pyramidal cells, but their laminar distribution is
similar (Table 9). CA2 appears to be the anomaly for PV interneuron dendrites, with
both narrow and wide dendritic arbors observed (312 ± 121 μm vs. 570 ± 111 μm
lateral spread; Botcher et al. 2014).

The estimated total number of synapses (16,293, Table 9) is also markedly
lower than for pyramidal cells, but it is the highest among interneurons (Gulyás
et al. 1999); however their synaptic density is considerably higher. The proportion
of excitatory (∼93.5%) and inhibitory synapses (∼6.5%) is comparable to that
for pyramidal cells. As the dendrites of BCs lack spines, both excitatory and
inhibitory synapses are formed onto dendritic shafts. Inhibitory synapses show a
concentration in the perisomatic domain with ∼17% of the synapses converging
onto the soma, but in contrast to principal cells, the soma also receives a high number
of excitatory synapses (Table 9). A large proportion of the inhibitory synapses are
PV-immunopositive: ∼27.6% on the dendrites and ∼70% on the soma (Gulyás et al.
1999; Table 9). Thus, PV-containing interneurons are heavily interconnected by
mutual inhibitory synapses (Sík et al. 1995; Fukuda and Kosaka 2000; Bartos et
al. 2001, 2002). In addition to the chemical synapses, PV-BCs are also coupled by
electric synapses to other PV-containing interneurons (Fukuda and Kosaka 2000,
2003; Bartos et al. 2001; Hormuzdi et al. 2001). Gap junctions are found primarily
at dendritic locations with the highest density between basal dendrites at the str.
oriens-alveus border (Fukuda and Kosaka 2000, 2003). This dual – chemical and
electric – connectivity is thought to be important for the synchronization of the
interneurons during network activity patterns, such as gamma oscillations (Bartos
et al. 2001; Hormuzdi et al. 2001).

The output of BCs has been analyzed in both in vitro and in vivo labeled
neurons. The length of the axon of in vivo-labeled BCs ranges between 40.5 and
53.5 mm and terminates in an approximately circular or ellipsoid area of the cell
body layer with a diameter between 0.9 and 1.2 mm. It is emerging that BCs in the
hippocampus exist with either narrow or wide axonal arbors; in the CA2 region,
wide arbor BCs have axon spanning 937 ± 133 μm, whereas narrow arbor BCs
span 616 ± 130 μm, suggesting that CA2 BCs project into both CA1 and CA2,
suggesting a level of innervation of CA1 and CA3. This phenotype does not appear
to exist within CA1 BC populations (Mercer et al. 2007). On the basis of the bouton
density of 0.226 ± 0.039 μm−1, the number of total synapses was estimated to be
between 9000 and 12,000 (Sík et al. 1995). As unitary IPSCs in pyramidal cells are
mediated by multiple, 10–12 synaptic contacts (Buhl et al. 1994a), the number of
postsynaptic neurons (divergence) is likely to be between 750 and 1200 (Bezaire
and Soltész 2013), whereas the number of PV-BCs making synaptic contacts onto
a single postsynaptic pyramidal cell (convergence) is between 15 and 25 (Bezaire
and Soltész 2013), calculated from the total number of synaptic contacts (92–119,
Megías et al. 2001; Buhl et al. 1994a) and the number of contacts formed by a single
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BC onto the soma (5–6, Gulyás et al. 1993a; Buhl et al. 1994a). Examples of PV-
BCs with horizontal dendrites exclusively in str. oriens have also been described,
suggesting divergent dendritic morphologies (Booker et al. 2017a, b; Fig. 7c)

(2) CCK-expressing basket cells. Similar to PV-BCs, CCK-BCs form synapses
with the somata and proximal dendrites of pyramidal cells as also indicated by
the axonal distribution in the str. pyramidale and adjacent region of str. radiatum
and oriens (Fig. 7b; Nunzi et al. 1985; Acsády et al. 1996b; Cope et al. 2002;
Pawelzik et al. 2002). In addition to CCK, neurochemical markers include VIP,
substance P receptor, and vesicular glutamate transporter 3 (VGluT3), but the cells
are consistently immunonegative for PV (Table 8; Cope et al. 2002; Pawelzik
et al. 2002; Mátyás et al. 2004; Somogyi et al. 2004; Klausberger et al. 2005).
Terminals of these interneurons express high levels of cannabinoid CB1 receptor
which plays a role in regulating the release of GABA (Katona et al. 1999b). CCK-
BCs mostly show regular-spiking discharge pattern, with some exceptions showing
a fast-spiking phenotype (Cope et al. 2002; Pawelzik et al. 2002). In contrast to PV-
BCs, cell bodies of CCK-BCs can be found in all hippocampal layers. The dendrites
run radially and span all layers (Cope et al. 2002; Pawelzik et al. 2002). Mátyás
et al. (2004) and Booker et al. (2017a, b) performed a detailed quantitative analysis
of the laminar distribution of dendrites and input synapses of CCK-BCs. These
analyses show that the total dendritic length of 6338 μm is higher than PV-BCs but
markedly lower than pyramidal cells (Table 10). Despite the larger dendritic tree,
the estimated total number of afferent synaptic contacts (8147, Table 10) is lower
than for PV-BCs. This is due to the fact that the number of excitatory synapses is
markedly lower. In contrast, the number of inhibitory synapses is ∼2.6-fold higher
(Gulyás et al. 1999; Mátyás et al. 2004). Thus, CCK-BCs have a lower proportion of
excitatory (∼64%) and a higher proportion of inhibitory synapses (∼36%) than both
PV-BC and pyramidal cells. CCK-BCs are also interconnected by mutual inhibitory
synapses. The number of CCK-immunopositive terminals on their surface is ∼350
(Table 10), very close to the number of mutual inhibitory synaptic contacts on PV-
BCs. However, the proportion of these synapses among the inhibitory terminals is
lower due to the higher overall inhibitory input (Mátyás et al. 2004). Although the
PV- and CCK-interneuron networks seem largely independent, there is evidence
for the existence of mutual inhibitory synapses and interactions between the two
networks (Karson et al. 2009).

While immunocytochemical data at the light and electron microscopic levels
demonstrate that terminals of CCK-BCs innervate soma and proximal dendrites of
principal cells with a preference proximal to the soma (Földy et al. 2010; Nunzi et al.
1985; Acsády et al. 1996b; Cope et al. 2002; Pawelzik et al. 2002; Klausberger et
al. 2005; Booker et al. 2017b), only limited data are available on the divergence or
convergence of CCK-BC output. Bezaire and Soltész (2013) postulated a divergence
of 1250 cells (1150 pyramidal cells and 100 interneurons) with a convergence of 13
CCK-BCs onto a single pyramidal cell.

(3) Axo-axonic cells. AACs provide GABAergic innervation to the axon initial
segments of principal cells (Somogyi et al. 1983; Li et al. 1992; Gulyás et al. 1993a;
Buhl et al. 1994a), placing them in a unique position to control action potential
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Table 10 Dendritic length and synaptic inputs of CCK-BCs of the CA1 area

Estimated number of synapses
CCK + Dendritic length (μm) All Excitatory Inhibitory CCK+
Dendrites 6338 ± 986 7948 ± 1229 5191 ± 805 2757 ±430 315 ± 55
L-M 1291 ± 456 (20.4%) 1876 759
Rad/LM 647 ± 575 (10.2%) 798 258
Rad 2876 ± 211 (45.4%) 3421 1074
Pyr 111 ± 61 435 271
Ori 311 ± 118 (4.90%) 1418
Soma 966 ± 134 (surface area, μm2) 193 ± 43 34 ± 14 5 ± 2 36 ± 14
AIS 6 ± 2 1 ± 1 5 ± 2 1 ± 2
Total 8147 5266 2921 352

Values are mean ± S.E.M. Values in parentheses indicate percentage of dendrites in a layer.
Rad/L-M denotes the broader region of the two layers which contains many horizontally running
dendrites. Excitatory (Exc.) and inhibitory (Inhib.) synapses were identified on the basis of
postembedding immunolabeling for GABA. Data from Mátyás et al. (2004)

output of the target neurons. Similar to PV-BCs, the termination zone of the axon
is mainly in the cell body layer, but it is slightly shifted toward the str. oriens
(Fig. 7d). Many, but not all, AACs can be distinguished from BCs at the light
microscopic level by the presence of vertical rows of synaptic boutons (cartridges),
which form contacts with the axon initial segment (AIS). AACs show a fast-spiking
discharge pattern and contain high levels of PV, but, in contrast to PV-BCs, they
express low level of GABAA-α1 (Katsumaru et al. 1988; Pawelzik et al. 2002). It is
estimated that this type constitutes ∼15% of all PV-immunoreactive cells and ∼3%
of GABAergic interneurons in the CA1 area (Baude et al. 2007).

Cell bodies of AACs are located in the str. pyramidale or oriens. The majority
has vertically oriented dendrites spanning all layers. In comparison with PV-BCs,
the distal apical dendrites often branch and form an extensive tuft in the str.
lacunosum-moleculare (Buhl et al. 1994b; Klausberger et al. 2003) indicating a
stronger perforant path input to these neurons. A few cells with horizontally oriented
dendrites in str. oriens have also been reported (Ganter et al. 2004).

AACs receive input from all major afferent pathways and there is also evidence
for recurrent excitatory inputs from pyramidal cells (Li et al. 1992; Buhl et al.
1994b). Regarding the quantitative distribution of input synapses, Gulyás et al.
(1999) suggested that their data may apply not only to PV-BCs but also to AACs (see
Table 9). However, some disagreement remains regarding the extent of dendrites
in the str. lacunosum-moleculare (see above). AACs are thought to be involved in
the PV interneuron network coupled by gap junction and also receive inhibitory
synapses from this network (Fukuda and Kosaka 2000; Baude et al. 2007). However,
AACs themselves do not contribute inhibitory synapses to this network.

The output of AACs is directed exclusively to the AIS of principal cells (Somogyi
et al. 1983). The synapses formed onto the AIS can contact the shaft directly or
onto membrane protrusions that can receive 1–5 inhibitory synapses, with 25–130
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AAC synapses formed per AIS (Kosaka 1980). Morphological analysis of an in vivo
labeled CA1 AAC revealed that it can innervate ∼1200 pyramidal cells within an
area of 600 by 850 μm around the cell (Li et al. 1992). However, in vitro studies
indicate that the axon can have a larger extent with values up to 950 μm in the CA1
and 1300 μm in the CA3 area (Gulyás et al. 1993a; Buhl et al. 1994b). The in vivo
data further show that the cells form 2–10 synaptic contacts on a single axon initial
segment (Li et al. 1992). As the number of synaptic contacts on initial segments is
∼24 (Gulyás et al. 1999), 3–12 AACs may converge onto a single pyramidal cell
(Bezaire and Soltész 2013).

Dendritic Inhibitory Interneurons

(4) Bistratified cells (BSC). These interneurons are characterized by an axon in the
str. radiatum and oriens co-aligned with the Schaffer collateral pathway (Fig. 8a;
Buhl et al. 1994a, 1996). BSCs show a fast-spiking discharge pattern. They contain
PV, the neuropeptides SOM, NPY, and high levels of the GABAA-α1 (Pawelzik
et al. 2002; Klausberger et al. 2004; Baude et al. 2007). This type constitutes ∼25%
of all PV-immunopositive cells and ∼5% of GABAergic interneurons in the CA1
area (Baude et al. 2007).

Cell bodies of BSCs, similar to other PV interneurons, are found primarily in
the str. pyramidale or oriens. The dendrites show radial orientation and span str.
oriens and radiatum but, in contrast to other PV interneurons, rarely invade the
str. lacunosum-moleculare (Buhl et al. 1996; Halasy et al. 1996; Klausberger et al.
2004). A few cells with similar axonal arborization but horizontal dendrites have
been reported and classified as oriens-BSCs (Maccaferri et al. 2000).

Dendritic distributions and electrophysiological data indicate that the cells are
activated primarily by the Schaffer collaterals and can also receive recurrent
excitatory input from pyramidal cells in the str. oriens, but they generally lack
perforant path inputs (Buhl et al. 1996). It remains unclear whether the data on the
quantitative distribution of synaptic inputs described for PV interneurons (Gulyás
et al. 1999; see Table 9), apart from the lack of perforant path inputs, also apply to
BSCs.

The output of BSCs targets shafts (∼76–79%) and spines (∼11–17%) of small-
caliber dendrites and rarely the large-caliber main apical dendrites (∼10%) or
somata (∼4%) of principal cells (Halasy et al. 1996; Klausberger et al. 2004).
The proportion of interneuron targets is also low (∼3%, Klausberger et al. 2004).
Nevertheless, BSCs are thought to be involved in the network of PV interneurons
connected by mutual inhibitory synapses and gap junction (Fukuda and Kosaka
2000; Baude et al. 2007). The axon of an in vivo labeled BSC has a total length
of 78,800 μm and covers an area of 1860 μm (septotemporal) by 2090 μm
(mediolateral axis). The axon of this cell has a bouton density of 0.21 ± 0.06
μm−1 and forms ∼16,600 boutons. Since BSC-pyramidal cell synapses involve
∼6 synaptic contacts (Buhl et al. 1994a), an individual BSC may target over 2500
pyramidal cells. A recent study, calculating 10 synaptic contacts made by a BSC
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Fig. 8 Dendritic inhibitory interneuron types of the CA1 area. (a) A BSC with cell body at the
border of str. pyramidale (SP) and oriens (SO). Dendrites span the str. radiatum (SR) and oriens,
but do not extend into the str. lacunosum-moleculare (SLM). (b) SCA cell with axon (in red) in
the str. radiatum (rad.). (c) PPA interneuron. Note the axon terminating in the CA1 str. lacunosum-
moleculare (l-m.), the subiculum, and the DG molecular layer (m.l.). (d) A lacunosum-projecting
(LA) interneuron, with axon and the majority of dendrites confined to str. lacunosum (lac). (e)
NGF cell with a compact dendritic tree and a very dense axon in the str. rad. and l-m. (f) An Ivy
cell with soma in str. pyr. and similarly dense focal axon around the soma. G O-LM interneurons
have horizontal dendritic tree in the str. oriens (ori) and project to the distal apical dendrites of
pyramidal cells in the str. l-m. (Reproduced with permission: (a) from Klausberger et al. 2004, ©
Nature Publishing Group; (b, c, e) from Vida et al. 1998, © Wiley-Blackwell; (d) from Booker
et al. 2017b, © Oxford University Press; (f) from Krook-Magnuson et al. 2011, © The Society for
Neuroscience; G from Martina et al. 2000, © The American Association for the Advancement of
Science)
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Table 11 Dendritic length and synaptic inputs of CB interneurons in the CA1 area Estimated
number of synapses

Dendritic length (μm) All Exc. Inhib.

Dendrites 3441 ± 938 3585 2498 ± 666 1087 ± 277
L-M 130 ± 117 (3.8%)
Rad 2622 ± 827 (76.2%)
Pyr 197 ± 162 (5.7%)
Ori 492 ± 300 (14.3%)
Soma 799 ± 140 (surface area [μm2 ]) 244 102 ± 10 142 ± 15
AIS 7 0 7 ± 1
Total 3839 2601 1237

Values are mean ± S.E.M. Values in parentheses indicate percentage of dendrites in a layer.
Excitatory (Exc.) and inhibitory (Inhib.) synapses were identified on the basis of postembedding
immunolabeling for GABA. Data from Gulyás et al. (1999)

synapse, led to a convergence of 10 BSC onto a single pyramidal cell with a
divergence to contact 1597 cells in total (Bezaire and Soltész 2013).

(5) Schaffer collateral-associated (SCA) interneurons. These interneurons, simi-
lar to BSCs, are characterized by an axon in the str. radiatum and oriens co-aligned
with the Schaffer collaterals (Fig. 8b; Vida et al. 1998; Cope et al. 2002, Booker et al.
2017a). They differ, however, in their localization of the soma and dendrites, as well
as neurochemical markers. The main markers are CCK and CB (Cope et al. 2002;
Pawelzik et al. 2002; Klausberger 2009). Similar to CCK-BCs, SCA interneurons
show a regular-spiking discharge pattern.

Somata of SCA cells are predominantly found in str. radiatum. Their dendrites
run radially, mostly in the str. radiatum, but can extend into the str. lacunosum-
moleculare, oriens, and even the alveus (Vida et al. 1998; Pawelzik et al. 2002;
Booker et al. 2017a). Although dendritic arbor and synaptic inputs of identified
SCA interneurons have not been quantitatively described, Gulyás et al. (1999)
provide data on CB-immunoreactive interneurons, a set of dendritic inhibitory
interneurons (Gulyás and Freund 1996) which overlap with the SCA type (Cope
et al. 2002). The total dendritic length of CB interneurons is 3441 ±938 μm with
76% localized in the str. radiatum (Table 11). The excitatory input is relatively
weak (∼68%) and originates plausibly from the Schaffer collaterals, whereas the
inhibitory input is strong (32%). Large part of the inhibitory input may correspond to
the mutual inhibitory connections observed between CCK and SCA cells (Ali 2007).
In addition to the chemical synapses, SCA cells have been shown to be connected
by gap junctions (Ali 2007).

The axon of SCA cells terminates in the str. radiatum and to a lesser extent in the
str. oriens. Output synapses are formed with shafts, but only rarely spines of small-
caliber side branches of the pyramidal cells (∼80%) and aspiny dendritic shafts
of interneurons (∼20%; Vida et al. 1998). Synaptic effects in pyramidal cells are
mediated by multiple contacts (4–6, light microscopic estimates, Vida et al. 1998;
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Pawelzik et al. 2002). The axon of an in vitro labeled SCA interneuron formed
∼6000 boutons and may innervate 1000–1500 postsynaptic cells within a 400 μm
slice.

(6) Perforant path-associated (PPA) interneurons. This cell type has an axon
in the str. lacunosum-moleculare co-aligned with the perforant path (Fig. 8c; Vida
et al. 1998; Pawelzik et al. 2002). Neurochemical markers of PPA cells include
CCK (Pawelzik et al. 2002; Klausberger et al. 2005) and they may also express CB.
Cell bodies of PPA cells are in the str. radiatum or lacunosum-moleculare, often
at the border of the two layers. Dendrites run radially in these two layers but can
also extend into the oriens/alveus (Hájos and Mody 1997; Vida et al. 1998). The
dendritic distribution suggests that the cells’ input is primarily from the perforant
path and Schaffer collaterals, but they may also receive feedback excitation on their
distal dendrites in the oriens/alveus.

The axon terminates in the str. lacunosum-moleculare; however, collaterals often
spread significantly into the subiculum and, crossing the fissure, into the DG. The
postsynaptic targets are primarily principal cells, CA1 pyramidal cells (58–94%),
and DG granule cells (0–26%) but also include interneurons (6–11%); the synapses
are found mostly on small-caliber dendritic shafts and to a lesser extent (5–7%)
dendritic spines (Vida et al. 1998; Klausberger et al. 2005). This cell type provides
a convergence of two PPA interneurons onto a single pyramidal cell and can diverge
to 1333 neurons (Bezaire and Soltész 2013).

(7) Lacunosum-associated (LA) cell. This subtype of interneuron has only
recently been described (Fig. 8d, Booker et al. 2017a) and represents a novel
dendritic inhibitory subtype. With horizontal somata found in str. lacunosum, they
have horizontally orientated dendrites and axons. Over 50% of LA cell axon is found
within str. lacunosum itself, with dendrites confined to proximal str. radiatum and
moleculare. Of the 5 neurons identified, all are CCK and CB1R immunoreactive
and have unique electrophysiological properties (Booker et al. 2017a). The full
physiological role of these neurons is yet to be ascertained, but their axonal plexus
being found close to CA1 PC primary dendrite bifurcation points suggests a role in
branch integration and/or calcium signaling.

(8) Neurogliaform (NG) cell. This interneuron type is identified on the basis of a
small, stellate dendritic arbor and an extremely dense local axon (Fig. 8e, Vida et al.
1998; Price et al. 2005). NG cells express NPY, NOS, COUP TFII, α-actinin, and
reelin as well as high levels of α1 and δ and GABAA and μ-opioid receptors, but
are consistently negative for PV (Price et al. 2005, Fuentealba et al. 2010; Tricoire
et al. 2010; Armstrong et al. 2011, 2012; Krook-Magnuson et al. 2011; Table 8).
However, there is a high heterogeneity from cell to cell in their marker expression
(Armstrong et al. 2012). The small, round cell body is located in the str. radiatum
or lacunosum-moleculare; within the DG their cell bodies are found at high density
at the border with the hippocampal fissure (Armstrong et al. 2011). Several main
dendrites emerge from the soma and branch profusely to form a very dense local
dendritic arbor. There are no quantitative anatomical data on the input synapses of
NG cells. Electrophysiological recordings indicate that the cells receive excitatory
input from both the perforant path and the Schaffer collaterals (Price et al. 2005).
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Inhibition is mediated by O-LM interneurons (Elfant et al. 2008) and other NGs
cells through mutual inhibitory synapses with unique unitary synaptic properties
(∼70% connectivity, Price et al. 2005). The NG cells are also extensively coupled
by gap junctions (∼80% connectivity, Price et al. 2005).

The axon forms an extremely dense arbor in the str. radiatum and lacunosum-
moleculare in the vicinity of the cell. An in vitro-labeled NG cell formed almost
13,000 boutons within its termination zone with less than 700 μm diameter along
the transverse axis. Postsynaptic targets are mainly pyramidal cell dendritic shafts
(∼89%) but also spines (11%; Vida et al. 1998). Interestingly, unitary postsynaptic
effects of NG-IPSCs are unusually slow and involve not only GABAA but also
GABAB receptors (Tamás et al. 2003; Szabadics et al. 2007; Price et al. 2008). In
fact, postsynaptic response mediated by both these receptor types is elicited in the
absence of synaptic contacts through volume transmission plausibly due to the dense
and focal axon and the presence of high-affinity extrasynaptic receptors (Szabadics
et al. 2007; Oláh et al. 2009). Recent evidence suggests that NG cells in the DG are
capable of forming multifarious synapses between both presubiculum, CA1 and the
DG, as the axon of some NG cells profusely crosses the hippocampal fissure, with
axon varicosities observed on these crossing axons (Armstrong et al. 2011).

(9) “Ivy” interneurons. Similar to NG cells, Ivy interneurons can be distin-
guished by a very dense axonal plexus close to the soma terminating in str. oriens
and radiatum (Fig. 8f, Fuentealba et al. 2008). These cells are immunoreactive for
NPY, NOS, COUP TFII, and α-actinin as well as express high levels of α1 and δ and
GABAA and μ-opioid receptors but are negative for reelin (Fuentealba et al. 2010;
Tricoire et al. 2010; Armstrong et al. 2011, 2012; Krook-Magnuson et al. 2011;
Table 8). They show a slow-spiking discharge pattern. Ivy cells are more numerous
than PV-positive perisomatic inhibitory cells (∼1.4-fold higher density, Fuentealba
et al. 2008) and may comprise ∼20% of all GABAergic interneurons.

Cells bodies of Ivy interneurons are located in the str. pyramidale and adjacent
regions of the radiatum. Dendrites extend radially into the str. oriens and radiatum
but rarely reach the str. lacunosum-moleculare. Dendritic distribution and electro-
physiological data indicate that these interneurons are activated by the Schaffer
collaterals and receive recurrent excitatory input from pyramidal cells, but lack
perforant path input, similar to BSCs (Fuentealba et al. 2008).

Postsynaptic targets of Ivy cells are primarily the shafts (81%) of basal dendrites
in str. oriens and oblique dendrites in the str. radiatum (Fuentealba et al. 2008).
Dendritic spines (13%) and apical dendrites of pyramidal cells (6%) are less
frequently targeted. The axon profusely branches close to its point of origin and
forms a dense meshwork in the str. oriens and radiatum. In comparison with BSCs
labeled under similar conditions, the area covered by axon collaterals is slightly
smaller (Ivy, 0.75 ± 0.12 mm [mediolateral] by 1.31 ± 0.11 mm [rostrocaudal],
Fuentealba et al. (2008); BSC, 1.15 ± 0.26 mm by 1.53 ± 0.38 mm, Klausberger
et al. 2004). However, Ivy cells have a denser axonal plexus, especially in the str.
oriens, and representative samples indicate an approximately two times higher total
axon length (Fuentealba et al. 2008). Thus, Ivy cells could innervate larger sets
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of postsynaptic neurons than BSCs. Indeed, a single Ivy cell can contact up to 1620
cells and on each pyramidal cell a total of 42 Ivy cells converge (Bezaire and Soltész
2013).

(10) Oriens lacunosum-moleculare-projecting (O-LM) interneurons, as their
name indicates, are located in the str. oriens and project to the str. lacunosum-
moleculare (Fig. 8g; McBain et al. 1994; Sík et al. 1995; Maccaferri et al. 2000).
These interneurons are immunopositive for SOM, the metabotropic glutamate
receptor mGluR1α, occasionally weakly positive for PV (∼50% of neurons; Booker
et al. 2018; Table 8), NPY (Kosaka et al. 1988; Baude et al. 1993; Klausberger et
al. 2003), and specifically in CA1 the nicotinic acetylcholine receptor α4 subunits
(Leão et al. 2012). SOM interneurons constitute ∼14% of all GABAergic neurons in
the hippocampus (Kosaka et al. 1988), but the exact proportion of O-LM cell subset
has not yet been established. At the str. oriens/alveus border, approximately 95%
of SOM interneurons are of O-LM type, with the remaining 5% being bistratified
(Booker et al. 2018)

The soma of O-LM interneurons is located in the str. oriens, often at the border
to the alveus. The dendritic tree has a horizontal orientation and is restricted to
the str. oriens and the alveus. In contrast to most other interneurons, the dendrites
are densely covered with long, thin spines. Electron microscopic investigations
indicate that ∼20% of the afferent synaptic contacts are inhibitory and ∼80%
excitatory (Blasco-Ibáñez and Freund 1995). Although the dendritic arbor falls
in the termination zone of the Schaffer collateral pathway, degeneration studies
revealed that over ∼75% of excitatory synapses originate from the pyramidal cells in
the CA1 area (Blasco-Ibáñez and Freund 1995), with direct synaptic contacts being
formed from local pyramidal cell (Lacaille et al. 1987). Thus, these interneurons
primarily mediate feedback inhibition. CA1 O-LM cells themselves also receive
a near homogeneous inhibitory input from CR-containing interneurons (70% of
inputs; Tyan et al. 2014). In the CA3 area, the cell bodies and dendrites of this
type of interneuron are not restricted to the str. oriens, in accordance with the wider
distribution of recurrent collaterals seen in this region. A smaller set of interneurons
with similar axonal projection and neurochemical profile but with somata located in
the str. pyramidale (P-LM cells) or radiatum (R-LM cells) and dendrites spanning
str. radiatum and oriens have been identified in transgenic “GIN” mice (Oliva Jr
et al. 2000).

The axon of O-LM cells originates often from one of the main dendrites
(Martina et al. 2000). Major collaterals ascend to the str. lacunosum-moleculare
(often bifurcating within str. radiatum) and form a dense arborization in that layer.
Some cells additionally form an axonal arbor, albeit much less extensive, in the
str. oriens. The axon of an in vivo-labeled O-LM cell has a length of 63,436 μm
occupying a relatively small termination field of 500 μm by 840 μm (mediolateral
and septotemporal axes; Sík et al. 1995). Interestingly, in vitro-labeled O-LM
interneurons in the CA3 show similar restricted axon projection in transverse slices
but form multiple innervation fields along the septotemporal axis (Gloveli et al.
2005a). Over 91% of the collaterals are found in the str. lacunosum-moleculare,
only 7% in the str. oriens, and a small proportion invading the subiculum. The



Morphology of Hippocampal Neurons 69

bouton density is 0.27 ± 0.04 μm−1 and the number of boutons was calculated to
be over 16,800 (Sík et al. 1995). However, electron microscopic analysis of in vitro-
labeled neurons showed that the axon can make synaptic contacts without forming
varicosities, therefore it is difficult to estimate the total number of output synaptic
contacts (Maccaferri et al. 2000). Postsynaptic targets of O-LM cells include
dendrites of principal cells and interneurons in proportion to their occurrence
(Katona et al. 1999a; Elfant et al. 2008). The synapses are found on dendritic shafts
(∼70%) and to a lesser degree on spines (∼30%; Sík et al. 1995; Katona et al. 1999a;
Maccaferri et al. 2000). Briefly, a single O-LM cell can innervate 1457 pyramidal
cells and 180 interneurons and 8 O-LM cells converge onto a single principal cell
(Bezaire and Soltész 2013).

(11) Trilaminar (TL) interneurons. This interneuron type is characterized by
an axon distributed to three adjacent layers (hence the name): the str. radiatum,
pyramidale, and the oriens (Sík et al. 1995; Gloveli et al. 2005b; Ferraguti et al.
2005). TL cells express high levels of muscarinic acetylcholine receptor (M2), but
other markers are unknown (Hájos et al. 1998; Ferraguti et al. 2005).

The cells show some similarities to O-LM interneurons. Their cell bodies are
located in the str. oriens and the dendritic trees are restricted to the same layer.
The dendrites are sparsely spiny. The cells receive synaptic input from excitatory
and inhibitory terminals expressing high levels of mGluR8, indicating a strong
glutamatergic modulation of the input (Ferraguti et al. 2005). The cellular origin
of the synapses is unknown, but local pyramidal cells are likely to be involved in the
excitatory input. A part of the inhibitory terminals shows immunoreactivity for VIP
and is likely to originate from a subset of IS interneurons (Ferraguti et al. 2005).

The axon terminates in the str. radiatum, pyramidale, and oriens and extends
into neighboring areas, i.e., to the subiculum from the CA1 (Ferraguti et al. 2005)
or the CA1 from the CA3 (Gloveli et al. 2005b) and may also project to other
brain areas as well. The total axon length of an in vivo-labeled TL cell in the CA1
area was 55,913 μm and covers an area of 2600 μm (septotemporal) by 2450 μm
(mediolateral) (Sík et al. 1995). Based on bouton density (0.28 ± 0.05 μm−1 ), the
calculated number of boutons is 15,767. Synapses formed by TL cells constitute
10 synaptic contact sites, and a single TL cell can innervate approximately 1544
cells (Bezaire and Soltész 2013). Postsynaptic neurons of TL cells locally include
pyramidal cells and an unusually high proportion of interneurons. In the CA1, the
targets are interneuron dendrites (44%), interneuron cell bodies (8%), pyramidal cell
dendritic shafts (25%), and somata (23%; Ferraguti et al. 2005).

(12) Mossy fiber-associated (MFA) interneurons. This interneuron is a specific
CA3 type and characterized by an axon plexus in the str. lucidum co-aligned
with mossy fibers (Fig. 9; Vida and Frotscher 2000; Losonczy et al. 2004). MFA
interneurons express CCK and high levels of CB1 receptor in their synaptic
terminals maintaining a very low initial release probability (Losonczy et al. 2004).
The small round or ovoid soma of MFA cells is located in or near the str. lucidum,
and their dendrites extend radially into the str. radiatum and the oriens. The dendritic
distribution indicates that the main sources of excitation are ipsi- and contralateral
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Fig. 9 MFA interneurons of the CA3 area. The axon (red) of this interneuron type terminates
mainly in the str. lucidum (luc.) but also extends into the hilus displaying a striking association to
the mossy fiber projection. The dendrites are found in the str. radiatum (rad.) and oriens (ori.) but
absent from the str. lacunosum-moleculare (m-l.), reflecting that the cells receive excitatory input
primarily from ipsi- and contralateral CA3 pyramidal cells. (Reproduced from Vida and Frotscher
2000 with permission. © National Academy of Sciences, USA)

CA3 pyramidal cells (i.e., the recurrent collaterals and commissural fibers), but
physiological data (Tóth and McBain 1998) further show that the cells also receive
mossy fiber input. No or minimal excitatory input arrives to these cells from the
perforant path.

The axon forms a dense plexus in the str. lucidum, covering 50–100% of the
transverse extent of the CA3 and fanning out into the hilus. Additionally, some
collateral extend into the cell body layer. The axonal distribution is strikingly similar
to that of the mossy fibers; this cell type best exemplifies the co-alignment of
inhibitory interneuron axons and excitatory afferent pathway. Synaptic contacts are
located on dendritic shafts (85%), mostly large-caliber proximal dendrites, and to a
lesser degree on somata (15%) in the CA3 area. Majority of the targets are pyramidal
cells, although ∼20% of the postsynaptic profiles belong to GABA-immunoreactive
interneurons (Vida and Frotscher 2000). The length of the axon in the in vitro-
labeled neurons is 20.3–28.6 mm and forms ∼5000–7000 boutons (density, 0.23 –
0.25 μm−1). As the postsynaptic pyramidal cells are innervated by ∼4 synaptic
contact sites, a single MFA interneuron may target 1300–1700 neurons.

Interneuron-Specific Interneurons

A class of interneuron specialized to innervate other interneurons has been identified
by imunohistochemically staining for CR and VIP (Acsády et al. 1996a, b; Gulyás
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et al. 1996; Hájos et al. 1996; Table 8). Three types have been distinguished on the
basis of the neurochemical markers and synaptic targets (Fig. 10):

(13) Type I (IS-I) cells contain CR, the soma of IS-I cells is in str. oriens,
pyramidale, or radiatum and the dendrites span most layers (Acsády et al. 1996a;
Gulyás et al. 1996). They target CB-positive dendrite-inhibiting interneurons but
avoid PV-expressing BCs and axo-axonic cells. Furthermore, these interneurons
form extensive mutual inhibitory connections as well as making dendrodendritic
contacts coupled by gap junctions (Gulyás et al. 1996; Fig. 10).

(14) Type II (IS-II) cells express VIP and their soma is found in str. radia-
tum, often at its upper border, whereas the dendrites mostly extend into the
str. lacunosum-moleculare and are densely spiny. These interneurons preferen-
tially innervate CCK/VIP-positive basket cells. Furthermore, they form inhibitory
synapses onto CR interneurons, thereby contributing to the mutual inhibitory
network of IS-I cells, but receiving no output from this network.

(15) Type III (IS-III) cells contain both VIP and CR and have soma located in str.
pyramidale or radiatum with radial dendrites, which show either unipolar or bipolar
morphologies spanning most layers and forming a tuft in the str. L-M (Acsády et al.
1996b; Gulyás et al. 1996; Chamberland et al. 2010). IS-III have an axon mostly
localized to str. oriens and mainly target SOM-positive interneurons in this layer, in
particular O-LM cells, with a connection probability of 56%, which is higher than
for BCs (10%) or BSCs (16%), but they never contacted CA1 PCs (Tyan et al. 2014).
Interestingly, as their main targets, the O-LM cells, IS-IIIs also express mGluR1α

on their somatodendritic domains (Ferraguti et al. 2004), and additionally mGluR7
are localized to their axon terminals (Somogyi et al. 2003).

INs with Local and Long-Range Projecting Axons

While interneurons are characterized by an extensive local axon restricted to a
given area, it has long been noted that axon collaterals of some types, for example,
those localized close to the fissure, such as CA1 PPA cells, crossed boundaries of
the area and often extend into the neighboring area, e.g., the ML of the dentate
gyrus (Vida et al. 1998). Additionally, interneurons were identified with major axon
collaterals forming distinct collateralizations in other hippocampal areas. First and
most prominent example was described by Sík et al. (1994) as BP cells found in the
str. oriens of the CA1 area (see type 12 above). Finally, a subset of INs possesses
both local and long-range projecting axons, targeting retrohippocampal regions or
the septum. The latter two group of INs are referred to as projection INs and are
believed to synchronize activity across brain regions, allowing coordinated neuronal
firing.

(16) Back-projection (BP) interneurons. This interneuron type was named for
its extensive axon projecting “back” to the CA3 area and the hilus from the CA1
(Sík et al. 1994, 1995). BP cells have been suggested to correspond to a subset of
NADPH-diaphorase and NOS-immunoreactive cells (Sík et al. 1994) and were also
found to express SOM and CB (Goldin et al. 2007; Gulyás et al. 2003; Table 8). The
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Fig. 10 IS interneurons of the hippocampus. (a) Camera lucida drawing of CR-containing
interneurons of the CA1 area (cell bodies and dendrites are in black; axons are in red). The
cells often form dendrodendritic and axodendritic contacts with each other. Synaptic partners are
indicated by dotted outlines. Arrowheads indicate locations where the dendrites ran parallel in
close contact. (b) Simplified schematic representation of hippocampal microcircuits including IS
interneurons (“disinhibitory cells”). IS cells are interconnected by dendrodendritic (bars on den-
drites) and axodendritic contacts which presumably serve their rhythmic and synchronized activity.
The cells’ output is directed to and controls the activity of several types of inhibitory interneurons
including CCK- and VIP-containing BCs (VIP/CCK GABA), O-LM interneurons (SOM GABA),
and CB-immunoreactive dendritic inhibitory interneurons (CB GABA). (Reproduced from Gulyás
et al. 1996 with permission. © The Society for Neuroscience)

somatodendritic domain of BP cells is bipolar and confined to the str. oriens and
shows similarities to other horizontal interneuron types of this layer (e.g., O-LM
cells) including the presence of long, thin spines. The total length of axon collaterals
is 20,642 μm, 59% of which is in the CA1 region and 41% project back to CA3 area
innervating the str. oriens and radiatum. The synaptic connections of these cells
have not been studied in detail, but they form synapses on dendrites and somata of
pyramidal cells in the CA1 (Sík et al. 1994).

On the basis of their local axonal distribution, these cells may overlap with
previously described oriens-BSC and/or TL cells identified morphologically in
slice preparation. Furthermore, interneurons with long-range projection to the
septum (double-projections cells; see below) have similar neurochemical profile
and intrahippocampal projection pattern and may overlap, at least partially, with
this interneuron type (Gulyás et al. 2003; Goldin et al. 2007).

(17) Corticotropin-releasing hormone-expressing interneurons. A recently
described CA1 interneuron type, which selectively expresses corticotropin-releasing
hormone (CRH) (Yan et al. 1998; Hooper and Maguire 2016). Found within the
CA1 str. pyramidale, these neurons also express SOM (40% of neurons), CB (27%
of neurons), and CR (23% of neurons) and may also express PV and CCK. They
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have large ovoid somata and vertically oriented dendritic tree, spanning str. oriens
and radiatum, reminiscent of CA1 PCs. Their axon projects to the str. pyramidale of
CA3, providing strong inhibition to cell bodies of CA3 PCs (Hooper and Maguire
2016).

(18) RADI cells express CB and COUP-TFII and have somata in str. L-M, with
short dendrites that remain in the same layer (Fuentealba et al. 2010). The axon
of RADI cells densely innervates str. radiatum, forming synaptic contacts with the
dendrites of CA1 PCs and other interneurons, but minimally ramifies in str. L-M. In
addition, RADI cells send an axon collateral across the hippocampal fissure to str.
granulosum of the DG, forming BC like synapses with the cell bodies of dentate
granule cells (Fuentealba et al. 2010).

(19) Double-projecting interneurons are characterized by a long-range axonal
projection to the septum and retrohippocampal areas, in addition to its intrahip-
pocampal axon (Jinno et al. 2007; Fig. 11). Similar to many other interneuron
types in the oriens/alveus, their somata and dendrites are located in str. oriens
and they are immunoreactive for SOM, CB, NPY, and MGluR1α (Gulyás et al.
2003; Jinno et al. 2007). Interestingly, in the CA3 interneurons with hippocampo-
septal projection also exist and mostly express SOM, but instead of CB they
show CR immunoreactivity (Gulyás et al. 2003). In the CA1, they have horizontal

Fig. 11 Long-range projecting interneurons of the hippocampus. The schematic diagram shows
the three main subsets of CA1 hippocampal GABAergic neurons projecting to the septal and/or
retro-hippocampal areas. The first major population (double-projecting cells, in red) is located
in str. oriens and projects to both the retrohippocampal and septal areas. The second population
(oriens/retrohippocampal projection cells, in green) is less common in str. oriens, projects
exclusively to the subicular areas, and shows diverse molecular expression profiles, as indicated
below the cell. The third population (radiatum/retrohippocampal projection cells, in brown), found
in the str. radiatum and lacunosum-moleculare, projects to retrohippocampal areas but not to the
septum. (Reproduced from Jinno et al. 2007 with permission. © The Society for Neuroscience)
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dendrites restricted to the str. oriens; however some multipolar and vertical exam-
ples have been observed. Double-projecting neurons have intrahippocampal axonal
arborization in the CA3 and DG, in addition to their thick and strongly myelinated
long-range retrohippocampal and a septal axon collaterals. The major divergence
of double-projecting cells is with respect to their target cells. While some of these
interneurons contact spiny principal cell dendrites (Jinno et al. 2007), others have
been shown to preferentially contact interneuron dendrites (Gulyás et al. 2003).
Therefore it remains ambiguous to what extent these cells are one class or multiple
subtypes.

(20) Oriens/retrohippocampal projection cells have somata and bipolar, horizon-
tal dendrites confined to str. oriens, comparable in morphology to other horizontally
oriented str. oriens/alveus interneurons. These interneurons are immunoreactive for
CB, as well as SOM. Oriens retrohippocampal projection INs possess a dense axon
in str. radiatum and oriens of CA1, where they predominately contact CA1 PC
dendrites (Jinno et al. 2007). The myelinated projection axon ramifies in either
subiculum or the mEC where, in contrast to the local collaterals, it seems to
preferentially form synapses onto INs (Melzer et al. 2012).

(21) Radiatum/retrohippocampal projection interneurons have soma located at
the str. radiatum/L-M border region and radially oriented dendrites spanning these
layers. Their axon which may form local synapses in the str. L-M sends a thick,
myelinated axon to the subiculum, presubiculum, retrosplenial cortex, and indusium
griseum, where it preferentially forms synapses with GABAergic interneurons
dendrites.

Interneurons of the DG and Hilus

The layering of the DG differs markedly from that of the CA areas. Therefore,
many of the DG interneuron types show differences in their morphology to
their counterparts in those areas. In the following section, we briefly review the
main morphological feature and connectivity, whenever known, of the major DG
interneuron types.

Perisomatic Inhibitory Interneurons

(1) Fast-spiking PV-BCs are the best investigated interneuron type of the DG (Han
et al. 1993; Halasy and Somogyi 1993b; Scharfman 1995; Sík et al. 1997; Mott et al.
1997; Bartos et al. 2001, 2002; Doischer et al. 2008; Nörenberg et al. 2010). The
somatodendritic morphology is reminiscent of pyramidal cells. The large triangular
or ovoid soma is located in the granule cell layer, often at the border to the hilus.
Apical dendrites extend into the molecular layer and can receive input from all
major afferent pathways. Basal dendrites are found in the hilus and receive recurrent
excitatory input from mossy fibers mediated by multiple, 2–4 distributed contacts
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(Geiger et al. 1997). The mean surface area of the apical and basal dendrites of in
vitro labeled BCs is 7600 and 2200 μm2, respectively (Nörenberg et al. 2010). The
main postsynaptic targets of BCs are GCs (Geiger et al. 1997; Kraushaar and Jonas
2000; Bartos et al. 2002). Similar to the CA areas, DG PV-BCs are also extensively
coupled by mutual inhibitory synapses (70–80% connectivity for closely spaced
BCs) and gap junctions (∼30% connectivity, Bartos et al. 2001, 2002).

(2) CCK-BCs were described in the in vivo labeling study by Sík et al. (1997),
but no further data have been obtained from identified CCK-BC from the DG.

(3) AACs of DG were first described in detail by Han et al. (1993) and Buhl
et al. (1994a, b). Somatodendritic morphology of AACs is largely similar to that of
BCs. The output is directed exclusively to the axon initial segment of GCs. These
synapses involve multiple contact sites; in case of one AAC-GC pair, eight contacts
were identified and the number of AACs converging onto the same initial segment
was calculated to be five (Buhl et al. 1994a).

Dendritic Inhibitory Interneurons

(4) Molecular layer perforant path-associated (MOPP) interneurons are located in
the molecular layer and project to the outer two-thirds of this layer co-aligned with
the perforant path (Han et al. 1993; Halasy and Somogyi 1993b; Sík et al. 1997).
A subset of molecular layer interneurons shows a similar projection in the DG, but
many of its axon collaterals cross the hilus and terminate in the CA1 area and/or the
subiculum (“OML cells,” Ceranik et al. 1997; Hosp et al. 2005). Many features of
these interneurons correspond to those of CA1 PPA cells.

(5) Hilar perforant path-associated (HIPP) interneurons (Han et al. 1993; Halasy
and Somogyi 1993b; Sík et al. 1997; Hosp et al. 2005) correspond to O-LM
interneurons of the CA areas. Their soma and dendrites are confined to the hilus
and receive recurrent excitation from the mossy fibers. Their axon terminates in the
outer two-thirds of the molecular layer parallel to the perforant path. Thus, HIPP
interneurons constitute the main feedback dendritic inhibitory cell types of the DG.
Similar to O-LM cells, HIPP cells express SOM (Katona et al. 1999a).

(6) Hilar commissural/associational path-associated (HICAP) interneurons are
characterized by an axon in the inner molecular layer, co-aligned with the com-
missural/associational path (Han et al. 1993; Halasy and Somogyi 1993b; Sík et al.
1997; Lübke et al. 1998; Hosp et al. 2005). The soma is located in the hilus, and the
dendrites are found both in the hilus and in the molecular layer. Therefore, HICAP
cells can mediate both feedforward and feedback inhibition.

(7) Total molecular layer (TML) interneurons project to the molecular layer,
covering vertically the entire layer (Mott et al. 1997; Hosp et al. 2005). The soma
is located in the cell body layer and the dendrites extend into both the hilus and the
molecular layer. Therefore, TML cells can mediate inhibition to the entire dendritic
tree of GCs in both feedforward and feedback manner.
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Genetic Diversity of Hippocampal Interneurons

All of the neurochemical classifications of interneurons rely on differential transla-
tion of proteins, either calcium-binding, neuropeptides, transmembrane receptors
and channels, or transcription factors and enzymes. All of these differentiating
factors rely on differential gene expression, through DNA transcription to RNA
translation. Recent advances in single-cell reverse-transcriptase PCR (RT-PCR) and
RNA sequencing (RNAseq) have allowed detailed characterization of individual
genetic markers and classification of inhibitory interneurons in an unbiased manner.
Despite the early stage that this form of analysis is, we will highlight several genetic
divergences, which partly explain interneuron diversity (Monyer and Markram
2004).

The single greatest form of genetic diversity arises from the location from
which interneurons progenitors arise in the brain, the ganglionic eminences. Those
neurons which are formed within the medial ganglionic eminence (mGE) are fated
to become PV, NPY, and SOM. Meanwhile interneurons formed from the central
ganglionic eminence (cGE) contain CCK, Reelin, and VIP. However, there is still
some overlap, with nNOS and CR containing interneurons arising from both mGE
and cGE (reviewed in Wamsley and Fishell 2017). These fate maps of interneuron
development are underlain by precise genetic cues, with mGE expression of Nkx2.1,
Lhx6, Sox6, and Sip1, the order of which defines the maturation state of these
interneurons. cGE VIP neurons meanwhile selectively express Igf1, which controls
synaptogenesis in these interneurons.

More recent adoption of single-cell RNAseq methods has allowed unbiased
characterization of interneuron subtypes. For example, using this technique approx-
imately 16 clustered subtypes of CA1 interneuron have been described (Zeisel
et al. 2015). How these subtypes overlap with the 20+ described neurochemical,
anatomical, and electrophysiological types remains to be seen. One technique that
is approaching is the development of Patch-Seq (Fuzik et al. 2016), whereby
electrophysiological recordings can be combined with RNA harvesting and anatom-
ical tracing to determine genetic diversity. This technique, so far only applied to
neocortical CCK interneurons, has identified five CCK subtypes, which is near to
consistent with the number of putative cell types observed in CA1.

Experimental Techniques

Golgi Silver Staining Method

The first experimental approach that enabled detailed analysis of the morphological
features of neurons was the “black reaction” developed by Camillo Golgi in the
late nineteenth century. The Golgi method results in the complete labeling of a
random set of neurons. The sparse staining pattern enables the examination of the
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morphology of individual cells. Many neuroscientists, including Ramon y Cajal,
applied this method successfully to investigate the structure and gain insights into
the function of neurons in various brain areas, including the hippocampus. Although
targeted labeling methods often offer clear advantages, the Golgi method can be still
used to label and characterize abundant cell types (e.g., cortical principal cells). A
modern version of the Golgi staining method can be observed in some transgenic
lines, such as Thy1-GFP mice, in which green fluorescent protein is randomly
expressed in a subset of DG GCs (Feng et al. 2000).

Immunocytochemistry

Neurons express a wide variety of molecules which can be detected and visualized
using specific antibodies (Freund and Buzsáki 1996; Somogyi and Klausberger
2005; Jinno and Kosaka 2006). Some of these neurochemical markers are evenly
distributed in the cytoplasm (e.g., PV, CB, and CR) or on the surface of the plasma
membrane (mGluR1a); therefore, the immunostaining can delineate neurons in their
entirety. Morphology of cell types with low density can be investigated using this
method; however, the analysis is often restricted to the somatodendritic domain, as
overlapping axonal arbors cannot be resolved with accuracy.

Targeted Labeling of Single Cells

Microelectrode and whole-cell patch-clamp recordings can be combined with
intracellular labeling, using either fluorescent markers (including ion- and voltage-
sensitive dyes) or biocytin/neurobiotin-based assay systems (Lacaille et al. 1987;
Buhl et al. 1994a). While fluorescent dyes can be directly observed during recording,
biocytin needs to be visualized by histological processing of the tissue after the
recording session. This combined approach enables the identification and detailed
morphological analysis of the recorded neurons to complement the physiological
data. Intracellular staining of synaptically coupled neurons has been successfully
used to establish the number and location of synaptic contacts. Furthermore,
intracellular labeling can be combined with immunostaining to characterize the
neurons neurochemically.

In vitro labeling in acute hippocampal slices has been extensively applied
and provided much of the information on the structure and function of various
hippocampal neurons obtained in the last two decades. However, in vitro labeling
has obvious limitations in that the neurons are incomplete; part of the dendritic
tree and the axon is removed during the slicing procedure. For this reason, in vivo
labeling approaches, despite their lower efficiency and laborious nature, are often
preferable.
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In Vivo Labeling of Single Cells

In vivo labeling has been performed using microelectrode (Soltész et al. 1993; Sík
et al. 1994) and more recently by whole-cell patch-clamp recordings (Lee et al.
2009). These two methods provide high-resolution electrophysiological data but
inevitably lead to some degree of damage to the neurons. Alternatively, juxtacellular
recordings can be performed (Klausberger et al. 2003). The physiological data,
using this approach, are restricted to the discharge pattern of the neurons, but high-
quality anatomical data can be obtained for correlated light and electron microscopic
investigations.

The Future

Neuroanatomical investigation focusing on hippocampal neurons and networks has
been performed for well over a century. These investigations have identified a large
number of neuron types and provided a growing body of information on their
morphology and synaptic connections. However, despite the extensive research, our
knowledge is still rather limited and patchy, as this chapter also reflects.

First, classification of interneurons with atypical morphological features needs
further attention. Their classification is difficult while often only one or a few
examples exist in the literature. The low numbers conceivably suggest low abun-
dance; however, the recent identification of “Ivy” interneurons (Fuentealba et al.
2008) indicates that there are still significant discoveries to be made. Second,
detailed quantitative information about the morphological structure (Emri et al.
2001; Nörenberg et al. 2010) of many cell types is still missing; this would be
required to create realistic single-cell models and investigate integrative properties
of these neurons. Finally, connectivity of the various types should be systematically
mapped (Li et al. 1992; Megías et al. 2001). While synaptic target profiles are
mostly well established, divergence and convergence factors in the network have
remained often unknown. This information is indispensable for our understanding
of how microcircuits and large-scale networks are built and function under normal
and pathological conditions.

To achieve these goals, we need to invest, no doubt, hundreds of “man-
years” of dedicated and meticulous work. However, recent and future advances in
experimental techniques will offer better conditions, higher efficiency, and improved
resolution to morphological analysis. Novel, high-resolution imaging techniques in
combination with ion- and voltage-sensitive dyes (Rózsa et al. 2004; Homma et al.
2009) and genetically encoded markers (Oliva Jr et al. 2000; Meyer et al. 2002; Livet
et al. 2007) will facilitate correlated investigations of activity patterns and structure
of hippocampal neurons and networks. Improved transsynaptic viral tools should
advance mapping of functional and anatomical connectivity (Boldogkői et al. 2009).
In combination with these methods, post hoc electron microscopic ultrastructural
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investigations remain important to confirm and extend results obtained at the light
microscopic level. While in vitro recording and labeling techniques continue to
dominate hippocampal research, especially in the analysis of individual synaptic
connections, in vivo approaches, such as juxtacellular and whole-cell patch-clamp
recordings (Klausberger et al. 2003; Lee et al. 2009), will become increasingly
important not only for the physiological but also for the anatomical characterization
of the neurons. Wider use of these methods will help us to create large libraries of
neurons and enable us on the one hand to establish general morphological features
of the various neuron types and on the other to better appreciate variability of
individual cells.
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Physiological Properties of Hippocampal
Neurons

Marco Martina and Cheng-Chang Lien

Abstract Neurons are the basic computational units of the nervous system. Infor-
mation processing in the brain is critically dependent on the electrophysiological
properties of individual neurons, which are determined by the presence and
distribution of many functionally and pharmacologically different ion channels.
The parameters that define the functional roles of individual neurons can be
grouped into two major groups: on one side are cellular morphology and topology,
which dictate the connectivity of each neuron; on the other side are the different
electrophysiological properties of each cell type, which are defined by the combined
effects of neuronal active and passive properties and shape the integrative function
of each individual cell. The type and timing of neuronal responses to synaptic
inputs depend on the firing pattern of each neuron, which in turn is set by the
interplay of intrinsic and synaptic electrophysiological properties. In recent years it
has also become clear that within each individual neuron the electrophysiological
properties are not homogeneous but vary in the various cellular compartments.
In particular, it has been shown that dendrites, far from being simple cellular
antennas that passively conduct synaptic inputs toward the soma and the axon,
are very active structures capable of actively boost synaptic inputs and, at least
in some neurons, of generating action potentials that effectively propagate to the
soma (Llinás and Sugimori, J Physiol 305:197–213, 1980; Stuart and Sakmann,
Nature 367:69–72, 1994; Häusser et al., Neuron 15:637–647, 1995; Spruston et al.,
Science 268:297–300, 1995; Martina et al., Science 287:295–300, 2000). Thus, the
different voltage-gated ion channels expressed by each neuron and in each cellular
compartment within individual neurons play a fundamental role in shaping the
electrical response of individual neurons to synaptic stimulation and ultimately in
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dictating the role of each neuron within the hippocampal network. This chapter will
focus on the properties and distribution of voltage-gated ion channels in some of the
major neuronal types in the hippocampus and dentate gyrus.

The Data

Comprehensive models describing the function of any brain area must take account
of the large differences in the electrophysiology of individual neuronal types. Such
differences are mainly the result of the properties of the ion channels expressed
by each individual cell type. This chapter provides a brief review of the properties
and distribution of voltage-gated ion channels in some of the main hippocampal cell
types. The hippocampal formation contains three classes of glutamatergic projection
neurons (pyramidal neurons of the hippocampus and granule cells and mossy
cells of the dentate gyrus) and many different types of GABAergic interneurons
(Freund and Buzsáki 1996, Parra et al. 1998; see also chapter “Connectivity of the
Hippocampus” of this book). Hippocampal pyramidal neurons are among the most
extensively studied neurons in the entire brain. Electrophysiologically, they can be
grouped into three major groups, CA1, CA2, and CA3, although a recent study
reports a striking heterogeneity in both intrinsic properties and synaptic connectivity
along the transverse axis of CA3 (Sun et al. 2017). Furthermore, pyramidal neurons
in the subiculum likely constitute a fourth neuronal class with different electrical
properties (Jung et al. 2001).

CA1 Pyramidal Neurons

The recorded resting membrane potential of CA1 pyramidal neurons varies in
different preparations from −64 mV (recorded in perforated patch configuration
at 32 ◦C, Spruston and Johnston 1992) to −84 mV, inferred from the reversal
potential of voltage-gated potassium currents recorded in cell-attached configuration
at 34 ◦C (Fricker et al. 1999). These cell have typically low input resistance (27
K�*cm2, measured in acute rat slices using whole-cell configuration at room
temperature, Taverna et al. 2005). The background conductance of CA1 pyramidal
neurons is mainly mediated by inward rectifier potassium currents (Takigawa and
Alzheimer 2002), voltage-insensitive KCNK potassium currents (largely TASK3
Taverna et al. 2005), and Ih (Maccaferri et al. 1993). The voltage response of CA1
pyramidal neurons is characterized by the presence of voltage sag upon injection
of hyperpolarizing current and by action potential frequency accommodation on
injection of depolarizing current. About 15% of the neurons show intrinsic bursting
(defined as a ratio of <0.1 between the shortest interspike interval and the mean
interspike interval; Metz et al. 2005). Spike accommodation mostly depends on the
properties of the voltage-gated sodium and potassium currents expressed in these

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Table 1 Sodium channels of CA1 pyramidal neurons

Soma Dendrites Axon

Current type Fast/persistent (Yue
et al. 2005)

Fast (Magee and
Johnston 1995a, b)

Fast (Colbert and Pan
2002)

Current density + (Magee and Johnston
1995a, b)

+ (Magee and
Johnston 1995a, b)

++

Channel subunit Nav1.1, Nav1.2 (Gong
et al. 1999) Nav1.3 RNA
before p30 (Felts et al.
1997)

Nav1.1, Nav1.2
(Gong et al. 1999)

Nav1.1, Nav1.2
(Gong et al. 1999)

cells. Action potentials are normally initiated close to the soma and backpropagate
into dendrites in an activity-dependent manner so that while action potentials early
in a train propagate reliably, those occurring later may fail to actively invade
the distal dendrites (Spruston et al. 1995). Sodium currents of CA1 pyramidal
neurons recover from inactivation with a bi-exponential time course (Martina and
Jonas 1997); interestingly, longer lasting depolarizations increase both the relative
contribution of the slow component and its time constant (see below). Thus, during
a long depolarization, sodium channels undergo cumulative inactivation, which
prevents sustained fast firing. Additionally, sustained high-frequency firing is also
hindered because most of the voltage-gated potassium currents of these neurons
inactivate rapidly (see below), and therefore prolonged depolarizations inactivate
the potassium current and interfere with action potential repolarization.

Sodium Currents Voltage-gated sodium currents are expressed in all three func-
tional compartments (soma, axon, dendrites; see Table 1) of pyramidal neurons. The
current density appears relatively uniform in the different compartments (Colbert
and Pan 2002; Magee and Johnston 1995a, b, Fig. 1), although enrichment in the
axon initial segment is also compatible with the experimental data (Colbert and Pan
2002) and would mirror observations in CA3 pyramidal neurons, where sodium
channel density peaks in the axon at ∼50 μm from the soma (see below). The
density of sodium current in CA1 pyramidal cell nucleated patches is ∼5 mS/cm2

(M. Martina, unpublished observations).

The properties of the sodium current slightly differ between soma and dendrites.
In particular, dendritic channels appear to undergo stronger cumulative inactivation
during repetitive firing (Jung et al. 1997) and to have slower recovery from
inactivation compared to somatic channels (Colbert et al. 1997). Recovery from
inactivation in pyramidal neurons is described by a double exponential process,
with the fast and slow components having time constant of ∼2 and ∼150 ms and
contributing 85% and 15%, respectively, for a 30 ms-long test pulse; for 300 ms-long
pulses, the values of the time constants are similar (2.6 and 351 ms, respectively),
but the contribution of the slow component increases to 24% (all data were obtained
at −120 mV holding potential and 22–24 ◦C, Martina and Jonas 1997). Abundant
expression of two sodium channel subunits (Nav 1.1 and 1.2) has been detected in
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Fig. 1 Ion current density along the somatodendritic axis of CA1 pyramidal neurons. The
density of each current type was normalized to its own density at the soma (except for IKDTX in
which it was normalized to the value in proximal dendrites). Therefore the figure only depicts the
trend for each individual current, and no comparison is possible between the absolute values of the
different currents

the hippocampus; type 1 channels appear to account for most of the somatodendritic
staining, while type 2 staining is concentrated in the axons (Gong et al. 1999). In
hippocampal pyramidal neurons, action potentials are normally initiated in the axon
initial segment (Colbert and Johnston 1996). Colbert and Pan (2002) showed that
initiation at this site is probably favored by a more negative activation range of
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voltage-gated sodium current (sodium channel activation is shifted by ∼7 mV in the
hyperpolarizing direction). Modulation of Na+ channel activation is also detected
in dendritic channels. Sodium channels in distal dendritic segments have more
negative activation range than in proximal dendrites. The midpoint of the activation
curve is ∼−12 mV for distal dendritic channels and ∼−20 mV for proximal
channels (Gasparini and Magee 2002), and this difference appears as the result of
phosphorylation-dependent modulation since it is reproduced by staurosporine, a
nonselective kinase inhibitor (Gasparini and Magee 2002). Yet, in spite of the more
negative activation range of sodium channels, dendritic action potential initiation
is not common and requires highly synchronized (within 3 ms) activation of ∼50
synaptic inputs spread over 100 μm of the apical trunk/tuft (Gasparini et al. 2004).
Moreover, the voltage threshold for dendritic action potential initiation is more
positive than the somatic one (−48 ± 1 mV in the dendrites vs. -56 ± 1 mV at
the soma, Gasparini et al. 2004). This apparent contradiction may be explained by
the higher density of A-type potassium current in distal dendrites (Hoffman et al.
1997, Gasparini et al. 2004).

Voltage-Gated Potassium Channels CA1 pyramidal neurons express multiple
types of voltage-gated K+ channels (Storm 1990, Hoffman et al. 1997; Martina
et al. 1998, Table 2). Three main components can be identified on the basis of
functional and molecular analysis: an A-type current (see Table 3 for the A-type
current properties), most likely mediated by Kv4 channels, which contributes ∼60%
of the total somatic current; a slow delayed rectifier (ID), likely attributable to
Kv1 and Kv2 subunits, which contributes ∼27% of the total somatic current; and
a fast delayed rectifier (IK) mediated by Kv3 channels that contributes ∼12% of
the somatic current (Martina and Jonas 1997). The relative contribution of these
components is different between the somatic and dendritic compartments (See Fig.
1). While the non-inactivating voltage-dependent currents (most likely mediated by
Kv2 and Kv3 channels) show relatively constant density in the somatodendritic
compartment, A-type current (mediated by Kv4 subunits Martina et al. 1998;
Hoffman and Johnston 1998; Kim et al. 2005) progressively increases with distance
from the soma (up to fivefold, Hoffman et al. 1997). The A-type potassium
current typically activates at relatively hyperpolarized membrane potentials (starting
∼−45 mV, Martina et al. 1998). Interestingly, A-type current of pyramidal neurons
is highly sensitive to metabolic modulation (Hoffman and Johnston 1998). Such
modulation could play an important role in regulating synaptic plasticity, as shown
by the change in the threshold for induction of long-term potentiation measured in
response to pharmacological blockade of this current (Ramakers and Storm 2002).
Expression of dendrotoxin-sensitive (Kv1-mediated) potassium currents is spatially
segregated in pyramidal neurons. This current is not expressed in the soma, but it is
expressed in proximal dendrites (Fig. 2) where it contributes to the active regulation
of the action potential afterdepolarization and therefore of burst firing (Metz et al.
2007).

Calcium-Dependent Potassium Channels Depolarizations produced in CA1
pyramidal neurons by iontophoretically applied glutamate are followed by
hyperpolarizations which are mediated by calcium-dependent potassium channels
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Table 3 Properties of inactivating voltage-gated K+ current in different hippocampal neurons and
the MFB

DG FS (1) CA1 PC (1) DGGC (2, 3) MFB (4)

Act. V1/2 −6.2 −3 −7.6 (3) −26
Act. Slope (mV/e-fold) 5.75* 6.75* 10 (3) 5.2*
Inact. V1/2 −75.5 −77.3 −65.1 (3); −67 (2) −72
Inact. Slope 8.5 7.4 6 (3); 6.3 (2) 9.6
TEA block No No Yes Yes

In the original papers (1) and (4) activation curves were fitted with a Boltzmann function raised to
the fourth power. In order to allow direct comparison with data obtained fitting a simple Boltzmann
component (References 2 and 3), the slope factors reported in the papers have been divided by 4 in
this table (marked by *)
References 1: Martina et al. (1998), 2: Beck et al. (1992); 3: Riazanski et al. (2001); 4: Geiger and
Jonas (2000)

(Nicoll and Alger 1981). Additionally, action potential frequency is also regulated
by a Ca2+-dependent potassium current, although the molecular identity of the
channels mediating this current remains still unclear (King et al. 2015). Calcium-
dependent, charybdotoxin-sensitive potassium channels appear to be unevenly
distributed along the somatodendritic axis of CA1 neurons, with channel density
decreasing with distance from the soma (Poolos and Johnston 1999) so that the
current mediated by these channels is almost completely absent at ∼150 μm
from the soma (Johnston et al. 2000, see Fig. 1). This is in stark contrast to the
A-type current density, which strongly increases along the dendrites, but also to
the non-inactivating currents mediated by voltage-gated channels (most likely by
Kv3 and Kv2 subunits), which are expressed at constant density throughout the
somatodendritic compartment (Hoffman et al. 1997).

The data presented so far suggest that several different potassium channel
subunits are expressed by CA1 pyramidal neurons. Indeed, in situ hybridization,
immunostaining, and single-cell RT-PCR show that CA1 pyramidal neurons express
many different potassium channel subunits, including Kv1.1, 1.2, 1.4, and 1.5
(Maletic-Savatic et al. 1995, Martina et al. 1998); Kv2.1 and 2.2 and Kv3.1, 3.2,
and 3.3 (Martina et al. 1998; Du et al. 2000); and Kv4.2 and 4.3 (Serôdio and
Rudy 1998; Martina et al. 1998; Rhodes et al. 2004). It is interesting that although
expression of dendrotoxin-sensitive Kv1 subunits is detected in these cells, no
effect of dendrotoxin, a Kv1-selective toxin (Grissmer et al. 1994), is detected
on potassium currents either in nucleated patches from CA1 pyramidal neurons
(Martina et al. 1998) or in focal somatic application of the toxin (Metz et al. 2007).
This is consistent with reports showing that Kv1 channels are mainly expressed
in presynaptic structures (Monaghan et al. 2001; Sheng et al. 1992). Whole-cell
recordings, however, showed an effect of dendrotoxin on action potential initiation
(Golding et al. 1999), further suggesting axonal localization of these channels.
Finally, dendritic recordings and focal drug application showed that dendrotoxin-
sensitive channels are also expressed in apical dendrites, where they modulate the



98 M. Martina and C.-C. Lien

A B

C D

Cont DTXC
ur

re
nt

no
rm

a l
iz

ed
to

co
nt

ro
l

115

110

105

100

Dist Prox Soma

flow

Control
2 ms

5
m

V

500 nM DTX

*

(150 µm)

D
TX

po
te

nt
ia

tio
n

(%
of

co
nt

ro
l)

20 ms

2
pA

60 mm from soma
Outside-out patch

Control

DTX

Fig. 2 Dendrotoxin sensitive currents in dendrites of CA1 pyramidal neurons (a) Current clamp
recording of a somatic afterdepolarization (ADP) recorded in control conditions (thick line) and
in the presence of focal dendritic application of dendrotoxin (DTX, thin line). The ADP is
increased by DTX. (b) Bar chart summarizing the effects of DTX locally applied to the soma,
proximal, and distal apical dendrites on the somatic ADP. (c) Voltage clamp outside-out dendritic
recordings confirm the presence of DTX-sensitive currents in proximal apical dendrites. (d) Bar
chart summarizing the blocking effect of DTX on dendritic potassium currents. (Figure modified
from Metz et al. 2007)

size of the afterdepolarization that underlies burst firing (Metz et al. 2007). These
data nicely match those obtained by histological analysis that shows expression of
Kv1 subunits in the dendritic arbor of CA1 pyramidal neurons (Park et al. 2001).
Thus, Kv1 subunit expression appears to be selectively absent from the soma, while
present in both the axon and dendrites of CA1 pyramidal neurons.

M-Current This potassium current is mediated by members of the KCNQ family
(Wang et al. 1998; Schroeder et al. 2000). M-current is expressed at very low density
in the dendritic compartment of CA1 pyramidal neurons (Chen and Johnston 2004).
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However, expression of KCNQ2 and KCNQ3 subunits is high in CA1 pyramidal
neurons (Saganich et al. 2001), and M-type current in these neurons effectively
controls burst generation (Yue and Yaari 2004). In keeping with these observations,
Hu et al. (2007) have shown that M-current in CA1 pyramidal neurons is mainly
localized in the perisomatic area. It has been proposed that the interaction between
M-current and persistent sodium current mediates a form of theta resonance (M-
resonance) in hippocampal CA1 pyramidal neurons (Hu et al. 2002).

Voltage-Gated Calcium Channels Both low- and high-voltage-activated calcium
currents have been described in CA1 pyramidal neurons (Table 4). Calcium channels
are primarily located at the soma, and their density decreases along the dendrites
(Christie et al. 1995), although they are present in dendrites and in dendritic spines
(Mills et al. 1994).

The high-voltage-activated current is itself mediated by multiple components.
An omega-agatoxin IVA-sensitive (P-type) current contributes about 26% of the
somatic high-threshold current (Mintz et al. 1992). N-type channels have also
been described in the soma as well as dendrites and spines (Mills et al. 1994)
although somatic expression appears more prominent. Nevertheless postsynaptic N-
type current has been shown to play an important role in modulation of synaptic
strength (Normann et al. 2000). CA1 pyramidal neurons also express large blocker-
resistant high-voltage calcium current (R-type). In acutely dissociated cells, this
component (defined as the fraction of calcium current available from a holding
potential of −50 mV in the presence of the combined application of ω-CgTx GVIA,
ω-CgTx MVIIC, ω-AgaTx IVa, and nifedipine) contributes ∼40% of the high-
voltage-activated current (Sochivko et al. 2003). Interestingly, a large fraction of
the tail current activated by an action potential in nucleated patches is attributable
to the R-type (Metz et al. 2005). This current appears to play an important
role in the regulation of the afterdepolarization that drives burst firing in CA1
pyramidal neurons. In particular, the calcium influx mediated by this tail current
downregulates Kv7 potassium channels, which, when fully available, strongly
attenuate the afterdepolarization (Chen and Yaari 2008). R-type currents are present
also in dendrites and dendritic spines, where, together with T-type, they provide
about 50% of the calcium currents evoked by backpropagated action potentials
(Hoogland and Saggau 2004). The R-component in CA1 pyramidal neurons is
partly mediated by α1E subunits (Sochivko et al. 2002), although other subunits also
contribute as demonstrated by the fact that a current with the functional properties
of the R current is still present in α1E knockout mice (Wilson et al. 2000).

The classical dihydropyridine-sensitive L-type current is also present in the soma
as well as in the dendrites of pyramidal neurons (Takahashi et al. 1989; Magee
and Johnston 1995a, b; Hoogland and Saggau 2004). Dihydropyridine-sensitive
channels appear to be open at membrane potential around resting and therefore
contribute to the neuronal calcium homeostasis (Magee et al. 1996). This current is
expressed in every neuronal compartment although its density appears particularly
elevated in the proximal apical dendrites. Activation at negative membrane potential
and sensitivity to dihydropyridine suggest that this current is mediated by the α1D
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subunit (Cav1.3, Xu and Lipscombe 2001), which has been shown to be expressed
throughout the somatodendritic compartment of CA1 pyramidal neurons (Veng and
Browning 2002). However, Radzicki et al. (2013) showed that a large low-threshold
nimodipine-sensitive current is still present in CA1 pyramidal neurons of Cav1.3
KO mice. The same authors also showed that Cav1.2 and 1.3 are the only L-
type subunits expressed in the CA1 subfield, thus suggesting that Cav1.2 subunits
mediate a large fraction of the resting calcium current in these neurons. Low-
threshold T-type currents (in CA1 pyramidal cells, these currents start activating
∼ − 60 mV and reach full amplitude ∼ − 20 mV; Takahashi et al. 1991) are
also present in both the somatic and dendritic compartments (Takahashi et al.
1989; Magee and Johnston 1995a, b). Dendritic T-type currents are activated by
subthreshold synaptic events and produce local increases in intracellular calcium,
which may be important for the regulation of synaptic strength (Magee et al.
1995). It has been shown that selective potentiation of T-type current occurs in
status epilepticus and can transform CA1 pyramidal neurons from regular firing to
intrinsically low-threshold bursting cells (Su et al. 2002); it has also been proposed
that the increase in T-type current density associated with status epilepticus is
limited to, or more prominent, in the apical dendrites where these channels facilitate
dendritic depolarization by backpropagating somatic spikes (Yaari et al. 2007).

Hyperpolarization-Activated Current (Ih) The hyperpolarization-activated cur-
rent is a depolarizing current (the reversal potential is ∼ − 20 mV) activated
by hyperpolarizations more negative than ∼ − 60 mV and was first described in
CA1 pyramidal neurons by Maccaferri et al. (1993). This current is important for
regulating firing activity as well as input resistance, and its density sharply increases
along the somatodendritic axis (Magee 1998; Fig. 1). It is worth stressing that
such gradient in Ih density, although very prominent in CA1 pyramidal neurons
as well as in layer 5 cortical pyramidal neurons (Stuart and Spruston 1998), does
not appear to constitute a general property of all pyramidal neurons. Bullis et al.
(2007) recently described pyramidal-like principal (PLP) neurons, a novel class of
hippocampal neurons with pyramidal morphology found in the stratum radiatum.
Interestingly, in these neurons the Ih gradient is inverted, showing high somatic
density that declines along the dendrites. This finding further supports the notion
that, although general rules may regulate ion channel distribution among different
neuronal classes, extrapolations should be avoided, and a detailed study is required
for each cell type.

CA3 Pyramidal Neurons

The input resistance of CA3 pyramidal neurons is in the range 120–200 K� cm2

(Major et al. 1994). The sodium currents are functionally similar to those in CA1
pyramidal cells, although some differences were observed in the voltage-dependent
inactivation (Steinhäuser et al. 1990). It was recently shown that in CA3 pyramidal
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neurons, sodium channel density is maximal in the axon at 30–50 μm from the
soma, which constitutes the location of first action potential generation (Meeks and
Mennerick 2007).

Similar to CA1 pyramidal neurons, the voltage-gated potassium current of CA3
pyramidal neurons can be classified into three main components: IA, ID, and IK. Of
these, the fast-activating ID and IA contribute to the repolarization of the action
potential (Mitterdorfer and Bean 2002).

A direct comparison of the potassium currents in CA1 and CA3 pyramidal
neurons was performed by Klee et al. (1995). The main difference found was a larger
contribution of Ca-dependent current in CA3 cells (20% of total delayed rectifier vs.
10% in CA1). This finding fits well with the observed impact of SK channels on the
frequency of intra-burst action potentials in CA3 pyramidal neurons.

One potentially interesting difference is that in CA3 pyramidal neurons, part of
the inactivating A-type current is highly 4-AP-sensitive (Bossu et al. 1996), which
suggests that channels constituted either by Kv1 subunits associated to beta subunits
(which confer rapid A-type inactivation to non-inactivating Kv1 channels; Rettig et
al. 1994) or by Kv3.3/3.4 subunits contribute to this current. Relatively abundant
expression of Kv3.3 transcript was actually reported in CA3 pyramidal layer (Weiser
et al. 1994). A larger contribution of Kv3.3 subunits to the fast transient potassium
current of CA3 neurons compared to the current of CA1 neurons (which is almost
entirely mediated by Kv4 subunits, see above) may favor the generation of low-
threshold bursts because of the more depolarized action potential values required
to activate Kv3.3 channels compared to Kv4 (Baldwin et al. 1991; Fernandez et al.
2003). Another potential difference between the potassium current of CA3 and CA1
pyramidal neurons concerns the expression by CA3 cells, at least in organotypic
cultures, of a current that is down-modulated by intracellular calcium and is involved
in action potential repolarization as well as in the control of synaptic transmission
(Saviane et al. 2003). In keeping with this observation, two of the potassium currents
of CA3 pyramidal neurons, a voltage-gated current and a Ca-dependent current,
are inhibited by activation of an ACPD-sensitive quisqualate receptor (Charpak
et al. 1990), suggesting that the local metabolic state influences the size of these
currents and therefore the input-output function of CA3 pyramidal neurons. Along
this line, Hyun et al. (2013) have shown that a current likely mediated by Kv1.2
channels is downregulated by increased intracellular calcium and causes intrinsic
hyperexcitability in response to action potential trains (10 Hz). Interestingly, such
potentiation was not detected in CA1 pyramidal neurons.

Similar to CA1, the calcium current in CA3 pyramidal neurons is the sum of
multiple components (Mogul and Fox 1991). Overall the currents are similar to
those of CA1 pyramidal neurons (Thompson and Wong 1991). P-type contribution
to the high-threshold currents, however, is smaller in CA3 neurons than in their
CA1 counterparts (14% vs. 26% Mintz et al. 1992); a detailed analysis (Avery
and Johnston 1996) showed that the main difference between the currents of the
two cell types is that in CA3 pyramidal neurons, the low-voltage-activated current
actually comprises two different components, one inactivating and nickel sensitive
(typical T-type) and one sustained and partly dihydropyridine sensitive (L-type; see
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Table 5 Distribution and gating properties of dendritic Na+ channels in the main glutamatergic
cell types of the hippocampus

DG FS (Hu
et al. 2010)

CA1 PC (Magee and
Johnston 1995a, b;
Kim et al. 2012)

CA3 PC (Kim et al.
2012)

Conductance density
vs. distance to soma

Low (+/−) Constant (++) Increasing (from ++ to
++++)

Act. V1/2 N/A −30 −37.6
Act. slope
(mV/e-fold)

7.2 7.9

Inact. V1/2 −62 −72.9
Inact. slope 6.9 8.0

Xu and Lipscombe (2001)). The presence of multiple types of low-voltage-activated
calcium channels may contribute to the intrinsic firing of CA3 neurons.

Recent technical advancements, such as confocally guided subcellular patch
clamp techniques, have helped advancing our knowledge of the ion conductances in
dendrites of CA3 pyramidal neurons (Kim et al. 2012). Interestingly, in these cells
dendritic spikes are mediated by voltage-gated Na+ channels, rather than by Ca2+
channels. Conversion of dendritic current density into conductance density revealed
that the average ratio of Na+ to total K+ conductance density is 0.72. Thus, CA3
pyramidal neuron dendrites show a high Na+-to-K+ current ratio in comparison
with other types of neurons (Table 5). The density of the different components
showed differential distance dependence. For the Na+ current, the apparent density
decreased from the soma to the proximal dendrites and then increased from the
proximal to the distal dendrites. In contrast, the dendritic A-type K+ current density
increased continuously from the soma to the distal dendritic region. Finally, the
delayed rectifier K+ current density was not significantly dependent on distance
(Kim et al. 2012).

CA2 Pyramidal Neurons

CA2 is a unique region situated between CA3 and CA1. Several recent studies
revealed that pyramidal cells in this subfield have distinctive synaptic connectivity,
intrinsic membrane properties, and functional roles (Chevaleyre and Siegelbaum
2010; Kohara et al. 2014; Palacio et al. 2017; Srinivas et al. 2017; see review
by Robert et al. 2018). The development over the past decade of new tools
such as molecular profiling and transgenic mouse lines has enabled the reliable
identification of CA2 pyramidal neurons, facilitating the investigation of the
functional properties of this cell population. CA2 pyramidal neurons display unique
intrinsic electrophysiological properties that are distinct from those of CA1 or
CA3 pyramidal neurons. In comparison to CA1 pyramidal neurons, the resting
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potential of CA2 pyramidal neurons is more hyperpolarized, with values ranging
from −76 mV to −74 mV at 30–36 ◦C for adult mice (Zhao et al. 2007; Chevaleyre
and Siegelbaum 2010; Sun et al. 2014, 2017; Piskorowski et al. 2016; Srinivas et
al. 2017). Additionally, the resting potential of CA2 pyramidal neurons appears to
become gradually more hyperpolarized along the transverse axis from area CA2
and throughout CA3 (Sun et al. 2017). Similarly, the input resistance exhibits a
proximo-distal (from CA3c to CA2) gradient, with the lowest values measured in
CA2 pyramidal neurons, ranging from 49 to 86 M� (∼15.5–26 K� cm2) at 33–
36 ◦C (Palacio et al. 2017; Chevaleyre and Siegelbaum 2010; Srinivas et al. 2017).
The gradients in both resting potential value and input resistance may be mediated,
at least in part, by a similar proximo-distal gradient in Ih (see below).

Voltage-Gated Potassium Channels Although molecular profiling studies have
identified distinct mRNA expression patterns between CA1 and CA2 (Talley et
al. 2001; Lein et al. 2005), the expression of different types of channels in CA2
pyramidal neurons remains largely unexplored. The expression levels of the Kv2
subunit are strikingly different in CA1 and CA2 pyramidal neurons (Palacio et
al. 2017). Fluorescence immunohistochemistry in mouse brain has revealed that
Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have the highest expression
levels in CA1, with a sharp decrease at the CA1-CA2 boundary, and significantly
reduced levels in CA2 pyramidal neurons (Palacio et al. 2017). Consistent with this
observation, CA2 pyramidal neurons lack the prominent slow afterhyperpolarization
seen in CA1 pyramidal neurons (Chevaleyre and Siegelbaum 2010; Palacio et al.
2017), and that has been attributed to Kv2-mediated currents (Liu and Bean 2014).

Hyperpolarization-Activated Current (Ih) The depolarizing membrane “sag” in
response to hyperpolarizing current injection, which is caused by Ih activation, is
much larger in CA1 than in CA2 pyramidal neurons (Chevaleyre and Siegelbaum
2010). This difference is consistent with the higher expression of the HCN1 subunit
in CA1 pyramidal neurons compared to CA2 and CA3 (Notomi and Shigemoto
2004; Santoro et al. 2004; Srinivas et al. 2017). In agreement with the linear gradient
in resting potential and input resistance across the transverse axis, CA2 pyramidal
neurons exhibit the greatest sag amplitude, followed by CA3a, with CA3c having
the smallest sag (Sun et al. 2017).

Dentate Gyrus Granule Neurons

Granule cells are glutamatergic projection neurons conveying information from the
dentate gyrus to the CA3 area of the hippocampus. From an electrophysiological
perspective, these neurons are particularly interesting among central glutamatergic
neurons because the large size of their axonal terminals allows patch clamp charac-
terization of the ion channels in the boutons (Geiger and Jonas 2000; Bischofberger
et al. 2002; Engel and Jonas 2005), thus providing a rare opportunity to compare
the properties and density of ion channels in the soma and the axon terminal of
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Table 6 Gating properties of Na+ channels in hippocampal neurons

DG FS Soma (1)
CA1 PC
Soma (1) DGGC Soma (2, 4)

DGGC
Bouton (3)

Act. V1/2 −25.1 −23.9 −22.6 (2) −38.4
−25.8 (4)

Act. slope
(mV/e-fold)

11.5 11.8 5.8 (2); 5.2 (4) 8

Deact. τ

(−40 mV)
0.13 ms 0.2 ms 0.17 ms

Inact. V1/2 −58.3 −62.9 −56.8 −89.6
Inact. slope 6.7 10.7 6.7 6.4

References 1: Martina and Jonas 1997; 2: Ellerkmann et al. 2001; 3: Engel and Jonas 2005 4:
Ellerkmann et al. 2003

an individual neuron. Granule cells have particularly negative membrane potentials
(−75 mV at physiologic temperature, Lübke et al. 1998) and relatively low input
resistance (38 K�* cm2, Schmidt-Hieber et al. 2007), which suggests abundant
expression of background potassium channels.

Sodium Current The density of sodium current in granule cells was determined in
acutely dissociated rat neurons (Ellerkmann et al. 2003); thus, these measurements
offer an estimate of the density in the somatic compartment. These authors found
a density of ∼33 mS cm−2 (extrapolated from the reported 1400 pA/pF, assuming
a reversal potential of 30 mV, see Fig. 1 in their paper, and a specific capacitance
of 0.9 μF cm−2 (Gentet et al. 2000)), similar to that in the soma and dendrites of
OLM interneurons. These authors also studied the expression profile of the different
voltage-gated sodium channel subunits and found co-expression of several subunits
in these neurons: in particular, they demonstrated expression of Nav 1.2; 1.3; 1.5;
1.6. The current activation is strongly voltage-dependent (the slope is 5.2 mV/e-
fold, Table 6); similar strong voltage dependence characterizes the fast inactivation
process of the current, which is half inactivated at −48 mV and has a slope of
−5.8 mV/e-fold. The recovery from fast inactivation is best fit by the sum of two
exponential functions: a fast component with time constant (at −80 mV) of 6.8 ms
(and relative amplitude ∼90%) and a smaller slow component with time constant
of 546 ms. The recovery from inactivation in somatic granule cells channels was
also analyzed by Engel and Jonas (2005) using outside-out patches. Similar to
Ellerkmann et al., they found that the recovery from inactivation is best fit by a
double exponential function with the fast component accounting for most of the
current (relative amplitude 0.8). The time constants were however faster than in
dissociated neurons (τ1 = 4 ms and τ2 = 65 ms), possibly suggesting that the
recovery from inactivation is actively modulated through intracellular pathways
which may be differently affected in whole cell and excised patch recordings.

When long depolarizations are applied (10–300 s at −10 mV, at room tempera-
ture), the sodium current of dentate gyrus granule cells undergoes slow inactivation.
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The recovery from this inactivated state is described by a bi-exponential process,
with fast and slow time constants ranging in the 1–10 and 20–50 seconds, respec-
tively (Ellerkmann et al. 2001). The importance of slow inactivation in physiologic
processes remains to be explored; it is interesting, for instance, that status epilepticus
deeply affects the properties of fast activation and fast inactivation of granule cells’
sodium currents (half maximal activation shifts from −25.8 in control to −28.6 mV
and the fast inactivation half point from −48.2 to −43.2 mV; these changes lead to a
significant increase of the window current, resulting in higher neuronal excitability),
while the slow inactivation appears to be unaffected (Ellerkmann et al. 2003).

The axon terminals of these neurons have been carefully studied. The gating
properties of the sodium current in the mossy fiber boutons were compared to those
of the somatic component; the main difference was in the inactivation kinetics that
in the bouton is almost twofold faster than in somatic patches (Engel and Jonas
2005). The current density in mossy fiber bouton is 49.0 mS cm−2 (range: 9–
138 mS cm−2), which corresponds to an estimated channel density of 41 channels
μm−2 in hippocampal MFBs. These density values are comparable to previous
estimates in invertebrate axons (120 mS cm−2 in squid axons and 40 mS cm−2 in
Myxicola axons; Hodgkin and Huxley 1952 and Goldman and Schauf 1973). Thus,
presynaptic mossy fiber terminals have axon-like properties, expressing voltage-
gated Na+ channels at very high density. Very recently, Schmidt-Hieber et al. (2008)
have used dual axo-somatic recordings and computer modeling to obtain an estimate
of the sodium current density in mossy fiber axons and found that axonal sodium
current density of 100 mS cm−2 best fit the experimental data.

Potassium Current Similar to other neurons, the potassium current of granule
cells is the sum of at least two components: IA (see Table 3 for the A-type current
properties) and IK (Beck et al. 1992).

Contrary to pyramidal neurons, however, the fast inactivating component in
granule cells is TEA sensitive and largely mediated by Kv3.4 channels (Riazanski
et al. 2001). Interestingly, these authors showed that Kv3.4 expression in granule
cells is spatially segregated, showing higher expression around the axon initial
segment and lower expression in the somatic compartment more distal from the
axon; these data suggest a role for these channels in controlling the generation of
action potentials.

The heterogeneous nature of the potassium current in granule neurons is
supported by the expression of multiple ion channel subunits, including Kv1.1, 1.2,
and 4.2 (Sheng et al. 1994; Tsaur et al. 1992), Kv4.3 (Serôdio et al. 1996), and
GIRK1 and GIRK2 (Liao et al. 1996). Kv3.1 RNA expression was also detected in
granule neurons, although at low level (Weiser et al. 1995).

The current in the mossy fiber terminal is largely dendrotoxin-sensitive (Geiger
and Jonas 2000), in agreement with the prominent expression of Kv1.2 subunits
(Sheng et al. 1994). Additionally, specialized voltage-activated K+ channels of the
Kv3 family and calcium-dependent, large conductance, potassium (BK) channels
are present at a low density (Alle et al. 2011; but see Misonou et al. 2006).
Interestingly, direct bouton recordings show that Kv3 channels efficiently contribute
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to the presynaptic AP repolarization, whereas BKCa channels, which are designed
and arranged not to interfere with basal AP repolarization, are activated during
sustained AP trains and limit AP duration in case of KV3 hypofunction (Alle et al.
2011).

Calcium Current Voltage-gated calcium currents of granule cells include both
high- and low-voltage activated currents (Blaxter et al. 1989; Fisher et al. 1990).
About 40% of the current is blocked by dihydropyridines (and is therefore L-type),
while P/Q-type and N-type current each accounts for about 20% of the total current
(Eliot and Johnston 1994). These data suggest that T- and R-type currents account
for ∼23% of the total current. T-type current was described by Zhang et al. (1993)
and contributes to the spike afterdepolarization (ADP). R-type current was estimated
to contribute about half of the blocker-resistant current (Sochivko et al. 2002).

Calcium currents have been carefully studied in the mossy fiber bouton (Li et al.
2007). These authors found that a single bouton contains ∼2000 voltage-gated
calcium channels. The largest current fraction (66%) is mediated by P/Q channels,
while N- and R-type contribute 26% and 8% of the total current, respectively.

Dentate Gyrus Mossy Cells

Mossy cells represent the third population of glutamatergic neurons in the hip-
pocampal formation. These large multipolar neurons of the fascia dentata (Frotscher
et al. 1991; Lübke et al. 1998) are characterized by relatively slow maximum firing
rate (50 Hz at 35–37 ◦C, Lübke et al. 1998) and by the presence of a prominent
membrane sag upon injection of hyperpolarizing currents. The resting membrane
potential is between −60 and − 62 mV at 30–37 ◦C (Jinno et al. 2003; Lübke et
al. 1998). The voltage-gated sodium current of mossy cells activates at potentials
≥ − 50 mV; fitting the conductance/voltage plot reveals half activation at −31 mV
and (Howard et al. 2007).

The potassium current of these cells consists of at least three components:
an A-type current, a delayed rectifier, and a third component, resistant to both 4-
AP (2.5 mM) and TEA (25 mM), characterized by activation kinetics slower than
the two other components (Howard et al. 2007). The kinetics and pharmacological
properties strongly suggest that the A-type current is mediated by Kv4 subunits.
More data are required in order to attribute the two other current components to
expression of any individual channel subunit. An interesting difference in intrinsic
electrophysiological properties has been reported between dorsal and ventral mossy
cells. The majority of the ventral cells show intrinsic bursting, a phenotype that is
never observed in dorsal mossy cells (Jinno et al. 2003). Interestingly, Ih expression
is similar in bursting and non-bursting neurons; in keeping with these data, it was
found that Ih in mossy cells starts activating around −65 mV, so that activation
of this current is absent or minimal at resting membrane potential. Thus, in mossy
cells Ih does not appear to play a role in intrinsic firing, similarly to what observed
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in other neurons in different parts of the CNS (Atherton and Bevan 2005; Russo
et al. 2007). Bursting in these neurons appears to depend on a phenytoin-sensitive
persistent sodium current that starts activating around −50 mV (Jinno et al. 2003).

Hippocampal Interneurons

DG Basket Cells
Dentate gyrus basket cells are parvalbumin-positive fast-spiking interneurons and
can be considered prototypical perisomatic inhibitory interneurons (see chapter
“Connectivity of the Hippocampus”). These cells can fire at extremely high
frequency (>200 Hz) and have very low input resistance (10 K�*cm2, Bartos et
al. 2001).

Sodium Currents Sodium currents of fast-spiking interneurons (see Table 6) are
characterized by their very rapid recovery from fast inactivation, which is described
(at −120 mV and room temperature) by a single exponential process with a time
constant of ∼2 ms. Another typical property of the sodium current of these neurons
is the extremely fast deactivation (the time constant at −40 mV and ∼23 ◦C is
0.13 ms; Martina and Jonas 1997). These two kinetic properties constitute the
main difference between the current of basket cells and that of CA1 pyramidal
neurons. Whether these differences are attributable to ion channel modulation or
to expression of different subunits remains to be investigated. The sodium channel
density at the soma is ∼36 mS cm−2 and quickly declines along the dendrites with
an estimated length constant of 25 μm in basal dendrites (Hu et al. 2010).

Potassium Currents Voltage-gated potassium currents of fast-spiking DG
interneurons (putative basket cells) were studied in detail using the nucleated
patch technique and single-cell RT-PCR (Martina et al. 1998). Two aspects set the
potassium current of these cells apart from that of pyramidal neurons or dentate
gyrus granules: (1) the total current density is almost double than in CA1 pyramidal
neurons (175 vs. 95 pS/μm2), and (2) the current is characterized by the almost
complete absence of time-dependent inactivation. Functional and pharmacological
dissection of the total voltage-gated current shows that, similar to the current of
CA1 pyramidal cells, it is composed by three main components: a highly TEA- and
4AP-sensitive fast delayed rectifier (mediated by Kv3 subunits); a slow activating,
slowly inactivating component (ID, probably mediated at least in part by Kv2
channels); and an A-type (fast activating and inactivating), TEA-resistant current
(mediated by Kv4 subunits, Table 3). Contrary to pyramidal neurons, though, the
A-type current only contributes ∼17% of the total current, while the Kv3-like
sustained current accounts for 58%. This sustained current appears ideally suited
to allow effective repolarization of the fast action potential of these neurons due to
extremely fast activation and deactivation kinetics (Fig. 3) and relatively positive
activation potential (the activation midpoint is ∼ − 7 mV).

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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Fig. 3 Kv3 channels mediate action potential repolarization in fast-spiking interneurons
of the dentate gyrus. (a) Current clamp recording of the firing response of a fast-spiking
interneuron to the injection of depolarizing current. (b) The membrane potential waveform was
then used as voltage stimulus to nucleated patches to study the potassium currents activated
by each spike (recordings were performed after blockade of voltage-gated sodium and calcium
currents). The potassium current elicited by the high-frequency action potentials was abolished
by low concentration of 4-AP. (c) Plotting the activation and deactivation time constants of the
4-AP-sensitive current versus the voltage trajectory of the action potentials shows that asymptotic
values of activation and deactivation time constants are reached at membrane potentials within the
action potential range, allowing fast spike repolarization and minimum refractory period. (Figure
modified from Martina et al. 1998)

Recent work has shed further light on the subcellular signaling properties of
parvalbumin-positive fast-spiking interneurons (Hu et al. 2010; Table 7). Simul-
taneous somatodendritic recordings from basket cell dendrites show a high K+
to Na+ conductance ratio in BC dendrites. The Na+ current density is a function
of the distance from the soma, with 13.3 ± 2.1 pA/μm2 (−120 mV to 0 mV)
at the soma and steeply declines as a function of distance, with estimated length
constants of 87 μm in apical dendrites and 25 μm in basal dendrites. In contrast, in
somatic outside-out patches isolated with K+ internal solution, voltage pulses from
−120 mV to 70 mV evoked large voltage-dependent outward currents. Quantitative
analysis revealed a K+ current density of 91.5 ± 21.1 pA/μm2 at the soma. In apical
dendrites, the K+ current density decays moderately as a function of distance, with
an estimated length constant of 763 μm. In contrast, in basal dendrites, the decay
is steeper, with a length constant of 57 μm. Consistent with immunocytochemical
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Table 7 Gating properties of dendritic K+ channels of hippocampal neurons

DG FS (Hu
et al. 2010) CA1 PC (Hoffman et al. 1997) CA3 PC (Kim et al. 2012)

Component Sustained
(Kv3-like)

Transient Sustained Transient Sustained

Act. V1/2 −10.9 (apical) −1 13 −9.6 −3.8
−12.6 (basal)

Act. slope
(mV/e-fold)

10.9 (apical) 15 11 16 10.2
8.9 (basal)

Inact. V1/2 N/A −56 N/A −65.6 N/A
Inact. slope N/A 8 N/A 7.1 N/A
TEA block Yes Yes Yes N/A Yes
4-AP block N/A Yes Little Yes N/A

data, analysis of dendritic K+ current kinetics suggests that it is mainly mediated by
Kv3-type channels. Such a high density of K+ channels in basket cell dendrites
contributes to unique integrative properties, leading to the rapid and temporally
precise activation by excitatory inputs (Hu et al. 2010).

Calcium Currents Less is known about the calcium currents in basket cells; it
has been recently shown that P/Q calcium channels mediate release at synapses
of basket cells (Hefft and Jonas 2005), but a comprehensive study of the calcium
currents present in these cells is still missing.

It is also worth mentioning that basket cells also express connexin36, although
the strength of the electrical coupling is low and appears to decline with develop-
ment. In 14-day-old mice, 92% of the cells tested are electrically coupled, although
the coupling coefficient is low (0.029). In slices from 42-day-old mice, in contrast,
only 30% of the cells are electrically coupled, and the coupling coefficient is further
reduced (0.012, Meyer et al. 2002).

Hyperpolarization-Activated Current (Ih) Ih current contributes to the resting
membrane potential and background conductance and thus mediates the fast mem-
brane time constant of fast-spiking basket cells (Aponte et al. 2006). Ih channels
of basket cells are nonselective cation channels with a slight preference for K+
over Na+ ions (PNa/PK is 0.36), and their activation curve has a midpoint potential
(−83.9 mV) similar to other cell types (−90 to −83 mV; Franz et al. 2000). It
is important to notice that Ih in basket cells displays several distinct functional
properties compared with other types of central neurons. First, Ih channels in
basket cells have slower activation as its activation time constant is 190 ms (at
−120 mV and 21–24 ◦C), significantly slower than in hippocampal CA1 pyramidal
neurons (64 ms) and neocortical layer 5 pyramidal neurons (84 ms), but faster than
in substantia nigra dopaminergic neurons (482 ms) and thalamocortical neurons
(602 ms; 22–24 ◦C; Franz et al. 2000). Second, both ZD7288- and Cs+-sensitive
currents evoked by hyperpolarizing test pulses from a holding potential of −50 mV
show a time-dependent current component and an instantaneous component.
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Ih channels are expressed in both somatodendritic and axonal domains of basket
cells (Aponte et al. 2006). Somatodendritic Ih shapes the input-output relation
of basket cells, whereas axonal Ih current contributes to axonal excitability and
synaptic output. Ih channels in presynaptic terminals maintain facilitate spontaneous
release by maintain the terminals closer to action potential threshold. A recent study
(Elgueta et al. 2015) demonstrates that Ih channels enable basket cells to integrate
their intrinsic activity over time and can sustain persistent firing mode characterized
by the ability to generate long-lasting trains of action potentials at 50 Hz in the
absence of additional inputs. Interestingly, computational models suggest that the
instantaneous component in the axon may contribute to the sustained firing (Elgueta
et al. 2015).

Stratum Oriens Horizontal Interneurons
Horizontal interneurons in the hippocampal CA1 area represent a relatively homo-
geneous population and are prototypical feedback interneurons (see chapter “Con-
nectivity of the Hippocampus”). Many of these cells are somatostatin-expressing
OLM cells (Martina et al. 2000) which are capable of repetitive firing upon
injection of depolarizing current, although their maximum frequency does not reach
frequencies as high as those of basket cells (Lien and Jonas 2003). These neurons
are also functionally easily distinguishable from basket cells because they are often
intrinsically firing due to presence of large Ih (Maccaferri and McBain 1996). Ih
expression also differentiates the response to hyperpolarizing current injection of
these neurons from that of basket cells because the voltage response of OLM cells
is characterized by a large voltage sag, which is absent in basket cells. Another
interesting difference between OLM neurons and basket cells resides in the value of
the input resistance, which in OLM cells is quite high (48 K�*cm2, Taverna et al.
2005), due to relatively low expression of background potassium channels (Taverna
et al. 2005; Torborg et al. 2006).

Sodium currents of OLM neurons have properties similar to those of dentate
gyrus basket cells; in particular the recovery from fast inactivation can be fit by a
single exponential function (time constant 5 ms at −120 mV and 22–23 ◦C, Martina
et al. 2000). An interesting feature of these neurons is the capability of action
potentials to undergo reliable and full amplitude backpropagation into the dendrites.
In addition, strong focal excitation may also lead to dendritic action potential
initiation (Martina et al. 2000). Full amplitude backpropagation is the consequence
of high dendritic sodium current density (∼25 mS/cm2, calculated from data in
Martina et al. 2000). Dendritic initiation may also be favored by a ∼8 mV left shift
in voltage dependence of the activation curve (midpoint was −37.8 mV for somatic
patches and − 45.6 for dendritic patches). Dendritic sodium currents also contribute
to boosting of excitatory synaptic inputs. As to the molecular identity of the sodium
channels in these cells, recent data from the Catterall laboratory (Tai et al. 2014)
suggest that Nav1.1 subunits contribute importantly to this current.

Potassium Currents Voltage-gated potassium currents are expressed at high and
constant density throughout the somatodendritic compartment of OLM neurons

http://dx.doi.org/10.1007/978-3-319-99103-0_1
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(Martina et al. 2000). The current composition is very similar, both in functional
and molecular terms, to that of dentate basket cells (Lien et al. 2002). The total
current is the sum of three components: a fast delayed rectifier (57% of the total
current, mediated by Kv3 channels), an A-type current (19% of the total current,
mediated by Kv4 subunits), and a slow delayed rectifier (25% of the total). In these
neurons the deactivation of the Kv3 component is slower than in basket cells, most
likely because of the more important contribution of the Kv3.2 subunit (Lien et al.
2002). Interestingly, this deactivation velocity appears to be finely tuned to allow
the maximum firing frequency in this particular cell type (Lien and Jonas 2003).
The potassium currents in OLM dendrites are very similar to the somatic ones with
regard to both kinetics and sensitivity to block by broad-spectrum blockers such as
TEA (Martina et al. 2000). It has also been suggested that a fraction of the TEA-
sensitive current in the somatodendritic compartment of OLM cells appears to be
mediated by KCNQ (M-current) channels. Although the size of this conductance
is relatively small (∼0.2 mS/cm2, Lawrence et al. 2006), computer models suggest
that this current may regulate the firing frequency of these neurons with minimal
impact on the shape of the action potential (Lawrence et al. 2006).

Finally, little is known about voltage-gated calcium channels in these neurons.
Poncer et al. (1997), however, showed that inhibitory potentials generated by
interneurons in the CA3 stratum oriens are mediated by P/Q-type calcium channels.

Interneurons of the Stratum Radiatum-Lacunosum-Moleculare
Interneurons in this area can be classified into several classes. Vida et al. (1998)
distinguished four classes: basket (BC), Schaffer associated (SA), perforant-path
associated (PA), and neurogliaform (NC); most of these cells however can be
classified as feedforward dendritic targeting interneurons. As it is the case in
other brain areas, BCs are characterized by lower input resistance (70 M�) and
more negative resting membrane potential (−60 mV) than the other interneurons
(−56 mV, 96 M�; -55 mV, 84 M�; and − 58 mV, 75 M� for SA, PA, and
NG, respectively). Although no comprehensive studies of the voltage-gated sodium
currents in these cells are available, sensitivity to beta pompilidotoxin, a wasp
toxin, shows that the sodium currents differ between radiatum and LM interneurons
(Miyawaki et al. 2002), suggesting differential expression of individual subunits.

Contrary to basket cells of the stratum pyramidale and to OLM interneu-
rons, which express Kv3.1b subunits at high level, interneurons in the stratum
radiatum-lacunosum-moleculare only seldom express this subunit (21% vs. ∼90%
of PV-positive basket cells; Sekirnjak et al. 1997). In agreement with this result,
voltage-gated potassium currents of cultured interneurons of the stratum lacunosum-
moleculare exhibit slow activation kinetics. Similar to other interneurons, the
delayed rectifier current represents the sum of two components (a 4-AP sensitive
and a 4-AP insensitive); the time to peak of the 4-AP-sensitive component is 4.2 ms
at +45 mV (Chikwendu and McBain 1996; by comparison, the 20–80% rise time
of Kv3-like currents at 40 mV in basket cells is ∼1 ms, Martina et al. 1998). The
4-AP insensitive component has much slower (and voltage-independent) activation
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(the time to peak at 30 mV is 46 ms, Chikwendu and McBain 1996). It is likely that
at least part of the 4-AP- and TEA-sensitive slow delayed rectifier is mediated by
Kv1.1 channels, which are expressed in these cells (Rhodes et al. 1997).

Voltage-clamp recordings were performed to study calcium currents in visually
identified interneurons in stratum radiatum, near the border with LM. When held at
−80 mV, these cells exhibited a relatively small calcium current (0.4–1 nA in whole-
cell configuration) that appeared to include at least three (L, N, and P/Q) calcium
current components: the L-type component contributed ∼28% of the current, while
the N-type current accounted for ∼23% of the total. The contribution of the P/Q
component was more heterogeneous ranging from 0% to 30% (average ∼10%,
Lambert and Wilson 1996). It is possible that the different contribution of N-type
current in different cells reflected different histological classes of interneurons; this
hypothesis however still needs experimental confirmation.

Low-voltage-activated calcium currents were also described in interneurons
acutely dissociated from CA1 lacunosum-moleculare (Fraser and MacVicar 1991).
The current size was quite small (the peak current, recorded at −30 mV, was 100 ± 7
pA, compared with ∼2 nA of TTX-sensitive sodium currents in the same neurons).
This calcium current showed marked voltage-dependent inactivation, being half
inactivated at −84 mV and totally inactivated at −60 mV. Less is known about
dendritic calcium channels in these cells. Optical measurements however showed
that action potential-associated calcium signals backpropagate into the dendrites
of these neurons; indeed, backpropagated calcium signals progressively increase
in size with distance from the soma (Rozsa et al. 2004). Whether this feature is
the result of differential distribution of calcium channels or of other mechanisms
(for instance, a different basal calcium level) remains to be investigated. These
data however suggest that, similar to OLM interneurons, action potentials actively
backpropagate into the dendrites of CA1 SR interneurons.

Experimental Techniques

Although conventional intracellular (sharp electrode) recordings can still provide
valuable information about the electrophysiologic properties of neurons, most of
the more recent literature (and of the data presented in this chapter) is based on
patch clamp recordings. Some basic cellular properties appear quite different when
compared using these two techniques. For example, resting membrane potential
and input resistance measured with sharp electrodes and patch clamp techniques
were directly compared in dentate gyrus basket cells (Staley et al. 1992), and
the results obtained with the two techniques were quite different: with sharp
pipette recordings, the resting potential was −74 mV and the input resistance was
54 M�, while the values obtained with patch clamp recordings were − 85 mV
and 228 M�, respectively. A potential explanation for these differences is that they
are the consequence of a sub-optimal seal around the sharp electrodes that leads to
some current leakage and that is not present in patch clamp recordings. Therefore,
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patch clamp data were preferentially used for this chapter, except when sharp
electrode data were the only available. The patch clamp technique was pioneered
in the late 1970s by Erwin Neher and Bert Sakmann (Neher et al. 1978) and was
originally developed to allow the measurement of the currents flowing through
single ion channels in cellular membranes. Briefly, small tip (∼1 μm) pipettes
are obtained by pulling glass capillaries, filled with saline and connected to a
feedback amplifier. A tight electrical seal (in the G� range) is obtained between
the pipette tip and the cellular membrane by applying gentle suction to the pipette.
This leads to a firm attachment between the tip and the membrane, which allows
several manipulations (Hamill et al. 1981) that offer invaluable tools for the study
of many electrophysiological properties, varying from the cellular input resistance
to the current flowing through single individual channels. The most commonly
used configuration is the whole-cell configuration, in which, after obtaining the
seal, continuity is obtained between the pipette and the cell interior by rupturing
the cell membrane by applying brief negative pressure pulses. As a result, the
pipette-cell assembly is well insulated from the bath solution. The intrapipette
solution for these recordings is designed to reproduce the physiological intracellular
solution (high potassium, low sodium). Whole-cell patch clamp recordings allow
the accurate measurement of many basic functional properties such as resting
membrane potential, input resistance, action potential threshold, amplitude, and
frequency. Moreover, the voltage-clamp configuration allows recording the total
ionic current flowing through the entire cell at each moment. Thus, complex voltage
protocols and pharmacological tools can be used to isolate the currents mediated by
individual channel types.

Although extremely successful on small isolated cells, such as acutely disso-
ciated and cultured neurons, whole-cell voltage-clamp recordings are problematic
when obtained from intact neurons having complex morphologies and large axonal
and dendritic trees, as is the case for most neurons in brain slices. In this case
the quality of voltage clamp is dramatically limited (see Major 1993 for a detailed
discussion). Thus, data on current kinetics and voltage dependence are best obtained
from excised patches and outside-out patches in particular. This configuration is
obtained by pulling the pipettes away from the cell after having achieved the whole-
cell mode (Hamill et al. 1981). By doing so, the lipid membrane seals the pipette
tip leaving the outer side of the cell membrane exposed to the bath, while the
inner side is exposed to the intrapipette solution. This configuration allows ideal
voltage control and quick solution exchange, but is not always suitable for the study
of channels expressed at low density in the cell membrane because the currents
are often very small. An interesting variation of this technique is the nucleated
patch (Sather et al. 1992). Similarly to the outside patch, the first step consists in
achieving a whole-cell configuration. At this point a light suction is applied to the
pipette, and the nucleus is attracted to the pipette tip. The pipette is then slowly
withdrawn from the cell to obtain an outside-out patch. Because of the presence of
the nucleus, the membrane has to reseal around the nucleus itself, and the result
is an almost perfectly spherical outside patch comprising a large membrane area.
Thus, the nucleated patch combines the possibility of precise identification of cells
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in a slice with the possibility to record macroscopic currents and to obtain in almost
ideal voltage-clamp conditions (Martina and Jonas 1997).

A potential pitfall common to intracellular and whole-cell patch clamp record-
ings is that these types of experiments lead to dialysis of the intracellular content.
This fact has two main consequences: (1) it may lead to disappearance of some
currents or cell functions (“rundown”) due to the loss of diffusible factors into
the recording pipette and (2) the intracellular ion concentrations are not the native
ones but those imposed by the experimenter: this fact may become critical when
examining the functional role of a conductance. A typical example is the GABAA
channel, which is selective for anions and Cl− ions in particular. Depending on
the intracellular [Cl−], the GABAA conductance can be either hyperpolarizing
or depolarizing. For this type of experiments, it is therefore critical to know the
undisturbed cellular [Cl−]. This can be obtained by establishing the electrical
connection between the pipette and the cell interior not by rupturing the membrane
but by inclusion in the pipette solution of a channel forming substance in the cell-
attached mode (Horn and Marty 1988). By using substances that form channels
selectively permeant to cations, as gramicidin, it is possible to obtain whole-cell
recordings that maintain intact the neuronal chloride gradient. The technique also
prevents intracellular dialysis because of the small diameter of the pores (they are
only permeant to monovalent cations).

The Future

Although the hippocampus is one of the most thoroughly studied brain areas, much
work is still needed to obtain a comprehensive description of the physiological
properties of hippocampal neurons. In particular, future work will have to address
two important aspects: one concerns the large heterogeneity of hippocampal neurons
and interneurons in particular. Clearly, only a thorough study of each cell type
will allow understanding of the fine tuning of hippocampal function; thus, detailed
studies of the functional properties of anatomically identified neurons will be
required for the many types of hippocampal neurons. With the technology of
mouse genetic engineering, researchers have been able to create Cre-dependent
driver lines that target specific classes of excitatory neurons (Kohara et al. 2014;
Hitti and Siegelbaum 2014) as well as major classes and lineages of GABAergic
neurons (Taniguchi et al. 2011). For example, using highly cell type-specific
transgenic mouse lines for CA2, researchers can identify the CA2 pyramidal cells
and characterize their intrinsic properties and ion channels (Kohara et al. 2014;
Hitti and Siegelbaum 2014). Similarly, this approach allows reliable identification
of GABAergic interneuron subtypes, thereby enabling detailed correlation between
cell types and functional properties. At the same time, some technical aspects for
functional studies may also require further development. Patch clamp recordings
have greatly improved our knowledge of the electrophysiological properties of neu-
rons. This technique, however, is not devoid of weaknesses. Two limitations of the
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patch clamp technique are (1) the difficulty of obtaining data from small structures
such as small dendrites, axons, and terminals, which results from the physical
limitation in the size of the pipette tip as well as in the optical resolution necessary
to distinguish such structures, and (2) the fact that the sealing process and, even
more, the formation of the whole-cell configuration may cause important changes
to the cellular cytoskeleton as well as to the composition of the intracellular milieu.
Nowadays, increasing expectation is directed toward the development of low-toxic
voltage-sensitive dyes, which may allow studying neuronal electrophysiology in
intact cells. The signal to noise ratio of such dyes still represents a problem, but
it is quickly improving (Baker et al. 2005). Particularly interesting is a recently
developed method that allows filling neurons without the need to patch them to
wash in the dye. This technique is the electrical electroporation, which has been
extensively used for the delivery of DNA, RNA, and other molecules to the interior
of cells. It has been shown that this technique can be effectively used to load neurons
with fluorescent calcium indicators in vitro and in vivo (Nevian and Helmchen
2007). The combined use of electroporation and voltage-sensitive dyes may allow
recording from cells with intact cytoskeleton and, even more importantly, obtaining
detailed functional maps of small local circuitries. Another interesting technique
that allows the identification of functional connections in a brain slice is the laser-
scanning photostimulation (LSPS) based on glutamate uncaging. This technique
allows for rapid imaging of local synaptic circuits by recording synaptic responses
from a postsynaptic neuron while stimulating small clusters of presynaptic cells
with high spatial resolution (Callaway and Katz 1993). A neuron is recorded in
the whole-cell configuration and the slice bathing solution contains a molecularly
caged form of glutamate. This molecule is then converted to the active form by
submillisecond pulses of ultraviolet irradiation, which can be delivered selectively
to small areas (of <100 μm diameter). It has been shown that, in most cases, this
technique is selective enough to prevent activation of axons of passage, while the
stimulus is sufficient to induce firing in the investigated neurons. Thus, the technique
can be effectively used for mapping local circuits.

Optogenetic-assisted circuit mapping is another unprecedented development,
which is based on the combination of optogenetics and patch clamp recordings.
Optogenetics is a recent technology emerging from basic genetic research on
microorganisms that rely on light-responsive opsin proteins to survive (see review
by Deisseroth 2010, 2011). Using viral vectors, scientists can insert opsin genes,
which encode light-sensitive proteins, in a specific population of neurons and
control their activity with the light. Channelrhodopsin-2 (ChR2) is a light-sensitive
cationic channel. By expressing ChR2 in the neuronal membrane of a select cell
population, scientists can effectively drive the neurons to generate action potentials
by shining blue light (470 nm). In contrast, halorhodopsin (HR) is a light-sensitive
chloride pump, which transports the chloride into the cells. With a flash of amber
light (589 nm), scientists can silence HR-expressing neurons. This technology
permits temporally precise, cell type-targeted experiments in ex vivo brain slices as
well as in vivo in anesthetized or freely moving animals. Additionally, viral-genetic
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tracing allows the investigation of the intrinsic properties neuronal populations with
common synaptic input or output.
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Glutamatergic Neurotransmission in the
Hippocampus

Katalin Tóth

Abstract This chapter will summarize key data about glutamatergic transmission
in the hippocampus. Glutamate is the major excitatory neurotransmitter similar to
other CNS regions. Biophysical properties of various receptors and channels will be
described and functional relevance of these parameters discussed.

The major components of the excitatory synaptic network in the hippocampus
form the so-called tri-synaptic circuit. This circuit consists of the perforant pathway
input from the entorhinal cortex to the dentate gyrus, mossy fibers projecting from
the dentate gyrus to the CA3 area, and Schaffer collaterals, axons of CA3 pyramidal
cells innervating the CA1 area. This chapter will focus on the properties of these
glutamatergic synapses, highlighting the most distinct features these inputs possess.

Glutamatergic transmission in the hippocampus is known to play a crucial role
in learning and memory due to activity-dependent changes in synaptic efficacy.
However, this chapter will focus on the basic properties of glutamatergic synapses,
and “Synaptic Plasticity at Hippocampal Synapses” chapter will discuss synaptic
plasticity in detail.

Introduction

The main excitatory transmitter in the hippocampus is glutamate. Its action is
mediated via two main classes of glutamate receptors: ionotropic and metabotropic
receptors (Fig. 1).

The ionotropic glutamate receptors are ligand-gated ion channels; they are
responsible for the vast majority of fast excitatory neurotransmission in the CNS. In
these receptors, glutamate binding causes channel opening, with the resulting pre-
dominant Na+ influx leading to membrane depolarization. Based on their particular
pharmacology, ionotropic glutamate receptors fall into three major classes which
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Fig. 1 Major excitatory pathways in the hippocampus. Layer II neurons in the entorhinal cortex
project to the dentate gyrus and the CA3 via the perforant pathways (1, blue). Neurons in layer
III of the entorhinal cortex send their axons to the CA1 subfield and the subiculum (1, purple).
Dentate granule cells innervate the CA3 area via mossy fibers (2, green). Pyramidal cells of the
CA3 subregion project to the CA1 area via Schaffer collaterals (3, red)

are named after their selective agonists: AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid), NMDA (N-methyl-D-aspartate), and kainate receptors.
All three receptors types form heteromeric structures consisting of four subunits.

AMPA receptors are composed of a combination of four subunits: GluA1,
GluA2, GluA3, and GluA4 (Dingledine et al. 1999). The presence or absence of
the GluA2 subunit in the complex will determine several biophysical properties
of the receptor. This subunit undergoes posttranscriptional RNA editing at the
“Q/R site”; insertion of the edited form into AMPA receptors will result in low-
conductance, Ca2+-impermeable channels with linear I-V relationship. In contrast,
GluA2-lacking AMPA receptors have higher conductance, are Ca2+-permeable,
and show inwardly rectifying I-V relationships due to the block by endogenous
polyamine at positive membrane potentials (Bowie and Mayer 1995; Kamboj et al.
1995; Koh et al. 1995). Principal cells in the hippocampus express high levels of
GluA2; hence Ca2+-impermeable AMPA receptors dominate synaptic transmission
in these cells. Ca2+-permeable AMPA receptors are present on some hippocampal
interneurons, and during development, some fetal GluA2 subunits remain unedited.
Inward rectification of GluA2-lacking receptors is caused by voltage-dependent
block by intracellular polyamines (Bowie and Mayer 1995; Donevan and Rogawski
1995; Kamboj et al. 1995; Koh et al. 1995). Therefore, polyamine toxins, such as
philanthotoxin (PhTx), a high-affinity agonist of currents mediated by receptors
lacking the GluA2 subunit, can be used to pharmacologically differentiate between
Ca2+-permeable and Ca2+-impermeable AMPA receptors (Blaschke et al. 1993;
Washburn and Dingledine 1996).
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In the hippocampus, NMDA receptors are heteromultimers of GluN1 and
GluN2A-D subunits. NMDA receptors have very slow kinetics compared to AMPA
or kainate receptors, which is explained by the slow dissociation rate of glutamate.
While glutamate is bound, NMDA channels can undergo repeated opening. NMDA
receptors activation requires two agonists, glycine and glutamate. The glycine site
must be occupied first, followed by glutamate binding. When this occurs, the
channel can open and Na+ and Ca2+ enter the cell. However, channel opening
can only occur when Mg2+ block is removed from NMDA receptors while the
membrane is depolarized. At resting membrane potentials, glutamate binding does
not lead to channel opening. Ca2+ entering the cell via NMDA receptors plays
important role in synaptic plasticity.

Kainate receptors are also heteromultimers composed of the combination of
GluK1,2,3 and GluK4,5 subunits. GluK4 and GluK5 subunits alone are nonfunc-
tional and are retained in the endoplasmic reticulum but can combine with GluK1–3
to form surface-localized functional receptors. GluK1 and GluK6 subunits undergo
alternative splicing similar to the GluA2 subunit of AMPA receptors at the Q/R
site. Receptors incorporating edited GluK1 and GluK6 subunits have linear I-V
relationship, while insertion of the unedited form of GluK1 or GluK6 results in
inward rectification due to intracellular polyamine block at depolarized membrane
potentials. Receptors containing solely unedited GluK1 and GluK2 are also weakly
permeable to Ca2+. Relationship between rectification, Ca2+-permeability, and
subunit composition is more complex than in AMPA receptors because only a
portion of GluK1 and GluK6 subunits are edited at the Q/R site. Recombinant
kainate receptors have fast kinetics; they rapidly activate and deactivate in the
submillisecond range. Interestingly these parameters are markedly different from
the relatively slow kinetics of synaptically evoked kainate responses.

The metabotropic glutamate receptors contain seven transmembrane domains,
and their actions are mediated via G proteins. Metabotropic receptors fall into
three groups based on amino acid homology, signal transduction pathway, and their
pharmacological profile.

Group I metabotropic receptors are generally localized postsynaptically, coupled
to the Gq signaling pathway, and their activation increases cell excitability. Group II
and III receptors are localized on the presynaptic membrane and coupled to adenylyl
cyclase via G proteins; in general they are involved in the control of neurotransmitter
release. Presynaptically located metabotropic glutamate receptors are generally
involved in plastic changes leading to modifications in synaptic strength, while glu-
tamate binding to postsynaptic metabotropic receptors can lead to ion channel open-
ing and closing and the generation of various intracellular messengers (Table 1).

The Perforant Pathway

The hippocampus receives its major cortical input from the entorhinal cortex via the
perforant pathway. This pathway originates from layer II and III of the entorhinal
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Table 1 Various glutamate receptors in the hippocampus

Groups Subunits Conducting ions Pharmacology

Ionotropic
receptors

AMPA GluA1, GluA2,
GluA3, GluA4

Na+, K+ (Ca2+) Antagonist: kyuneric acid,
CNQX, GYKI53655

NMDA GluN1, GluN2A,
GluN2B, GluN2C,
GluN2D, GluN3A

Na+, Ca2+ K+ Antagonist: kyuneric acid,
D-AP5, CPP

Kainate GluK1, GluK2,
GluK3, GluK4, GluK4

Na+, (Ca2+) K+ Antagonist: kyuneric acid,
CNQX, LY3882884

Signaling
pathway

Metabotropic
receptors

Group I mGluR1, mGluR5 Phospholipase C Agonist: DHPG,
1S,3R-ACPD, Antagonist:
MCPG

Group II mGluR2, mGluR3 Adenylyl cyclase Agonist: 1S,3R-ACPD,
DCG-IV, Antagonist:
MCPG, LY341496

Group III mGluR4, mGluR6,
mGluR7, mGluR8

Adenylyl cyclase Agonist: L-AP4,
Antagonist: MSOP

cortex and provides direct input to all three major areas of the hippocampus. Distal
dendrites of dentate granule cells receive input from the lateral entorhinal cortex,
while the medial entorhinal cortex innervates the middle third of the molecular
layer of the dentate gyrus (Amaral and Witter 1989). In tCA1 region, entorhinal
terminals are scattered throughout the stratum lacunosum-moleculare. Projections
from the lateral entorhinal cortex innervate the superficial layers of the stratum
lacunosum-moleculare, and input from the medial entorhinal area projects to the
deep half of this layer (Witter 1993). Medial entorhinal cortical inputs preferentially
excite pyramidal cells in the deep pyramidal layer toward the CA2 area, while lateral
entorhinal input favors superficial pyramidal cells closer to the subiculum (Masurkar
et al. 2017). Direct input to the dentate gyrus and the CA3 originates from layer II
of the entorhinal cortex; in contrast distal dendrites in the CA1 area are innervated
by axons from layer III. Input from the lateral entorhinal cortex has been shown to
play a critical role in episodic memory both in rodents and humans (Wilson et al.
2013; Reagh and Yassa 2014).

Salient Features of Perforant Pathway Synapses:

• Distinct features of medial and lateral perforant pathway inputs.
• Direct input to CA1 plays important role in feed-forward inhibition.
• Input-specific subunit composition of NMDA receptors.
• Complimentary distribution of metabotropic receptors at the medial and

lateral perforant pathway.
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AMPA Receptors

Stimulation of the perforant pathway from the entorhinal cortex evokes monosy-
naptic responses in the dentate granule cells. Both the medial and lateral perforant
pathways use glutamate as principal transmitter, and accordingly CNQX blocks 80–
90% of the synaptic events at resting membrane potential (Lambert and Jones 1990).
However, the physiological and pharmacological properties of these inputs are
distinct. Topographical separation of the medial and lateral pathway in the dentate
gyrus allows their investigation in isolation. In response to repeated stimuli, lateral
perforant pathway synapses exhibit marked facilitation, while medial perforant path
synapses show less facilitation or even depression using a paired-pulse paradigm
(McNaughton 1980). During the course of a longer train of stimulus, the medial
perforant path input shows significant depression, while the lateral pathway shows
minimal change (McNaughton 1980; Rush et al. 2002). Since the ratio of the EPSP
to fiber response is greater in the medial pathway and the observed short-term
depression converts to facilitation in lower extracellular [Ca2+], it is very likely that
the initial release probability is lower at lateral pathway synapses than at medial
perforant input. Discrepancy between the synaptically released quanta sensed by
NMDA and AMPA receptors is observed in the lateral, but not in the medial
perforant path, indicating that silent synapses are present only at lateral pathway
synapses. Consequently, NMDA receptor-mediated recruitment of AMPA receptors
to the active zone could play an important role in plastic changes at this synapse
(Min et al. 1998). Several presynaptic receptors have different modulatory effects
on these two inputs. Carbachol selectively depresses synaptic potentials evoked
with the stimulation of the medial perforant pathway, indicating that acetylcholine
receptors are selectively involved in the regulation of the glutamatergic responses
at the medial but not at the lateral perforant pathway (Kahle and Cotman 1989).
Noradrenalin has opposing effects on the long-term plasticity of medial and lateral
perforant path inputs (Dahl and Sarvey 1989; Pelletier et al. 1994; Dahl and Sarvey
1989; Pelletier et al. 1994). Glutamatergic input from hilar mossy cells onto granule
cells is potently and transiently suppressed by endocannabinoids; similarly the
lateral perforant path input is also affected, while the medial performant path does
not show similar modulation (Chiu and Castillo 2008; Wang et al. 2016).

Pharmacological and electrophysiological differences between lateral and medial
perforant inputs terminating on CA3 pyramidal cells show similar distinct pattern
even though synaptic inputs are not spatially segregated here (Berzhanskaya et al.
1998).

The dendritic arborization of certain types of inhibitory cells located in the
dentate gyrus indicate that they are receiving the vast majority of their inputs from
the perforant pathway (MOPP, molecular layer perforant path-associated cells); the
functional role of these cells in the modulation of hippocampal activity still needs
to be determined (Han et al. 1993). In the CA3 region, interneurons receiving inputs
from the perforant pathway and mossy fibers were suggested to act as coincidence
detectors manifesting supralinear EPSP summation (Calixto et al. 2008).
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Table 2 Kinetic properties of perforant pathway inputs onto granule cells and GABAergic basket
cells in the dentate gyrus (Sambandan et al. 2010)

Granule cells Basket cells

EPSC
EPSC peak amplitude (minimal stimulation) 16.77 ± 3.95 pA 44.47 ± 9.48 pA
Rise time (20–80%) (minimal stimulation) 2.4 ± 0.15 ms 1.33 ± 0.25 ms
EPSC decay time constant (minimal stimulation) 10.94 ± 1.58 ms 7.09 ± 0.90 ms
EPSP
EPSP peak amplitude (minimal stimulation) 1.15 ± 0.24 mV 2.30 ± 0.43 mV
EPSP rise time (20–80%) (minimal stimulation) 5.31 ± 0.46 ms 2.26 ± 0.13 ms
EPSP decay time constant (minimal stimulation) 25.7 ± 1.57 ms 26.71 ± 3.60 ms

Indicated values are mean ± SEM

Stimulation of the direct perforant path input to the CA1 area evokes a small
glutamatergic current in CA1 pyramidal cells. This input is shown to have very
little effects on the firing pattern of the postsynaptic cells (Colbert and Levy 1992;
Empson and Heinemann 1995b). However, it initiates a powerful feed-forward
inhibition and is capable of regulating the probability of Schaffer collateral-evoked
CA1 spikes (Empson and Heinemann 1995a; Jarsky et al. 2005; Remondes and
Schuman 2002).

Properties of individual perforant pathway inputs onto granule cells and
inhibitory cells were investigated using minimal stimulation. While the kinetics
of synaptic inputs terminating on inhibitory and excitatory cells are similar, the
amplitude of perforant pathway EPSC/Ps is significantly bigger on identified PV
basket cells. This difference could stem from larger number of active zones or higher
number of AMPA receptors in synapses innervating basket cells (Sambandan et al.
2010) (Table 2).

NMDA Receptors

NMDA receptors significantly contribute to EPSPs evoked by perforant pathway
stimulation in dentate granule cells, CNQX blocks 80–90% of the synaptic events
at resting membrane potential, and further addition of APV completely abolishes
the residual component (Lambert and Jones 1989, 1990). Complete and selective
deletion of the GluN1 subunit in granule cells lead to impaired context discrimi-
nation in the incremental fear-conditioning paradigm and context-modulated place
cell activity in the CA3. However, both of these deficits only manifested in the
initial phases of the experiments and were overcome by experience. This indicates
that NMDA receptors on granule cells play an important role in the animals’
ability to rapidly discriminate between similar contexts (McHugh et al. 2007).
Pharmacological blockade of the GluN2B-containing NMDA receptors also leads
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to learning difficulties and diminished activity-dependent synaptic plasticity at
the medial perforant pathway-granule cell synapses (Valenzuela-Harrington et al.
2007).

In CA1 pyramidal cells, perforant path input forms synapses on distal dendrites
in the stratum lacunosum-moleculare; NMDA/AMPA charge ratio of this input is
significantly larger than those of the Schaffer collateral inputs. The properties of
the NMDA component were also quite different, as the NMDA-mediated current
at +60 mV in the perforant pathway input is six times smaller than in the Schaffer
collateral input after scaling by the maximal inward current at −20 mV (Otmakhova
et al. 2002). Different NMDA receptor properties could contribute to different
subunit compositions of the receptors facing the two different inputs. GluN2B
subunit contribution to NMDA responses at Schaffer collateral inputs is larger than
at perforant pathway inputs on a single CA1 pyramidal cell, indicating that NMDA
receptors with distinct subunit composition are segregated in an input-specific
manner along the dendritic tree (Arrigoni and Greene 2004). Synaptic plasticity
is also expressed in an input-specific manner; performant pathway LTP in the CA1
area of the hippocampus in vivo is only partially affected by NMDAR antagonists
and can be sensitive to VGCC antagonists. In contrast, perforant pathways LTP in
the CA3 area is NMDAR dependent (Aksoy-Aksel and Manahan-Vaughan 2015).

Metabotropic Glutamate Receptors

In the perforant pathway terminating in the CA3 area and the dentate gyrus, the
localization of presynaptic mGluRs, mGluR2, and mGluR8 is complimentary;
mGluR2 is present at the medial and mGluR8 at the lateral perforant input
(Shigemoto et al. 1997). Differential regulation of the medial and lateral perforant
path by different metabotropic receptors has been demonstrated by selective group
II and group III agonists and antagonists, indicating that group III metabotropic
receptors regulate glutamate release at the lateral perforant pathway, while group
II mGluRs serve as autoreceptors at the medial perforant path (Macek et al. 1996).
Activation of presynaptic group II mGluRs at the medial perforant pathway reduced
synaptic transmission and resulted in a reduction of short-term depression (Kilbride
et al. 2001). While short-term depression is not prominent at the lateral perforant
input at lower frequencies, it increases with higher stimulus frequencies, and L-
AP4, a selective agonist of group III mGluRs, reduced this depression (Rush et al.
2002). In the CA1 area, perforant pathway axons display both group II and group III
mGluRs; while mGluR7a and mGluR4 are detected in active zones, mGluR2 can be
found in preterminal zones (Shigemoto et al. 1997). Segregation of these mGluRs
to different zones of the presynaptic terminal and their different signaling suggest
that they could be involved in distinct regulatory roles (Capogna 2004). Similar
pattern of mGluR distribution and regulatory function was observed on perforant
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Fig. 2 Properties of the perforant path input. Different properties of short-term plasticity of the
medial (filled circles) and lateral (open circles) pathway, demonstrated in vivo (Aa) and in vitro
(Ab). Graphs illustrating paired-pulse ratios at various interstimulus intervals (McNaughton 1980).
Comparison of current-voltage relationship of AMPA (Ba-Bc) and NMDA (Bd-Bh) responses at
Schaffer collateral and perforant path inputs (Otmakhova et al. 2002). Simultaneous activation of
Schaffer collaterals and the perforant path (Ca) decreases both EPSP duration (Cb) and amplitude
(Cc) by activating strong feed-forward inhibition (Empson and Heinemann 1995b)

path inputs terminating on CA1 interneurons located in the stratum lacunosum-
moleculare (Price et al. 2005). II mGluR activation can prevent LTP at perforant
pathway synapses in the CA3 area but not in the CA1 (Aksoy-Aksel and Manahan-
Vaughan 2015) (Fig. 2).

Mossy Fibers

Dentate granule cells send their axons to the hilus and the CA3 area of the hippocam-
pus. Mossy fibers are unmyelinated axons arborizing in the hilar area and forming
a distinctive axon bundle in the stratum lucidum of the CA3 area. They form three
distinct types of presynaptic terminals: complex en passant presynaptic terminals
called mossy fiber expansions (Amaral and Dent 1981), filopodial extensions of
large mossy boutons, and small en passant terminals (Acsády et al. 1998). Large
mossy terminals innervate exclusively excitatory cells, mossy cells in the hilus, and
pyramidal cells in the CA3 area. In contrast, small filopodial extensions originating
from the large terminals and small en passant terminals specifically terminate on
GABAergic cells both in the hilus and in the CA3 (Acsády et al. 1998). Complex
mossy terminals are large (4–10 μm) and form several (30–40) synaptic contacts
(Chicurel and Harris 1992) with a single thorny excrescence on each CA3 pyramidal
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neuron or mossy cell. A single granule cell gives rise to 10–18 large mossy terminals
(Amaral et al. 1990) innervating 11–15 CA3 pyramidal cells and 7–12 hilar mossy
cells. Acsády et al. (1998) elegantly demonstrated that the number of GABAergic
targets innervated via small filopodial extensions and en passant terminals is ten
times larger than the number of excitatory targets.

Salient Features of Mossy Fiber Synapses:

• Large presynaptic terminal with several release sites.
• Inputs to pyramidal cells and interneurons have distinct features.
• Robust short-term and frequency facilitation.
• NMDA-independent LTP.
• Small amplitude, slow postsynaptic kainate responses.

AMPA Receptors

Mossy Fiber: CA3 Pyramidal Cell Synapses

Investigation of the I-V relationship of mossy fiber inputs onto CA3 pyrami-
dal cells showed that the excitatory connection between granule cells and CA3
pyramidal cells has linear I-V relationship indicating that these receptors are Ca2+-
impermeable (Jonas et al. 1993; Koh et al. 1995). Mossy fiber evoked EPSCs were
insensitive to PhTx, further supporting the idea that mossy fiber input onto CA3
pyramidal cells is exclusively mediated by GluA2-containing, Ca2+-impermeable
AMPA receptors (Toth et al. 2000). However, in a recent study Ho et al. (Ho et
al. 2007) demonstrated that while AMPA receptors at mature mossy fiber synapses
are Ca2+-impermeable, during the first 3 weeks of postnatal development Ca2+-
permeable AMPA receptors contribute to mossy fiber transmission. This transient,
developmentally regulated expression of Ca2+-permeable AMPA receptors could
play an important role in synapse maturation and various forms of synaptic
plasticity.

Unitary EPSCs have fast kinetics with a latency of 2.3–4.2 ms, a 20–80% rise
time of 0.6–1.7 ms, a decay time constant of 6.2–9.6 ms, and a maximal peak
conductance of 1 nS (Jonas et al. 1993; Tóth and McBain 2000). In these studies,
fast kinetics were used as a criterion to ensure that evoked events are purely
originating from mossy fibers; hence potential events with slower kinetics were
excluded. However, in a study by Henze et al. (Henze et al. 1997), the authors
found large presumptive mEPSCs with significantly slower kinetics. Later they also
postulated that these events are monoquantal (Henze et al. 2002a). The amplitude
of mossy fiber EPSPs can be 2–10 mV, and unitary EPSCs show amplitudes up
to 1 nA; these values are severalfold larger than synaptic events evoked with the



136 K. Tóth

stimulation of small glutamatergic synapses. Large unitary EPSCs are the result of a
highly synchronized release from multiple release sites. The number of release sites
was estimated to be between 8 and 21 in the study by Lawrence et al. (Lawrence
et al. 2004); in the same study using variance-mean analysis, the quantal amplitude
of mossy fiber events was calculated to be ∼30pA. This value is quite different
from earlier estimates deriving quantal parameters from amplitude histograms (8
pA) (Jonas et al. 1993; von Kitzing et al. 1994). Interestingly, in the recordings
used for variance-mean analysis, in low extracellular Ca2+ conditions, smaller
(7–12 pA) events could also be resolved. This indicates that quantal size might
show high degree of variability among various release sites and potentially help
to reconcile findings of these two studies. This possibility is further supported
by recent morphological data finding large variability in the size of active zones
within the mossy fiber terminal (from 0.07 to 0.17 μm2) (Rollenhagen et al.
2007). The initial release probability at mossy fiber-pyramidal cell synapses is
estimated to be between 0.20 and 0.28 (Lawrence et al. 2004; von Kitzing et al.
1994). However, this low release probability is increased dramatically after repeated
activation of mossy fibers; frequency-dependent facilitation can lead to up to 600%
increase in EPSC amplitude (Salin et al. 1996; Toth et al. 2000). Short-term
facilitation can be observed at frequencies as low as 0.1 Hz. The combination of
low initial probability and pronounced short-term facilitation leads to increased
spike transmission following short trains. Single action potentials initiated in the
dentate granule cells in vivo rarely drive their postsynaptic targets, whereas high-
frequency trains with short interspike intervals robustly increased spike transmission
probability (Henze et al. 2002b). In in vitro experiments, the probability that the
initial EPSP in a train elicited action potentials in CA3 pyramidal cells is only 0.28;
however this value rapidly increases to 0.76 over the course of 40 Hz stimulation
(Lawrence et al. 2004).

The efficacy and timing of transmitter release is largely dependent on the
spatiotemporal profile of presynaptic Ca2+ transients. Presynaptic Ca2+ channels
have fast activation and deactivation kinetics, with time constants in the millisecond
range; gating of these channels appears to be optimized to generate maximal Ca2+
influx during a minimal period of time (Bischofberger et al. 2002; Geiger and Jonas
2000). Presynaptic Ca2+ influx is triggered by presynaptic action potentials. The
duration of these action potentials is not constant, but they broaden with increased
presynaptic stimuli (Geiger and Jonas 2000).

Mossy fibers can follow high-frequency stimuli with high precision and efficacy;
this is only possible if the terminal has large enough releasable vesicle pool.
Capacitance measurements indicated that sustained Ca2+ inflow (30 ms, 0 V) will
lead to the release of ∼1400 vesicles; this corresponds to ∼40 vesicles per active
zone (Hallermann et al. 2003). These measurements were closely matched with
data stemming from detailed electron microscopic investigation of the mossy fiber
terminal (Rollenhagen et al. 2007)103]. During high-frequency stimulation, short-
term facilitation is supported by a switch from univesicular to multivesicular release
and the subsequent recruitment of additional release sites (Chamberland et al. 2014).
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P/Q and N-type calcium channels contribute to short-term facilitation in a distinct
fashion. While N-type calcium channels are responsible for calcium increase in
the close vicinity of active zones, P/Q-type calcium channels are contributing to
increased calcium levels at large segments of the terminal (Chamberland et al.
2017).

Mossy Fiber: Interneuron Synapse

While principal cells express high levels of GluA2, some GABAergic inhibitory
interneurons in the hippocampus have inwardly rectifying I-V relationships and are
Ca2+-permeable (Geiger et al. 1995; Jonas et al. 1994; Koh et al. 1995; McBain and
Dingledine 1993). Mossy fibers innervate GABAergic interneurons via synapses
comprised of either Ca2+-permeable or Ca2+-impermeable AMPA receptors. The
two different types of AMPA receptors differ in the plastic properties and degree by
which they colocalize with NMDA receptors.

The kinetics of mossy fiber-interneuron transmission is significantly faster than
the input onto pyramidal cells. The mean 10–90% rise time of EPSCs at both types
of synapses was found to be in the submillisecond range, with the time constant for
decay between 1 and 4 ms (Geiger et al. 1997). Geiger et al. (1997) have suggested
that the kinetics at mossy fiber-interneuron synapses are fast due to the precise
timing of glutamate release and the rapid deactivation of AMPA receptors.

Anatomical and physiological data equally suggest that the mossy fiber-
interneuron synapse comprises of a small number of release sites (1–2).
Variance-mean analysis indicated that the initial release probability at these
synapses is significantly higher (0.1–0.5) than at pyramidal cell synapses (Lawrence
et al. 2004). High initial release probability contributes to the mild facilitation or
depression observed at these synapses during brief stimulus trains.

The unitary quantal amplitude at this synapse was found to be 27 pA (Lawrence
et al. 2004); this value was calculated using variance-mean analysis and confirmed
with recorded unitary events in the presence of strontium. The average size of
the EPSCs evoked in CA3 interneurons is approximately three times smaller than
EPSCs recorded from pyramidal cells (88 pA vs. 20 pA) (Lawrence et al. 2004).
However, the probability that an EPSC would evoke an action potential in the
postsynaptic cell is not significantly different between these cells when only a single
stimulus was used. After brief trains of stimulation however, the probability of
spike transmission is greater in pyramidal cell synapses. This difference could be
explained by the distinct short-term plastic properties expressed by these synapses.

Properties of individual contacts between mossy fiber terminals and GABAergic
cells have been elegantly investigated using mossy fiber bouton to interneuron
paired recordings (Szabadics and Soltesz 2009). This study demonstrated that the
amplitude and transmission probability of these synaptic interactions were largely
target cell dependent. Inputs onto fast-spiking basket cells and spiny lucidum
cells were small in amplitude and had low transmission probabilities. In contrast,
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Fig. 3 Anatomical and physiological properties of mossy fiber inputs. Morphological character-
istics of mossy fiber terminals: large filopodial extensions originate from the main terminal (Aa)
(Acsády et al. 1998); boutons have several (20–30) active zones (Ab) (Amaral and Dent 1981).
AMPA/kainate and NMDA receptor-mediated components of mossy fiber inputs (Ba-Be), current-
voltage relationship of the peak current (filled circles) and the current measured 50 ms after the
peak (open circles) under control conditions (Ba and Bd), in the presence of CNQX alone (Bb and
Be) or in the presence of CNQX and APV (Bc) (Jonas et al. 1993). Variance-mean analysis is used
to determine quantal parameters at the mossy fiber-CA3 pyramidal cell synapse (Bf-Bi) (Lawrence
et al. 2004). Current-voltage relationship of mossy fiber-interneuron synapses, rectification index,
and philanthotoxin sensitivity of inputs show high degree of variability (Ca-Cc) (Tóth and McBain
1998). Kinetic properties of mossy fiber inputs terminating on pyramidal cells and on interneurons
mediated by calcium-permeable and calcium-impermeable AMPA receptors (Cd-Cf) (Toth et al.
2000)

regular-spiking basket cells and ivy cells received inputs with larger amplitude and
transmission probability (Szabadics and Soltesz 2009) (Fig. 3).

NMDA Receptors

NMDA receptors are present at mossy fiber synapses; however mossy fiber synapses
are showing lower immunostaining intensity than the Schaffer collateral inputs
(Petralia et al. 1994; Takumi et al. 1999; Watanabe et al. 1998). Electrophysiological
examination showed that mossy fiber synaptic inputs onto pyramidal cells are
partially mediated by NMDA receptors; this component has significantly slower
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kinetics than those of the AMPA component (Jonas et al. 1993; Spruston et al.
1995). In a recent study, the activation of postsynaptic NMDA receptors at mossy
fiber synapses was shown to influence short-term plasticity of kainate-mediated
transmission (Rebola et al. 2007). NMDA receptor-mediated depression of kainate
EPSC (EPSCKA) was observed, while the AMPA component of the event was not
modified, this effect was expressed postsynaptically and was homosynaptic. Unlike
in the CA1 area of the hippocampus, mossy fiber LTP is independent of NMDA
receptor activation. However, NMDA receptor-mediated synaptic currents at this
site are potentiated by high-frequency stimuli (Kwon and Castillo 2008b; Rebola et
al. 2007).

At mossy fiber-interneuron synapses, the distribution of different subtypes of
NMDA receptors and different subtypes of AMPA receptors is highly correlated.
Ca2+-permeable AMPA receptors occur at synapses where NMDA receptors con-
tain the GluN2B subunit, while Ca2+-impermeable AMPA receptors are associated
with GluN2B-lacking NMDA receptors (Lei and McBain 2002). This particular
distribution pattern leads to Ca2+-permeable synapses possessing smaller NMDA
components with slower decay kinetics (Lei and McBain 2002).

Kainate Receptor

Kainate receptors are located on both the pre- and postsynaptic sites at hippocampal
mossy fibers. While on the postsynaptic site they generate small but prolonged depo-
larization, the presynaptic receptors modulate excitatory and inhibitory synaptic
transmission.

Postsynaptic Receptors

Kainate-mediated postsynaptic responses were first demonstrated at mossy fiber
synapses. Kainate-mediated components of the mossy fiber responses (EPSCKA)
to a single stimulus are very small, with an amplitude ∼10 times smaller than
the AMPA component. However, the amplitude largely increases on repetitive
stimulation of the mossy fibers. Short high-frequency trains lead to a severalfold
increase in kainate responses, but even a moderate increase in presynaptic stimuli
(from 0.05 Hz to 0.2 Hz) could almost double the amplitude of the EPSCKA.
Postsynaptic kainate responses are selectively present at mossy fiber inputs in
CA3 pyramidal cells and are absent from the commissural/associational inputs.
The mossy fiber EPSCKA has very slow decay kinetics with the time constant
approximately ten times slower than that of the AMPA component (∼100 ms v.
∼10 ms); the rise time (10–90%) of the kainate response is also significantly slower
than the AMPA EPSC (7 ms vs. 3 ms). The slow kinetics of the kainate responses
could potentially indicate that these receptors are located extrasynaptically; in this
case they would not be able to respond to quantal release of glutamate. This question



140 K. Tóth

was addressed by Cossart et al. (Cossart et al. 2002), and their data indicated
that kainate receptors are activated by quantal release of glutamate at mossy fiber
synapses, as they were able to record pure kainate and mixed AMPA/kainate
miniature responses from CA3 pyramidal cells. Frequency analysis showed that
45% of the miniature events involved kainate receptor activation. Morphological
data indicates that kainate receptors are localized in postsynaptic densities (Darstein
et al. 2003; Petralia et al. 1994a) and the lack of effect of glutamate uptake blockers
on the kinetics of kainate responses further strengthen the conclusion that the slow
kinetics of EPSCKA are not caused by extrasynaptic localization of these receptors.
A recent study by Barberis et al. (2008) rather indicates that slow decay kinetics
can be explained by the intrinsic gating properties of GluK2/GluK4 heteromeric
receptors. In fact, studies using knockout animals suggest that kainate receptors
on CA3 pyramidal cells are composed of these two subunits (GluK2 and GluK4)
(Contractor et al. 2003; Mulle et al. 1998).

The slow kinetics and small amplitude of kainate reposes suggest that they might
play a role in frequency-dependent synaptic integration (Frerking and Ohliger-
Frerking 2002). However short-term and long-term plasticity of EPSCKA is atten-
uated compared to the AMPA component, hence endowing the AMPA component
with a wider dynamic range and limiting the contribution of kainate receptors in the
presence of profound increase in presynaptic strength (Ito et al. 2004). Neto1/Neto
2 have been recently identified as auxiliary proteins regulating several functional
parameters of kainate receptor function, including binding affinity, kinetics, and
synaptic targeting of GluK2/3-containing postsynaptic KARs (Straub et al. 2011;
Tang et al. 2011; Wyeth et al. 2014). Neto1 is expressed at high levels and have been
shown to contribute the slow kinetics of kainate responses on mossy fiber synapses
(Tang et al. 2011).

In addition to the ionotropic function, postsynaptic kainate receptors also show
metabotropic activity via the inhibition of the slow Ca2+-activated K+ current IsAHP,
which in turn increases excitability through a G-protein-coupled mechanism (Ruiz
et al. 2005; Chamberlain et al. 2013) (Fig. 4).

Presynaptic Receptors

Endogenously applied kainate has a biphasic effect; low doses facilitate mossy
fiber transmission, while higher doses depress EPSCs. Endogenous kainate released
following a repetitive stimulation of mossy fibers activates presynaptic receptors
and facilitates synaptic release (Contractor et al. 2001; Schmitz et al. 2000; Lauri et
al. 2001). Enhancement of release via presynaptic kainate receptors was shown to
contribute to the robust frequency facilitation observed in mossy fibers (Contractor
et al. 2001, 2003; Lauri et al. 2001; Pinheiro et al. 2007; Schmitz et al. 2001, 2003).
Presynaptic kainate receptors contributing to frequency facilitation are thought to be
calcium-permeable as indicated by their sensitivity to philanthotoxin. Ca2+ influx
through these receptors is believed to play a crucial role in frequency facilitation
(Lauri et al. 2001). The apparent calcium permeability of the receptors can only be
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Fig. 4 Properties of kainate neurotransmission at the hippocampal mossy fibers. Kainate-mediated
responses (not blocked by GYKI 53655) evoked with repetitive stimulation of the mossy fibers
(MF) and are not present at associational/commissional (AC) inputs (Aa) (Castillo et al. 1997).
Concentration-dependent, bidirectional modulation of mossy fiber EPSCs by kainate, GluK4 and
GluK2 −/− mice shows altered kainate modulation (Ab) (Contractor et al. 2003). Controversy
surrounding the role of presynaptic kainate receptors in short-term plasticity of mossy fiber inputs;
AMPA receptor-mediated EPSCs from GluK3 −/− mice were shown to be less facilitated by high-
frequency stimuli (Ba, Bb) (Pinheiro et al. 2007), having similar properties than their wild-type
counterparts (Bc-Be) (Kwon and Castillo 2008a, b)

explained by the presence of unedited forms of kainate receptor subunits; however
the mechanism by which these subunits are preferentially inserted into mossy fibers
is still unknown. The subunit composition of presynaptic kainate receptors has
been a matter of debate; initially the GluK1 subunit was believed to be involved
in the presynaptic kainate effect (Lauri et al. 2001). However, these data obtained
with pharmacological tools could not be confirmed with the genetic ablation of the
GluK1 subunit (Contractor et al. 2001) or in subsequent experiments (Breustedt
and Schmitz 2004). In GluK4 and GluK3 knockout animals, frequency facilitation
was compromised, pointing to the critical role these subunits play in the short-term
plasticity (Contractor et al. 2003; Pinheiro et al. 2007).

Even though a large body of literature is dedicated to the existence and exact
functional role of presynaptic kainate receptors at the mossy fibers, Kwon and
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Castillo (2008a) question the existence of presynaptic receptors. The authors used
GluK1 specific agonist and GluK2 and GluK3 knockout animals and found that
presynaptic kainate receptors do not play a significant role in short-term plasticity.
They further postulate that the effects generally attributed to presynaptic kainate
receptors are mediated by postsynaptic receptors and the activation of recurrent CA3
network activity.

Functionally, both pre- and postsynaptic kainite receptors amplify unitary mossy
fiber inputs and act as conditional amplifiers of spike transmission (Sachidhanandam
et al. 2009). While presynaptic receptors can effectively modulate the dynamic
range of short-term plasticity, activation of postsynaptic kainate receptors during
sustained stimulation leads to prolonged depolarization (Sachidhanandam et al.
2009; Pinheiro et al. 2013) (Table 3).

Metabotropic Glutamate Receptors

Presynaptic mossy fiber terminals contain two types of metabotropic glutamate
receptors. While group II mGluRs are equally present on synapses opposing pyra-
midal cells and interneurons (Kamiya et al. 1996; Tóth and McBain 2000), mGluR7
is selectively present in synapses terminating on interneurons. Group II mGluRs
depress excitatory transmission at both types of synapses. Interestingly mossy fiber-
CA3 pyramidal cell synapses can be blocked completely with the group II mGluR
agonist DCG-IV; synaptic inputs onto interneurons are only partially depressed.
mGluRs decrease the degree of frequency facilitation observed at mossy fiber-
pyramidal cell and mossy fiber-interneuron synapses (Scanziani et al. 1997; Toth et
al. 2000). Group III metabotropic glutamate receptor7 (mGluR7) has low affinity for
glutamate, and its activation depresses glutamatergic synaptic responses (O’Connor
et al. 1999). In the mossy fiber-interneuron synapses, mGluR7 antagonist MSOP
did not influence baseline transmission but prevented high-frequency-induced long-
term depression, while application of an mGluR7 agonist leads to the development
of a chemical LTD at this synapse (Pelkey et al. 2005). Detailed investigation of the
plastic properties of this synapse leads to the discovery that mGluR7 goes through
activity-dependent internalization and surface expression (Pelkey et al. 2005, 2007),
contributing to state-dependent plasticity.

On the postsynaptic site, activation of Group I receptors can evoke a postsynaptic
potential which is independent of the G-protein function (Heuss et al. 1999) while
inhibiting IAHP through a G-protein-coupled mechanism. Their activation also
leads to Ca2+ release from intracellular stores, which plays a role in plastic changes
(Yeckel et al. 1999).

Schaffer Collaterals

The major input to the CA1 area of the hippocampus arrives from CA3 pyramidal
cells via the Schaffer collaterals. Axons of CA3 pyramidal cells heavily innervate
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Table 3 Kinetic properties of mossy fiber inputs onto pyramidal cells and interneurons

MF-P cell MF-I cell

Quantal parameters
Release probability <0.3 >0.02–0.5 Jonas et al. (1993)
Quantal size ∼29 pA ∼30 pA Lawrence et al. (2004)

but see Jonas et al. (1993)
Release site/connection 8–35 1–2 Acsády et al. (1998),

Lawrence et al. (2004),
Rollenhagen et al. (2007)

Probability of action
potential generation by the
first EPSC

0.28 0.1 Lawrence et al. (2004)

Probability of action
potential generation by
40 Hz train EPSC

0.76 0.22 Henze et al. (2002a, b))

AMPA
Latency 2 ms 2.2 ms Toth et al. (2000)
Amplitude (at −70 mV) 25–200 pA 2–100 pA Walker et al. (2002)
Rise time ∼1.5 ms <1 ms Geiger et al. (1997)
Decay time const. ∼10 ms ∼ 2.5–4 ms Toth et al. (2000), Walker

et al. (2002)
Channel conductance 10 pS Jonas et al. (1993)

NMDA
Rise time 20–30 ms Spruston et al. (1995),

Walker et al. (2002)
Decay time constant (fast) 150–250 ms 58.2 CI (calcium-

impermeable), 60.8 CP
(calcium-permeable)

Spruston et al. (1995),
Walker et al. (2002)

Decay time constant (slow) ∼1 s 525 CP, 228 CI Spruston et al. (1995),
Walker et al. (2002)

Channel conductance 46 pS 47 pS Spruston et al. (1995),
Walker et al. (2002)

Kainate
Amplitude (at −70 mV) 5–70 pA Castillo et al. (1997)
Rise time 6.8 ms Castillo et al. (1997)
Decay time constant 103 ms Castillo et al. (1997)

both the stratum radiatum and the stratum oriens of the CA1 area; proximal
postsynaptic dendrites in these layers contain relatively few spines, while distal
dendrites are densely spiny, excitatory inputs terminate exclusively on dendritic
spines (Megías et al. 2001). A single CA3 pyramidal cell has an extensive axonal
arbor and can extend to as much as two-third of the hippocampus and form 30,000–
60,000 synapses (Li et al. 1994), while a single CA1 pyramidal cell receives
approximately 30,000 excitatory synapses.
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Salient Features of Schaffer Collateral Synapses:

• Small terminals with single release site, variable release probability.
• Increased synaptic AMPA, but not NMDA conductances at distal synapses.
• Silent synapses.
• Kainate receptor activation depresses glutamate transmission.
• Wide variety of auxiliary proteins modify receptor function.

AMPA Receptors

Excitatory synaptic inputs are broadly distributed along the dendritic tree of CA1
pyramidal cells. These inputs are integrated at the level of the axon initial segment
to determine the output signal of the cell. The distance between the location of the
final integration of the cellular outputs and synaptic inputs shows high degree of
variety. How does the distance between the soma and the synapse influence the
characteristics of synaptic inputs at the level of the soma? In principle, the further
the synapse is, their impact on the final inputs should be more and more diminished,
due to cable filtering. Interestingly, the local EPSP amplitude increases with distance
from the soma, which leads to proximal and distal synaptic inputs producing
very similar amplitudes detected at the soma (Magee and Cook 2000) (Fig. 5).
Increased synaptic conductance in distal synapses was attributed to an increased
AMPA receptor number on the postsynaptic sites, whereas AMPA receptor subunit
composition and channel modulation was indistinguishable at proximal and distal
synapses (Andrasfalvy and Magee 2001). Presynaptic properties, such as release
probability, paired-pulse facilitation, and the size of the readily releasable pool, were
also identical at these sites (Smith et al. 2003).

Excitatory synaptic potentials evoked by the stimulation of the Schaffer collat-
erals are composed of AMPA and NMDA components. However, under certain
circumstances, EPSCs lack the AMPA component (Isaac et al. 2007; Kullmann
1994; Liao et al. 1995). The subpopulation of glutamatergic synapses lacking
functional AMPA receptors are referred to as “silent synapses”; they have been
identified in several brain regions including the CA1 area of the hippocampus.

�
Fig. 5 The amplitude of synaptically evoked EPSP at the soma does not depend on synapse
location. Spontaneously occurring EPSPs in distal and proximal dendrites (d) and at the soma (s)
in response to high osmolar external solution. (A) Scatterplot of dendritic and simultaneously
recorded somatic EPSP amplitude from the cell shown in (A). (B) Averaged EPSPs simultaneously
recorded both at the dendrite and at the soma for the neuron receiving distal and proximal inputs.
(C) Mean EPSP amplitude for all cells plotted as a function of input distance from the soma. (D)
Cumulative amplitude histograms showing that the distribution of distal dendritic EPSPs (light
solid line) is skewed to the right compared to more proximal dendritic EPSPs (dark solid line). (E)
(Magee and Cook 2000)
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Fig. 5 (continued)
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These synapses are not conducting currents at resting membrane potentials. The
presence of these receptors is developmentally regulated, and during the first few
postnatal days, almost all Schaffer collateral synapses are silent, but by the end of the
third week, approximately 50% of them are containing functional AMPA receptors
(Durand et al. 1996). Activity-dependent modification at these synapses, such as the
expression of LTP, leads to the changes which “unsilence” these synapses.

How do these synapses become functional? Incorporation of AMPA receptors
into silent synapse following high-frequency stimulation has been observed either
through lateral diffusion (Adesnik et al. 2005) or from AMPA receptor-containing
endosomes (Hayashi et al. 2000). However, recent data using optical imaging
suggest that AMPA receptor insertion has little influence on synaptic plasticity; the
authors rather suggest that LTP is expressed on the presynaptic site in a bidirectional,
graded fashion (Enoki et al. 2009).

A novel form of plasticity at synapses with GluA3-containing AMPA receptors
has been demonstrated in Schaffer collateral synapses. GluA2/3 subunit-containing
receptors are in a low-conductance state but upon a rise in intracellular cAMP levels
shift to a high-conductance state and lead to the potentiation of the synapse (Renner
et al. 2017).

The majority of Schaffer collateral synapses contains one active zone with several
docked vesicles (Harris and Sultan 1995; Schikorski and Stevens 1997). The proba-
bility of release at various release sites arising from the same axons is highly variable
(Rosenmund et al. 1993). With increased release probability, more glutamate is
released to the synaptic cleft; this is possible when more than one vesicle fuses with
the presynaptic membrane in response to a single action potential. The probability
of multivesicular release increases with release probability (Oertner et al. 2002).
Multivesicular release is likely to occur at synapses with higher number of docked
vesicles, which is generally observed in larger synapses (Harris and Sultan 1995).

In recent years, several studies showed the diverse effect auxiliary proteins can
have on AMPA receptor functions. AMPA receptors can assemble with a wide range
of auxiliary subunits belonging to four distinct families: TARP (Jackson and Nicoll
2011), cornichons (Schwenk et al. 2009), shisas (Farrow et al. 2015), and the germ
cell-specific gene 1-like protein (Schwenk et al. 2012). The first three can effectively
increase the mean channel conductance (Coombs et al. 2012; Jackson et al. 2011;
Tomita et al. 2005; Shi et al. 2010), TARPs being the most effective among them.
TARPs also influence deactivation kinetics and extra- and intracellular polyamine
block of GluA2-lacking AMPA receptors (Jackson et al. 2011; Soto et al. 2009;
Cho et al. 2007; Milstein et al. 2007).

NMDA Receptors

receptors are abundantly presentNMDA at excitatory synapses in the CA1 region
of the hippocampus, and the number of NMDA receptors in individual synapses
shows very little variability (Petralia et al. 1994b; Racca et al. 2000). The number
of NMDA receptors activated by synaptic stimulation is small, only 1–5 NMDA
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Table 4 Kinetic properties of Schaffer collateral inputs terminating on proximal and distal
dendrites of CA1 pyramidal cells

Quantal parameters
Release probability <0.5 Enoki et al. (2009)
Quantal amplitude ∼3 pA,

66–
400 μV

Enoki et al. (2009)

AMPA receptors Soma Dendrite
EPSP amplitude (locally) ∼0.2 mV ∼0.6 mV Larkman et al. (1997)
EPSC amplitude (locally) ∼8 pA ∼24 pA Magee and Cook (2000)
EPSC amplitude
(measured at the soma)

∼0.2 mV ∼0.2 mV Magee and Cook (2000)

20–80% rise time 0.4–0.6 ms 0.4–0.6 ms Andrasfalvy and Magee
(2001)

10–90% rise time 0.7–3.5 ms 0.7 ms Larkman et al. (1997)
Decay time const. ∼ 3.5 ms ∼ 2.5 ms Andrasfalvy and Magee

(2001)]
Maximum open
probability

∼0.8 ∼0.8 Andrasfalvy and Magee
(2001)

Channel number
(calculated using
variance-mean analysis)

∼450 ∼1000 Andrasfalvy and Magee
(2001)

Latency 2–3 ms Larkman et al. (1997)
Single-channel
conductance (γ)

∼8–10 pS 10 pS Andrasfalvy and Magee
(2001)

NMDA
EPSC amplitude (excised
patches, 10 ms, 1 m
mGlu)

∼70 pA ∼ 50 pA Andrasfalvy and Magee
(2001)

20–80% rise time ∼9 ms ∼9 ms Andrasfalvy and Magee
2001)

Decay time constant tau 1 ∼250 ms ∼250 ms Andrasfalvy and Magee
(2001)

Decay time constant tau 2 ∼1.5 sec ∼1.5 sec Andrasfalvy and Magee
(2001)

Single-channel
conductance

45 pS Spruston et al. (1995)

channels open during synaptic transmission at low frequencies, and this value is
small enough to render quantal dendritic NMDA responses undetectable at the soma
through physiological measurements (Nimchinsky et al. 2004). In contrast to AMPA
receptors, the number of NMDA receptors expressed at synapses does not show
activity-dependent changes.

Furthermore, dendritic NMDA current amplitudes do not change with distance
from the soma, and their kinetics and quantal parameters are very similar in
proximal and distal dendrites (Andrasfalvy and Magee 2001) (Table 4).
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Fig. 6 Kainate responses in the CA1 area of the hippocampus. Kainate activation depresses
AMPA (Aa) and NMDA (Ab) (Frerking et al. 2001) receptor-mediated events at the Schaffer
collateral synapses. Kainate receptor-specific antagonist reduces facilitation at inputs onto somato-
statin-positive interneurons (Sun and Dobrunz 2006)

Kainate Receptors

Kainate receptor activation in the CA1 region leads to the depression of gluta-
matergic transmission (Chittajallu et al. 1996; Frerking et al. 2001; Kamiya et al.
1996; Vignes et al. 1998). Several mechanisms were suggested to explain this
effect: direct action via presynaptic receptors, indirect action via somatodendritic
kainate receptors, and also both ionotropic and metabotropic modes of action were
postulated. Kainate agonist depresses glutamatergic transmission via a decrease in
quantal content; in agreement with this finding, little or no evidence of postsynaptic
modulation was observed. Rather, the experimental data indicate that kainate
receptors are directly activated on the presynaptic terminal and are coupled to G-
proteins (Frerking et al. 2001).

Beside the direct action on pyramidal cells, kainate receptors are also involved in
the modulation of network activity via the regulation of inhibitory neurons and their
synaptic inputs. Dendritic kainate receptor activation results in the increased activity
of inhibitory neurons which provide increased inhibitory input onto pyramidal cells.
This postsynaptic effect is mediated by GluK1 subunit-containing receptors (Cossart
et al. 1998). Excitatory input onto somatostatin-containing interneurons shows
unusually robust short-term facilitation, and the activation of presynaptic kainate
receptors contributes to this effect, enabling a target cell-specific mechanism leading
to the preferential activation of a subset of interneurons following repeated stimuli
(Sun and Dobrunz 2006) (Fig. 6). This effect is mediated by GluK1 and GluK2
subunit-containing, calcium-permeable kainate receptors (Sun et al. 2009). Finally,
GABAergic neurotransmission is also regulated by presynaptic kainate receptors.
This action mostly affects inhibitory connections between interneurons and may
serve to enhance interneuron-interneuron interactions (Cossart et al. 2001).

Metabotropic Glutamate Receptors

Metabotropic receptors have diverse effects in the CA1 area of the hippocampus:
they directly excite pyramidal cells (Gereau and Conn 1995) and interneurons
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(McBain et al. 1994), they decrease excitatory and inhibitory synaptic transmission,
and they influence long-term plasticity (Bortolotto et al. 1999). Direct excitation
of pyramidal cells and interneurons is mainly mediated by Group I metabotropic
receptors localized postsynaptically on the somato-dendritic membrane (Gereau
and Conn 1995; McBain et al. 1994). In interneurons located in the stratum
oriens/alveus, activation of mGluR1α leads to Ca2+ signals resulting from Ca2+
influx through transient potential channels and Ca2+ release from intracellular
stores. Dendritic Ca2+ transients resulting from mGluR5 activation are solely medi-
ated by intracellular Ca2+ release. Furthermore, long-term plasticity at oriens/alveus
interneurons is influenced by mGluR1- and mGluR5-specific signaling (Le Vasseur
et al. 2008; Topolnik et al. 2006).

Glutamate release is suppressed by Group I and Group III metabotropic receptors
at Schaffer collateral synapses (Gereau and Conn 1995), while the selective Group II
receptors antagonist DCG-IV does not have influence on excitatory neurotransmis-
sion (Kamiya et al. 1996). Both Group I and Group III metabotropic receptors are
localized presynaptically as evidenced by the effect observed on mEPSC frequency
and paired-pulse facilitation (Gereau and Conn 1995), but the two receptors are
regulating glutamatergic neurotransmission through different mechanisms. Group II
metabotropic receptors are only expressed in granule cells in the adult hippocampus
(Tanabe et al. 1992; Tanabe et al. 1993); however activation of group II mGluRs
was shown to influence glutamatergic transmission, and this effect is mediated by
mGluR3 receptors expressed on glia cells (Winder et al. 1996).

The amplitude of GABA-mediated synaptic events is also reduced by group I
mGluR agonist; however this effect can effectively be blocked by the pre-application
of CB1 receptor antagonist indicating that mGluR1/5 receptors are not situated
directly at the inhibitory presynaptic terminals (Neu et al. 2007). Group III mGluRs
are known to present at GABAergic presynaptic terminals (Shigemoto et al. 1997),
and activation of these receptors leads to decreased inhibitory transmission among
GABAergic cells. These receptors are likely to sense glutamate spillover from
neighboring excitatory afferent terminals (Semyanov and Kullmann 2000).

Experimental Techniques

The key techniques used for the investigation of glutamatergic signals are intra-
cellular and patch-clamp recordings. These experimental approaches are described
in detail in Chapter X (Marco Martina). Synaptic inputs are evoked with either
electric or osmotic stimuli. Alternatively, glutamate can be applied to the tissue by
either bath application or focal pressure injection. A more precise approach is the
recently developed technique using glutamate uncaging. With the latter approach,
synapses on a specific subcellular element can selectively be activated (i.e., dendrite
vs. soma). Activation of selected subpopulation of synapses or limited number
of synapses can be challenging in in vitro slices, given the complex network
connections in the tissue. Under these circumstances, paired recordings can be
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used to identify synaptic contacts between individual cells where both the pre- and
postsynaptic element can be anatomically identified. Recordings from synaptically
connected neuron pairs are harder when the pre- and postsynaptic cells are relatively
far away from each other, as the probability of functional connections decreases with
distance. In these cases, direct stimulation of presynaptic terminals could provide
information about individual synaptic contacts. This is only possible when the
presynaptic terminal is large, like the mossy fiber boutons. Optogenetic approaches
in combination with two-photon imaging allow the simultaneous activation and
imaging of small groups of synapses; however the activation of single synapses
with optogenetic tools still remains challenging.

The Future

Recent developments in optogenetics and high-resolution imaging have opened the
window to functional questions that are very specific to a group of neurons or
receptors and to the combination of these two. With these developments in imaging
and genetic techniques, synaptic inputs onto specific subset of cells can be studied
in isolation, and target cell specificity of various inputs established. We will see
large body of data generated on cell-type and receptor subunit-specific signaling.
In addition, using live imaging with high temporal and spatial resolution allows
the simultaneous investigation of large population of cells. All this information will
require modeling strategies to help better understand the role of a certain type of
synapse in network activity and in the control of input/output properties of large
population of neurons.
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Fast and Slow GABAergic Transmission
in Hippocampal Circuits

Marlene Bartos, Jonas-Frederic Sauer, Imre Vida, and Ákos Kulik

Overview

Cortical neuronal networks consist of excitatory glutamatergic principal cells (PCs)
and GABAergic inhibitory interneurons (INs). Although INs form a minority of the
cortical neuron population, they control key aspects of cortical network function
by providing feedforward and feedback inhibition, controlling the formation of PC
assemblies, defining the excitability of neuronal networks and the timing of the
activation of PCs, and promoting synchrony of fast neuronal network oscillations
(Freund and Buzsáki 1996; McBain and Fisahn 2001; Klausberger and Somogyi
2008; Sohal 2016; Strüber et al. 2017). INs are highly diverse and can be subdivided
into several types on the basis of various criteria, such as intrinsic physiological
properties, neurochemical marker content, morphological features, including the
laminar distribution of the axon, and finally the postsynaptic target profile of their
output (Freund and Buzsáki 1996; Hosp et al. 2014; Savanthrapadian et al. 2014;
Yuan et al. 2017). On the basis of synaptic targets, INs have been classified into two
major groups, perisomatic- and dendrite-targeting cells.

Transmission at perisomatic GABAergic synapses is characterized by fast time
course and large peak amplitudes (Bartos et al. 2001, 2002; Strüber et al. 2015).
Fast GABAA receptor (GABAAR)-mediated perisomatic inhibition can precisely

M. Bartos (�) · J.-F. Sauer
Institute for Physiology I, Albert-Ludwigs University Freiburg, Freiburg, Germany
e-mail: marlene.bartos@physiologie.uni-freiburg.de

I. Vida
Institute for Integrative Neuroanatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany
e-mail: imre.vida@charite.de

Á. Kulik
Institute for Physiology II, Albert-Ludwigs University Freiburg, Freiburg, Germany

© Springer Nature Switzerland AG 2018
V. Cutsuridis et al. (eds.), Hippocampal Microcircuits, Springer Series
in Computational Neuroscience, https://doi.org/10.1007/978-3-319-99103-0_5

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99103-0_5&domain=pdf
mailto:marlene.bartos@physiologie.uni-freiburg.de
mailto:imre.vida@charite.de
https://doi.org/10.1007/978-3-319-99103-0_5


160 M. Bartos et al.

determine the timing and the frequency of action potential discharge in PCs (Cobb
et al. 1995; Miles et al. 1996; Pouille and Scanziani 2001). In contrast, inhibitory
signaling mediated by dendritic GABAergic contacts has slower time course and
shows high degree of diversity (Pearce 1993; Miles et al. 1996; Vida et al. 1998;
Banks et al. 1998; Szabadics et al. 2007; Savanthrapadian et al. 2014). The slower
time course of dendritic inhibitory (DI) signals is partially due to electrotonic
attenuation, when examined in somatic recordings; however, differences in the
kinetics of the underlying conductance, as a consequence of differential GABAAR
expression, are likely to contribute significantly. Dendritic inhibition plays a major
role in regulating local linear or nonlinear integration of excitatory synaptic inputs,
activation of dendritic voltage-gated conductances, synaptic plasticity, and dendritic
spike generation (Miles et al. 1996; Makara et al. 2009; Müller et al. 2012). Indeed,
recent in vivo examinations show that dendritic inhibition is involved in shaping
the activity of hippocampal place cells important for spatial navigation (Royer et al.
2012) and certain forms of learning (Lovett-Barron et al. 2014).

In addition to GABAARs, metabotropic GABABRs mediate a slower form of
inhibition by synaptically released GABA (Solís and Nicoll 1992; Isaacson et
al. 1993; Scanziani 2000; Booker et al. 2013, 2017b). Activation of GABABRs
generates a slow inhibitory postsynaptic potential (IPSP) postsynaptically and
inhibits transmitter release from the axon terminals presynaptically. Finally, besides
these forms of phasic inhibition, extrasynaptic GABA receptors mediate “tonic”
inhibition (Nusser and Mody 2002; Scimemi et al. 2005; Glykys and Mody 2006).
Tonic inhibition controls the excitability of the cell and the gain in the input-output
relationship during synaptic excitation as a function of ambient GABA levels.

In this chapter we review characteristics of GABAAR-mediated inhibitory
transmission at perisomatic and dendritic synapses, as well as GABABR-mediated
pre- and postsynaptic inhibition in hippocampal networks.

GABAAR-Mediated Synaptic Inhibition in Hippocampal
Circuits

GABAAR-Mediated Perisomatic Inhibition

A major factor which determines the influence of a given IN on its target cell is the
location of the synapses on the surface of the target cell. Inhibitory synapses located
close to the soma have a large impact on the generation of action potentials at the
output of neurons (Miles et al. 1996; Jonas et al. 2004). These synapses therefore can
precisely control timing and frequency of action potentials. Consequently, soma-
near “phasic” inhibition underlies important cortical network functions such as the
synchronization of neuronal activity and the generation of neuronal network oscilla-
tions (Cobb et al. 1995; Pouille and Scanziani 2001; Mann et al. 2005; Mittmann et
al. 2005; Vida et al. 2006; Doischer et al. 2008). The primary sources of perisomatic
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inhibition are basket cells (BCs). These INs show characteristic physiological,
pharmacological, and immunohistochemical properties (Freund and Buzsáki 1996;
Freund 2003; see also chapter “Morphology of Hippocampal Neurons”). On the
basis of the expression profile of Ca2+-binding proteins and neuropeptides, two
types of soma-inhibiting cells have been distinguished: parvalbumin (PV)- and
cholecystokinin (CCK)-expressing cells (Freund and Buzsáki 1996; Hefft and Jonas
2005; Elgueta et al. 2015). Another IN type, the so-called chandelier or axo-axonic
(AA) cells, innervate the axon initial segment of PCs (Somogyi et al. 1985; Soriano
et al. 1990; Buhl et al. 1994, 1995), and therefore these INs are in an optimal
position to control the initiation of action potentials in their postsynaptic targets.
While BCs form synaptic contacts onto both pyramidal cells (PyCs) and other INs,
including BCs (Bartos et al. 2001, 2002), AA cells selectively target PCs (Buhl et al.
1994, 1995). The contribution of PV-expressing INs (PV-INs) in neuronal network
synchronization has been broadly accepted on the basis of single-unit recordings of
PV-INs during spatial exploration demonstrating their strong phase relationship of
individual action potentials to single gamma cycles in anesthetized (Tukker et al.
2007; Klausberger and Somogyi 2008) and freely moving rodents (Katona et al.
2014). Moreover, optogenetic approaches allowing light-mediated recruitment of
PV-INs or their presynaptic PCs in cortical networks showed that gamma power
increased upon PV-IN activation (Cardin et al. 2009; Sohal et al. 2009; Cardin 2016).

PV-BCs GABAergic transmission at PV-BC output synapses is characterized by
rapid time course, large peak conductance, and high reliability of transmitter
release (Fig. 1; Kraushaar and Jonas 2000; Bartos et al. 2001, 2002; Glickfeld
and Scanziani 2006; Glickfeld et al. 2008; Savanthrapadian et al. 2014). Paired
whole-cell patch-clamp recordings from presynaptic PV-expressing BCs and post-
synaptic PCs in acute hippocampal slices revealed that the time course of unitary
GABAAR-mediated inhibitory postsynaptic currents (IPSCs) is extremely fast in
all hippocampal areas. In dentate gyrus granule cells (GCs), the rise time (20–
80%) is 0.2–0.3 ms, and decay time constant is 3.2–3.5 ms at near-physiological
temperatures (Bartos et al. 2002; Table 1).

Highly specialized pre- and postsynaptic mechanisms underlie the rapid time
course of unitary IPSCs at PV-BC output synapses. Presynaptically, GABA release
is initiated by a brief and precisely timed Ca2+ transient. This is reflected by the
highly synchronous time course of GABA release at BC-GC synapses (Hefft and
Jonas 2005). The high level of synchrony is further realized by the tight coupling of
the Ca2+ source (P/Q - type Ca2+ channels) and the sensor (Bucurenciu et al. 2008).
Postsynaptically, fast inhibitory signaling at PV-BC synapses is largely mediated
by α1 subunit-containing GABAARs as revealed by postembedding immunogold-
labeling studies (Nyíri et al. 2001; Klausberger et al. 2002). Analysis of recombinant
GABAARs showed that α1β1γ2 channels deactivate faster than α2β1γ2 channels
(Lavoie et al. 1997). Consistent with these findings, bath application of the benzo-
diazepine type I receptor agonist zolpidem, which has a high affinity to GABAARs
containing the α1 subunit (Thomson et al. 2000; Cope et al. 2005), results in a

http://dx.doi.org/10.1007/978-3-319-99103-0_2
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Fig. 1 Morphological, physiological, and synaptic characteristics of perisomatic and dendritic
INs in rodent dentate gyrus. (A) left, confocal image stacks of pairs of synaptically connected
GABAergic INs intracellularly labeled with biocytin and visualized with streptavidin conjugated
with Alexa Fluor 647 (white labeling). (A1) perisomatic INs with axon in the granule cell layer
(gcl). Right, basket cells (BCs) are parvalbumin (PV)-positive as revealed by antibody labeling.
From top to bottom, green, biocytin labeling, arrows point to both somata; red, PV expression;
colocalization of both markers. (A2) commissural-associational path cells (HICAPs) with axon
collaterals mainly located in the inner molecular layer (iml). Right, a single intracellularly labeled
HICAP identified as cholecystokinin (CCK)-positive. Inset, characteristic discharge pattern of the
HICAP cell (0.7 nA, 1 s; scale bars, 200 ms, 50 mV). (A3) hilar perforant path-associated cells
(HIPPs) with axon located predominantly in the outer molecular layer (oml). Right, both neurons
co-express somatostatin (SOM; arrows). (B) passive and active membrane properties of identified
BCs (B1), HICAPs (B2), and HIPPs (B3). Top traces in B1–B3, voltage trajectories of cell pairs
shown in A (1 s, −100, −50, 300–800 pA). Summary graphs in B1–B3 show left the input resistance
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marked prolongation of the decay time constant of PV-BCs IPSCs (Thomson et al.
2000; Doischer et al. 2008).

The peak amplitude of the inhibitory conductance at PV-BC output synapses
shows considerable variability across hippocampal areas (Table 1). Nevertheless,
peak amplitudes are generally high (up to 9.5 nS), which can be explained by the
large number of synaptic contact sites between the coupled neurons. In the CA1
area, for example, the number of contacts per unitary connection is between 10 and
12 (Buhl et al. 1995). Consistent with the high number of contact sites, the failure
rate of transmission is low (Hefft and Jonas 2005; Doischer et al. 2008; Table 1).
The reliable transmission at BC output synapses is further supported by the high
initial probability of transmitter release, estimated to be 0.79 in the dentate gyrus
(Kraushaar and Jonas 2000).

BC synapses display differences in kinetic properties depending on the identity of
the postsynaptic target (Bartos et al. 2001, 2002; Doischer et al. 2008). In particular,
the decay time constant was found to be by a factor of ∼2 faster in postsynaptic
BCs than in PCs. The mean value of the decay time constant at BC-BC pairs in
the dentate gyrus, CA1, and CA3 are 2.5, 1.7, and 1.2 ms, respectively (Bartos et
al. 2001, 2002; Table 1). These target cell-specific differences in the hippocampus
(Bartos et al. 2002; Glickfeld et al. 2008) could be explained by the expression of
distinct postsynaptic GABAARs. PV-BCs express α1 GABAAR subunits at higher
levels than PCs (Gao and Fritschy 1994; Fritschy and Möhler 1995; Klausberger
et al. 2002). Interestingly, however, other parameters of the synapses, including
the rise time, the peak amplitude of the inhibitory conductance, and the failure
rate of synaptic transmission, show no differences between BC-BC and PV-BC-PC
synapses (Bartos et al. 2001 2002; Table 1).

Previous paired recordings have been performed between two closely spaced
neurons due to the high connectivity among closely spaced cells. Recent inves-
tigations, however, indicate that the amplitude and time course of perisomatic
inhibition depends on the axonal distance between the pre- and postsynaptic neuron
(Strüber et al. 2015, 2017). In particular in the dentate gyrus, PV-INs effectively
control the activity of large neuron populations by their wide axonal arborization.
Here, synaptic signals become weaker with axonal distance between presynaptic
BC and its target GC due to lower contact numbers. The decay of uIPSCs also
declines more slowly with distance, resulting from changes in GABAAR subunit

�
Fig. 1 (continued) (Rin) of the recorded cell types and right the half duration of single action
potentials. Each circle represents a single data point, and colored circles with lines represent
mean values ± SEM. C, unitary IPSCs (uIPSCs) recorded at pairs shown in A. A presynaptic
action potential (top) evokes uIPSCs in the postsynaptic cell. Single uIPSCs (6 traces) are shown
superimposed (middle), and the average uIPSC (30 traces) at −70 mV is depicted below. Schematic
illustration represents the recoded neuron types; In C3bottom, average uIPSCs shown in C1–C3
were peak normalized and superimposed. ***p ≤ 0.001, **p ≤ 0.01, * p ≤ 0.05; 1, significantly
different to HICAP; 2, different to HIPP. (Adapted from Savanthrapadian et al. 2014; with
permission, © The Society for Neuroscience)
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composition (Strüber et al. 2015). Indeed, antibody labeling revealed that closely
spaced GCs are contacted by BC-mediated GABAergic synapses expressing less α2
subunits postsynaptically, whereas the α2 content increases at more distant target
GC (Strüber et al. 2015). Interestingly, this form of distance-dependent perisomatic
inhibition was independent of the target cell and observed at both postsynaptic GCs
as well as PV-INs (Strüber et al. 2017).

Morphological analysis revealed that many BC-IN synapses are on proximal
apical dendrites because the cell body of these cells is often located below the
somatic layer. The dendritic position of the synapses leads to attenuation and
deceleration of the synaptic current (Johnston and Brown 1983; Rall and Segev
1985; Major et al. 1993; Doischer et al. 2008). Therefore, to determine the real-
time course of the inhibitory conductance, rise and decay time constants of the
inhibitory postsynaptic conductance were estimated using passive cable models
of reconstructed BC-IN pairs (Bartos et al. 2001). In these simulations, the mean
value for the 20–80% rise time was found to be 0.17 ± 0.04 ms and the decay
time constant 1.8 ± 0.6 ms (Bartos et al. 2001). These values were by a factor of
1.8 and 1.4 faster than the experimentally obtained ones, indicating a considerable
electrotonic deceleration of the evoked IPSCs for these proximally positioned
dendritic synapses.

CCK-BCs Information on kinetic properties, synaptic strength, and precision in
transmitter release at CCK-BC inhibitory output synapses is limited (Table 1).
Paired whole-cell patch-clamp recordings showed that uIPSCs at CCK-BC to PC
synapses in CA1 have a 10–90% rise time of 0.73 ± 0.05 ms and a decay time
constant of 6.8 ± 0.2 ms (Neu et al. 2007), indicating that synaptic inhibition at
CCK-BC output synapses might be slower than at PV-BC output synapses (Bartos
et al. 2002). Furthermore, paired recordings at CCK-BC to GC synapses in the
dentate gyrus revealed average uIPSCs with slow 20–80% rise times and decay
time constants (∼0.9 ms and ∼22 ms, respectively; Table 1; Harney and Jones
2002; Hefft and Jonas 2005). However, these recordings have been performed at
room temperature (20–22 ◦C) and therefore cannot be directly compared with data
obtained at PV-BC output synapses measured at near-physiological temperatures
(Bartos et al. 2002). While PV-BCs display a fast-spiking (FS) discharge pattern,
CCK-BCs have been shown to be regular-spiking (RS) (Freund 2003). Whole-cell
recordings of presynaptic RS-BCs and postsynaptic PCs in CA1 revealed uIPSCs
with moderately fast time course with a 10–90% rise time of 0.86 ± 0.09 ms and
a decay time constant of 8.3 ± 1.22 ms (Table 1; Glickfeld and Scanziani 2006,
Glickfeld et al. 2008). These values were, however, not significantly different to the
ones obtained at FS-BC to PCs synapses with a 10–90% rise time of 0.66 ± 0.06 ms
and a decay time constant of 7.03 ± 1.03 ms in the same experiments (Table 1;
Glickfeld and Scanziani 2006; Glickfeld et al. 2008). Although the time course of
IPSCs at FS and RS output synapses are not significantly different, they seem to
be mediated by different postsynaptic GABAAR subunits. Putative CCK/vasoactive
intestinal polypeptide (VIP)-immunopositive BC synapses show several-fold lower
α1, but higher α2 subunit content than PV-positive synapses (Nyíri et al. 2001;
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Klausberger et al. 2002). Finally, CCK-IN to GC synapses show a higher level of
transmission failures than PV-BC to GC synapses, pointing to major differences in
the release probability among the two BC types (Table 1).

In addition to differences in the kinetics, strength, reliability, and transmitter
release at CCK-IN output synapses are characterized by a marked asynchrony
(Maccaferri et al. 2000; Hefft and Jonas 2005; M. Bartos, unpublished observation).
The less precisely timed GABA release results in a slow rise time of unitary
IPSCs observed at CCK-IN to principal cell synapses in the dentate gyrus and CA1
(Maccaferri et al. 2000; Hefft and Jonas 2005). The standard deviation of the first
latency distribution, which can be used as a measure for synchrony of release, is
significantly larger at CCK-IN to GC than at PV-BC to GC synapses (CCK-INs:
0.95 ± 0.3 ms versus 0.26 ± 0.06 ms). In summary, the properties of the inhibitory
output differ markedly between CCK- and PV-BCs. While PV-BC output synapses
are characterized by fast, strong, precisely timed transmission, CCK-BC synapses
are slower, are weaker, and show asynchronous signaling.

Similar to PV-BCs, CCK-BCs do also target other INs including CCK-BCs.
While neuroanatomical studies indicate that the mutual connectivity is comparable
to that of PV-BCs, and the total inhibitory input is stronger (Mátyás et al. 2004),
functionally, perisomatic inhibition appears to be weaker in CCK-INs. Recordings
from the two types in the CA1 area revealed that IPSCs evoked by minimal
stimulation in the cell body layer had large peak amplitudes in PV-immunopositive
cells, but small in CCK-BCs (Glickfeld et al. 2008). In comparison to ISPCs
recorded simultaneously in PyCs, the ratio of the amplitudes was close to 1 in PV-
but only 0.14 ± 0.05 in CCK-BCs, pointing to a target cell-dependent difference in
the strength perisomatic inhibition (Glickfeld et al. 2008).

Although HICAPs of the dentate gyrus do not have the classical axonal arbors
as BCs located in the GC layer, they are CCK-positive (Savanthrapadian et al.
2014), giving rise to the hypothesis that dentate gyrus CCK-expressing BCs are
homologous to HICAP cells.

Chandelier or Axo-Axonic (AA) Cells In contrast to PV-BCs, information on the
functional properties at AAs output synapses is scarce. Data from paired recordings
in the dentate gyrus showed that these INs evoke fast GABAAR-mediated IPSPs
in GCs (Buhl et al. 1994). Properties of the currents underlying the effect of
AAs were examined in paired whole-cell patch-clamp recordings in the CA3 area.
Results showed that unitary AA ISPCs have larger amplitude (463.3 ± 61.8 pA)
and a moderately fast time course (rise time, 1.1 ± 0.1 ms; decay time constant
11.0 ± 0.6 ms at room temperature; Szabó et al. 2010). Recordings from neocortical
AA cells and synaptically coupled PyCs suggested that the effect of this IN type is
not inhibitory but excitatory (Szabadics et al. 2006). Results from the hippocampus,
however, indicate that AA cells predominantly mediate hyperpolarization in the
postsynaptic PC population (Glickfeld et al. 2009). Indeed, a hyperpolarizing effect
of GABAergic synapses located at the AA segment controls ectopic backpropaga-
tion of action potentials in PC axons and thereby lowers the invasion of the soma by
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antidromic action potentials to maintain the functional polarization of PCs during
network oscillations (Dugladze et al. 2012).

Dynamic Properties of Perisomatic Inhibition When two action potentials are
elicited in the presynaptic BC in short succession, the amplitude of the second IPSC
elicited in the postsynaptic cell is smaller than that of the first. This phenomenon
is called paired-pulse depression (PPD) (Kraushaar and Jonas 2000; Bartos et al.
2001 2002). Coefficient of variation analysis (Malinow and Tsien 1990) suggests a
presynaptic locus for PPD (Bartos et al. 2001). In fact, PPD is independent of the
identity of the postsynaptic neuron: the extent of PPD of PV-BCs evoked ISPCs
was found to be similar at in PV-BC and PCs (∼31 % and ∼33 %, respectively;
Bartos et al. 2002). Under conditions of prolonged activity, synaptic transmission
at BC-BC and BC-GC synapses show rapid and marked initial depression but
subsequently stabilize at a lower level (Kraushaar and Jonas 2000; Bartos et al.
2001) demonstrating that GABAergic transmission is extremely stable at BC output
synapses.

CCK-BC output synapses express PPD to a similar extent as PV-BCs in the
dentate gyrus (Hefft and Jonas 2005). During repetitive stimulation (10 action
potentials, 50 Hz), however, the onset of depression was slower at CCK-INs
than at PV-BCs (Hefft and Jonas 2005). Interestingly, in the CA3 and CA1 area
high-frequency trains elicited in CCK-BCs result in facilitation of IPSCs in PCs
(Losonczy et al. 2004; Földy et al. 2006; Neu et al. 2007). Release at these synapses
is tightly controlled by endocannabinoids through CB1 receptors resulting in a low
release probability when the cells are quiescent (Földy et al. 2006).

Dendritic GABAAR-Mediated Inhibition

Dendritic inhibition is mediated by a highly heterogeneous population of INs.
Some of these INs, such as neurogliaform cells (NGFCs), perforant path- and
Schaffer collateral-associated INs of the CA1 area, or MOPP cells of the dentate
gyrus, mediate exclusively feedforward inhibition (Vida et al. 1998; Price et al.
2008; Elfant et al. 2008); others, such as O-ML and HIPP INs, provide feedback
inhibition (Han et al. 1993; Blasco-Ibáñez and Freund 1995); and yet another
group, such as CA1 bistratified cells, are involved in both types of inhibitory
microcircuits. Dendritic inhibition controls excitation of cells by glutamatergic
inputs, voltage-dependent activation of NMDA receptors, and synaptic plasticity
(Staley and Mody 1992; Davies et al. 1991; Mott and Lewis 1991; Miles et al.
1996). Furthermore, dendritic inhibition modulates the activation of voltage-gated
channels, the generation of slow Ca2+ spikes, and the backpropagation of action
potentials (Miles et al. 1996; Buzsáki 1996).

The large electrotonic distance between synapse location and the site of somatic
action potential generation, as well as the low-pass filtering properties of passive
membranes will result in attenuation of synaptically evoked IPSCs (Johnston and
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Brown 1983; Rall and Segev 1985; Major et al. 1993; Häusser and Roth 1997).
Dendritic inhibition will thereby have a slower, tonic rather than fast, “phasic”
inhibitory effect at the soma. Thus, in contrast to perisomatic inhibition which
determines spike timing and synchronizes the activity of PCs, dendritic inhibition
may offset the input-output relation of postsynaptic target cells (Mitchell and Silver
2003).

Information on the functional properties of GABAergic transmission of identified
DIs is limited. The following section summarizes data on properties of GABAAR-
mediated transmission at the output synapses of morphologically-identified DIs
from the CA1 and the dentate gyrus available in the literature (Hosp et al. 2014;
Savanthrapadian et al. 2014).

Neurogliaform Cells NGFCs form a dense axonal plexus in the stratum (str.)
lacunosum-moleculare of CA1 (Vida et al. 1998; Price et al. 2005, 2008) and the
molecular layer (Armstrong et al. 2011). GABAAR-mediated inhibitory signaling at
NG output synapses is characterized by slow time course and small peak amplitude
(Price et al. 2005, 2008; Szabadics et al. 2007; Armstrong et al. 2011). Paired
whole-cell patch-clamp recordings of presynaptic NGFCs and postsynaptic PCs
in acute hippocampal slice preparations at near-physiological temperature (30–
34 ◦C) revealed a decay time constant of the unitary IPSCs of 50 ± 4.9 ms
and an underlying peak conductance of ∼0.48 nS (Table 2; Price et al. 2008).
Similarly, paired recordings of synaptically interconnected NGFCs showed slow
kinetics with an average decay time constant of 42.05 ± 21.03 ms (Table 2; Price
et al. 2005). NGFCs additionally communicate with other types of INs, thereby
forming networks of synaptically connected GABAergic cells. Inhibition at these
NGFC to non-NGFC synapses is also characterized by a long decay time constant
(37.4 ± 11.86 ms; Table 2; Price et al. 2005). In the dentate gyrus, faster kinetics
have been observed at NGFCs targeting GCs, but they were still slower than at
BC-GC synapses with a rise time (10–90%) of 5.8 ± 1.1 ms, an amplitude of
8.01 ± 1.22 pA (Vhold −50 mV), and a decay time constant of 14.7 ± 3.6 ms
(Armstrong et al. 2011). Thus, synaptic inhibition by NGFCs has a very slow time
course, independent of the nature of the target cell, suggesting that this neuron type
is the source of the slow dendritic inhibition observed in earlier studies (Pearce
1993; Banks et al. 1998). The slow time course of the inhibitory conductance stems
from several structural and functional characteristics, including spillover of GABA
from the synapses formed by the dense axonal arbor and the properties of the GABA
receptors on the postsynaptic membrane (Szabadics et al. 2007).

The dynamic properties of GABAergic transmission at NGFC output synapses
during repetitive presynaptic activation were characterized by a marked depression
(5 Hz trains of 4 presynaptic action potentials). The peak amplitude of the second
IPSC in such a train of presynaptic activity was reduced by ∼40% at NGFC to PyC
synapses (Price et al. 2008) and by ∼25% at NGFC-NGFC synapses (Price et al.
2005). Thus, GABA release at NGFC output synapses is strongly depressing.



170 M. Bartos et al.

Ta
bl

e
2

K
in

et
ic

pr
op

er
tie

s
of

de
nd

ri
tic

in
hi

bi
tio

n

Po
st

sy
na

pt
ic

C
el

lt
yp

e
20

–8
0

%
ri

se
tim

e
(m

s)
D

ec
ay

τ
(m

s)
Pe

ak
co

nd
uc

ta
nc

e
(n

S)
Fa

ilu
re

ra
te

(%
)

Pa
ir

ed
re

co
rd

in
g

co
nfi

gu
ra

tio
n

Pu
bl

ic
at

io
n

D
G

G
C

0.
6/

0.
9–

1.
1a

6.
1/

20
.1

–2
5.

4a
1.

5/
1.

1a
32

/1
9–

65
a

0.
56

±
0.

13
6.

1
±

1.
7

1.
50

31
.5

±
8.

3
D

I-
G

C
M

.B
ar

to
s

(u
np

ub
lis

he
d)

24
.0

±
1.

0a
1.

12
a

65
±

5a
H

IC
A

P-
G

C
H

ar
ne

y
an

d
Jo

ne
s

(2
00

2)
0.

87
±

0.
08

a
20

.1
±

0.
8a

18
.6

±
6.

3a
H

IC
A

P-
G

C
H

ef
ft

an
d

Jo
na

s
(2

00
5)

1.
11

±
0.

08
a

25
.4

±
2.

1a
N

on
fa

st
-s

pi
ki

ng
ce

lls
-G

C
L

iu
et

al
.(

20
14

)
B

C
0.

7
5.

5
0.

6–
1.

5
48

0.
70

±
0.

15
5.

9
±

1.
7

0.
84

40
.5

±
10

.7
D

I-
B

C
M

.B
ar

to
s

(u
np

ub
lis

he
d)

0.
69

±
0.

06
5.

5
±

0.
3

0.
61

b
48

.3
±

5.
3

H
IC

A
P-

B
C

Sa
va

nt
hr

ap
ad

ia
n

et
al

.(
20

14
)

0.
7

±
0.

1
5.

5
±

0.
6

1.
54

b
H

IP
P-

B
C

Sa
va

nt
hr

ap
ad

ia
n

et
al

.(
20

14
)

H
IC

A
P

0.
7

6.
4

0.
32

57
0.

4
±

0.
18

5.
3

±
1.

01
0.

46
H

IC
A

P-
H

IC
A

P
M

.B
ar

to
s

(u
np

ub
lis

he
d)

0.
7

±
0.

09
6.

4
±

0.
8

0.
32

b
57

.2
±

6.
5

H
IC

A
P-

H
IC

A
P

Sa
va

nt
hr

ap
ad

ia
n

et
al

.(
20

14
)

H
IP

P
0.

5
10

.9
0.

62
50

0.
5

±
0.

08
10

.9
±

1.
9

0.
62

b
50

.4
±

6.
1

H
IP

P-
H

IP
P

Sa
va

nt
hr

ap
ad

ia
n

et
al

.(
20

14
)

N
G

5.
8;

10
–9

0%
14

.7
8.

01
50

5.
8

±
1.

1
14

.7
±

3.
6

8.
01

±
1.

22
b

–
N

G
-G

C
A

rm
st

ro
ng

et
al

.(
20

11
)



Fast and Slow GABAergic Transmission in Hippocampal Circuits 171

C
A

1
P

C
50

0.
11

b

50
±

4.
9

0.
11

b
N

G
-P

C
Pr

ic
e

et
al

.(
20

08
)

N
G

42
0.

48
b

42
.0

5
±

21
.0

3
0.

48
b

N
G

-N
G

Pr
ic

e
et

al
.(

20
05

)
37

.4
±

11
.8

6
N

G
-

to
no

n-
N

G
Pr

ic
e

et
al

.(
20

05
)

SO
-I

N
1.

3–
6.

2
9–

23
0.

43
–1

.3
5–

60
23

.0
±

5.
0

1.
34

5
±

4
O

-L
M

-I
N

to
SL

-I
N

E
lf

an
te

ta
l.

(2
00

8)
6.

2
±

0.
6

20
.8

±
1.

7
0.

43
O

-L
M

-I
N

to
PC

M
ac

ca
fe

rr
ie

ta
l.

(2
00

0)
1.

3
±

0.
1

9.
0

±
0.

7
59

.7
±

6.
0

IS
3

to
O

-L
M

Ty
an

et
al

.(
20

14
)

SL
M

-I
N

10 10
.2

±
6.

6
SL

M
-I

N
to

N
G

Pr
ic

e
et

al
.(

20
05

)
C

A
3

M
FA

-I
N

0.
3–

0.
9

4.
7

5.
0

36
–1

00
0.

28
±

0.
08

4.
6

±
1.

2
4.

97
b

M
FA

-I
N

-P
C

V
id

a
an

d
Fr

ot
sc

he
r

(2
00

0)
0.

9
±

0.
08

4.
8

±
0.

3
96

–1
00

/0
.2

H
z

M
FA

-I
N

-P
C

L
os

on
cz

y
et

al
.(

20
04

)
36

±
5/

25
H

z

A
bb

re
vi

at
io

ns
:P

C
py

ra
m

id
al

ce
ll,

N
G

C
ne

ur
og

lia
fo

rm
ce

ll,
SL

st
ra

tu
m

lu
ci

du
m

,I
N

in
te

rn
eu

ro
n,

D
I

ce
ll

de
nd

ri
te

-i
nh

ib
iti

ng
ce

ll
a R

ec
or

de
d

at
ro

om
te

m
pe

ra
tu

re
(2

1–
24

◦ C
);

b
C

al
cu

la
te

d
fr

om
pe

ak
IP

SC
an

d
es

tim
at

ed
C

l−
re

ve
rs

al
po

te
nt

ia
l



172 M. Bartos et al.

Stratum Oriens Interneurons (SO-IN) Functional synaptic communication has been
identified between CA1 INs with their somata and dendrites in str. oriens and
postsynaptic PCs. SO-INs are highly diverse, but one of the most abundant types
is the so-called oriens lacunosum-moleculare (O-LM) IN with axonal projection
to the str. lacunosum-moleculare (Maccaferri et al. 2000). Electron microscopy
revealed that the axon terminals of O-LM cells form symmetrical synapses with
the distal apical dendrites, mainly shaft, but also dendritic spines, of PyCs and
other INs (Gulyás et al. 1993; Sik et al. 1995; Katona et al. 1999). Unitary IPSCs
originating from O-LM cells and recorded at the soma of postsynaptic PCs at near-
physiological temperature (∼30 ◦C) have small peak amplitudes (∼0.43 nS) and
slow time courses with a 10–90% rise time of 6.2 ± 0.6 ms and a decay time
constant of 20.8 ± 1.7 ms (Table 2; Maccaferri et al. 2000). These dendritic inputs
are markedly slower than perisomatic inhibitory synapses, but considerably faster
than “slow” dendritic inhibition mediated by NGFCs.

Similarly to O-LM to PC connections, GABAAR-mediated inhibition between
presynaptic O-LM and postsynaptic SL-INs is slow and weak with a decay time
constant of 23 ± 5 ms and a peak conductance of 1.34 nS (Table 2, Elfant et al.
2008). Short-term plasticity was characterized by ∼40% PPD at 100 ms inter-spike
intervals. Finally, paired-pulse modulation resulted always in synaptic depression
independent of the type of the postsynaptic IN (Elfant et al. 2008). In contrast,
similar activity patterns failed to influence the second IPSC in PyCs (93 ± 4%;
Maccaferri et al. 2000), raising the possibility of target cell-specific differences in
presynaptic properties of these synapses.

Interneuron-Specific Cells (IS-3) IS-3 cells co-express the VIP and calretinin in the
hippocampal area CA1 and are located with their soma in the str. oriens/alveus
(O/A). They innervate several O/A INs including O-LM, bistratified cells, BCs,
and oriens-oriens INs with preferential innervation of O-LM cells through dendritic
synapses (Tyan et al. 2014). The amplitude of uIPSCs was small and the time course
slow with low release probability (Table 2), which was reflected in a high failure
rate (59.7%). An O-LM cell was contacted by an IS-3 cell via multiple contact
sites. Recruitment of converging inhibitory inputs from IS-3 cells onto target O-LM
neurons controlled their firing rate and the timing of action potential generation,
indicating that dendritic inhibition provided by IS-3 cells is required for precise
activity-dependent recruitment of O-LM cells and thus feedback inhibition in the
network.

Mossy Fiber-Associated Interneurons (MFA) MFA INs have dense axonal arboriza-
tion co-aligned with mossy fibers (MFs) in the str. lucidum of CA3 and the hilus
(Vida and Frotscher 2000). Their dendrites are located in the strata radiatum and
oriens, indicating that these INs are innervated by associational and commissural
fibers and thus primarily mediate feedback inhibition. Output synapses of MFA INs
are found on proximal dendritic shafts and to a lesser degree on somata of PyCs.
IPSCs recorded at postsynaptic PCs had fast 20–80% rise times of 0.28 ± 0.08 ms
and decay time constants of 4.6 ± 1.2 ms (Vida and Frotscher 2000; Losonczy
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et al. 2004; Table 2). The unitary peak conductance was high with an estimated
5 nS. Thus, in comparison to other DIs, GABAergic transmission at MFA output
synapses is characterized by fast time courses and high strength. Dynamic properties
of MFA synapses are similar to CCK-BCs in that they have a low initial release
probability, show a remarkable frequency-dependent facilitation, and transmit with
high reliability during high-frequency trains (Vida and Frotscher 2000; Losonczy
et al. 2004).

Dendritic Inhibitory Interneurons in the Dentate Gyrus The dense layer-specific
axonal distribution of the various DI cells indicates the formation of GABAergic
synapses located on the entire somato-dendritic domain of INs and PCs in the
dentate gyrus (Han et al. 1993; M. Bartos, unpublished data). Unitary inhibitory
events elicited by the activation of DI cells recorded at the soma of GCs and INs
are slower and weaker than perisomatic inhibition (Fig. 1; Savanthrapadian et al.
2014). The difference is in part due to electrotonic attenuation of the synaptic
events, but properties of postsynaptic GABAARs are likely to be of different subunit
composition (Table 2). Paired recordings of presynaptic DIs and postsynaptic target
cells at near-physiological temperature (32–34 ◦C) revealed unitary IPSCs with the
following parameters:

uIPSCs at HICAP-HICAP synapses were induced after a 1.8-fold longer synaptic
latency (2.2 ± 0.1 ms) with a 10.9-fold smaller peak amplitude (12.9 ± 3.9 pA
vs. BC-BC in mice 140.2 ± 30.8 pA) and slower time course (rise time
0.7 ± 0.09 ms, decay 6.4 ± 0.8 ms). The coefficient of variation (CV) in the
synaptic latency was three times higher at HICAP-HICAP than BC-BC synapses
(0.43 ± 0.08 vs. 0.14 ± 0.007). However, the decay time constant of the unitary
IPSCs is slower (3.95 ± 0.75 ms) than at BC-BC synapses (2.5 ± 0.2 ms).
Similarities in the functional synaptic properties are also evident between BC-
BC and HIPP-HIPP connections. Inhibitory signals at HIPP-HIPP synapses are
evoked after a similar mean synaptic latency (1.5 ± 0.16 ms) with a low CV
(0.2 ± 0.04). The rise time of uIPSCs is also short (0.5 ± 0.08 ms) similar to
BC-BC paired recordings, indicating a highly synchronous GABA release. Some
differences in the synaptic signaling are also apparent. First, the percentage of
failures is 29.7-fold higher than at BC-BC synapses (50.4 ± 6.1%). Second, the
amplitude of uIPSCs was 5.6 times smaller (25.0 ± 11.3 pA) than at BC-BC
synapses. Finally, the decay is 2.8-fold slower (10.9 ± 1.9 ms).

Although HIPP cells project their main axonal arbors to the outer molecular
layer of the dentate gyrus, some axon fibers are located in the hilus. Indeed, the
short latency at HIPP-HIPP signaling can be explained by the synapse location
close to the soma of the target cell as revealed by single-cell reconstructions
(Savanthrapadian et al. 2014). HICAP-HICAP pairs with axon collaterals in the
inner molecular layer form their contact sites at apical dendrites (Savanthrapadian
et al. 2014). During trains of 10 action potentials at 50 Hz, HICAP-HICAP synapses
express multiple-pulse facilitation (MPF) with a mean uIPSC10/uIPSC1 ratio of
1.6 ± 0.4. Signals at HIPP-HIPP synapses have a biphasic response with an initial
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strongly facilitating phase (uIPSC5/uIPSC1 ratio 2.4 ± 0.3) followed by a second
phase characterized by a decline in subsequent uIPSC size (uIPSC10/uIPSC1 ratio
1.4 ± 0.5; Savanthrapadian et al. 2014).

Reversal Potential (Esyn) of Synaptically Evoked IPSCs

Several lines of evidence indicate that GABAAR-mediated synaptic inhibition on
mature INs is not hyperpolarizing as previously assumed but “shunting” (Alger
and Nicoll 1979; Andersen et al. 1980; Martina et al. 2001; Chavas and Marty
2003; Vida et al. 2006). Shunting inhibition is defined as an inhibitory effect,
which only minimally affects the membrane potential, but counteracts excitation
by short-circuiting the underlying currents. In this scenario, the reversal potential
of synaptically evoked IPSCs (Esyn) is close to the resting membrane potential
(Vrest), e.g., in the voltage range between Vrest and the threshold for action potential
generation (Bartos et al. 2007; Sauer et al. 2012). To determine Esyn, whole-
cell recordings from BCs were performed in the perforated-patch configuration in
the dentate gyrus of rats and PV-EGFP-expressing mice (Vida et al. 2006). The
ionophore gramicidin preserves the intracellular Cl- concentration during recording,
thus allowing a realistic assessment of Esyn (Kyrozis and Reichling 1995). To deter-
mine Esyn, IPSCs were evoked by extracellular stimulation in the PC layer at varying
holding potentials. Synaptically evoked IPSCs reversed on average at −52 ± 1.9 mV
(Vida et al. 2006). This value was more positive than the corresponding Vrest of
−58.4 ± 1.4 mV, but more negative than the threshold potential (Table 3), indicating
that inhibition is shunting in BCs. Similarly, perforated-patch recordings from CA3
str. pyramidale, str. oriens, and str. lucidum INs revealed that GABAAR-mediated
synaptic inhibition is shunting or slightly hyperpolarizing with average Esyn values
4–5 mV more positive than the corresponding Vrest (Table 3; Lamsa and Taira 2003;
Banke and McBain 2006). These results have been further confirmed in CA1 str.
radiatum INs by using cell-attached recordings of GABAAR-mediated effects (Esyn:
−69.1 ± 1 mV; Vrest: −66 ± 1 mV; Tyzio et al. 2008).

In contrast to INs, Esyn of synaptically evoked IPSCs in PCs seems to be diverse
(Table 3). Synaptic inhibition in GCs is shunting with an Esyn ∼1–10 mV more
positive than the resting membrane potential (Table 3, Overstreet-Wadiche et al.
2005; Sauer et al. 2012). Noninvasive recording of unitary field potentials which
reflect the postsynaptic effect of GABA release from an identified presynaptic BC
confirmed the shunting nature of perisomatic inhibition in the dentate gyrus (Sauer
et al. 2012). Importantly, these results did not depend on the age of the animal,
excluding a late developmental change in Esyn at this synapse (Sauer et al. 2012).
Synaptically evoked IPSCs in CA3 PCs reverse at ∼−73 mV, which is ∼10 mV
more negative than the corresponding Vrest of ∼−63 mV (Table 3), reflecting
hyperpolarizing inhibition in these neurons (Banke and McBain 2006; Lamsa and
Taira 2003). In contrast, somatic cell-attached recordings from CA3 PyCs reveal
shunting or even depolarizing inhibition with an Esyn of −75.3 ± 0.9 mV and a



Fast and Slow GABAergic Transmission in Hippocampal Circuits 175

Ta
bl

e
3

R
ev

er
sa

lp
ot

en
tia

lo
f

G
A

B
A

er
gi

c
re

sp
on

se
s

C
el

lt
yp

e
E

sy
n

(m
V

)
V

re
st

(m
V

)
G

ra
m

ic
id

in
pe

rf
or

at
ed

-p
at

ch
re

co
rd

in
g

te
ch

ni
qu

e
Pu

bl
ic

at
io

n

D
G

G
C

−7
2/

−7
4–

82
a

−7
5a

−7
1.

9
±

1.
9

Sy
na

pt
ic

st
im

ul
at

io
n

K
ra

us
ha

ar
an

d
Jo

na
s

(2
00

0)
−7

4
±

7a
75

a
Sy

na
pt

ic
st

im
ul

at
io

n
O

ve
rs

tr
ee

t-
W

ad
ic

he
et

al
.(

20
05

)
−8

1.
6

±
2.

2a
G

A
B

A
ba

th
ap

pl
ic

at
io

n
To

zu
ka

et
al

.(
20

05
)

−6
4.

5
±

2.
4

−7
5.

8
±

1.
1

Sy
na

pt
ic

st
im

ul
at

io
n

Sa
ue

r
et

al
.(

20
12

)
B

C
−5

7/
−5

2a
−6

4/
−5

8a

−5
2.

3
±

1.
9a

−5
8.

4
±

1.
4a

Sy
na

pt
ic

st
im

ul
at

io
n

V
id

a
et

al
.(

20
06

)
C

A
3

P
C

−7
3–

75
−6

3–
78

−7
2.

7
±

0.
9

−6
4.

6
±

0.
8

Sy
na

pt
ic

st
im

ul
at

io
n

L
am

sa
an

d
Ta

ir
a

(2
00

3)
−7

3
±

3.
8

−6
2.

8
±

4.
4

Sy
na

pt
ic

st
im

ul
at

io
n

B
an

ke
an

d
M

cB
ai

n
(2

00
6)

−7
5.

3
±

0.
9

−7
8

±
2

C
el

l-
at

ta
ch

ed
G

A
B

A
ap

pl
ic

at
io

nb
Ty

zi
o

et
al

.(
20

08
)

ST
R

-
an

d
ST

P
/S

T
O

IN
s

−6
5–

69
−6

1–
66

−6
9.

1
±

1.
0

−6
6.

0
±

1.
0

C
el

l-
at

ta
ch

ed
G

A
B

A
ap

pl
ic

at
io

nb
Ty

zi
o

et
al

.(
20

08
)

−6
5.

3
±

1.
0

−6
0.

5
±

0.
7

Sy
na

pt
ic

st
im

ul
at

io
n

L
am

sa
an

d
Ta

ir
a

(2
00

3)
SL

-I
N

s
−7

8
−7

5
−7

8.
1

±
3.

7
−7

5.
4

±
2.

5
Sy

na
pt

ic
st

im
ul

at
io

n
B

an
ke

an
d

M
cB

ai
n

(2
00

6)
C

A
1

P
C

−6
9

−6
6

−6
9

±
4

−6
6.

0
±

0.
5

Sy
na

pt
ic

st
im

ul
at

io
n

R
ie

kk
ie

ta
l.

(2
00

8)
−6

7.
8

±
2.

3
−6

3.
2

±
1.

0
Sy

na
pt

ic
st

im
ul

at
io

n
Sa

ue
r

et
al

.(
20

12
)

A
bb

re
vi

at
io

ns
:G

C
gr

an
ul

e
ce

ll,
B

C
ba

sk
et

ce
ll,

P
C

py
ra

m
id

al
ce

ll,
ST

R
st

ra
tu

m
lu

ci
du

m
,S

T
P

st
ra

tu
m

py
ra

m
id

al
e,

ST
O

st
ra

tu
m

or
ie

ns
,S

L
st

ra
tu

m
lu

ci
du

m
a R

ec
or

de
d

at
ro

om
te

m
pe

ra
tu

re
;b

G
A

B
A

re
ce

pt
or

re
ve

rs
al

po
te

nt
ia

ld
ep

ic
te

d
fr

om
ce

ll-
at

ta
ch

ed
re

co
rd

in
gs

of
in

di
vi

du
al

G
A

B
A

ch
an

ne
ls



176 M. Bartos et al.

corresponding Vrest of −78 ± 2 mV (Table 3; Tyzio et al. 2008). Similarly, in CA1,
some discrepancy persists about the nature of GABAergic inhibition. Perforated-
patch recordings from CA1 PyCs indicated shunting or slightly hyperpolarizing
inhibition (Table 3, Riekki et al. 2008). In contrast, unitary field recording with
distinct IN types including BCs, AA, O-LM, and bistratified cells as the presynaptic
neuron was always hyperpolarizing (Glickfeld et al. 2009; Sauer et al. 2012).
Differences in the excitation state of the recorded cells (Lamsa and Taira 2003),
modulation of Cl− transporters (Woodin et al. 2003) or differences in membrane
properties between neurons in different brain areas might explain the variability in
the obtained Esyn values.

In summary, synaptic GABAAR-mediated synaptic inhibition onto INs is largely
shunting, independent of the nature of the recorded IN type or the hippocampal area.
However, synaptic inhibition in PCs is diverse and varies from hyperpolarizing to
shunting and even depolarizing inhibition.

GABABR-Mediated Inhibition in Hippocampal Circuits

Early electrophysiological and pharmacological studies demonstrated that, in addi-
tion to fast ionotropic GABAARs, slow-acting metabotropic GABABRs are also
involved in the mediation of the effects of GABA in the hippocampus. In CA1 PyCs,
extracellular stimulation in the str. radiatum elicits a biphasic IPSP consisting of a
fast and a slow component (Newberry and Nicoll 1984; Dutar and Nicoll 1988b).
While the fast component of the compound IPSP is blocked by the GABAAR
antagonist bicuculline, the slow component persists under bicuculline application
(Newberry and Nicoll 1984; Dutar and Nicoll 1988b) and can be blocked by
the GABABR antagonist CGP35348 (Fig. 2a; Solís and Nicoll 1992). Similarly,
stimulation in dendritic layers elicits slow GABABR-mediated inhibitory responses
in CA3 PyCs, dentate gyrus GCs, and various types of INs (Thompson and Gähwiler
1992; Otis et al. 1993; Khazipov et al. 1995; Mott et al. 1999; Booker et al.
2013, 2017b). Results of these studies, thus, indicate a widespread and abundant
postsynaptic localization of GABABRs in the dendrites of PCs and INs (Sibbe and
Kulik 2017; Kulik et al. 2017).

GABABRs are also expressed presynaptically where they modulate release of
various neurotransmitters and neuromodulators (Sibbe and Kulik 2017; Kulik et
al. 2017). Presynaptic receptors are commonly subdivided into autoreceptors and
heteroreceptors (Bettler et al. 2004) depending on whether they control the release of
GABA from inhibitory terminals (Booker et al. 2013, 2017a) in a feedback manner
(Davies et al. 1991) or act at the axon terminals of other transmitter systems (e.g.,
glutamatergic axons; Vogt and Nicoll 1999; Kulik et al. 2002, 2003; Guetg et al.
2009; Oláh et al. 2009).
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Fig. 2 GABABR-mediated effects in hippocampal neurons. (a) Pharmacological dissection of the
monosynaptic IPSP reveals the fast GABAA and the slow GABABR-mediated IPSP components
in a CA1 PyC. B,C Kinetics (b) and reversal potential (c) of the GABABR-mediated slow IPSC in
dentate gyrus GCs. (d) Activation of GABAB autoreceptors contribute to depression of IPSCs in
response to paired stimuli (top trace, arrow). CGP 35348, a GABAB receptor antagonist relieves
presynaptic inhibition and increases the amplitude of the second response (bottom trace, arrow). (a
adapted from Solís and Nicoll 1992; b and c adapted from Otis et al. 1993; d adapted from Davies
and Collingridge 1993 with permission, © The Society for Neuroscience and The Physiological
Society)

Structure and Signaling Through Metabotropic GABABRs

GABABRs belong to the family of seven transmembrane domain G protein-coupled
receptors (GPCRs) (Kaupmann et al. 1997). Two different genes, encoding the
GABAB1 – which occurs in alternatively spliced forms designated GABAB1a-n –
and the GABAB2, subunits have so far been identified (Kaupmann et al. 1997;
Isomoto et al. 1998; Pfaff et al. 1999; Schwarz et al. 2000; Wei et al. 2001; Lee
et al. 2010). As regards GABAB1, the GABAB1a and GABAB1b transcripts are the
most abundant throughout the central nervous system (CNS), exhibiting differences
in the extracellular NH2-terminal domain (Kaupmann et al. 1997). Although there
are indications that splice variants exist for GABAB2 (GABAB2a-c) (Billinton et al.
2001), more recent results suggest that GABAB2b and GABAB2c transcripts may
represent artifacts arising during cDNA synthesis and/or PCR amplification (Bettler
et al. 2004).

For their surface localization, efficient coupling to the physiological effectors and
formation of fully functional receptors, assembly of heterodimeric complexes made
up of GABAB1 and GABAB2 subunit isoforms is required (Jones et al. 1998; White
et al. 1998; Kaupmann et al. 1998a; Marshall et al. 1999; Kuner et al. 1999; Bettler
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et al. 2004; Pin and Bettler 2016). The independently regulated GABAB(1a;2) and
GABAB(1b;2) receptor subtypes differentially compartmentalize and fulfill distinct
pre- vs. postsynaptic functions, respectively, in cortical PCs and INs (Pérez-Garci
et al. 2006; Vigot et al. 2006; Shaban et al. 2006; Guetg et al. 2009). In the
heterodimers, the GABAB1 protein contains the ligand-binding domain, whereas
the GABAB2 subunit interacts with G proteins (Kaupmann et al. 1998a).

Recent biochemical and electrophysiological studies, prompted by the diversity
in properties and characteristics of GABABR responses, provided compelling
evidence that a further variety of molecularly and functionally distinct types of
GABABRs exist (Schwenk et al. 2016; Bettler and Fakler 2017; Fritzius et al.
2017). The diversity of the native GABABRs originates from the co-assembly of
the GABABR subunits with numerous types of auxiliary proteins (Gassmann and
Bettler 2012; Schwenk et al. 2016). One of the most abundant and best studied
constituents of the GABABR macromolecular complex is the K+ channels tetramer-
ization domain-containing (KCTD) family of proteins (Schwenk et al. 2010; Bartoi
et al. 2010; Metz et al. 2011; Turecek et al. 2014). Four KCTD proteins, designated
KCTD8, KCTD12, KCTD12b, and KCTD16, associate with the GABAB2 subunit
and determine the kinetics and pharmacology, including agonist potency and G
protein signaling, as well as the desensitization of the receptor response in both den-
dritic and axonal compartments of the cells (Schwenk et al. 2010; Adelfinger et al.
2014; Rajalu et al. 2015; Booker et al. 2017b). Two recent elegant pharmacological
studies provided direct evidence for the involvement of both KCTD12 and KCTD16
in determining phenotypes of behavioral activity, emotionality, as well as neuronal
excitability (Cathomas et al. 2015, 2017). Furthermore, high-resolution functional
proteomics more precisely identified the building blocks of GABABRs: the receptor
core is assembled from GABAB1, GABAB2, KCTD proteins, and a distinct set of G
protein subunits, whereas the periphery of the receptor’s nanoenvironment is formed
by transmembrane proteins (Schwenk et al. 2016). These peripheral constituents
can operate as effectors (Schwenk et al. 2016); can be, via interaction with sushi
domains, mediators of cellular processes that direct the trafficking of GABAB(1a;2)
receptors into the appropriate compartment of neurons (Tiao et al. 2008); or may
represent linkers between GABABRs and cellular signaling processes (Sakaba and
Neher 2003; Pettem et al. 2013).

As GPCRs, effects of GABABR complexes are mediated by second messenger
cascades regulating the activity of adenylyl cyclase and phospholipase A2, as well as
effector channels such as G protein-coupled inwardly rectifying K+ (Kir3) channels
or low and high-voltage-activated Ca2+ (Cav) channels (Marshall et al. 1999; Pérez-
Garci et al. 2006; Gassmann and Bettler 2012; Sibbe and Kulik 2017; Kulik et al.
2017; Booker et al. 2018). Accordingly, application of pertussis toxin, an adenosyl
transferase, which inactivates several types of Gi proteins, or GDPβ-S, a structural
analog of GDP, which competes with GTP for the G protein-binding site, abolishes
both pre- and postsynaptic effects of GABABRs in hippocampal PyCs (Andrade et
al. 1986; Dutar and Nicoll 1988b; Thompson and Gähwiler 1992; Sodickson and
Bean 1996).
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Postsynaptic Slow Inhibition Mediated by GABABRs

Functional properties of postsynaptic GABABR-mediated responses are markedly
different from those of fast GABAAR-dependent signaling. First, GABAB IPSCs
have a much slower time course (Fig. 2b). Pharmacologically isolated slow IPSCs
have a long onset latency (∼12–20 ms, Otis et al. 1993; Table 4), reflecting the
multiple steps leading up to the activation of the receptors and their G protein-
mediated coupling to the effectors. Furthermore, GABAB IPSCs have very slow
rise and decay. In dentate gyrus GCs, the rise of the IPSC could be described by a
fourth-order exponential with an activation time constant of ∼45 ms and the decay
by a biexponential function with time constants of ∼110 and ∼516 ms (Otis et
al. 1993; Fig. 2b; Table 4). Similarly slow kinetics of GABAB IPSCs have been
reported in CA1 PyCs (Davies et al. 1990; Ling and Benardo 1994; Degro et al.
2015) and in various types of INs (Khazipov et al. 1995; Mott et al. 1999; Booker
et al. 2013, 2017b; Table 4).

Second, ionic mechanisms of GABABR-mediated postsynaptic effects are also
different from those of GABAARs. Slow IPSPs and baclofen-induced currents
reverse close to the estimated equilibrium potential of K+ ions, in the range between
−90 and −100 (Fig. 2c and Table 4), indicating that GABABRs activate a K+-
selective conductance (Gähwiler and Brown 1985; Davies et al. 1990; Thompson
and Gähwiler 1992; Ehrengruber et al. 1997; Booker et al. 2013; Degro et al.
2015). Furthermore, application of Ba2+, an inhibitor of inwardly rectifying K+
(Kir) channels, abolishes these effects (Gähwiler and Brown 1985; Thompson and
Gähwiler 1992; Sodickson and Bean 1996). In fact, the channels mediating the
GABAB responses have been identified as the Kir3 channel subfamily (Lüscher et al.
1997; Kaupmann et al. 1998b). Kir3 channels comprise four subunits (Kir3.1-3-4;
Dascal 1997) and form homotetrameric or heterotetrameric complexes (Krapivinsky
et al. 1995; Inanobe et al. 1995; Kofuji et al. 1995; Spauschus et al. 1996; Slesinger
et al. 1996; Liao et al. 1996; Wischmeyer et al. 1997). In the hippocampus, Kir3
channels are thought to be mainly composed of the Kir3.1 and Kir3.2 subunits
(Lesage et al. 1995; Duprat et al. 1995; Leaney 2003). The Kir3.2 subunit is
an essential part of the functional channel, determining its assembly and surface
localization (Inanobe et al. 1999; Ma et al. 2002; Lujan et al. 2009), whereas Kir3.3
protein contains a lysosomal-targeting motif that reduces its surface expression and
accumulation (Ma et al. 2002). In Kir3.2 knockout animals, expression of Kir3.1 is
reduced, and slow inhibitory postsynaptic responses are abolished (Liao et al. 1996;
Signorini et al. 1997; Lüscher et al. 1997). In good agreement with the proposed
coupling of GABABRs and Kir3 channels, immunocytochemical investigations
revealed robust colocalization of the two proteins in dendrites of CA PyCs and
various types of INs (Kulik et al. 2006; Booker et al. 2013; Degro et al. 2015; Booker
et al. 2017b).

In addition to regulating Kir3 channels, dendritic GABABRs have been shown to
inhibit Kir2 channels (Rossi et al. 2006) and modulate Cav channels in cortical PCs
and INs. Recent studies provided evidence that GABABRs can inhibit Cav1.2 (L-
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type), Cav2.1 (P/Q-type), Cav2.2 (N-type), and Cav2.3 (R-type) channel-mediated
dendritic spikes in prefrontal cortical neurons (Chalifoux and Carter 2011) and in
layers 2/3 and 5 somatosensory neocortical PyCs (Pérez-Garci et al. 2006, 2013;
Larkum et al. 2007). GABABRs have also been shown to inhibit Cav1.2 channels
in dendrites of hippocampal somatostatin-expressing INs (SOM-INs) and abolish
thereby the induction of long-term potentiation (LTP) at their excitatory input
synapses (Booker et al. 2018).

Presynaptic Inhibition of Synaptic Transmission by GABABRs

Presynaptic GABABRs play an important role in regulating synaptic transmission
at both excitatory and inhibitory synapses. At excitatory synapses, their activation
results in depression of glutamatergic synaptic responses (Lei and McBain 2003).
Evidence for presynaptic effects of GABA has been obtained at various hippocam-
pal afferent pathways including the hippocampal CA3-CA1 and MF-CA3 PyC
synapses (Vogt and Nicoll 1999; Vigot et al. 2006; Guetg et al. 2009). At these
synapses, it has been shown that synaptically released GABA suppresses Schaffer
collateral and MF responses through GABABRs, predominantly via GABAB(1a;2)
receptors (Vigot et al. 2006; Guetg et al. 2009). Thus, GABA spilling over from
local inhibitory synapses can regulate glutamatergic transmission by heterosynaptic
inhibition at various cortical synapses (Vogt and Nicoll 1999; Oláh et al. 2009;
Urban-Ciecko et al. 2015). As many DI cells have axons co-aligned with afferent
pathways (Gulyás et al. 1993; Han et al. 1993; Vida et al. 1998; Vida and Frotscher
2000; see chapter “Morphology of Hippocampal Neurons”), this mechanism enables
INs to provide input-specific presynaptic control through heterosynaptic inhibition
to the main afferent systems to the hippocampal areas (Sohal and Hasselmo 1998).

Presynaptic action of GABABRs is primarily dependent on G protein-mediated
inhibition of the Ca2+ conductance (Bettler et al. 2004). Paired recordings from
calyx of Held terminals and postsynaptic neurons in the medial nucleus of the
trapezoid body provided direct evidence that activation of the receptors by baclofen
has no effect on presynaptic K+ conductances but inhibits Ca2+ currents in
these terminals (Takahashi et al. 1998). It has been further demonstrated that the
presynaptic effect of baclofen is also blocked by GDPβ-S (Takahasi et al. 1998).
In the hippocampus, direct patch-clamp recordings from presynaptic elements
cannot be routinely performed, with the exception of the large MF terminals on
CA3 PyCs (e.g., Geiger and Jonas 2000). Nevertheless, overwhelming evidences
suggest that the main mechanisms underlying presynaptic GABABR responses at
hippocampal synapses also involve Cav channels (Bettler et al. 2004; Ulrich and
Bettler 2007; Laviv et al. 2011; Vertkin et al. 2015). Presynaptic depression of
EPSPs by baclofen is unaffected by Ba2+ in cultured hippocampal PyCs (Thompson
and Gähwiler 1992), and remains also unchanged in slices from Kir3.2 (GIRK2)
knockout mice (Lüscher et al. 1997). In contrast, Ca2+ currents evoked in cultured
PyCs and INs are highly sensitive to baclofen (Scholz and Miller 1991). Most

http://dx.doi.org/10.1007/978-3-319-99103-0_2
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compellingly, the inhibitory effects of baclofen on fast presynaptic Ca2+ transients
and field EPSPs show similar time course in CA1 PyCs (Wu and Saggau 1995).
Thus, presynaptic inhibition of excitatory transmission by GABABRs depends
on reduction in Ca2+ conductance rather than activation of K+ currents in the
hippocampus (Gassmann and Bettler 2012). However, the involved Ca2+ channel
types seem to differ at the various synapses. In CA1 PyCs GABABR-mediated
presynaptic inhibition is occluded by the application of ω-conotoxin, a selective
Cav2.2 Ca2+ channel blocker, but not affected by ω-agatoxin, a blocker of Cav2.1
channels (Wu and Saggau 1995). In contrast, in CA3 str. radiatum INs ω-conotoxin
and ω-agatoxin occlude presynaptic inhibitory effects of baclofen on miniature
EPSCs to an equal degree (Lei and McBain 2003). However, evidence exists that
the control of transmitter release by GABABR not only acts through Ca2+ channels
reducing presynaptic release itself but may also lead to altered short-term plasticity
independent of the change in release probability (Lei and McBain 2003; Booker
et al. 2017a), pointing to more direct interactions with the release machinery.

At hippocampal GABAergic synapses, activation of presynaptic GABABRs,
both GABAB(1a;2) and GABAB(1b;2) receptor types (Vigot et al. 2006), results in
reduced inhibitory transmission (Doze et al. 1995; Poncer et al. 2000; Booker et
al. 2017a). Consequently, repetitive stimulation leads to the attenuation of IPSCs
(“autoinhibition,” Davies et al. 1991; Mott and Lewis 1991; Fig. 2d). This dynamic
modulation of inhibitory transmission has an important function in regulating
the induction of LTP in the hippocampus (Davies et al. 1991; Mott and Lewis
1991). The molecular mechanism of GABABR-dependent presynaptic inhibition in
GABAergic terminals has extensively been investigated. In an early study, effects
of baclofen on unitary IPSPs in synaptically coupled pairs of cultured hippocampal
neurons were not affected by pre-treatment with pertussis toxin (Harrison 1990).
Others have reported that pertussis toxin abolished the baclofen-induced depression
of IPSPs in cultured CA3 PyCs (Thompson and Gähwiler 1992). Similarly, findings
about the ionic mechanism of presynaptic GABABRs have remained somewhat
controversial. Thompson and Gähwiler (1992) have shown that extracellular Ba2+
reduces presynaptic depression of IPSPs by baclofen in cultured CA3 PyCs,
suggesting a contribution of K+ channels, plausibly of the Kir3 type. Furthermore,
baclofen decreases the frequency of both spontaneous IPSCs and action potential-
and Ca2+-independent miniature IPSCs recorded in the presence of tetrodotoxin
(Lei and McBain 2003). Increased frequency of miniature IPSCs by elevated levels
of extracellular KCl is blocked by Cd2+, and the additional application of baclofen
leads to a further reduction in the IPSC frequency (Lei and McBain 2003). Thus, in
GABAergic terminals the coupling of presynaptic GABABRs may, at least partially,
utilize pertussis toxin-insensitive G proteins and activate K+ channels or directly
affect the synaptic release machinery in addition to the inhibition of Cav channels.
Furthermore, there is also evidence that the modulation of K+ and Cav channels is
not the only mechanism by which GABA can regulate transmitter release: whole-
cell recordings from CA1 PyCs demonstrated that inhibition of GABA release by
GABABRs is reduced by an activator of protein kinase C (PKC) (Jarolimek and
Misgeld 1997).
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Cellular and Subcellular Localization of Postsynaptic GABABRs

Consistent with the physiological and pharmacological data, in situ hybridization
(Kaupmann et al. 1998a; Bischoff et al. 1999) and autoradiography (Bowery et al.
1987; Chu et al. 1990) confirmed the abundant expression of GABABR subunits in
hippocampal PCs and INs. Subsequent immunocytochemical studies (Fritschy et al.
1999; Sloviter et al. 1999; Margeta-Mitrovic et al. 1999; Kulik et al. 2002, 2003)
further revealed the cellular and subcellular distribution and localization of the
GABABR subunits. At the light microscopic level, the immunostaining for the two
subunits, GABAB1 and GABAB2, showed very similar patterns of distribution in the
hippocampus (Fig. 3a, b). In the CA areas and the dentate gyrus, immunoreactivity
was most intense over the dendritic layers. The str. lacunosum-moleculare of CA3
showed the strongest labeling for the proteins, whereas in CA1 the immunoreactivity
for the receptor subunits was generally weak to moderate. In the dentate gyrus, the
immunolabeling was weak in the hilus and moderate in the molecular layer (Fritschy
et al. 1999; Margeta-Mitrovic et al. 1999; Kulik et al. 2003).

At the subcellular level, the immunolabeling for both GABAB1 and GABAB2
was observed in postsynaptic and, to a lesser extent, presynaptic compartments
of PCs (Fig. 3c–e). Postsynaptically, the majority of the receptor subunits were
localized to the extrasynaptic plasma membrane of dendritic spines and shafts of
PyCs and dentate GCs (Kulik et al. 2003). Quantitative analysis further revealed
an enrichment of GABABRs around excitatory synapses on dendritic spines, and
an even distribution on dendritic shafts of PyCs contacted by GABAergic axon
terminals (Fig. 3f, g; Kulik et al. 2003). Interestingly, the effector Kir3 channels
displayed a very similar cellular and subcellular distribution (Koyrakh et al. 2005;
Kulik et al. 2006). Moreover, GABABRs and Kir3 channels were found to be co-
clustered around excitatory synapses on dendritic spines of PyCs (Fig. 3g; Kulik
et al. 2006) indicating the functional association of these two proteins in this sub-
cellular compartment. The enrichment of the GABABR-Kir3 channel complexes in
spines implies their intimate involvement in the control of synaptic integration and
plasticity. Indeed, GABABR-mediated inhibition has been shown to act as a break
on NMDA receptor-mediated responses and thereby reduced synaptic plasticity
in PyCs (Otmakhova and Lisman 2004; Malenka and Bear 2004). Conversely,
activation of NMDA receptors and Ca2+/calmodulin-dependent protein kinase II
(CaMKII), as well as rise in postsynaptic Ca2+ results in LTP of the GABABR-
Kir3 channel-mediated slow IPSPs, which parallel the time course of LTP of
excitatory transmission (Huang et al. 2005). The functional significance of this IPSC
potentiation is to sharpen the coincidence detection of synchronous excitatory inputs
(Huang et al. 2005), a hallmark for learning and memory. Moreover, activation
of NMDA receptors along with CaMKII can regulate the surface expression and
function of GABABRs: prolonged activation of glutamate receptors results in
endocytosis and subsequent degradation of GABABRs (Terunuma et al. 2010; Guetg
et al. 2010).
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Fig. 3 Cellular and subcellular distribution of GABABRs in the hippocampus. (a and b) Light
micrographs show the distribution of immunoreactivity for GABAB1 and GABAB2 in the
hippocampus. Strong labeling for the subunits was observed in dendritic layers of CA areas
and dentate gyrus. Strong immunoreactivity for GABAB1, but not for GABAB2, was detected
in somata of CA1 pyramidal cells and INs. (c–e), Electron micrographs show pre-embedding
immunogold labeling for the receptor subunits in pre- and postsynaptic compartments of pyramidal
cells. Immunogold particles for GABAB1 and GABAB2 were detected on the synaptic membranes
(arrowheads in c and e) of the axon terminals (T), as well as on the extrasynaptic membranes
(arrows in c–e) of dendritic spines (s) and dendritic shafts (Den) of pyramidal cells. (f and g)
Histograms illustrate the distribution of immunoparticles for GABAB1 and Kir3.2 relative to
symmetrical and asymmetrical synapses on dendrites of CA1 pyramidal cells. Note the enrichment
of both molecules in the vicinity of asymmetrical, putative glutamatergic synapses on dendritic
spines (g), but not around symmetrical, putative inhibitory synapses on shafts (f). Scale bars: a and
b, 200 μm; c–e, 0.2 μm (a adapted from Kulik et al. 2003; f and g adapted from Kulik et al. 2006
with permission, © Society for Neuroscience)

Presynaptically, the immunolabeling for GABABRs is substantially weaker.
Nevertheless, immunoreactivity has been consistently found in glutamatergic axon
terminals forming asymmetrical synaptic contacts (Kulik et al. 2003). The labeling
intensity was higher in these boutons than in putative inhibitory terminals making
symmetrical synapses (see below). The receptor subunits were mainly detected
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at the extrasynaptic plasma membrane and occasionally over the presynaptic
membrane specialization (Fig. 3c, e; Kulik et al. 2003). Recent results further
showed that, while postsynaptic receptors are mainly composed of the GABAB1b
and GABAB2 subunits (GABAB(1b;2) receptors), terminals of excitatory afferents,
including the Schaffer collaterals and the MFs, preferentially contain receptors made
up of GABAB1a and GABAB2 subunits (GABAB(1a;2) receptors, Vigot et al. 2006;
Guetg et al. 2009). Interestingly, receptors with the latter subunit composition have a
higher sensitivity for baclofen and GABA and can mediate heterosynaptic inhibition
of glutamatergic transmission by synaptically released GABA (Guetg et al. 2009).

Functional GABABRs in Hippocampal Inhibitory Interneurons

In addition to labeling in PCs, immunoreactivity for GABABR subunits was also
found in various subpopulations of INs. At the light microscopic level, strong
immunostaining for the GABAB1 subunit, but not for the GABAB2 subunit, is
present in cell bodies of a subset of GABAergic INs scattered throughout the
hippocampus (Fritschy et al. 1999; Margeta-Mitrovic et al. 1999; Sloviter et al.
1999; Kulik et al. 2003). Electron microscopic investigation demonstrated that the
strong somatic immunoreactivity for GABAB1 can be ascribed to the abundance of
the protein in the endoplasmic reticulum (Kulik et al. 2003), conceivably reflecting
a reserve pool of the receptor subunit. Fluorescence colocalization studies showed
that INs with high somatic GABAB1 include PV-, CCK-, SOM-, neuropeptide Y-
, calbindin-, and calretinin-containing cells (Sloviter et al. 1999; Booker et al.
2013, 2017b). Ultrastructural analysis further demonstrated that immunoreactivity
for GABABRs is present postsynaptically along the extrasynaptic plasma membrane
of dendritic shafts of NGFCs, PV-, CCK-, and SOM-expressing cells (Fig. 4a, b,
f, g; Price et al. 2005; Booker et al. 2013, 2017b, 2018). Postsynaptic GABABRs
were found to activate Kir3 channels in PV- and CCK-expressing BCs producing
substantial slow IPSCs (Fig. 4c, d, h; Booker et al. 2013, 2017b), consistent with
the expression of both the receptor and Kir3 channels on their dendritic membrane
surface. Interestingly, in DI PV- and CCK-positive INs slow GABABR IPSCs
were consistently smaller than in BCs suggesting IN type-specific expression of
the functional receptors (Fig. 4e, h, i). Indeed, on archetypal dendrite-inhibiting
SOM-INs postsynaptic GABABRs failed to produce substantial inhibitory currents,
despite the presence of immunolabeling for both the channel and the receptor on
the dendrites of these INs. Instead, in SOM-INs GABABR activation selectively
inhibited Cav1.2 channels, leading to reduced Ca2+ influx and loss of LTP at
excitatory synapses onto these INs (Booker et al. 2018).

Presynaptic GABABRs were also observed in GABAergic axon terminals,
albeit at lower levels than in excitatory boutons (Kulik et al. 2003). Similar to
glutamatergic terminals, the labeling was mainly found on the extrasynaptic and,
to a lower degree, on synaptic membrane segments of inhibitory boutons. IN
type specific data is scarce, however, in two recent studies PV- and CCK-positive
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Fig. 4 Postsynaptic dendritic localization and effects of GABABRs in hippocampal PV- and
CCK-expressing INs. (a and f) Electron micrographs showing immunoreactivity for GABAB1
(immunoparticles, arrows) in dendritic shafts (Den) of PV- (a, peroxidase reaction end product)
and CCK-positive INs (f, peroxidase) contacted by presynaptic boutons (b) in the CA1 str.
radiatum. (b and g), Summary bar charts of the surface density of immunoparticles in dendrites
of principal cells (PC), PV- (b) and CCK-positive INs (g). (c) Pharmacologically isolated slow
GABABR IPSCs in a PV BC evoked by a single stimulus (top trace) or trains of 3 (middle) and
5 stimuli (bottom) elicited via an extracellular electrode. Inset shows the PV immunolabeling
(left, green pseudocolor) in the biocytin-filled cell body (right, in blue). (d) Inwardly rectifying
voltage dependence of the baclofen-induced current (IWC) in a PV BC. Inset, summary of the
reversal potential (ER) of the baclofen-induced currents for PCs and BCs. (e) Summary chart of
the baclofen-induced IWC measured in PCs, PV-positive BCs and dendritic inhibitory (DI) INs. (h)
Slow GABABR/Kir3-mediated IPSC in CCK-expressing INs elicited by 200 Hz train of 5 stimuli
applied via an extracellular electrode. Slow IPSCs were recorded from a BC and a DI Schaffer
collateral-associated cell (SCA), a perforant path-associated cell (PPA) and a lacunosum projecting
cell (LA). The selective GABABR antagonist CGP fully blocked the IPSCs in BC and SCA cells
(bottom traces). (i) Summary bar chart of the GABABR-mediated IPSC amplitudes recorded from
CCK IN types. Bar charts show mean ± SEM overlain by data from individual cells (open circles).
Note that the mean IPSC in both PV and CCK DI cells was significantly smaller than in BCs.
Scale bars: 0.2 μm (a–e from Booker et al. 2013, f–J from Booker et al. 2017b. Reproduced with
permission, © Society for Neuroscience and Wiley-Blackwell)

putative BC terminals in the str. pyramidale of the CA1 area were investigated
comparatively (Booker et al. 2013, 2017a). Results obtained from quantitative SDS-
digested freeze-fracture replica (SDS-FRL) immunoelectron microscopic analysis
demonstrated a differential expression in these two bouton populations, while
GABABRs were present at high densities on virtually all CB1-positive putative
CCK terminals (Fig. 5a, b, e, f), they showed markedly lower densities and were
expressed by only 40% of M2-positive putative PV boutons (Fig. 5c–f; Booker
et al. 2017a). This expression pattern was in good agreement with the differential
strength of presynaptic inhibition at these synapses: GABA release was dramatically
(80–90%) inhibited by the receptor activation at CCK BC synapses, whereas it was
reduced only moderately (∼50%) at PV BC synapses (Fig. 5g–i).
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Fig. 5 Presynaptic axonal localization and effects of GABABRs in hippocampal CCK- and
PV-positive INs. (a–d) Electron micrographs of freeze-fracture replicas showing the surface
distribution of GABAB1 (5 nm particles, arrows) in CB1-positive (10 nm particles) putative CCK (a
and b) and M2-positive (10 nm particles) putative PV boutons (b; c and d). (e) Summary bar chart
of the proportion of GABAB1 on double-labeled CB1 receptor – or M2 receptor – containing the
axon terminals. (f) Quantification of the density of immunoparticles for GABAB1 on CB1 receptor-
and M2 receptor-positive axon terminals in comparison to PC dendrites. Statistics shown: ***
P < 0.0001, Fisher’s exact test and 1-way ANOVA with multiple comparisons. (g) Action potentials
elicited in the CCK BC (upper traces) evoked unitary IPSCs in the PC (lower traces) under control
conditions (Ctrl, left panel), during bath application of the GABABR agonist baclofen (10 μM,
middle) and the antagonist CGP (10 μM, right). (h) Summary chart of the IPSC amplitudes under
control conditions, during baclofen and CGP application. (i) Summary bar chart of the normalized
IPSC amplitudes for a comparison of baclofen-induced inhibition at CCK and PV BC synapses;
recovery in CGP is shown for both types on the right. Statistics: ns P ≥ 0.05, * P ≤ 0.05, **
P ≤ 0.01, *** P ≤ 0.001. Abbreviations: cf, cross-fractured; S, soma; den, dendritic shaft. Scale
bars, 0.2 μm. (Reproduced from Booker et al. 2017a, © The Authors)
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Activation of GABABRs by Spillover of GABA from Inhibitory
Synapses

Conditions for the activation of GABABRs differ dramatically from those of
GABAARs (Farrant and Nusser 2005; Kulik et al. 2017). Whereas GABAAR-
mediated responses are readily observed at low-stimulus intensities and in paired
recordings of synaptically coupled neurons, strong and/or repetitive stimulation is
required to elicit GABABR-mediated postsynaptic effects (Newberry and Nicoll
1985; Isaacson et al. 1993), indicating that recruitment of a number of GABAergic
neurons and the release of larger amount of GABA is necessary for the activation
of the receptors. It was estimated that the simultaneous recruitment of ∼2–20 INs is
required to induce slow GABAB IPSPs (Scanziani 2000).

These differences between the two receptor types appear to contradict the fact
that the affinity of GABABRs for GABA is ∼16-fold higher than that of GABAARs.
Sodickson and Bean (1996) showed that the EC50 for the activation of GABABR-
mediated potassium conductance by GABA is much lower (1.6 mM) than for
the activation of GABAAR-mediated chloride conductance (25 mM). However,
this apparent discrepancy can be explained by the differential localization of
the two types: while GABAARs are clustered primarily in synapses opposite to
the GABA release sites (Nusser and Somogyi 1997; Farrant and Nusser 2005),
GABABRs are preferentially localized to the extrasynaptic membrane at some
distance from GABAergic synapses (Kulik et al. 2003; Fig. 6). Thus, for the

Fig. 6 Activation of the pre- and postsynaptic GABABRs by GABA spillover from inhibitory
terminals. Abbreviations: GABA – GABAergic terminal, Glu – glutamatergic terminals, blue
circles represent GABA molecules released from the inhibitory terminal. (Modified from Kulik
et al. 2003 with permission, © Society for Neuroscience)
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activation of GABABRs GABA needs to flow out from the inhibitory synapses
and diffuses through the extracellular space before it can reach the receptors
(“spillover hypothesis,” Isaacson et al. 1993). In order to achieve sufficiently high
concentration of GABA at the location of the receptors, release from larger number
of GABAergic terminals is required in a given volume (Newberry and Nicoll 1985;
Dutar and Nicoll 1988a; Otis et al. 1993; Brown et al. 2007). Recent studies
have, however, provided evidence that single NGFCs can produce activation of
GABABRs in hippocampal and neocortical PCs (Tamás et al. 2003; Price et al.
2005, 2008; Oláh et al. 2009). A plausible explanation for this observation is that
the highly dense focal axonal arbor of NGFCs enables this IN type to produce
substantial volume transmission and evoke “unitary” GABABR-mediated responses
in neighboring PyCs and other INs. Indeed, another study provides further evidence
that GABA can spillover from synapses of NGFCs and activate extrasynaptic
GABAARs and plausibly also GABABRs (Szabadics et al. 2007). However, in
the presence of GABA uptake blockers, other IN types can also elicit GABABR-
mediated currents in PCs and INs (Scanziani 2000; Booker et al. 2013), indicating
that under physiological conditions efficient uptake mechanisms control activation
of metabotropic GABA receptors in cortical networks.

In summary, under physiological conditions, GABABR-mediated responses
are evoked upon concerted high activity of GABAergic INs. Such synchronous
activity of large sets of INs occurs during network oscillations (see chapter “Cell
Type-Specific Activity During Hippocampal Network Oscillations In Vitro”) and
can, indeed, lead to the activation of GABABRs (Scanziani 2000). Conversely,
GABABR-mediated effects can dynamically influence the frequency of the oscilla-
tions (Scanziani 2000; Booker et al. 2013). Thus, GABABRs can serve an important
regulatory mechanism during rhythmic oscillatory and other population patterns in
vivo. Such a role was further substantiated in recent set of experiments using in vitro
models of cortical Up and Down state population activity: in these models activation
of GABABRs promoted the termination of Up states recorded in the entorhinal
cortex (Mann et al. 2009). This function of the receptors was contrasted by the
role of GABAAR-mediated inhibition, which was necessary for balancing persistent
Up state activity (Mann et al. 2009). Interestingly, both pre- and postsynaptic
GABABRs were involved in the termination of Up states, but in a differential
manner: while presynaptic receptors containing the GABAB1a subunit contributed
to spontaneous ending of Up states (Craig et al. 2013), postsynaptic GABABRs
containing the GABAB1b subunit were found to be essential for afferent input-
dependent active termination of Up states (Craig et al. 2013).

Future Perspectives

Although our understanding of the functional and dynamic properties of synaptic
ionotropic GABAAR- and the extrasynaptic, predominantly dendritic metabotropic
GABABR-mediated signaling and the underlying mechanisms increased substan-
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tially, several fundamental questions remained unanswered. What are the functional
and dynamic characteristics of dendritically located GABAergic synapses? How
does dendritic inhibition influence local integration of excitatory afferent inputs
and thereby the input-output relation of target cells? How does dendritic inhibition
contribute to neuronal network function such as information processing and network
synchronization? Which other IN types express GABABRs and how do they
contribute to signaling at the level of the individual neurons and the network? What
are the additional constituents of the pre- and postsynaptic GABABR nanoenviron-
ment? How dynamic is the functional and structural interaction of GABABRs with
auxiliary proteins, neurotransmitter receptors, and effector ion channels?

Answering these questions is challenging and requires new experimental strate-
gies and concepts. First, paired whole-cell patch-clamp recordings from synaptically
connected INs in combination with light and electron microscopic analyses are
required to determine synaptic properties, identity of recorded IN types, as well
as the number and location of inhibitory synapses. Second, voltage-sensitive
dye imaging in combination with whole-cell recordings are needed to examine
dendritic integration of inhibitory and excitatory inputs. Third, in vivo whole-cell
recordings from IN types together with biochemical and high-resolution quantitative
immunoelectron microscopy would be useful to examine the kinetic and dynamic
characteristics of synaptic inputs and receptor-associated network in dependence
on the activity state of cortical circuits. Finally, a combined experimental and
computational approach based on optogenetic analysis of synaptic and intrinsic
physiological properties would be important to model integrative properties of the
various IN types and to develop complex networks in order to identify the functional
contribution of individual cell types and their synapses to network activity and
information processing and network synchronization.
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Synaptic Plasticity at Hippocampal
Synapses: Experimental Background

Jack Mellor

Abstract Glutamatergic synapses in the hippocampus undergo activity-dependent
bidirectional persistent changes in synaptic strength known as long-term potentia-
tion (LTP) and long-term depression (LTD). This bidirectionality is important for
the maintenance of equilibrium within a neuronal network, and distinct activity
patterns need to be sensed by the synapse to initiate either LTP or LTD. Donald Hebb
originally proposed that coincident firing of inputs onto a neuron or coincident firing
of the presynaptic and postsynaptic neurons would strengthen synaptic connections.
This theory is broadly correct for associative or Hebbian LTP and has been modified
to include a description of LTD induction by uncorrelated firing patterns. However,
it does not apply to non-associative or non-Hebbian synaptic plasticity which
requires activity in only one neuron. In addition, these theories do not incorporate
the role of homeostatic or heterosynaptic plasticity. Glutamatergic synapses in
the hippocampus also undergo transient changes in synaptic strength known as
short-term potentiation (STP) and short-term depression (STD), which operate on
timescales of generally less than a second. Short-term changes in synaptic strength
are important for the processing of information in the hippocampus, although their
role in learning and memory may be primarily through their impact on long-term
forms of synaptic plasticity.

Overview

This chapter discusses what is currently known about synaptic plasticity at synapses
in the hippocampus. Hippocampal synaptic plasticity is potentially a vast topic with
many thousands of research papers published in the field. However, this chapter does
not delve into the detailed molecular mechanisms underlying synaptic plasticity and
instead concentrates on the precise activity patterns required to induce synaptic
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plasticity. This includes the contribution of presynaptic and postsynaptic spiking
and the importance of subthreshold postsynaptic depolarisation. Also, this chapter
relates a variety of protocols used to induce synaptic plasticity to known in vivo
patterns of neuronal activity.

All glutamatergic synapses in the hippocampus are plastic and can undergo
activity-dependent bidirectional persistent changes in synaptic strength known as
long-term potentiation (LTP) and long-term depression (LTD). This is important
since a neuronal network cannot be functional if synaptic strength can only ever
change in one direction. Therefore, distinct activity patterns need to be sensed by
the synapse to initiate either LTP or LTD. A general principle for synaptic plasticity
originally described by Donald Hebb stated that coincident firing of inputs onto
a neuron or coincident firing of the presynaptic and postsynaptic neurons would
strengthen synaptic connections (Hebb 1949). This theory is broadly correct for
associative or Hebbian LTP and has been modified to include a description of LTD
induction by uncorrelated firing patterns (Bienenstock et al. 1982). However, it
does not apply to non-associative or non-Hebbian synaptic plasticity which requires
activity in only one neuron (see below). In addition, these theories do not incorporate
the role of homeostatic or heterosynaptic plasticity (see below).

All synapses in the hippocampus also undergo transient changes in synaptic
strength known as short-term potentiation (STP) and short-term depression (STD),
which operate on timescales of generally less than a second. Short-term changes
in synaptic strength are clearly important for the processing of information in the
hippocampus, although their role in learning and memory may be primarily through
their impact on long-term forms of synaptic plasticity.

For the purposes of this book, the key questions are:

1. What patterns of activity are required to induce LTP and LTD?
2. How do these relate to patterns of activity found in vivo?
3. What are the functional consequences of long-term synaptic plasticity?

The answers to these questions will need to be incorporated into any model for how
the hippocampus functions as a centre for learning within the brain.

The Data

The Different Forms of Hippocampal Synaptic Plasticity

Short-term synaptic plasticity is found at all synapses in the hippocampus and is
believed to result from a combination of presynaptic vesicle depletion, presynaptic
Ca2+ accumulation, changes to presynaptic action potential duration and postsynap-
tic receptor desensitisation (Geiger and Jonas 2000; Zucker and Regehr 2002). In
general, synapses with a high initial probability of release will exhibit STD and
those with a low initial probability of release STP, indicating the dominance of
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Fig. 1 Examples of synaptic plasticity. (a) Three examples of short-term plasticity at inhibitory
synapses measured with pairs of stimuli given 100 ms apart (From Maccaferri et al. 2000). (b)
Top shows STP measured with pairs of stimuli at varying intervals at the mossy fibre synapse
(From Salin et al. 1996). Bottom shows STD or STP in the dentate gyrus measured with pairs of
stimuli given to the medial or lateral perforant path (From Langmead et al. 2008). (c) Example
of LTP experiment performed at the perforant path synapse in the dentate gyrus in vivo plotting
the evoked EPSP amplitude with time. The arrow represents stimulation at 250 Hz for 200 ms
(From Bliss and Collingridge, 1993). (d) Example of LTD experiment where LTD is induced by
900 stimuli at 1 Hz. (From Dudek and Bear 1992)

probability of release in defining short-term plasticity. The majority of GABAergic
synapses exhibit STD, whereas glutamatergic synapses generally exhibit either STP
or STD. Short-term synaptic plasticity can be measured by giving pairs of synaptic
stimuli separated by a short interval (∼100 ms) to determine if the second stimulus
results in a larger (STP) or smaller (STD) response. The time window for short-term
plasticity is generally within a second but may be extended to several seconds (e.g.
mossy fibre synapses) with a maximum plasticity found with interstimulus intervals
of <100 ms. Some examples of short-term plasticity are shown in Fig. 1.
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An interesting and well-characterised example of short-term synaptic plasticity
occurs at mossy fibre synapses between dentate gyrus granule cells and CA3
pyramidal cells. At these synapses, the initial probability of release is extremely
low but increases dramatically under repeated stimulation endowing the synapses
with a very large facilitation in the probability of release and therefore strength of
transmission, in some cases up to 1000%.

In general, LTP can be induced by short, high-frequency stimulation, whereas
LTD can be induced by prolonged low-frequency stimulation (Fig. 1), and both can
be induced at all the major excitatory synapses within the hippocampus but with
varying properties (Fig. 2). LTP and LTD may also be expressed at GABAergic
synapses and glutamatergic synapses onto interneurons in the hippocampus. In all
cases the key mediator of long-term synaptic change is intracellular Ca2+.

Ca2+ as a Trigger for the Induction of LTP and LTD

It is widely accepted that the critical trigger for the induction of associative synaptic
plasticity is a rise in intracellular Ca2+ concentration within the postsynaptic
dendrite (Lisman 1989). For many years, the magnitude and duration of the Ca2+
increase were thought to determine the direction of plasticity (Bear et al. 1987;
Hansel et al. 1996). As a general rule, it was proposed that short, large-magnitude
increases in intracellular Ca2+ concentration lead to synaptic potentiation, whereas
prolonged, small-magnitude increases lead to synaptic depression (Cho et al. 2001;
Cormier et al. 2001; Gall et al. 2005; Hansel et al. 1997; Ismailov et al. 2004)
(Fig. 3).

Thus, sustained dendritic concentrations of Ca2+ between approximately 300 nM
and 600 nM induce LTD, and shorter duration concentrations above 600 nM induce
LTP. However, recent evidence has questioned this simple model and proposed rules
that depend on the timing (Nevian and Sakmann 2006), source and microdomain of
the Ca2+ concentration increase (Karmarkar and Buonomano 2002; Keller et al.
2008; Nevian and Sakmann 2006; Tigaret et al. 2016). Since the majority of these
data come from experiments performed on neocortical synapses from immature
rodents, the most relevant data for the purposes of this chapter can be found in
Tigaret et al. In this study the magnitude of dendritic spine Ca2+ concentration
increase did not predict LTP in hippocampal slices from mature rodents suggesting
that the timing and localisation of Ca2+ to microdomains within the spine are
crucial for LTP induction. These findings have important implications for Ca2+-
based models of synaptic plasticity.

Non-associative synaptic plasticity (see below) also requires a Ca2+ signal but
in this case in the presynaptic terminal. Again it is believed that prolonged small-
magnitude increases in Ca2+ (∼100–200 nM) result in LTD, whereas short large-
magnitude increases in Ca2+ (∼500–1000 nM) result in LTP (Castillo et al. 1994;
Kobayashi et al. 1999; Regehr and Tank 1991).
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Fig. 3 (a) Theoretical relationship between dendritic calcium concentration and direction of
synaptic plasticity (�) as originally proposed in the Bienenstock-Cooper-Munro (BCM) model
(Bienenstock et al. 1982) and subsequently modified by Shouval and Kalantzis (2005). Dendritic
calcium concentrations below value θd cause no change in synaptic strength. Between values θd
and θp, LTD is induced and above θp LTP is induced (From Shouval and Kalantzis 2005). (b)
Experimentally determined relationship between Ca2+ and synaptic plasticity in cortical slices
during pairing of pre- and postsynaptic activity (From Ismailov et al. 2004). (c) Experimentally
determined relationship between Ca2+ and synaptic plasticity in neocortical slices during pairing
of pre- and postsynaptic spikes (From Nevian and Sakmann 2006). (d) Experimentally determined
relationship between Ca2+ and synaptic plasticity in hippocampal slices during pairing of pre- and
postsynaptic spikes. (From Tigaret et al. 2016)

NMDA Receptors Are Coincidence Detectors

The increase in intracellular Ca2+ can arise from a number of sources including
voltage-dependent Ca2+ channels and intracellular Ca2+ stores, but the most
important source for associative synaptic plasticity is through N-methyl-D-aspartate
receptors (NMDARs). These glutamate-gated ion channels are permeable to K+,
Na+ and Ca2+, but at the resting membrane potential, their pore is blocked by Mg2+.
Depolarisation of the membrane potential removes the Mg2+ block which confers
a voltage dependence on the NMDAR (Fig. 4). This makes this receptor ideally
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Fig. 4 (a) Excitatory postsynaptic currents (EPSCs) recorded from a cerebellar granule cell in the
absence of Mg2+ before and during application of the NMDA receptor antagonist APV. Inset: rapid
AMPAR-mediated component of the EPSC at a faster time scale. (b) NMDAR-mediated EPSCs
recorded in isolation, following block of AMPARs by CNQX. Note prolonged decay and slow
rise time (inset) compared with AMPAR EPSCs (From Silver et al. 1992). (c) Voltage dependence
of NMDA receptor-mediated currents in 0 Mg2+ (solid line) and 0.5 mM Mg2+ (dashed line).
The current-voltage relationship is approximately linear in the absence of Mg2+, but currents are
reduced at negative potentials in the presence of Mg2+ (From Nowak et al. 1984). Depiction of
the NMDAR illustrating the requirement for glutamate (Glu) and glycine (Gly) binding and the
removal of the Mg2+ block for channel opening

placed to detect coincident activity in presynaptic and postsynaptic neurons since
to open it requires both the release of glutamate from the presynaptic terminal and
postsynaptic depolarisation. Activation of NMDARs allows influx of Ca2+ to the
postsynaptic cell, and the resultant rise in intracellular Ca2+ concentration initiates
signalling pathways for LTP or LTD expression.

Since NMDARs control the induction of synaptic plasticity, the time course
of NMDAR activation is thought to be critical for determining the window for
plasticity induction by coincident pre- and postsynaptic activity. NMDARs bind
glutamate with a high affinity (EC50 ∼ 2 μM) (Patneau and Mayer 1990) and
remain bound long after glutamate has been cleared from the synaptic cleft (time
constant of decay ∼100 ms) (Jahr and Stevens 1990; McBain and Mayer 1994;
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Silver et al. 1992). The precise decay kinetics are dependent on the NMDAR subunit
complement that can be developmentally regulated and ranges from 100 ms to
5 s (Monyer et al. 1994). Typical NMDAR-mediated currents are long-lasting in
comparison to AMPARs (Fig. 4), and this produces a long time window during
which presynaptic and postsynaptic spikes may be considered coincident for the
purposes of NMDAR activation. However, depolarisation becomes increasingly
less effective at removing the Mg2+ block and activating NMDARs the longer the
interval after glutamate binding (Kampa et al. 2004).

The postsynaptic depolarisation required for NMDAR activation can arise from
different sources. Back-propagating action potentials initiated at the soma provide
one source of depolarisation. These potentials are mostly passively propagating, and
their amplitude attenuates as they travel away from the soma along the dendrites
and through branch points. The rate of attenuation varies depending on neuronal
morphology and frequency of action potentials, but it is likely that back-propagating
action potentials are attenuated by >50% in the distal dendrites of pyramidal
neurons (>200 μm from the soma) (Golding et al. 2005; Spruston et al. 1995). An
alternative source of depolarisation is from local synaptic activation within dendrites
and spines. The activation of multiple spatially co-localised synapses can produce
sufficient depolarisation to activate NMDARs and create local dendritic spikes in
membrane potential and Ca2+ (Golding et al. 2002; Losonczy and Magee 2006).
In addition, estimates for the depolarisation within single spines in response to
glutamate release range from 13 mV to 25 mV (Harnett et al. 2012; Palmer and
Stuart 2009), which are sufficient for substantial NMDAR activation and Ca2+
influx to spines (Tigaret et al. 2016). Spine neck resistance is highly variable and
plastic (Tonnesen et al. 2014) and determines spine depolarisation in response to
currents generated both inside and outside the spine ensuring that the most relevant
source of depolarisation for NMDAR activation will vary from spine to spine.

Other receptors and mechanisms have also been proposed to act as coincidence
detectors either on their own or in combination with NMDARs. Synaptic activation
of metabotropic glutamate receptors (mGluRs) has been shown to induce LTD
or to modulate the induction of LTP at a number of synapses (Bashir et al.
1993; Kemp et al. 2000; Malenka and Bear 2004; Tigaret et al. 2016), and it
is clear that there is interaction between the signalling pathways initiated by
mGluR and NMDAR activation (Kemp et al. 2000). It has been proposed that
the coincident activation of mGluRs and postsynaptic voltage-activated calcium
channels is sufficient for the induction of LTD and can override the induction of
LTP (Nevian and Sakmann 2006). At hippocampal synapses, postsynaptic calcium
transients produced by synaptic stimulation and postsynaptic action potentials arise
from multiple sources including NMDARs and voltage-activated calcium channels
(Bloodgood and Sabatini 2007).
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Hebbian Synaptic Plasticity

NMDAR-dependent LTP and LTD are often termed associative or Hebbian synaptic
plasticity because they require coincident activity in the presynaptic and postsy-
naptic neurons. All of the synaptic connections between glutamatergic neurons
in the hippocampus exhibit associative long-term synaptic plasticity with one
exception (see next section), but the best studied and characterised in vitro are
the Schaffer collateral synapses between CA3 pyramidal cells and CA1 pyramidal
cells. Evidence suggests that Hebbian synaptic plasticity at glutamatergic synapses
on other hippocampal neurones has similar properties and therefore the properties
characterised for the Schaffer collateral synapses are often generalised (see Fig. 2).

However, there are variations which need to be accounted for. The most similar
synapses to Schaffer collaterals are the CA3 recurrent collaterals with no major
differences reported although it is suggested that inter-hemispheric commissural
synapses between CA3 and CA1 pyramidal cells do not exhibit NMDAR-dependent
LTP (Kohl et al. 2011). Perforant path/temporoammonic inputs from entorhinal
cortex to CA3 or CA1 pyramidal cells do show different induction properties largely
because back-propagating action potentials do not reach these synapses due to their
distance from the soma (Golding et al. 2002). This means that the postsynaptic
depolarisation required to activate NMDARs must come from other sources such
as other synapses and/or dendritic Ca2+ spikes (Golding et al. 2002). Perforant
path synapses onto dentate gyrus granule cells are divided into the medial and
lateral synapses corresponding to inputs from layer IV and layer V pyramidal cells
of the entorhinal cortex, respectively. These two pathways have similar rules for
synaptic plasticity induction, but the lateral pathway has a higher threshold for
LTP induction. Pairing of presynaptic stimulation with postsynaptic depolarisation
requires a higher rate of stimulation for the lateral pathway (1–4 Hz) compared to the
medial pathway (0.5 Hz) (Colino and Malenka 1993). In the subiculum, synapses
from CA1 inputs undergo NMDAR-dependent LTP that is expressed presynaptically
or postsynaptically depending on the subtype of pyramidal cell (Wozny et al. 2008).
The afferent and efferent synapses of CA2 remain largely uncharacterised, but initial
evidence suggests that inputs from entorhinal cortex can undergo LTP, whereas
those from CA3 do not (Chevaleyre and Siegelbaum 2010).

Activity at spatially distant synapses can also alter the threshold for LTP or
LTD induction. The original description of this effect is found at the medial and
lateral perforant path synapses in the dentate gyrus where activity in one pathway
lowers the threshold for the induction of plasticity in the other (Levy and Steward
1979; McNaughton et al. 1978). Since then the mossy fibre synapse in CA3 has
been shown to transform subthreshold activity at CA3 associational/commissural
synapses into suprathreshold activity for LTP induction (Kobayashi and Poo 2004)
(but not vice versa), and a similar effect is seen in CA1 where perforant path
synapses influence Schaffer collateral LTP (Dudman et al. 2007).
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Non-Hebbian Synaptic Plasticity

Mossy fibre synapses connecting dentate gyrus granule cells with CA3 pyramidal
cells are the only instance of glutamatergic synapses exhibiting non-Hebbian
synaptic plasticity in the hippocampus. Non-Hebbian LTP at mossy fibre synapses
is induced by a high-frequency train of action potentials in the presynaptic granule
cells that cause Ca2+ influx into the presynaptic terminals (Harris and Cotman
1986; Zalutsky and Nicoll 1990). Conversely, LTD at these synapses is induced
by low-frequency presynaptic stimulation (Kobayashi et al. 1996; Tzounopoulos
et al. 1998). Although this model has no requirement for postsynaptic activity,
some reports support a postsynaptic role (Carta et al. 2014; Contractor et al. 2002;
Yeckel et al. 1999), but see Mellor and Nicoll 2001. In addition there are also
Hebbian forms of synaptic plasticity present at these synapses. Short bursts of
high-frequency stimulation (24 stimuli at 25 Hz) can potentiate NMDAR-mediated
synaptic transmission (Kwon and Castillo 2008; Rebola et al. 2008) enabling
subsequent NMDAR-dependent synaptic plasticity (Rebola et al. 2011), and low-
frequency stimulation (0.33 Hz) paired with postsynaptic depolarisation can depress
AMPAR-mediated synaptic transmission (Lei et al. 2003).

Non-Hebbian synaptic plasticity will clearly have a very different function to
Hebbian synaptic plasticity since it is non-associative and requires only firing in
a single neuron. If a granule cell fires a high-frequency burst of action potentials
above a threshold (approximately 12 action potentials at 25 Hz (Mistry et al. 2011;
Schmitz et al. 2003)), then LTP will be induced. The threshold for LTD is not
precisely characterised, but generally 900 stimuli at 1 Hz are sufficient (Kobayashi
et al. 1996).

Homeostatic Synaptic Regulation, Metaplasticity
and Heterosynaptic Plasticity

Synaptic regulation that is not synapse specific and therefore not induced by the
activation of individual synapses is known as homeostatic synaptic plasticity. By
increasing or decreasing the strength of all the synapses on its dendrites, a neuron
can regulate its overall excitability and keep its response to synaptic activity within
an efficient and dynamic range. Mechanisms exist to globally decrease the strength
of synaptic connections if the postsynaptic neuron experiences hyperactivity and
conversely can increase global synaptic strength in conditions of low neuronal
activity (Burrone et al. 2002; O’Brien et al. 1998; Turrigiano et al. 1998). These
mechanisms occur over a period of days and can lead to twofold increases or
decreases in the density of synapses. Homeostatic synaptic regulation thus allows
a neuron to normalise its inputs in a range that allows an optimal signal-to-noise
ratio (Miller 1996) and ensures network stability (Golowasch et al. 1999). However,
since most experiments on homeostatic synaptic plasticity in the hippocampus use
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cells in dissociated culture, with induction protocols that last for hours or days, and
furthermore do not record the activity that occurs during that period, it is hard to
specify the precise conditions that are required to induce this plasticity and relate
them to potential in vivo situations although this is more feasible in neocortical
circuits (Keck et al. 2013). Homeostatic synaptic regulation also predicts that LTP of
specific synapses will result in synaptic depression at other synapses on the neuron
and vice versa (Miller 1996), otherwise known as heterosynaptic plasticity.

LTP induction at specific synapses on a single cell can induce heterosynaptic
LTD at other synapses (Abraham et al. 1994; Doyere et al. 1997; Levy and Steward
1979). This has been found between the medial and lateral perforant pathways in
the dentate gyrus and between Schaffer collateral pathways in CA1 (Daw et al.
2000). In these instances, an LTP of 50% in one synaptic pathway can induce a
20% LTD in the other pathway. This could be an important mechanism to increase
synaptic signal-to-noise ratio, and it occurs over the same time frame as LTP or LTD.
However, heterosynaptic LTD is not consistently observed, so it is hard to predict
what stimuli will reliably induce it.

The ability of prior activity to modify the threshold for subsequent synaptic
plasticity induction is termed metaplasticity and has been shown for Schaffer
collateral synapses in CA1 and perforant path synapses in the dentate gyrus.
Metaplasticity can occur through NMDAR or mGluR-mediated mechanisms. Prior
NMDAR activation increases the threshold for LTP induction (Huang et al. 1992)
and decreases the threshold for LTD induction (Christie and Abraham, 1992), but,
conversely, prior mGluR activation decreases the LTP threshold in CA1 (Cohen and
Abraham 1996) although it increases the threshold in the dentate gyrus (Gisabella
et al. 2003). It is not known how these two opposing mechanisms interact, but a
general rule along similar lines to homeostatic plasticity would indicate that prior
LTP induction enhances the subsequent probability of LTD induction and vice versa.
The inconsistency of metaplastic effects once again makes it hard to predict the
precise patterns of stimuli that will reliably induce it in vivo.

Role of Inhibition in the Induction of LTP

Inhibitory inputs onto the postsynaptic neuron decrease the degree of depolarisation
and therefore limit the activation of NMDARs and the induction of associative
synaptic plasticity. The timecourse of synaptic GABAA receptor responses is
very similar to synaptic NMDAR responses and therefore effectively counteracts
NMDAR activation. This predicts that pharmacological blockade of GABAA recep-
tors lowers the threshold for LTP induction and this is indeed the case (Meredith
et al. 2003; Wigstrom and Gustafsson 1983). The situation with GABAB receptor
activation is somewhat more complex since GABAB receptors have both pre-
and postsynaptic effects. Presynaptically, they inhibit the release of GABA from
inhibitory terminals at both feedforward and feedback interneurons. The suppres-
sion of GABA release then facilitates LTP induction at glutamatergic synapses
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(Davies et al. 1991). Postsynaptically, however, GABAB receptors on excitatory
neurons suppress the induction of LTP by hyperpolarising the dendrite and reducing
NMDAR activity. For these reasons, many synaptic plasticity experiments have been
performed with pharmacological blockade of GABAA and/or GABAB receptors.

During rhythmic oscillatory activity, hippocampal interneurons fire in specific
phases providing a powerful inhibitory drive (see Glovelli and Vida chapters) that
regulates the induction of LTP. During the theta rhythm (∼5–10 Hz), LTP can
only be induced at the peak of the cycle, and the same induction protocol induces
LTD in the trough (Huerta and Lisman 1993, 1995; Kwag and Paulsen, 2009).
Similarly, theta burst stimulation protocols to induce LTP or LTD are thought to
be effective because GABAB receptor-mediated inhibition of GABA release is
maximal ∼200 ms after the initial GABA release (Davies et al. 1991). Gamma
rhythms (∼30–100 Hz) are often found nested within theta rhythms with inhibitory
drive also tuned to gamma cycles, thereby regulating the induction of LTP on this
faster timescale. Similarly, transient high-frequency sharp-wave ripple oscillations
(∼100–200 Hz) also tune inhibitory drive which may regulate the induction of
LTP (Sadowski et al. 2016). Each oscillation frequency engages different inhibitory
interneurons that synapse onto distinct sections of the dendrites and soma (see
Glovelli and Vida chapters) and therefore will differentially regulate synaptic
plasticity.

Plasticity of Inhibition

Inhibitory inputs can also undergo plasticity either at the glutamatergic synapses
onto interneurons (Lamsa et al. 2005) or at GABAergic synapses (Chevaleyre and
Castillo 2003; Woodin et al. 2003).

At glutamatergic synapses, the induction of LTP or LTD requires a rise in
postsynaptic Ca2+ through either NMDARs or Ca2+-permeable AMPARs (Laezza
et al. 1999; Lamsa et al. 2005; Lei and McBain, 2002). These involve different
postsynaptic activity patterns since NMDARs require postsynaptic depolarisation,
whereas Ca2+-permeable AMPARs are blocked at depolarised potentials (Lamsa
et al. 2007). High-frequency presynaptic stimulation induces LTD at mossy fibre
inputs onto CA3 interneurons and LTP at mossy fibre inputs onto dentate gyrus
interneurons (Alle et al. 2001; Laezza et al. 1999; Maccaferri et al. 1998). It also
induces LTP and LTD at feedforward and feedback interneurons in CA1 (Lamsa et
al. 2005; Lamsa et al. 2007; McMahon and Kauer, 1997) where the feedforward
interneuron synapses exhibit NMDAR-dependent LTP and the feedback synapses
Ca2+-permeable AMPAR-dependent LTP (Lamsa et al. 2005; Lamsa et al. 2007).

At GABAergic synapses, LTD is induced by a rise in intracellular Ca2+ in either
the postsynaptic interneuron (Woodin et al. 2003) or a nearby CA1 pyramidal cell
(Chevaleyre and Castillo, 2003). LTP is also induced by high-frequency stimulation
(Caillard et al. 1999; Shew et al. 2000).
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Synaptic GABAB receptors have also recently been shown to undergo synaptic
plasticity. Potentiation of synaptic GABAB receptors was seen after pairing 3 Hz
stimulation with postsynaptic depolarisation (Langmead et al. 2008).

Induction of LTP and LTD by Artificial Induction Protocols

The proposed scheme, whereby short, large-magnitude increases in intracellu-
lar Ca2+ concentration lead to synaptic potentiation, whereas prolonged, small-
magnitude increases lead to synaptic depression (Bienenstock et al. 1982), has been
reinforced by the use of short high-frequency presynaptic stimulation to induce LTP
and long low-frequency presynaptic stimulation to induce LTD. Typical frequencies
used to induce LTP sit in the range 10–250 Hz and contain 20–100 stimuli with
trains of stimuli often given multiple times. For LTD induction, frequencies range
from 1 to 3 Hz, and the number of stimuli is generally much greater at 100–900
stimuli (Dudek and Bear, 1993; Dunwiddie and Lynch, 1978). However, LTD is only
easily induced, and therefore almost exclusively studied, in immature preparations.
In adult preparations, LTD is difficult to induce reliably, whereas LTP is readily
induced.

An alternative method to activate NMDARs by correlating presynaptic glutamate
release with postsynaptic depolarisation uses intracellular recordings to depolarise
the postsynaptic neuron whilst stimulating presynaptic release (Isaac et al. 1995).
Using this technique presynaptic stimulation frequency is kept similar for LTP
or LTD induction, but the degree of depolarisation is greater for LTP induction.
Typically this is −10 mV to 0 mV for LTP and −40 mV to −30 mV for LTD
(Daw et al. 2000; Isaac et al. 1995). Again this reinforces the idea that more
NMDAR activation is required for LTP induction resulting in higher intracellular
Ca2+ concentrations. The number of stimuli given is again generally greater for
LTD induction.

Induction of LTP and LTD by Theta Burst Stimulation

In the hippocampus, states during which learning is thought to occur are charac-
terised by pronounced population activity at the theta frequency (∼5–10 Hz). The
principal glutamatergic neurons of the hippocampus fire action potentials in bursts
on the peak of every theta cycle and are largely silent during the rest of the cycle.
This is thought to be due to the activity in the interneuron population that inhibits
glutamatergic neuron firing during other phases of the cycle. This observation led
to the development of theta burst stimulation (TBS) protocols for synaptic plasticity
induction (Larson et al. 1986; Rose and Dunwiddie 1986) (Fig. 5). The progressive
increase in synaptic strength after TBS is in contrast to the generally stable or
decreasing synaptic strength caused by artificial LTP induction protocols such as
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Fig. 5 (a) Theta burst stimulation (TBS) protocol showing the pattern of pre- and postsynaptic
stimulation used to induce LTP. The upper trace illustrates the cellular response to a train of TBS.
Lower traces represent the stimulation given to the presynaptic axons (upper) and postsynaptic cell
to induce back-propagating action potentials (b-APs, lower). (b) TBS induces LTP. (From Frick et
al. 2004; Mulkey and Malenka 1992)

high-frequency stimulation or pairing (see Fig. 2). TBS induces LTP when pre-
and postsynaptic entities are stimulated in synchrony but induces LTD when pre-
and postsynaptic entities are noncoincident (Huerta and Lisman 1995). Therefore,
if presynaptic bursts of activity occur at the peak of the theta cycle, then LTP will
be induced, but if they occur in the trough, then LTD results (Huerta and Lisman
1995).

Spike-Timing-Dependent Synaptic Plasticity

Another method of activating NMDARs is to directly pair pre- and postsynaptic
action potentials so they coincide at the synapse. In this way the presynaptic action
potential causes the release of glutamate, and the postsynaptic action potential back-
propagates along the dendrite to depolarise the spine. This method induces LTP in
both neocortical and hippocampal slices (Magee and Johnston 1997; Markram et
al. 1997). In the neocortical slice, it was also shown that the temporal precision
of the pre- and postsynaptic action potentials was critical. If the presynaptic action
potential occurred before the postsynaptic action potential, then LTP was induced,
but LTD was induced if the timings were reversed (Markram et al. 1997). This
temporal specificity has been termed spike-timing-dependent plasticity (STDP) and
was subsequently demonstrated in hippocampal dissociated cultures (Bi and Poo
1998), slice cultures (Debanne et al. 1998) and acute slices (Nishiyama et al. 2000).
However, the bidirectional nature of STDP appears to be dependent on the frequency
of pairings (Wittenberg and Wang 2006), and in acute slices from mature rodents,
bidirectional STDP is not evident. LTP can be induced by causal spike pairings, but
no LTD results from anticausal pairings (Buchanan and Mellor 2007; Tigaret et al.
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Fig. 6 Relationships between relative spike timing of pre- and postsynaptic spikes in a pair and the
synaptic plasticity induced from different studies. (a) From Bi and Poo 1998. (b) From Buchanan
and Mellor 2007. (c) From Wittenberg and Wang 2006. Open circles indicate pairings delivered
at frequencies from 0.1 to 0.5 Hz and filled circles at 5 Hz. (d) The STDP relationship shown
in C changes when two postsynaptic stimuli are given for each pre- and postsynaptic pairing.
Dashed line indicates the time of the first postsynaptic action potential in most experiments. (From
Wittenberg and Wang 2006)

2016). Figure 6 illustrates some examples for STDP relationships at hippocampal
synapses.

There is a marked variability in the relationships deduced from the experiments,
and this highlights the need for caution when using such data to model synaptic
plasticity in the hippocampus. It is becoming clear that multiple postsynaptic spikes,
or bursts, are required to induce STDP in the hippocampus (Fig. 6d) (Buchanan and
Mellor 2007; Pike et al. 1999; Tigaret et al. 2016; Wittenberg and Wang 2006). The
temporal requirements for burst firing have yet to be fully elucidated, but these will
impact synaptic plasticity induced by naturally occurring spike patterns (Sadowski
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et al. 2016). In contrast, the evidence from neocortical slice experiments consistently
indicates a strong temporal dependence for the direction of plasticity (Froemke
et al. 2006; Nevian and Sakmann 2006; Sjostrom and Nelson 2002; Sjostrom et
al. 2001) that varies slightly between synapses (Letzkus et al. 2006; Sjostrom and
Hausser 2006) and can be altered by neuromodulators (Seol et al. 2007; Sjostrom
et al. 2003). The temporal specificity of STDP in the neocortex is also affected by
multiple postsynaptic spikes (Froemke et al. 2006; Nevian and Sakmann 2006).

Induction of LTP and LTD by Natural Stimulus Patterns

Surprisingly few studies have attempted to induce long-term synaptic plasticity
using naturally occurring patterns of activity recorded from cells in vivo. This is
possibly because it is difficult to know precisely what activity is present in both
the pre- and postsynaptic cells. In the visual cortex, spike patterns from individual
cells responding to overlapping visual receptive fields induce STDP when replayed
into synaptically coupled cells in a cortical slice (Froemke and Dan 2002). In the
hippocampus, place cell firing patterns have been used to induce LTP by stimulating
a population of Schaffer collateral axons and recording the change in fEPSP
(Dobrunz and Stevens 1999). Furthermore, spike patterns from pairs of place cells
with overlapping place fields induce LTP when replayed into synaptically coupled
pyramidal cells in a hippocampal slice (Isaac et al. 2009). In addition, replay of
place cell activity that occurs during sharp-wave ripples on a compressed timescale
can induce LTP when reconstructed in a hippocampal slice (Sadowski et al. 2016).
These experiments are perhaps most relevant to this chapter since they demonstrate
the patterns of activity that induce synaptic plasticity in the hippocampus in vivo.

Functional Significance of Synaptic Plasticity

Synaptic plasticity increases or decreases the amplitude and initial slope of the EPSP
or IPSP leading to changes in the ability of a specific synaptic input to influence
the spike output of the postsynaptic neuron (Bliss and Lomo 1973). For excitatory
synapses, this changes the probability that an individual synaptic input will cause
the postsynaptic neuron to fire an action potential and the latency of postsynaptic
spike firing. However, the probability of postsynaptic firing never equals 1 for single
presynaptic stimuli and only at the very powerful mossy fibre synapses in CA3 does
it approach 1 if multiple EPSPs from a single input summate temporally (Henze
et al. 2002). In this case, increasing the presynaptic firing frequency increases the
probability of inducing a postsynaptic action potential (∼0.1 at 10 Hz rising to ∼0.8
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at 100 Hz). However, it is not clear if mossy fibre LTP will change the probability of
inducing a postsynaptic action potential since it reduces the pronounced short-term
facilitation exhibited at this synapse (Gundlfinger et al. 2007; Mistry et al. 2011).
For other excitatory synapses, postsynaptic action potentials are dependent on the
temporal and spatial summation of additional synaptic inputs to the neuron. The
majority of data addressing the effects of synaptic plasticity on the probability of a
postsynaptic action potential use bulk stimulation of presynaptic axons that reveal
an increase in spike probability for LTP and a decrease for LTD. However, the use
of bulk stimulation necessarily diminishes the ability to make conclusions about
the effects of synapse-specific plasticity. This is because the recording of single
synaptic inputs requires the recording of synaptically coupled pairs of neurons that
is technically challenging in the hippocampus. Technical advances to achieve single
synaptic recording are discussed in the final section of this chapter. Data regarding
the summation of synaptic inputs can be found in other chapters.

Recordings of CA1 pyramidal cell activity in vivo show that plasticity of
dendritic and cellular activity, assumed to be caused by synaptic plasticity, defines
the feature selectivity of pyramidal cells which in the case of place cells is measured
by their place fields (Bittner et al. 2015; Sheffield and Dombeck 2015). Furthermore,
the long-term association of information that forms the basis for learning is shown
to be encoded by synaptic plasticity at hippocampal synapses (Gruart et al. 2006;
Whitlock et al. 2006).

Experimental Techniques

The study of synaptic plasticity has largely been performed by electrophysiological
recording of synaptic strength. In the hippocampus this can be done in a variety of
hippocampal preparations listed below together with a description of their strengths
and weaknesses (Table 1).

There are also a number of different recording techniques both electrophysio-
logical and non-electrophysiological that can be used to measure synaptic strength
(Table 2). Whilst the non-electrophysiological techniques do not directly measure
the electrical input from a synapse, in the majority of cases, they have been shown to
be positively correlated with electrophysiological measurements. Here, three types
of imaging technique are assessed. Ca2+ imaging can be used at pre- or postsynaptic
sites using intracellular loading of Ca2+ indicators. Voltage imaging can also be
used at pre- or postsynaptic sites by intracellular loading of membrane voltage
indicators. Morphological imaging of presynaptic terminals or postsynaptic spines
uses intracellular fluorescent markers such as GFP or actin-bound GFP.
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Table 1 Comparison of experimental systems used to investigate synaptic plasticity

System Uses Limitations

Dissociated culture Easy to isolate the pre- and
postsynaptic cells and therefore
to perform paired intracellular
recordings. This has enabled the
study of synaptic plasticity at
unitary connections between
neurons

Synapses and networks have
regrown in culture and exhibit very
different properties to those found
in the intact hippocampus. For
example, connections between
pairs of neurons have many more
synapses, and LTP is hard to
induce by conventional
high-frequency activity

Acute slices Retains many of the network
connections found in vivo. Easy
to make intra- or extracellular
recordings

Many connections from other brain
areas are cut. The slicing
procedure introduces acute trauma
to the tissue that alters synaptic
properties. Very hard to make
paired recordings

Cultured slices Retains many of the network
connections found in vivo. Easy
to make intracellular recordings.
Connectivity between neurons is
high, thus enabling paired
recordings

Many connections from other brain
areas are cut. The slicing
procedure introduces acute trauma
to the tissue that alters synaptic
properties. New synaptic
connections that are not found in
vivo are formed during culture

In vivo Most physiological system Technically challenging especially
intracellular recordings that are
difficult to maintain for extended
periods. Easier to perform
experiments on anaesthetised
animals but this reduces the
physiological relevance.
Technology not currently available
to make paired recordings

The Future

It is increasingly apparent that the rules that apply to the induction of synaptic
plasticity in vivo are not necessarily the same as those found in in vitro preparations.
It is also clear that the patterns of activity that might induce synaptic plasticity in
vivo are not the same as those used to induce plasticity in vitro.

Historically, the measurement of synaptic plasticity has necessitated a trade-off
between the ease of data acquisition and the physiological relevance of the system
and technique. Thus recordings in dissociated culture are easier than slices are
easier than in vivo, but the proximity of the experimental system to the situation
in a behaving animal goes in the opposite direction. The major factors that limit
the applicability of in vitro data to the in vivo system are inhibitory inputs,
neuromodulators and the pattern of excitatory synaptic activity. Each of these factors
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Table 2 Comparison of approaches used to measure synaptic plasticity

Technique Strengths Weaknesses

Field recording The laminar structure of the
hippocampus lends itself to
extracellular field recording.
Recordings are stable for long
periods (several hours in vitro, and
several days in vivo). Non-invasive

Large populations of synapses
are recorded so difficult to assign
synapse specificity. No control of
postsynaptic neuronal activity

Whole-cell recording Control over postsynaptic somatic
membrane potential. Paired
recordings from two synaptically
coupled neurons are possible

Invasive. Endogenous
intracellular constituents are
progressively washed out of the
cell during recordings leading to
loss of LTP

Perforated patch
recording

Control over postsynaptic somatic
membrane potential. Non-invasive
intracellular recording

Perforation takes time to stabilise
access resistance (up to 1 h)

Ca2+ imaging Measures the critical trigger for the
induction of synaptic plasticity.
Pinpoints the spatial location of the
synapses stimulated. Activity at
single synapses can be monitored

Ca2+ indicators buffer rises in
intracellular Ca2+. Ca2+ rises
are not linearly related to the
amplitude of synaptic
transmission. Images lose
sensitivity and resolution in deep
tissue

Membrane potential
imaging

Measures the spatial location of
fast membrane voltage changes.
Combines the strengths of both
electrophysiology and imaging.
Non-invasive

Low sensitivity restricts imaging
to relatively large voltage
changes. Images lose sensitivity
and resolution in deep tissue

Morphological
imaging

Pinpoints the spatial location of
stimulated synapses. Non-invasive

Morphological changes are not
linearly related to the amplitude
of synaptic transmission. Images
lose sensitivity and resolution in
deep tissue

plays a crucial role in regulating the induction of LTP and LTD, but they have each
proved difficult to accurately replicate in vitro.

The reasons for this are twofold. Firstly, information on the activity patterns of
excitatory, inhibitory and neuromodulatory neurons that occurs in vivo is limited,
and secondly, it is experimentally challenging to replicate the activity of these
separate systems in vitro. Recent technical advances have reduced these barriers
to progress. Principally, the ability to label genetically defined cells enables the
recording and stimulation of specific components of hippocampal circuits and
inputs. From these methods it is anticipated that a wealth of information on
the activity of subtypes of inhibitory interneurons, neuromodulator inputs and
excitatory neurons will come from recordings made during awake behaviour (e.g.
Hangya et al. 2015; Lovett-Barron et al. 2014). Similarly, recapitulation of these
activity patterns in vitro can be achieved by control and stimulation of anatomically
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and genetically defined populations of neurons (e.g. Basu et al. 2016; Kohl et al.
2011).

An alternative approach is to measure and interfere with the induction of
hippocampal synaptic plasticity in vivo, ideally at individual identified synapses.
Advances in electrophysiological and imaging techniques make this goal increas-
ingly obtainable. Intracellular electrophysiological recordings from hippocampal
neurons in vivo are achievable and can be made from anaesthetised animals (e.g.
Henze et al. 2002) or awake animals either head fixed (e.g. Bittner et al. 2015) or
freely moving (e.g. Lee et al. 2006). It is hoped that these technologies will become
increasingly more widespread. Imaging of excitatory (but not inhibitory) synapse
strength in vivo by measurement of morphology, membrane voltage or intracellular
Ca2+ potentially provides benefits over electrophysiology since they enable the
localisation of activated synapses. In particular, voltage-sensitive dyes offer the
promise of measuring fast voltage changes at high spatial resolution combining the
best aspects of electrophysiology and imaging techniques (e.g. Hochbaum et al.
2014). Progress in optimising resolution and sensitivity suggests that these imaging
techniques will become more useful for measuring synaptic plasticity both in vitro
and in vivo.

At the same time, methods for intervention in synaptic plasticity processes
to determine the role of synaptic plasticity at specific synapses in hippocampal-
dependent learning and memory have advanced from blocking plasticity with
intra-hippocampal infusion of pharmacological agents that block LTP (Morris et
al. 1986; Pastalkova et al. 2006) to genetically targeting synaptic plasticity at
specific synapses and specific times. These include deletion of the NR1 subunit of
NMDARs from granule cells, CA3 pyramidal cells or CA1 pyramidal cells to reveal
the contribution made by NMDAR-dependent synaptic plasticity in each cell type
(McHugh et al. 1996; McHugh et al. 2007; Nakazawa et al. 2002). It is expected that
highly selective manipulation of plasticity processes in genetically defined neuronal
populations will enable further interrogation of the role of synaptic plasticity in
hippocampal function.
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Neuromodulation of Hippocampal Cells
and Circuits

J. Josh Lawrence and Stuart Cobb

Abstract The hippocampus is a major brain centre for information process-
ing, where subcortical neuromodulatory circuits interface with intrinsic learning
circuits to assign salience to sensory information relevant to behavioural state.
Glutamatergic principal cells (PCs) of the dentate gyrus (DG), CA3 and CA1
regions comprise the classic trisynaptic circuit, which compare patterns of incoming
sensory stimuli with internal representations, enabling the detection of novelty.
Within the trisynaptic circuitry, distinct feedforward and feedback inhibitory circuits
spatiotemporally constrain the timing of PC excitability, which, together with
disinhibitory circuits, synchronize PC ensembles to generate network rhythms.
Neuromodulation alters network rhythms and synaptic plasticity by releasing
neurotransmitters and neuropeptides onto diverse receptor subtypes, often expressed
in a cell type- and circuit-specific manner. Moreover, extrinsic neuromodulation can
induce the secondary release of intrinsic neuromodulators. For each neurotransmit-
ter system, we review the structural organization and target specificity of afferent
innervation, receptor subtype distribution and, where known, their functional effects
on hippocampal cells and circuits. Despite the complexity involved and evident
gaps in scientific knowledge, general principles of neuromodulation are emerging.
With the development of next-generation technologies, the vision of understanding
how neuromodulatory mechanisms engage circuit elements to regulate hippocampal
memory encoding and recall is coming into sharper focus.
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Overview

Neuromodulation is the processes by which the properties of neurons and synapses
are altered by neuroactive substances termed neuromodulators. The distinction
between neuromodulation and classical neurotransmission can be fuzzy, but, in
general, neuromodulation is more diffuse and less targeted and acts over a longer
time course than classical fast neurotransmission. Often the same neurochemical
may have rapid neurotransmitter-like effects followed by more sustained modulator-
like actions. What makes neuromodulation an important consideration is that it
appears to be a fundamental process in modifying all aspects of neural network
functioning and information processing. Neural networks are not hard-wired, but
plastic, and the neuromodulation of its components yields distinct activity patterns
that are associated with behavioural state, allowing the same neural circuit to
have added computational power. These components include the modification of
neuronal excitability, integrative properties of neurons, synaptic transmission and
synaptic plasticity. Neuromodulators often have more than one cellular or synaptic
consequence. Moreover, not all cellular or synaptic targets of neuromodulation
produce the same effects. Due the omnipotent control of the user over parameter
space, computational modelling is a powerful tool for gaining insight into how
cellular and synaptic targets of neuromodulation alter the functional output of
neuronal populations and the processing of synaptic signals within networks.
Beyond the acute effects of neuromodulation on cellular and synaptic excitability
are longer-term changes in gene expression and neuronal architecture that are essen-
tial in regulating developmental processes and structural plasticity. This chapter
circumscribes the acute cellular and synaptic effects of neuromodulation on cellular
targets within the hippocampal formation. Whilst necessary to constrain the scope
of this chapter, the multi-faceted parameter space involved in neuromodulation is so
complex that it invites, if not demands, computational modelling to validate specific
neuromodulatory mechanisms at work.

The Data

Introduction

The hippocampus receives input from a multitude of neuromodulatory substances,
the release of which is often associated with external factors or dependent upon
particular behavioural states. This chapter summarizes some of the primary neu-
romodulators including those that arise from sources extrinsic to the hippocampus
(mainly subcortical nuclei) as well as those originating from cells intrinsic to the
hippocampal formation. There may be important functional distinctions between
intrinsic and extrinsic forms of neuromodulation (Katz and Frost 1996; Marder
2012) with the most obvious being that extrinsic neuromodulation is usually inde-
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pendent of ongoing activity within the circuits being modulated, whereas cells or
synapses undergoing intrinsic modulation often do so as a result of ongoing activity
within those same circuits. However, the extensive reciprocal interconnectivity from
the hippocampus to cortex (Melzer et al. 2012), hypothalamus (Jimenez et al. 2018)
and subcortical neuromodulatory nuclei (Mattis et al. 2014; Yuan et al. 2017) makes
this distinction somewhat superficial (Caputi et al. 2013). As discussed in earlier
chapters, glutamate and GABA have multiple modes of action, which still provide
important foundational principles upon which to understand other neurotransmitter
systems. In addition to ligand-gated ion channels for rapid transmission, slower,
often intrinsic neuromodulatory actions are also produced through metabotropic
signalling. Many of the ‘classical’ neuromodulators presented here act in a similar
manner and generally provide extrinsic neuromodulation as their sources of input
are derived predominantly from subcortical nuclei. Although some modulators, such
as acetylcholine and serotonin, appear to possess machinery for fast, point-to-point
transmission, ‘volume transmission’, in which neurotransmitters are released at non-
synaptic varicosities, diffuses to high-affinity metabotropic receptors and appears to
be a major mode of transmission. It is possible, due to differences in the proximity
of neuromodulatory release sites and postsynaptic composition of receptors, that
specific cellular targets may employ point-to-point, volume or both modes of
transmission. Along the lines of how views of GABAergic transmission have
evolved (Farrant and Nusser 2005), one may view these modes of synaptic trans-
mission along a continuum, in that any given hippocampal postsynaptic neuronal
cell type may possess a different ratio of point-to-point and volume transmission.
Furthermore, this ratio may change dynamically depending on firing frequency
of the presynaptic neuromodulatory neurons, magnitude of the neurotransmitter
concentration transient, short-term plasticity dynamics of neurotransmitter release,
state of occupancy of postsynaptic receptors and neurotransmitter transporters and
pooling in the extracellular space. Optogenetic strategies that allow for stimulation
of specific neurochemically restricted synapse types are leading to a better under-
standing of the spatiotemporal dynamics of synaptic neurotransmission (Lorincz
and Adamantidis 2017). As with GABAA receptors, it may soon be possible to cate-
gorize neuromodulatory receptors as synaptic (‘phasic’), perisynaptic (‘spillover’ or
‘augmented transmission’) and tonically active, high-affinity receptors (Farrant and
Nusser 2005). Therefore, it is important to recognize that classic pharmacological
manipulations, such as bath application of a fixed agonist concentration, may
not necessarily mimic volume transmission. Indeed, it is increasingly likely that
populations of ‘extrasynaptic’ receptors can be stimulated by bath application of
exogenous agonists but are simply too far away from release sites to be activated by
the spatiotemporal concentration transient of endogenous neurotransmitter release.
Artificial, pathological or therapeutic interventions may dynamically alter spa-
tiotemporal concentration transients, effectively redefining which neurotransmitter
receptors can be classified as synaptic receptors. Whilst extrasynaptic receptors that
are not normally activated under physiological circumstances may be considered
irrelevant, or even confounding, in understanding synaptic transmission from a
‘purist’ biophysical perspective, their existence becomes important in understanding
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Fig. 1 Different types of neuromodulatory receptors. (a) Synaptic receptors (yellow) localized
in the immediate vicinity of neurotransmitter release sites are activated. (b) Both perisynaptic
(blue) and synaptic receptors are activated when multiple simultaneously active synaptic terminals
induce ‘spillover’ from delayed neurotransmitter clearance or when neurotransmitter transport is
compromised. (c) Exogenous application of neurotransmitter or a non-specific receptor agonist
will activate synaptic, perisynaptic and extrasynaptic (red) receptors. In addition, if extrasynaptic
receptors are tonically active, application of an antagonist will block these receptors. (Modified
from Farrant et al. 2005, with permission)

roles that some neurotransmitters play in setting the ‘tone’ of transmission. More-
over, pharmacological and therapeutic interventions, such as the use of specific
neurotransmitter receptor agonists, allosteric modulators and antagonists, may
ultimately change cellular excitability by altering these extrasynaptic receptors. It is
therefore important not only to understand how specific neuromodulatory afferents
interact with their associated postsynaptic receptors but also to understand the
receptor distribution on postsynaptic neurons independent of its relationship to the
endogenous neurotransmitter (Fig. 1).

In addition to classical neuromodulatory transmitters, many neuropeptides exert
effects in the hippocampus that originate from extrinsic sources, but also from
local hippocampal circuits, to provide additional layers of intrinsic modulation.
Other modulators including endocannabinoids and nitric oxide have an even more
localized autocrine/paracrine modulatory action and are thought to mediate exclu-
sively intrinsic modulation. In some cases, extrinsic neuromodulation by classical
neurotransmitters induces secondary effects mediated by intrinsic modulation,
as demonstrated by the capacity of metabotropic receptor activation or elevated
intracellular calcium to induce release of endocannabinoids. However, whether the
modulation is driven by extrinsic or intrinsic sources, the loci of action is an essential
factor and can include modification of (1) the properties of presynaptic neuro-
transmitter release, (2) the modification of postsynaptic responsiveness/receptor
signalling and/or (3) the modulation of the postsynaptic intrinsic electrical and
biochemical properties or gene regulation. Understanding the overall actions of a
neuromodulator that occur on multiple timescales is thus especially challenging.
The challenge is even greater if one considers that receptors, intracellular signalling
pathways and effectors all could be independently expressed in a cell type-specific
manner. The most significant obstacle is that neuromodulators do not simply
excite or inhibit neurons in the classical sense. Rather, they usually signal through
intracellular messenger cascades to modulate not one but a range of effectors.
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This may include the gating of ion channels that orchestrate the response to
classical neurotransmitters. That is, they change the way neurons respond to signals
arising from other neurons whether that be due to altered intrinsic properties of
the receptive neuron or to altered postsynaptic responsiveness or as a result of
altered properties of the presynaptic neuron such as action potential patterns and/or
neurotransmitter release probability. As a consequence, what an experimenter sees
following manipulation of neurotransmitter/modulator mechanisms depends upon
how the cell or system is investigated. As pointed out by Surmeier (Surmeier 2007),
different questions produce different answers!

Modulation of Intrinsic Properties

Neuromodulators can regulate a diverse range of ion channels and other effec-
tors that modify the active and passive properties of hippocampal neurons. The
excitability of cells can be altered in three different ways. (1) Neuromodulation
can alter the resting membrane potential, in the form of depolarization or hyper-
polarization. This action has several consequences. First, it will bring the cell
closer or farther away from the threshold for action potential initiation. This makes
a given excitatory synaptic input more or less effective. Secondly, alteration in
the resting membrane potential may be associated with a different set of cellular
conductances, which themselves could influence the intrinsic membrane properties
of the neuron. (2) Neuromodulation also can directly alter the passive properties of
the cell, including the cell input resistance and membrane time constant. This is done
through neuromodulation of the conductances involved at a given resting potential,
such as leak conductances or steady-state conductance. This effect changes the
computational properties of the neuron. For example, an increase in the membrane
time constant will broaden the excitatory postsynaptic potential (EPSP) so that fewer
EPSPs are required to summate to action potential threshold. Another consequence
of increasing the input resistance and membrane time constant is to alter the
RC filtering characteristics of the cell, thereby impacting the ability of the cell
to follow frequency-specific input. (3) Active conductances may also undergo
neuromodulation. Depending on the kinetics of activation of the conductances
modulated, the action potential waveform, various afterhyperpolarizing potentials
and/or action potential discharge patterns are altered by neuromodulation. Some
of these effects are summarized in Table 1 and described under the individual
neuromodulator headings.

Different neuromodulatory substances often converge onto common effectors to
produce similar actions. For example, activation of metabotropic GABAB receptors,
adenosine A1 receptors and serotonin 5-HT1A receptors in CA1 pyramidal cells
all increase a common potassium conductance (Nicoll et al. 1990; Sodickson
and Bean 1998), thereby providing several redundant and/or synergistic cellular
mechanisms for reducing cellular excitability. However, whilst some generalizations
may be made, the situation often is far more complex. As seen in the earlier
chapters, different hippocampal neurons are endowed with different channels and
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Table 1 Summary of key neuromodulator actions

Arrows indicate direction of change. White and grey boxes represent postsynaptic and presynaptic
actions, respectively (for more detail and other actions, see text below). Parentheses show receptor
subtypes where known
Abbreviations: ND not determined, IAHP afterhyperpolarization current, ICAT cation current, Ih
hyperpolarization-activated current, IM M current
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neurotransmitter receptor subtypes. For any given modulatory substance in any
given cell, the exact channels modulated will depend upon the presence and
spatial localization of particular subtype(s) of receptors, together with the presence
and spatial localization of coupled ion channels and other effectors. Intracellular
signalling is another major determinant of the response, and despite its ubiquity,
studies suggest that signalling can be very specific and targeted to specific loci
or subcellular compartments within a cell (Kulik et al. 2006; Shigemoto et al.
1996). Moreover, if release of calcium from internal stores is involved, the response
will also depend on the history of action potential activity, since intracellular
calcium stores can be depleted unless replenished through activation of voltage-
gated calcium channels (Gulledge and Kawaguchi 2007; Gulledge et al. 2009). It is
through calcium imaging (Grienberger and Konnerth 2012), voltage-sensitive dye
imaging (Acker et al. 2011) and the introduction of molecular biosensors and other
transduction processes (Sanford and Palmer 2017) that we are beginning to learn
how modulation can be restricted to localized microdomains or compartments yet
have profound effects on output.

Modulation of Excitatory Synaptic Transmission

The laminar structure of the hippocampal formation lends itself to the study of exci-
tatory pathways. It has long been observed that a wide range of neuromodulatory
substances can affect glutamatergic neurotransmission. Whilst many modulators
have general actions across very many synapses, such as the suppressant actions
of adenosine, others appear to have very precise synapse-specific actions. One of
the best examples of synapse-specific effects is the suppression of transmission
by activation of group II mGluRs at the mossy fibre (MF)-to-CA3 pyramidal cell
synapse but not at Schaeffer collateral (SC) synapses onto the same neuron (Toth
and McBain 1998, 2000) (see Chapter 3). Conversely, the same glutamatergic axon
can generate different responses depending on the postsynaptic neuron subtype
(Maccaferri et al. 1998; Toth and McBain 2000). These examples, amongst others,
have made the concept of a generic glutamatergic synapse essentially obsolete.
Several other examples of synapse-specific neuromodulation at different hippocam-
pal glutamatergic synapses are illustrated in this chapter. Finally, neuromodulators
are known to modulate synaptic plasticity, including activity-dependent changes in
the efficacy of glutamatergic transmission, called long-term potentiation (LTP) and
long-term depression (LTD).

Modulation of Inhibitory Synaptic Transmission

As described in earlier chapters, GABAergic cells and circuits show great diversity
in terms of their neurochemistry, morphology, connectivity and expression of
neurotransmitter receptors. Similarly, the neuromodulation of GABAergic circuits
appears to be complex, yet general principles are emerging even as the number
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of interneuron subtypes is growing. This stems in part from issues that arise
from attempting to classify GABAergic interneurons into defined subtypes (Mac-
caferri and Lacaille 2003; Klausberger and Somogyi 2008; Petilla Interneuron
Nomenclature Group et al. 2008). However, it is also complicated by the findings
that application of the same neuromodulator to what are considered anatomically
discrete cell types can often give rise to variable and unpredictable responses even
when considering a simple question such as whether a modulator is excitatory or
inhibitory (Parra et al. 1998; Widmer et al. 2006). From this muddle, some patterns
are starting to emerge, and we are beginning to understand principles by which
neurochemically and functionally distinct interneuron subtypes are differentially
recruited, suppressed or modified in a coordinated manner to orchestrate the flow
of information in hippocampal circuits (Lawrence 2008; Madison and McQuiston
2006). As has been shown in the neocortex (Bacci et al. 2005; Kawaguchi 1997;
Porter et al. 1999; Xiang et al. 1998), one important factor is the neurochemical
identity of the hippocampal interneuron subtype (Cea-del Rio et al. 2010; Freund
and Katona 2007; Glickfeld et al. 2008; Glickfeld and Scanziani 2006; Lawrence
2008; Lawrence et al. 2006c; McQuiston 2014a). Synaptic plasticity, including LTP
and LTD, can also occur in inhibitory circuits, which is dependent on neurochemical
identity (Monday and Castillo 2017; Monday et al. 2018). Important clues to
interneuron diversity have been revealed by investigating the lineage of interneuron
subtypes (Kepecs and Fishell 2014; Rudy et al. 2011). Understanding exactly how
the neuromodulatory specializations of each neurochemically distinct interneuron
subtype contribute to the modulation of the frequency and magnitude of network
oscillations continues to remain a major challenge.

‘Classical’ Modulators

Many of the classical modulators have an established role in mediating synaptic
transmission/neuromodulation, and indeed their discovery as such significantly
predates the discovery of glutamate and GABA as neurotransmitter substances.
Despite this however, our knowledge of the precise action of classical modulators on
hippocampal cells and circuits remains rather disjointed and incomplete. It is with
acetylcholine that most progress towards a systematic understanding of its multitude
of actions has been achieved and we therefore start with a detailed account of the
current state of knowledge with this system. Thereafter, we provide an overview
of other classical neuromodulators, highlighting their key features as well as the
significant gaps in our current knowledge.
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Acetylcholine

Acetylcholine (ACh) is a key neuromodulator that plays a key role in arousal
(Jones 2004; Lee et al. 2005), attention (Sarter et al. 2005), assigning salience
(Hangya et al. 2015; Raza et al. 2017), spatial navigation (Dannenberg et al. 2016)
and learning (Dannenberg et al. 2017; Haam and Yakel 2017; Hasselmo 2006).
Cholinergically induced oscillatory activity in the hippocampus (Dannenberg et al.
2015; Vandecasteele et al. 2014) correlates with these behavioural states (Lee et al.
1994). Despite major advances in understanding the cell type-specific (Cobb and
Davies 2005; Lawrence 2008; McQuiston 2014a) and subcellular (Lawrence et al.
2015; Szabo et al. 2010) targets of cholinergic modulation, large knowledge gaps
remain at cellular and synaptic levels. Although some insights have been gained
through computational modelling (Hummos and Nair 2017), knowledge gaps still
exist in understanding how cholinergic neuromodulation coordinates the activation
of diverse hippocampal circuit elements to give rise to large-scale cholinergically
induced population-level oscillatory dynamics (Vijayaraghavan and Sharma 2015).
However, the recent discovery of the role of astrocytes in the cholinergic modulation
of hippocampal dentate granule cells (Pabst et al. 2016) suggests that the inventory
of circuit elements capable of undergoing cholinergic modulation is not even
complete.

Origin and Structural Organization of Cholinergic Afferents

The medial septum/diagonal band of Broca (MS-DBB) provides the major source
of cholinergic innervation to the hippocampus (Dutar et al. 1995; Gielow and
Zaborszky 2017; Lucas-Meunier et al. 2003; Swanson et al. 1987; Woolf 1991)
and presents a direct synaptic input to both principal neurones and interneurons
(Deller et al. 1999; Frotscher and Leranth 1985; Leranth and Frotscher 1987).
The MS-DBB also contains septohippocampal GABAergic (Freund 1989; Freund
and Antal 1988; Toth et al. 1997) and glutamatergic (Huh et al. 2010) projection
neurons, which serve distinct but complementary roles in cognition (Dannenberg et
al. 2015; Muller and Remy 2017). MS-DBB cholinergic neurons are rhythmically
active during waking and quiescent during sleep (Lee et al. 2005). Cholinergic axons
ramify extensively throughout all regions of the hippocampal formation and in all
layers (Aznavour et al. 2002; Aznavour et al. 2005; Leranth and Frotscher 1987).
At the ultrastructural level, a significant proportion of cholinergic boutons are not
associated with distinct postsynaptic specializations (Vizi and Kiss 1998; Vizi et al.
2004). These observations support two forms of cholinergic transmission: precise
synaptic transmission, involving highly localized ACh transients onto low-affinity
nAChRs, and volume-mediated cholinergic transmission, where ACh is released
into the extracellular space, diffusing to high-affinity receptors at some distance
from the synaptic terminal (Vizi and Kiss 1998; Vizi et al. 2004).



236 J. Josh Lawrence and S. Cobb

A recent study has shown that GABA is co-released with ACh (Takacs et al.
2018), as has been shown at cortical neurons receiving input (Granger et al. 2016;
Saunders et al. 2015). Whilst co-transmission of acetylcholine with other classical
neurotransmitters, such as glutamate (Allen et al. 2006), also has not been shown
directly, MS-DBB cholinergic neurons appear to possess the appropriate cellular
machinery for co-release of glutamate or GABA with acetylcholine (Sotty et al.
2003; Takacs et al. 2018).

Laminar and Target Specificity of Cholinergic Afferents

The effects of ACh on hippocampal function first commence with where ACh is
released, which relates to the specific pattern of cholinergic afferent innervation
in the hippocampus. There are differences in the pattern of innervation across
DG, CA3 and CA1, as well as within specific layers (termed lamina). Stratum
oriens and stratum pyramidale receive a higher density of cholinergic terminals
than in other layers (Aznavour et al. 2002). In addition to this laminar specificity,
there are several lines of evidence that suggest that cholinergic septohippocampal
fibres preferentially target specific hippocampal cell types. Given that nAChRs
cluster under cholinergic terminals (Zago et al. 2006), it is possible that a high
expression level of postsynaptic nAChRs may indicate a higher level of cholinergic
terminal contacts relative to interneuron subtypes associated with lower nAChR
expression. Consistent with this idea, we recently used a statistical approach to
demonstrate that the density of cholinergic terminals onto hippocampal GAD65-
GFP inhibitory neurons is non-random, implying synaptic targeting mechanisms at
work (Smith et al. 2015). In the dentate gyrus, cholinergic afferents appear to exhibit
some target selectivity, preferentially innervating NPY- over PV-containing neurons
(Dougherty and Milner 1999). Moreover, using vesicular acetylcholine transporter
(vAChT) labelling in combination with anterograde labelling of basal forebrain
afferents, Jones and colleagues found that cholinergic terminals more closely appose
calbindin-positive than PV-positive interneurons (Henny and Jones 2008). These
observations are consistent with the demonstration of fast α7 nAChR-mediated
synaptic responses in stratum radiatum (SR) interneurons (Alkondon et al. 1998;
Chang and Fischbach 2006; Frazier et al. 1998a, b), which likely correspond to
CCK-/CB-positive interneurons. Several studies have confirmed that electrical stim-
ulation can evoke α7 nAChR-mediated synaptic responses (Alkondon et al. 1998;
Chang and Fischbach 2006; Frazier et al. 1998a, b). Recent optogenetic experiments
also have shown that α7 nAChR-mediated synaptic responses can be evoked, but
it is more rarely observed than through electrical stimulation (McQuiston 2014b),
raising the question as to whether α7 nAChRs are truly synaptically localized (Bell
et al. 2011; Bell et al. 2015a; McQuiston 2014a). Finally, cholinergic afferents may
target precise spatial locations relative to other afferents. The overlap of cholinergic
and GABAergic terminal specializations (Henny and Jones 2008; Zago et al. 2006),
combined with the demonstrated crosstalk between nAChRs and GABAA receptors
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(Wanaverbecq et al. 2007; Zhang and Berg 2007), suggests that cholinergic afferents
target GABAergic synapses.

Intrinsic Cholinergic Interneurons of the Hippocampus

In addition to the extrinsic cholinergic input, the hippocampus possesses a numer-
ically sparse population of cholinergic interneurons (Frotscher et al. 1986, 2000).
Recent studies have used transgenic mouse technology to visualize cholinergic
circuit elements by driving expression of fluorescent proteins under the control
of the choline acetyltransferase (ChAT) promoter, encountering populations of
fluorescently labelled hippocampal neurons (Blusztajn and Rinnofner 2016; Grybko
et al. 2011; von Engelhardt et al. 2007; Yi et al. 2015). Monyer and colleagues
recorded from ChAT-GFP cells in the neocortex (von Engelhardt et al. 2007).
Although evoked nicotinic EPSPs onto postsynaptic targets were not observed,
a modest enhancement in spontaneous glutamatergic transmission was detected,
suggesting that ACh release from these neurons may spill over to presynaptic
nAChRs located on glutamatergic terminals (von Engelhardt et al. 2007). In the
cortex, ChAT-GFP cells co-express VIP (von Engelhardt et al. 2007) and possess a
high density of nAChRs (Porter et al. 1999), raising the possibility that ACh itself
may promote cortical ACh release through a feedforward excitatory cholinergic
circuit (Tricoire and Cea-Del Rio 2007). In a recent study in the hippocampus,
only a minority of ChAT-GFP or ChAT-CRE/YFP cells expressed VIP but were
excited by ACh (Yi et al. 2015). Optogenetic stimulation of ChAT-CRE cells in
the hippocampus surprisingly evoked a glutamatergic synaptic current, which may
be attributable to a special class of CA3 pyramidal cells that either ectopically or
developmentally express ChAT (Yi et al. 2015). ChAT-GFP and ChAT-CRE/YFP
cells also were encountered in CA1 (Yi et al. 2015), consistent with earlier
studies (Frotscher et al. 2000). However, the unambiguous determination of the
neurotransmitter phenotype of ChAT-GFP cells in CA1 awaits future studies.

Acetylcholine Receptors

To complement their rich cholinergic input, hippocampal neurons express a broad
range of acetylcholine receptors (Buckley et al. 1988; Lebois et al. 2017; Levey
1996; Levey et al. 1995; Rouse et al. 1999). Cholinergic neuromodulation has
complex effects on both glutamatergic and GABAergic neurons in the hippocampus,
which occur by the binding of ACh to ionotropic nicotinic receptors (nAChR) and
metabotropic muscarinic receptors (mAChRs) at pre- and postsynaptic locations
(Cobb and Davies 2005; Dannenberg et al. 2017; Giocomo and Hasselmo 2007).
Many of the effects are mediated through metabotropic muscarinic acetylcholine
receptors (mAChRs, M1-5). Early studies suggested M1 and M3 receptor proteins
being mainly expressed in principal neurones and M2 and M4 receptors predomi-
nantly expressed on interneurons (Levey et al. 1995). Within glutamatergic circuits
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of the hippocampal formation, there is extreme variability in mAChR immunoreac-
tivity between subfields and laminae (Rouse et al. 1999). The termination zones of
the perforant path differentially express presynaptic M2, M3 and M4 receptors.

The septohippocampal pathway is also thought to activate nicotinic acetylcholine
receptors (nAChRs). The exact expression of nAChR subunits with respect to the
afferent cholinergic input is not fully established, but binding studies suggest that
populations of interneurons that are suspected to receive direct septohippocampal
innervation bind the nAChR ligand α-bungarotoxin (Freedman et al. 1993), imply-
ing the expression of α7 nAChRs. Immunocytochemical studies have demonstrated
the α7 AChR subunit to be highly expressed across multiple cell types and multiple
cellular and synaptic compartments, including somata, dendrites, spines, axon
fibres, glutamatergic axon terminals and GABAergic axon terminals (Fabian-Fine
et al. 2001).

Action of Acetylcholine on Intrinsic Properties of Hippocampal Neurones

Pyramidal Cells

ACh has been known for many years to excite hippocampal pyramidal cells (Cobb
and Davies 2005; Cole and Nicoll 1983, 1984a, b; Dodd et al. 1981), and the ionic
basis of such effects has now been elucidated in some detail. Through mAChRs,
ACh is known to modulate a large number of conductances and second messenger
cascades in pyramidal neurones. These include IM, the Kv7/KCNQ-mediated K+
current; IAHP, the slow Ca2+-activated K+ current responsible for the slowing of
action potential discharges; Ileak, the ohmic leak current responsible in large part for
the resting membrane potential (Halliwell and Adams 1982; Madison et al. 1987;
Halliwell 1990); and IKir, an inwardly rectifying potassium conductance (Seeger and
Alzheimer 2001). mAChR activation also potentiates two mixed cation currents (Ih,
the hyperpolarization-activated non-specific cation current; Icat, Ca2+-dependent
non-specific cation current) (Brown and Adams 1980; Colino and Halliwell 1993;
Fisahn et al. 2002; Halliwell and Adams 1982) as well as modulates a voltage-
dependent Ca2+ current (Toselli et al. 1989). The action of exogenously applied
ACh on hippocampal pyramidal cells is that of a pronounced membrane potential
depolarization and increase in cell membrane resistance (Cole and Nicoll 1984a, b;
Fraser and MacVicar 1996). Through mAChR knockout mice (Dasari and Gulledge
2011; Fisahn et al. 2002) and pharmacological manipulation (Thorn et al. 2017),
M1 mAChRs are largely responsible for ACh effects on the intrinsic excitability
of hippocampal pyramidal cells (Dennis et al. 2016). Puff application of mAChR
agonists to soma/proximal dendritic regions of principal cells induces a transient
hyperpolarization caused by mAChR-induced release of calcium from internal
stores, which then activates Ca2+-dependent SK channels (a component of IAHP)
(Dasari and Gulledge 2011; Dasari et al. 2017; Gulledge and Kawaguchi 2007).
Using electrical stimulation of cholinergic afferents, Power and Sah demonstrated
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that synaptic activation of mAChRs leads to propagating calcium signals within the
somatodendritic axis of pyramidal cells (Power and Sah 2002).

Despite difficulties in interpreting nAChR pharmacology from early studies using
cultured hippocampal neurones, in acute native tissues, pharmacological activation
of nAChRs is generally reported to produce either no a or barely detectable
response in principal cells (Frazier et al. 1998a, b; McQuiston and Madison 1999c;
Reece and Schwartzkroin 1991). There are some reports that nAChRs are detected
postsynaptically in principal cells (Hefft et al. 1999) where they facilitate the
induction of LTP (Ge and Dani 2005; Gu and Yakel 2011) through enhanced cellular
excitability (Szabo et al. 2008). However, with the hippocampal circuit intact, the
effect may be minor, since bath application of nicotine reduces the excitability
of pyramidal cells through activation of non-desensitizing α2-containing nAChR-
containing O-LM interneurons (Jia et al. 2009).

Inhibitory Neurons

In the majority of GABAergic interneurons, pharmacological activation of mAChRs
results in a similar membrane depolarization to that seen in pyramidal cells but with
a less prominent change in cell input resistance (Lawrence et al. 2006c; McQuiston
and Madison 1999a, b; Parra et al. 1998), confirming earlier studies (Benardo
and Prince 1982a; Benardo and Prince 1982b, e; Reece and Schwartzkroin 1991).
GABAergic interneurons represent a highly heterogeneous population of neurone
with respect to their connectivity and neurochemistry (Freund and Buzsaki 1996;
Klausberger and Somogyi 2008), and there is wide variation in their response
to activation of mAChRs compared to that seen in the relatively homogeneous
population of principal neurones (McQuiston and Madison 1999a; Parra et al. 1998;
Widmer et al. 2006). In contrast to the slow sustained mAChR-mediated modulation
of both pyramidal cells and interneurons, activation of nAChRs produces a more
transient response. Similar to neocortical interneurons (Couey et al. 2007; Gulledge
and Kawaguchi 2007; Porter et al. 1999; Xiang et al. 1998), there is evidence for cell
type specificity in postsynaptic expression of nAChRs in hippocampal interneurons
(Bell et al. 2015a).

Oriens-Lacunosum Moleculare (O-LM) Cells

O-LM cells exhibit a highly reproducible response to bath application of acetyl-
choline, mAChR agonist or nAChR agonist activation (Jia et al. 2009; Lawrence
et al. 2006c), similar to neocortical Martinotti cells, another somatostatin-positive
interneuron subtype (Fanselow et al. 2008; Kawaguchi 1997). When induced to
fire in the presence of mAChR agonists, O-LM cells exhibit an acceleration in
firing frequency that is accompanied by a prominent suprathreshold afterdepo-
larization (ADP) (Lawrence et al. 2006c; McQuiston and Madison 1999b). The
ADP, mediated by M1/M3 mAChR activation, is associated with the activation
of a non-selective cationic current (ICAT) and the inhibition of both M- (IM) and
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slow afterhyperpolarization K+ currents (IAHP) (Lawrence et al. 2006c). mAChR
modulation of O-LM cells enhances their intrinsic oscillatory properties to theta-
specific input (Lawrence et al. 2006a), which is mimicked by inhibition of IM
(Lawrence et al. 2006b) and a shift in the voltage dependence of HCN channels in
O-LM multicompartmental models (Lawrence 2008; Lawrence et al. 2006b; Sekulic
and Skinner 2017). In vivo, pirenzepine-sensitive activation of calcium signalling in
O-LM cells by MS-DBB cholinergic afferents occurs during fear learning (Lovett-
Barron et al. 2014) via a mechanism consistent with M1/M3 mAChR activation
(Lawrence et al. 2006c).

In stratum oriens (SO), a mixed fast α7-mediated and slow non-α7 nAChR-
mediated response is consistently observed in oriens-lacunosum moleculare (O-
LM) cells (Alkondon et al. 1998; Buhler and Dunwiddie 2001; McQuiston and
Madison 1999c). O-LM cells exist as two distinct subpopulations, a PV-positive,
5-HT3 receptor-lacking population derived from the medial ganglionic eminence
(MGE) and a PV-lacking, 5-HT3R-expressing population derived from the caudal
ganglionic eminence (CGE) (Chittajallu et al. 2013). Both populations express α7
nAChRs. O-LM cells that express α2 nAChRs (Jia et al. 2009; Leao et al. 2012;
Mikulovic et al. 2015) lack PV and are therefore most likely derived from CGE.
Cholinergic inputs onto α2 nAChR-expressing O-LM cells have been shown to
evoke a nicotinic EPSC, which is blocked by α7-and non-α7 nAChR antagonists
(Leao et al. 2012). Due to their non-desensitizing response upon activation with
nicotine, α2 nAChRs may play a role in the activation of O-LM cells by exogenous
nicotine (Jia et al. 2009).

M2 mAChR-Positive Trilaminar Cells

There are populations of GABAergic interneuron in stratum oriens that are hyper-
polarized in response to mAChR activation (Lawrence et al. 2006c; McQuiston and
Madison 1999a; Parra et al. 1998). The neurochemical identity of ADP-lacking SO
interneurons is less clear, but likely comprises M2 mAChR-expressing trilaminar
cells (Ferraguti et al. 2005; Hajos et al. 1998; Klausberger 2009) and horizontally
oriented PV+ BCs (Lawrence et al. 2006c; Maccaferri 2005; Widmer et al. 2006).
Immunocytochemical studies showing that mGluR1a-positive and M2-positive SO
interneurons are distinct cell types (Ferraguti et al. 2005), which likely correspond
to O-LM and trilaminar cells (Gloveli et al. 2005), strengthen the evidence that
SO interneuron subtypes possess a different complement of postsynaptic mAChRs.
Trilaminar cells are CGE-derived (Craig and McBain 2015) and therefore are
likely to possess both nAChR and 5-HT3 receptors (Chittajallu et al. 2013).
The most likely consequence of cholinergic activation in these cells is an initial
hyperpolarization and reduction in cellular excitability (Lawrence et al. 2006c),
possibly mediated through Gi/o-coupled M2 and/or M4 mAChRs (McQuiston and
Madison 1999a; Seeger and Alzheimer 2001). It is also possible that a biphasic
response could be generated, but it is not clear whether trilaminar cells possess Gq-
coupled M1/M3 receptors that could mediate a late depolarizing response.
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Parvalbumin-Positive (PV) Basket Cells

Fast-spiking basket cells, corresponding to PV BCs, do not express high levels
of nAChRs in the neocortex (Gulledge and Kawaguchi 2007; Kawaguchi 1997;
Xiang et al. 1998) or hippocampus (McQuiston and Madison 1999c; Buhler and
Dunwiddie 2001) but do express mAChRs (van der Zee et al. 1991). With the
use of transgenic mice that allows the visualization of PV interneuron circuits
(Hippenmeyer et al. 2005; Kaiser et al. 2016), CA1 PV BCs can be specifically
targeted (Cea-del Rio et al. 2010; Lawrence et al. 2015; Yi et al. 2014). In response
to bath application of 10 μM muscarine, PV BCs strongly depolarize, increase in
firing frequency and exhibit a loss of an afterhyperpolarization, all of which do not
occur in PV BCs lacking the M1 mAChR subtype (Cea-del Rio et al. 2010; Yi et al.
2014). This depolarizing response profile is consistent with that observed previously
in a subset of morphologically defined BCs (McQuiston and Madison 1999a;
Widmer et al. 2006). Fast-spiking interneurons in the dentate gyrus, corresponding
to PV BCs, also depolarize strongly to bath application of ACh or muscarine
and are most likely mediated by M1 mAChRs (Chiang et al. 2010). Interneurons
that are insensitive to nAChR activation are encountered predominantly in stratum
pyramidale (SP) (McQuiston and Madison 1999a) and tend to be fast spiking, a
hallmark of PV BCs (Buhler and Dunwiddie 2001).

Consistent with earlier experiments using electrical stimulation to evoke ACh
release (Widmer et al. 2006), recent experiments using optogenetic stimulation
of ACh release induce a range of atropine-sensitive response profiles in PV BCs,
including depolarizing only, hyperpolarizing only and biphasic hyperpolarizing-
depolarizing responses (Bell et al. 2013, 2015b; McQuiston 2014a). The hyperpo-
larizing response is likely mediated by activation of inward-rectifying potassium
channels (McQuiston and Madison 1999a; Seeger and Alzheimer 2001) through
Gi/o-coupled M2 (Hajos et al. 1998) and/or M4 mAChRs (Bell et al. 2013), whereas
depolarization most likely occurs through Gq-coupled M1 mAChRs (Cea-del Rio
et al. 2010; Yi et al. 2014). The capability of synaptically released ACh to activate
different mAChR subtypes on PV BCs likely reflects differences in spatiotemporal
dynamics of ACh release from cell to cell or possibly differences in synaptic
localization of mAChR subtypes. PV BCs in CA1 (Lawrence et al. 2015) and CA3
(Szabo et al. 2010) also undergo presynaptic cholinergic modulation, which reduces
synaptic depression. In a mathematical model of short-term synaptic depression,
presynaptic cholinergic modulation can be explained by inhibition of presynaptic
calcium channels (Lawrence et al. 2015; Stone et al. 2014) through presynaptic M2
and/or M4 mAChRs (Bell et al. 2013; Cea-del Rio et al. 2010; Hajos et al. 1998).

CCK-Positive Basket Cells

Cholinergic neuromodulation of CCK BCs was investigated with the use of a
GAD65 GFP transgenic mouse line in which GFP is expressed in non-PV-positive
cells (Cea-del Rio et al. 2010; Cea-del Rio et al. 2012; Daw et al. 2009; Lopez-
Bendito et al. 2004). CCK BCs show characteristics of cholinergic neuromodulation
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differently than PV BCs (Cea-del Rio et al. 2010; Cea-del Rio et al. 2012).
First, a prominent mAChR-induced ADP is observed in these cells, with a time
course slower than seen in O-LM cells, and is sometimes briefly interrupted by a
mAChR-insensitive fast afterhyperpolarization (AHP) that occurs after the offset of
a suprathreshold current step (Cea-del Rio et al. 2010). Hyperpolarization followed
by depolarization is often observed, consistent with biphasic response profiles of a
subset of basket cells reported previously (McQuiston and Madison 1999a; Widmer
et al. 2006). This biphasic response is also seen upon optogenetic stimulation (Bell
et al. 2013; McQuiston 2014a). One interesting feature of CCK BCs is that M3
mAChRs appear to control mAChR-induced changes in firing but both M1 and M3
mAChRs control the emergence of the mAChR-induced ADP (Cea-del Rio et al.
2010, 2012). Therefore, the expression of M3 mAChRs and its differential coupling
to mAChR-sensitive conductances distinguishes CCK BCs from PV BCs (Cea-del
Rio et al. 2010, 2012).

There are two types of CCK BCs, identified based on their expression of
vasoactive intestinal peptide (VIP) or vesicular glutamate transporter 3 (vGluT3)
(Klausberger and Somogyi 2008). VIP-containing CCK BCs are consistently depo-
larized upon optogenetic stimulation of ACh release (Bell et al. 2015b), consistent
with the relative absence of M2/M4 mAChRs on CCK BCs (Freund and Katona
2007). This observation reinforces the existence of principles governing cell type-
specific cholinergic neuromodulation in the hippocampus (Lawrence 2008; Madison
and McQuiston 2006; McQuiston 2014a). Consistent with a higher sensitivity of
CCK BCs than PV BCs to mAChR stimulation (Cea-del Rio et al. 2010, 2012),
inhibitory postsynaptic currents evoked by optogenetic ACh release are sensitive
to depolarization-induced suppression of inhibition (DSI), a mechanism mediated
by endocannabinoids acting at presynaptic CB1 receptors on CCK interneurons
(Nagode et al. 2011; Alger et al. 2014).

CCK is highly co-localized with α7 nAChR mRNA transcripts (Morales et
al. 2008) and protein (Freedman et al. 1993). In this context, SR interneurons,
which likely comprise CCK interneuron subtypes, exhibit only fast, presumably α7-
mediated responses upon puff application of ACh (McQuiston and Madison 1999c),
suggesting cell type specificity of nAChR receptor subtypes compared relatively to
additional nAChR subtypes found in O-LM interneurons. However, optogenetically
evoked ACh responses mediated solely by α7 nAChRs are rare (McQuiston 2014b).

CCK-Positive Schaeffer Collateral-Associated (SCA) Interneurons

CCK SCA interneurons are similar to CCK BCs in that they exhibit a similar
mAChR-induced ADP (Cea-del Rio et al. 2010; Cea-del Rio et al. 2011; Cea-del
Rio et al. 2012). The presence of M4 mAChR mRNA transcripts in a subset of CCK
SCA and CCK BCs (Cea-del Rio et al. 2010, 2011, 2012) may explain the often
biphasic hyperpolarizing-depolarizing phenotype of the mAChR-mediated response
in CCK SCA cells, observed with bath application of mAChR agonists (Parra et al.
1998; Cea-del Rio et al. 2011, 2012), electrical stimulation (Widmer et al. 2006)
and optogenetic stimulation (Bell et al. 2013). The M4-positive allosteric modulator
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potentiates the hyperpolarizing component of the biphasic response, consistent with
expression of M4 mAChRs on these cells (Bell et al. 2013), in contrast to the
absence of a hyperpolarizing component onto VIP CCK BC subtypes (Bell et al.
2015b). mAChR activation boosted its response to oscillatory input in CCK SCAs
(Cea-del Rio et al. 2011, 2012). Like CCK BCs, this cell type is likely to be
modulated by endocannabinoids through presynaptic CB1 receptors (Nagode et
al. 2011; Alger et al. 2014) and therefore unlikely to possess presynaptic M2/M4
receptors, as presynaptic CB1 and M2/M4 receptors are thought to be from mutually
exclusive presynaptic terminal populations (Freund and Katona 2007; Armstrong
and Soltesz 2012).

CCK-Positive Perforant Path-Associated (PPA) Interneurons

Although likely comprising more than one neurochemically distinct interneuron
population (Freund and Buzsaki 1996; Bowser and Khakh 2004; Klausberger
2009), interneurons located at the stratum radiatum/stratum lacunosum moleculare
(SR/SLM) border are depolarized by mAChR activation and exhibit intrinsic
subthreshold membrane potential oscillations (Chapman and Lacaille 1999a, b).
Approximately half of these interneurons exhibit a mAChR-induced transient hyper-
polarization that precedes mAChR-induced depolarization (Chapman and Lacaille
1999a), similar to responses observed in CCK BCs and CCK SCAs (Cea-del Rio
et al. 2010, 2011, 2012). There are likely common cellular mechanisms across
CCK interneuron subtypes; M2/M4 mAChRs mediate the transient hyperpolarizing
response, whilst M1/M3 mAChRs mediate the late depolarizing response (Cea-del
Rio et al. 2010, 2011, 2012; Bell et al. 2013, 2015b).

SR/SLM interneuron populations also express functional nAChRs (Reece and
Schwartzkroin 1991; Jones and Yakel 1997; McQuiston and Madison 1999c).
Activation typically induces brief depolarization or inward current which tends
to desensitize rapidly. The kinetics and pharmacology of the response vary, but
fast depolarization by α7 subunit-containing nAChRs is the predominant response
seen in interneurons. The nAChRs expressed on SR/SLM interneurons can also be
synaptically activated (Frazier et al. 1998a). Unlike agonist-activated responses,
optogenetically activated nAChRs are rarely mediated by α7 subunit-containing
nAChRs (Bell et al. 2011; McQuiston 2014b). The reason for this discrepancy is
unclear.

VIP/Calretinin-Expressing Interneuron-Selective Interneurons

VIP- and calretinin-expressing neurons form local ‘disinhibition circuits’, interneu-
ron subtypes that are specialized to inhibit other inhibitory neurons (Acsady et al.
1996a; Francavilla et al. 2015; Tyan et al. 2014). These cells are negative for M2
mAChRs (Tyan et al. 2014). A recent study by McQuiston and colleagues found that
VIP-positive interneurons are synaptically activated by α4/β2-containing nAChRs
(Bell et al. 2015a), consistent with the enrichment of nAChRs on VIP interneuron
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subtypes in cortex (Porter et al. 1999). A subset of these VIP/calretinin interneurons
co-express ChAT, which are excited by bath application of ACh (Yi et al. 2015).

Other Hippocampal Interneuron Subtypes

Since publication of the previous edition of this chapter, much knowledge has
been gained, greatly increasing our understanding of cholinergic modulation of
specific circuit elements and demonstrating general principles in cell type-specific
cholinergic neuromodulation in the hippocampus (Lawrence 2008; Madison and
McQuiston 2006; McQuiston 2014a). Despite these advances, of the 21 specific
interneuron subtypes in the hippocampus (Klausberger and Somogyi 2008), cholin-
ergic modulation has been systematically explored in only a third (8/21). Of the
remaining subtypes to be explored, long-range GABAergic projection neurons, such
as the hippocamposeptal (HS) neurons (Caputi et al. 2013; Mattis et al. 2014; Melzer
et al. 2012) are a major class. Finally, the neurochemical identity of inhibitory
interneurons that are totally nonresponsive to cholinergic neuromodulation, which
apparently lack both mAChRs and nAChRs, is not clear (McQuiston and Madison
1999a; Parra et al. 1998).

Clearly, the activity of the cholinergic septohippocampal afferents excites the
hippocampal network generally and differentially gates inhibitory circuits through
both nAChR- and mAChR-mediated mechanisms. This has been proposed to
result in switches in inhibition between perisomatic and pathway-specific dendritic
domains (Gulyas et al. 1999). A major challenge for the future is to understand
how different patterns of cholinergic afferent input can differentially recruit different
receptor populations and cell types. McQuiston and colleagues have shown that a
single stimulation of cholinergic fibres can be effective at evoking nAChR-mediated
postsynaptic potentials in interneurons and that additional stimuli will evoke both
mAChR-mediated hyperpolarizing and depolarizing responses. In contrast, trains
of stimuli delivered at 10–20 Hz, within the range at which most putative septal
cholinergic cells discharge (Brazhnik and Fox 1999; Lee et al. 2005), result in
a robust mAChR-mediated synaptic response whilst at the same time depressing
nAChR-mediated responses (Morton and Davies 1997). During more sustained ACh
release, it is also possible that mAChR activation induces postsynaptic depression
of nAChR responses (Shen et al. 2009).

Action of Acetylcholine on Defined Excitatory Synapses

Presynaptic Muscarinic Receptors Located on Defined Excitatory Synapses

ACh depresses Schaffer collateral (SC) afferents onto CA1 pyramidal cells through
a presynaptic mechanism involving mAChR activation (Valentino and Dingledine
1981) and presynaptic N-type calcium channels (Qian and Saggau 1997). The
nAChR antagonist hexamethonium does not block the action of ACh, suggesting
that nAChRs are absent from presynaptic SC afferents (Valentino and Dingledine



Neuromodulation of Hippocampal Cells and Circuits 245

1981). mAChR activation also inhibits glutamatergic transmission of CA3 collateral
glutamatergic transmission (Vogt and Regehr 2001; Kremin and Hasselmo 2007).
The mAChRs involved in presynaptic inhibition of SCs are most likely M2 mAChRs
(Seeger and Alzheimer 2001) but possibly include M4 mAChRs (Sanchez et al.
2009). Whilst ACh generally suppresses glutamatergic neurotransmission at most
excitatory synapses tested (Valentino and Dingledine 1981), mAChR modulation
has a greater effect at SC synapses than on perforant path (PP) synapses in both CA1
(Hasselmo and Schnell 1994) and CA3 (Kremin and Hasselmo 2007). Similarly,
in the dentate gyrus, cholinergic suppression of transmitter release differs between
medial and lateral pathway (Kahle and Cotman 1989). mAChRs are not present
at MF glutamatergic synapses, but bath application of muscarine enhances GABA
release from local interneurons, which then inhibits MF transmission indirectly
through activation of GABAB receptors (Vogt and Regehr 2001). This same indirect
effect on presynaptic GABAB receptors, however, is not present at SC synapses
(Kremin et al. 2006). This differential effect of cholinergic neuromodulation on
specific glutamatergic circuits has been suggested to amplify the impact of sensory
input arriving to hippocampus, whereby mAChR activation shifts the weight of
glutamatergic input in favour of external (entorhinal cortical) influences over
internal (intrahippocampal pathways) activity such as recall from internal CA3
recurrent collaterals upon cholinergic modulation (Giocomo and Hasselmo 2007).
This synaptic ‘heightening’ of sensory awareness has interesting implications for
the behavioural manifestation of attention (Giocomo and Hasselmo 2007; Sarter et
al. 2005).

Concomitant with acute mAChR-induced presynaptic inhibition of glutamate
release discussed above, the action of ACh can induce synaptic plasticity at SC
synapses, including long-term potentiation (Auerbach and Segal 1994, 1996; Dennis
et al. 2016; Fernandez de Sevilla et al. 2008; Shinoe et al. 2005) and, usually
at higher concentrations of cholinergic agonist, long-term depression (Auerbach
and Segal 1996; Scheiderer et al. 2006, 2008). Release of ACh by stimulation
of the medial septum reproduces this effect on synaptic plasticity (Fernandez de
Sevilla et al. 2008; Habib and Dringenberg 2009). The underlying mechanisms
appear to be an enhancement in the NMDA receptor component of the excitatory
postsynaptic event (Markram and Segal 1990a, b). More recently, Fernandez de
Sevilla and colleagues have discovered a postsynaptic mechanism that involves
enhanced surface trafficking of AMPA receptors (Fernandez de Sevilla et al. 2008).
Presumably through a convergence underlying synaptic, intrinsic and network
mechanisms, LTP is preferentially induced at synapses firing on the positive phase
of the θ rhythm during cholinergically induced theta oscillations in the hippocampus
in vitro and in vivo (Pavlides et al. 1988; Huerta and Lisman 1993; Holscher et al.
1997; Hyman et al. 2003).
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Presynaptic Nicotinic Receptors Located on Hippocampal Glutamatergic
Terminals

Nicotine application increases the frequency of miniature glutamatergic EPSCs in
tissue culture from hippocampus (Radcliffe and Dani 1998), strongly suggesting
that presynaptic nAChRs exist. Several lines of evidence support the presence
of nAChRs on CA3 MF terminals, where calcium influx through α7 nAChRs
induces concerted release of multiple quanta (Gray et al. 1996; Sharma and
Vijayaraghavan 2003; Sharma et al. 2008). Nicotine selectively depresses PP but
not SC glutamatergic transmission in CA3 (Giocomo and Hasselmo 2005), but this
effect is accounted for by an indirect effect on inhibitory interneurons (Giocomo
and Hasselmo 2005), possibly related to tonic activation of O-LM interneurons by
nicotine (Jia et al. 2009). Similar indirect effects of ACh at MF synapses are also
likely (Vogt and Regehr 2001).

Action of Acetylcholine on Defined Inhibitory Synapses

As demonstrated by the early work of Pitler and Alger (Pitler and Alger 1992a), as
well as other laboratories (Behrends and ten Bruggencate 1993), the actions of ACh
on GABAergic interneurons not only include direct excitation but also presynaptic
inhibition. Pharmacological activation of mAChRs directly increases the frequency
and amplitude of spontaneous IPSCs whilst at the same time depressing monosy-
naptically evoked IPSCs and reducing the frequency of miniature IPSCs (Pitler and
Alger 1992a; Behrends and ten Bruggencate 1993). In a landmark study demon-
strating the differential expression of mAChRs on hippocampal interneurons, Hajos
and colleagues found that M2 receptors (M2Rs) were expressed on the presynaptic
axon terminals of PV+ basket cells (Hajos et al. 1998). Consistent with M2-
mediated inhibition of GABAergic transmission evoked in the pyramidal cell layer
(Seeger et al. 2004), mAChR activation reduces GABA release from PV-positive BC
terminals (Lawrence et al. 2015). Whether presynaptic mAChRs are present on other
hippocampal interneuron subtypes still remains an open question. Interestingly,
Soltesz and colleagues demonstrated that mAChR activation inhibits GABA release
from identified CCK BCs (Neu et al. 2007). Here, mAChR modulation was indirect
(Fukudome et al. 2004), occurring via postsynaptic release of endocannabinoids
from pyramidal cells and subsequent activation of presynaptic CB1 receptors
(Lawrence 2007; Neu et al. 2007) (Fig. 2). Therefore, mAChR-induced modulation
of GABA transmission from PV BCs likely involves direct activation of presynaptic
M2 receptors, whilst mAChR-induced modulation of GABA transmission from
CCK BCs is indirect, involving endocannabinoid signalling (Freund and Katona
2007). Finally, in addition to mAChR-mediated presynaptic inhibition of GABA
release, calcium-permeable nAChRs also regulate GABAergic inhibition through
postsynaptic intracellular signalling pathways (Wanaverbecq et al. 2007; Zhang
and Berg 2007). Therefore, cholinergic neuromodulation can alter the efficacy of
GABAergic transmission through both pre- and postsynaptic mechanisms (Fig. 3).
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Fig. 2 The medial septal-diagonal band of Broca (MS-DBB) projection to defined cellular and
synaptic targets of the CA1 hippocampus. (a) The MS-DBB is composed of cholinergic (red)
and GABAergic (green) neurons that project via the fimbria to hippocampal regions. Cholinergic
projection fibres (red) pass through stratum oriens (SO), where the somatostatin (SOM)-positive
oriens-lacunosum moleculare (O-LM) neurons (yellow) and trilaminar (blue) interneurons are
located, and arborize in a dense network within stratum pyramidale (SP) with CA1 pyramidal
cells (black), CCK BCs and PV BCs (cholinergic terminals in stratum oriens and stratum radiatum
(SR) omitted for clarity). MS-DBB GABAergic neurons (A, green cells) are thought to innervate
exclusively hippocampal interneurons. Areas of interest, denoted by circled numbers in A, are
expanded in B. Known cellular and synaptic targets, denoted by circled numbers, are shown. These
are (A) the dendrites of pyramidal cells, acting at M1, M2 and M3 mAChRs and presynaptic
terminals of Schaffer collaterals (orange) acting at M2 mAChRs (B) somatodendritic regions of
O-LM cells acting at M1 and M3 mAChRs, α7 nAChRs and non-α7 nAChRs, (C) somatodendritic
regions of trilaminar interneurons acting at M2 mAChRs, (D) somatodendritic regions of PV
BCs acting at M1 mAChRs, (E) presynaptic terminals of PV BCs acting on M2 mAChRs, (F)
somatodendritic regions of CCK BCs acting on M1 and M3 mAChRs and α7 nAChRs and (G)
presynaptic terminals of CCK BCs acting indirectly through presynaptic CB1 mAChRs

Presynaptic Modulation of ACh Release

M2 mAChRs additionally occur at septohippocampal cholinergic terminals where
they are thought to have an autoregulatory role (Rouse et al. 1999). Other studies
have shown more directly that whilst ACh auto-feedback can regulate, the activation
of a range of other transmitters can suppress evoked cholinergic responses including
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Fig. 3 Cholinergic modulation of GABA release from PV and CCK BC terminals through direct
and indirect mechanisms. There is evidence that mAChRs can regulate GABA release through
both direct and indirect mechanisms (Freund and Katona 2007). The direct mechanism involves
binding of ACh to presynaptic M2 mAChRs (Lawrence et al. 2015; Szabo et al. 2010). The indirect
mechanism involves postsynaptic M1/M3 mAChR activation and release of endocannabinoids onto
CB1 R-expressing terminals of CCK+ BCs (Neu et al. 2007). (Reproduced from Lawrence 2007,
with permission)

A1 adenosine receptors (Morton and Davies 1997), opiate receptors (Kearns et al.
2001) and GABAB receptors (Morton et al. 2001). The inhibition of ACh release
occurs through a common mechanism, where presynaptic Gi/o receptor activation
converges to reduce calcium influx through presynaptic calcium channels. This
mechanism has recently been supported by the observation that optogenetically
induced nAChR-mediated EPSCs are potentiated by atropine, consistent with block
of presynaptic Gi/o-coupled mAChRs on cholinergic terminals (Bell et al. 2011).

Dopamine

Dopamine (DA) is considered to play an important role in hippocampal-dependent
learning by enhancing the saliency of relevant stimuli and is released into the
hippocampus when animals are exposed to a novel environment (Ihalainen et al.
1999; Lisman and Grace 2005; Muzzio et al. 2009). Lesions of the dopaminergic
system impair learning and memory (El-Ghundi et al. 1999; Gasbarri et al. 1996)
and dysfunction of the DA system have been implicated in neurological disease
(Seeman and Van Tol 1994). At the cellular and network levels, the action of DA
is complex, involving neuromodulation of intrinsic membrane properties, synaptic
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receptors and feedforward inhibition, which collectively act to lower the threshold
for spike timing-dependent plasticity, thereby facilitating synaptic plasticity and
memory storage.

Origin and Structural Organization of Dopaminergic Afferents

Early histological microdialysis studies have reported that the hippocampal forma-
tion receives dopaminergic projections from A9 (substantia nigra) and A10 (ventral
tegmental area or VTA) cell groups (Scatton et al. 1980; Swanson et al. 1987).
The VTA projects heavily to the subiculum and CA1 and to a lesser extent to the
CA3 and dentate gyrus (Gasbarri et al. 1994, 1997). However, through retrograde
tracing study, only a small percentage (10–18%) of these fibres are positive for
tyrosine hydroxylase (TH) (Gasbarri et al. 1994). Interestingly, there has been a
growing appreciation that the VTA is not the only source of DA to the hippocampus
(McNamara and Dupret 2017; Smith and Greene 2012). Recent tract tracing in
transgenic mice has confirmed that the VTA projection to dorsal hippocampus
is sparse, whereas there is a high density of TH-positive fibres originating from
locus coeruleus (LC) (Takeuchi et al. 2016). A sophisticated set of optogenetic
experiments revealed that novelty-induced memory enhancement is primarily due
to the activation of D1/D5 receptors from LC, which is largely independent of VTA
(Kempadoo et al. 2016; Takeuchi et al. 2016). Moreover, DA transporter (DAT)
expression, an indicator of DA terminals, is relatively absent from the hippocampus
(Ermine et al. 2016; Smith and Greene 2012). Finally, retrograde labelling of fibres
innervating the dentate gyrus revealed that the origin of TH-positive fibres is in LC,
not midbrain DA neurons in SN or VTA (Ermine et al. 2016). Despite the very strong
evidence that LC, not VTA, is the primary source of DA, loss of VTA neurons in
Alzheimer’s disease mice is associated with reduced DA outflow to hippocampus,
whereas norepinephrine levels stay the same (Nobili et al. 2017).

Dopamine Receptors

All five DA receptors (DARs) are expressed in the hippocampus with Gs-coupled
D1/5 and Gi-coupled D2-4 receptors being positively and negatively coupled to
adenylyl cyclase, respectively. The expression pattern of DARs at the level of single
cells remains relatively poorly defined, but DARs have been shown to display both
presynaptic and postsynaptic localization (Bergson et al. 1995) and to be expressed
both in principal cells and interneuronal populations (Mrzljak et al. 1996). There
is often a mismatch between the expression patterns of particular DARs and the
innervation pattern (Goldsmith and Joyce 1994). This has led some authors to
hypothesize that it is the distribution of the DARs and not of dopaminergic fibres
that determines the neuronal systems influencing dopaminergic afferent activation.

Through immunocytochemical analysis in D1-GFP mice, D1 receptors have
recently been shown to be exclusively expressed on inhibitory interneurons and are
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particularly enriched on SR interneurons (Puighermanal et al. 2017). The Drd1a-
EGFP-positive neurons were not positive for PV and enriched in stratum oriens
and radiatum, suggesting that D1 Rs are present on 5-HT3 R- and SST-containing
interneurons (Gangarossa et al. 2012). With the development of improved transgenic
mouse technology, D2 R expression has similarly evolved from initially what
was thought to be widespread hippocampal expression to, recently, very limited
expression primarily in inhibitory interneurons and hilar neurons (Puighermanal et
al. 2015, 2017). D3 R level is lower than any other dopamine receptor subtype in
the hippocampus (Andersson et al. 2012a) but has been detected immunocytochem-
ically in the neuropil of stratum oriens and radiatum (Khan et al. 1998). D4 Rs are
expressed in GABAergic neurons (Mrzljak et al. 1996), specifically PV interneurons
(Andersson et al. 2012a). D4 R activation reduces an outward potassium current in
fast-spiking hippocampal interneurons (Andersson et al. 2012b). This observation
is counterintuitive given that the D4 R is a Gi/o-coupled receptor and expected to
increase potassium conductance.

Because DA, serotonin and norepinephrine all have similar structures (are
monoamines), DA can activate some receptors that are not the classic D1-D5
receptors. DA has low affinity for 5-HT3 Rs (Solt et al. 2007) and α1 adrenergic
receptors (Cilz et al. 2014).

Action of Dopamine on Intrinsic Properties

Principal Cells

DA has been reported to produce a range of actions, which are largely attributed to
the activation of D1-like (D1/5) and D2-like (D2-4) Rs, respectively (Table 2). The
effects of DA on intrinsic properties have historically been examined through bath
application of DA and/or DAR agonists. In CA1 pyramidal neurons, bath application
of DA produces a pronounced hyperpolarization and elevation of action potential
threshold (Benardo and Prince 1982c) coupled with a suppression of the IAHP and
inhibition of spike frequency adaptation (Malenka and Nicoll 1986; Pedarzani and
Storm 1995). This is mainly attributed to suppression of the activation of Ca2+-
sensitive potassium channels (Benardo and Prince 1982c, d; Bernardi et al. 1984;
Stanzione et al. 1984). Activation of the selective D2 R agonist quinpirole was
shown to increase the cellular excitability of hilar mossy cells (Etter and Krezel
2014). However, it is important to keep in mind that bath application of DAR
agonists may not be comparable to the actions of synaptically released DA. Indeed,
optogenetically stimulated synaptic release of DA fails to substantially alter passive
membrane properties (Rosen et al. 2015).
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Inhibitory Neurons

Much of what is known about the effects of DA on inhibitory neurons has been
studied in cortex (Gorelova et al. 2002; Towers and Hestrin 2008; Zhou and Hablitz
1999) (see (Tritsch and Sabatini 2012) for review). In cortical GABAergic interneu-
rons, D1 R activation induces a depolarization, accompanied by an increase in
input resistance (Zhou and Hablitz 1999; Towers and Hestrin 2008), consistent with
the expected actions of Gs-coupled receptors (Nicoll 1988). In the hippocampus,
PV-positive interneurons possess D4 Rs (Andersson et al. 2012a; Mrzljak et al.
1996), which control feedforward excitation of Shaffer collateral inputs onto CA1
pyramidal cells (Rosen et al. 2015). However, effects of DA on intrinsic membrane
properties of other neurochemically defined hippocampal interneuron subtypes have
not been systematically investigated.

Action of Dopamine on Defined Excitatory Synapses

The actions of DA on excitatory synaptic transmission are generally suppressant in
nature (Hsu 1996). However, in parallel with other modulators, certain excitatory
pathways are more profoundly affected than others. For instance, DA together with
noradrenaline and serotonin produces a strong (30–50%) acute suppression of the
PP input to CA1 pyramidal cells in comparison to no or very minimal change in
SC input to the same cells (Otmakhova and Lisman 2000). This is consistent with
the SLM having an especially high concentration of DARs. The action of DA is
thought to involve both D1 (Noriyama et al. 2006)- and possibly D2 (Otmakhova
and Lisman 1999)-type Rs and induce presynaptic suppression of glutamate release.
A similar acute suppressant action is reported in the subiculum (Behr et al. 2000).
Conversely, in area CA3, DA produces a pronounced synaptic potentiation of the
MF inputs but no effect on associational/commissural synapses onto CA3 pyramidal
cells (Kobayashi and Suzuki 2007).

Another important aspect is the temporal aspect of dopaminergic modulation.
Many reports describe a biphasic action whereby an initial acute action (e.g.
suppression) of synaptic transmission is followed by a long-lasting enhancement
of the evoked synaptic response (Gribkoff and Ashe 1984). In this context, DA is
considered an important modulator of synaptic plasticity whereby it enhances long-
term potentiation (LTP) (Frey et al. 1993; Huang and Kandel 1995; Otmakhova and
Lisman 1996; Thompson et al. 2005) and inhibits depotentiation (Otmakhova and
Lisman 1998). During exposure to a novel environment, the threshold for LTP is
reduced transiently (absent in animals exploring a familiar environment), and this
facilitation is suggested to be dependent upon DA acting via D1/5 receptors (Li et
al. 2003). In agreement with this observation, D1 R knockout mice display deficits
in hippocampal-dependent spatial learning (El-Ghundi et al. 1999). Moreover,
amphetamine, which induces release of endogenous DA, enhances hippocampal-
dependent memory tasks (Packard et al. 1994).
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There appear to be several mechanisms by which DA may induce synaptic
plasticity. These include increased surface expression of AMPA receptors through
both direct phosphorylation of AMPA receptors and through the stimulation of
local dendritic protein synthesis (Gao and Goldman-Rakic 2003; Smith et al. 2005;
Wolf et al. 2003; Yang 2000). Also, DA may enhance NMDA receptor expression
(Yang 2000). Interestingly, depending on the GluN2A/GluN2B subunit compo-
sition, synaptic NMDA receptor-mediated currents are differentially modulated
by D1/D5 R agonists (Varela et al. 2009). SC synapses, which contain abundant
GluN2B NMDA receptor subunits, are potentiated by D1/D5 R activation, whereas
GluN2A-rich PP synapses are depressed (Varela et al. 2009). DA may gate synaptic
transmission and plasticity in a frequency and synapse-specific manner, which
includes modulation of excitatory synapses onto hippocampal interneurons (Ito and
Schuman 2007).

Recently, optogenetic release of dopamine has been shown to enhance feed-
forward inhibition by increasing the magnitude of the SC EPSP onto PV-positive
neurons (Rosen et al. 2015). D4 Rs have been demonstrated on PV interneurons in
the CA1 hippocampus (Rosen et al. 2015; Andersson et al. 2012a, b). In response
to SC stimulation, activation of D4 Rs on PV interneurons increases the AMPA
receptor-mediated EPSP, likely due to increased expression and stabilization of
AMPA receptors (Rosen et al. 2015). The enhancement of gamma oscillations
by D4 R stimulation is consistent with this mechanism (Andersson et al. 2012a).
This mechanism at least partly accounts for DA-induced suppression of SC EPSPs
in CA1 pyramidal cells (Rosen et al. 2015). The action of haloperidol, a D2
R antagonist, on inhibitory transmission, reinforces the idea that DA modulates
GABAergic inhibition in the hippocampus (Brady et al. 2016).

Action of Dopamine on Inhibitory Synapses

As optogenetically released DA does not change the amplitude of directly stimulated
IPSCs across all hippocampal layers (Rosen et al. 2015), it is unlikely that
presynaptic DA heteroreceptors, if present, are modulated by synaptically released
DA on any of the major classes of inhibitory neurons in the hippocampus. A
detailed understanding of DA effects on hippocampal interneurons and modulation
of GABAergic synaptic transmission is extremely sparse, though some analogous
systematic studies have been conducted in cortex (Gao and Goldman-Rakic 2003;
Gao et al. 2003; Gonzalez-Burgos et al. 2005; Gorelova et al. 2002; Kroner et
al. 2007; Towers and Hestrin 2008). In the hippocampus, activation of D3 Rs can
modulate GABAergic transmission in area CA1, suppressing evoked IPSCs in SR
but not in SO (Hammad and Wagner 2006). This laminar-specific action has been
reported to be due to dopamine (via D3 Rs) modulating postsynaptic GABAA
receptor endocytosis in apical dendrites of CA1 pyramidal cells and has been
postulated to be a significant postsynaptic means of modulating inhibitory synaptic
transmission (Swant et al. 2008). Because D3 R agonists did not alter paired-pulse
ratio of GABAergic IPSCs, presynaptic D3 Rs on GABAergic neurons are unlikely
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(Swant et al. 2008). Such a mechanism of D3 R-mediated inhibition of IPSCs may
contribute to a reduction in gamma oscillations by D3 R agonists (Lemercier et al.
2015).

Additional indirect evidence suggests that DA may also modulate feedforward
inhibition of the PP input to the DG and hippocampal area CA1 through D4 R
signalling (Romo-Parra et al. 2005).

Further indirect evidence for DA regulation of hippocampal inhibitory networks
comes from the finding that DA depresses cholinergically generated gamma band
oscillatory activity in the hippocampus (Weiss et al. 2003; Wojtowicz et al.
2009). Gamma oscillations are increasingly appreciated to involve fast-spiking
PV-positive interneurons (Bartos et al. 2007; Sohal et al. 2009). However, DA
enhances stimulus-evoked gamma oscillations (Wojtowicz et al. 2009), which may
be consistent with the notion that DA increases neuronal synchrony (Muzzio et
al. 2009) mediated by its depolarizing action on fast-spiking, PV-positive basket
cells (Bartos et al. 2007; Sohal et al. 2009; Towers and Hestrin 2008). Finally, the
connectivity and GABAergic levels of PV interneurons, termed PV plasticity, are
regulated by D1/D5 Rs and are important for memory consolidation (Karunakaran
et al. 2016).

Norepinephrine

Norepinephrine (NE) is a major monoamine neuromodulator, and its actions in the
hippocampus appear complex and sometimes paradoxical. Through multiple actions
on intrinsic excitability and synaptic transmission, NE is considered to be important
in learning and memory processes (Gibbs and Summers 2002; Murchison et al.
2004). More recent studies have found a role of astrocytes in mediating effects of
NE (Bazargani and Attwell 2017; Paukert et al. 2014).

Origin and Laminar Specificity of Central Adrenergic Afferents

The hippocampus receives dense input from the locus coeruleus (LC), terminating
heavily in the polymorph layer of the DG, stratum lucidum (SL) of area CA3 and
SLM in area CA1 (Loy et al. 1980; Oleskevich et al. 1989; Swanson et al. 1987).
The total NE bouton density varies across hippocampal regions but is estimated
to be about twice as high as in cortex (Oleskevich et al. 1989). In the DG, it has
been estimated that two-thirds of NA boutons form synaptic specializations with
the remainder forming no specialized synaptic profiles and presumably mediating
volume transmission (Milner and Bacon 1989a). GABAergic interneurons are often
the targets of NA boutons forming synaptic specializations (Milner and Bacon
1989b). More recently, several studies have shown that the LC is a major source
of DA to the hippocampus, particularly in dorsal hippocampus (Kempadoo et al.
2016; McNamara and Dupret 2017; Smith and Greene 2012).
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Cell Type-Specific Expression of Adrenoceptors

NE acts on a range of adrenoceptors with both alpha and beta classes being
widely expressed on both dendritic and axonal elements (Harley 2007; Nicholas
et al. 1996). The α1d receptor appears to be the predominant α-receptor in all
areas, with the exception of the hilus where α1a R appears to be the dominant
subtype (Day et al. 1997). The α2a R appears to be located mainly presynaptically
(Milner et al. 1998) but, like many other adrenoceptor subtypes, show dramatic
changes in expression level during development. β-Adrenoceptors show laminar-
specific differences and are mainly expressed postsynaptically on both principal
cells and interneurons (Cox et al. 2008; Milner et al. 2000). Studies that utilize
neurochemically defined interneuron subtypes indicate that the expression of both
α (Hillman et al. 2005)- and β (Cox et al. 2008)-adrenoceptor subunits is cell
type-specific. However, they can also be found on presynaptic profiles. In terms of
signalling, all adrenoceptors are G-protein-coupled receptors with α1 being coupled
to Gq, β2 being coupled to Gi/o and the β-family receptors being coupled to Gs
(Harley 2007; Nicholas et al. 1996).

Action of Norepinephrine on Intrinsic Properties

Principal Cells

NE is reported to produce a wide and sometimes contradictory range of effects in
principal cells. These include hyperpolarization and reduced excitability in some
cells to a depolarization, increased input resistance (Lacaille and Schwartzkroin
1988; Madison and Nicoll 1986; Ul Haq et al. 2012), reduction of afterhyperpolar-
izing potentials and loss of action potential accommodation (Madison and Nicoll
1982) in cells of the same class (see Table 3). Pharmacological studies suggest
that these inhibitory versus excitatory actions may, in part, be due to a differential
recruitment of α- versus β-subclasses of adrenoceptors (Bijak 1989; Harley 2007;
Lacaille and Schwartzkroin 1988). Activation of β-adrenoceptors reduces resting
K+ conductances (Lacaille and Schwartzkroin 1988), whereas α2 receptor activa-
tion strongly suppresses cellular excitability in CA1 pyramidal cells (Otmakhova
et al. 2005), most likely through postsynaptic activation of Kir potassium channels
(Luscher et al. 1997; Sodickson and Bean 1998). Studies investigating hilar neurons
suggest that the dominant response in putative GABAergic cells is depolarization
and loss of a slow AHP. In contrast, the dominant response in putative mossy cells
was a loss of spike frequency adaptation (Bijak and Misgeld 1995).

The underlying ion mechanisms for the change in intrinsic properties are thought
to be a reduction in a Ca2+-activated K conductance leading to an inhibition of
the slow AHP and a reduction in spike frequency adaptation (Haas and Rose 1987;
Lacaille and Schwartzkroin 1988; Madison and Nicoll 1982; Pedarzani and Storm
1996). In DG granule cells, β1 receptors are also reported to enhance the voltage-
dependent Ca2+ currents (Gray and Johnston 1987).
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Table 3 Primary actions of norepinephrine on hippocampal neurons

Cell Type Cellular effects Ion channels effects

Pyramidal Hyperpolarization, ↓ A-type current (α receptors)
↑ increased input resistance
or
Depolarization, ↓ Ca++ activated K+/IAHP (β1 receptors)
↓ input resistance,
↓ AHP,
↓ spike frequency adaptation
or
Hyperpolarization followed by
depolarization

Both above (α and β1)

Granule As above As above
Activation of L type current (via β receptor)
leading to ↓gK+

Inhibitory Neurons

In addition to its action on principal neurons, NE is also known to depolarize
specific subsets of hippocampal interneurons (Bergles et al. 1996; Hillman et al.
2009; Papay et al. 2006). The effect is primarily due to an α1 receptor-mediated
decrease in potassium conductance, though a modest β-receptor component is
also sometimes apparent, especially in interneurons displaying a pronounced time-
dependent inward rectification (see chapter ‘Physiological Properties of Hippocam-
pal Neurons’). Though not tested systematically, NE appears to produce these potent
depolarizing actions across multiple classes of interneurons including BCs located
outside of the pyramidal cell layer (Bergles et al. 1996) and interneurons located in
SO (Bergles et al. 1996; Papay et al. 2006). Depolarizing actions of NE are blocked
by the α1AR antagonist (Bergles et al. 1996) and resemble responses to other
Gq-mediated GPCRs (Parra et al. 1998). The β AR agonist isoprenaline increases
spontaneous firing in O-LM cells through a mechanism consistent with a shift in the
activation curve for the hyperpolarization-activated cationic current Ih (Maccaferri
and McBain 1996). Consistent with these observations, SO interneurons that contain
somatostatin (SOM) mRNA transcripts also possess mRNA transcripts for both α1a
and α1b receptors, in striking contrast to the complete absence of α1a and α1b
receptors in SR interneurons that contain CCK mRNA transcript (Hillman et al.
2005). A smaller subpopulation of hippocampal interneurons located in SR or SLM
exhibit hyperpolarization or reduced excitability to NE application (Bergles et al.
1996; Parra et al. 1998), although the neurochemical identity of these cells is not
clear.

http://dx.doi.org/10.1007/978-3-319-99103-0_3
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Action of Norepinephrine on Excitatory Synapses

NE has a general suppressant action on hippocampal excitatory pathways. The PP
input to CA1 is profoundly suppressed by NE (∼55%) (Otmakhova et al. 2005),
whereas the SC pathway is more weakly (10–15%) suppressed (Otmakhova and
Lisman 2000). Studies in acute brain slices provide evidence for α2 receptor-
mediated postsynaptic mechanisms (Otmakhova et al. 2005). However, detailed
studies in culture systems provide evidence for a presynaptic mode of inhibition
of excitatory transmission via α1 (Scanziani et al. 1993) and α2 receptors (Boehm
1999).

In terms of synaptic plasticity, β adrenoceptors enhance both early and late
phases of LTP in area CA1 as well as the DG (Hopkins and Johnston 1984,
1988; Huang and Kandel 1996; Gelinas and Nguyen 2005). NE has been shown
to regulate AMPA-receptor trafficking (Hu et al. 2007), whilst early studies show
that NE modulated glutamate release in the DG (Lynch and Bliss 1986). PKA
activation following β-adrenoceptor activation is essential for both MF-mediated
and SC-mediated LTP (Huang and Kandel 1996; Gelinas and Nguyen 2005; Gelinas
et al. 2008). It is possible that these processes involve the phosphorylation of
vesicular proteins including synapsin 1 and 2 (Parfitt et al. 1991, 1992). More recent
studies suggest that NE may also trigger long-lasting synaptic potentiation through
transcriptional regulation (Maity et al. 2015, 2016).

Action of Norepinephrine on Inhibitory Synapses

Information on the regulation of inhibitory synaptic transmission by NE is rela-
tively sparse. Intracellular studies have shown NE to produce a marked (∼50%)
suppression of evoked inhibitory synaptic potentials recorded in CA1 pyramidal
cells (Madison and Nicoll 1988b). Subsequent studies have suggested this effect to
be independent of a direct action of NE on interneuron soma or axon terminals and
instead be due to decreased excitatory input to the interneurons (Doze et al. 1991).
However, more recent whole-cell recording has demonstrated a subpopulation of
CA1 interneurons that are excited by α1a R activation (Hillman et al. 2009). NE, like
other transmitters, is also reported to facilitate depolarization-induced suppression
of inhibition (DSI) (Martin et al. 2001) (see cannabinoids below). Finally, NE may
also influence hippocampal network behaviour through the modulation of electrical
coupling of GABAergic circuits in SLM (Zsiros and Maccaferri 2008). Overall,
there remains a paucity of data on the selective modulation of discrete inhibitory
hippocampal cells and circuits by this modulator.

Serotonin

Serotonin (5-hydroxytryptamine or 5-HT) is an important modulator of
hippocampal-dependent behaviours and cognitive performance (Richter-Levin and
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Segal 1996). In general terms, 5-HT plays a role in the regulation of mood, anger
and aggression. By its association with other limbic structures, more recent studies
implicate roles of 5-HT and the hippocampus in fear learning (Balazsfi et al.
2017; Bauer 2015), assigning emotional salience (Mlinar and Corradetti 2017),
encoding of reward signals (Li et al. 2016) and memory consolidation (Wang et
al. 2015). Transgenic mice have revealed important insights into the function of 5-
HT and its receptors in behaviour (Gardier 2009). Cells providing serotonergic
input show an interesting dichotomy with one population of cells displaying
state-dependent fluctuations in activity across the sleep-wake cycle whilst another
population is tightly regulated to the hippocampal theta rhythm (Kocsis et al. 2006).
These findings suggest that ascending serotonergic projections regulate both fast,
dynamical information processing and slow, state-dependent transitions.

Origin and Structural Organization of Serotonergic Afferents

The serotonergic projection of the hippocampus originates in the dorsal raphe
nucleus (DRN) and ramifies extensively throughout the hippocampal formation
(Miettinen and Freund 1992; Varga et al. 2009; Vertes et al. 1999). A subset of DRN
neurons project only to the medial septum, implying that serotonin transmission can
impact hippocampal function both directly and indirectly through the medial septum
(Acsady et al. 1996b). The DRN is neurochemically heterogeneous, containing
neurons that express 5-HT, glutamate, 5-HT/glutamate and GABA (Domonkos et al.
2016; Gras et al. 2002; Hioki et al. 2010; Sos et al. 2017). DRN fibres innervating
the hippocampus co-localize with the vesicular monoamine transporter VMAT2
and the vesicular glutamate transporter vGluT3 (Amilhon et al. 2010; Varga et al.
2009). Consistent with the co-release of both 5-HT and glutamate from DRN fibres,
optogenetic activation of DRN afferents evokes synaptic currents onto hippocampal
neurons that are mediated by both glutamate receptors and 5-HT3 receptors (Varga
et al. 2009). Similar co-transmission has been observed in the amygdala (Sengupta
et al. 2017).

Within the rodent hippocampus, serotonergic afferents exhibit exquisite laminar
specificity, with dense innervation at the SR/SLM border in areas CA3 and CA1, and
a secondary, lower density in SO (Ihara et al. 1988; Lidov et al. 1980; Miettinen and
Freund 1992; Varga et al. 2009; Vertes et al. 1999). This laminar specificity has been
confirmed with quantitative autoradiography (Moore and Halaris 1975; Oleskevich
and Descarries 1990). The majority of DRN axon varicosities do not make direct
synaptic contacts with target neurons, implying that volume transmission is a
primary mode of serotonergic transmission (Oleskevich et al. 1991). As a result
of the differential laminar localization of 5-HT afferents, interneurons located
in SR/SLM, such as calbindin-positive and NPY-positive interneurons, are major
cellular targets (Freund et al. 1990; Gulyas et al. 1999; Miettinen and Freund
1992; Varga et al. 2009). The exact anatomical identity of these interneurons is
not explicitly known but likely includes dendritically projecting neurons such as
CCK/5HT3-positive SCA and PP-associated interneurons (Klausberger 2009; Varga
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et al. 2009) and neurogliaform cells (Overstreet-Wadiche and McBain 2015). The
density of 5-HT innervation in principal cell layers is much lower; therefore, PV-
positive interneurons embedded in the principal cell layers receive less innervation.

Cell Type-Specific Expression of 5-HT Receptors

There are many different 5-HT R subtypes expressed in the hippocampus, and
these have been linked to an array of neurophysiological responses (reviewed by
Andrade (1998); Barnes and Sharp (1999); Dale et al. (2016); Fig. 4). There are
diverse expression patterns across the dorsoventral axis (Mlinar and Corradetti
2017; Tanaka et al. 2012), between hippocampal cell types (Dale et al. 2016) and
even between subcellular neuronal compartments (Fink and Gothert 2007) (Table 4).
For instance, in CA1 pyramidal cells, 5-HT1A and 5-HT4 receptors mediate the

Fig. 4 Schematic illustration of the hippocampal circuit with 5-HT receptor localization. The
main areas of the hippocampus together with primary synaptic connections are indicated. Principal
(granule and pyramidal) cells are shown in blue, and interneurons are shown in green. Expression
of 5-HT receptor subtypes on hippocampal CA1 and CA3 pyramidal cells, granule cells and
interneurons is shown. Note that the 5-HT1A heteroreceptor is expressed at high levels throughout
the hippocampus. The 5-HT1B receptor is found at highest levels in the subiculum. Based on
histology data, the 5-HT3 receptor is only expressed on the interneurons, and the 5-HT4 receptor is
only expressed on pyramidal cells. Other 5-HT receptor subtypes are found on both principal cells
and interneurons (Reproduced from Dale et al. 2016, with permission)
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main postsynaptic actions, whereas 5HT1B receptors, considered to be expressed at
presynaptic terminals, regulate neurotransmitter release (Dale et al. 2016).

In CA1 hippocampus and DG principal cells, 5-HT1A receptor mRNA is highly
expressed, correlating with dense autoradiographic binding of 5-HT1A in these areas
(Chalmers and Watson 1991; Pompeiano et al. 1992). The CA3 region exhibits
less 5-HT1A mRNA and binding (Pompeiano et al. 1992). The mismatch between
mRNA localization and autoradiographic binding in the CA1 region led to the
conclusion that 5-HT1B Rs are mainly presynaptic (Boschert et al. 1994). However,
functional studies support that 5-HT1B receptors are dendritically localized (Cai et
al. 2013). The localization of 5-HT Rs has improved with the generation of GFP
mice driven by 5-HT R-specific promoters. Although dense immunocytochemical
staining of 5-HT2A receptors in principal cells of CA1, CA3 and DG has been
previously reported (i.e. Cornea-Hebert et al. (1999); Li et al. (2004)), the recent
use of a 5-HT2A-GFP mouse, combined with a 5-HT2A antibody validated against
a 5-HT2A knockout mouse, has demonstrated a total absence of 5-HT2A expression
in CA1 pyramidal cells (Weber and Andrade 2010). A recent in situ hybridization
study corroborates that 5-HT2A R mRNA expression is not detectable in CA1
pyramidal cells (Tanaka et al. 2012). However, 5-HT2A R mRNA is present in CA3
(Tanaka et al. 2012). 5HT3 Rs are preferentially expressed on a specific subclass
of hippocampal interneurons (Chameau and van Hooft 2006; Morales et al. 1996;
Morales and Bloom 1997; Tecott et al. 1993). 5-HT4 R mRNA and binding is
present in the principal neurons of the hippocampus (Vilaro et al. 2005; Waeber
et al. 1996), which has been validated in a 5-HT4 R knockout mouse (Compan et al.
2004).

Action of Serotonin on Intrinsic Properties

Principal Cells

The release of serotonin can activate several different types of receptors on
hippocampal neurons. In hippocampal CA1 principal cells, activation of somato-
dendritic 5HT1A Rs leads to the activation of Kir3.2 inward-rectifying potassium
channels through a membrane-delimited Gi/o-coupled pathway (Andrade 1998;
Luscher et al. 1997). The consequence is membrane hyperpolarization and a
decrease in cellular input resistance (Andrade et al. 1986; Andrade and Nicoll 1987;
Andrade and Chaput 1991; Jahnsen 1980; Segal 1980; Behr et al. 1997; Luscher
et al. 1997). The same Kir3.2 channel conductance mediates both GABAB and 5-
HT1A receptor activation (Andrade et al. 1986; Andrade and Nicoll 1987; Booker
et al. 2018; Colino and Halliwell 1987; Degro et al. 2015). A similar 5-HT1A-
mediated mechanism exists in CA3 pyramidal cells (Beck and Choi 1991; Beck
et al. 1992; Corradetti et al. 1998; Johnston et al. 2014; Okuhara and Beck 1994;
Sodickson and Bean 1998) and DG granule cells (Baskys et al. 1989; Ghadimi et
al. 1994; Nozaki et al. 2016; Piguet and Galvan 1994). Although this mechanism
has not yet been demonstrated to occur in response to DRN afferent stimulation, the
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abundant expression of 5-HT1A Rs in DG cells (Samuels et al. 2015; Tanaka et al.
2012) and Kir responses to synaptic GABAB R activation (Otis et al. 1993) suggests
that 5-HT1A R-mediated Kir3.2 responses can be evoked in DG cells. Interestingly,
deletion of 5-HT1A Rs from adult DG cells eliminates the antidepressant effect of
the selective serotonin reuptake inhibitor fluoxetine, implying a critical role of 5-
HT1A receptors on mature DG cells in the regulation of mood and anxiety (Samuels
et al. 2015).

Consistent with the virtual absence of mRNA transcripts and protein expression
for Gq-coupled 5-HT2A, 5-HT2B and 5-HT2C Rs (Tanaka et al. 2012), there are no
published studies that attribute activation of these receptors to alterations in CA1
pyramidal cell excitability. However, in subicular neurons, 5-HT2C R activation
inhibits T-type calcium channels, which reduces burst firing (Petersen et al. 2017).

Expression and activation of 5-HT3 Rs are thought to occur exclusively in
hippocampal interneurons (Kepecs and Fishell 2014; Rudy et al. 2011; Tremblay
et al. 2016). However, the absence of 5-HT3 R expression has not been confirmed
functionally in all hippocampal principal cell types (Kawa 1994).

Activation of Gs-coupled 5-HT4 Rs increases cellular excitability by modulating
at least three different channel conductances in CA1 pyramidal cells. First, 5-
HT4 R activation reduces afterhyperpolarization (AHP) potentials by increasing
cAMP, leading to the activation of PKA, inhibition of Ca2+-induced Ca2+ release
and reduction in a Ca2+-activated potassium channel current (IK(Ca)) (Andrade
and Chaput 1991; Torres et al. 1995; Torres et al. 1996). The likely underlying
molecular mechanism is the inhibition of KCa3.1, a Ca2+-activated potassium
channel modulated by Gs-coupled receptors (Andrade et al. 2012) and expressed
in hippocampal CA1 pyramidal cells (King et al. 2015). Secondly, activation of 5-
HT4 Rs induces a long-lasting inhibition of a barium-sensitive Kir current (IKir),
which is likely the same Kir3.2 that is activated by Gi/o-coupled 5-HT1A Rs (Mlinar
et al. 2006). Activation of 5-HT4 Rs increases hyperpolarization-activated cyclic
nucleotide-gated channel-mediated currents (Ih), whereas activation of 5-HT1A Rs
decreases them (Bickmeyer et al. 2002). These findings are consistent with opposing
roles of Gi/o-coupled 5-HT1A Rs and Gs-coupled 5-HT4 Rs in modulating IK(Ca), IKir
and Ih.

CA3 pyramidal cells also express 5-HT4 Rs (Tanaka et al. 2012). AHP potentials
are reduced by Gs-coupled 5-HT7 Rs, probably via similar mechanisms (Bacon and
Beck 2000).

Inhibitory Neurons

Early studies found that bath application of 5-HT increases the frequency of
spontaneous GABAergic potentials in the hippocampus in the presence of glutamate
receptor blockers (Ropert and Guy 1991). This depolarizing action was blocked
by a 5-HT3 R antagonist, largely accounting for the 5-HT-induced increase in
depolarizing drive onto GABAergic interneurons (Ropert and Guy 1991).
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Cortical interneurons expressing 5-HT3Rs are now recognized as a major class
of interneurons, which have led to a reorganization in the way that interneurons
are classified (Kepecs and Fishell 2014; Rudy et al. 2011; Tremblay et al. 2016).
Interneurons expressing 5-HT3Rs are derived from the caudal ganglionic emi-
nence (CGE) that co-express calretinin, VIP, CCK, NPY and reelin. In contrast,
the 5-HT3R-expressing interneurons exhibit minimal overlap with PV- and SST-
containing populations that are derived from the medial ganglionic eminence
(MGE). Consistent with this governing principle, cortical VIP interneurons, which
are a subtype of CCK interneurons, exhibit enriched expression of 5-HT3 Rs
in cortex (Ferezou et al. 2002). On the basis of this reasoning, this governing
principle likely applies to the hippocampus as well (Chittajallu et al. 2013). These
observations align reasonably well with previous studies of 5-HT3 R-positive
responses in SR/SLM interneurons (McMahon and Kauer 1997; Sudweeks et al.
2002), in DG BCs (Kawa 1994) and in CA1 BCs, which are most likely to comprise
CCK+ interneuron subtypes co-expressing presynaptic CB1 receptors (Ferezou et
al. 2002; Freund and Katona 2007; Kepecs and Fishell 2014; Morales and Backman
2002; Rudy et al. 2011; Tremblay et al. 2016).

Synaptic activation mediated by 5-HT3 Rs has been demonstrated in amygdala
(Sugita et al. 1992) and cortex (Ferezou et al. 2002; Roerig et al. 1997). Optogenetic
activation of DRN elicits a strong fast excitation of hippocampal interneurons
mediated by co-release of 5-HT and glutamate onto 5-HT3 and glutamatergic
receptors, respectively (Varga et al. 2009).

In addition to 5-HT3 R expression in hippocampal interneurons derived from
the CGE, there is evidence that several other types of 5-HT Rs are expressed
in distinct hippocampal interneuron subpopulations. In the presence of a 5-HT3R
antagonist, 5-HT2 R agonists enhance the frequency and amplitude of spontaneous
inhibitory postsynaptic currents in CA1 pyramidal cells, indicating that 5-HT2
receptors are expressed on a population of inhibitory neuron populations (Shen
and Andrade 1998). Consistent with this mechanism, 5-HT-mediated enhancement
of GABAergic signalling requires 5-HT2A receptors and involves the inhibition of
TASK-3 type potassium channels (Deng and Lei 2008).

5-HT responses that resemble 5-HT2 responses have been anecdotally reported
previously in hippocampal interneurons (McMahon and Kauer 1997; Parra et
al. 1998). More recently, the use of 5-HT2A-GFP mice have revealed that this
interneuron population is located at the SR/SLM border (Wyskiel and Andrade
2016), overlapping strongly with the 5-HT3A-GFP population (Chittajallu et al.
2013). SR/SLM interneurons expressing 5-HT2A Rs strongly depolarize in response
to bath application of 5-HT, which is almost completely blocked by the specific
5-HT2A R antagonist MDL 100,907 (Wyskiel and Andrade 2016). In a subset of
SR interneurons, the 5-HT response includes a hyperpolarization that precedes
the depolarization, suggesting co-expression of 5-HT1a Rs, 5-HT3 Rs and 5-
HT2A Rs (Aznar et al. 2003; Dale et al. 2017). The anatomical and physiological
characteristics of 5-HT2A-expressing interneurons are consistent with CCK/5-HT3
R-containing SCA and PPA interneuron subtypes (Wyskiel and Andrade 2016).
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Within the CA1 SO layer, several subpopulations of SOM-positive interneurons
are present that express 5-HT Rs. These include 5-HT3 R-expressing O-LM cells
derived from CGE (Chittajallu et al. 2013). In addition, a subset of SO interneurons
express 5-HT2A Rs (Wyskiel and Andrade 2016), though it is currently not clear
whether this is the same O-LM cell population that co-expresses 5-HT3 Rs. The
majority of SO interneurons are depolarized by 5-HT2 agonists (Lee et al. 1999b).
A subset of SO interneurons hyperpolarize in response to 5-HT, which have axon
arborizations that suggest O-LM or basket cells (Parra et al. 1998), and may
therefore represent 5-HT3 R-lacking cells derived from MGE (Chittajallu et al.
2013). The activation of GABAB Rs was shown to induce substantial Kir3.2 channel-
mediated currents in CA1 PV interneurons (Booker et al. 2013) but not O-LM cells
(Booker et al. 2018). Because 5-HT1a and GABAB receptors share common Gi/o
signalling mechanisms (Andrade et al. 1986; Andrade and Nicoll 1987; Colino
and Halliwell 1987; Degro et al. 2015), it is possible that 5HT1A R activation
is more likely to induce a Kir3-mediated hyperpolarization in perisomatically
targeted interneurons than dendritically targeted interneurons. However, visually
identified PV interneurons in CA3 do not consistently hyperpolarize, on average,
in response to bath application of 5-HT (Johnston et al. 2014). In the basolateral
amygdala, 5-HT1A Rs are expressed in fast-spiking, presumably PV, interneurons
and activated in response to optogenetic stimulation of DRN afferents (Sengupta et
al. 2017). Although theoretically plausible, the question of whether 5-HT afferents
are localized close enough to hippocampal PV interneurons to sufficiently activate
synaptic 5-HT1A Rs remains to be determined.

Action of Serotonin on Excitatory Synapses

Serotonin is known to regulate neurotransmission at a wide range of synapses
in the brain (Fink and Gothert 2007). Because diverse 5-HT R subtypes in the
hippocampus are expressed in a cell type- and pathway-specific manner, synaptic
release of 5-HT has complex pre- and postsynaptic actions that occur on multiple
time scales. The diverse ways that 5-HT can modulate glutamatergic transmission
could lead to plausible treatment strategies for disorders involving dysfunction
of glutamatergic transmission, such as depression (Dale et al. 2016; Pehrson and
Sanchez 2014).

Some of the effects of 5-HT at excitatory synapses can be explained by a purely
postsynaptic action via alteration of intrinsic membrane properties. For example, the
5-HT1A R-mediated reduction of EPSP amplitude by SC input onto CA1 pyramidal
cells can be explained by the postsynaptic dendritic activation of Kir3.2 channels,
leading to reduced input resistance, effectively shunting glutamatergic EPSPs
(Pugliese et al. 1998). A similar mechanism is likely present in DG granule cells
(Nozaki et al. 2016). Conversely, dendritic 5-HT4 R activation increases cellular
input resistance by inhibiting Kir3.2 channels, which increases cellular excitability,
enhancing the ability of EPSPs to generate action potentials (Mlinar et al. 2006).
Consistent with this postsynaptic mechanism, SC-stimulated population spikes are
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enhanced in vivo by 5-HT4 R agonists (Matsumoto et al. 2002). Conversely, with 5-
HT1A Rs inhibited, fluvoxamine-induced enhancement of SC-stimulated population
spikes is blocked by a 5-HT4 R antagonist (Matsumoto et al. 2002).

In addition to modulating postsynaptic EPSPs by altering the intrinsic membrane
properties of postsynaptic neurons, there is strong evidence that 5-HT R activation
can alter presynaptic release and postsynaptic neurotransmitter receptor function
within the CA1 hippocampus. At SC synapses, 5-HT1A R activation reduces EPSC
amplitude, increases paired-pulse ratio and reduces mEPSC frequency, consistent
with the presynaptic expression of 5-HT1A and/or 5-HT1B Rs on glutamatergic SC
terminals (Costa et al. 2012). Postsynaptically, activation of 5-HT1A Rs reduces
the amplitude of AMPA R-mediated EPSCs, whereas activation of 5-HT7 Rs
potentiates AMPA R-mediated EPSCs (Costa et al. 2012). Thus, postsynaptic Gi/o
and Gs signalling bidirectionally modulates cAMP levels, enabling bidirectional
modulation of the phosphorylation state of synaptic AMPA receptors (Andreetta
et al. 2016; Costa et al. 2012). Endogenous 5-HT release, induced by administration
of the selective 5-HT reuptake inhibitor fluvoxamine, depresses SC evoked CA1
population spikes in vivo through a 5-HT1A-dependent mechanism (Matsumoto et
al. 2002).

The CA1 region is proposed to compute novelty signals by comparing PP
input encoding ongoing sensory input with SC input encoding stored predictive
information (Lisman and Grace 2005). DRN neurons are active during novelty and
reward (Kobayashi et al. 2008; Li et al. 2016), and their axons densely innervate
the CA1 SLM layer where PP synapses are localized (Ihara et al. 1988; Lidov et
al. 1980; Miettinen and Freund 1992; Varga et al. 2009; Vertes et al. 1999). Early
studies found that 5-HT more effectively suppressed field EPSPs arising from PP
than SC synapses (Otmakhova and Lisman 2000; Otmakhova et al. 2005; Schmitz
et al. 1995; Segal 1980). In these studies, paired-pulse ratio was unaffected by 5-
HT R activation at PP synapses, implying a postsynaptic mechanism of 5-HT R
action (Otmakhova et al. 2005). The underlying mechanism involves the differential
postsynaptic expression of 5-HT1B Rs at PP but not SC synapses (Cai et al. 2013;
Peddie et al. 2008). In these studies, activation of 5-HT1B Rs potentiates AMPA R-
mediated EPSCs at CA1 PP synapses but not at SC synapses (Cai et al. 2013). In this
case, postsynaptic 5-HT1B R activation causes the activation of Ca2+/calmodulin-
dependent protein kinase (CaMK), which then phosphorylates AMPA Rs, thereby
accounting for the pathway-specific potentiation of AMPA R-mediated EPSCs (Cai
et al. 2013).

Serotonin also appears to have synapse-specific effects at SC synapses innervat-
ing different hippocampal interneuron subtypes. Activation of presynaptic 5-HT1B
Rs on SC terminals inhibits feedback excitation onto CCK-expressing interneurons
but not PV-expressing interneurons (Winterer et al. 2011). The underlying presy-
naptic mechanism of presynaptic 5-HT1B R modulation presumably occurs through
Gi/o-induced inhibition of presynaptic Ca2+ channels (Winterer et al. 2011). A
similar presynaptic mechanism occurs at glutamatergic synapses onto O-LM cells,
but in this case 5-HT1A receptors mediate the presynaptic effect (Bohm et al. 2015).
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Dense binding sites for 5-HT4 are found in the CA3 SL layer within MF
termination zones (Vilaro et al. 2005). Bath application of serotonin potentiates
MF transmission, reduces paired-pulse facilitation and is partially occluded by the
adenylate cyclase activator forskolin, consistent with the presynaptic localization
of 5-HT4 receptors on MF terminals (Kobayashi et al. 2008). In DG, 5-HT has
differential effects between EPSPs arising from medial and lateral PP synapses in
DG granule cells, which may be due to differences in the shunting of these EPSPs by
5-HT1A Rs (Nozaki et al. 2016). However, in anesthetized animals, the 5-HT uptake
inhibitor fenfluramine causes enhanced population spikes in the DG, implying the
existence of additional indirect mechanisms (Levkovitz and Segal 1997).

Serotonin is also an important modulator of synaptic plasticity at glutamatergic
synapses. Postsynaptic activation of 5-HT1A Rs inhibits induction of LTP (Cor-
radetti et al. 1992; Kojima et al. 2003; Shakesby et al. 2002), which could occur
by either hyperpolarization and/or shunting of EPSPs (Pugliese et al. 1998) and/or
cAMP-dependent dephosphorylation of AMPA receptors (Andreetta et al. 2016;
Costa et al. 2012). Serotonin also inhibits LTP at SC synapses in CA3 probably
via a similar mechanism (Villani and Johnston 1993). However, 5HT2 antagonism
enhances NMDA receptor-mediated currents, facilitating LTP induction (Wang and
Arvanov 1998).

As revealed by a 5HT3 R antagonist, activation of 5-HT3 Rs suppresses LTP
(Staubli and Xu 1995), presumably through an indirection action involving activa-
tion of inhibitory interneurons. Similarly, the 5HT3 receptor-mediated suppression
of MF-CA3 LTP by 5-HT may be due to indirect actions through enhanced
activation of 5-HT3 R-containing GABAergic interneurons (Maeda et al. 1994).
Unlike other receptors, 5HT4 R activation is reported to enhance glutamatergic
transmission (Matsumoto et al. 2002).

Action of Serotonin on Inhibitory Synapses

In addition to the capability of 5-HT to alter cellular excitability through somato-
dendritic 5-HT R activation and effects on glutamatergic drive onto GABAergic
neurons, there is also evidence that 5-HT R activation can alter GABAergic
transmission by the activation of presynaptic 5-HT Rs. Consistent with a presynaptic
5-HT3 Rs, an increase in the frequency of miniature IPSCs is observed upon
application of 5-HT or a 5-HT3 agonist (Choi et al. 2007; Dorostkar and Boehm
2007; Turner et al. 2004). Additional evidence for the activation of presynaptic 5-
HT Rs has been shown in a preparation that allows a single GABAergic presynaptic
terminal to be stimulated (Katsurabayashi et al. 2003). Two separate populations of
GABAergic terminals were discovered. One population expressed only presynaptic
5-HT1A Rs, which reduced release probability, most likely through inhibition of
presynaptic calcium channels (Katsurabayashi et al. 2003). A second population
co-expressed presynaptic 5-HT3 and 5-HT1A Rs. Presynaptic 5-HT3 Rs increases
release probability by causing calcium influx directly through the presynaptic 5-HT3
channels and does not appear to require the activation of presynaptic voltage-
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gated calcium channels (Turner et al. 2004). These distinct presynaptic GABAergic
populations of 5-HT3 R-containing and 5-HT3 R-lacking GABAergic terminals
likely arise from two different populations of inhibitory interneuron subtypes.
However, presynaptic 5-HT R activation was not detected at CCK basket cell to
pyramidal cell synapses (Neu et al. 2007). Therefore, it remains to be determined
which hippocampal interneuron subtypes possess presynaptic 5-HT3 Rs.

Histamine

Histaminergic neurons comprise a small cluster of cells in the tuberomammillary
nucleus (TMN) that project to most brain areas, including the hippocampus. As
with other neuromodulatory systems associated with the reticular activating system,
the activity of histaminergic neurons innervating the hippocampus is strongly
modulated across the sleep-wake cycle (Haas et al. 2008). The histamine (HA)
system is considered to be important in a number of central nervous system
functions, including wakefulness and sleep, cognition, learning, feeding and stress-
related behaviours (Alvarez 2009; Brown et al. 2001; Panula and Nuutinen 2013).
The histaminergic system operates synergistically with the cholinergic system to
modulate hippocampal function (Blandina et al. 2004; Mochizuki et al. 1994; Pas-
sani et al. 2007). Histamine receptor (HAR) activation can excite septohippocampal
cholinergic and GABAergic neurons (Xu et al. 2004), increasing ACh release in
the hippocampus (Bacciottini et al. 2002). In basal forebrain cholinergic neurons
(Zant et al. 2012), the mechanism occurs through H1R-mediated inhibition of a leak
potassium channel (Vu et al. 2015). However, because TMN afferents also project
to the hippocampus, HA can play a direct role in hippocampal learning and retrieval
(Fabbri et al. 2016).

Origin and Structural Organization of Histaminergic Afferents

All histaminergic neurons originate in the TMN of the hypothalamus (Haas and
Panula 2003; Haas et al. 2008; Panula et al. 1984). TMN neurons send projections
to most parts of the brain, including the hippocampus (Watanabe et al. 1984). Within
the hippocampus, TMN inputs terminate in all areas but are particularly pronounced
in the subiculum and DG, with sparser innervation of hippocampal areas CA1 and
CA3 (Barbin et al. 1976; Brown et al. 2001; Inagaki et al. 1988; Panula et al.
1989). Principal neurons of the hippocampus are the major postsynaptic targets of
TMN afferents and do not exhibit preference for postsynaptic inhibitory neurons
(Magloczky et al. 1994). Like other aminergic modulators, histaminergic axons
form varicosities with very few synaptic specializations consistent with a volume
transmission mode of action (Takagi et al. 1986). Recently, TMN neurons were
shown to optogenetically co-release GABA in cortex and striatum (Yu et al. 2015).
Therefore, TMN neurons innervating the hippocampus likely also co-release both
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HA and GABA. Whether histaminergic afferents exhibit laminar and/or cell type
specificity has not been systematically examined in the hippocampus.

Histamine Receptors

The HAR family is comprised of G-protein-coupled H1-H4 Rs (H1-H4Rs) (Panula
et al. 2015). H1Rs have been detected throughout the hippocampus in both in situ
hybridization (Andersson et al. 2017) and autoradiographic binding (Bouthenet et al.
1988; Martinez-Mir et al. 1990; Palacios et al. 1981) studies (Haas and Panula 2003;
Panula et al. 2015). H1R mRNA is expressed at the highest densities in the CA3
pyramidal cell layer (Andersson et al. 2017). H2R mRNA and autoradiographic
ligand binding has also been detected in the hippocampus (Vizuete et al. 1997).
H3Rs are most prominent in the subiculum and DG (Pillot et al. 2002; Pollard et
al. 1993) and are thought to be autoreceptors at presynaptic terminals (Arrang et
al. 1983; Nieto-Alamilla et al. 2016). H4Rs do not appear to be expressed in the
hippocampus (Andersson et al. 2017; Schneider and Seifert 2016).

In terms of signalling mechanisms leading to cellular changes in excitability, HA
can cause myriad cellular effects due to divergent G-protein-mediated signalling
pathways involved (reviewed by (Brown et al. 2001; Haas and Panula 2003)).
H1Rs are Gq-coupled receptors, which can reduce a Kleak conductance. Recently,
in cholinergic neurons, the HA-sensitive leak conductance has been determined
to be mediated by the TWIK-like acid-sensitive K+ channel (Vu et al. 2015). Gq
signalling activates phospholipase C, generating IP3 and DAG, PKC activation,
Ca2+ release from intracellular stores and downstream modulation of numerous
conductances, such as a cationic conductance (Haas and Panula 2003). TRP
channels remain the leading molecular candidates in underlying H1R-activated
cationic conductances, yet no study has yet definitively linked H1Rs to TRP channel
activation. Through PKC signalling, H1R activation can lead to phosphorylation
of ligand-gated ion channels, including NMDA receptors. However, HA is also
reported to directly potentiate NMDA receptor-mediated currents in a process
distinct from classical HA receptors (Bekkers 1993; Vorobjev et al. 1993). This
action is due to binding of HA to a site distinct from the polyamine site of the
NMDA receptor (Burban et al. 2010). Other downstream signalling cascades likely
activated by H1Rs include generation of nitric oxide and the modulation of expres-
sion of various proteins including gap junctions (Brown et al. 2001). Given the
effectiveness of multiple types of Gq-coupled receptors in causing endocannabinoid
release (Alger et al. 2014), it is possible that H1Rs also can cause endocannabinoid
release. In contrast, H2Rs are Gs-coupled, causing increasing cAMP production
and PKA activation. Like other Gs-coupled receptors, H2R activation is associated
with the reduction a Ca2+-activated potassium conductance (Greene and Haas 1990;
Haas and Konnerth 1983) and shifting the activation threshold of HCN-mediated
conductances (McCormick and Williamson 1991; Zhang et al. 2016). H3Rs are
Gi/o-coupled, and their presynaptic activation leads to inhibition of high-threshold
voltage-gated Ca2+ channels (Takeshita et al. 1998), a mechanism most likely to
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underlie histaminergic suppression of neurotransmitter release (Nieto-Alamilla et
al. 2016).

H1 and H2 knockout mice exhibit cognitive and/or learning impairment (Ambree
et al. 2014; Dai et al. 2007), implicating hippocampal localization of H1Rs and
H2Rs. As expected by their function as autoreceptors in regulating histaminer-
gic release, H3 knockout mice exhibit increased histaminergic transmission and
increased wakefulness (Gondard et al. 2013). H4 knockout mice appear normal in
hippocampal-dependent tasks (Sanna et al. 2017), consistent with a relative absence
of H4Rs from the hippocampus (Andersson et al. 2017).

Action of Histamine on Intrinsic Properties

Pyramidal Cells

HA is a powerful modulator of cellular excitability in the hippocampus. In principal
cells (Haas and Konnerth 1983; Haas and Greene 1986; Pedarzani and Storm 1993;
Selbach et al. 1997; Yanovsky and Haas 1998) and DG granule cells (Greene and
Haas 1990), HA decreases a Ca2+-activated potassium conductance, through Gs-
coupled H2Rs. Selective activation of H1Rs can however result in a reduction
in firing frequency (Selbach et al. 1997). The dominant depolarizing action is
caused by enhancing HCN conductance and reducing the Ca2+-activated potassium
conductance responsible for the slow AHP and action potential accommodation
(Brown et al. 2001; Haas and Konnerth 1983; Pedarzani and Storm 1993, 1995).
Intracellular studies show HA to promote burst discharge patterns in CA3 pyramidal
cells (Yanovsky and Haas 1998).

Interneurons

HA is reported to regulate interneuronal excitability, as indicated by an increase
in spontaneous inhibitory synaptic potentials in the DG (Greene and Haas 1990),
CA1 hippocampus (Haas and Greene 1986) and entorhinal cortex (Cilz and Lei
2017). Although effects of HA on neurochemically identified interneuron types
have not been systematically investigated, several interneuron populations have been
examined in various hippocampal regions. In CA3, bath application of HA enhances
the cellular excitability of fast-spiking interneurons (most likely PV interneurons)
primarily through H1R-mediated inhibition of Kv7 potassium channels (Andersson
et al. 2017). Such a mechanism implies a convergence with postsynaptic M1/M3
mAChR-mediated signalling mechanisms (Lawrence et al. 2006b; Lawrence et al.
2006c). In the layer 3 medial entorhinal cortex (MEC), HA depolarizes Type I
and Type II inhibitory neurons through both H1R- and H2R-mediated mechanisms
(Cilz and Lei 2017). The conductances modulated involve the activation of a
TRP-like cationic conductance and reduction in a Kir conductance (Cilz and Lei
2017). Histaminergic modulation of interneurons in the DG molecular layer occurs
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via H2R-mediated inhibition of Kv3.2 channels involved in rapid action potential
repolarization (Atzori et al. 2000). HARs are in putative O-LM interneurons confirm
an enhanced firing activity in response to HA (Brown et al. 2001).

Action of Histamine on Excitatory Synapses

HA depresses EPSPs from PP stimulation of the DG through H3R-mediated
reduction in glutamate release in vitro (Brown and Haas 1999) and in vivo (Chang
et al. 1998). The action of HA on evoked synaptic responses at the SC to CA1
pyramidal cell synapse is an enhanced population spike (Segal 1981; Yanovsky
and Haas 1998) but modest reduction (∼10%) in the excitatory synaptic potential
(Brown et al. 1995). These data are consistent with HA suppressing transmitter
release but with the enhanced postsynaptic excitability dominating the response.
HA is also known to potentiate NMDA-mediated synaptic transmission and enhance
LTP through a direct action on the NMDA receptor (Bekkers 1993; Brown et al.
1995) (Fig. 5).

Action of Histamine on Inhibitory Synapses

Early studies using paired-pulse stimulation provided early evidence that HA may
modulate inhibitory synaptic transmission in the hippocampus (Springfield and

Fig. 5 Primary actions of histamine in the hippocampal formation. (From Brown et al. 2001, with
permission)
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Geller 1988). HA may modulate inhibitory synaptic transmission indirectly by
modulating the action potential frequency and short-term plasticity of GABAergic
transmission (Atzori et al. 2000). However, a detailed understanding of how HA
modulates GABAergic transmission and the specific interneuron subtypes that
express HARs remains to be systematically investigated.

Purines

Production and Release of Purine Transmitters

Adenosine, adenosine triphosphase (ATP) and other purine nucleotides (UTP,
UDP etc.) are important cellular metabolites but also are released as modulatory
substances in the central nervous system where they display a range of actions.
ATP is often stored with other transmitters including GABA and glutamate but can
also be released independently. It has been suggested that in the hippocampus, ATP
is stored and released from distinct pools of vesicles independent of GABA and
glutamate (Pankratov et al. 2006). ATP may be transmitted through gap junctions
and other channels. It may also be the source of adenosine, especially when
released from astrocytes (Pascual et al. 2005). A component of adenosine release
in the hippocampus arises from the extracellular metabolism of ATP released from
astrocytes (Wall and Dale 2013). In contrast to ATP, the release of adenosine is more
enigmatic. It is not stored in vesicles, and in general the level of adenosine rises
with increasing neuronal activity as well as in disease conditions such as epileptic
seizures and hypoxia. Recent evidence suggests that adenosine release can be
stimulated by glutamate receptor activation via equilibrative nucleoside transporters
(Wall and Dale 2013). Despite not being released by exocytosis, adenosine is
nevertheless a powerful homeostatic modulator of neuronal excitability and synaptic
transmission (Dunwiddie and Masino 2001; Fredholm and Dunwiddie 1988; Rombo
et al. 2016b).

Purine Receptors

Separate receptors exist for adenosine (P1 receptors) and ATP (P2 receptors). The
latter is broadly divided into ion channel receptors (P2X) and metabotropic receptors
(P2Y). Overall, the purine receptors are widely expressed and mediate a number of
actions as summarized in Table 5.

Action on Intrinsic Properties

Adenosine causes a hyperpolarization of all hippocampal neurons (Thompson et
al. 1992) that has been attributed to the activation of inwardly rectifying K+
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(GIRK) channels (Dunwiddie and Masino 2001). The postsynaptic actions of ATP
are mediated through both P2X and P2Y receptors as well as indirectly via P1
receptors when metabolized to adenosine. P2X receptors mediate a fast inward
current that is reported to contribute to the EPSC recorded upon afferent fibre (e.g.
SC) stimulation (Pankratov et al. 1998). It is proposed that ATP is co-released
with glutamate at associational fibres but not MF synapses (Mori et al. 2001).
The cationic current associated with P2X-mediated signalling is generally modest
(typically 50–100 pA). However, it has often a significant Ca2+ component which
can in turn give rise to activation of Ca2+-dependent potassium conductances
(Illes et al. 1996). Little is known about the action of P2Y receptors in regulating
hippocampal primary neurons. Studies in cultured hippocampal neurons report the
activation of an outwardly rectifying K+ current (Ikeuchi et al. 1996) or inhibition of
the IM (Filippov et al. 2006). In contrast to principal cells, hippocampal interneurons
in stratum radiatum, identified as calbindin- and calretinin-positive interneurons,
are excited by ATP (Bowser and Khakh 2004). This depolarization is associated
with a reduction of potassium conductances and activation of non-selective cationic
conductances mediated by P2Y1 receptor activation (Bowser and Khakh 2004;
Kawamura et al. 2004).

Action of Purines on Excitatory Synapses

The primary action of adenosine is to profoundly (up to ∼75–100%) suppress
glutamatergic transmission at all hippocampal synapses tested (Dunwiddie and
Hoffer 1980; Thompson et al. 1992). This may be mediated by multiple mecha-
nisms, but principal amongst these is a profound suppression of terminal calcium
currents by A1 Rs (Fredholm and Dunwiddie 1988; Wu and Saggau 1994, 1997).
The exact role of A2A receptors in regulating transmission is complex, but it may
counteract the suppression of glutamatergic transmission by A1 Rs (Lopes et al.
2002) and involve the enhancement of glutamate receptor expression and AMPA
R-mediated currents (Dias et al. 2012). A2A receptors also facilitate the release of
other transmitters in the hippocampus, notably ACh (Cunha et al. 1994). In line
with this modulatory action, adenosine is also reported to depress the induction
of LTP at a range of synapses (Alzheimer et al. 1991). However, the situation is
complex in that low-frequency plasticity induction paradigms are more sensitive to
adenosine than higher-frequency patterns which appear to overcome the effect of
adenosine (Mitchell et al. 1993). A number of more recent studies point to the fact
that adenosine may serve a pivotal role in modulating plasticity (reviewed by (Dias
et al. 2013).

As mentioned above, ATP appears to act as a classical neurotransmitter by
mediating fast excitatory synaptic reposes through P2X receptors. However, it
may also modulate excitatory synaptic transmission and plasticity although the
precise mechanistic detail remains unclear (Inoue et al. 1999; Pankratov et al.
2009). Despite this, it has been shown that ATP can induce LTP and LTD in
its own right depending on the level of Ca++ influx associated with the ATP
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current (Yamazaki et al. 2003). ATP can also regulate plasticity induced by classical
induction methods (Pankratov et al. 2002). P2X channel-mediated modulation may
show some selectivity between different synapses in the hippocampus. For instance,
presynaptic P2X2 channels are reported to facilitate excitatory synapses onto SR
interneurons in area CA1 but not CA1 pyramidal neurons (Khakh et al. 2003; Khakh
2009). Relatively little is known concerning the possible role of P2Y receptors in
regulating synaptic transmission and plasticity in the hippocampus (Guzman and
Gerevich 2016). However, a recent report suggests a requirement of P2Y receptor
activation in a form of heterosynaptic LTD (Chen et al. 2013).

Action of Purines on Inhibitory Synapses

The actions of adenosine on GABAergic signalling are poorly defined. Early studies
suggested that adenosine could suppress GABA release in cortical tissues (Hollins
and Stone 1980). However, similar experiments in hippocampal slices failed to find
an effect of adenosine on GABA release (Burke and Nadler 1988). Electrophysio-
logical studies using cultured neurons (Yoon and Rothman 1991) and in slices have
failed to show a direct suppressant action of adenosine A1 Rs on action potential-
dependent GABA release (Rombo et al. 2016b). However, adenosine A1 Rs appear
to modulate tonic GABA current (resulting from extrasynaptic GABAA receptors)
(Rombo et al. 2016a) and are known to strongly modulate disynaptic inhibition
in the hippocampus through actions on glutamatergic transmission (Lambert and
Teyler 1991). A detailed overview of the actions on adenosine A1 and A2A Rs
on select GABAergic circuits has recently been described (Rombo et al. 2016b).
The actions of ATP via P2X and P2Y classes of receptor on GABAergic signalling
remain to be defined.

Paracrine/Autocrine Modulators

Endocannabinoids

Production and Release of Endocannabinoids

Cannabinoids are a group of related lipid-derived modulators that regulate hip-
pocampal circuits through activation of specific cannabinoid receptors (Kano et al.
2009; Castillo et al. 2012). Some endocannabinoids (eCBs) such as anandamide can
also signal through TRPV1 receptors and thus also mediate endovanilloid actions
(Castillo et al. 2012). Anandamide and other major cannabinoids including 2-AG
(2-arachidonyl glycerol) are not stored but synthesized and released tonically on
demand in response to neuronal and synaptic activity (Stella et al. 1997; Castillo
et al. 2012). The primary action of eCBs is to mediate retrograde signalling and
in particular induce various forms of presynaptic inhibition. Common forms of
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eCB-mediated STD are driven by postsynaptic depolarization, Ca2+ influx through
NMDA receptors or via mAChR-mediated activation (Kano et al. 2009). However,
the most significant trigger for eCB release and subsequent suppression of synaptic
transmission is activation of metabotropic glutamate receptors (Varma et al. 2001).

Endocannabinoid Receptors

The two major forms of cannabinoid receptors (CB1 and CB2 Rs) are both
metabotropic receptors with the CB1 being the archetypal ‘brain’ form. CB2 Rs,
once thought to be mainly restricted to immune cells including microglia, recently
have been shown to be expressed in the hippocampus (Stempel et al. 2016).
The orphan receptor GPR55 is activated by anandamide (Ryberg et al. 2007)
and L-α-lyso-phosphatidylinositol (LPI) (Oka et al. 2007) and widely expressed
in the hippocampus (Henstridge et al. 2009; Hurst et al. 2017). CB1 Rs are
highly abundant but most strongly expressed in CCK interneurons (Freund and
Katona 2007). Hippocampal pyramidal cells and DG granule cells are lightly
immunopositive for CB1 receptors but are surrounded by a dense plexus of CB1
R-positive GABAergic terminals (Tsou et al. 1998). However, low but significant
levels of CB1 mRNA are expressed in principal cells suggesting low levels of
CB1 R-mediated signalling in these cells (Marsicano and Lutz 1999). Within
the GABAergic cell population, it appears that CB1 receptors are preferentially
expressed in the terminals of perisomatically terminating BCs. The two main classes
of BCs are PV- and CCK-expressing cells, and it is striking that over 95% of CCK-
positive cells express CB1 Rs, which contrasts with PV cells for which only ∼5%
of cells are CB1 immunoreactive (Katona et al. 1999). However, CB1 Rs are also
expressed at glutamatergic terminals (Katona et al. 2006) (Table 6).

Action of Endocannabinoids on Intrinsic Properties

Most of the actions of eCBs are attributed to their influence on synaptic transmis-
sion. Studies addressing the actions of eCBs on hippocampal neuronal excitability
are very limited (Kirby et al. 2000), but the primary postsynaptic action of eCB
appears to be a modest increased excitability that is mediated through a reduction
(∼45%) in IM (Schweitzer 2000). More detailed studies in somatosensory cortex
suggest that low-threshold spiking-type interneurons can exhibit a long-lasting
form of action potential suppression whereby activity-dependent release of endo-
cannabinoids causes an autocrine-like enhancement of potassium conductances,
consistent with Gi/o-mediated activation of a Kir conductance (Bacci et al. 2004).
Whilst a similar postsynaptic mechanism is yet to be described in the hippocampus,
an activity-dependent, autocrine-like, endocannabinoid-mediated hyperpolarization
was recently described in CA3 pyramidal cells (Stempel et al. 2016). This hyperpo-
larization is mediated by endogenous release of 2-AG and postsynaptic activation
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Table 6 Summary of cannabinoid signalling in the hippocampus

Receptor CB1 CB2 GPR55

Expression in the
hippocampus

Strongly expressed in
interneurons (esp.
CCK basket cells)

Highly expressed in
non-neuronal cell
types (e.g.
microglia), weak
neuronal expression

Widely expressed

Signalling Gi and others,
↑A-type K+, ↓N &
P/Q Ca2+, ↓M and D
type K+; ↑ Ih

Gi and others Gq, Gα13 and others

Gross effect Decrease GABA
release (main effect)
and other
transmitters, decrease
in dendritic
excitability

Hyperpolarization
of CA3 pyramidal
cells

Increases release
probability at
glutamatergic
synapses, enhances
LTP

References Kano et al. (2009),
Pagotto et al. (2006)
and Maroso et al.
(2016)

Onaivi et al. (2006)
and Stempel et al.
(2016)

Henstridge et al.
(2009), Lauckner et
al. (2008), Ryberg et
al. (2007) and Hurst
et al. (2017)

of CB2 Rs (Stempel et al. 2016). Surprisingly, the effect was not mediated by Kir,
but by a sodium-dependent bicarbonate transporter (Stempel et al. 2016). GPR55
activation, through Gq-mediated release of calcium from internal stores, has been
shown to inhibit IM in expression systems (Lauckner et al. 2008), but it is not clear
whether this is a common postsynaptic mechanism shared with CB1 Rs (Schweitzer
2000). Finally, CB1 receptors have recently been shown to enhance tonic Ih in a
subset of CA1 pyramidal cells, which impairs dendritic integration of EPSCs and
reduces LTP (Maroso et al. 2016; Vargish and McBain 2016).

Action of Endocannabinoids on Excitatory Synapses

Pharmacological activation of CB1 receptors has been shown to cause a profound
(∼86%) suppression of EPSCs in cultured neurons (Shen et al. 1996), and this effect
is consistent with a presynaptic reduction in glutamate release. In terms of functional
control of synaptic transmission, endocannabinoids have been shown to act as a
retrograde messenger at glutamatergic synapses to produce a suppression glutamate
release (Ohno-Shosaku et al. 2002). This is an activity-dependent depolarization-
induced suppression of excitatory transmission (DSE) and is analogous to the more
rigorously characterized suppression seen at inhibitory synapses (below). However,
the CB1-mediated suppression of excitatory and inhibitory transmission differs in
certain respects. Firstly, a more pronounced depolarization (∼10 sec) is necessary
to induce DSE than to cause suppression at inhibitory synapses (Ohno-Shosaku
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et al. 2002). Secondly, the excitatory terminals themselves are less sensitive to
cannabinoid receptor activation (Ohno-Shosaku et al. 2002). Activation of GPR55
has recently been shown to increase release probability at SC synapses through
the mobilization of internal presynaptic calcium stores (Sylantyev et al. 2013) and
enhance LTP (Hurst et al. 2017).

Action of Endocannabinoids on Inhibitory Synapses

Early reports by Pitler and Alger first described a phenomenon known as
depolarization-induced suppression of inhibition (DSI) in CA1 pyramidal cells
(Pitler and Alger 1992b). This phenomenon has subsequently been demonstrated in
CA3 pyramidal cells, DG cells, mossy cells, CCK-positive interneurons (Kano et
al. 2009) as well as other brain areas, notably the cerebellum. DSI is a transient but
profound suppression of inhibition (spontaneous or evoked inhibitory postsynaptic
events) that follows activity (e.g. depolarization and action potentials) in the
postsynaptic cell. Studies in brain slices and cultured hippocampal neurons later
confirmed that postsynaptic depolarization and resultant increase in intracellular
free Ca2+ to cause a transient suppression of IPSCs and that this suppression was
due to retrograde cannabinoid signalling-mediated reduction of GABA release
(Ohno-Shosaku et al. 2002; Wilson and Nicoll 2001). It is now widely accepted
that retrograde signalling by CB1 receptors is an important process in the dynamic
regulation of GABAergic transmission (Castillo et al. 2012) (Fig. 6a). However,
there is considerable evidence that cannabinoid signalling is not ubiquitous but
preferentially regulates specific interneuronal connections (Younts and Castillo
2014). For instance, the output of major classes of basket cell is proposed to be
differentially sensitive to cannabinoid regulation with the PV-containing basket
cells being insensitive to CB1R activation, whereas GABA released from CCK-
containing population are exquisitely sensitive (Freund and Katona 2007; Glickfeld
and Scanziani 2006). However, the nature of the suppression of release is complex
with evidence for both presynaptic and postsynaptic loci of action (Foldy et al.
2006; Neu et al. 2007).

The actions of eCBs at inhibitory synapses highlight the need to view neuro-
modulation as complex network phenomena. In addition to classical DSI, cannabi-
noids are known to mediate activity-dependent long-lasting heterosynaptic LTD at
GABAergic synapses (Castillo et al. 2012) (Fig. 6b). This mechanism is initially
triggered by the synaptic release of glutamate and activation of group 1 mGluRs on
CA1 pyramidal cells. In turn, release of endocannabinoids is triggered which then
initiates LTD of GABA release (Chevaleyre and Castillo 2003; Castillo et al. 2012)
with the ultimate effect being a long-lasting increase in pyramidal cell excitability.
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Fig. 6 Molecular mechanisms underlying endocannabinoid-mediated short- and long-term synap-
tic plasticity. (a) In endocannabinoid-mediated short-term plasticity, voltage-gated calcium
channels (VGCC) or Gq-coupled receptors (i.e. Type 1 mGluRs) increase postsynaptic intracellular
activities of diacylglycerol lipase (DGLα), causing the retrograde diffusion of eCBs to presynaptic
CB1Rs. Activation of presynaptic CB1Rs inhibits VGCCs, which reduces neurotransmitter release.
(b) Presynaptic activity activates postsynaptic mGluRs, inducing release of eCBs and presynaptic
activation of CB1Rs at glutamatergic or GABAergic presynaptic terminals. At glutamatergic
synapses, CB1-mediated Gi/o signalling reduces cAMP levels and PKA activity, causing a LTD of
glutamate release. At inhibitory synapses, a similar presynaptic mechanism activates calcineurin
(CaN), which induces LTD of GABA release. (From Castillo et al. 2012, with permission)

Nitric Oxide

Production and Release of Nitric Oxide

Nitric oxide (NO) is synthesized de novo by a series of enzymes known as NO
synthases (NOS) (Zhou and Zhu 2009). All three forms of NO synthase are
expressed in the hippocampus. Original studies suggested pyramidal cells to express
high levels of the endothelial form of NOS, whereas the neuronal form of the
protein was restricted to diffuse populations of interneurons (Dinerman et al. 1994).
However, more recent evidence has shown principal cells and selected interneurons
to express the neuronal form with the endothelial form being restricted to vascular
endothelium (Blackshaw et al. 2003). As NO is not stored and is a highly membrane-
permeable molecule, the wide distribution of the enzymes in dendrites, soma and
axon is likely to reflect the nature of its dispersal and suggested primary role as a
retrograde transmitter. The prototypical activator of NOS is postsynaptic Ca2+ entry
via the NMDA receptor leading Ca2+/calmodulin interaction and NO production
(Garthwaite 2008). NO may be released from presynaptic nerves by action potential-
dependent activation of voltage-gated Ca2+ channels. Reports also suggest that
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calcium-permeable AMPA receptors are an important regulator of NO production
(Frade et al. 2008). Once produced, NO gas is itself is highly soluble, rapidly
diffusible, highly membrane permeant but also highly labile (Garthwaite 2016).

Nitric Oxide Effectors

Nitric oxide acts through the regulation of soluble guanylyl cyclase. Within the
context of neurons, guanylyl cyclase (the nitric oxide ‘receptor’) occurs in various
isoforms and is often associated with the postsynaptic density in both principal
cells and interneurons (Szabadits et al. 2007, 2011). However, other forms of the
receptor may be transported to the membrane by signals including cannabinoids
(Jones et al. 2008). The resultant production of cGMP regulates a range of cyclic
nucleotide-gated channels as well as regulating multiple effectors (Maroso et al.
2016; Garthwaite 2016).

Action of Nitric Oxide on Intrinsic Properties

Despite abundant literature on the role of nitric oxide in regulating synaptic
transmission, the action of NO on intrinsic postsynaptic properties of hippocampal
neurons is sparse. However, a recent study provided evidence that CB1 R activation
generated NO, which increased tonic dendritic Ih in CA1 pyramidal cells (Maroso
et al. 2016; Vargish and McBain 2016).

Action of Nitric Oxide on Excitatory Synapses

There exists a significant body of evidence suggesting that certain forms of
hippocampal LTP are dependent upon the action of NO as a diffusible retrograde
messenger (Feil and Kleppisch 2008; Garthwaite and Boulton 1995; Schuman and
Madison 1991, 1994). Blockade of NO signalling prevents LTP, whereas application
of NO donors promotes the development of LTP (Schuman and Madison 1991;
Arancio et al. 1996). However, the significance of NO in regulating synaptic plas-
ticity seems to vary between species and between synapses. For instance, in areas
CA1, NO-mediated/NO-regulated LTP is more prominent at apical dendrites than
at synapses targeting basal dendrites (Haley et al. 1996; Son et al. 1996). In terms
of the action of NO on basal synaptic transmission, there is evidence to suggest
that NO may also produce an enhancement of glutamatergic transmission distinct
from the enduring forms of potentiation such as LTP (Bon and Garthwaite 2001).
However, studies have shown that NO may also transiently suppress glutamatergic
transmission (Boulton et al. 1994). This may in part be mediated through triggering
the release of adenosine (Arrigoni and Rosenberg 2006). A recently described
mechanism is that CB1 activation on CA1 pyramidal cell dendrites generates NO,
which activates Ih, reduces dendritic integration and impairs LTP (Maroso et al.
2016; Vargish and McBain 2016).
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Action of Nitric Oxide on Inhibitory Synapses

Whilst morphological studies suggest that hippocampal GABAergic synapses are
endowed with the molecular machinery for NO signalling, functional studies to
assess the significance of nitric oxide in regulating inhibitory transmission are rather
limited (Szabadits et al. 2007; Szabadits et al. 2011). However, recent evidence
suggests that NO signalling may be an important mediator in depolarization-
induced suppression of inhibition (Makara et al. 2007). The CCK BCs in CA1
and CA3, but not in DG, appear to be the major interneuron subtypes that increase
cGMP signalling in response to NO donors (Szabadits et al. 2011). Hippocampal
neurogliaform and ivy cells express NOS, but the function of NO within these
interneuron circuits is not yet clear (Armstrong et al. 2012; Overstreet-Wadiche and
McBain 2015).

Neuropeptides

Production and Release of Neuropeptides

The hippocampal formation is modulated by a diverse array of neuroactive peptides.
Some of these are released from neurons intrinsic to the hippocampus (mainly
interneurons but also principal cells), whereas others are supplied by inputs
from diverse brain regions (Baraban and Tallent 2004). In general, neuropeptides
are synthesized and stored for action potential-dependent release. The levels of
neuropeptides and their receptors are often dynamically regulated, especially in
association with plasticity processes and disease states. The neuropeptides represent
a major category of modulator, and a detailed description of their expression,
signalling and actions at different hippocampal cells and circuits is beyond the scope
of this chapter. Whilst some actions of peptide modulators are rather ubiquitous,
other effects can be highly cell type- or synapse-specific. Although much knowledge
has been gained on neuropeptide expression and function in the hippocampus, for
brevity, the table below summarizes some of the major peptide systems and their
primary mechanisms of modulation in the hippocampus.

Action of Neuropeptides on Intrinsic Properties (Table 7)

Miscellaneous Neuromodulators

This chapter has aimed to provide a primer to the concept of neuromodulation by
reviewing some of the major neuromodulator systems. However, it should be noted
that there are likely to be very many other systems that may be significant regulators
of hippocampal cells and circuits. Most of these are activators of metabotropic
receptors. Examples here would include sphingolipids (Kajimoto et al. 2007),
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neurosteroids (Belelli and Lambert 2005), and various orphan and recently deorpha-
nized receptors. Moreover, it is possible that other forms of neuromodulation may be
brought about by less orthodox forms of signalling such as the proteolytic cleavage
of protease activated receptors (Bushell et al. 2006; Gingrich et al. 2000). In
addition to metabotropic receptor signalling, there are many additional modulators
that act through direct orthosteric modulation of channels and receptors. One of
the best characterized forms of such modulation is neurosteroids which are widely
distributed and which produce an orthosteric modulation of the GABAA receptor.
Whilst they do not overtly affect postsynaptic excitability, they exert a powerful
potentiation of GABAergic transmission within hippocampal circuits (Belelli and
Lambert 2005; Fester and Rune 2015).

Experimental Techniques

Most of the functional data concerning the action of neuromodulators on cellular and
synaptic properties is obtained from electrophysiological experiments conducted in
vitro either in brain slices experiments or using hippocampal neuronal cultures as
described in earlier chapters. Classically this has been extracellular, intracellular
(sharp) and more recently patch-clamp recordings. Clearly in vitro hippocampal
preparations enable detailed scrutiny of the action of neuromodulators on active
and passive intrinsic properties as well as synaptic transmission. They also permit
detailed pharmacological investigation as drugs can be applied directly to the cells
at a precise concentration. However, as mentioned earlier, optogenetic strategies
are filling a niche as a more physiological means of activating specific synaptic
neuromodulatory receptors with spatiotemporal precision (Lorincz and Adamantidis
2017; Spangler and Bruchas 2017), though this strategy still has some caveats and
limitations, particularly at the synaptic level (Jackman et al. 2014). In contrast,
the majority of in vivo recordings (multiunit recording or evoked field potentials)
provide less mechanistic cellular/synaptic information, and pharmacological studies
are limited by the difficulty in directing drugs to the site of action at a known concen-
tration. Studies in vivo are typically limited to detecting changes in action potential
discharge rate to when specific drugs/modulators are applied. However, in vivo
studies are often valuable in determining the endogenous action of neuromodulators
within the context of behavioural states. Moreover, in vivo recording can be used to
relate the activity of neuromodulator sources (e.g. specific subcortical nuclei) with
activity within hippocampal circuits. The introduction of the juxtacellular recording
technique (Pinault 1996) has permitted the labelling of recorded neurons so that it
is possible to relate the activity and modulation of recorded cells with their morpho-
logical characteristics and connectivity (Klausberger et al. 2003; Klausberger and
Somogyi 2008). Moreover, patch-clamp recording from neurons in vivo (Ferster and
Jagadeesh 1992; Jagadeesh et al. 1992) has undergone recent technical advances so
that it is now not only possible to record from fine structures such as presynaptic
boutons (Rancz et al. 2007; Geiger and Jonas 2000) but also to visualize and target
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individual neurons in vivo (Kitamura et al. 2008; Pernia-Andrade and Jonas 2014).
Finally, the introduction of optical (Deisseroth et al. 2006; Zhang et al. 2007) and
genetic (Gong et al. 2007; Miyoshi and Fishell 2006) techniques to selectively
excite or silence specific cells and circuits has already begun to address precise
roles of specific cell types in behaviourally relevant network activity (Sohal et al.
2009; Lorincz and Adamantidis 2017). Finally, voltage-sensitive dyes are coming of
age, which provide greater access to fine neuronal structures (Rowan and Christie
2017), and their use in conjunction with calcium indicators would prove particularly
powerful. Aided by computational modelling, such correlated physiological, phar-
macological, transgenic and morphological studies will be essential for the future
understanding of how hippocampal cells and circuits are modulated at the whole
organism level.

The Future

As has been apparent from the content this chapter, compared with previous
chapters, the field of hippocampal neuromodulation is still at a nascent stage,
with many unresolved questions remaining for the years ahead. Even for the most
well-characterized classical modulators, there are still many unresolved questions,
particularly in the context of how neuromodulators couple to specific channels
across discrete neuronal subtypes. Questions also remain regarding the magnitude
and time course of concentration transients reached by neuromodulatory receptors.
The development of low-affinity antagonists for neuromodulatory receptors, in
combination with optogenetic stimulation, would be particularly useful in this
regard. The cellular and synaptic specificity of many neuromodulators demands
molecular tools for systematic targeting of discrete afferents and cell types. Whilst
one could argue that the increasing availability of these resources as one of the
major technological developments over the last decade, research at the frontier in
neuronal classification has shown that next-generation molecular tools are needed
to differentiate between an increasing number of distinct cell types. Combining
electrophysiological, genetic, molecular, pharmacological and anatomical tech-
niques have revealed striking differences in cell type specificity of cholinergic
neuromodulation (Cea-del Rio et al. 2010), which is likely to reveal cell type-
specific differences with additional neuromodulators. The availability for genetic
manipulation in transgenic animals is already proving very useful, especially in
defining the importance of receptor subtypes in specific circuits where specific
pharmacological tools may not be useful or available. The increasing use of
Cre-loxP systems whereby specific modulator systems can be modified in a cell
type-specific manner shows great potential over conventional pharmacological or
global knockout strategies in resolving the precise functions of neuromodulators
in specific cell types (i.e. Yi et al. 2014). At the level of neurochemically and
anatomically defined hippocampal cell types, we are still far from gaining detailed
knowledge of the repertoire of neuromodulator receptors expressed and localized.
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Some progress is being made in this direction using techniques such as single-cell
RT-PCR (Monyer and Markram 2004; Toledo-Rodriguez and Markram 2007) in
which it is possible to fully characterize the expression profile of specific receptor
classes in neurochemically defined cell types (Hillman et al. 2005; Cea-del Rio et
al. 2010). With the availability of large-scale single-cell RNA sequencing, however,
the goal of knowing all possible neuromodulatory receptor subtypes within a single-
cell type may soon be achievable (Cadwell et al. 2017; Foldy et al. 2016; Zeisel
et al. 2015). However, a single-cell transcriptomics approach does not allow the
visualization and precise spatial localization of neuromodulatory receptors and their
effectors with respect to cellular and synaptic domains (Triller and Choquet 2008).
The widespread use of genetically encoded epitope-tagged receptors and channels
would facilitate subcellular localization studies even if classic immunocytochemical
approaches are not practical or possible.

Whilst the current chapter has focused on individual neuromodulator systems
and receptors essentially in isolation, it is important to be mindful that a single
neuromodulator can often induce secondary effects that are mediated through differ-
ent neuromodulators. For example, mAChR activation can induce endocannabinoid
release, resulting in CB1-dependent presynaptic depression of GABAergic trans-
mission (Fukudome et al. 2004; Kim et al. 2002; Neu et al. 2007; Alger et al. 2014;
Nagode et al. 2011). An additional complication is that multiple neuromodulators
may be present in the in vivo milieu in any given point in time; substantial crosstalk
across multiple neuromodulatory systems is probably a common occurrence, with
both synergistic and antagonistic interactions possible. Behavioural states, rather
than discrete neuromodulatory systems turning on and off, are probably comprised
of alterations of many different neuromodulatory systems that occur across a broad
range of activity levels. At the level of the postsynaptic cell, the dimerization
and oligomerization of different G-protein-coupled receptors (Milligan 2007) and
neuromodulatory channels (van Hooft et al. 1998) might create novel interactions
between different neuromodulators. These interactions and their modulation in
hippocampal cells and circuits remain to be fully explored.

Finally, the synaptic and cellular architecture places important spatial constraints
on the physiological functions of neuromodulators. Experiments in which receptors
are activated exogenously will yield very different results from studies in which
endogenous transmitter is released in a naturalistic fashion from endogenous
sources within spatially restricted microdomains. The physiological significance
of neuromodulation will be greatly assisted by understanding the in vivo activity
of neuromodulatory neurons during learning behaviours, short-term plasticity of
neurotransmitter release, neurotransmitter receptor kinetics, brain slice preparations
that preserve neuromodulatory pathways (Manseau et al. 2008; Widmer et al. 2006)
and new molecular or transgenic strategies to optically target neuromodulatory
centres or afferents (Deisseroth et al. 2006; Zhang et al. 2007; Lorincz and
Adamantidis 2017). It is only by adopting a range of these approaches that it
will be possible to fully understand the action of neuromodulators on hippocampal
circuitry.
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Cell Type-Specific Activity During
Hippocampal Network Oscillations
In Vitro

Tengis Gloveli, Sam A. Booker, Nancy Kopell, and Tamar Dugladze

Overview

Neurons form transient functionally specialized assemblies by coordinating their
activity within networks. Assembly activity is important for coding and information
processing in the brain; oscillations are assumed to entrain and provide temporal
structure to this. Recent work from different laboratories has uncovered cell type-
specific activity patterns during network oscillations, indicating that the cells may
differentially contribute to the generation of oscillation and thereby the coordination
of cell assemblies. The purpose of this chapter is to summarize recent findings
from these works in in vitro preparations highlighting the importance of different
neuronal activity patterns of hippocampal principal cells and different subtypes of
interneurons. Special attention will be paid to the role of the firing properties of
hippocampal interneurons on the network oscillatory activity at the theta and gamma
frequency range. Models based on these ideas are found in Kopell et al. chapter of
this book.
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In Vitro Models of Network Oscillations

Hippocampal Population Activity Patterns In Vivo and In Vitro
Hippocampal networks show rhythmic oscillations in various frequency ranges
in a behavior-dependent manner (Singer 1999; Buzsáki and Draguhn 2004). In
the freely moving rat, three types of hippocampal oscillatory activity have been
observed (Leung et al. 1982), which are broadly termed theta (4–12 Hz)-, gamma
(30–90 Hz)-, and sharp-wave ripples (100–300 Hz). Theta and gamma frequency
rhythms are observed in the rat during exploration and rapid eye movement sleep
(Fig. 1A). The frequency range of both rhythms is described differently in different
studies. These two rhythms often coexist but can also occur separately [Fig. 1A,
for review see Whittington and Traub (2003)]. Gamma and theta rhythms also
occur throughout the neocortex in vivo and have been proposed to constitute a
fundamental mechanism underlying cognitive tasks such as feature recognition,
associative learning, and content- and context-sensitive processing of sensory
information. In addition, intermittent population bursts, sharp-wave-associated field
ripples, are present in the CA3-CA1-subiculum-entorhinal cortex axis during awake

Fig. 1 Hippocampal network oscillations in vivo (A, B) and in vitro (C–E). (A) Theta- and
gamma-related modulation of the field in the dentate gyrus (hilar region) during exploratory
walking. (B) Sharp-wave-associated field ripples in CA1 area during slow-wave sleep. Upper
traces, wideband recording, lower traces, band bath (40–150 Hz, A; 150–250 Hz, B) filtered
gamma and ripple activity. (C) Metabotropic glutamate receptor activation under conditions of
reduced AMPA receptor activation generates in CA1 area theta population activity. (D) Kainate
receptor activation induces network oscillations at the gamma frequency range in CA3 area. (E)
Spontaneously occurring sharp-wave-associated ripple oscillation in CA1 area in vitro. Upper
trace, wideband recording, lower trace, ripple band-pass (140–320 Hz) filtered activity. Panels
are adapted from (A) Bragin et al. (1995), (B) Csicsvari et al. (1999), (c) Gillies et al. (2002), (D)
Gloveli et al. (2005b) and (E) Both et al. (2008)
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immobility, consummatory behaviors, and slow-wave sleep (Fig. 1B, Vanderwolf
1969; Buzsáki et al. 1983; Bland 1986; Chrobak and Buzsáki 1996, Csicsvari et al.
1999).

Various in vitro models have been developed to gain insight into the cellular and
synaptic mechanisms of theta, gamma, and ripple oscillations (Fig. 1C–E). In vitro
models of network oscillations, such as the carbachol (Fisahn et al. 1998; Buhl et al.
1998), the kainate (Buhl et al. 1998), the metabotropic glutamate receptor activation
(Gilles et al. 2002), and the tetanically induced (Whittington et al. 1997) gamma
activity models, reproduce salient features of oscillatory activity in slice prepa-
rations maintained in “interface” slice chamber. It has been shown that using an
intact hippocampus, and very high flow rates, intrinsic theta and gamma oscillations
are maintained without the need for pharmacological intervention (Goutagny et al.
2009). To determine activity pattern of individual neurons, sharp microelectrode or
blind whole-cell patch-clamp recordings have been obtained from principal cells
or putative interneurons. In addition, an in vivo model, the juxtacellular recording
technique, was developed to conjointly record action potential series from single
neurons and the extracellular field potential during different forms of network
activity in anesthetized animals (Pinault 1996; Klausberger et al. 2003, 2004;
see also chapter by Tukker in this book). These in vitro and in vivo methods
have some clear advantages in studying network activity. However, the sparse
distribution of interneurons makes them unlikely targets for these blind approaches.
Therefore, these investigations are very inefficient in mapping neuronal activity
patterns. Whole-cell patch-clamp recordings using infrared differential contrast
videomicroscopy (Dodt and Zieglgänsberger 1994) have greatly facilitated selection
and recordings from interneuron. However, this approach has been hampered by the
difficulty of generating population activity in the submerged-type slice chambers.
Technical modification of the pharmacological paradigms: brief pressure ejection
of kainate (Gloveli et al. 2005a, b) or bath application of kainate (Dugladze et al.
2007, 2012; Zarnadze et al. 2016) and carbachol (Hájos et al. 2004) permitted the
reproduction of the network oscillatory activity in submerged slices. The increased
use of fluorescent protein expressing reporter lines (i.e., GFP, YFP, td-Tomato,
etc.) under the genetic promotion of different unique markers of interneurons and
pyramidal cells (PCs) alike (Giepmans et al. 2006) has enabled targeted whole-cell
recording from neurochemically defined cells. Furthermore, the use of increasingly
more rapid genetically encoded receptors, opsins, and calcium sensors (DREADD,
channelrhodopsin, GCaMP6F) has allowed the manipulation of cellular activity to
more comprehensively assess their function in the context of network oscillations.
Using these approaches, it is possible to record from visually identified pyramidal
cells and interneurons during gamma and theta frequency network oscillation in
vitro.

Cell Types Involved in Rhythms
Morphological and physiological properties discriminate hippocampal PCs from
inhibitory interneurons. In addition, further distinctions exist within both PCs and
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interneurons. It is reasonable to postulate that hippocampal neurons with different
structural features are also likely to have different functions in the network.

Pyramidal Cells Despite the morphological similarities (pyramid-shaped somata,
apical and basal dendritic trees), PCs in CA1 and CA3 areas display some important
differences such as the existence of excitatory recurrent collaterals. The latter is
considered to be the hallmark of the CA3 but not the CA1 area. PCs of the
CA3 area themselves are not homogeneous. Whereas most axon collaterals of
the CA3a and CA3b neurons give rise to extensive recurrent collaterals that are
confined to the CA3 region, PCs in CA3c subregion are mostly projection cells,
with most of their axon collaterals terminating in the ipsi- and contralateral CA1
regions (Li et al. 1994; Wittner et al. 2007). It was hypothesized (Csicsvari et al.
2003) that intrahippocampal gamma oscillations emerge in the recurrent collateral-
rich CA3a,b subregions; their activity recruits CA3c subregion, which, in turn,
entrains CA1 cells. A further level of complication is added when one considers
the less well-studied CA2 PCs, which receive strong theta-modulated input from
the supramammillary region (Pan and McNaughton 2002), and they themselves
are more preferentially excited by entorhinal cortex inputs than CA3 or CA1 PCs
(Chevaleyre and Siegelbaum 2010). While the role of CA2 PCs in the control
of oscillatory patterning remains unclear, they may contribute significantly to the
timing of theta oscillations.

Interneuron Types In contrast to glutamatergic principal cells, GABAergic
interneurons of the hippocampus exhibit substantial diversity. In the CA1 area,
for instance, at least 21 classes of interneurons were described (for review see
Klausberger and Somogyi (2008) [see Vida chapter of this book]). In contrast to
principal cells, the vast majority of interneurons have locally restricted axons and
lack spines. Interneurons can be broadly classified into several classes on the basis
of different criteria, such as action potential firing properties, somato-dendritic
architecture and axonal ramification pattern, neurochemical content, voltage
and ligand-gated conductances as well as plastic changes in excitatory synaptic
transmission [for reviews see Freund and Buzsáki (1996), McBain and Fisahn
(2001), and Klausberger and Somogyi (2008)]. Functionally, at least four main
GABAergic cell classes coexist in hippocampal networks: (1) perisomatic inhibitory
neurons, (2) dendritic inhibitory interneurons, (3) GABAergic cells specifically
innervating other inhibitory interneurons, and (4) projection interneurons which
cross hippocampal subfields (Miles et al. 1996; Klausberger and Somogyi, 2008;
Booker and Vida 2018). The most striking morpho-functional dichotomy in the
population of cortical interneurons is the targeting of the dendritic versus the
perisomatic domain of principal cells. Dendritic inhibition is likely to control the
efficacy and plasticity of excitatory synaptic inputs of principal cells, whereas
perisomatic inhibition is ideally suited to control output and the generation of
action potentials and can synchronize the firing of large groups of principal cells
(Cobb et al. 1995; Miles et al. 1996; Freund and Buzsáki 1996). Further distinctions
exist within the same classes of interneurons. Thus, different types of perisomatic
targeting parvalbumin (PV)-expressing interneurons innervate distinct subcellular
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domains of principal cells. Axo-axonic cells (AACs) innervate exclusively the axon
initial segment of PCs; in contrast basket cells (BCs) innervate the somata and
proximal apical dendrites. In addition, two distinct populations of basket cells –
PV-expressing and cholecystokinin (CCK)-expressing interneurons – could be
defined on the basis of their neurochemical content [see Vida chapter of this book].
Dendrite-targeting interneurons could be further subdivided into distal (such as
oriens lacunosum-moleculare, O-LM, or radiatum lacunosum-moleculare, R-LM,
cells) and proximal dendrite-targeting cells (such as bistratified or trilaminar cells).
Interneurons belonging to distinct classes defined by their axonal target domain on
the PC have clearly different intrinsic, synaptic, and firing properties.

As an example of this diversity, Fig. 2 illustrates the morphology and the phys-
iological properties of two types of interneurons: non-fast-spiking distal dendrite-
targeting O-LM cells, which present one of the best studied interneuron classes
in the hippocampus, and fast-spiking proximal dendrite-targeting trilaminar cells.
These cells differ in their morphology, neurochemical marker contents, and intrinsic
membrane properties (see Fig. 2A, B). Clear differences were also detected in
spontaneous EPSCs properties between these two subtypes of interneurons –
with slower kinetics in O-LM than those in trilaminar interneurons (Fig. 2B).
Furthermore, while the excitatory input displayed a late-persistent firing in O-
LM cells, fast-spiking trilaminar interneurons displayed an onset-transient firing in
response to stimulation of CA1 axons in the alveus (Fig. 2B; Pouille and Scanziani
2004).

These differences in morphological and electrophysiological properties of
interneurons indicate that they are likely to have specific roles in the network.
In fact, analysis of their spike timing during the oscillations suggests that a division
of labor exist among interneurons subtypes involved in hippocampal network
oscillations (see sections “Firing Patterns in Gamma Oscillations” and “Firing
Patterns in Theta Oscillations”).

Gamma Oscillations

Two forms of local network gamma frequency oscillations can be induced in vitro
in hippocampal slices (Table 1). Transient forms of gamma frequency oscillations
(lasting for a few seconds or minutes) can be evoked in vitro by tetanic stimulation
(Whittington et al. 1997) or through pressure ejection of glutamate (Pöschel et al.
2002) and high molarities of locally applied kainate (Gloveli et al. 2005a, b; Craig
and McBain 2015) or potassium (LeBeau et al. 2002; Towers et al. 2002) (Table 1).

Another model of gamma frequency oscillations is known as “persistent gamma”
(lasting for hours). This kind of oscillation can be induced in the hippocampal
CA3 area in vitro by bath application of agonists of muscarinic acetylcholine
(mAChR) (Fisahn et al. 1998; Fellous and Sejnowski 2000; Shimono et al. 2000;
Fisahn et al. 2002) and kainite receptors (KAR) (Fisahn et al. 2004; Gloveli et al.
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Fig. 2 Properties of distal (O-LM) and proximal (trilaminar) dendrite-targeting interneurons. (A)
Morphology of O-LM and trilaminar cells. Somata and dendrites are drawn in red; axons are
in black. The somata of O-LM cells are located in stratum oriens and have mainly horizontally
running dendrites. The main axon of these cells crosses strata pyramidale and radiatum and
branches in stratum lacunosum-moleculare. O-LM cells innervate the distal dendrites of PCs
which are co-aligned with the entorhinal input (Sik et al. 1995; Maccaferri et al. 2000). (A),
inset, O-LM cells are immunopositive for the metabotropic glutamate receptor (mGluR1α) and
the neuropeptide somatostatin (SOM, Tukker et al. 2007) and express low levels of calcium-
binding protein PV (Maccaferri et al. 2000; Klausberger et al. 2003). The trilaminar cells have
similar horizontally distributed dendrites in stratum oriens but are clearly different from O-LM
cells in respect of axonal arborization (Sik et al. 1995). Sub, subiculum; str.or, stratum oriens;
str.pyr., stratum pyramidale; str. rad., stratum radiatum; str. l-m., stratum lacunosum-moleculare.
B Intrinsic, intrinsic membrane (i) and firing properties (ii) of O-LM and trilaminar cells during
hyperpolarizing and depolarizing current injection. O-LM cells demonstrate clear “sag” potential
and non-fast-spiking pattern in marked contrast to trilaminar cells showing no “sag” and fast
spiking character upon hyperpolarizing and depolarizing pulses. (B) Synaptic (i) – spontaneous
EPSC (sEPSC) in O-LM and trilaminar interneurons. Forty individual traces are black and
superimposed averaged currents are red. (B) Synaptic (ii), Cell-attached responses from an O-
LM and trilaminar cells. Current deflections indicate action potential firing in response to the
stimulation of CA1 axons in the alveus (indicated by the vertical arrows). (Panels A and B, Intrinsic
(i,ii) and Synaptic (i), are from Gloveli et al. 2005a; panels B Synaptic (ii) are from Pouille and
Scanziani (2004); Insert (A, O-LM) is from Tukker et al. (2007))

2005a, b; Dugladze et al. 2012; Zarnadze et al. 2016) (Table 1). mAChR agonist
(carbachol)- and kainate-induced fast network oscillations provide a useful model
to explore the mechanisms underlying physiological gamma frequency oscillations
for the following reasons. The hippocampus receives a dense cholinergic projection
from the medial septum/diagonal band of Broca, which plays an important role in
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Table 1 Properties of in vitro models of theta and gamma oscillations

Oscillation
type Activated by Blocked by Region

Mean freq. (rec.
temp) Main references

Persistent θ mGlutR NMDAR,
GABAAR

CA1 7 Hz (35◦C) Gillies et al. (2002)

mAChR NMDAR.
GABAAR

CA1 9 Hz (35◦C) Gillies et al. (2002)

mGlutR,
mAChR

AMPA CA3 8 Hz (33◦C) Cobb et al. (2000),
Konopacki et al.
(1992)

KAR. long.
slice

N.T. CA3 8 Hz (29◦C) Gloveli et al. (2005b)

Transient θ Puff KA,
long. slice

GABAAR CA3 8 Hz (29◦C) Gloveli et al. (2005b)

Persistent γ KAR GABAAR CA3 35 Hz (35◦C) Fisahn et al. (2004)
37 Hz (34◦C) Gloveli et al. (2005b)

mAChR AMPAR,
GABAAR

CA3 32 Hz(30◦C) Pálhalmi et al. (2004)

CA3 39 Hz (34◦C) Fisahn et al. (1998)
Hájos et al. (2004)

mGluR AMPAR,
GABAAR

CA3 41 Hz (30◦C) Pálhalmi et al. (2004)

Transient γ Puff Glut. GABAAR CA1/DG 42/64 Hz (36◦C) Pöschel et al. (2002)
Puff KA GABAAR CA3 33 Hz (29◦C) Gloveli et al. (2005a)

N.T. CA1/CA3 63/52 Hz (33◦C) Craig and McBain
(2015)

Puff K+ GABAAR DG 67 Hz (34◦C) Towers et al. (2002)
AMPA,
GABAAR

CA1 63 Hz (34◦C) LeBeau et al. (2002)

Abbreviations: R receptor, m metabotropic, KAR kainate R, long. longitudinal, Puff pressure
jection, N.T. not tested

the generation of hippocampal network activity (Leung 1985). In addition, kainate
receptors are expressed by both principal cells and interneurons of the hippocampus
(Cossart et al. 1998; Frerking et al. 1998; for review see Lerma (2003)). These
oscillations in vitro share many of the features of intrahippocampal gamma oscilla-
tions in vivo, including the firing of pyramidal neurons at low frequencies (<5 Hz)
phase-locked to the oscillation and the generation of oscillations in CA3 and their
subsequent propagating to CA1 (Fisahn et al. 1998; Gloveli et al. 2005a). Finally,
in vivo and in vitro cholinergically induced oscillations have similar current source
density profiles, and the gamma phase relationship between PCs and perisomatic-
innervating interneurons is comparable (Csicsvari et al. 2003; Mann et al. 2005;
Oren et al. 2006).

Both persistent and transient gamma oscillations can be evoked in different
hippocampal areas, including CA3, CA1, and DG (Table 1, Towers et al. 2002;
Pöschel et al. 2002; Gloveli et al. 2005a). However, there are regional differences
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in frequency and power of the oscillations, suggesting the existence of different
rhythm-generating networks in the hippocampus. In line with this suggestion, both
persistent and transient forms of kainate-induced gamma oscillations demonstrate
faster gamma frequency oscillations in isolated CA1 area than those in CA3 area
(N. Maziashvili and T. Gloveli, unpublished observation, Middleton et al. 2008;
Craig and McBain 2015). However, gamma oscillations in the same area (e.g.,
the CA3 area) induced by different pharmacological drugs (carbachol and DHPG)
also show significant differences in their properties (the peak frequencies, maximal
power, and spectral width, Table 1, Pálhalmi et al. 2004), suggesting involvement
of different network mechanisms, such as the recruitment of distinct types of
interneurons. In addition, the gamma oscillations evoked under different conditions
differ in their dependence on excitation and inhibition (Table 1). Thus, one form
of transient oscillation, “interneuronal network gamma” (ING) (Whittington et al.
1995), is based on mutual inhibition between the interneurons [for computational
models, see Wang and Buzsáki (1996), White et al. (1998), and Vida et al. (2006)],
whereas “pyramidal-interneuronal network gamma” (PING) (Whittington et al.
1997) is based on reciprocal interneuron-PC interaction. Furthermore, fast gamma
oscillations in CA1 induced by kainate puff application are independent of CA1 PC
firing, as evidenced by optogenetic silencing of them, further reinforcing the idea
that local interneurons may be a key determinant of this form of gamma oscillation
(Craig and McBain 2015). It seems likely that all of these forms are relevant in
vivo, possibly reflecting region and state dependence of mechanisms underlying
hippocampal gamma oscillations.

Firing Patterns in Gamma Oscillations

A key requirement for the generation of network oscillations is rhythmic and
synchronized activity of large sets of neurons. An important step in understanding
the role of hippocampal neurons in network oscillations is to examine their spike
patterns during these oscillations.

Principal Cells Analysis of firing properties of electrophysiologically and morpho-
logically identified PCs in CA3 area has been performed in vitro for KAR (Gloveli
et al. 2005a, b) and mAChR (Fisahn et al. 1998; Hájos et al. 2004) agonist-induced
gamma frequency oscillations. Both KAR and mAChR activation (by kainate and
carbachol, respectively) revealed low frequency, <5 Hz, firing of PCs (Table 2,
Fisahn et al. 1998; Hájos et al. 2004; Gloveli et al. 2005a). These results are in
agreement with in vivo observations demonstrating similar low-frequency firing
of PCs (Csicsvari et al. 2003). Moreover, PC firing is phase-locked to the field
oscillations (Table 2). In carbachol-induced gamma oscillations, PCs fired action
potentials around the negative peak of the field recorded in the PC layer (Fig. 3A, D,
Hájos et al. 2004). Both in vivo and in vitro observations suggest that during gamma
frequency oscillations, PCs of CA3 area drive local interneurons in a feedback
manner (Fisahn et al. 1998; Csicsvari et al. 2003; Pálhalmi et al. 2004; Hájos
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Table 2 Firing properties of some hippocampal neurons during gamma frequency oscillations in
vitro

Neuron
type

Activated
by

Mean firing
frequency (Hz)

Spikes/gamma
cycle

Angle of
spikes relative
of the field Main references

Pyramidal KAR 3.5 ± 0.6 0.18 ± 0.05 N.T. Gloveli et al. (2005a)
mAChR 2.82 ± 0.7 0.09 ± 0.02 58.1 ± 5.3◦ Hájos et al. (2004)

Fisahn et al. (1998)
O-LM KAR 8.3 ± 2.1 0.26 ± 0.04 N.T. Gloveli et al. (2005a)

mAChR 12.9 ± 1.8 0.4 ± 0.07 88.1 ± 6.1◦ Hájos et al. (2004)
Trilaminar KAR 32.1 ± 2.8 1.82 ± 0.07 N.T. Gloveli et al. (2005a)

mAChR 18.2 ± 2.7 0.6 ± 0.09 96.8 ± 2.2◦ Hajos et al. (2004)
Bistratified KAR 35.0 ± 2.5 1.04 ± 0.08 N.T. Gloveli et al. (2005a)
Basket KAR 33.6 ± 2.6 1.28 ± 0.06 N.T. Gloveli et al. (2005a)

mAChR 18.1 ± 2.7 0.62 ± 0.09 93 ± 2.1◦ Hájos et al. (2004)
R-LM mAChR 13.2 ± 3.9 N.T. Hájos et al. (2004)
Radiatum mAChR 2.3 ± 0.6 0.07 ± 0.02 128.4 ± 12.4◦ Hájos et al. (2004)

Abbreviations: O-LM oriens lacunosum-moleculare, R-LM radiatum lacunosum-moleculare, N.T.
Not tested

et al. 2004). If PC-interneuron interactions generate gamma oscillations, the firing
of PCs should precede interneuron discharge so that PC can recruit interneuron
activity in the next gamma cycle (Oren et al. 2006). Consistent with this suggestion,
interneuron responses were indeed preceded by PC firing (Fig. 3D, Hájos et al.
2004).

During in vitro gamma frequency oscillations induced by kainate, the interneu-
rons receive a high-frequency barrage of compound EPSPs, modulated at gamma
frequency, which are temporally correlated with extracellular population activity
(Gloveli et al. 2005a). Since the slice is de-afferented, it is likely that the action
potential-dependent excitatory events are mediated by local excitatory input from
neighboring pyramidal neurons. Given the relatively low PC somatic spike rate
with respect to the frequency of EPSPs invading interneurons, the question remains
as to how PCs generate these rhythmic burst of events and reliably discharge
interneurons. Interneurons may receive a rhythmic barrage of gamma frequency
EPSPs, for the following reasons. First, in the active network, multiple PCs are
likely to fire on any given oscillatory cycle. Due to the convergence of numerous
PC axons onto a single postsynaptic interneuron it follows that each interneuron is
also likely to receive multiple unitary excitatory inputs on each successive gamma
wave. Second, there are suggestions that activity in PC axons may orthodromically
excite interneurons, without PC somata necessarily firing (Traub et al. 2003).
Computational models of carbachol (Traub et al. 2000)- and kainate-induced gamma
oscillations (Fisahn et al. 2004) emphasize the importance of ectopic axonal action
potentials for the generation of hippocampal gamma oscillations. The coexistence
of phasic, high-frequency oscillations in principal cell axon populations and field
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Fig. 3 Morphological and firing properties of hippocampal neurons during pharmacologically
induced gamma oscillations. Reconstructions of representative biocytin-filled pyramidal (Ai), PV-
positive basket (Bi) and trilaminar (Ci) cells. The soma and dendrites are drawn in red, whereas
the axons are in black. CA3, CA3 area; str. or., stratum oriens; str. pyr., stratum pyramidale; str.
rad., stratum radiatum; str. l.-m., stratum lacunosum-moleculare. During kainate-induced field
oscillatory activity (Aii; Bii), PCs fire sporadically (Aiii), whereas basket cells discharged with
single spikes interrupted by irregularly occurring doublets of action potentials, phase-locked to
the field gamma activity (Biii). Trilaminar cell produced spike doublets (Ciii) on every gamma
cycle (Cii). (D) (left), Time sequence of firing of different neuron types during carbachol-induced
oscillatory cycle (top trace). PCs fired at the negative peak of the oscillation followed by the
interneurons. Gaussian functions were fitted to the spike time distribution for each type of neuron,
and the average mean and SD were used to represent each cell class as a Gaussian function. (D)
(right), Schematic diagram of the connectivity among phase-coupled neuron types in the CA3
hippocampal circuitry taking part in the gamma oscillation. (Panels A–C are adapted from Gloveli
et al. (2005a); D is adapted from Hájos et al. (2004))

potential gamma frequency oscillations was demonstrated in kainate model (Traub
et al. 2003).

Interneuron Types During gamma frequency oscillation in vivo and in vitro, the
different classes of interneurons fire action potentials at different times and inhibit
distinct subcellular domains of PCs (Figs. 2, 3, 4). During pharmacologically
induced gamma frequency oscillations in vitro, perisomatic-targeting PV-expressing
basket cells generate a predominantly gamma frequency output (Fig. 3B, Gloveli et
al. 2005a; Hájos et al. 2004). Moreover, the firing of perisomatic basket cells is
tightly coupled to the oscillation (Fig. 3B, D). The anatomical and physiological
properties make these neurons ideally suited for generating local gamma rhythms,
and indeed selective inhibition of PV basket cells’ output synapses abolished
carbachol-induced gamma oscillations in CA1 (Gulyás et al. 2010). Meanwhile,
in kainate-induced gamma oscillations, there was no correlation of putative PV
basket cells with the gamma oscillation (Craig and McBain 2015), suggesting that
different interneuron mechanisms underlie the different paradigms employed. In
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Fig. 4 Morphological and firing properties of O-LM interneurons. (A) Neurolucida reconstructed
of biocytin-filled O-LM cell in area CA3 from transverse, longitudinal, and coronal slices. The
soma and dendrites are drawn in red, whereas the axon is in green. Note different axonal
ramification pattern in stratum lacunosum-moleculare in different slice preparation. Hippocampal
layers are depicted schematically. CA3, CA3 area; str. or., stratum oriens; str. pyr., stratum
pyramidale; str. rad., stratum radiatum; str. l.-m., stratum lacunosum-moleculare. (B) Typical
example of extracellular field potential (fp) and concomitant current clamp (−60 mV) recordings
in an O-LM cell after induction of oscillatory activity with kainate in different slices. (C)
Corresponding power spectra (60-s epoch) from field (black) and current clamp (red) recordings.
(D–F), O-LM firing in vivo is specifically associated with different types of brain state and
network activity. Filtered extracellular network oscillations (top) and extracellularly recorded
action potentials (bottom). Note that the O-LM cell firing is not phase-coupled to gamma cycle but
fired rhythmically on the trough of theta oscillations and was silent during sharp-wave-associated
ripples. Calibrations: (D) 0.1 mV (upper trace); 0.2 mV (lower trace) and 0.1 s; E,F, 0.3 mV (lower
traces), 0.2 mV (upper theta trace), 0.05 mV (upper sharp-wave trace), and 300 ms (theta), 50 ms
(sharp wave). (Adapted from panels A to C from Gloveli et al. (2005a, b), Dugladze et al. (2007),
and Tort et al. (2007); panels D to F from Klausberger et al. (2003); and panel F from Tukker et al.
(2007))
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contrast, spiking of other PV-expressing perisomatic-targeting interneurons, axo-
axonic cells was found to be only moderately coupled to the field gamma in
anesthetized animals (Tukker et al. 2007), and their GABA release is not critical for
the generation of carbachol-induced gamma field oscillations (Gulyás et al. 2010).
However, inhibition mediated by axo-axonic cell can separate axonal and somatic
activity, maintaining the functional polarization of PCs during gamma oscillations
by preventing action potential spread across the axon initial segment (Dugladze et
al. 2012).

There is no in vitro data available on the activity of identified CCK-expressing
basket cells. However, recordings from central ganglionic eminence (CGE)-derived
basket cells, which are mostly CCK-expressing, showed minimal spiking in
response to kainate-evoked gamma oscillations, with a mean firing probability of
0.069 ± 0.027 (Craig and McBain 2015), much lower than for PV-expressing BCs.
In vivo results confirm that, in contrast to PV-expressing BCs, these interneurons
fire earlier than PCs and out of phase with PV-expressing interneurons, during the
gamma oscillations in anesthetized animals (Tukker et al. 2007). Therefore, CCK-
expressing basket cells are likely to interfere with gamma synchronicity (Freund
and Katona 2007; Galarreta et al. 2008).

While PV-expressing perisomatic inhibitory interneurons are thought to play a
major role in gamma oscillations (Hájos et al. 2004; Gloveli et al. 2005a), other
classes of fast-spiking interneurons, such as bistratified and trilaminar cells, may
also be important for this rhythm (Gloveli et al. 2005a). Bistratified cells were so
named because the axonal arbor is found in two strata: oriens and radiatum (Buhl
et al. 1994). In addition to PCs, they also innervate interneurons including basket
cells (Halasy et al. 1996). During the gamma oscillations in vitro, bistratified cells
discharge at high frequency, phase-locked to the field gamma (Gloveli et al. 2005a;
Hájos et al. 2004; Tukker et al. 2007). Therefore, they are also likely to be involved
in the generation of the gamma oscillatory activity. Interestingly, the most prominent
interneuron output seen during pharmacologically induced gamma oscillations in
vitro was associated with trilaminar interneurons (Gloveli et al. 2005a; Hájos
et al. 2004; Craig and McBain 2015). These fast-spiking cells project to three
dendritic layers of CA3 and CA1 areas, with axons densely innervating strata
oriens, pyramidale and radiatum. Additionally, axon collaterals of CA3 trilaminar
cells were seen projecting to area CA1 and into the subiculum and possibly to
other brain areas as well (Somogyi and Klausberger 2005). These cells generated
highly regular, short latency spike doublets (Fig. 3C, Gloveli et al. 2005a). Their
axonal arborization indicates that these interneurons innervate somatic and dendritic
compartments of PCs locally as well as distant regions. Thus, via these cells, gamma
rhythms generated locally in area CA3 could be efficiently transmitted to distal sites
“downstream” in the hippocampal processing pathway.

Interneuron located in the stratum radiatum (with both the dendrites and axonal
arborization localized in the stratum radiatum) have the lowest firing rate among
all dendrite-targeting interneurons with weak coupling to the gamma oscillations
in vitro (Table 2, Hájos et al. 2004). Although R-LM cells (with dendritic tree
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in stratum radiatum and axon restricted to stratum lacunosum-moleculare) fire at
higher frequency than other radiatum cells, they also do not show significant phase-
related firing (Hájos et al. 2004).

Stratum oriens O-LM cells, as described above (Fig. 2), are the archetypal feed-
back inhibitory interneuron and are more commonly associated with oscillations at
lower frequencies (i.e., theta frequency; see below). However, they can also show
preferential firing during in vitro generation of gamma oscillations (Chittajallu et al.
2013). Two populations of O-LM cells are observed following kainate puff-induced
gamma activity, those which derive from the medial ganglionic eminence, which had
a mean firing probability of 0.158 ± 0.029 during each gamma cycle, much higher
than CGE-derived 5-HT3a containing O-LM cells which had a firing probability
of 0.033 ± 0.008 for each cycle of gamma (Chittajallu et al. 2013). This serves to
demonstrate that while both subtypes of O-LM cell are morphologically similar and
express somatostatin, they are differentially recruited to local network activity.

Interestingly, projection interneurons, such as back-projecting CA1 interneurons,
are very strongly modulated to gamma oscillations (Craig and McBain 2015),
suggesting that these cells may serve to coordinate PC firing at these frequencies
across subregions of the hippocampus.

Theta Oscillations

A prominent network pattern in the hippocampus of all mammals studied to
date, including humans (Arnolds et al. 1980; Tesche and Karhu 2000), is a slow
oscillation in the theta frequency band (4–12 Hz). Theta oscillations are most
consistently present during various types of locomotor activities (Vanderwolf 1969)
and rapid eye movement (REM) sleep (Jouvet 1969). In general, theta waves
are absent in the immobile animal (Bland 1986; for review see Buzsáki (2002)).
To explain the generation of these oscillations, various external pacemakers have
been proposed [for review see Buzsáki (2002)]. One classical hypothesis is that
cholinergic excitation from the septum and the diagonal band of Broca activates
inhibitory interneurons, which in turn induce rhythmic IPSPs on the soma of
depolarized PCs (Petsche et al. 1962). Indeed, this was elegantly demonstrated
in organotypic hippocampal slice cultures, where the medial septum was cultured
alongside, leading to the emergence of spontaneous theta oscillations (Fischer et
al. 1999). Alternatively, the entorhinal cortex may entrain hippocampal areas at
theta frequency. In rodents, hippocampal theta activity has maximal power in the
CA1 region, and the synaptic currents underlying these oscillations are mainly
generated by the entorhinal input [for review see Buzsáki (2002)]. However, recent
in vitro experimental data and computational analysis indicate that theta activity
can be generated intrinsically in the CA1 (Gillies et al. 2002; Rotstein et al. 2005)
and CA3 (Gloveli et al. 2005b) areas, or the hippocampus as a whole (Goutagny
et al. 2009). In fact, Cobb et al. (1995) demonstrated that individual GABAergic
interneurons can effectively phase subthreshold membrane potential oscillations
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and spontaneous firing in PCs at theta frequencies. Alternating inhibition and post-
inhibitory “rebound” activation underlies the entrainment of PCs (Cobb et al. 1995).
Intrinsic GABAergic mechanisms are thus sufficient to generate theta activity in
cortical networks. Somewhat unexpectedly, the entrainment of local PV and SOM
interneurons to theta oscillation is entirely dependent on CA1 recurrent collaterals,
with little involvement of CA3 inputs (Huh et al. 2016.).

Various in vitro models of the theta oscillatory activity have been developed,
based on either mAChR (Konopacki et al. 1992; Fisahn et al. 1998), metabotropic
glutamatergic (mGluR) (Gillies et al. 2002), or kainate receptor activation (Gloveli
et al. 2005a, b). Coactivation of mGluRs and metabotropic cholinergic receptors
has also been reported to generate robust theta frequency oscillations in the
hippocampus in vitro (Cobb et al. 2000).

Metabotropic GluR activation generates prominent, inhibition-based, atropine-
resistant theta population oscillations under conditions of reduced AMPA receptor
activation in the hippocampal CA1 area (Gillies et al. 2002). This field oscillation
was independent of muscarinic cholinergic receptor drive but strongly dependent
on NMDA receptor and GABAA receptor activity (Table 1, Gillies et al. 2002).
The mechanism of generation of theta frequency population activity in this model
appeared to involve intrinsic theta frequency membrane potential oscillations in
a subset of stratum oriens interneurons. The blockade of AMPA receptors was a
critical requirement of the experimental conditions needed to see this population
theta activity. Many of the properties of theta frequency oscillations in this reduced
model match those seen in area CA1 in vivo (Gillies et al. 2002). In particular,
the resulting population theta rhythm resembled atropine-resistant theta oscillations
recorded in vivo (Buzsáki et al. 1986) and may be generated by a subset of stratum
oriens interneurons displaying intrinsic membrane potential oscillations at theta
frequency (Gillies et al. 2002). In addition, the coherent theta oscillations may come
from the interaction of other GABAergic interneurons with the O-LM cells.

In the CA3 area, theta oscillations can be induced by application of kainate. A
necessary prerequisite to ensure precisely synchronized theta activity was specific
orientation of the slices: theta frequency population activity was detected predom-
inantly in longitudinal hippocampal slice preparation (Gloveli et al. 2005b). These
data demonstrate that theta activity can be generated intrinsically both in the CA1
and the CA3 areas of the hippocampus. In an intact hippocampus, theta activity
is capable of spreading in the CA3 -> CA1 direction but also in the alternative
direction, dependent on subiculum inputs (Jackson et al. 2014), which contradicts
elements of the classic intrinsic theta generation. While there are several differences
between these models, a common feature is their dependence on GABAergic
inhibition (Table 1).

Firing Patterns in Theta Oscillations

Principal Cells In a model of atropine-resistant theta oscillations following mGluR
activation, with AMPA receptor activation blocked, PC somatic firing was seen in
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only few cells recorded but could be elicited with injection of tonic depolarizing
current (0.1–0.2 nA). In these conditions, PCs fired one spike per field theta ( 7 Hz)
cycle during the trough of the field oscillation (Gillies et al. 2002). Consistent with
this finding, pyramidal neurons in the CA1 region showed subthreshold resonance
and firing preference at theta frequencies (range 2–7 Hz) (Pike et al. 2000). Recent
data has shown that CA1 PC spiking is sparse during intrinsically generated theta
oscillations, and its timing is highly dependent on local inhibition (Huh et al. 2016)

Interneuron Types Ample evidence supports the critical involvement of hippocam-
pal interneurons in theta oscillations. The best documented is involvement of
stratum oriens distal dendrite-targeting O-LM interneurons (Fig. 2, Fig. 4A) in
generation of theta rhythm. This cell type was found to participate in hippocampal
theta activity both in vivo (Buzsáki 2002; Klausberger et al. 2003) and in vitro
(Pike et al. 2000; Gillies et al. 2002; Hájos et al. 2004; Gloveli et al. 2005a, b,
Huh et al. 2016), with a small subpopulation that are not phase-locked to theta
(Huh et al. 2016). In particular, involvement of O-LM cells was investigated in
vitro in kainate- and mAChR-mediated network oscillatory activity. In kainate-
induced oscillations, O-LM cells fired in the theta frequency range during both theta
and gamma population activity (Fig. 4B, Gloveli et al. 2005b). O-LM cells show
prominent membrane potential oscillations in the theta frequency range (Maccaferri
and McBain 1996). By contrast, hippocampal fast-spiking cells preferentially
resonate in the gamma range (Pike et al. 2000). Furthermore, O-LM cells have
longer membrane time constants than the gamma-preferring interneurons and a
considerably longer afterhyperpolarization (AHP). Changes in AHP profiles in
interneurons have been shown to have dramatic effects on firing patterns (e.g.,
see Savić et al. (2001)). Thus, O-LM cells and gamma-preferring interneurons
discharge at different frequencies and participate preferentially in theta or gamma
activity, respectively (Gloveli et al. 2005a). The theta frequency discharge of O-LM
interneurons (Fig. 4B, C, Gloveli et al. 2005b) will provide a robust theta frequency
rhythmic inhibitory output to the apical dendrites of PCs.

There is a growing body of evidence that PV-expressing basket cells are critical
for the generation and maintenance of theta oscillations in vitro (Korotkova et al.
2010; Amilhon et al. 2015; Huh et al. 2016). Indeed, PV basket cells show very
strong phase-locking to the peak of theta oscillations, with a spike probability of
one per theta cycle (Huh et al. 2016). Indeed, the specific timing of intrinsic theta
oscillations are controlled by PV-expressing interneurons, with increasing activity
through optogenetic stimulation resulting in increased theta oscillation frequencies
(Amilhon et al. 2015).

The dendrite domains of principal cells are innervated by other dendritic
inhibitory interneurons, whose involvement in the hippocampal oscillations has not
been addressed in vitro. This includes, for example, recently described interneuron
type in CA1 area in anesthetized animal, Ivy cells, expressing neuropeptide Y
(NPY) and the neuronal nitric oxide (NO). The soma of these cells is located
in stratum pyramidale, and axonal collaterals innervate two strata: oriens and
radiatum. Ivy cells discharge at low frequency during theta as well as gamma
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and ripple oscillations in anesthetized animals (Fuentealba et al. 2008). Another
GABAergic interneuron type, neurogliaform cell that shares many similarities with
Ivy cells, such as dense axonal fields, low-frequency discharge, and slow synaptic
transmission (Vida et al. 1998; Price et al. 2005; Szabadics et al. 2007), is located
in stratum lacunosum-moleculare and innervates the apical dendritic tuft of CA1
PCs co-aligned with the entorhinal input (Price et al. 2005). This cell type provides
both fast GABAA receptor-mediated and slow GABAB receptor-mediated (Price
et al. 2005; Szabadics et al. 2007) inhibition and therefore represents a potential
candidate to be involved in both theta and gamma frequency oscillations. However,
there is very little information about the activity pattern of this interneuron type and
their role in network oscillations.

Nested Theta and Gamma Oscillations

Theta and gamma oscillations often occur simultaneously and show interaction.
Amplitude of gamma oscillations is modulated with the phase of the theta rhythm.
In addition, the frequencies of the two oscillations are also correlated, providing
additional evidence of their interrelated function (Bragin et al. 1995). The coordi-
nated nature of the two rhythms, and the observation that gamma power is stronger
during theta-associated behavior (Leung et al. 1982; Bragin et al. 1995), implies that
the neuronal generators of the two rhythms interact (and may be also overlap). This
nested activity pattern is hypothesized to play a critical role in memory encoding
and retrieval (Lisman and Idiart 1995; Lisman 2005).

Combined anatomical and physiological studies have provided evidence that in
vitro gamma and theta rhythms are supported by neuronal circuits arranged orthog-
onally along the transverse and longitudinal axes, respectively (Table 1, Gloveli et
al. 2005b). In hippocampal coronal slice preparation with intermediate orientations
(between the transverse and longitudinal axis) both theta and gamma population
rhythms were manifested (Fig. 4B and C, Gloveli et al. 2005b). The reason for
that is a differential preservation of rhythm-generating microcircuits in transverse,
longitudinal, and coronal slice preparation. Analysis of the three-dimensional
axonal arborization patterns of different hippocampal CA3 interneurons recorded
in transverse slices show that PV-expressing perisomatic targeting interneurons,
along with trilaminar and bistratified cells, show a clear tendency to arborize widely
within the transverse plane (Gloveli et al. 2005a, b). Indeed, mutual inhibition
between PV-expressing interneurons produces strong nesting of gamma oscillations
to theta cycles (Wulff et al. 2009), likely due to the high theta phase discharge
of PV interneurons themselves (Huh et al. 2016). In contrast, distal dendrite-
targeting O-LM cells arborized most extensively in the longitudinal plane forming
two or three clusters in this direction (see Fig. 4A and Gloveli et al. (2005b)). In
longitudinal slices, the preservation of these projections facilitated the generation of
theta rhythms (Fig. 4B, C) with robust coherence over large distances (Gloveli et
al. 2005b; Tort et al. 2007). Thus, orthogonal arrangement of rhythm-generating
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microcircuits alongside the longitudinal and transverse axis, and distinct firing
patterns of certain classes of interneurons during the theta and gamma frequency
oscillations (Gloveli et al. 2005b; Tort et al. 2007), enables the hippocampus to
produce different (solely or combined) population activity.

Sharp-Wave Ripple Activity

The high-frequency oscillations termed ripples (100–300 Hz) are typically associ-
ated with sharp-wave activity (Buzsáki et al. 1992; Wilson and McNaughton 1994;
O’Neill et al. 2006). The hippocampal sharp-wave ripple (SWR) complex is thought
to play an important role in synaptic plasticity and the transfer of new memory trace
from the hippocampus to the neocortex (Buzsáki 1989).

The mechanisms of these fast oscillatory patterns in the hippocampus and
neocortex are not fully understood (Buzsáki et al. 1992; Ylinen et al. 1995; Draguhn
et al. 1998). Both in vivo and in vitro studies suggest that SWRs arise in the recurrent
collateral system of the CA3 area (similar to gamma oscillations), propagate toward
CA1, and leave the hippocampal formation via the subiculum and the EC (Chrobak
and Buzsáki 1996; Csicsvari et al. 2000; Maier et al. 2003, Both et al. 2008).
During this state, the hippocampus seems to be less controlled by input from the
EC; rather, it generates output signals itself (Chrobak and Buzsáki 1996). Data
from the rodent hippocampus showed that GABAergic interneurons, in particular,
parvalbumin (PV)-expressing fast-spiking basket cells, play a crucial role in SWR
generation in vivo (Schlingloff et al. 2014; Stark et al. 2014).

SWR complex can be induced in vitro by electrical stimulation, pharmaco-
logically, or can occur spontaneously with similar properties to the events seen
in vivo (Maier et al. 2003; Nimmrich et al. 2005; Behrens et al. 2005; Hájos
et al. 2009; HájosEller et al. 2015; Zarnadze et al. 2016). Several local network
mechanisms underlying these patterns have been identified within CA1, including
strong inhibition of nonparticipating PCs during SWR (Ylinen et al. 1995; Maier
et al. 2003) and electrical coupling of CA1 PCs (Draguhn et al. 1998; Schmitz
et al. 2001; Nimmrich et al. 2005). Concomitant extracellular and intracellular
recordings of SWR complexes show that PCs display EPSP-IPSP sequences, IPSP-
EPSP sequences, and prominent IPSPs, but never isolated EPSPs (Behrens et al.
2005). These results suggest that inhibitory inputs are strong during the development
of ripple complexes. Consistent with this finding, fast-spiking basket and bistratified
interneurons strongly increase their firing rate during ripple oscillations in vivo
(Ylinen et al. 1995; Klausberger et al. 2004). Another fast-spiking cell type, axo-
axonic interneurons, fires before the ripple episode but is silenced during and
after (Klausberger et al. 2003). In contrast, non-fast-spiking O-LM cell firing is
suppressed during ripples in vivo (Klausberger et al. 2003), however 50% of O-LM
cells show phase-locking to the end of ripples in vitro (Pangalos et al. 2013). This
suggests that although they do not fire during ripples, they may contribute to the
subsequent refractory period. Gap junctions also seem to be important for ripples,
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since the blockade of gap junctions with carbenoxolone attenuated ripple occurrence
(Behrens et al. 2005, LeBeau et al. 2003). Interestingly, SWR can be induced
with stimulation protocols known to induce LTP, a model of learning and memory,
suggesting that this pattern is associated with changes in functional connectivity
(Behrens et al. 2005).

The Interdependence of Gamma Oscillations and Sharp-Wave
Ripples

Gamma oscillations and SWRs, involved in memory encoding (Jutras and Buffalo
2010) and consolidation (Buzsáki 1989; Girardeau et al. 2009; Jadhav et al. 2012),
respectively, appear to be interlinked in the course of memory processing. These
two rhythms reflect two “competing,” mutually exclusive network states in vitro
(Eller et al. 2015; Zarnadze et al. 2016, Fig. 5): spontaneously occurring SWRs
disappear shortly after onset of gamma rhythms induced by bath application of
kainic acid (KA, 400 nM) and reappear within a few minutes after KA washout.
However, transient slow gamma synchrony may synergistically interact with SWRs
and promote hippocampal memory replay (Carr et al. 2012). Thus the two network
patterns are not fully independent. Indeed, in an in vitro model, it was found that
plastic changes initiated in the network by means of persistent gamma activity
altered the subsequent SWR pattern (Fig. 5). Comparison of SWRs before the
oscillatory gamma episode with post-gamma SWRs (p-SWR) reveals a significantly
increased p-SWR area. In good agreement with this data, gamma oscillations
induced by bath application of carbachol (20 μM), an alternative drug to trigger
persistent gamma oscillations based on a different network mechanisms (Fisahn
et al. 1998, 2002; Hájos et al. 2004), also result in a significant increase in SWR
area (Zarnadze et al. 2016). This indicates that gamma activity itself, and not
the pharmacological agent, is responsible for network alteration. Moreover, the
intervening gamma episode also has an enhancing effect on subsequent gamma
oscillations (Fig. 5E and F). Together, these results demonstrate that a gamma
frequency episode significantly affects subsequent network activities. These effects
are independent of the pharmacological agent used for the induction, but correlate
with the presence and the power of gamma oscillations, highlighting the general
potential of gamma rhythms to alter network activity. This form of plasticity is
impaired by mGluR5 and NMDAR antagonists (Fig. 5D) suggesting that in the
hippocampal area, CA3 gamma frequency oscillations influence the subsequent
network activity through mGluR5- and NMDAR-dependent mechanisms.

In parallel to this facilitating network effect, the excitability of CA3 PCs
following gamma rhythms is also enhanced. In contrast to this excitatory neurons,
the excitability of two types of perisomatic targeting inhibitory interneurons, PV-
expressing and CCK-expressing basket cells, displayed opposing effects (Zarnadze
et al. 2016). In particular, fast-spiking PV-expressing cells, mediating rapid inhi-
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Fig. 5 Gamma oscillations promote long-lasting alterations in the network activity. (A) SWRs
recorded in the stratum pyramidale of the CA3 region occurred spontaneously (left), disappeared
shortly after bath application of KA (middle), and reappeared with a significantly higher amplitude
after KA washout (right, p-SWR). Note the persistent gamma network oscillation after KA
washout. (B) Example of the wavelet transform (color-coded power spectral density) for three
consecutive highlighted SWRs (white trace) before (SWR) and after (p-SWR) intermediate
gamma oscillations. (C) Gamma oscillation induces a significant SWR area increase. (D) Gamma
oscillation-induced SWR area increase is significantly reduced by administration of AP5 (gray
open bar), MPEP (black open bar), and MPEP+AP5 (black bar with gray filling). (E) Brief “weak”
field gamma episodes were induced by bath application of 50 nM KA (left, top). After this test
period, “conventional” gamma frequency oscillations were induced by 400 nM KA application (left
middle), followed by KA washout achieving a complete cessation of oscillatory gamma activity. In
a third step, the network behavior was tested again with the same low KA concentration as applied
in the first step (left, bottom). The spectral analysis of the 1st and 2nd “weak” gamma oscillation
reveals a strengthening effect of the intervening “conventional” gamma episode. (F), Summary
bar charts of peak power (left) and frequency (right) obtained before (1st “weak” gamma) and
after “conventional” gamma (2nd “weak” gamma). (Panels A–F are adapted from Zarnadze et al.
(2016))

bition and contributing to the precise timing of neuronal synchronization and
emergence of network oscillation (Cobb et al. 1995; Gloveli et al. 2005a; Sohal
et al. 2009; Schlingloff et al. 2014), exhibit enhanced activation, while regular firing
CCK-expressing cells, mediating slower inhibition (Hefft and Jonas 2005; Daw et
al. 2009), show reduced excitability (Zarnadze et al. 2016). In this cell type-specific,
differential plasticity of the two major GABAergic interneuron types, in turn, may
underlie enhanced network excitability and thus promote synaptic plasticity. These
results also emphasize the pivotal role of network gamma oscillations as a tool to
investigate synaptic plasticity in the network.
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Cellular, Synaptic, and Axonal Mechanisms Involved
in Oscillations

Intrinsic Properties The voltage-gated ion channels strongly contribute to PC
excitability. These channels influence intrinsic properties of the neuron, such as the
action potential threshold, spike AHP and afterdepolarization (ADP), and action
potential firing mode. Na+ and A-type K+ channels are expressed in both CA1 and
CA3 PCs, whereas hyperpolarization-activated cation channels (HCN channels) are
expressed in CA1 PCs but are almost absent from CA3 PCs (for review see Spruston
(2008)). The HCN channels in PCs have important influences also on synaptic
integration. Deactivation of these channels reduces EPSP duration and results in
a slight hyperpolarization following EPSPs (Magee 1999). Conversely, activation
of HCN channels reduces IPSP duration and produces a slight depolarization
following the IPSP (Williams and Stuart 2003; for review see Spruston (2008)). This
interaction of HCN channels and synaptic conductance may represent elementary
mechanisms for rhythmogenesis at the cellular and subcellular levels.

Another feature relevant for the firing pattern of PCs in the hippocampus is
their ability to generate subthreshold membrane potential oscillations (MPOs) in
the theta frequency range and their resonance properties (Leung and Yu 1998; Pike
et al. 2000). These properties of hippocampal PCs are likely to contribute to theta
activity (Leung and Yu 1998). In hippocampal PCs the electrical resonance at theta
frequencies is generated by M-current, h-current, and persistent Na+ current (Hu et
al. 2002).

How the different firing patterns of certain GABAergic interneurons are gen-
erated remains largely unknown. Intrinsic membrane properties of these cells may
be important for hippocampal network oscillations. For instance, O-LM cells have
a longer membrane time constant and a considerably longer (five- to tenfold slower)
AHP than the gamma-preferring interneurons (Gloveli et al. 2005a), restricting
their firing to low, theta frequencies (see Savić et al. (2001)). In addition, O-LM
cells show prominent slow subthreshold membrane potential oscillations and the
resonance properties in the theta frequency range (Maccaferri and McBain 1996;
Pike et al. 2000).

Hyperpolarization-activated cationic currents (Ih) and IA currents which have
been detected in hippocampal interneurons may not only influence the intrinsic
and firing properties but also their synchronization. Ih currents are activated at
voltages close to rest (Gu et al. 2005). Different subunit composition (HCN1-4) that
is coexpressed in hippocampal GABAergic interneurons (Notomi and Shigemoto
2004) influences not only the kinetics but also the voltage dependency of Ih
activation [see Chen et al. (2002)]. Besides O-LM and other types of non-fast-
spiking interneurons, Ih channels are expressed in the somato-dendritic region,
axon, and presynaptic elements of fast-spiking basket cell in the hippocampus
(Aponte et al. 2006). In contrast, hippocampal lacunosum-moleculare and radiatum
interneurons display subthreshold MPOs generated by an interplay of Na+ and
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4-AP-sensitive A-type K+ currents, independent of Ih currents and muscarine-
sensitive K+ currents, IM (Bourdeau et al. 2007).

Synaptic Properties The properties of excitatory events discriminate hippocampal
principal cells from inhibitory neurons (Miles 1990; Jonas et al. 1993; Geiger et al.
1997; Toth et al. 2000). It appears that excitatory synapses onto interneurons not
only tend to have a larger number of AMPA receptors (Nusser et al. 1998), thereby
increasing the quantal amplitude, but the postsynaptic receptors also appear to have
a different molecular composition (Geiger et al. 1995), which, in turn, endows them
with faster kinetics (Geiger et al. 1997). Further discrimination in the properties of
excitatory input was found between different interneuron types. Different classes
of hippocampal interneurons with distinct axonal ramification patterns and efferent
target profiles show clear differences in both amplitude and kinetics of EPSCs/Ps
during gamma frequency network oscillations (Gloveli et al. 2005a). For instance,
the amplitudes of excitatory drive are considerably larger in fast-spiking BCs and
trilaminar cells than in O-LM cells (Fig. 2B), suggesting the intensity of synaptic
drive may play a role in generating their different outputs (Gloveli et al. 2005a).

Similar to the kinetics of excitatory postsynaptic currents at PC-BC, unitary
inhibitory postsynaptic currents at BC-BC synapses demonstrated very fast kinetics
(Bartos et al. 2001, 2002). In addition to IPSCs with fast kinetic properties
(GABAA,fast) mediated by perisomatic synapses, IPSCs with slowly rising and
decaying kinetic (GABAA,slow) mediated by dendritic synapses were also detected
in CA1 area (Banks et al. 2000). Interplay of CA1 interneurons, mediating
GABAA,slow and GABAA,fast may contribute to theta and gamma rhythms occurring
separately or as a nested gamma/theta rhythm (Banks et al. 2000). Furthermore,
GABAB receptors contribute to the maintenance and modulation of gamma oscil-
lations, as evidenced by the selective agonist acting at presynaptic receptors
strengthening gamma power, while activation of pre- and postsynaptic receptors
reduces gamma power (Dugladze et al. 2013). Theta oscillations are strongly
inhibited by presynaptic GABAB receptor activation (Booker et al., unpublished
observations). Further, it has been shown through modeling of PV BC networks
that postsynaptic GABAB receptor activity on those interneurons has the potential
to give rise to theta/gamma nesting (Booker et al. 2013). Finally, activation of
GABAB receptors strongly suppresses the occurrence of sharp-wave ripples in CA3
(Hollnagel et al. 2014).

Thus, different intrinsic membrane properties together with different kinetics of
excitatory and inhibitory inputs govern the specific roles of hippocampal cells in
shaping distinct network oscillatory activity.

Axonal Properties In central neurons, action potentials (APs) are generated close to
the soma, at the axon initial segment (AIS), and propagate along the axon to down-
stream neurons. The impact of the PCs in network oscillations is typically evaluated
from intrasomatic recordings. However, PC axonal activity may arise independently
under certain conditions and itself undergo activity-dependent modifications which
in turn may affect the network properties and activity. In line with this, a novel form
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Fig. 6 High-frequency discharge of the axon but not the soma of hippocampal CA3 PCs
during gamma frequency oscillations in vitro. (A) Scheme of dual somatic and axonal recording
configuration. APs evoked in whole-cell configuration by brief depolarizing current injection into
the soma (800 pA, inset) reliably induced ACs in the axon, confirming that recordings are made
from two compartments of the same cell. (B) Dual somatic and axonal cell-attached recoding
directly demonstrate that high-frequency axonal spikes (“axon”) fail to invade the soma (“soma”)
during gamma frequency oscillations (“LFP”). (C) Summary plot shows the highly significant
difference in the discharge frequency observed at the soma and proximal axon in dual recordings
(n = 9 cells) during network oscillations. (Panels A–C are adapted from Dugladze et al. (2012))

of activity-dependent plasticity in a subclass of cortical interneurons was recently
reported (Sheffield et al. 2011). During persistent firing (at beta/gamma frequencies
of 20–40 Hz), APs are generated in the distal axon and persists for tens of seconds to
minutes. The increased frequency of presynaptic firing as result of altered intrinsic
properties of axons may enhance the reliability of signal transmission and affect the
network properties [see Ganguly et al. (2000)]. Many different types of sodium and
potassium channels, as well as calcium transients and hyperpolarization-activated
inward currents have been described in axons [for review see Debanne et al.
(2011) and Ruiz and Kullmann (2013)]. The complex time and voltage dependence
resulting from the properties of ion channels can lead to activity-dependent changes
in resting membrane properties, such as a membrane potential, lowering thereby
the threshold of ectopic (axonal) spike initiation. Importantly, the changes in AP
threshold were shown to be dependent on local protein synthesis and the long-term
changes in axon excitability can occur in response to relatively brief changes in
activity [see Bucher and Goaillard (2011)]. In addition, a growing number of studies
show that the axon can express receptors to glutamate, GABA, acetylcholine, or
biogenic amines, changing the relative contribution of some channels to axonal
excitability [for review see Debanne et al. (2011), Bucher and Goaillard (2011),
and Ruiz and Kullmann (2013)].

Recently developed techniques that allowed to record simultaneously from axons
and soma of single PCs (Dugladze et al. 2012; Sasaki et al. 2012) revealed highly
unexpected properties of the axon of CA3 PCs during gamma frequency oscillations
(Dugladze et al. 2012, Fig. 6). In particular, it was found that (1) under physiological
condition AP are initiated also in the distal part of CA3 PCs, (2) the frequency of
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APs in axons recorded >600 μm from the soma was four- to fivefold higher, and (3)
dual somatic and axonal cell-attached recordings from individual cells demonstrate
that distal axonal spikes achieve the proximal axons but fail to invade the soma
(Dugladze et al. 2012).

These findings have wider implication for the understanding of signal processing
in the hippocampus. First, they provide direct and unequivocal evidence that APs
could be initiated independently in axonal and somato-dendritic compartments of
PCs during network oscillations. Second, the axonal spikes are generated at high
frequency in the active network, and these axonal properties may participate in
experimentally observed high-frequency excitatory input to both PCs and interneu-
rons in the active network (Gloveli et al. 2005a). Finally, hippocampal principal
cells require an additional mechanism to efficiently control the backpropagation of
AP to the somato-dendritic compartments. Indeed, it was found that inhibition at
the AIS caused by PV-positive axo-axonic cells underlies the suppression of ectopic
AP invasion to the parent PC soma. In particular, shunting inhibition rather than
membrane potential hyperpolarization prevents the backpropagation of ectopic APs
across the AIS (Dugladze et al. 2012).

Neuromodulatory Control of In Vitro Oscillations

Sources of neuromodulators in the brain are the four aminergic systems: the
dopaminergic, histaminergic, serotonergic, and noradrenergic systems. All four of
the associated modulators (dopamine, histamine, serotonin, and noradrenalin) are
released from small groups of neurons, which have projection patterns to most of
the brain, including the hippocampus. Effects of these neuromodulators have been
tested in vitro on theta and gamma oscillatory activity.

The hippocampus receives dopaminergic input from the ventral tegmental area.
Activation of D1-like dopamine receptors strongly depresses cholinergic gamma
oscillations in area CA3 of rat hippocampus, and this effect is most likely mediated
via impairment of interneurons involved in generation and maintenance of the
carbachol-induced network rhythm (Weiss et al. 2003). Conversely, D4 receptor
activation strongly enhances gamma oscillation power (Andersson et al. 2012).

Histamine 3 (H3) receptors seems likely to play an important role in regulation
of hippocampal theta oscillation. Systemic administration of the H3 receptor
antagonists (ciproxifan and thioperamide) enhances the power of spontaneous theta
in anesthetized rats. Since H3 receptors are located at axon terminals of histamine-
containing neurons and function as autoreceptors (Arrang et al. 1983), their
blockade could enhance histamine release and subsequently promote hippocampal
theta oscillation. Regulation of hippocampal theta oscillations by H3 receptors
may represent one of the probable mechanisms involved in histamine-induced
modulation of higher brain functions, such as attention and learning (Hajós et al.
2008).
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Serotonergic neurons of the midbrain raphe have been implicated in the control
of affective and cognitive functions and in modulating the neural activities of
networks across the sleep–wake cycle. The midbrain raphe nuclei form a strong
serotonergic projection to the hippocampus. Recent in vivo finding suggests that
a subpopulation of raphe neurons discharged action potentials that were phase-
locked to the hippocampal theta rhythm (Kocsis et al. 2006). Hippocampal PCs
and interneurons show different expression of metabotropic 5-HT receptor subtypes,
such as 5-HT1A, 5-HT1B, and 5-HT2 (Ropert and Guy 1991; Schmitz et al. 1995;
Shen and Andrade 1998), which may result in a differential modulation of intrinsic
and synaptic properties of these cells in response to serotonin [for review see
Schmitz et al. (1998)]. Serotonin input may influence the hippocampal network
also via ionotropic 5-HT3 receptors, which are expressed by several classes of
GABAergic interneurons (Tecott et al. 1993; Ropert and Guy 1991; Morales et al.
1998). These cells include CCK-containing basket cells, an interneuron type that has
been proposed to hamper the gamma rhythm (see section “Firing Patterns in Gamma
Oscillations,” Freund and Katona 2007; Galarreta et al. 2008), as well as calbindin-
and calretinin-containing GABAergic cells (Morales and Bloom 1997). In contrast,
serotonergic fibers do not contact the PV-containing GABAergic basket cells, which
are responsible for some gamma frequency oscillations (see section “Firing Patterns
in Gamma Oscillations”). Therefore, the rhythmic serotonergic input may modulate,
but not drive, hippocampal network oscillations at gamma frequency range.

The brain noradrenergic (NE) neurons, located in the pontine nucleus of locus
coeruleus (LC), are presumed to play a role in regulation of the circadian sleep-wake
cycle and alertness (Aston-Jones and Cohen 2005). Several experimental findings
suggest involvement of this neuromodulators on the hippocampal network activity.
Local injection of glutamate in the LC results in multiple actions on the hippocam-
pus, which include an increase in theta rhythm (Brown et al. 2005). Activation of
LC-NE neurons by local application of a cholinergic agonist (bethanechol) induces
theta oscillation of MS/DB neurons and theta-wave oscillation of hippocampal
EEG in anesthetized rats (Berridge and Foote 1991). Furthermore, the selective
NE reuptake inhibitor reboxetine modulates hippocampal theta activity in a state-
dependent manner, i.e., can either increase or decrease theta amplitude depending
on the behavioral state of the animal (Kocsis et al. 2007).

Pharmacological agents which are used with in vitro models of oscillation, such
as KAR, mGluR, and mAChR agonist, also have a direct modulatory effect on
hippocampal neurons in a manner that is remarkably cell specific. Various types
of interneurons express KARs (Cossart et al. 1998, 2002; Frerking et al. 1998;
Mulle et al. 2000; Lerma 2003). Kinetics of KA-mediated EPSCs is slower than
that of AMPAR (Frerking et al. 1998; Cossart et al. 2002), which could enable these
two receptor types to generate oscillations with different dominating frequencies
(Frerking and Ohliger-Frerking 2002). Consistent with this, O-LM interneurons,
which receive a large input mediated by KARs (Cossart et al. 2002), show postsy-
naptic KAR-mediated action potential firing at 10 Hz during theta stimulations, in
contrast to perisomatic, bistratified, or septum/back-projecting cells (Goldin et al.
2007). Activation of mGluRs in the hippocampus has a range of effects (Anwyl
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1999) which include decreases in Im and IAHP currents. Therefore, activation of
these receptors increases the excitability of hippocampal cells. mGluRs subtypes
are differentially expressed in specific hippocampal interneurons resulting in their
different responsiveness to agonists. Thus, O-LM cells express a large number of
group I mGluRs and are very sensitive to agonists, in marked contrast to other
stratum oriens interneurons, including basket cells that express only small number
of this receptor subtype and are less sensitive (van Hooft et al. 2000). Also mAChR
agonists may act on different GABAergic inhibitory interneurons that possess the
muscarinic receptors (Pitler and Alger 1992). Activation of these receptors may
increase the excitability of interneuronal activity. In particular, muscarinic receptor
agonist-carbachol blocks several potassium conductances, including IAHP and IM
in a concentration-dependent manner (Madison et al. 1987). This depolarizes the
PCs, unmasking subthreshold membrane potential oscillations in the theta frequency
range (Leung and Yim 1986; Fellous and Sejnowski 2000). In addition, muscarinic
receptor activation consistently enhanced firing frequency and produced large,
sustained ADPs of O-LM but not other stratum oriens interneurons (Lawrence et
al. 2006).

In summary, the effects of state-dependent activation of different neuromodu-
lators can be markedly different on hippocampal network activity and depend on
the expression and distribution of receptors across the cellular components of the
network.

Oscillations in Disease

Schizophrenia
A number of studies have shown changes in gamma frequency EEG activity in
schizophrenia. Reduced gamma activity was found in stimulus-dependent responses
in the auditory and visual cortices of schizophrenic patients [for review see Kehrer
et al. (2008)], and there is also evidence for a change in neuronal synchrony during
high-frequency oscillations (Spencer et al. 2004). Interestingly, the amounts of
RNA and immunoreactivity for PV are reduced in postmortem tissue from the
frontal cortex and the hippocampus pointing to a reduction in perisomatic inhibitory
interneuron population (Zhang and Reynolds 2002). The loss of these interneurons
could directly explain the observed changes in gamma oscillations (Lewis et al.
2005; Vierling-Claassen et al. 2008). Although most clinical studies have found
reductions in gamma band activity in schizophrenic patients [e.g., Slewa-Younan
et al. (2001)], there appears to be a symptom-specific pattern in the alterations in
gamma activity indicating that increases in amplitude and power are associated
with positive symptoms, particularly hallucinations and reality distortions, whereas
negative symptoms such as psychomotoric deficits are linked to decreased gamma
activity (Baldeweg et al. 1998; Bucci et al. 2007). Similar to clinical observations,
in in vitro NMDA-hypofunction models of schizophrenia, both increased (Kehrer et
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al. 2007; Pinault 2008) and decreased gamma activities (Cunningham et al. 2006)
have been demonstrated [for review see Kehrer et al. (2008) and Roopun et al.
(2008)]. Recently it been shown that the acute effects of NMDA-hypofunction result
in increased gamma but decreased theta, while chronic administration of NMDA
receptor inhibitors results in both decreased gamma and theta oscillation power
(Kittelberger et al. 2012).

Alterations of cortical interneurons in schizophrenia, especially parvalbumin-
and somatostatin-containing interneurons, are well documented. These alterations
are likely to have significant effects on the network oscillatory activity and therefore
on cognitive processes (Gonzalez-Burgos and Lewis 2008; Morris et al. 2008). The
axo-axonic subclass of GABAergic interneurons containing the calcium-binding
protein parvalbumin have attracted the most scrutiny in studies of schizophrenia
(Howard Behrens et al. 2007; Sakai et al. 2008; Wang et al. 2008). Although the
altered network activities were reported in vivo and in vitro [see, e.g., Cunningham
et al. (2006); Behrens et al. (2007); Braun et al. (2007); Gonzalez-Burgos and Lewis
(2008), and Spencer (2008)], further investigation needs to be undertaken to address
possible model- and region-specific alterations in the gamma network oscillatory
activity in different animal models of schizophrenia. Establishing the contingencies
of increased versus decreased gamma band activity is of high importance since
aberrant network oscillatory activity may underlie the cognitive decline observed
in schizophrenic patients and offer vital clues to the relationship between positive
and negative symptoms in schizophrenia at a network levels (Cho et al. 2006; Bucci
et al. 2007; Ford et al. 2007).

Mesial Temporal Lobe Epilepsy (mTLE)
Epileptic seizures are less frequent in conditions during which theta frequency
occurs (e.g., wakefulness or REM sleep, Montplaisir et al. 1987), and thus the theta
rhythm appears to indicate a hippocampal functional state in which generation of
seizures is hindered (Colom et al. 2006).

In epileptic mice, the power of low-frequency theta oscillations has been reported
to be reduced (Arabadzisz et al. 2005; Dugladze et al. 2007). Apart from suppression
of the theta oscillatory activity, as a potential anticonvulsant factor (Colom et al.
2006), a strong enhancement of the gamma activity (Dugladze et al. 2007) may
underlie emergence of epileptiform activity. Observations in humans support this
scenario: spatially localized increase in the power of gamma frequency oscillations
have been observed preceding seizures in human TLE patients (Fisher et al.
1992). In addition, gamma oscillatory activity and increases in firing rate of the
interneuronal network have been suggested as mechanisms of seizure occurrence
in patients with drug-resistant TLE (Bragin et al. 2007). Consistent with this
suggestion, intracellular recordings in kainate model of mTLE reveal an increased
firing frequency of both PCs and dendrite-inhibiting interneurons in the ventral
hippocampal CA3 area of epileptic mice (Dugladze et al. 2007). The involvement
of the perisomatic targeting interneurons remains, however, to be investigated. In
fact, recent evidence suggests that GABAB receptor-mediated presynaptic control
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of the inhibitory output of parvalbumin- and CCK-expressing basket cells are
differentially affected (Dugladze et al. 2013). A cell type-specific upregulation of
presynaptic GABAB receptor expression and consequently enhanced presynaptic
inhibition in CCK basket cells promotes aberrant high-frequency oscillations and
hyperexcitability in hippocampal networks of chronic epileptic mice (Dugladze et
al. 2013).

The epileptic tissue may also generate a specific rhythm, transient high-frequency
oscillations (HFOs) in the 200–600 Hz frequency band known as fast ripple (Bragin
et al. 1999). In fact, fast ripples may represent a specific marker for the area of
the brain in which seizures begin [Bragin et al. 2002; for review see Jacobs et al.
(2012) and Frauscher et al. (2017)]. The frequency of these oscillations is about
twice as fast as the maximum rate at which most neurons in the hippocampus can fire
action potentials. This fact raises the question how these oscillations are generated.
Analysis of the firing properties of hippocampal neurons during HFOs in vitro low-
Mg2+ model of epileptiform activity showed that the PCs fired at the rising phase
of the highest frequency portion of the field oscillation. In addition, distal dendrite-
targeting interneurons (R-LM cells) fired at the start of the epileptiform bursts (on
average 140 Hz) but stopped firing before its end (Spampanato and Mody 2007).
However, neither the principal cells nor the distal dendrite-targeting interneurons
(R-LM and O-LM cell) fired action potentials at high frequencies (200–600 Hz) seen
in the field oscillations (Spampanato and Mody 2007). Another study (Foffani et al.
2007) suggested that these synchronous population oscillations could be generated
as a consequence of the out-of-phase activities of two independent oscillators, each
operating at half the frequency of the ensemble. In line with this suggestion, it was
found that hippocampal PCs fired short bursts of action potentials at frequencies
up to 300 Hz (Kandel and Spencer 1961), and some interneurons could sustain
frequencies of 400 Hz (Foffani et al. 2007). It is currently hypothesized that the
temporary uncontrolled firing of principal cells due to a brief functional collapse of
perisomatic inhibition generates fast ripples (Gulyás and Freund 2015).

Thus, numerous studies suggest that alterations in inhibition-based network
oscillations may underlie the pathophysiology in schizophrenia and mTLE, which
are associated with impaired information processes.

Perspectives

The spatiotemporal patterns of activity during network oscillations would ideally
be explored in vivo (Bragin et al. 1995; Penttonen et al. 1998; Csicsvari et al.
2003; Buzsáki et al. 2003). However, it is also reasonable to use relevant in vitro
models to test hypotheses for the basic mechanisms involved. The replication of
an endogenous brain pattern in vitro allows for the investigation of a number of
important cellular and synaptic mechanisms that are difficult or even impossible to
explore in vivo. In addition, using transgenic, fluorescent EGFP-expressing mice
under the control of different gene promoters (Oliva et al. 2000; Meyer et al. 2002)
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enables the identification and selection of different interneurons in the acute slice
preparation. The firing properties of single cells in the active network, and the
contribution of excitation and inhibition to the generation of network oscillatory
activity, can be systematically examined in different models of in vitro oscillations
(Table 1), which may reflect region and state dependence of mechanisms underlying
network oscillations in vivo. Although there are some differences between the data
obtained from in vitro and in vivo observation, these observations show substantial
homology. The development of new transgenic methods for activating, inactivating,
and labeling neurons and synapses (Marek and Davis 2003; Polleux 2005) has
led to important new insights and will certainly further facilitate progress in this
area. Furthermore, several in vitro methods may help to overcome the limitations
in vivo. These include simultaneous patch-clamp recording from several cells in
a brain slice (Miles and Poncer 1996; Markram et al. 1997; Peng et al. 2017),
recording of sufficiently large numbers of cells at once using optical methods,
and stimulation/suppression of different cellular compartments using uncaging of
different substance or optically activated channels (Callaway 2002; Boyden et al.
2005; Deisseroth et al. 2006; Zhang et al. 2007; Deisseroth and Hegemann 2017).

References

Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S (2015)
Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron
5:1277–1289

Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A,
Buonanno A (2012) Neuregulin and dopamine modulation of hippocampal gamma oscillations
is dependent on dopamine D4 receptors. Proc Natl Acad Sci U S A 109:13118–13123

Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in
plasticity. Brain Res Rev 29:83–120

Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in
fast-spiking interneurons of rat hippocampus. J Physiol 574:229–243

Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy JM (2005) Epileptogenesis and chronic seizures
in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and
selective neurochemical alterations in the contralateral hippocampus. Exp Neurol 194:76–90

Arnolds DE, Lopes da Silva FH, Aitink JW, Kamp A, Boeijinga P (1980) The spectral properties of
hippocampal EEG related to behaviour in man. Electroencephalogr Clin Neurophysiol 50:324–
328

Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated
by a novel class (H3) of histamine receptor. Nature (Lond) 302:832–837

Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine
function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

Baldeweg T, Spence S, Hirsch SR, Gruzelier J (1998) Gamma-band electroencephalographic
oscillations in a patient with somatic hallucinations. Lancet 352:620–621

Banks MI, White JA, Pearce RA (2000) Interactions between distinct GABA(A) circuits in
hippocampus. Neuron 25:449–457

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses
in a dentate gyrus interneuron network. J Neurosci 21:2687–2698



Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro 355

Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P (2002) Fast synaptic
inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks.
Proc Natl Acad Sci U S A 99:13222–13227

Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp
wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci
8:1560–1567

Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-
induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
Science 318:1645–1647

Berridge CW, Foote SL (1991) Effects of locus coeruleus activation on electroencephalographic
activity in neocortex and hippocampus. J Neurosci 11:3135–3145

Bland BH (1986) Physiology and pharmacology of hippocampal formation theta rhythms. Prog
Neurobiol 26:1–54

Booker SA, Vida I (2018) Morphological diversity and connectivity of hippocampal interneurons.
Cell Tissue Res 373:619–641

Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman
K, Watanabe M, Kulik Á, Vida I (2013) Differential GABAB-receptor-mediated effects in
perisomatic-and dendrite-targeting parvalbumin interneurons. J Neurosci 18:7961–7974

Both M, Bähner F, von Bohlen und Halbach O, Draguhn A (2008) Propagation of specific network
patterns through the mouse hippocampus. Hippocampus 18:899–908

Bourdeau ML, Morin F, Laurent CE, Azzi M, Lacaille JC (2007) Kv4.3-mediated A-type K+
currents underlie rhythmic activity in hippocampal interneurons. J Neurosci 27:1942–1953

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically
targeted optical control of neural activity. Nat Neurosci 8:1263–1268

Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz)
oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60

Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW (1999) Hippocampal and entorhinal cortex
high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid–treated
rats with chronic seizures. Epilepsia 40:127–137

Bragin A, Mody I, Wilson CL, Engel J Jr (2002) Local generation of fast ripples in epileptic brain.
J Neurosci 22:2012–2021

Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, Engel J Jr (2007) Analysis of initial
slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy.
Epilepsia 48:1883–1894

Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D (2007) Alterations of hippocampal
and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA
receptor antagonism. Schizophr Res 97:254–263

Brown RA, Walling SG, Milway JS, Harley CW (2005) Locus ceruleus activation suppresses
feedforward interneurons and reduces β-γ electroencephalogram frequencies while it enhances
theta frequencies in rat dentate gyrus. J Neurosci 25:1985–1991

Bucci P, Mucci A, Merlotti E, Volpe U, Galderisi S (2007) Induced gamma activity and event-
related coherence in schizophrenia. Clin EEG Neurosci 38:96–104

Bucher D, Goaillard JM (2011) Beyond faithful conduction: short-term dynamics, neuromodula-
tion, and long-term regulation of spike propagation in the axon. Prog Neurobiol 94:307–346

Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory
postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828

Buhl EH, Tamás G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent
gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126

Buzsáki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states.
Neuroscience 31:551–570

Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340
Buzsáki G, Buhl DL, Harris KD, Csicsvari J, Czéh B, Morozov A (2003) Hippocampal network

patterns of activity in the mouse. Neuroscience 116:201–211
Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929



356 T. Gloveli et al.

Buzsáki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving
rat. Brain Res 287:139–171

Buzsáki G, Czopf J, Kondakor J, Kellenyi L (1986) Laminar distribution of hippocampal rhythmic
slow activity (RSA) in the behaving rat; current source density analysis, effects of urethane and
atropine. Brain Res 365:125–137

Buzsáki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in
the hippocampus. Science 256:1025–1027

Callaway EM (2002) Cell type specificity of local cortical connections. J Neurocytol 31:231–237
Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma synchrony underlies hippocampal

memory replay. Neuron 75:700–713
Chen K, Aradi I, Santhakumar V, Soltesz I (2002) H-channels in epilepsy: new targets for seizure

control? Trends Pharmacol Sci 23:552–557
Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful

disynaptic cortico-hippocampal loop. Neuron 66:560–572
Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L, Erkkila B, Barron SC, Lopez

CM, Liang BJ, Jeffries BW, Pelkey KA, McBain CJ (2013) Dual origins of functionally distinct
O-LM interneurons revealed by differential 5-HT 3A R expression. Nat Neurosci 11:1598–
1607

Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical gamma synchrony and
cognitive control in schizophrenia. Proc Natl Acad Sci U S A 103:19878–19883

Chrobak JJ, Buzsáki G (1996) High-frequency oscillations in the output networks of the
hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16:3056–3066

Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronisation of neuronal activity
in hippocampus by individual GABAergic interneurons. Nature 378:75–78

Cobb SR, Butlers DO, Davies CH (2000) Coincident activation of mGluRs and MachRs imposes
theta frequency patterning on synchronised network activity in the hippocampal CA3 region.
Neuropharmacology 23:1933–1942

Colom LV, Garcia-Hernandez A, Castaneda MT, Perez-Cordova MG, Garrido-Sanabria ER (2006)
Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta
rhythm generation. J Neurophysiol 95:3645–3653

Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben-Ari Y (1998) GluR5 kainate receptor activation
in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1:470–478

Cossart R, Epsztein J, Tyzio R, Becq H, Hirsch J, Ben-Ari Y, Crépel V (2002) Quantal release of
glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons.
Neuron 35:147–159

Craig MT, McBain CJ (2015) Fast gamma oscillations are generated intrinsically in CA1 without
the involvement of fast-spiking basket cells. J Neurosci 35:3616–3624

Csicsvari J, Hirase H, Czurko´ A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of
hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287

Csicsvari J, Hirase H, Mamiya A, Buzsáki G (2000) Ensemble patterns of hippocampal CA3-CA1
neurons during sharp wave-associated population events. Neuron 28:585–594

Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma oscillations in the
hippocampus of the behaving rat. Neuron 37:311–322

Cunningham MO, Hunt J, Middleton S, FE LB, Gillies MJ, Davies CH, Maycox PR, Whitting-
ton MA, Racca C (2006) Region-specific reduction in entorhinal gamma oscillations and
parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci
26:2767–2776

Daw MI, Tricoire L, Erdelyi F, Daw MI, Tricoire L, Erdelyi F, Szabo G, McBain CJ (2009)
Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is
widespread and target-cell independent. J Neurosci 29:11112–11122

Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev
91:555–602

Deisseroth K, Hegemann P (2017) The form and function of channelrhodopsin. Science
357:eaan5544



Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro 357

Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (2006) Next-
generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci
26:10380–10386

Dodt HU, Zieglgänsberger W (1994) Infrared videomicroscopy: a new look at neuronal structure
and function. Trends Neurosci 17:453–458

Draguhn A, Traub RD, Schmitz D, Jefferys JG (1998) Electrical coupling underlies high-frequency
oscillations in the hippocampus in vitro. Nature 394:189–192

Dugladze T, Vida I, Tort AB, Gross A, Otahal J, Heinemann U, Kopell NJ, Gloveli T (2007)
Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy.
Proc Natl Acad Sci U S A 104:17530–17535

Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T (2012) Segregation of axonal and
somatic activity during fast network oscillations. Science 336:1458–1461

Dugladze T, Maziashvili N, Börgers C, Gurgenidze S, Häussler U, Winkelmann A, Haas CA, Meier
JC, Vida I, Kopell NJ (2013) GABAB autoreceptor-mediated cell type-specific reduction of
inhibition in epileptic mice. Proc Natl Acad Sci U S A 110(37):15073–15078

Eller J, Zarnadze S, Bäuerle P, Dugladze T, Gloveli T (2015) Cell type-specific separation of
subicular principal neurons during network activities. PLoS One 10(4):e0123636

Fellous JM, Sejnowski TJ (2000) Cholinergic induction of oscillations in the hippocampal slice in
the slow bands (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz). Hippocampus 10:187–197

Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at
40 Hz in the hippocampus in vitro. Nature 394:186–189

Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic
induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two
mixed cation currents. Neuron 33:615–624

Fisahn A, Contractor A, Traub RD, Buhl EH, Heinemann SF, McBain CJ (2004) Distinct roles
for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma
oscillations. J Neurosci 24:9658–9668

Fischer Y, Gähwiler BH, Thompson SM (1999) Activation of intrinsic hippocampal theta
oscillations by acetylcholine in rat septo-hippocampal cocultures. J Physiol 519:405–413

Fisher RS, Webber WR, Lesser RP, Arroyo S, Uematsu S (1992) High-frequency EEG activity at
the start of seizures. J Clin Neurophysiol 9:441–448

Foffani G, Uzcategui YG, Gal B, Menendez de la Prida L (2007) Reduced spike-timing reliability
correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 55:930–
941

Ford JM, Krystal JH, Mathalon DH (2007) Neural synchrony in schizophrenia: from networks to
new treatments. Schizophr Bull 33:848–852

Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van ‘t Klooster MA, Rampp S, Otsubo H,
Höller Y, Wu JY, Asano E, Engel J Jr, Kahane P, Jacobs J, Gotman J (2017) High-frequency
oscillations: The state of clinical research. Epilepsia 58:1316–1329

Frerking M, Ohliger-Frerking P (2002) AMPA receptors and kainate receptors encode different
features of afferent activity. J Neurosci 22:7434–7443

Frerking M, Malenka RC, Nicoll RA (1998) Synaptic activation of kainate receptors on hippocam-
pal interneurons. Nat Neurosci 1:479–486

Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470
Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42
Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi

P, Klausberger T (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking
GABAergic neurons and their involvement in hippocampal network activity. Neuron 57:917–
929

Galarreta M, Erdélyi F, Szabó G, Hestrin S (2008) Cannabinoid sensitivity and synaptic properties
of 2 GABAergic networks in the neocortex. Cereb Cortex 18:2296–2305

Ganguly K, Kiss L, Poo M (2000) Enhancement of presynaptic neuronal excitability by correlated
presynaptic and postsynaptic spiking. Nat Neurosci 3:1018–1026



358 T. Gloveli et al.

Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative
abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors
in principal neurons and interneurons in rat CNS. Neuron 15:193–204

Geiger JR, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-
mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing
protein location and function. Science 312:217–224

Gillies MJ, Traub RD, LeBeau FE, Davies CH, Gloveli T, Buhl EH, Whittington MA (2002) A
model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol (Lond)
543:779–793

Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB (2009) Selective suppression of
hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223

Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, Traub RD, Whittington MA, Buhl EH
(2005a) Differential involvement of oriens/pyramidale interneurones in hippocampal network
oscillations in vitro. J Physiol 562:131–147

Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell
NJ (2005b) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus.
Proc Natl Acad Sci U S A 102:13295–13300

Goldin M, Epsztein J, Jorquera I, Represa A, Ben-Ari Y, Crépel V, Cossart R (2007) Synaptic
kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency.
J Neurosci 27:9560–9572

Gonzalez-Burgos G, Lewis DA (2008) GABA Neurons and the Mechanisms of Network Oscilla-
tions: Implications for Understanding Cortical Dysfunction in Schizophrenia. Schizophr Bull
34:944–961

Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus.
Nat Neurosci 12:1491–1493

Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels,
contribute to the somatic medium after-hyperpolarization and excitability control in CA1
hippocampal pyramidal cells. J Physiol 566:689–715

Gulyás AI, Freund TT (2015) Generation of physiological and pathological highfrequency oscil-
lations: the role of perisomatic inhibition in sharp-wave rippleand interictal spike generation.
Curr Opin Neurobiol 31:26–32

Gulyás AI, Szabó GG, Ulbert I, Holderith N, Monyer H, Erdélyi F, Szabó G, Freund TF, Hájos N
(2010) Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations
induced by cholinergic receptor activation in the hippocampus. J Neurosci 30:15134–15145

Hájos N, Pálhalmi J, Mann EO, Németh B, Paulsen O, Freund TF (2004) Spike timing of distinct
types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci
24:9127–9137

Hajós M, Siok CJ, Hoffmann WE, Li S, Kocsis B (2008) Modulation of hippocampal theta
oscillation by histamine H3 receptors. J Pharmacol Exp Ther 324:391–398

Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, Freund TF, Paulsen O (2009)
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
Eur J Neurosci 29:319–327

Halasy K, Buhl EH, Lörinczi Z, Tamás G, Somogyi P (1996) Synaptic target selectivity and input
of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus.
Hippocampus 6:306–329

Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a
hippocampal interneuron-principal neuron synapse. Nat Neurosci 8:1319–1328

Hollnagel JO, Maslarova A, Haq RU, Heinemann U (2014) GABAB receptor dependent modula-
tion of sharp wave-ripple complexes in the rat hippocampus in vitro. Neurosci Lett 574:15–20

Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies,
generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal
cells. J Physiol 545:783–805



Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro 359

Huh CY, Amilhon B, Ferguson KA, Manseau F, Torres-Platas SG, Peach JP, Scodras S, Mechawar
N, Skinner FK, Williams S (2016) Excitatory inputs determine phase-locking strength and
spike-timing of CA1 stratum oriens/alveus parvalbumin and somatostatin interneurons during
intrinsically generated hippocampal theta rhythm. J Neurosci 36:6605–6622

Jackson J, Amilhon B, Goutagny R, Bott J-B, Manseau F, Kortleven C, Bressler SL, Williams
S (2014) Reversal of theta rhythm flow through intact hippocampal circuits. Nat Neurosci
17:1362–1370

Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, Mohamed I, Kahane P, Dubeau F,
Navarro V, Gotman J (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog
Neurobiol 98:302–315

Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples
support spatial memory. Science 336:1454–1458

Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre
synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663

Jouvet M (1969) Biogenic amines and the states of sleep. Science 163:32–41
Jutras MJ, Buffalo EA (2010) Synchronous neural activity and memory formation. Curr Opin

Neurobiol 20:150–155
Kandel ER, Spencer WA (1961) Electrophysiology of hippocampal neurons. II. After-potentials

and repetitive firing. J Neurophysiol 24:243–259
Kehrer C, Dugladze T, Maziashvili N, Wójtowicz A, Schmitz D, Heinemann U, Gloveli T

(2007) Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency
oscillations in the MK-801 model of acute psychosis. Neurobiol Dis 25:545–552

Kehrer C, Maziashvili N, Dugladze T, Gloveli T (2008) Altered excitatory-inhibitory balance in
the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci 1:6

Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of
acute and chronic administration of ketamine on hippocampal oscillations: relevance for the
NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409

Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of
hippocampal circuit operations. Science 321:53–57

Klausberger T, Magill PJ, Márton LF, Roberts JD, Cobden PM, Buzsáki G, Somogyi P (2003)
Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–
848

Klausberger T, Márton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing
of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat
Neurosci 7:41–47

Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe
neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci U S
A 103:1059–1064

Kocsis B, Li S, Hajos M (2007) Behavior-dependent modulation of hippocampal EEG activity by
the selective norepinephrine reuptake inhibitor reboxetine in rats. Hippocampus 17:627–633

Konopacki J, Gołebiewski H, Eckersdorf B (1992) Carbachol-induced rhythmic slow activity
(theta) in cat hippocampal formation slices. Brain Res 578:13–16

Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H (2010) NMDA receptor
ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial repre-
sentations, and working memory. Neuron 68:557–569

Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ (2006) Cell type-specific dependence of
muscarinic signalling in mouse hippocampal stratum oriens interneurones. J Physiol 570:595–
610

LeBeau FEN, Towers SK, Traub RD, Whittington MA, Buhl EH (2002) Fast network oscillations
induced by potassium transients in the rat hippocampus in vitro. J Physiol 542:167–179

LeBeau FE, Traub RD, Monyer H, Whittington MA, Buhl EH (2003) The role of electrical
signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull 62:3–
13



360 T. Gloveli et al.

Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci
4:481–495

Leung LW (1985) Spectral analysis of hippocampal EEG in the freely moving rat effects of
centrally active drugs and relations to evoked potentials. Electroencephalogr Clin Neurophysiol
60:65–77

Leung LS, Yim CY (1986) Intracellular records of theta rhythm in hippocampal CA1 cells of the
rat. Brain Res 367:323–327

Leung LS, Yu HW (1998) Theta-frequency resonance in hippocampal CA1 neurons in vitro
demonstrated by sinusoidal current injection. J Neurophysiol 79:1592–1596

Leung LS, Lopes da Silva F, Wadman WJ (1982) Spectral characteristics of the hippocampal EEG
in the freely moving rat. Clin Neurophysiol 54:203–219

Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev
Neurosci 6:312–324

Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 network: an in vivo
intracellular labeling study. J Comp Neurol 339:181–208

Lisman JE (2005) The theta/gamma discrete phase code occurring during the hippocampal phase
precession may be a more general brain coding scheme. Hippocampus 15:913–922

Lisman JE, Idiart MAP (1995) Storage of 7+- 2 short term memories in oscillatory subcycles.
Science 267:1512–1515

Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution
to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J Physiol
497:119–130

Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain
specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus
in vitro. J Physiol 524:91–116

Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the
hippocampus. J Neurosci 7:733–741

Magee JC (1999) Dendritic hyperpolarization-activated currents modify the integrative properties
of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying sponta-
neous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873–887

Mann EO, Suckling JM, Hájos N, Greenfield SA, Paulsen O (2005) Perisomatic feedback
inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus
in vitro. Neuron 45:105–117

Marek KW, Davis GW (2003) Controlling the active properties of excitable cells. Curr Opin
Neurobiol 13:607–611

Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of
synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
J Physiol 500:409–440

McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23
Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-

positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci
22:7055–7064

Middleton S, Jalics J, Kispersky T, Lebeau FE, Roopun AK, Kopell NJ, Whittington MA,
Cunningham MO (2008) NMDA receptor-dependent switching between different gamma
rhythm-generating microcircuits in entorhinal cortex. Proc Natl Acad Sci U S A 105:18572–
18577

Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells
of the guinea-pig in vitro. J Physiol 428:61–77

Miles R, Poncer JC (1996) Paired recordings from neurones. Curr Opin Neurobiol 6:387–394
Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic

inhibition in the hippocampus. Neuron 16:815–823
Montplaisir J, Laverdiere M, Saint-Hilaire JM, Rouleau I (1987) Nocturnal sleep recording in

partial epilepsy: a study with depth electrodes. J Clin Neurophysiol 4:383–388



Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro 361

Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of
GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

Morales M, Battenberg E, Bloom F (1998) Distribution of neurons expressing immunoreactivity
for the 5HT3 receptor subtype in the rat brain and spinal cord. J Comp Neurol 402:385–401

Morris HM, Hashimoto T, Lewis DA (2008) Alterations in somatostatin mRNA expression in the
dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb
Cortex 18:1575–1587

Mulle C, Sailer A, Swanson GT, Brana C, O’Gorman S, Bettler B, Heinemann SF (2000) Subunit
composition of kainate receptors in hippocampal interneurons. Neuron 28:475–484

Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the
absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663–670

Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-
4, in the rat brain. J Comp Neurol 471:241–276

Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway
dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron
21:545–559

Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal
subtypes identified using transgenic mice that express green fluorescent protein in GABAergic
interneurons. J Neurosci 20:3354–3368

O’Neill J, Senior T, Csicsvari J (2006) Place-selective firing of CA1 pyramidal cells during sharp
wave/ripple network patterns in exploratory behavior. Neuron 49:143–155

Oren I, Mann EO, Paulsen O, Hájos N (2006) Synaptic currents in anatomically identified CA3
neurons during hippocampal gamma oscillations in vitro. J Neurosci 26:9923–9934

Pálhalmi J, Paulsen O, Freund TF, Hájos N (2004) Distinct properties of carbachol- and DHPG-
induced network oscillations in hippocampal slices. Neuropharmacology 47:381–289

Pan WX, McNaughton N (2002) The role of the medial supramammillary nucleus in the control of
hippocampal theta activity and behaviour in rats. Eur J Neurosci 16:1797–1809

Pangalos M, Donoso JR, Winterer J, Zivkovic AR, Kempter R, Maier N, Schmitz D (2013)
Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples. Proc
Natl Acad Sci U S A 110:4398–4403

Peng Y, Barreda Tomás FJ, Klisch C, Vida I, Geiger JRP (2017) Layer-Specific Organization of
Local Excitatory and Inhibitory Synaptic Connectivity in the Rat Presubiculum. Cereb Cortex
27:2435–2452

Penttonen M, Kamondi A, Acsády L, Buzsáki G (1998) Gamma frequency oscillation in the
hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728

Petsche H, Stumpf C, Gogolák G (1962) The significance of the rabbit’s septum as a relay station
between midbrain and the hippocampus: I. The control of hippocampus arousal activity by the
septum cells. Electroencephalogr Clin Neurophysiol 14:202–211

Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency
preferences of different types of rat hippocampal neurones in response to oscillatory input
currents. J Physiol 529:205–213

Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysio-
logical control: Morpho-functional features of juxtacellularly labeled thalamic cells and other
central neurons with biocytin or neurobiotin. J Neurosci Methods 65:113–136

Pinault D (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-
related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 63:730–735

Pitler TA, Alger BE (1992) Cholinergic excitation of GABAergic interneurons in the rat hippocam-
pal slice. J Physiol 450:127–142

Polleux F (2005) Genetic mechanisms specifying cortical connectivity: let’s make some projec-
tions together. Neuron 46:395–400

Pöschel B, Draguhn A, Heinemann U (2002) Glutamate-induced gamma oscillations in the dentate
gyrus of rat hippocampal slices. Brain Res 938:22–28

Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus.
Nature 429:717–723



362 T. Gloveli et al.

Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M (2005)
Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J
Neurosci 25:6775–6786

Roopun AK, Cunningham MO, Racca C, Alter K, Traub RD, Whittington MA (2008) Region-
specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of
schizophrenia. Schizophr Bull 34:962–973

Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat
hippocampus in vitro. J Physiol (Lond) 441:121–136

Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA,
Kopell N (2005) Slow and fast inhibition and an H-current interact to create a theta rhythm
in a model of CA1 interneuron network. J Neurophysiol 94:1509–1518

Ruiz AJ, Kullmann DM (2013) Ionotropic receptors at hippocampal mossy fibers: roles in axonal
excitability, synaptic transmission, and plasticity. Front Neural Circ 6:1–12

Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, Nakazato Y, Mikuni M (2008) Changes
in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex
in schizophrenia and bipolar disorder. Neuropathology 28:143–150

Sasaki T, Matsuki N, Ikegaya Y (2012) Targeted axon-attached recording with fluorescent patch-
clamp pipettes in brain slices. Nat Protoc 7:1228–1234
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Recording Identified Neurons in Awake
and Anesthetized Rodents

John J. Tukker

Abstract A deeper understanding of the brain is likely to require detailed, quanti-
tative descriptions at several levels, ranging from the molecular to the behavioral,
as well as an understanding of the relations among these levels. Taking the single
neuron as the basic building block, I will here outline recent progress in linking
different levels of description, including anatomical and molecular properties on
the one hand (“structure”) and electrochemical activity on the other (“function”),
whereby these properties are always considered to be interdependent on the activity
of other neurons in the network and the behavior of the organism as a whole.

One key methodological advance has been the ability to both record activity
from single neurons and observe their structural properties, in intact animals during
specific brain states and/or behaviors. In this chapter, I will describe such methods
in some detail, and illustrate with some key examples how observations on single-
cell physiological and anatomical properties (membrane potential fluctuations and
associated currents, morphology, molecular expression profile), in combination with
network and behavioral properties (specifically focusing on navigation and the
representation of space), can provide unique insights into hippocampal function.

Overview

Although “understanding the brain” is a stated ultimate goal for many neurosci-
entists, it remains unclear what such an understanding would entail for a structure
whose defining characteristic is perhaps its complexity. In this chapter, I assume
it would require, for a start, a detailed description of the brain at several levels,
ranging from the molecular to the behavioral (Fig. 1). The challenge will be to
not only describe each of these levels in greater detail but to reveal how they are
connected. Following the classic “neuron doctrine” and taking the single neuron as
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Fig. 1 Multilevel description of neural circuits underlying behavior. Left panel: Structure and
function interact (blue arrows), in the sense that structure underlies function, and function shapes
structure in the brain (plasticity).In a similar manner, each of the displayed levels of description
is linked to other levels of description (blue arrows; note that additional arrows have been left out
for clarity). Middle panel: For each level of description in the left panel, different methods are
presented. Juxta- or intracellular recording (highlighted), which forms the focus of this chapter, is
merely one part of an array of methods that can ideally be deployed in concert to allow observations
at several levels of description simultaneously. Right panel: For each method in the middle panel,
the interface with the physical world is depicted – the use of a glass pipette (shown in blue)
allows juxta- or intracellular recording (black arrow); the pipette also enables filling of a single
cell (green; gray triangles represent other neurons), which can then be further analyzed by the
methods indicated by arrows (dashed arrow for mRNA sequencing indicates a potential application
only; this method has not been used in vivo for hippocampal recordings, nor with drug-free mice).
Note that although both imaging and extracellular electrophysiology methods typically are used as
readouts of neuronal population activity, they do of course also enable observation of single neuron
activity, albeit with lower temporal (imaging) or spatial (extracellular) resolution than juxta- or
intracellular recordings. The latter methods are most easily combined with methods to describe
structure, allowing one to span all included levels of description in a single experiment, including
behavior (depicted on bottom right by a camera (black) and a rat running along an oval track (red
stippled arrow))

the basic building block (ignoring for the moment the role of non-neuronal cells),
an immediate task is therefore to describe neurons in terms of their anatomical and
molecular properties on the one hand (“structure”) and their electrochemical activity
on the other (“function”). As Fig. 1 illustrates, neuronal activity not only depends
on the underlying structure of the neuron but also on the activity of other neurons in
the network and, eventually, the behavior of the organism (taken here to mean any
interaction of the organism with its environment). Importantly, these connections
can all be bidirectional. For example, even the firing of a single neuron can, by
influencing a population of neurons, change the behavior of an animal (Brecht et
al. 2004). Equally, the firing of a single neuron can change its anatomical shape, as
well as its molecular expression profile.

This chapter will outline progress that has been made toward recording the
activity of single neurons in intact animals. I will particularly focus on relatively
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new methods and methodologies that allow us to combine observations on single-
cell physiological and anatomical properties (membrane potential fluctuations
and associated currents, morphology, molecular expression profile) with synaptic
properties (connectivity and plasticity), network properties (oscillatory patterns
at different spatial and temporal scales), and behavioral properties (specifically
focusing on navigation and the representation of space).

Clearly, this chapter can only give a glimpse of recent advances, but I hope
to convey some of the excitement of the field based on the huge possibilities
provided by novel technology. On a practical level, these possibilities will also
provide a major challenge in the coming years as the accompanying “big data”
thinking and technology is incorporated into neuroscience (Sejnowski et al. 2014).
The deeper insights we will gain will enable us to intervene ever more effectively,
making it possible to ultimately develop more effective treatments for a wide
range of devastating neurological and psychiatric disorders. However, the brain
is not like other organs, in the sense that it is deeply tied up to what we are as
humans. This is what makes our field so fascinating, but it also reminds us of our
responsibility to consider potential ethical and societal implications in the face of
growing possibilities.

I will not dwell on these aspects but will provide an overview of the techniques
presently available, focusing on methods to record “identified” cells in living
rodents. In the first section of this chapter, I will provide some examples of data
gathered with these techniques, linking anatomical and functional parameters. I
will touch upon work related to place cells, grid cells, head-direction cells, and
interneurons (categories which need not be mutually exclusive). In the second
section, I will describe the techniques in more detail. Finally, I will present a brief
outlook on future developments.

Although work done in other organisms ranging from invertebrates to primates
(including humans) has also provided great insights, this chapter will focus on
research performed in the rodent hippocampal region, including parahippocampal
areas such as the pre- and parasubiculum and the entorhinal cortex.

Introduction

There are three main factors that make recording from identified cells difficult. The
first is the thorny issue of what exactly constitutes “identification.” Simply put, it
means being able to identify a particular cell as belonging to a certain class. The
difficulty is that there are many different levels at which a class can be defined
and many different parameters that can be used. Such parameters can include
molecular data, such as a cell’s protein or mRNA expression profiles (Fig. 2a–b), or
anatomical data related to its overall shape or location (Fig. 2c). Parameters based on
electrophysiological characterization can include responses to current injection (Fig.
2d) or a combination of spike shape and firing rate/pattern. In the latter case, firing
patterns can, for example, be described in terms of their phase locking to local field
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Fig. 2 Cell types in the hippocampal formation. (a). Expression of 20 common biomarkers for
a subset of cell types in the hippocampal area CA1 based on literature mining (green is positive
expression, blue is negative, orange is mixed expression based on different experimental protocols,
red is unresolved mixed expression). (b)ThemRNA-based molecular profile of hippocampal area
CA1 pyramidal cells shows distinct clusters (black rectangles) of gene expression (colors represent
expression mRNA level for each gene (y-axis) for each analyzed cell (x-axis)). (c) Morphology of
cell types defined in the superficial layers of the MEC. Black, dendrites and somata; red, axons. Ln
layer n, Ld lamina dissecans. (d) Responses to current injection in awake mice for two pyramidal
cell types in the subiculum, with either a bursty (top) or regular (bottom) firing pattern. (e) The
two cell types shown in D (same color scheme) have different local connectivity profiles relative
to each other and to PV-expressing interneurons (yellow), based on recording and stimulation in
vitro from up to eight cells in parallel. (f) Firing patterns of several cell types recorded in area
CA1 in anesthetized rats, in relation to different locally recorded cortical oscillations. (g) Spatial
firing patterns of three common functionally defined cell types in the hippocampal formation: place
cells (top row), HD cells (middle row), and grid cells (bottom row). Rate maps (left top, bottom)
show color-coded firing rate as a function of location; a polar plot (left middle)shows HD cell
firing rate as a function of the direction in which the animal’s head is facing (letters denote four
cardinal directions). Plots on the right show AP firing locations (green dots) and paths traveled
by the animal (black lines). (Figures taken and adapted with permission: (a) from Wheeler et al.
2015; (b) from Zeisel et al. 2015, (c) from Canto et al. 2008, (d–e) from Böhm et al. 2015, (f) from
Somogyi et al. 2014; (g) from Hartley et al. 2014)
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potential (LFP) oscillations (Fig. 2f) and their relationship to behavioral parameters
(Fig. 2g) such as the location of the animal or the orientation of its head (defining
place cells and head-direction cells, respectively). Finally, both physiological and
anatomical methods have recently been developed to study connectivity (Fig. 2e).
Decades of research have shown that many of these parameters are often correlated.
Although single parameters might appear as a graded continuum, and there is still
much debate regarding exactly what constitutes a “cell type” (Bota and Swanson
2007; Battaglia et al. 2013; Seung and Sümbül 2014; Armañanzas and Ascoli
2015), the fact that clusters can be identified in this high-dimensional parameter
space gives some justification to the idea that discrete “cell types” exist. Even if the
number of cell types in any one area may be quite large (in the range of tens, see,
e.g., Klausberger and Somogyi 2008), the identification of such discrete “building
blocks” is extremely helpful in the quest to understand the microcircuitry of the
brain.

Assuming we can come up with a plan on how exactly to identify a cell type,
the second issue to consider is how to collect the required parameters for such an
identification (Fig. 1). One way is to record a single cell in the intact brain as an
animal performs a behavioral task and then use the recording pipette to selectively
“tag” the recorded cell by filling it with a dye (usually biocytin or neurobiotin).
After the brain is removed from the skull and processed, the recorded cell can then
be recovered and further analyzed. Contact with a target cell is usually established
“blindly,” typically based on monitoring the resistance at the pipette tip (Zhu and
Connors 1999; Margrie et al. 2002). More recently, single-cell recordings have also
been combined with imaging, allowing a neuron to be targeted under visual control,
either via a genetically defined fluorescent marker (Margrie et al. 2003) or based on
the absence of fluorescence relative to a locally injected dye background (so-called
shadow-patching (Kitamura et al. 2008)). The latter method was even used to record
from dendrites in vivo under visual control. Although the limited penetration of light
makes such imaging-dependent methods difficult to apply to deeper-lying structures
such as the hippocampus, it has been done (Grienberger et al. 2014) by removal of
the overlying cortical areas (Mizrahi et al. 2004; Dombeck et al. 2010).

Another possibility is to “tag” not just a single cell but rather a specific population
of cells, by using genetics to induce expression of a protein based on a particular
promoter. Besides using promoters for known cell types, an “ensemble” of active
cells can be labeled by making use of the so-called immediate early genes such as
c-Fos, whose expression can be rapidly induced by neuronal activity (Guzowski et
al. 2005; Reijmers et al. 2007; Tonegawa et al. 2015). Finally, expression can be
limited to a subpopulation of cells in a particular area or with particular connections
by using viral stereotactic injections. All of these methods can be used to drive
expression of fluorescent proteins or, perhaps more interestingly, calcium- or voltage
indicators which allow imaging of the activity of the transfected neurons (Looger
and Griesbeck 2012). It is even possible to extract and further process the imaged
volume, enabling, e.g., post hoc immunohistochemistry or even full reconstruction
of optically recorded cells with electron microscopy (Bock et al. 2011; Briggman
et al. 2011; Langer and Helmchen 2012). Alternatively, the expression of light-
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dependent channels such as channelrhodopsin can be used to enable light-induced
activity in transfected neurons. Such activity can then be used to identify transfected
cells in extracellular recordings (Lima et al. 2009) and can even enable the
generation of “false memories” (Ramirez et al. 2013). However, both extracellular
and optical recordings have limitations in terms of describing neuronal activity
(see “Readouts of Neuronal Function” below), and detailed anatomical analysis
of imaged cells is still relatively difficult and limited to small volumes. Therefore,
single-cell approaches, as described in this chapter, arguably provide the greatest
amount of combined anatomical and functional information per recorded cell.

One way to exponentially increase the amount of anatomical information one can
derive from a particular cell, albeit at the cost of destroying the cell’s morphology, is
to use a glass pipette not to fill the recorded cell but rather to “harvest” material from
it and isolate mRNA for further analysis (Lambolez et al. 1992; Martina et al. 1998).
Progress in this field means that it is now possible in principle to obtain the “full”
transcriptome from a single cell (at least from the soma), as recently published for
mouse hippocampal and neocortical neurons (Zeisel et al. 2015; Tasic et al. 2016);
this can even be combined with patch-clamp recordings in anesthetized animals
(Cadwell et al. 2016). However, the level of technical and biological noise in the
acquired data precludes the detection of low-abundance transcripts, making this
method still prone to false negatives, depending on the amount of transcripts that
can be collected (Okaty et al. 2011). Because cleanly harvesting mRNA material
from single recorded cells in intact awake animals is not possible so far, post hoc
immunohistochemistry and in situ hybridization (ISH) are still the most commonly
used methods to determine molecular expression profiles. Sensitivity and specificity
can be an issue for these methods, depending on the available probe/antibody. Since
these methods depend on the discriminability of different markers, the spectral
overlap of various fluorescent markers typically limits analysis to four different
molecules per tissue sample. Usually, the brain is cut into thin sections such that a
single labeled cell typically extends over many sections, making the overall number
of testable molecules still relatively large, particularly for markers present on the
cell’s extensive axonal or dendritic trees (see, e.g., Lasztóczi et al. 2011; Viney et
al. 2013). However, it is clear that any such analysis can only ever reveal a snapshot
of a cell’s full genetic expression profile and is limited by prior knowledge of which
markers to test for.

The final challenge related to in vivo recording of identified cells is achieving
recordings that are stable over sufficiently long time scales to achieve electrophys-
iological or behaviorally related characterization of the recorded cell. Recording
stability always appears to involve some kind of trade-off. For instance, one can
achieve stable long-term recordings from freely moving animals, even over many
days, using extracellular methods based on tetrodes or silicone probes (Buzsáki et
al. 2015) or recently developed imaging methods (Helmchen et al. 2013; Ziv et al.
2013). Such methods can offer access to relatively large populations of cells over
long time scales. The trade-off is that the identity of the recorded cells remains
largely unknown. Although genetically encoded calcium sensors or light-sensitive
channels can give some information on the identity of the recorded cells, and
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have thus provided a major boost to our understanding of neural circuits, such
methods still typically rely on a single promoter or a single injection site (in the
case of virally induced expression), thus severely limiting the amount of available
anatomical information. Unique genetic markers identifying single-cell types are
likely to be rare. For imaging methods, post hoc identification of the imaged area
can provide detailed anatomical information, as mentioned above, but these methods
are still quite cost- and labor-intensive and limited to small volumes, which can be
problematic particularly in the case of axonal trees which often extend over large
distances.

In this chapter, I will focus on whole-cell patch-clamp and juxtacellular record-
ings of single cells in vivo. These methods allow high temporal resolution record-
ings (including, for patch-clamp recordings, subthreshold membrane potential
fluctuations) from single cells, together with post hoc analysis of both the morphol-
ogy and molecular expression profile of the recorded cell. The trade-off is that the
number of cells one can record with such methods tends to be very small (often just
one cell per animal), and recording duration is limited to the timescale of minutes
(or hours, in exceptional cases). To achieve stable recordings, researchers have either
recorded from anesthetized animals (Fig. 3a; Kitai et al. 1976; Pinault 1996; Margrie
et al. 2002; Klausberger et al. 2003), performed head fixation to record from drug-
free animals (Fig. 3b; Harvey et al. 2009; Domnisoru et al. 2013; Schmidt-Hieber
and Häusser 2013), or used other methods to record single identified cells from
freely moving animals (Fig. 3c; Lee et al. 2006, 2014a; Long et al. 2010; Herfst et
al. 2012; Tang et al. 2014a). I will address these three different preparations and the
abovementioned techniques for recording single neurons in more detail in the two
Experimental Techniques sections below, but first I will summarize some recent
results obtained with these methods.

Cell Types: Linking Anatomical and Functional/Behavioral
Classification

I will here focus on the link, provided by in vivo single-cell recording studies,
between “anatomical” and “functional” cell types. The former, extensively classified
in vitro, includes, for instance, stellate and pyramidal cells, but also many types
of interneurons, whereas the latter category, identified in often classic chronic
extracellular recordings, includes place cells (O’Keefe and Dostrovsky 1971;
O’Keefe 1976), grid cells (Hafting et al. 2005), and head-direction cells (Taube et
al. 1990), among others (Cacucci et al. 2004; Solstad et al. 2008; Krupic et al. 2012;
Kropff et al. 2015). We are now finally starting to bring together these two major
classification systems, although clearly there are many open questions remaining.
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Fig. 3 Single-cell recordings in vivo. (a) Anesthetized rat in stereotaxic frame. (b) Methods to
record from awake head-fixed rodents. Left: A mouse running on a treadmill. Two pipettes are
shown for simultaneous intracellular (whole-cell patch-clamp) membrane potential (Vm) recording
and extracellular recording of the LFP. Middle: A mouse running on an airlifted ball whose
movements drive a virtual reality (VR) stimulation, which is projected onto a toroidal screen largely
surrounding the mouse (inset shows top view). Note the presence of a water tube to deliver water
rewards for motivation. AAM angular amplification mirror, RM reflecting mirror. Right: Mouse
running on an air-lifted platform (orange), providing 3D stimulation. (c) Method to record from
freely moving rodents by patching a single cell under anesthesia and then injecting antagonists to
quickly wake the animal. (d) Similar method, except that recording is performed in awake mice
after habituation to head fixation. (e) A miniaturized drive (micromanipulator) with pipette holder
implanted onto the head of a rat, allowing the search for and recording of cells to take place in freely
moving animals. Note this method has mainly been applied for juxtacellular recordings. (Figures
taken and adapted with permission: (a) from Moore et al. 2014; (b) left panel from Bittner et al.
2015, middle panel from Harvey et al. 2009, right panel from Kislin et al. 2014; (c-–d) from Lee
et al. 2014a; (e) from Tang et al. 2014a)

Place Cells

Place cells, firing selectively when an animal is at a particular position (the
cell’s place field), have long been considered to be pyramidal cells based on
electrophysiological parameters. However, it is becoming increasingly clear that
pyramidal cells are not a homogeneous population. Recent reports suggest there
are two main classes of pyramidal cells in hippocampal area CA1, mostly based
on anatomical position within the stratum pyramidale, but also related to the
innervation by PV cells and expression of calbindin (Slomianka et al. 2011; Lee
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et al. 2014b). Both classes can be place cells, but the sublayer position of recorded
cell somata correlates to several functional parameters, including the likelihood of
place cell firing, both in freely moving and head-fixed animals (Mizuseki et al. 2011;
Danielson et al. 2016). Others have described differences between pyramidal cells
based on morphology, intrinsic firing patterns (bursting versus more regular firing),
and the expression of metabotropic glutamate expression (Graves et al. 2012). The
relation of the latter groups with the abovementioned functional parameters remains
unclear, because the functional parameters were thus far only measured in vivo with
calcium imaging and extracellular recordings, methods that make further anatomical
analysis of the recorded cells in those studies either difficult or impossible.

Beyond the question of anatomical identity, whole-cell recordings in freely
moving and head-fixed animals have revealed a great deal about the mechanisms
underlying place-specific firing (Fig. 4). As the animal approaches a cell’s place
field, a ramp-like membrane depolarization and an increase in the amplitude of
intracellular theta oscillations were recorded from CA1 pyramidal cells in head-
fixed mice (Fig. 4a–b; Harvey et al. 2009). Whole-cell recordings from freely
moving animals showed a similar ramp-like depolarization in place cells (Fig. 4c), in
contrast to the conspicuously flat membrane potentials of silent cells; furthermore,
place cells were shown to have a lower spike threshold than non-place-modulated
silent cells (see Table 1) and were intrinsically more “bursty,” even when these same
cells were recorded under anesthesia prior to any exploration (Epsztein et al. 2011;
see Experimental Techniques, section “Freely Moving Animals”). Interestingly,
despite these differences, many silent cells can be induced to display place-specific
firing by injecting a small constant depolarizing current (Fig. 4d–e; Lee et al. 2012).
This suggests that all CA1 pyramidal cells may be receiving spatially modulated
inputs at their dendrites. The presence of spikelets was also modulated by the ani-
mal’s location (Epsztein et al. 2010), suggesting possible axonal interaction among
pyramidal cells encoding similar locations. Finally, a recently published seminal
paper (Bittner et al. 2015) used head-fixed mice running on a linear track treadmill
to show that dendritic plateau potentials drive the previously described somatic
ramp-like membrane depolarization and complex burst firing of place cells (Fig. 4f).
These plateau potentials were shown to depend on coincident input from entorhinal
cortex and CA3. Furthermore, using intracellular induction of plateau potentials,
the authors were able to rapidly induce place-selective firing at the location the
animal was at when the induction took place (Fig. 4g). This place-selective firing is
likely due to plateau potential-mediated enhancement of the amplitude of spatially
modulated EPSPs (Fig. 4h). Thus, it appears that not only does each pyramidal
cell in CA1 receive spatially tuned input, but it receives spatially tuned input for
all potential locations, and the convergence of input from the entorhinal cortex and
CA3 determines which particular cell codes for which location (Table 2).

It should be noted that place cells have been recorded not only in CA1 but in
all hippocampal subfields including the dentate gyrus and subiculum. It is beyond
the scope of this chapter to compare the properties of place cells across subfields,
but notable differences do exist both at the single cell and ensemble level (Lee
et al. 2004; Mizuseki et al. 2012), consistent with anatomical differences in terms
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Fig. 4 Place cell mechanisms revealed by intracellular recordings from CA1 pyramidal cells.
(a) Intracellular recording from head-fixed mouse in VR, showing a depolarizing ramp in the
membrane potential of a place cell (top trace), and plateau potentials underlying burst firing
(bottom trace) when a mouse crosses a place field (outlined in gray). (b) Depolarizing ramps (top)
and increased theta power were observed as mice crossed virtual place fields. (c) In recordings from
freely moving mice, a similar firing pattern was found when animals crossed the place field (traces
as in a). (d) Injecting depolarizing current (83 pA in this example, left panel) can cause spatial firing
to appear in previously silent cells (0 pA, right panel). (e) Spatially selective depolarizing ramp
(red) induced by depolarizing current. (f) Recordings from head-fixed mice running on a treadmill
also found that place-field firing (top right) was associated with a depolarizing ramp and plateau
potentials (bottom right). (g) Inducing a plateau potential at any particular position could induce
long-term place-selective firing at this location. (h) Input amplitude potentiation was suggested by
an increase in Vm residuals (Vm – mean Vm) after place field (PF) induction. (Figures taken and
adapted with permission: (a) from Long and Lee 2012, adapted from Harvey et al. 2009; (b) from
Harvey et al. 2009; (c) top panel from Lee et al. 2014a, middle and lower panels from Long and
Lee 2012, adapted from Epsztein et al. 2011; (d–e) from Lee et al. 2012; (f–h) from Bittner et al.
2015)

of inputs and local microcircuits. For instance, granule cells tend to have several
place fields (Jung and McNaughton 1993), whereas CA1 and CA3 place cells are
classically thought to have one place field, although this depends on the size of the
environment (Fenton et al. 2008; Rich et al. 2014).

Grid Cells

Grid cells fire when the animal is at specific locations spaced in a periodic manner
such that they form a regular lattice extending over the entire environment (Hafting
et al. 2005). The anatomical substrate of grid cells, particularly in MEC layer 2
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(L2) where most “pure” grid cells have been reported based on tetrode recordings
in rat (Sargolini et al. 2006), remains an unresolved issue. MEC L2 has classically
been described as containing two main types of principal cells: pyramidal cells,
expressing calbindin and Wfs1 and projecting to the contralateral MEC (Varga et al.
2010) and CA1 stratum lacunosum moleculare (Kitamura et al. 2014), and stellate
cells, selectively projecting to the dentate gyrus and CA3 (Varga et al. 2010). In
fact, a recent in vitro study challenged this ontology, instead finding four distinct
types based on electrophysiological and morphological parameters; importantly,
these types also showed distinct (local) connectivity patterns (Fuchs et al. 2016; but
see also Winterer et al. 2017). The possible misclassification of intermediate cell
types in older reports may be one reason why there have been quite different results
regarding the question of whether grid cells in MEC L2 are stellate or pyramidal
cells.

Whole-cell patch-clamp recordings show that grid cells can be recorded in head-
fixed mice navigating a VR environment (Domnisoru et al. 2013; Schmidt-Hieber
and Häusser 2013), but due to the technical difficulties of these experiments, the
number of recovered cells was low in these studies. Only one of the reports included
a characterization of the spatial firing properties of pyramidal cells, finding that most
(6/9) recovered grid cells in L2 were stellate cells (Domnisoru et al. 2013). Other
work based on juxtacellular recordings suggested that grid cells in layer 2 include
a disproportionate number of calbindin-positive pyramidal cells, which are also
significantly more theta-rhythmic than reelin-positive stellate cells (Ray et al. 2014;
Tang et al. 2014b). Finally, a third report based on calcium imaging and the marker
Wfs1 to delineate pyramidal cells suggests there is an equal proportion of grid cells
among pyramidal and stellate cells (Sun et al. 2015). This brief overview highlights
the complexities of even answering such a basic question as the anatomical identity
of grid cells. This may be due to differences between rats and mice, as well as
methodological differences: VR versus freely moving conditions, long versus short
recordings, chronic versus acute conditions (and potential differences in behavior),
the precision of anatomical localization, and the probability of isolating the activity
of single cells (particularly difficult in extracellular recordings where neighboring
cells display coincident firing, as may be the case in MEC L2 (Heys et al. 2014)).

Head-Direction Cells

Head-direction (HD) cells fire only when an animal’s head is facing a particular
direction relative to the environment (Taube et al. 1990). Based on juxtacellular
recordings from freely moving rats, it was recently found that all recovered HD
cells in the presubiculum (PrS), a major input area of the MEC, were pyramidal
neurons (Tukker et al. 2015), with spiny dendrites extending across all layers, mostly
including apical tufts in layer 1 that suggest these cells are likely to receive input
from the thalamus, another area known to contain a large proportion of HD cells
(for review, see Taube 2007). Interestingly, very weak HD tuning was also found in
both putative and identified fast-spiking interneurons. Another recent study was able
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to record HD cells in head-fixed rats by placing them on a rotating platform, thus
taking advantage of the improved success and recovery rates associated with head
fixation while at the same time generating the vestibular input necessary for HD cell
firing (Preston-Ferrer et al. 2016). In this report, juxtacellular recording and labeling
were used to show that long-range axonal projections of PrS HD cells targeted layer
3 of the MEC. These two studies together showed the presence of HD-tuned, non-
theta-rhythmic pyramidal cells in PrS providing inputs to MEC layer 3, supporting
the idea that grid cells in this layer are likely to receive excitatory HD-tuned inputs.

Virtually all models of grid cells require some directionally selective input,
although the anatomical origin of such input is not usually explicitly mentioned.
Although the aforementioned studies suggest the PrS input may supply this input,
it remains to be shown that indeed grid cells are among the targets of the HD PrS
inputs. Interestingly, other studies have also shown that there may be “masked”
HD tuning in grid cells (Brandon et al. 2011; Bonnevie et al. 2013), as well as
a large proportion of HD cells and conjunctive grid x HD cells (Sargolini et al.
2006) specifically in layer 3 of the MEC. In apparent contrast, a report based
on juxtacellularly filled cells as well as tetrode recordings (Tang et al. 2015)
recently reported rather weak HD tuning in this layer. This could be partially due to
differences in the recording and/or training methods, but it seems likely that other
factors such as the precise definition of HD cells and the anatomical localization
of recordings may also explain the divergent results. The latter point is related to
the fact that there is a gradient of HD tuning in layer 3, with many of the strong
HD cells located in the most dorsal part of MEC (Giocomo et al. 2014). Based
on recent genetic and anatomical work, this dorsal region may correspond to some
extent to the parasubiculum (Ramsden et al. 2015), which contains a much higher
proportion of HD cells (Tang et al. 2016). This example emphasizes the importance
of precise anatomical localization, which is generally more limited in extracellular
recordings, but also reminds us that macroanatomical definitions of brain areas may
need to be adapted as we acquire new insights on the basis of molecular markers or
connectivity (Boccara et al. 2015; Ramsden et al. 2015; Ishihara and Fukuda 2016).

HD cells, like most functionally defined cell types, are typically defined based
on a somewhat arbitrary cutoff within a wider distribution of tuning strengths. In
fact, a quantification of the extent to which particular functional parameters could
explain the variance in unit firing rate, based on extracellular recordings in several
hippocampal areas, found that many cells tend to code for several parameters, to
different extents (Sharp 1996; see also Sargolini et al. 2006; Hardcastle et al. 2017).
This contrasts to some extent with the often clearer categorization of anatomical
or neurochemical cell types, e.g., based on the presence or absence of a particular
marker. It may therefore not be feasible to find an anatomical substrate for each
functional cell type, and instead we may find certain functional tuning parameters
correlating to a greater or lesser extent with particular anatomical parameters.
Certainly it is important to keep in mind that functional cell type classifications are
often a shorthand for a more complex reality. Furthermore, the precise definitions
of functional cell types often vary between studies, and these differences matter.
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Interneurons

Historically, the question of the anatomical identity of functional cell types has
mostly been limited to principal cells; this is partly because many extracellular
electrophysiology studies, where functional cell types have been discovered, have
excluded “fast-spiking” units and partly because principal cells are, as the name
implies, the majority. In principle, there is no reason any particular functional cell
type could not include interneurons, and in fact it is likely that many GABAergic
interneurons display some form of functional tuning (Kepecs and Fishell 2014).
Thus, depending on how “inclusive” the criteria are, interneurons can either be
included as, e.g., HD cells, or excluded. However, in terms of understanding a
cortical circuit, it seems clear that GABAergic HD cells can have quite different
functions than glutamatergic HD cells. Therefore, it makes sense to treat interneu-
rons as a separate category and ask the complementary question, i.e., what is the
function of anatomically identified interneuron cell types?

This question was briefly touched upon in the paragraph on HD cells; for the
PrS, so far little is known beyond the fact that fast-spiking interneurons, including
at least some PV neurons, show weak but significant HD tuning (Tukker et al. 2015).
In general, there is a large body of work showing a similar trend: relatively weak
tuning in interneurons has been found in visual cortex, hippocampus, and many
other brain areas (Kubie et al. 1990; Maurer et al. 2006; Ego-Stengel and Wilson
2007; Kerlin et al. 2010). In the MEC, a study combining extracellular recordings
with optogenetics recently showed that PV cells, although not displaying any HD
or grid-like spatial coding, do encode some spatial information (Buetfering et al.
2014). This study is also one of the first to tackle the question of how functionally
and anatomically defined cell types are connected with each other, a crucial issue
that mostly still remains in the realm of modeling. They showed that PV cells receive
inputs from many nonaligned grids, thus explaining their lack of “gridness.”

Another recent study from the same laboratory used visually guided intracellular
patch-clamp recordings in ketamine-/xylazine-anesthetized mice to show odor-
evoked firing in four out of four GAD67 neurons in the lateral entorhinal cortex
(LEC; Leitner et al. 2016); although all these cells had dense axonal arborization in
the superficial layers, their electrophysiological properties were very heterogeneous.
Of course, more cells need to be recorded, preferably in drug-free conditions, and
additional knowledge of the molecular expression profile of these cells would also
be very informative, but even this small sample suggests that several types of
GABAergic interneuron respond to odor in the LEC.

Unfortunately, there are many different classes of PV cells in the MEC, and even
more classes of GAD67 cells in the LEC, which could not be discerned in these
studies and could explain some of the reported variability. Indeed, most reports of
interneuron functional tuning reported thus far are either based on spike shape and
firing pattern, as in the case of the classic “theta cells” in the hippocampus (Fox and
Ranck 1975; Kubie et al. 1990) or, more recently, based on the expression of one of
a small set of genetic markers (e.g., Royer et al. 2012). Although such studies are
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insightful, GABAergic interneurons form an incredibly heterogeneous population
(Canto et al. 2008; Klausberger and Somogyi 2008; Somogyi et al. 2014; Nassar
et al. 2015; Ferrante et al. 2017), and no electrophysiological or single genetic
marker can suffice to discern the various types that have been described thus far. For
instance, PV cells in the hippocampus include preferentially soma-targeting basket
cells, axon initial segment-targeting axo-axonic cells (also known as chandelier
cells), proximal dendrite-targeting bistratified cells, and distal dendrite-targeting
oriens-lacunosum moleculare (O-LM) cells (Klausberger et al. 2003, 2004). Each
of these cell types can have its own connectivity, plasticity, and expression patterns
(including neuropeptides, receptors, channels, etc.). Considering the recent use of
genetic methods, it should also be mentioned that protein expression patterns are
regulated developmentally, and thus the expression of, e.g., Cre recombinase under
the control of a particular promoter may not necessarily reflect protein expression
in the adult. This was recently shown for neurons in the hippocampus expressing
both Cre and Flp recombinases under the control of parvalbumin and somatostatin
promoters, respectively; surprisingly, a majority of these neurons were found to be
immunonegative for PV (Fenno et al. 2014). Based on their morphologies, these
cells were identified as mostly O-LM interneurons, a cell type originally described
as PV-expressing in rat (Klausberger et al. 2003) but recently reported to be PV-
immunonegative in mice (Varga et al. 2012).

Interestingly, although O-LM cells and bistratified cells both express PV and
SOM, a recent study showed that they play very different roles in the circuit during
fear learning (Lovett-Barron et al. 2014). Since O-LM cells target almost exclusively
the stratum lacunosum moleculare, whereas bistratified cells target the neighboring
stratum radiatum, calcium imaging of SOM axons restricted to these layers could
be used to selectively image putative O-LM and bistratified cells. A contextual fear
conditioning task in head-fixed mice running on a treadmill was used to reveal
that O-LM but not bistratified or other PV cells responded to aversive stimuli.
This was mediated by a cholinergic input signal from the medial septum, which
the O-LM cells can respond to because they express cholinergic receptors. The
response of SOM expressing putative O-LM cells to aversive air puff stimuli was
also shown via visually guided juxtacellular recordings in head-fixed mice (Schmid
et al. 2016). This same paper used calcium imaging and pharmacology to reveal
that this response was acetylcholine-dependent and impaired in a mouse model of
Alzheimer’s disease (AD). The deficit in the AD mouse was linked to a reduced
number of presynaptic cholinergic cells in the medial septum and an acetylcholine-
dependent fear conditioning deficit in these animals. Thus, O-LM cells may be
a potential target for cholinergic drugs that could compensate the well-known
degeneration of cholinergic neurons in AD: by targeting cholinergic receptors on O-
LM cells, future therapeutics could potentially reverse learning deficits by repairing
the O-LM cell-mediated modulation of the entorhinal input onto CA1 pyramidal
cells. This example serves to illustrate the importance of knowing, e.g., which
other cell types also express acetylcholine receptors, and what their synaptic targets
may be. For instance, SOM cells in the hippocampus have also been shown to
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include long-range interneurons projecting to the MEC (Melzer et al. 2012), which
presumably have very different functions from O-LM cells.

A full description of hippocampal interneuronal heterogeneity is beyond the
scope of this chapter (see also chapter “Fast and Slow GABAergic Transmission
in Hippocampal Circuits”). It is clear, however, that the large diversity of these cells
makes the precise identification of cells both important and difficult, particularly in
combination with behavior. Earlier intracellular and juxtacellular recordings from
anesthetized rats have shown that specific subtypes of GABAergic interneuron play
specific roles in the generation of various oscillations of the local field potential
(LFP) related to particular behavioral states (Ylinen et al. 1995b; Klausberger et al.
2003, 2004, 2005; Jinno et al. 2007; Tukker et al. 2007; Fuentealba et al. 2008;
Lasztóczi et al. 2011). Many, but not all, of these findings were confirmed in
juxtacellular recordings in freely moving rats (Lapray et al. 2012; Viney et al. 2013;
Katona et al. 2014) and head-fixed mice (Varga et al. 2012, 2014). For the future,
it will be important to investigate to what extent the functional tuning of different
interneuron classes differs and to relate this to connectivity either directly (e.g.,
using viral tracing methods in combination with whole-cell recordings in head-fixed
mice (Rancz et al. 2011; Vélez-Fort et al. 2014; Wertz et al. 2015)) or based on in
vitro results (Couey et al. 2013; Böhm et al. 2015; Fuchs et al. 2016), particularly if
those in vitro results can include more extensive cell type classifications, e.g., based
on morphology (Jiang et al. 2013, 2015).

What Have We Learned? An Example

It is very difficult, at this stage, to already draw major conclusions based on the
previously described work. We are only just beginning to have some overview
of the roles of different cells in behavior and in driving network phenomena like
cortical oscillations. A major challenge will be to bring together the results of in
vivo single-cell studies as described here with in vitro work on the one hand and
extracellular, imaging, and behavioral studies on the other, to form a unified picture
of hippocampal microcircuits.

Our most advanced understanding is perhaps related to hippocampal place cells
(Fig. 4), whose place-specific firing was recently reported to rely on dendritic
plateau potentials and convergent inputs from CA3 and layer 3 of the EC, as
described above (Bittner et al. 2015). However, there are still many open questions
even for this most studied “cell type,” including the nature of the specific input
provided by layer 3 of the EC (Sargolini et al. 2006; Suh et al. 2011; Tang et
al. 2015) and the role of specific types of interneurons in CA1. As one specific
example, consider the role of bistratified cells in the hippocampus (Fig. 5; for a
more detailed review, see Müller and Remy 2014). Paired recordings in hippocampal
area CA1 in vitro, combined with LM reconstructions and EM analysis (Buhl et
al. 1994), first showed these cells, which express PV, neuropeptide Y (NPY), and
SOM (Klausberger et al. 2004), to selectively innervate pyramidal cell dendrites

http://dx.doi.org/10.1007/978-3-319-99103-0_5
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co-aligned with Schaffer collateral input from CA3 in strata radiatum and oriens.
Bistratified cells receive direct inputs from PV basket cells (Cobb et al. 1997), such
that somatic and dendritic inhibition can be coordinated in a complementary manner
(Lovett-Barron et al. 2012). The latter in vitro study also showed that direct inputs
from CA3 pyramidal cells onto bistratified cells may help these cells to regulate
the impact of inputs from CA3 onto CA1 pyramidal cells. Such a role is consistent
with recordings from CA1 in urethane-anesthetized rats suggesting that these cells
are among the most strongly phase-locked to gamma oscillations (Tukker et al.
2007), which are likely generated in CA3 (Csicsvari et al. 2003). Thus, bistratified
cells may ensure that the dendrites of CA1 pyramidal cells can effectively process
the gamma-rhythmic inputs from CA3 cell assemblies; alternatively, they may also
block transfer of information during certain brain states, for instance, by releasing
NPY or SOM in response to high-frequency firing, which bistratified cells display
both during movement and sleep (Katona et al. 2014). The latter authors speculated
that this slow peptide release may be one mechanism for the termination of SWRs,
during which identified bistratified cells have been shown to strongly increase their
firing rates in anesthetized (Klausberger et al. 2004), head-fixed (Varga et al. 2014),
and freely moving (Katona et al. 2014) rodents. Interestingly, the firing rate increase
in bistratified cells appeared to be different depending on the extent of its dendritic
tree in stratum radiatum (Varga et al. 2014), raising the question whether bistratified
cells should be further subdivided into two separate cell types or not. Like gamma
oscillations, SWRs are also generated in CA3; in fact, gamma oscillation power and
synchrony across CA3 and CA1 were recently shown to increase during SWRs, in
a manner that was predictive of the quality of “replay” of past experiences (Carr et
al. 2012).

In general, it seems plausible that bistratified cells are involved in gating the
transfer of information from CA3 to CA1 during sharp-wave ripple events as well
as gamma oscillations (Buzsaki 2006). One possible way in which this gating might
be regulated is via bistratified cell-mediated inhibition of dendritically generated
plateau potentials (Lovett-Barron et al. 2012), which were recently shown, as
mentioned above (Fig. 4f–g), to be important for the generation of burst firing
in pyramidal cells underlying place selectivity (Bittner et al. 2015). In contrast,
bistratified cells did not appear to be involved in fear conditioning (Lovett-Barron
et al. 2014). Like many other interneuron types in the hippocampus, bistratified
cells also show theta-modulated firing (Fig. 5; Klausberger et al. 2004; Katona et
al. 2014; Varga et al. 2014), at a similar phase as O-LM cells but different from
other interneuron types. Although both theta and gamma oscillations have been
linked to the coding of an animal’s movement speed, there is unfortunately no
report on the speed dependence of bistratified cell firing. Furthermore, recent reports
have shown two or even three types of gamma oscillations in CA1, with different
underlying mechanisms, which could all be relevant for place cell firing and spatial
navigation (Lasztóczi and Klausberger 2014, 2016; Colgin 2015). The relation of
these oscillations with bistratified cells, or indeed any other specific interneuron type
recorded in awake animals, remains unknown (except PV basket cells; Lasztóczi and
Klausberger 2014).
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Fig. 5 Hippocampal bistratified interneurons characterized via in vivo juxtacellular recordings
in different rodent preparations. (a) LFP recording (top) and simultaneously recorded APs from a
single cell recorded in urethane plus ketamine-xylazine anesthesia. Scale bars: horizontal 0.1 s;
vertical 0.2 mV; (b) firing probability of seven different bistratified cells (gray is average) at
different phases of simultaneously recorded theta oscillations, showing that bistratified cells
preferably fire at the trough of the theta cycle. (c) Bistratified cells were filled with neurobiotin
(blue) and shown to be immunopositive for parvalbumin (green, bottom left), somatostatin (red),
and neuropeptide Y (green, bottom right). Scale bar, 20 μm. (d) LFP recording (top) and
simultaneously recorded APs from a bistratified cell recorded in a head-fixed mouse running on an
air-lifted ball; bottom trace shows theta-filtered (5–10 Hz) LFP. (e) Theta modulation strength for
eight recorded bistratified cells (green), showing that these cell preferentially fired at the trough
of theta. Note that other recorded cell types (PV basket cells, red, and axo-axonic cells, blue)
were more strongly modulated and fired at earlier theta phases. (f) Example filled bistratified cell
(axon blue, dendrites red) which was filled with neurobiotin (inset, red) and immunopositive for
somatostatin (inset, green). (g) LFP recording (top) and simultaneously recorded APs (bottom)
from a bistratified cell recorded from a freely moving mouse; inset shows autocorrelogram
illustrating theta-rhythmic firing of the recorded cell during periods when the animal was moving.
(h) Polar plot showing average firing rate as a function of theta phase for five recorded bistratified
cells (red), with preferred phase for each cell individually shown as red circles. O-LM cells are
shown in green. (i) Cell recorded in g (axon black, dendrites red) filled with neurobiotin (inset, red),
immunopositive for PV both in axon (yellow arrow) and dendrite (yellow arrowhead). (Figures
taken and adapted with permission: (a) from Somogyi et al. 2014; (b–c) from Klausberger et al.
2004; (d–f) from Varga et al. 2014; (g–i) from Katona et al. 2014)

The work presented here on bistratified cells serves as an example to illustrate the
insights that can be gained from recording identified cell types in the hippocampus
(based on anatomical and molecular characterization). There are still very few
studies directly relating the activity of bistratified cells to navigational function,
which may be partly due to the fact that simply very few studies have been done
in freely moving or head-fixed animals engaged in spatial tasks, and most of
those studies have focused on first understanding place-specific activity of CA1
pyramidal cells (Harvey et al. 2009; Epsztein et al. 2010, 2011; Lee et al. 2012;
Bittner et al. 2015). It is indeed still challenging to achieve long and mechanically
stable recordings in moving animals, even if they are head-fixed, and to recover
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recorded cells such that one can perform the necessary anatomical and molecular
characterization to robustly identify neuron types. For interneurons specifically, the
presence of many relatively small populations of specific cell types poses further
challenges. Bistratified cells, for instance, comprise just 6% of all interneurons
(Bezaire and Soltesz 2013), which themselves are estimated to comprise just
∼10% of all hippocampal neurons. However,even such relatively small populations
have been shown to perform important roles within the hippocampal microcircuit.
Comparing the activity of bistratified cells with other interneuron types, including
other SOM- or PV-expressing cells, supports the idea that different cell types have
specific roles within the neural circuitry underlying hippocampal function (Somogyi
et al. 2014).

Experimental Techniques: Rodent Preparations

Anesthetized Animals

Urethane has been a very commonly used (non-recovery) anesthetic for several
decades. It has a broad spectrum of actions, including potentiation of GABA-
A, nicotinic acetylcholine, and glycine receptors, while inhibiting NMDA- and
AMPA-type glutamate receptors (Hara and Harris 2002); furthermore, it has been
shown to inhibit glutamate release (Moroni et al. 1981), and LFPs recorded in the
hippocampus of urethane-anesthetized animals are similar to those observed during
entorhinal lesion (Ylinen et al. 1995b). Although it has pronounced effects on LFP
and unit firing (Buzsáki et al. 1983, 1986), the overall network appears relatively
intact, and in fact urethane can induce a regularly cycling series or brain states
reminiscent of sleep, both in rats (Clement et al. 2008) and mice (Pagliardini et
al. 2013). As with all anesthetics, the dosage is a crucial determinant of the effects.

Because of the irreversible nature of its effects, and the fact that urethane is
highly carcinogenic, in many situations other anesthetics are preferred. Ketamine,
an NMDA antagonist, is often used as an alternative. Its action is relatively short-
lasting and on its own it generally provides insufficient anesthetic effect. Therefore
it is typically combined with an adrenergic receptor type α2 agonist such as xylazine
or medetomidine. This way, a surgical depth of anesthesia can be reached, and the
recovery can be aided by an antagonist (e.g., atipamezole). Often, ketamine-xylazine
is combined with a relatively low concentration of urethane; by giving top-ups at
specific intervals, the experimenter can then have finer control over the depth of
anesthesia (Klausberger et al. 2003). At lighter planes of anesthesia, brain state can
be additionally influenced by external stimuli such as a foot- or tail-pinch, which can
be used to elicit theta oscillations in the hippocampus or entorhinal area (Dickson
et al. 1994; Klausberger et al. 2003). Importantly, anesthetized animals can still
respond to sensory stimuli, as evidenced by neuronal responses in sensory cortices
(Stosiek et al. 2003; Ohki et al. 2005).
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In situations where fast recovery is essential, such as when a whole-cell patch-
clamp recording established during anesthesia needs to be maintained as the animal
wakes up (Lee et al. 2006), a cocktail of drugs including medetomidine, midazolam,
and fentanyl has been used. These drugs were selected because administration of
atipamezole, flumazenil, and naloxone could be used to end the anesthesia such that
behavior could recover within 1–5 min.

For many applications, isoflurane has proven a convenient anesthetic. It is an
inhalant that works, as least in part, by reducing transmitter release (Hemmings et
al. 2005), particularly at glutamatergic synapses (Westphalen and Hemmings 2006).
A recent paper showed that different brain states could be elicited, depending on
the concentration: at low doses, exploratory or REM-like brain waves could be
detected in the hippocampus, whereas at higher doses, isoflurane elicited slower
oscillations more akin to quiet resting or slow-wave sleep (Lustig et al. 2016).
One advantage of this method is that one can directly adapt the concentration in
response to behavioral signs, resulting in a more reliable stable level of anesthesia.
Injections, particularly intraperitoneal injections, can sometimes be misdirected
depending on the experience and skill of the experimenter; this can result in unstable
anesthesia or even death. Particularly for drugs that often require repeated injections
(e.g., ketamine-xylazine), the instability and loss of animals can be serious issues,
especially when working with mice.

The exact effects and mechanisms of anesthesia are not always well understood,
and certainly a full discussion (including other commonly used anesthetics) is
beyond the scope of this chapter. However, it is important to emphasize that
anesthetics can and typically do have substantial effects on neuronal activity.
For instance, dendritic calcium spikes (measured in vitro) can be differentially
affected by urethane versus ketamine-xylazine (Potez and Larkum 2008). Firing
rates, spike bursting, and neuronal synchrony have all been shown to be affected
by (a relatively high dose of) urethane anesthesia (Greenberg et al. 2008). As
a final example, a relatively brief exposure to isoflurane was recently found
to affect the phosphorylation state of a wide range of proteins (Kohtala et al.
2016), which may in turn affect neuronal activity. However, as stated above, the
overall network often seems relatively intact, and thus indeed many findings from
anesthetized animals have been confirmed in awake animals, and the anesthetized
animal remains a convenient preparation for in vivo investigations. In particular,
the increased mechanical stability achievable in anesthetized animals allows much
longer recording times compared to awake animals. The overall time the animal can
be used in an experiment also tends to be much longer under anesthesia, allowing
more recordings per animal compared to awake conditions, where session times are
more limited. Furthermore, these recordings do not require training or habituation
of the animals. Thus, it is time efficient and the model of choice for the first
implementary steps of a new technique. Finally, anesthetized preparations allow
a broad spectrum of profound surgical intervention which might be problematic in
the light of animal welfare in awake in vivo preparations.
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Head-Fixed Awake Animals

Clearly, the goal of many studies is to establish a link between neuronal activity
and behavior. For single-cell recordings, head-fixed animals in many cases provide
the best compromise between recording stability on the one hand and a relatively
rich behavioral repertoire on the other (for recent reviews, see Minderer et al. 2016;
Thurley and Ayaz 2017).

Although head fixation does limit the behavioral repertoire, animals can never-
theless be trained, for example, to press a lever (Guo et al. 2014), lick (Houweling
and Brecht 2008), or whisk (Gao et al. 2003) in response to a stimulus. In fact, head
fixation can be an advantage since stimuli can be presented in a very controlled
manner (O’Connor et al. 2009). By adding the possibility for animals to move all
their limbs on an air-cushioned Styrofoam ball (Dombeck et al. 2007; Fuhrmann
et al. 2015) or cylinder (Domnisoru et al. 2013), one can increase the behavioral
possibilities of the animal. These options are also the most relevant for the study of
navigation and spatial memory. Running is often accompanied by brain movement,
also in head-fixed animals, and this can be an issue: one study reported motion
limited to 5 μm in the head-fixed mouse, being greatest in the rostrocaudal axis
(Dombeck et al. 2007); another study reported cranial movement up to 40 μm in
the head-fixed rat along the axis of the pipette (Fee 2000). The latter study was able
to move the pipette with a piezo device to compensate for measured motion, thus
enabling longer intracellular recordings even in moving animals. Of course, brain
and/or residual cranial motion may be variable depending on the area recorded from,
as well as the precise methods used for head fixation, but overall it seems that in
terms of stability mice may provide an advantage over larger, stronger rats.

In terms of stimuli, allowing the animals to run provides additional propri-
oceptive input, which can be crucial for certain types of navigational processes
such as path integration. Furthermore, linear treadmills (Royer et al. 2012) and
movable platforms (Kislin et al. 2014; Nashaat et al. 2016) can offer a relatively
wide range of somatosensory and visual stimulation. Spherical treadmills have also
been combined with moveable walls to provide a “tactile virtual reality” system
(Sofroniew et al. 2014); this same study also showed that mouse behavior on the
ball resembled natural behavior in terms of running speed and stride and whisking
frequencies. However, most studies combine the spherical treadmill with a visually
presented virtual reality (VR), either via an array of screens or a toroidal projection
system (Harvey et al. 2009). Rats can navigate in VR as long as the visual stimuli
extend over a sufficient angle (Hölscher et al. 2005) and can even be trained
to lick to indicate recognition of a previously learned location (Cushman et al.
2013). Mice can also perform spatial memory tasks, as shown in a one-dimensional
VR environment using just a single widescreen LCD monitor (Youngstrom and
Strowbridge 2012), and have been successfully trained to perform a VR T-maze
decision task (Harvey et al. 2012). Thus, head fixation, particularly in combination
with VR, allows one to employ a relatively wide range of stimuli and tasks relevant
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for studying hippocampal microcircuitry, ranging from simple running along a one-
dimensional corridor to complex tasks in two dimensions.

However, some caveats are in order. First of all, head fixation does limit the
animal’s motion; for instance, rearing (Lever et al. 2006) is obviously not possible
nor are orienting head movements (Monaco et al. 2014). Secondly, the sensory input
tends to be limited: visual cues are all relatively distal, and local somatosensory cues
tend to be non-informative. These issues can be resolved to some extent by using a
treadmill (Royer et al. 2012) or moveable platform (Kislin et al. 2014; Nashaat et
al. 2016) with physical objects on it. However, for any head-fixed system, the lack
of vestibular inputs is unavoidable and should be carefully considered particularly
in light of its potential importance for certain aspects of navigational function.
For instance, place cells could not be detected when rats navigated a virtual 2D
environment (Aghajan et al. 2015), suggesting that the spatial maps generated in the
more commonly used one-dimensional VR environments may be more related to
internal mechanisms keeping track of self-motion than external cues, although there
is likely to be heterogeneity among place cells (Chen et al. 2013). The importance of
vestibular input was underlined by another recent study which found that in body-
tethered rats, which were free to move their head and thus generate intact vestibular
inputs, grid, place, and border cells could all be recorded in a 2D VR environment
(Aronov and Tank 2014).

A reported lack of correlation between theta oscillations and speed in VR, which
clearly differs from real-world results (Ravassard et al. 2013), is also consistent with
a role for vestibular inputs in the mechanisms underlying theta oscillations (Russell
et al. 2006; Jacob et al. 2014). Interestingly, the absence of speed-dependent theta
oscillations did not abolish theta phase precession (Ravassard et al. 2013), a form of
temporal coding whereby place cells fire at progressively earlier phases of the theta
cycle as an animal crosses a place field (O’Keefe and Recce 1993). The fact that
theta phase precession was also intact in a 2D environment (Aghajan et al. 2015),
where no place cells could be detected, suggests that theta phase precession may be
independent of both speed-dependent theta oscillations and representations of the
current location, in support of a recent model positing that theta phase precession
represents “mind travel” related to imagined movement rather than actual movement
(Sanders et al. 2015).

More generally, the limitations of the virtual reality system in terms of ecological
behavior are offset by greater control over different modalities and over the
relationship between, e.g., animal motion and the generated visual flow. This has
been used successfully to disentangle the relevance of particular inputs to the
hippocampal representation of space (Chen et al. 2013; Ravassard et al. 2013;
Acharya et al. 2016).

A final point to consider is that time and effort are required to get animals to
habituate to head fixation and perform tasks (Schwarz et al. 2010; Guo et al. 2014).
Training typically relies on positive feedback (usually water), whereby the animals
undergo food or water restriction. The severity of the restriction regime depends on
the difficulty of the task to be performed; for relatively simple tasks, such as running
on a ball, it may even be sufficient to provide sugar-water to unrestricted animals
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(Schmidt-Hieber and Häusser 2013), although this is atypical. With appropriate
training, rats will even initiate head fixation voluntarily and remain head-fixed for
relatively short durations (Scott et al. 2013), potentially enabling high-throughput
automated approaches.

Freely Moving Animals

Extracellular recordings have been possible from freely moving animals for many
decades (see also chapter “Spatial, Temporal, and Behavioral Correlates of Hip-
pocampal Neuronal Activity: A Primer for Computational Analysis”), and recently
the advent of optogenetics has allowed the use of optrodes in freely moving animals
to record from genetically identified populations of cells or populations of cells
with specific anatomical targets (Buzsáki et al. 2015; Grosenick et al. 2015; Wu
et al. 2015). In addition, various miniaturized microscopes have been developed
(Helmchen et al. 2001; Ferezou et al. 2006; Flusberg et al. 2008; Sawinski et al.
2009), which can also be used to image genetically and/or anatomically identified
populations of cells in freely moving animals, even in deeper-lying brain regions
such as the hippocampus (Ziv et al. 2013). Via targeted light stimulation, one
can even selectively manipulate cells (Packer et al. 2015). These are important
developments that are, however, outside the scope of this chapter. Electrophysiolog-
ical tools still have the advantage of being able to directly record and manipulate
membrane potentials and spiking activity at high temporal resolution. In head-
fixed and particularly anesthetized applications, single-cell electrophysiology is
also relatively cheap and easy to implement and enables relatively straightforward
labeling and recovery of recorded cells. In freely moving animals, however, it is
still a challenging and relatively rarely used technique. The technique has been
made possible in part by the development of lightweight, miniature recording
equipment that can be implanted on the head, including miniature headstages but
also microdrives and holders for glass pipettes (Lee et al. 2006; Long et al. 2010;
Herfst et al. 2012; Tang et al. 2014a).

One approach has been to search for cells (using current pulses and monitoring
resistance at the pipette tip) under anesthesia, when the brain is relatively stable,
and then waking up the animal after a successful recording has been initiated and
the pipette has been “anchored” in place (Lee et al. 2006; Tang et al. 2014a).
This method has been used with some success to perform whole-cell patch-clamp
recordings of CA1 hippocampal pyramidal cells (Lee et al. 2009, 2012; Epsztein
et al. 2010, 2011) and has also been applied to perform juxtacellular recordings in
the medial entorhinal cortex and hippocampal area CA1 (Burgalossi et al. 2011;
Herfst et al. 2012). Refinements of this “anchoring” method have recently enabled
whole-cell patch-clamp recordings from drug-free animals (Lee et al. 2014a).

By using a microdrive implanted on the head, it is also possible to search for cells
and perform single-cell recordings in fully drug-free animals (Long et al. 2010; Tang
et al. 2014a). This method was used to perform intracellular recordings with sharp
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electrodes from CA1 pyramidal cells in mice (English et al. 2014) and has also been
successfully used to perform juxtacellular recordings in the hippocampus (Lapray
et al. 2012; Viney et al. 2013; Katona et al. 2014; Diamantaki et al. 2016a, 2016b),
medial entorhinal cortex (Ray et al. 2014; Tang et al. 2014b), presubiculum (Tukker
et al. 2015), and parasubiculum (Tang et al. 2016) of freely moving rats.

Experimental Techniques: Readouts of Neuronal Function

Intracellular Recordings

For decades, intracellular recordings with sharp electrodes have been performed in
vivo (see Long and Lee 2012, for review), but more recently the whole-cell patch-
clamp approach has also been adapted for intracellular recording in vivo (Zhu and
Connors 1999; Margrie et al. 2002). The key advantage of the latter approach is
that patch-clamp pipette tips are considerably larger, providing lower resistance and
thus better electrical access to the inside of the cell. In vivo, these recordings are
usually performed blindly, particularly in deep tissues such as the hippocampus.
The probability of recording from a particular cell type or layer may therefore
be limited. Overall, success rates depend on a thoroughly prepared brain surface
and possibly on a slow approach of the pipette through the tissue. Also taking the
welfare of the animal into account, which sets practical limits to the recording time
in awake animals (particularly when head-fixed), it can be challenging to achieve
a successful recording. Newer techniques allow visual guidance (Kitamura et al.
2008) or, for deeper-lying brain structures, the use of optogenetic tools to pre-
identify target neurons for intracellular recording and labeling (Muñoz et al. 2014).
Even for a deep-lying structure such as the hippocampus, whole-cell recordings have
been combined with calcium imaging (Grienberger et al. 2014), revealing the nature
of burst firing in CA1 pyramidal cells in head-fixed mice under light isoflurane
anesthesia.

Whole-cell patch-clamp recordings offer a number of benefits compared to extra-
cellular recordings and/or calcium-imaging approaches. First of all, subthreshold
activity can be measured at high temporal resolution. Although in vivo access
resistance is often relatively high, limiting access to compartments further from the
soma, it is possible to differentiate inhibitory and excitatory inputs to some extent
either by clamping the membrane potential or by extracting putative excitatory and
inhibitory synaptic potentials from the recorded voltage traces (Tao et al. 2015).
Another possibility is to use pharmacological manipulation to isolate particular
synaptic inputs. One limitation of the aforementioned methods is that it can be
difficult or impossible to simultaneously observe temporally overlapping inhibition
and excitation.

A series of papers has used intracellular recordings to elucidate the roles
of excitation and inhibition in the generation of so-called sharp-wave-associated
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ripples (SWRs; Fig. 6). SWRs are fast oscillations (∼100–200 Hz) thought to play a
role in the replay of previously experienced events, linked to memory consolidation,
as well as the possible planning of future events (Buzsáki 2015). Early intracellular
recordings from urethane- and ketamine-anesthetized mice showed the presence
of ripple-frequency membrane oscillations in vivo and suggested a main role for
perisomatic inhibition (Ylinen et al. 1995a). A later study combining in vitro
experiments with recordings from awake head-fixed mice first showed that SWRs
were also coupled to phasic excitation, which preceded hyperpolarization (Maier
et al. 2011; see also Hulse et al. 2016; Fig. 6a). More recently, sharp recordings
from freely moving mice showed that action potential firing of CA1 pyramidal
cells was often suppressed during simultaneously recorded SWRs despite a large
(threshold-exceeding) membrane depolarization, indicating the presence of shunting
inhibition (English et al. 2014; Fig. 6b–c). Finally, there is also a reported variability
among principal cells in terms of the role of inhibitory versus excitatory drive
during SWRs. In CA1, intracellular recordings from urethane-anesthetized rats, as
well as juxtacellular recordings from freely moving rats, showed that deep-lying
pyramidal cells were more inhibited, while more superficial cells were more excited
during SWRs, a finding that correlated to calbindin immunoreactivity (Valero et al.
2015; Fig. 6d–f). In the subiculum, both intracellular and juxtacellular recordings
in awake head-fixed mice showed that burst-firing cells were more depolarized,
whereas regular firing cells were more hyperpolarized during SWRs (Böhm et al.
2015); interestingly, these cells also had different connectivity within the network
as shown in vitro by simultaneous intracellular recordings of up to eight cells
(Fig. 2e). Both of these reports suggest the presence of different principal cell
types playing different roles in the generation of SWRs, whereby recorded firing
rates and membrane potential were correlated to either a molecular marker and
precise anatomical location (Valero et al. 2015) or to intrinsic electrophysiological
properties and connectivity (Böhm et al. 2015).

In general, the ability to record subthreshold oscillations or ramps and their volt-
age dependence is an important advantage of intracellular recordings, particularly
if they can be related to the behavior of the animal (e.g., its location or speed; see
below). It is even possible to record signatures of dendritic spiking (Kamondi et
al. 1998; Harvey et al. 2009; Epsztein et al. 2011; Grienberger et al. 2014; Bittner
et al. 2015) and of axonal events (Epsztein et al. 2010; Chorev and Brecht 2012;
Apostolides et al. 2016). Importantly, this recording method also allows cells to be
labeled and recovered, enabling further classification to be performed post hoc based
on precise anatomical localization as well as morphological, immunohistochemical,
and/or ISH characterization. Even complete filling of axonal arbors is possible,
which can enable tracking of long-range projections over several millimeters
(Oberlaender et al. 2012). Besides filling cells based on the injection of a dye,
cells can also be labeled by infusing a plasmid that then drives the expression of
a fluorescent protein; this method has been used to transfect single intracellularly
recorded cells in the visual cortex not only with a fluorescent protein but also with
a receptor allowing selective infection by a rabies mutant (injected 2 days later)



392 J. J. Tukker

Fig. 6 Mechanisms underlying SWR generation in CA1. (a) Whole-cell patch-clamp recordings
of CA1 pyramidal cells in awake head-fixed mice reveal phasic excitatory currents (bottom trace)
coincident with SWRs detected in the LFP recorded with a separate electrode(top trace). (b) Intra-
cellular recordings of a CA1 pyramidal cell (left inset) from a freely moving mouse also showed a
membrane potential depolarization (bottom trace, Vm) during SWRs (top trace, LFP) followed
by a relatively long-lasting after hyperpolarization (AHP). (c) These recordings also revealed
that during SWRs (green) action potential firing was reduced despite cells being depolarized
above threshold. This was not the case during pre-ripple control intervals (gray). (d) Intracellular
recordings from anesthetized rats revealed that during SWRs, CA1 pyramidal cells could be either
predominantly depolarized (green) or hyperpolarized (red). Simultaneously recorded LFPs are
shown in black. (e) These firing patterns were found in more superficial calbindin-immunopositive
(CB+) and deeper-lying calbindin-immunonegative (CB-) cells, respectively. (f). Scheme showing
hippocampal connectivity related to firing patterns of different cell types during SWRs. (Figures
taken and adapted with permission: (a) from Maier et al. 2011; (b–c) from English et al. 2014;
(d–f) from Valero et al. 2015)

which retrogradely labels monosynaptically connected presynaptic cells (Rancz et
al. 2011).

One caveat is that the washout of cytosol can be an issue for certain markers,
e.g., calbindin (Müller et al. 2005), particularly for longer whole-cell patch-clamp
recordings (less so for sharp electrodes). It should also be noted that labeling is
typically worse for recordings from freely moving animals, particularly for longer
axons. The reduced recovery rate is likely due to the fact that cells recorded from
freely moving animals are often lost due to mechanical disturbance, rather than
being actively terminated via slow withdrawal of the pipette, as typically done in
anesthetized animals (Rancz et al. 2011).

In contrast to extracellular recording methods, which rely on unit isolation
algorithms that are biased for cells with high firing rates (Pedreira et al. 2012) and
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are likely to miss many cells in any particular brain volume (Henze et al. 2000;
Shoham et al. 2006; Wolfe et al. 2010), the single-cell recording approach has no
bias for cells firing at high rates and can also be used to record silent cells (Margrie
et al. 2002; Epsztein et al. 2011). This is not to say this approach cannot have a bias:
there may be unknown factors that make some cells more “patchable” than others.

Another advantage of this method is that one can manipulate single cells’
membrane potential and spiking activity with high precision. Surprisingly, eliciting
action potentials during whole-cell patch-clamp recordings of a single pyramidal
cell in vibrissae motor cortex was able to induce whisker movement, both in
ketamine-/xylazine-anesthetized and awake rats (Brecht et al. 2004). In the hip-
pocampus, silent cells stimulated can be suddenly, and reversibly, turned into place
cells (Lee et al. 2012; Bittner et al. 2015).

There are also a few clear disadvantages that should be considered. First, one can
only record a small number of cells per animal. This is due partly to the difficulty
in achieving and maintaining a high-quality stable recording and partly to the fact
that one must avoid confusing the identity of possibly labeled cells. In theory, this
confusion could be avoided by labeling different cells with different colors, but in
practice this turns out to be difficult, and labeling still mostly depends on neurobiotin
or biocytin. Second, recording times are short. This places limits on, e.g., the extent
of space that can be covered by an exploring rodent during a recording. This is
important, for example, when recording grid cells, where a grid-like firing pattern
only gradually becomes apparent as the animal moves throughout the arena. Third,
it is still very difficult to do paired intracellular recordings in vivo, so that it remains
difficult to make statements about functional connectivity or synchrony between
identified cells. However, it has been achieved in some brain areas, using either
sharp electrode (Lampl et al. 1999; Crochet et al. 2005) or patch-clamp recordings
(Poulet and Petersen 2008; Jiang et al. 2013; Jouhanneau et al. 2015). Perhaps in
the future, automated intracellular recordings will make it feasible to record from
larger number of cells in parallel; good automated performance on single cells was
recently demonstrated in both in anesthetized (Kodandaramaiah et al. 2012) and
awake head-fixed animals (Desai et al. 2015).

Finally, combining intracellular recordings with extracellular (Bruno and Sak-
mann 2006; Quilichini et al. 2010) or optogenetic approaches (Muñoz et al. 2014;
Pala and Petersen 2015) is likely to give many more insights into connectivity in the
behaving animal. Antidromic stimulation, applied either optogenetically (Ciocchi
et al. 2015) or electrically (e.g., Long et al. 2010), can also be used to obtain
information regarding the synaptic targets of a recorded cell.

Juxtacellular Recordings

Juxtacellular recordings, also known by the more precise term of juxtasomatic
recordings, are essentially cell-attached recordings, which can be used to record
spiking activity with a high signal-to-noise ratio and to inject (charged) dye into
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the recorded cell (Pinault 1996). This method shares many of the advantages
and disadvantages of whole-cell patch-clamp recordings, with some important
differences, the most important one being that one cannot access subthreshold
activity with juxtacellular recordings, i.e., this method only provides a physiological
readout of a cell’s outputs.

However, it is considerably simpler to perform than whole-cell recording. It is
also less invasive, so that there is no washout of the cytosol, leading to a perhaps
more physiological state of the cell. This method still retains many of the same
advantages as described above for whole-cell recordings. There is no clear bias for
cells with a higher firing rate, as silent cells can also be recorded and identified
(Burgalossi et al. 2011; Herfst et al. 2012; Diamantaki et al. 2016a), although there
could be an unknown bias regarding which cells are more easily labeled with this
method. In fact, the pipettes used, e.g., for interneuron recordings in the Klausberger
and Somogyi labs have a much smaller tip and higher impedance (Klausberger et al.
2003; Lapray et al. 2012), possibly because this configuration is more successful
for recording and/or labeling interneurons. However, this has not been shown
systematically, and also larger “patch” pipette tips have been used to successfully
record and label interneurons both in the presubiculum and medial entorhinal cortex
(Tukker et al. 2015), although indeed the proportion of successfully labeled cells
may be lower.

In general, the recovery of recorded cells and anatomical characterization is a
key advantage of this method. This has proven particularly useful for distinguishing
differences among parvalbumin-positive (PV) interneurons in the hippocampus
(Klausberger et al. 2003, 2004; Tukker et al. 2007, 2013; Lapray et al. 2012; Varga
et al. 2012, 2014; Viney et al. 2013), although many other cell types have also
been successfully characterized with this method. With long waiting times after the
labeling procedure, even axons over many millimeters can be traced (Jinno et al.
2007; Viney et al. 2013; Arszovszki et al. 2014; Preston-Ferrer et al. 2016).

Finally, manipulation of cell firing is possible with a relatively high degree of
control. This has been combined with a behavioral readout in head-fixed animals
to show that, surprisingly, manipulation of activity in single cells can modulate
behavior (Houweling and Brecht 2008; Doron et al. 2014). A more recent report
demonstrated that in the dentate gyrus, juxtacellular stimulation of a silent granule
cell in a freely moving rat can induce that “primed” cell to selectively fire again
when the rat subsequently revisits the priming location (Diamantaki et al. 2016b).

The Future

Identifying cell types in the future will ideally be done in vivo, based on one or a
very small number of easily identifiable “markers.” At the moment, we are still in
the process of determining which cell types may exist in various parts of the brain,
and this endeavor is likely to continue for some time. While methods to describe
neurons at any single level (anatomical, molecular, physiological, functional) are
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increasingly “scaled up,” as will be outlined in this section, the relatively sparse data
obtained by single-cell experiments, spanning multiple levels, offers the opportunity
to directly study how these levels are related to each other. In the near future we are
likely to see the combination of single-cell methods as described in this chapter
with more extensive analysis methods at the anatomical and molecular level. In
parallel, it is becoming increasingly feasible to combine extensive, high-resolution
“structure” descriptions (anatomy and genetics) with quantitative descriptions of
behavior and large-scale electrophysiological readouts, e.g., via calcium- or voltage-
sensitive dyes (Bock et al. 2011; Begemann and Galic 2016). In all these approaches,
one crucial step to dealing with the complexity of such large datasets will be a
dimensionality reduction, which is offered by the concept of cell types. Although
limited in scale, research so far indicates that indeed there exist tendencies of
particular combinations of properties to co-occur, and identifying these cell types
will be a major focus for the coming years.

New methods are being developed for more sophisticated, “data-driven” ways
to define cell types (Armañanzas and Ascoli 2015), for example, based on fuzzy
set theory (Battaglia et al. 2013) or nonparametric Bayesian inference techniques
(Jonas and Kording 2015), or to at least improve the consistency of cell identification
within the community (DeFelipe et al. 2013). In order to derive potential cell types
from the wealth of previously collected data, a number of efforts are under way to
collate data from published reports into more formalized database-like structures
(Bota et al. 2003; Ascoli et al. 2007; Wheeler et al. 2015), in order to make this
data more readily available (and searchable). These initiatives are also likely to
help the adoption of a more standardized nomenclature for describing properties
of cell types (Ascoli et al. 2008) and cell types themselves (Hamilton et al. 2016).
More generally, neuroscientific data is becoming ever more digital and quantitative
(Helmstaedter et al. 2013; Budd et al. 2015), enabling data sets to be shared and
compared more easily (Ascoli 2015; Teeters et al. 2015). Although such sharing
is becoming more common, its usefulness will depend to some extent on the
adoption of some standard data formats including more formalized representations
of “metadata” (Garcia et al. 2014; Zehl et al. 2016). The adoption of common
standards may be helped by large-scale initiatives such as the European Human
Brain Project, the American BRAIN initiative, as well as institutions such as the
Allen Brain Institute, all of which have cell type classification as one of their primary
aims.

Although many experiments are already using, e.g., genetic markers to identify
cell types in vivo, at present such experiments still entail considerable compromises.
By limiting “identity” to a single promoter (e.g., parvalbumin to delineate fast-
spiking interneurons in the cortex), one risks confounding several different cell types
with potentially very different functional properties and roles. One solution to this is
via “intersectional” approaches, where genetics can be based on several promoters
(Fenno et al. 2014; Madisen et al. 2015). However, such approaches still depend on
the identification of a very small number of genes that uniquely identify a particular
cell type. The development of improved mRNA sequencing methods will certainly
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help in the quest for unique markers (Zeisel et al. 2015; Cadwell et al. 2016; Fuzik
et al. 2016; Tasic et al. 2016), but they may not necessarily exist for every cell type.

The anatomical analysis of labeled cells is also advancing, particularly through
the use of new viral tracing (Nassi et al. 2015) and tissue-processing (Chung
and Deisseroth 2013) methods in combination with modern imaging approaches
to map out long-range circuits throughout the brain (Ragan et al. 2012; Osten
and Margrie 2013; Niedworok et al. 2016). Novel ISH techniques in combination
with such imaging approaches are also likely to advance our understanding greatly
(Sylwestrak et al. 2016). Expanding ISH and immunohistochemical methods with
improved fluorophores with sharp emission spectra (Resch-Genger et al. 2008)
would greatly improve the resolution with which cell types can be studied, by
increasing the amount of molecules that can be tested for any particular tissue
sample. The sequencing of mRNA material from single cells is also likely to
improve, together with the quantitative techniques for finding clusters in such
datasets; it may soon become routine to extract the complete transcriptome for any
single recorded cell and read out the cell type unambiguously.

Another advance related to anatomical analysis is likely to come from the
increased availability of EM reconstructions of ever-larger volumes of brain tissue
(Plaza et al. 2014; Seung and Sümbül 2014; Swanson and Lichtman 2016). As
recently shown in a series of studies focusing on the retina (Helmstaedter et al. 2013;
Kim et al. 2014; Sümbül et al. 2014), these methods have the potential to greatly
improve the resolution of anatomical data both with regard to morphology and
synaptic connectivity. It is in principle already possible to functionally characterize
and label a single neuron in vivo (e.g., a grid cell), via methods illustrated in this
chapter, and reconstruct a sizeable portion of tissue around this cell in EM. One
could theoretically identify all synaptically connected cells in this volume by their
reconstructed morphology. This assumes that cell types can indeed be recognized by
morphology alone, as in the retina (Helmstaedter et al. 2013). Future work will have
to show to what extent this is also the case in the cortex. At the moment, the scale of
EM reconstructed volumes in the cortex is still rather limited (Berning et al. 2015;
Kasthuri et al. 2015), and the process remains slow and expensive (Marblestone
et al. 2014). Dealing with the immense data sets such an endeavor will produce,
eventually including, e.g., an entire mouse brain (Mikula and Denk 2015) will also
pose new challenges, which may in part be solved by machine learning approaches
(Lichtman et al. 2014; Helmstaedter 2015).

Readouts of neuronal activity are also rapidly developing. On the one hand,
extracellular recordings from freely moving animals can be made with ever-
increasing numbers of channels at ever-higher densities, making it possible to
sample large populations of neurons from one or several brain areas (Buzsáki et al.
2015) during a wide range of behaviors. Similarly, miniaturization and improvement
of calcium- and voltage-sensitive imaging approaches are also enabling optical
recordings from deep-lying brain structures in freely moving animals at increasing
temporal and spatial resolution and scale (Ziv and Ghosh 2015; Kim et al. 2016;
Lin and Schnitzer 2016). For both optical and electrophysiological methods, novel
wireless technology and more advanced ways of stimulating cells are also likely to
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increase possibilities to manipulate and record neurons from freely moving animals
engaging in natural behaviors such as social interaction (Hasegawa et al. 2015; Kale
et al. 2015; Park et al. 2015).

Combining these population-scale methods with opto- or chemogenetics, based
on novel viral and genetic methods, will allow future investigators to record
from and manipulate large numbers of anatomically and/or genetically defined
populations (Grosenick et al. 2015). The caveat here is again that the “cell-type
resolution” of such methods is likely to remain limited, as long as our understanding
of cell types in the brain remains incomplete. Thus, it is important that the
development of single-cell patch-clamp and juxtacellular recordings from behaving
animals is also continuing.

Although relatively few laboratories are using these methods in freely moving
animals, recent advances have made this method ever more feasible (Lee et al.
2014a; Tang et al. 2014a; Wang et al. 2016). Clearly, for many complex behaviors
where one does not know all variables driving neural activity, it is preferable
to record from animals engaging in behaviors as close to “natural” as possible.
However, for understanding many “simpler” tasks, VR is an increasingly popular
option which makes both imaging and single-cell recordings much simpler in awake
animals. To what extent navigation can be studied effectively in VR is still a debated
issue (Minderer et al. 2016), but since practical considerations also constrain most
spatial navigation studies in humans to VR paradigms, the use of VR in rodents
may actually be beneficial for allowing a cross-species comparison of neural circuits
underlying spatial navigation. Such translatability may be particularly important for
studies on animal models of diseases such as Alzheimer’s disease, where difficulties
in navigation are very common (Lithfous et al. 2013). The fact that VR enables
strong experimental control over both the animal’s behavior and the stimuli it is
exposed to may help to unravel the roles of vestibular, auditory, visual, somatosen-
sory, motor, and higher-order (path-integration) systems in navigation and other
tasks (Chen et al. 2013; Cushman et al. 2013; Ravassard et al. 2013; Aronov and
Tank 2014; Acharya et al. 2016; Kautzky and Thurley 2016). The question of how
the hippocampal system generates an abstract higher-level representation of space
based on such inputs is very much unsolved, but the combination of VR with modern
viral, genetic, and large-scale recording and imaging tools in head-fixed animals
gives us a good chance of addressing this question at the necessary level of detail.

Finally, the complexity of behavior itself may remain the biggest challenge.
In Drosophila, a pioneering paper has recently correlated automatically detected
behavioral modules (“behaviotypes”) with neuronal function from over a thousand
neuron lines (Vogelstein et al. 2014). The first steps have also been made toward
automated, non-biased analyses of behavior in mice (Wiltschko et al. 2015). Clearly,
there is huge potential in this field to look at more complex relationships between
stimuli and behavior, and at how such relationships may change over time through
plastic processes in the brain. It will be interesting to see how, in the future, the
combination of advanced behavioral analysis with other approaches described above
will shed new light on the fundamental functioning of neural circuits, both in health
and disease.
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Spatial, Temporal, and Behavioral
Correlates of Hippocampal Neuronal
Activity: A Primer for Computational
Analysis

Howard Eichenbaum

Abstract Creating useful models of the hippocampus will rely upon our ability to
bridge between local circuitry and behavior. A critical intermediate between these
levels is the functional activity of hippocampal principal neurons, the elements
of neuronal information processing. This chapter provides an overview of the
functional correlates of hippocampal neuronal activity, focusing on the nature of
inputs these neurons receive; the broad range of sensory, behavioral, and spatial and
temporal features of events captured by firing patterns of hippocampal neurons; and
a framework for thinking about how the hippocampus organizes information from
its inputs to support memory coding and retrieval.

Overview

Hippocampal neurons are extraordinarily interesting to observe in action. As
animals perform a variety of natural or learned behaviors, hippocampal principal
cells of areas CA1 and CA3, which otherwise are characterized by very low baseline
firing rates, suddenly fire at rapid rates related to the current location of the animal,
its ongoing behavior, specific salient stimuli, elapsed time, or some combination of
these factors and the context of the behavioral situation. Unlike in many brain areas,
specific sensory or behavioral correlates of neuronal activity are difficult to observe;
in the hippocampus, it sometimes seems there are as many behavioral correlates as
experimental paradigms in which they might be observed. The challenge is not to
find correlates of neural activity in the hippocampus – it is to make sense of the
broad range of sensory- and behavior-related firing properties observed.

Here I will provide an overview of the literature on spatial and behavioral
correlates of hippocampal neural activity. This is a large literature, so this review
will not be comprehensive. Rather, my aims are to sketch the breadth of the
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correlates observed and to provide a framework for thinking about these properties
and how they might be modeled. More detailed analyses and large lists of citations
to the primary experimental literature are available in recent reviews (Eichenbaum
et al. 1999; Eichenbaum 2004, 2007, 2014; Leutgeb et al. 2005a, b; McNaughton
et al. 2007).

I will begin with a summary of the anatomy of the medial temporal lobe system
in which the hippocampus is a central component. In all biological systems, function
follows form, and the hippocampus is no exception. Understanding the functional
properties of hippocampal neuronal activity should be helped considerably by an
appreciation of the information contained in neural activity observed in areas that
send inputs to the principal neurons of hippocampus. In this section I will argue that
the hippocampus is a convergence site for highly processed information about space
(the so-called “where” or dorsal stream of the cerebral cortex) and about objects
(the “what” or ventral stream). From this perspective, the unsurprising outcome
is that major correlates of hippocampal neural activity reflect both these kinds of
information.

This will be followed by a discussion of the spatial coding features of hippocam-
pal neural activity. These are the easiest to observe and the most commonly studied
properties of hippocampal neural activity. While many hippocampal neurons fire
associated with the current location of an animal, it should not be assumed that the
hippocampus provides a map of space nor that the function of the hippocampus is
navigation. The distinctions between place coding, map building, and navigation
will be highlighted.

This will be followed by recent evidence that, when spatial location is controlled
or held constant, hippocampal neurons encode the passage of time via neurons that
fire specific, sequential moments in time during a structured interval. Observations
of hippocampal “time cells” open a new dimension for organizing the temporal flow
of experiences in memory.

Then I will consider the nonspatial and nontemporal firing properties of hip-
pocampal neurons. It will be argued that hippocampal neurons do not reflect simple
sensory perceptions or behavioral actions, but rather that sensory and behavioral
events are also a major component of the information encoded by hippocampal
neuronal activity.

A consensual general view is that the hippocampus does not so much encode
the specific details of events (or places) but rather encodes a sufficient “gist” of
events to generate some sort of index that points to where the details can be found
in the cortical areas that provide the detailed inputs to the hippocampus and receive
its outputs. Furthermore, it is believed that the hippocampus must also represent
information about the spatial and temporal context in which events occurred, in
order to select event representations that should be regenerated in the cortex to
support remembering. Therefore I will also consider evidence that hippocampal
neurons encode contextual information about where and when events occurred.

These considerations then will be combined in a framework I have offered
called the “memory space” hypothesis of hippocampal neuronal representations.
According to this view, hippocampal neurons encode events as associations among
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stimuli and places; they represent episodes as sequences of events; and hippocampal
ensembles represent networks of memories as linked events and episodes. Such a
framework matches the functional role of the hippocampus in memory as described
by a convergence of cognitive and neuroscience approaches.

The Data

Input/Output Circuitry and the Information Contained in Inputs
to the Hippocampus

The hippocampus receives inputs from widespread areas of the neocortex and
olfactory cortex that are relayed via the parahippocampal region, a set of highly
interconnected cortical areas immediately surrounding the hippocampus (see sec-
tion “Context,” also Manns and Eichenbaum 2006). The purpose of this section
is not to provide details on the anatomical circuitry of these inputs, but rather to
emphasize the information they contain. Sensory information that enters the primary
cortical areas subsequently passes through multiple secondary and tertiary stages
of unimodal sensory processing, ultimately arriving in the parietal, retrosplenial,
and temporal association areas. Similarly, motor and emotional information that are
processed in early level cortical and subcortical areas pass into association areas
of the prefrontal and limbic cortex. This large set of association areas provides the
inputs to the parahippocampal region.

The cortical inputs to the parahippocampal region demonstrate a systematic
organization but one that is unlike the punctate topographies that characterize
the primary sensory and motor thalamocortical pathways (Suzuki and Amaral
1994; Burwell 2000; Manns and Eichenbaum 2006; Fig. 1). Association areas
that process unimodal sensory information about qualities of objects, e.g., superior
temporal and inferotemporal cortex, are sent primarily to one component of the
parahippocampal region called the perirhinal cortex. By contrast, association areas
that process polymodal spatial information, e.g., parietal and retrosplenial cortex,
are sent primarily to another component of the parahippocampal region called the
parahippocampal cortex in monkeys and the postrhinal cortex in rats. One view of
this segregation of inputs is that information from the well-known “what” (ventral)
stream of visual processing, as well as its counterparts in other sensory modalities,
arrives in the perirhinal cortex, whereas information from the “where” (dorsal)
stream arrives in the parahippocampal cortex (Eichenbaum et al. 2007). There are
connections between the perirhinal cortex and parahippocampal cortex, but the
“what” and “where” streams of processing remain largely segregated as they reach
the parahippocampal region. Subsequently, the perirhinal and parahippocampal
cortical areas project to the entorhinal cortex and, in doing so, maintain the
segregation of “what” and “where” inputs to these areas. The lateral entorhinal area
receives more cortical projections from the perirhinal cortex, whereas the medial
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Fig. 1 Functional organization of the hippocampal memory system. Neocortical input regarding
the object features (“what”) converges in the perirhinal cortex (PRC) and lateral entorhinal area
(LEA), whereas details about the location (“where”) of objects converge in the parahippocampal
cortex (PHC) and medial entorhinal area (MEA). These streams converge in the hippocampus
which represents items in the context in which they were experienced. Reverse projections follow
the same pathways back to the parahippocampal and neocortical regions. Back projections to the
PHC-MEA may support recall or context, whereas back projections to the PHC-LEA may support
recall of item associations. (From Eichenbaum et al. 2007)

entorhinal area receives more cortical projections from the parahippocampal cortex.
There are also some connections between the perirhinal and parahippocampal
cortices and between the lateral and medial entorhinal areas, but the “what” and
“where” information mainly converge at the next stage, within the hippocampus.

The response properties of neurons in the parahippocampal region follow the
functional differentiation suggested by the anatomy. Neurons in the perirhinal
cortex of monkeys and rats respond to specific object stimuli, such as complex
visual patterns and odors (Suzuki and Eichenbaum 2000; Eichenbaum 2000). In
addition, many cells in the perirhinal cortex and lateral entorhinal area have selective
responses to specific memory cues that are sustained through memory delays as
animals perform short-term and working memory tasks. Also, many neurons in these
areas show suppressed or enhanced responses to stimuli that are repeated, such as
during the test phase of a short-term or working memory task (Brown and Xiang
1998). These findings are consistent with observations from functional imaging
studies showing diminished activation to specific verbal or pictorial stimuli in the
perirhinal cortex of humans (see Eichenbaum et al. 2007). These combined findings
have led to the view that perirhinal cortex, perhaps along with the lateral entorhinal
area, can support a sense of familiarity with specific stimuli, even in the absence of
a contribution of the hippocampus (Eichenbaum et al. 1994; Brown and Aggleton
2001; Eichenbaum et al. 2007).
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Neurons in parahippocampal cortex and medial entorhinal area, the regions
that receive inputs from the “where” neocortical stream, respond to the spatial
arrangement of stimuli (Wan et al. 1999; Fyhn et al. 2004; Hargreaves et al. 2005).
Most prominently, neurons in the medial entorhinal area fire when an animal is
in multiple places in the environment organized as regular array environmental
locations (the so-called grid cells). Cells located more dorsally in the medial
entorhinal area activate associated with more punctate locations within the grid,
whereas cells located more ventrally fire associated with larger areas within the
grid. Like hippocampal neurons (see below), grid cell activity can also reflect
an animal’s orientation and speed of movement, as well as contextual features
(Sargolini et al. 2006; Lipton et al. 2007). In addition, recent evidence suggests
that the medial entorhinal cortex also ends temporal context in rodents (Kraus et
al. 2015). Notably, the closely associated parahippocampal cortex of humans is
activated when subjects view spatial scenes or objects that generate associations
with particular spatial contexts (Epstein and Kanwisher 1998; Bar and Aminoff
2003) and this area also encodes temporal context in humans (Hsieh et al. 2014).
The combined observations from all these studies suggest a functional organization
in which nonspatial object representation occurs in the perirhinal-lateral entorhinal
“what” stream, spatial and perhaps other aspects of context are represented in
the parahippocampal-medial entorhinal “where” and “when” stream, and that one
critical role of the hippocampus is to associate objects with the spatial-temporal
context in which they were experienced (Eichenbaum et al. 2007).

Spatial Firing Patterns of Hippocampal Neurons

Nearly all of our information on hippocampal neuronal firing patterns comes from
data on CA1 and CA3 pyramidal cells in the dorsal hippocampus of rats and to
a lesser extent, in mice, monkeys, and humans. There also exists substantial data
on interneurons in the dorsal hippocampus – the firing patterns of these neurons
correspond closely to the theta rhythm such that interneurons tend to burst at high
rates locked to theta phase.

The most striking and prevalent pattern of firing in hippocampal pyramidal cells
involves selective activation when a rat is in a particular location in its environment
(see Muller 1996; Eichenbaum et al. 1999: for a more detailed reviews). These
so-called place cells are typically observed by monitoring extracellularly recorded
action potentials from principal cells in CA1 and CA3 of freely behaving rats. As
the animal explores or merely traverses a large environment, one can readily observe
dramatic increases in a place cell’s firing rate when the rat arrives at a particular
location, called the “place field” (Fig. 2). From a baseline of less than 1 spikes/sec,
the firing rate can exceed 100 Hz, although during some passes through the place
field, the cell may not fire at all. Typically a large fraction of cells (40–75%) have
place fields in any environment, although the low baseline firing rates may result
in many cells without place fields going undetected. Place fields vary in size from
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Fig. 2 Schematic overhead views of two types of apparatus and examples of location-specific
activity of hippocampal place cells. (a) Eight-arm radial maze where the rat can obtain a food
reward the first time it reaches the end of each arm. The figure includes bar graphs on either side
of the maze arms showing firing rates of a place cell associated with inward (white bars) and
outward (black bars) movements on each arm. This cell fires primarily as the animal moves inward
on the NE arm. (From McNaughton et al. 1991). (b) Cylinder, with the location of the cue card
indicated by a thickened part of the circle, in which rats continuously forage for food dropped at
random locations on the floor. The firing pattern of a place cell is indicated by open pixels at loci
associated with low firing rates and filled pixels at loci associated with high firing rates. (From
Muller et al. 1987)

a few centimeters to half the size of an environment and are dispersed throughout
the environment, although they may be concentrated at areas of particular salience
(e.g., Hollup et al. 2001).

A major issue is what cues are driving the responses of place cells. Early studies
showed that spatially specific activity can be dissociated from potential confounding
influences of particular behaviors that might occur at different locations. For exam-
ple, Olton et al. (1978) observed hippocampal cellular activity in rats performing the
same inward and outward traversals on all arms of a radial maze and found that many
hippocampal cells fired only when the rat was on a particular arm (Fig. 2a). Muller et
al. (1987) equalized behavior throughout an environment by observing hippocampal
cellular activity in rats foraging in random walks for food pellets randomly dispersed
in a circular open field (Fig. 2b) and found location-specific activity evident in many
of the event when behaviors and movement patterns were randomized.

Other studies have focused on the environmental cues that could drive spatially
specific activity. Summarizing the early studies, O’Keefe (1979) defined place cells
as neurons whose activity is not dependent on any particular stimulus, but rather
reflects the presence and topography of multiple environmental cues. Whereas
these early studies suggested that many place cells meet this criterion, more recent
studies indicate that place cells are driven by relatively few proximal cues. O’Keefe
and Burgess (1996) showed that the shape and locus of most place fields within
a simple rectangular chamber are determined by the dimensions of, and spatial
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relations between, only a few nearby walls of the environment. Several other recent
studies have shown that place cells can encode subsets of the spatial cues and
that these representations are not bound to other spatial representations in the
same environment. Shapiro, Tanila, and colleagues (Shapiro et al. 1997; Tanila
et al. 1997a, b, c) examined the responses of hippocampal cells to systematic
manipulations of a large set of spatial cues. Different place cells encoded individual
proximal and distant stimuli, combinations of proximal or distant stimuli, or
relations between proximal and distant cues. The place fields of some cells were
fully controlled by as little as a single cue within a very complex environment, and
most cells were controlled by different subsets of the controlled cues.

Gothard and colleagues (1996a, b) found that when a particularly salient cue
or enclosure within an open field is moved repeatedly and randomly, the spatial
firing patterns of some cells become tied to that cue. When rats were trained to
shuttle between a mobile starting box and a goal location defined by landmarks in an
open field, some cells fired relative to the static environmental cues, but others fired
relative to a landmark-defined goal site or in relation to the start box. When rats were
trained to shuttle between a movable start-end box and goal site on a linear track, the
anchor of the spatial representation of many cells switched between these two cues,
depending on which was closer. Under these conditions the majority of the activated
hippocampal cells did not exhibit location-specific activity that was associated with
fixed environmental cues. Instead, their activity could be characterized as “spatial”
only to the extent that they fired at specific distances from a particular stimulus or
goal.

In addition, these and other studies have shown that place cells are not linked
together to form a cohesive map of the environment. Tanila et al. (1997b) found
that ensembles of simultaneously recorded place cells changed their firing patterns
independently when distinct subsets of the cues presented at the same time,
indicating that the spatial representation was not cohesive. In several cases where
two cells had overlapping place fields associated with one configuration of the cues,
each cell responded differently when the same cues were rearranged. This finding
shows that each cell was controlled by a different subset of the cues at the same
time and that their differential encodings are not due to shifts between two different
spatial “reference frames” used by all cells at different times (Gothard et al. 1996b).
Skaggs and McNaughton (1998) confirmed this finding by recording from a large
number of place cells simultaneously in rats foraging randomly in two identical
enclosures, between which they could move freely. Each hippocampal ensemble
contained cells that had similar place fields and others that had distinct spatial
firing patterns between the two enclosures. In this situation, some cells encoded
the physical cues, whereas the activity of others at the same time reflected the
knowledge that the two environments were distinct.

Combining the findings from all these studies, one can conclude that place fields
reflect a collection of independent representations, each one encoding the place the
animal occupies defined by a subset of cues. Spatial representations are not bound as
coordinates within a systematic framework for the global topology, indicating that
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hippocampal spatial codings are not organized as elements of a Cartesian “map.”
Rather, place cells seem to encode places where important events or stimuli occur.

Temporal Firing Properties of Hippocampal Neurons

There is considerable recent evidence that the hippocampus is involved in repre-
senting the flow of time, in parallel to its representation of space (Eichenbaum
2013, 2014), and indeed it has been suggested that bridging between successive
events to link them in time may be a fundamental function of hippocampal circuitry
(Rawlins 1985; Levy 1989; Wallenstein et al. 1998; Howard and Eichenbaum 2013).
Consistent with this idea, an early study showed that ensemble activity patterns of
CA1 neurons gradually change while rats sampled sequences of odors, and this
signal of continuously evolving temporal context predicted success in remembering
the odor sequence (Manns et al. 2007).

Several subsequent studies have identified hippocampal principal neurons that
fire at particular moments in time of a temporally structured event, composing
temporal maps of specific experiences. Across these studies, the location of
the animal is held constant, or firing patterns associated with elapsed time are
distinguished from those associated with spatial and behavioral variables, and the
firing patterns of these cells are dependent on the critical temporal parameters that
characterize the task. Because these properties parallel those of place cells in coding
locations in spatially structured experiences, we called these neurons “time cells”
(MacDonald et al. 2011), even though these neurons are the same cells that exhibit
spatial firing specificity in other circumstances.

Time cells have now been observed in several experiments. The findings of these
studies can be summarized as follows. Time cells have been observed in a range of
behavioral conditions, including during delay periods in maze tasks in which rats
alternate goals (Gill et al. 2011; Pastalkova et al. 2008; Kraus et al. 2013; Fig. 3),
bridging temporal gaps between associated nonspatial cues (MacDonald et al.
2011), during the delay period in a nonspatial matching to sample task (MacDonald
et al. 2013), and throughout trials in trace eyelid conditioning (Modi et al. 2014).
Importantly, in some of these studies, the animal is immobilized and thus space
plays no role in ongoing behavior or memory (MacDonald et al. 2013; Modi et al.
2014; Naya and Suzuki 2011). The findings of these studies establish a broad scope
of temporally structured episodes in which the hippocampus encodes the temporal
organization of specific experiences. Furthermore, some of the studies in animals
have closely linked the emergence of time cells sequences to the encoding of specific
memories and to subsequent memory accuracy (Modi et al. 2014; MacDonald
et al. 2013), thus indicating a causal role of time cell firing patterns to memory
performance. Also, the representation of temporally ordered sequences of events
by the hippocampus extends to monkeys and humans. In monkeys, hippocampal
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a b

Fig. 3 Hippocampal time cells during the period when a rat runs in place while performing a
spatial alternation task. Left: the spatial alternation task with treadmill in the center of the maze
stem. Red and blue lines indicate alternate right-turn and left-turn paths. Right: ensemble firing
rate mapping where each row represents the normalized average firing rate of a neuron (see cell
numbers on Y-axis) over the 15 s treadmill run. Note that each cell fires during a specific moment
of treadmill running and the entire period of running is filled with time-specific representations.
(Adapted from Kraus et al. 2013)

neuronal activity signals elapsed time in a memory delay between associated
objects (Naya and Suzuki 2011). In humans, hippocampal neurons fire in sequence
associated with learning (Paz et al. 2010) and memory (Gelbard-Sagiv et al. 2008)
of the flow of events experienced in movie clips.

The significance of prominent temporal representation as an aspect of nonspatial
coding in the hippocampus is high in two ways. First, as introduced by Tulving
(1983), episodic memories are defined by a temporal organization that embodies
the temporal organization of events in personal experiences. We know that the
hippocampus is critical to episodic memory and to memory for the temporal
order of events, even when space is not relevant. Now the existence of time cells
provides a mechanism by which the hippocampus organizes memories for events
in time. Second, the existence of time cells offers a parallel temporal organizing
mechanism to the spatial organizing mechanism offered by place cells. Therefore,
the hippocampus could support representations of episodes by mapping objects and
events within a framework of space and time, conferring upon those memories
connections that reflect the spatial and temporal associations between distinct but
related events embodied within a mapping by place and time cells (Eichenbaum
2013, 2014).
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Nonspatial and Nontemporal Firing Properties of Hippocampal
Neurons

According to O’Keefe (1979), true place cells fire whenever an animal is in the place
field, regardless of its orientation or ongoing behavior. However, few hippocampal
neurons meet this criterion because nearly all of them alter their activity associated
with the animal’s direction and behavior in most behavioral situations. Perhaps the
only situation where large numbers of true place cells are observed is when animals
forage by random walk through an environment (Fig. 2b), where behavior is held
constant and the meaning of movement directions is homogeneous. In virtually any
situation where movement directions are meaningfully different (e.g., in and out of a
maze arm) or behaviors are differentiated throughout the environment, other factors
dramatically influence spatial firing patterns, and in some situations where space is
particularly irrelevant, some hippocampal neuronal activity can be closely linked to
nonspatial stimuli and behaviors.

In many situations, spatially specific activity is influenced by meaningfully
distinct movement directions. For example, in the radial maze task, where animals
regularly run outward on each maze arm to obtain a reward then return to the
central platform to initiate the next choice (Fig. 2a), outward and inward arm
movements reflect meaningfully distinct behavioral episodes that occur repetitively.
Correspondingly, hippocampal neurons reflect the relevant “directional structure”
imposed by this protocol, and almost all place cells fire only during outward
or inward journeys. Similarly, place cells are activated selectively during distinct
approach or return episodes and from variable goal and start locations in open
fields and linear tracks. Markus et al. (1995) directly compared the directionality
of place cells under different task demands and found that place cells that were
nondirectional when rats foraged randomly in an open field were directional when
they systematically visited a small number of reward locations. Taken together,
these findings emphasize that place cells exhibit movement-related firing patterns
whenever particular movements are associated with meaningfully different events.

Other studies have demonstrated firing patterns of hippocampal neurons directly
related to nonspatial, nontemporal stimulus, cognitive, and behavioral events. In
rats and rabbits performing different classical conditioning tasks, a large fraction
of hippocampal neurons fire strongly associated with the learned significance of
stimuli and with learned responses. Hippocampal cells begin to fire early in training,
prior to the appearance of the conditioned responses, and the responses of individual
cells can be related to the timing of stimuli and conditioned responses. A large
fraction of hippocampal neurons are also activated in animals performing a variety
of instrumental learning tasks that involve discriminations among olfactory, visual,
or auditory stimuli, and delayed matching and nonmatching to sample tasks that test
recognition memory (see Eichenbaum et al. 1999). Different neurons are activated
during virtually every moment of task performance, including during approach
and stimulus sampling behaviors, discriminative responses, and consummatory
behaviors (Fig. 4).
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Fig. 4 Hippocampal neuronal firing patterns in rats performing an odor delayed nonmatch to
sample task (Wood et al. 1999). (a) On each trial the rat is presented with one of nine odors at
any of nine randomly selected locations. To obtain a buried reward, the rat must identify whether
the odor is the same as (matches, trial n + 1) or differs from (nonmatches, trial n + 2) the odor
presented on the previous trial. Panels b and c show the average firing rates of two cells associated
with all the places and all the odors. (b) This cell fires selectively when the rat samples odor 5,
and this cell does not fire differentially depending on where the trial was performed. (c) This cell
fires selectively when the rat performs the trial at adjacent positions 2 and 3 and fires similarly
associated with all the odors

Several recent studies suggest that some hippocampal neurons fire associated
with specific stimulus, spatial, and action combinations, and their significance,
and these findings show a remarkable range of information and combinations of
information encoded by hippocampal neural activity. For example, Wirth et al.
(2003) described hippocampal cells that change their responses to stimuli as animals
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learn to make a particular spatially directed behavioral response to those stimuli.
Moita et al. (2003) recently reported that place cells begin to fire to tone stimuli
associated with shock when a rat occupies the cell’s place field. Komorowski et al.
(2009) showed that hippocampal neurons develop object-specific activity as animals
acquire object-location associations. Similarly, after training on somatosensory or
auditory discrimination tasks, hippocampal neurons encode tactile and auditory
cues along with the locations where they were experienced and rewarded (Itskov
et al. 2011, 2012; Vinnik et al. 2012). Leutgeb et al. (2005a, b) characterized
hippocampal neurons as responding with changed firing rates when the rat occupied
different small chambers within a constant large environment, but the same cells
qualitatively changed firing patterns when the global environmental cues were
altered. They suggested that specific events within an overall environment are
encoded by a rate code within an overall consistent spatial representation. Rivard
et al. (2004) described a class of place cells that fire when a rat is in proximity
to a large object that occupies different positions in the environment (and even in
multiple environments), as well as place cells whose activity is not influenced by
the object, and yet others that fire only when the object is in a particular location.
Similarly, Wood et al. (1999) described hippocampal neurons that fired associated
with odorous stimuli, the location where they appeared in the environment as
the animal explored them, or combinations of the odor and location (Fig. 4). In
addition, the activity of some cells reflects the relevant cognitive demands of the
task, for example, the match or nonmatch relationship between stimuli when a
judgment between these is required. These firing patterns could also reflect reward
expectancies associated with particular stimulus contingencies (Hok et al. 2007)
also observed when rats discover a new goal location (Fyhn et al. 2002).

The nonspatial and nontemporal firing patterns of hippocampal neurons are as
robust as spatial firing patterns, whenever the neural activity can be closely time-
locked to critical sensory or behavioral events and the prevalence of spatial and
nonspatial firing patterns is also comparable in studies where the incidence of both
types of coding was evaluate (e.g., Wood et al. 1999). This combination of findings
indicates that hippocampal neurons represent a broad variety of objects, places, and
object-location conjunctions as well as actions taken toward those objects and their
significance.

In addition, it is notable that hippocampal neurons represent sequences of
events that compose entire behavioral episodes. As animals perform virtually all
behavioral tasks, a series of hippocampal cells are sequentially active, consistent
with the view that the hippocampus automatically encodes the flow of events in
experience (Eichenbaum et al. 1999; Eichenbaum 2004, 2014). In addition, when
rats traverse routes through space, the firing patterns of individual neurons are
dependent on which neurons fired before and after, further suggesting sequence
coding (Ferbinteanu and Shapiro 2003). Finally, sequences of spatial firing patterns
produced during specific experiences are “replayed” during subsequent sleep,
consistent with the binding of sequences of firing patterns (e.g., Louie and Wilson
2001), and firing sequences are replayed in anticipation of specific movement paths
through space (Pfeiffer and Foster 2013, 2015).
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Finally, both the spatial and nonspatial firing patterns of hippocampal neurons
are as easily observed in behavioral tasks that do not depend upon the integrity of
the hippocampus as they are in situations where the hippocampus is necessary for
performance. For example, place cells are as readily observed in rats during random
foraging or other spatial tasks without a memory demand, as they are in animals
performing a hippocampal-dependent radial maze task. Similarly, nonspatial firing
patterns were as robust and as prevalent in hippocampal cells recorded from
animals performing classical conditioning or odor discrimination tasks where
performance is not disrupted by hippocampal damage as in variants of the same task
where hippocampal damage affects performance. Thus both nonspatial and spatial
representations by hippocampal neurons are “automatic” in the sense that they arise
regardless of whether task performance depends on hippocampal function.

Context

One view of hippocampal function is that the hippocampus represents the context
in which specific events occur. What is meant by “context” is not clear, and whether
its domain includes spatial and temporal as well as other aspects of the situation
in which events occur is also not clear. The data suggests that all aspects of the
background context in which specific events occur and when places are occupied
can dramatically affect hippocampal neural activity. For example, the spatial firing
patterns, and the extent to which firing is dependent on spatial orientation, are
dramatically different when a rat forages randomly or produces repeated paths as it
traverses an environment (Markus et al. 1995). Notably, as in most all experiments,
some cells fire similarly in the two situational contexts, whereas others change
dramatically – showing that the hippocampus represents both the commonalities
and differences in the two contextually defined situations.

Seemingly subtle changes in environmental cues can also produce dramatic
changes in the spatial firing patterns of hippocampal neurons. For example, changes
in the background color or background odor of an environment can dramatically
change the spatial firing patterns of individual hippocampal neurons (Anderson and
Jeffery 2003). As in other studies, in this experiment some cells did not change for
each contextual shift, whereas others did. What cues and the extent of situational
change that causes alterations in firing patterns is not clear, but several recent studies
have examined the dynamics of firing pattern changes when cues are gradually
altered. For example, when the shape of an environment is gradually altered (Wills et
al. 2005), or critical cues are gradually changed (Rotenberg and Muller 1997), most
place cells do not alter their firing patterns initially, but at some level of change,
dramatically alter their firing patterns. This sudden switch of firing patterns when a
threshold of cue alteration is passed suggests an attractor state dynamic (not unlike
that of many other brain areas) in which the contextual representation switches from
pattern completion to pattern separation. Area CA3 demonstrates a particularly
sharp discrimination gradient in making this switch (Leutgeb et al. 2004; Lee et
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Fig. 5 Hippocampal neuronal activity as rats perform a delayed alternation task. (a) Schematic
view of the modified T-maze. Rats performed a continuous alternation task in which they traversed
the central stem of the apparatus on each trial and then alternated between left and right turns at
the T-junction. Reinforcement for correct alternations was provided at water ports (small circles)
on the end of each choice arm. The rat returned to the base of the stem via connecting arms and
then traversed the central stem again on the next trial. For analysis of neural firing patterns, left
turn (blue arrow) and right-turn (red arrow) trials were distinguished. Only trials that involved
correct responses were included in the analyses. (b) Schematic of the stem of the T-maze indicating
divisions of the central portion of the stem into the four sectors used in the data analyses (see
below). (c) Example of a hippocampal cell that was active when the rat is traversing the central
stem of the maze. This cell fired almost exclusively during left-turn trials. The paths taken by the
animal are plotted in the left panel (blue, left-turn trial; red, right-turn trial). In the middle panels,
the location of the rat when individual spikes occurred is indicated separately for left-turn trials
(blue dots on light gray path) and right-turn trials (red dots on dark gray path). In the right panel,
the mean firing rate of the cell for each sector (see b above) is shown separately for left-turn trials
(blue) and right-turn trials (red)

al. 2004). It appears that hippocampal cell assemblies can rapidly switch between
spatial representations as animals perform different tasks in the same environment
(Fenton et al. 1998; Jackson and Redish 2007).

Several other recent studies have focused on changes in context defined by the
behavioral demands of a task and the temporal contexts in which these demands
are differentiated. In some of the most productive of these studies, animals traverse
multiple overlapping paths such that the common places compose part of different
overlapping routes. For example, in several of these studies, rats alternate left-
and right-turn routes through a T-maze, where traversal of the stem of the maze
is common to both paths (Fig. 5). In this and similar tasks, many hippocampal
neurons have distinct firing patterns, even when the rat traverses the common stem
depending on whether the rat is performing a left-turn or right-turn trial (Wood et
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al. 2000; Frank et al. 2000; Ferbinteanu and Shapiro 2003; Ainge et al. 2007; Bower
et al. 2005; Lee et al. 2006; Griffin et al. 2007; Robitsek et al. 2013). Importantly,
some cells fire similarly as the rat performs both routes, indicating the hippocampus
represents both the distinct paths and the common elements among them. A recent
extension on these findings showed that when the alternation task is separated
into distinct sample and choice phases, most hippocampal neurons have different
spatial firing patterns on the distinct trial phases, and within that, some cells also
differentiate the two routes within each phase (Griffin et al. 2007). These data show
that different contextual conditions within a complex task are represented distinctly
and are linked through representations of their common features by hippocampal
neurons.

Additional recent data have shown global shifts in hippocampal firing patterns
during the course of events over time, suggesting a representation of temporal
context. In one study, as rats performed the T-maze alternation task for 100+ trials,
ensembles of simultaneously recorded place fields gradually shifted forward along
the maze (Lee et al. 2006). The gradual shifting of the overall spatial representation
provided information that could distinguish between sequential trials along the same
left-turn or right-turn paths.

In another study, rats were trained to alternate between two ends of a chamber
where they sampled a sequence of odors and then were presented with two of
the odors in the sequence and asked to judge their order (Fig. 6; Manns et al.
2007). In order to examine whether the firing patterns of hippocampal neurons
differentiated the two spatial contexts in which odors were sampled and the
temporal context in which odors were sampled within and between trials, small
ensembles of hippocampal neurons were recorded around the time of odor sampling
on each stimulus presentation in the sequence. The similarity of firing patterns
of hippocampal ensembles was measured as the distance between n-dimensional
population vectors wherein each dimension was the firing rate of each cell around
the odor sampling period. Hippocampal neuronal ensembles differentiated the two
sampling locations and gradually changed between odor sampling events, both
within the stimulus sequence that composed each trial and across trials within
a session. Moreover, the appearance of a substantial change in the contextual
representation within trials predicted subsequent success in the judgment about the
order of odors, whereas errors were marked by a lack of this temporal context
signal. These data strongly suggest that hippocampal neural activity represents a
combination of the spatial and temporal context of events both within specific
experiences and across experiences over prolonged periods.

Finally, in a study directed at exploring hippocampal representations in context-
dependent memory, McKenzie et al. (2014) characterized hippocampal neural
activity in a task where rats learned multiple context-dependent object-reward asso-
ciations. Analyses of single-neuron firing patterns revealed considerable variation
in the types of nonspatial and spatial information encoded in hippocampal neural
activity patterns, showing that hippocampal neuronal activity in complex tasks is
“high dimensional” in the sense that hippocampal neurons exhibit considerable
mixed selectivity to multiple relevant nonspatial and spatial dimensions that are
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Fig. 6 Representation of temporal context supports memory for the order of a sequence of
odors. (a). Schematic of the task. On each trial, rats alternated between left and right sides of
the enclosure as they encountered a trial-unique sequence of five odors. Rats were then tested
with a nonadjacent pair of the odors and were rewarded for selecting the odor that had appeared
earlier in the sample sequence. (b). Examples of gradual changes in hippocampal place fields
across a testing session. Example of hippocampal firing rates as a function of the rat’s location in
a rectangular testing enclosure for the 8 (out of 18) recorded place cells. The results are shown
for the entire test session (leftmost column) and separately for blocks of five trials (rightmost
four columns). Note that the firing rate of some cells increases, whereas that for others decreases
through the session. (c). Example of changes in the pattern of hippocampal activity within a trial.
The top row of graphs shows the first, third, and fifth events on trial 15 of this session. Because
the rat alternated sides of the testing enclosure, these events all occurred on the left side of the
enclosure. The bottom row shows the first, third, and fifth events on trial 16 of the same session.
These events all occurred on the right side of the enclosure, and the difference in pattern of activity
between the top row and bottom row illustrates the influence of location on the hippocampal
ensemble response. The difference between events within a trial illustrates the effect of temporal
context on the hippocampal ensemble, and the numbers above the double arrows show an index
of the population firing rate distance for the indicated comparison. For both left and right side trials,
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salient in a large range of memory tasks, as discussed above. In an effort to under-
stand how these dimensions are organized in hippocampal networks, McKenzie
et al. characterized the neural ensemble representations using a representational
similarity analysis (RSA) that compared population vectors accumulated during
each type of event defined as a particular object in a specific position associated
with reward or non-reward value within one of two spatial contexts. The RSA
generated correlation coefficients that characterized the similarity of ensemble firing
patterns among all pairs of event types. Then a hierarchical clustering analysis was
used to determine the pairs of events that were most similar, then iteratively, the
combined pairs of events that were most similar, and so on. This analysis revealed
a hierarchy of relations among events: Events that involved the different objects of
the same value were lowest in the hierarchy and embedded within specific positions.
Next, events that involved different values were embedded within positions. Next,
events at each position within a context were embedded within each context. Finally,
representations of events across contexts were anticorrelated. Thus, hippocampal
ensemble represented the identity of the objects, their reward assignments, the
positions within a context in which they were experienced, and the context in which
they occurred and networked these representations to form a systematic “map” of
relations between the different types of memories separated by the spatial context
in which they occurred.

Summing Up: The Memory Space Hypothesis

What theoretical framework could capture the broad range of behavioral-related
firing patterns of hippocampal neurons – and explain the role of these represen-
tations in hippocampal-dependent memory? Some have focused on the place cell
phenomenon and its variants observed in areas that are outside of and connected
with the hippocampus: head direction cells and grid cells. Combinations of these
behavioral firing properties have been used to formulate schemes by which the
hippocampus is used in navigation and path integration (e.g., McNaughton et al.
2007). Such narrow formulations fall short of matching the range of memory that
relies on hippocampal processing (Squire et al. 2004; Eichenbaum et al. 2007;
Eichenbaum 2014; Schiller et al. 2015). On the other hand, memory for routes does
provide a good example of the kind of memory that depends on the hippocampus.

�
Fig. 6 (continued) the firing rate patterns become more different over the trial. (d). Similarity
of ensemble responses according to temporal lag between odors encountered during the sample
phase. Results from odors encountered in the same position (red) are plotted separately from odors
encountered in different positions (blue). In addition, results from trials that were subsequently
performed correctly are plotted separately from incorrect trials. A lower distance index corresponds
to greater similarity of the population firing rates. Note steeper slopes of the lines, indicating greater
change in the temporal context signal, on correct trials. (From Manns et al. 2007)
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When we remember a spatially extended episode, one recalls a starting point, a
series of landmarks and turns in the path one takes, turns examined with thoughts of
where they would have led but then rejected, prospects of choices made, and finally
what one discovered at the end of the route. Expanding on the example of spatial
memories and adding an essential temporal organization component, we employ
similar recollective processing to remember the twisting plot of a complex action
thriller, the relationships and interactions among characters in a soap opera, and the
scientific history and relationships among our own colleagues.

All of these examples highlight three central features in association prominent in
the firing properties of hippocampal neurons and hippocampal-dependent memory.
First, specific items, persons, and events are represented in the spatial and temporal
context in which they occur. This is why spatial representations are both always
prominent and strongly dependent on the objects and actions associated with
locations. Second, representations of events are bound in sequences that compose
distinct episodes. Such time binding explains the dependence of hippocampal
representations on past and future events and supports the ability to remember
the order of events in experiences. Third, event and episode representations are
linked by common features of experience. These “nodal” events are reflected
in the firing patterns of hippocampal neurons that are activated for a particular
stimulus experienced in many different locations (Fig. 4b; Wood et al. 1999)
or object features common to many stimuli (Hampson et al. 2004) or particular
people presented in different scenarios (e.g., “Bill Clinton cells”; Kreiman et al.
2000). These nodal representations support our capacity to weave experiences
into networks of memories. Remembering routes through the environment, action
thrillers, soap operas, and collegial organizations are exceptionally vivid examples
of each of these features of memory, and they reflect the fundamental features of
declarative memory. The mission of modeling hippocampal function, in the view of
this experimentalist, is to explain the mechanisms and structures of the hippocampal
memory space and how it interacts with cortical areas to encode and generate the
details of declarative memories.

Experimental Techniques

The state-of-the art method for recording the extracellular spike activity of hip-
pocampal neurons involves the tetrode array, a set of independently driven elec-
trodes, each composed of four twisted 12–13 micron-insulated wires gold plated at
the exposed surface that is in contact with the brain tissue. Electrodes are connected
to a headstage that typically includes a unity gain preamplifier for each wire used
to decrease the impedance of the signal to be passed on. Signals are fed through
a multiwire cable, often using a commutator to prevent cable twisting, to an A/D
converter as the interface to a computer workstation, which digitizes the spike
waveforms at high speed (e.g., 30 Khz).
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Fig. 7 Example data from one tetrode showing similar projections of spike waveform clusters
across quartiles of a recording session in the test of memory for the order of a series of odors.
Individual points correspond to neuronal spikes and are colored to represent the different neurons
recorded on this tetrode. The Y-axis shows the amplitude of each spike as it was recorded on one
wire of the tetrode, and the X-axis shows the amplitude of another wire from the same tetrode. The
clusters are similar in each of the session quartiles, indicating that no tetrode movement occurred
over the long recording session. (From Manns et al. 2007)

The close spacing of the four individual wires within each tetrode makes it likely
that multiple wires will record the activity of a neuron whose cell body or axon
is in proximity with the electrode tips. Each channel is likely to differ slightly in
distance or area of contact with the neuron resulting in slightly differing waveforms
of the action potential from each wire within a tetrode. Furthermore, when a tetrode
is driven into a densely packed cell layer, such as found in the pyramidal cell
layers of CA1 and CA3, wires are likely to record from several different cells, each
characterized by a unique profile of action potential waveforms among the four
wires within a tetrode. To isolate individual neurons, software programs compare
the amplitude, width, and other parameters of spikes across wires within the tetrode,
yielding distinct scatter plots of spike waveform clusters associated with different
neurons for each parameter compared (Fig. 7). Each tetrode typically records the
activity of up to approximately 6–8 isolatable cells, and tetrode arrays often have
as many as 12–14 closely spaced electrodes, providing a realistic capability of
simultaneous recording of 50–100+ neurons (Wilson and McNaughton 1993).
Tetrodes perform well in recording from pyramidal cells and less well in recording
interneurons, presumably because of their smaller cell body size, and success is rare
in recording action potentials from dentate granule cells. Tetrodes are also suitable
for recording extracellular local field potentials.

Once cells are isolated, spike trains are saved as lists of the time of arrival of
spikes along with the onset times of behavioral parameters including task relevant
stimuli and behaviors. In many experiments, the position of the animal’s head is
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also recorded at regular intervals (e.g., 30–60 s) by placing one or more lamps on
the head stage and using a camera system to isolate the location of the lamps with
the environment in an X-Y coordinate system. The firing rates of individual neurons
are typically related to the onset or period of specific events by peri-event histograms
(PETHs), and neuronal activity is usually considered related to a stimulus or event
if the firing rate is reliably changed just after event onset compared to a baseline
period before event onset, as tested with standard parametric statistical methods.
Sometimes the selectivity of firing associated with different stimuli or events is
characterized by comparing firing rates during specified event periods and testing
for reliable differences between multiple repetitions of each different stimulus or
event.

Spatial firing patterns are typically assessed by dividing the environment into a
two-dimensional array of location pixels of 1–3 cm-sqr. Firing rate for each pixel is
calculated as the number of spikes per second occupancy in the pixel. Often firing
rates are smoothed by a weighted average of a target pixel and all surrounding pixels.
Place fields are usually defined as a set of adjacent pixels that meet a firing rate
criterion, e.g., above 1 Hz and 2 SD above the overall average firing rate. Similarity
or difference in spatial firing patterns between conditions is typically measured by
correlating activity among pixels in a pair of firing rate maps.

A major problem in comparing sensory-behavioral and spatial firing patterns of
hippocampal neurons involves technical requirements for collecting data for each
type of analysis. To collect multiple samples of recordings during well controlled
behavioral events, which is required to assess the statistical reliability sensory-
behavioral correlates, one needs to have several repetitions of each discrete event.
By contrast, to collect spatial firing patterns independent of behavior, one needs to
have the animal occupy all locations in the environment many times in constant
or randomly changing behavioral patterns. These demands for data collection
in behavioral and spatial characterizations are mutually exclusive and make it
impossible to simultaneously determine sensory-behavioral and spatial correlates
of activity.

Some of the best examples where both kinds of information have been obtained
come from studies where the environment is “linearized,” that is, the animal moves
along a narrow track that restricts its movements to one dimension and all locations
are automatically occupied as the animal moves along a linear, rectangular, or
circular track, and when specific behaviors or stimuli occur at particular locations
that can be changed in some way relevant to the task under study. The continuous
T-maze alternation task (Fig. 5a) is a particularly successful and productive example
of such a protocol. Animals move throughout the maze every other trial, alternating
left-turn and right-turn routes that overlap in the maze stem, and firing patterns
associated with past or future locations and accuracy of decisions can readily be
determined. Several variants on this task have provided opportunities to study many
aspects of memory, movement, and decision processes.
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The Future

The near future will surely bring continued investigation of potential differences in
the spatial- and behavior-related firing patterns of neurons in different subfields and
along the dorsal-ventral axis of the hippocampus as well as in the structures that
send inputs into and receive the outputs of neurons in the hippocampus. Progress
in providing sufficient information for constructing models of the functional
microcircuitry of the hippocampus surely depends on characterizations of the major
cell types in all the hippocampal subfields and areas to which they are connected.
In addition, we have only begun to scratch the surface of characterizing the time
series of firing patterns, particularly in relation to local rhythmic activity that can be
recorded along with spikes.

Another dilemma that has to be resolved is how to combine the prevalence and
ease of recording spatial firing patterns with the need to relate firing patterns to
the kinds of learning and memory that are dependent on hippocampal function.
Because it is so difficult to align electrodes to record from large numbers of neurons
simultaneously, many of the best recording studies have maximized recording
yield by minimizing the concurrent demands of the behavioral task. In many of
these studies, the behavior is trivialized to asking the rat to merely find food
scattered in the environment. Experimenters assume that learning occurs when
this behavior is executed under conditions of novel environmental stimuli, but the
protocol lacks any metric or evidence that learning has actually occurred or when
it occurred. This strategy severely limits the extent and precision to which firing
patterns can be linked to memory processes. Ultimately, methods must be found to
maximize the recording yield while incorporating sufficient behavioral content to
allow meaningful interpretation of the observed firing patterns.

Another challenge for the longer range future will be to isolate where within the
hippocampus, particular sensory, behavioral, or spatial firing patterns arise. Because
subfields and components of the hippocampal region are highly interconnected,
it can be expected that firing patterns that reflect a specific aspect of memory
processing will be projected to several other closely connected areas. In order to
localize the origins of particular firing patterns, new advances will be required to
record from specific hippocampal subfields while the activity in other subfields is
silenced, and preferably the silencing can be reversible so that activity patterns can
be compared in intact versus disconnected conditions.

The long range future of recording behavior-related firing patterns in the
hippocampus is bright, despite the above-described challenges. Activity patterns of
hippocampal neurons provide a crucial bridge between cellular plasticity phenom-
ena, local and global circuitry, overt behavior, and cognition. This bridge will be
required to show how intracellular processes and microcircuit connectivity leads to
functional activity of the information processing units that generate behavior.
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Part II
Computational Analysis

Vassilis Cutsuridis and Bruce P. Graham

In the Experimental Background part, leading experimental neuroscientists dis-
cussed the morphological, physiological and molecular characteristics as well as
the connectivity and synaptic properties of the various cell types found in the
hippocampus. Behaviour-related ensemble activity patterns of morphologically
identified neurons in anaesthetized and freely moving animals provided insights into
the functions of the hippocampal areas. However, this accumulation of knowledge
about the neural components (e.g. genes, molecules, synapses, dendrites, single
neurons and networks) does not in itself provide conclusive insight into the compu-
tations performed in different hippocampal areas. Mathematical and computational
modelling and analysis play an instrumental role in exploring these computations.
They allow the synthesis of experimental data from different levels of complexity
into a coherent picture of the system under study.

In this part, leading computational neuroscientists present models of the hip-
pocampus at various levels of detail (molecular, synaptic, single cell and network).
These models make use of the knowledge presented in the Experimental Back-
ground part to discuss the overall global function of hippocampal microcircuits
(in areas CA1, CA3, dentate gyrus and entorhinal cortex). Synaptomics and
connectomics models of hippocampal structures are initially discussed. Then,
network models of memory, rhythm generation and spatial navigation are presented,
followed by abstract and biophysical models of synaptic plasticity. Network models
of hippocampal implicated disorders (epilepsy and schizophrenia) are then detailed,
and how their network topologies, connectivities and activities change in these

V. Cutsuridis
School of Computer Science, University of Lincoln, Lincoln, UK
e-mail: vcutsuridis@lincoln.ac.uk

B. P. Graham
Department of Computing Science and Mathematics, University of Stirling, Stirling, UK
e-mail: b.graham@cs.stir.ac.uk

mailto:vcutsuridis@lincoln.ac.uk
mailto:b.graham@cs.stir.ac.uk


438 V. Cutsuridis and B. P. Graham

diseases are discussed. Finally, two chapters are dedicated to describing simulator
environments of single neurons and networks currently used by computational
neuroscientists in developing their models and modelling tools to parametrically
constrain them.

In chapter “Systematic Data Mining of Hippocampal Synaptic Properties”,
Moradi and Ascoli describe a systematic approach to identify, interpret, extract,
normalize, infer and finally model synaptic electrophysiology. First, they introduce
the Hippocampome.org circuitry model, describe the relevant synaptic parameters
and succinctly review the sources of experimental measurements. Then, they
outline the conceptual organization of the available electrophysiological data, offer
illustrations of proper and fuzzy empirical evidence and provide an interim summary
of the ongoing literature mining effort. The implementation requirements in terms of
data integration and simulation, namely, covariate analysis and uniform parameter
normalization, inferential estimations of likely parameter ranges for missing data
and computational models of synaptic amplitude, kinetics and plasticity, are then
presented. With a closing part they provide a succinct outlook on future directions.

In chapter “Spatio-Temporal Patterns of Granule Cell Activity Revealed by a
Large-Scale, Biologically Realistic Model of the Hippocampal Dentate Gyrus”, Yu,
Hendrickson, Song and Berger propose a computational framework able to integrate
the majority of available, quantitative structural and functional information at
various levels of organization to generate a large-scale, biologically realistic, neural
network model with the goal of representing all of the major neurons and neuron
types, and the synaptic connectivity, found in one hemisphere of the rat dentate
gyrus. Detailed excitatory and inhibitory neuron models constructed using multi-
compartment approaches (on the order of hundreds of compartments per neuron)
are then geometrically arranged based on anatomical data to encompass the entire
longitudinal extent of the hippocampus and finally synaptically connected using
the topographical constraints describing the region. Through a series of simulations
are performed which primarily explore the role of network architecture on the
spatiotemporal patterns of activity generated by populations of granule cells in the
dentate gyrus. The simulations show specifically that the topographical projection
of axons between the entorhinal cortex and the dentate granule cell regions of the
hippocampal formation acts as a spatial filter which organizes the postsynaptic
population into subgroups of neurons that exhibit correlated firing expressed as
spatiotemporal clusters of firing.

In chapter “A Model of Spatial Reach in LFP Recordings”, Lindén, Tetzlaff,
Łeski, Pettersen, Grün, Diesmann and Einevoll describe a model of LFP generation
that considers how population geometry, single-cell features and population-level
correlations determine the size of the region generating the LFP measured in the
centre of a neuronal population. The model assumes passive dendrites and considers
LFPs due to synaptic currents and the associated return currents. Discussions on
how to model the spatial decay outside the active neuronal population which, in
turn, may help to understand the relative LFP contributions from simultaneously
active neuronal populations are also provided.

http://dx.doi.org/10.1007/978-3-319-99103-0_11
http://dx.doi.org/10.1007/978-3-319-99103-0_12
http://dx.doi.org/10.1007/978-3-319-99103-0_13
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In chapter “Models of Rate and Phase Coding of Place Cells in Hippocampal
Microcircuits”, Cutsuridis presents four computer models of place cell rate and
phase coding in hippocampal microcircuits in order to explore the mechanisms by
which both coding schemes are generated and/or maintained in these microcircuits.
Of crucial importance in these models is how theta-modulated inhibition interacts
with synaptic plasticity in order to preserve the rate and phase coding properties of
place cells in the CA1 microcircuits.

In chapter “A Model for Grid Firing and Theta-Nested Gamma Oscillations in
Layer 2 of the Medial Entorhinal Cortex”, Nolan presents a computational model
of layer 2 of the entorhinal cortex. The model addresses the general question
of whether layer 2 stellate cells and their indirect interactions through inhibitory
interneurons are sufficient to account for grid firing or nested gamma oscillations.

In chapter “Computational Models of Grid Cell Firing”, Bush and Schmidt-
Hieber describe implementations of two classes of grid cell models – the oscillatory
interference and the continuous attractor dynamics – alongside a hybrid model
that incorporates the principal features of each. Discussions of the strengths and
weaknesses of each model and the predictions they make for future experimental
manipulations of the grid cell network in vivo are provided.

In chapter “Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based
Approach”, Graupner and Brunel discuss a biologically plausible but simpli-
fied calcium-based model that provides links between stimulation protocols, cal-
cium transients, protein signalling cascades and evoked synaptic changes. The
model implements two opposing calcium-triggered pathways mediating increases
of synaptic strength (LTP, i.e. protein kinase cascades) and decreases of synaptic
strength (LTD, i.e. protein phosphatase cascades or G-protein cascades). The model
accounts for a wide range of experimental plasticity outcomes in hippocampal cul-
tures and hippocampal slices. Quantitative fitting of the experimental data allowed
to predict differences in the underlying calcium dynamics between these different
experimental systems. The model further predicted plasticity outcomes in response
to more realistic activity patterns such as uncorrelated pre- and postsynaptic Poisson
firing.

In chapter “Simplified Compartmental Models of CA1 Pyramidal Cells of Theta–
Modulated Inhibition Effects on Spike Timing-Dependent Plasticity”, Cutsuridis
presents two simplified compartmental models of a CA1 pyramidal cell in order to
investigate the role of theta-modulated inhibition on the shape, sign and magnitude
of the spike-timing-dependent plasticity (STDP) kernel in its proximal dendrites.

In chapter “Factors Affecting STDP in the Dendrites of CA1 Pyramidal Cells”,
Saudargiene and Graham propose a biophysically complex microcircuit model
of region CA1 in order to explore the synaptic plasticity outcomes at excitatory
synapses on CA1 PC dendrites in response to experimentally used in vitro and
behaviourally relevant in vivo stimulation patterns. The first study aimed to replicate
the in vitro experiments of Wittenberg and Wang (2006) that demonstrated the
importance of stimulus timing and repetition on plasticity outcomes. The second
study aimed to study calcium-based plasticity in a spine head as a function of the

http://dx.doi.org/10.1007/978-3-319-99103-0_14
http://dx.doi.org/10.1007/978-3-319-99103-0_15
http://dx.doi.org/10.1007/978-3-319-99103-0_16
http://dx.doi.org/10.1007/978-3-319-99103-0_17
http://dx.doi.org/10.1007/978-3-319-99103-0_18
http://dx.doi.org/10.1007/978-3-319-99103-0_19
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timing of synaptic stimulation relative to ongoing theta-modulated activity in the
CA1 circuit.

In chapter “Computational Examination of Synaptic Plasticity and Metaplasticity
in Hippocampal Dentate Granule Neurons”, Shirrafiardekani and Moustafa present a
nine-compartmental model of a granule cell to examine how STDP and metaplastic-
ity contribute to the induction of homosynaptic LTP and concurrent heterosynaptic
LTD, to investigate the role of noisy spontaneous activity in producing heterosy-
naptic LTD in the lateral perforant pathway (LPP) and to present the metaplasticity
impact of the first medial HFS on synaptic plasticity produced by the second HFS.

In chapter “Genome-Wide Associations of Schizophrenia Studied with Com-
puter Simulation”, Neymotin, Sherif, Jung, Kabariti and Lytton using multiscale
modelling explored changes in theta and gamma activity in hippocampal area CA3
in order to investigate how changes in ion channels at molecular scale will alter
network activity. They showed how anomalies in brain waves can be correlated
with explicit alterations in information ow (measured using information theory) and
thereby could help explain alterations in cognitive function.

In chapter “Modelling Epileptic Activity in Hippocampal CA3”, Sanjay and
Krothapalli present an in silico model of the CA3 subfield of hippocampus to
investigate the role of changes in neuronal connectivity in the epileptic activity
generation in area CA3. They focus on the loss of dendritic inhibition leading
to sprouting in pyramidal cell dendrites and increased pyramidal cell excitability,
which in turn lead to epileptic activity generation.

In chapter “A Network Model Reveals That the Experimentally Observed
Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern
Separation Function of the Dentate Gyrus”, Hanuschkin, Yim and Wolfart discuss
the development of a conductance-based network model of the dentate gyrus to
investigate the experimentally constrained homeostatic adaptations of its intrinsic
neuronal properties in order to restore its pattern separation ability if it is lost during
epileptic excitability.

In chapter “Resources for Modeling in Computational Neuroscience”, Birgiolas,
Crook and Gerkin outline some of the most widely used software applications for
simulating neural models at various levels of biological detail. They also describe
resources that aid in reproducibility by allowing for model sharing and reusing,
for portability of models across simulation platforms and for validation of models
against experimental data.

In the final chapter (chapter “Experiment-Modelling Cycling with Populations of
Multi-compartment Models: Application to Hippocampal Interneurons”), Sekulic
and Skinner propose a cycling approach using experimental data as constraints
for building populations of multi-compartment models (Sekulić et al. 2014). These
models collectively capture a range of ion channel expression patterns that underlie
cell-type appropriate model output. Constraints on model parameters variations,
e.g. channel conductances, allow modelled cells to generate the desired output. The
predicted intrinsic property balances for functional outputs of the neuronal cell types
in question can then be examined with targeted experiments.

http://dx.doi.org/10.1007/978-3-319-99103-0_20
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Systematic Data Mining of Hippocampal
Synaptic Properties

Keivan Moradi and Giorgio A. Ascoli

Abstract Synaptic electrophysiology has been extensively investigated in the
rodent hippocampal formation for several decades. The strength, duration, and
plasticity of excitatory and inhibitory signals depend both on the presynaptic and
postsynaptic neuron types and vary substantially among subregions (dentate gyrus,
CA3, CA2, CA1, subiculum, and entorhinal cortex) and layers (e.g., oriens and
radiatum). While certain connections are better characterized (e.g., the Schaffer
collateral from CA3 pyramidal to CA1 pyramidal cells), the lack of a systematic
accounting of published synaptic data prevents a comprehensive comparison across
the whole circuit. Hippocampome.org, a knowledge base that identified over
100 neuron types based on morphological, electrophysiological, and molecular
evidence, enables integration and dense coverage of the available synaptic data.
Peters’ Rule predicts more than 3000 “potential connections” among neuron types.
Extensive literature mining revealed electrophysiological properties for approx-
imately 50% of these potential synapses at neuron-type level in peer-reviewed
publications. In these cases, we extract information about synaptic amplitude,
kinetics, and, when available, short-term and long-term plasticity. Due to widely
nonuniform experimental methods and conditions, these data must be normalized
and modeled to enable meaningful quantifications. The resulting type-based orga-
nized and integrated data will facilitate large-scale data-driven simulations of the
entire hippocampal formation.

Introduction

The mammalian hippocampus constitutes one of the most intensively studied neural
systems. Abundant evidence crucially implicates the hippocampal formation in
the consolidation and retrieval of episodic memories as well as in goal-oriented
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navigation. The basic organization of the hippocampal circuit has been known
for over a century, and a wealth of information exists about the morphology,
electrophysiology, and biochemistry of its neurons. Yet, a convincing explanation of
the cognitive functions of the hippocampus in terms of detailed cellular and network
mechanisms remains elusive.

Continuous growth in computing power makes it feasible to create a real-
scale, real-time, biologically faithful simulations of hippocampus information
processing at the level of individual spikes. Such a computational model could
greatly accelerate progress toward a deep and comprehensive understanding of
hippocampal function, further guiding experimental investigations. Designing a
large-scale anatomically and electrophysiologically realistic neural network model
of the hippocampus requires tight interactions with and proper support from an
adequately populated and continuously updated database containing the definition
of neuron types and their properties.

Since the advent of artificial neural networks, innumerable computational models
of the hippocampal formation have been built. The vast majority of these models,
however, greatly simplify the diversity of neuron types. Several models, for instance,
are limited to the principal cell excitatory backbone of the circuit, finessing the
inhibitory GABAergic connections. A complementary category of models includes
the local principal cell and a subset of GABAergic interneurons (e.g., CA1
pyramidal cells, fast-spiking basket cells, bistratified cells, and oriens/lacunosum-
moleculare cells) without including the entire extent of the hippocampal network.
The few attempts at simulating real-scale hippocampal circuitry have been so far
restricted to relatively data-richer subregions such as CA1 (Bezaire and Soltesz
2013) and DG (Schneider et al. 2012; Santhakumar et al. 2005) or had to greatly
sacrifice biophysical accuracy and diversity (Scorcioni et al. 2008).

Given the considerable accumulation of data about hippocampal neuron types
and their properties in the past two decades (e.g., Freund and Buzsaki 1996;
Houser 2007; Klausberger 2009; Chamberland and Topolnik 2012; Somogyi and
Klausberger 2005; Wester and McBain 2014; Canto and Witter 2012a, b), it is
tempting to assume that a critical mass of information may now (or will soon)
be available to draft a real-scale, biophysically and anatomically detailed neuron-
level model of the complete rodent hippocampal formation, including dentate
gyrus (DG); areas CA3, CA2, and CA1; subiculum; and entorhinal cortex. For
example, more than 122 neuron types of the rodent hippocampus have been recently
classified in terms of morphological patterns, electrophysiological characteristics,
and molecular features (Wheeler et al. 2015).

Planning for such real-scale modeling efforts immediately reveals one particular
informational bottleneck, namely, the methodical quantification of synaptic proper-
ties. The problem already becomes apparent at the simple numerical level: because
synaptic signals vary with the identity of both pre- and postsynaptic neurons, a
network with N neuron types contains of the order of up to N2 distinct synaptic
types. Moreover, while the properties of individual neurons can be investigated by
traditional single-cell recording, interrogating specific synaptic types requires the
much more challenging dual recording of identified neuronal pairs. As a result,
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none of the available systematic reviews on hippocampal neurons is sufficiently
comprehensive in terms of synaptic electrophysiology data to even remotely
constraint real-scale models. Even in the most detailed modeling efforts to date (e.g.,
Santhakumar et al. 2005), the parameters quantifying synaptic electrophysiology
(limited to a single table) are only loosely linked to the corresponding neuron types.

Some science historians believe that the theory of synapse has developed
gradually over 18 centuries (Bennett 1999). In rodent hippocampus, the first
synaptic signals were experimentally recorded starting in the late 1950s (Andersen
1959, 1960; Andersen et al. 1963; Kandel et al. 1961; Spencer and Kandel
1961). Since then countless papers have been published on hippocampal synaptic
physiology, including seminal discoveries of most types of synaptic plasticity.
Only a minute fraction of the publications that provide information about synaptic
electrophysiology, however, are linkable to unequivocally identifiable neuron types.
Nevertheless, in as much as we know no systematic literature mining effort has been
organized to date for creating a database of model-ready synaptic parameters in the
hippocampal formation similar to parallel projects for the neocortex (Markram et
al. 2015). Thus we present a plan to create a comprehensive knowledge base of
hippocampal synaptic electrophysiology for the modeling community.

Synaptic Informatics

The long-term goal of this project is to provide all necessary building blocks to
create a real-scale spiking model of the rodent hippocampal formation. Although
knowledge of neuron types abounds, a corresponding accounting of the electrophys-
iological properties of synapses is still missing. To generate biologically plausible
and meaningful predictions from such a neuronal network model, it is essential to
constrain the synaptic parameters based on existing experimental evidence or based
on inferential knowledge if the required data are missing. This chapter describes
a systematic approach to identify, interpret, extract, normalize, infer, and finally
model synaptic electrophysiology.

The remaining of the chapter is organized as follows. The present section briefly
introduces the Hippocampome.org circuitry model (section “Circuitry model”),
describes the relevant synaptic parameters (section “Synaptic parameters”), and
succinctly reviews the sources of experimental measurements (section “Sources
of data”). The next section outlines the conceptual organization of the avail-
able electrophysiological data, offering illustrations of proper (section “Evidence
proper”) and fuzzy (section “Fuzzy evidence”) empirical evidence and providing
an interim summary of the ongoing literature mining effort (section “Integrated
summary”). The following section describes the implementation requirements in
terms of data integration and simulation, namely covariate analysis and uniform
parameter normalization (section “Covariates and data normalization”), inferential
estimations of likely parameter ranges for missing data (section “Inferential data”),

http://hippocampome.org
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and computational models of synaptic amplitude, kinetics, and plasticity (section
“Models of synapses”). The closing section provides a succinct outlook on future
directions (section “Future directions”).

Circuitry Model

The conceptual foundation of the envisioned real-scale simulation of hippocampal
computation is grounded in the notion of neuron type (Bota and Swanson 2007).
In this framework, the building blocks of the network are neuron types, and the
synaptic circuitry can be described in terms of connectivity between neuron types.
To map the synaptic properties of the hippocampal formation, we leverage the
recent release of Hippocampome.org, a knowledge base of morphology, biomarkers,
cellular electrophysiology, and connectivity of 122 hippocampal neuronal types in
the rodent DG, areas CA3, CA2, CA1, subiculum, and entorhinal cortex (Wheeler
et al. 2015).

If all the hippocampal neuron types were connected to each other, nearly 15,000
connection types (122 × 122) would exist. Anatomical constraints and circuit
selectivity, however, considerably reduce the number of possible connections in
the hippocampal formation. First and foremost, if the axons of one neuron type
and the dendrites of another type are completely segregated in non-overlapping
subregions and layers, the former cannot form a potential connection with the latter
(Reimann et al. 2015). Connectivity of nearly 80% of the neuron type pairs in the
hippocampus can be excluded on these grounds alone. More subtle rules of synaptic
specificity further (if slightly) reduce the set of possible connected neuron type
pairs: for instance, Interneuron Specific interneurons selectively target GABAergic
neurons, whereas chandelier cells exclusively target the axonal initial segment of
glutamatergic neurons.

Based on these considerations, the 122 cell types of Hippocampome.org give
rise to 3289 potential synaptic types (Fig. 1), of which 1218 (37%) excitatory and
2071 (63%) inhibitory. Most of these potential connections occur within subregions:
261 (7%) in DG, 451 (14%) in CA3, 25 (< 1%) in CA2, 1065 (32%) in CA1, 8 (<
1%) in the subiculum, and 731 (22%) in the entorhinal cortex. Most (but not all) of
the remaining 748 (23%) cross-regional projections are from the principal neurons
(granule, pyramidal, and stellate cells). The vast majority of experiments reported
in the scientific literature regarding synaptic physiology in the hippocampus are
restricted to a tiny fraction of “famous” presynaptic/postsynaptic pairs, such as
mossy fiber synapses from dentate granule cells to CA3 pyramidal cells and
perisomatic synapses from fast-spiking basket cells to CA1 pyramidal cells. In order
to constraint a real-scale model of the hippocampal formation, however, the synaptic
parameters need to be estimated for all ∼3289 potential connections.

http://hippocampome.org
http://hippocampome.org
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Fig. 1 Spatially co-located axons and dendrites form the backbone for potential circuit connectiv-
ity, identifying 3289 potential synaptic connections among 122 neuron types in the hippocampal
formation. Rows and columns correspond to potential pre- and postsynaptic neuron types,
respectively. Only a subset of the presynaptic neuron types is labeled for clarity of illustration.
Colors represent the number of distinct anatomical parcels in which the axon of the presynaptic
neuron type (red, excitatory; blue, inhibitory) and the dendrites of the postsynaptic neuron type in
each pair are co-localized

Synaptic Parameters

Considering the large search domain and intended modeling application, we
focus our data mining effort exclusively on phenomenological aspect of synaptic
electrophysiology. In other words, we glean any and all essential evidence regarding
the strength and time course of synaptic signals, as well as their temporal evolution.
Consequently, we group available synaptic evidences as referring to amplitude,
kinetics, and short-term and long-term plasticities.

Synaptic amplitude is typically measured by current-clamp or voltage-clamp
methods, and the correspondingly reported voltage or current values depend on
the specific holding potential. Thus, for modeling purposes, sufficient information
must be extracted to allow conversion of these measurements into maximal synaptic
conductance.

Synaptic kinetics characteristics are also quantified in a variety of ways. Many
experimental studies report the 10–90% rise time and the half-height width (the
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interval between two crossings of 50% maximal amplitude). In other cases,
postsynaptic potentials or currents are fitted with alpha functions or with double or
triple exponential functions, yielding well-defined rise and decay constants. Double
and triple exponential time constants, however, cannot be analytically related to
each other (Moradi et al. 2013). For the purpose of implementing simulations,
kinetic data must be converted into uniformly defined parameters controlling charge
transfer by numerical refitting (Baker et al. 2011; Moradi et al. 2012).

Synaptic plasticity refers to activity-dependent changes in synaptic amplitude
and/or kinetic and is typically divided in short and long term depending on the
duration of the effect. The former is usually reversible in the orders of seconds
(Hennig 2013), although it can last up to minutes in hippocampal neurogliaform
cells (Karayannis et al. 2010). Long-term synaptic plasticity, in contrast, might in
principle be considered permanent, although it is most commonly studied for several
hours (Lee et al. 2009; Bliss and Lomo 1973; Andersen et al. 1977).

Short-term plasticity may result in a decrease or increase of the synaptic signal
(depressing and facilitating, respectively), or a combination thereof, depending on
stimulation frequency and other experimental conditions. A simple paired-pulse
ratio can be generally calculated whenever two successive synaptic signals are
reported.

Long-term synaptic plasticity is more complex and diverse and includes the
interplay of homeostatic and non-homeostatic modalities (Vitureira and Goda
2013). Homeostatic synaptic plasticity constitutes a negative feedback mechanism
(Turrigiano 2012), whereas non-homeostatic plasticity consists of both potentiating
and depressing phenomena that can be divided into Hebbian, anti-Hebbian, and non-
Hebbian. Hebbian and anti-Hebbian plasticity are associative, that is, they depend
on the correlated activity of the pre- and postsynaptic cells. Hebbian LTP, for
instance, requires coupling of presynaptic firing with postsynaptic depolarization
or firing (Le Roux et al. 2013; Perez et al. 2001; Ross and Soltesz 2001). In
contrast, anti-Hebbian LTP requires coupling of presynaptic firing with postsynaptic
hyperpolarization or quiescence (Le Duigou et al. 2015; Lamsa et al. 2007; Szabo
et al. 2012; Le Roux et al. 2013; Nicholson and Kullmann 2014; Le Duigou and
Kullmann 2011; Oren et al. 2009; Ali and Thomson 1998). In contrast, non-Hebbian
plasticity is nonassociative, i.e., it occurs independent of postsynaptic firing or
membrane potential; instead, it mostly depends on presynaptic firing rate (Urban
and Barrionuevo 1996; Campanac et al. 2013; Maccaferri et al. 1998; Lei et al.
2003).

In a prominent type of long-term plasticity, spike-timing-dependent plasticity
(STDP), the change in synaptic strength depends on the particular time difference
between presynaptic and postsynaptic activity. The most commonly observed form
of hippocampal STDP, especially in excitatory synapses, is asymmetric: presynaptic
firing followed by postsynaptic firing (pre-post) leads to potentiation, whereas the
reverse sequence of synaptic events (post-pre) leads to depression (Woodin et al.
2003; Dan and Poo 2006; Markram et al. 1997; Bi and Poo 1998; Astori et al.
2010). Inhibitory synapses have also been reported to display symmetric STDP in
the hippocampus (Woodin et al. 2003), whereas both pre-post and post-pre firing
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orders have similar plastic effects; even in these cases, however, the direction of the
change still depends on the relative timing: potentiation occurs with shorter intervals
and depression with longer ones.

Long-term synaptic plasticity is typically quantified by the temporal evolution
of postsynaptic current (PSC), postsynaptic potentials (PSP), or field postsynaptic
potentials (fPSP) upon synaptic stimulation with different frequencies and strengths.
All long-term synaptic plasticity data from different modalities need to be translated
into phenomenological parameters to be useful in computational modeling (see
section “Models of synapses”).

Sources of Data

Technologies to record synaptic signals have been available for several decades. For
the key purpose of quantifying the synaptic parameters between pairs of identified
neuron types, the most relevant approach is, unsurprisingly, paired recording. Direct
synaptic signals can be measured from connected pairs of neurons either with
intracellular electrodes (Dhillon and Jones 2000; Lacaille et al. 1987; Lacaille and
Schwartzkroin 1988; Pawelzik et al. 2002, 2003; Scharfman 1994; Vida et al. 1998)
or by patch clamp (Elfant et al. 2008; Geiger et al. 1997; Harney and Jones 2002;
Hefft and Jonas 2005; Liu et al. 2014; Savanthrapadian et al. 2014; Szabadics
and Soltesz 2009; Szabo et al. 2014; Williams et al. 2007). Either variant enables
intracellular labeling of the recorded cells for post hoc morphological identification
of neuron types. This approach also allows study of short- and long-term plasticity
(Karayannis et al. 2010; Le Duigou et al. 2015). Paired recording can also be
combined with extracellular stimulation to investigate the role of specific neuronal
types in synaptic integration (Perea and Araque 2007; Miles et al. 1996; Buhl et al.
1994; Glickfeld and Scanziani 2006). Recent optimization of multiple (clustered)
whole-cell recordings now makes it possible to measure synaptic signals between
several neuron pairs simultaneously, thereby substantially speeding up detailed
network analysis (Couey et al. 2013; Jiang et al. 2015).

A less technically challenging alternative to paired recording consists of extracel-
lular stimulation combined with patch clamp and intracellular recording. Although
this is a common method to study synaptic electrophysiology and long-term
plasticity in the hippocampus (Jaffe and Johnston 1990; Maccaferri et al. 1998;
Urban and Barrionuevo 1996), ascribing the presynaptic axons to a single neuronal
type is often impossible (Empson and Heinemann 1995; Glickfeld and Scanziani
2006; Han et al. 1993; Hardie and Pearce 2006; Kelsch et al. 2014; Okazaki et
al. 1999; Sik et al. 1997). The perforated or cell-attached variants are sometimes
preferred to prevent cell dialysis, enabling stable patches for longer time (Yang and
Dani 2014; Bi and Poo 1998; Woodin et al. 2003; Le Duigou et al. 2015). Combining
extracellular stimulation with fPSP recording further reduces cell-to-cell resolution
and essentially obliterates cell type specificity, but it may still provide general
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information about long-term evolution of synaptic signals (Derrick and Martinez
1996; Schurmans et al. 1997).

Patch clamp or intracellular recording can also be combined with neurotransmit-
ter uncaging to study synaptic signals. In particular, like many other electrophysio-
logical techniques, two-photon glutamate and one-photon GABA uncaging methods
have also been pioneered in the hippocampus (Lovett-Barron et al. 2012). Although
laser-scanning photo-stimulation allows one to interrogate the connection of large
numbers of cells with a single postsynaptic neuron, the identification of presynaptic
neuronal types remains problematic (Beed et al. 2010, 2013; Bendels et al. 2008).
Alternatively, optogenetic stimulation can also excite more or less homogeneous
neuronal populations depending on the specificity of gene targeting (Kohara et al.
2014; Melzer et al. 2012; Cardin et al. 2010).

Synaptic electrophysiology can also be studied with voltage-sensitive dyes or
calcium indicators as alternatives to patch clamp and intracellular recording. These
methods are particularly useful to infer synaptic attenuation since the synaptic
amplitude may be measured in the dendrites and in the soma within the same
neuron. Two-photon calcium imaging, for example, has been used to investigate
synaptic properties in combination with cell type-specific optical stimulation (Chiu
et al. 2013) or paired patch-clamp recordings (Mullner et al. 2015). Still, application
of these methods is generally limited because of the difficulty in unequivocally
identifying the neuron types.

Synaptic signals can also be recorded without external stimulation (Ledri et
al. 2011), as in the cases of spontaneous (Hajos and Mody 1997; Otis and
Mody 1992) and miniature (Goswami et al. 2012; Kumar and Buckmaster 2006)
events. Spontaneous events are synaptic responses to chance action potentials of
presynaptic cells driven by intrinsic membrane properties and/or network activity.
Miniature events, in contrast, are isolated in the presence of tetrodotoxin (TTX)
to block action potential initiation and propagation, thus constituting even more
“spontaneous” synaptic signals due to random neurotransmitter release. Therefore,
they can be further utilized for the quantification of readily releasable pool size, a
useful index to characterize short-term synaptic plasticity. Lastly, synaptic signals
may also be induced by application of drugs like kainate (Gloveli et al. 2005;
Whittington et al. 1995). Because the presynaptic neuron remains unknown in these
methods, spontaneous events and pharmacological stimulation are of limited utility
for the measurement of neuron pair-specific synaptic parameters.

Synaptic Electrophysiological Evidence

To ascribe a particular piece of synaptic electrophysiology evidence to a specific
potential connection, it is necessary to assign a unique identity to both the
presynaptic and postsynaptic neurons. In other words, sufficient morphological,
electrophysiological, or molecular information must be available to unequivocally
identify single pre- and postsynaptic neuron types. Using Hippocampome.org as the

http://hippocampome.org
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reference framework for neuron types, we label all synaptic evidence that can be
reasonably linked to a specific pair among the 3289 possible connections within the
122 × 122 connectivity matrix (Fig. 1) as “proper.” When the available information
is insufficient for such a determination, it is still usually possible to identify a limited
subset of possible pre-/postsynaptic neuron type pairs for which the synaptic data
are relevant. We call the synaptic evidence for those pairs “fuzzy.” In other words,
fuzzy evidence pertains to one among several pairs of neuronal types because either
the presynaptic or postsynaptic neuronal descriptions, or both, match more than one
Hippocampome.org neuron type.

Evidence Proper

As a first example of available synaptic information, we consider a case of
evidence proper from paired recording. In a dual recording experiment among
DG interneurons, both the pre- and postsynaptic cells were identified based on
axonal and dendritic morphologies, biomarkers, and electrophysiological prop-
erties (Savanthrapadian et al. 2014). In particular, basket cells (BCs) and hilar
commissural-associational pathway (HICAP) cells in this study were directly
linkable to equivalent neuron types in Hippocampome.org. Both neuron types had
dendrites spanning all layers of DG (hilus, granular, inner and outer molecular
layer), but the axons of basket cells were only present in the granular layer, whereas
the axons of HICAP cells only invaded the inner molecular layer. Furthermore,
BCs were fast-spiking and expressed parvalbumin, whereas HICAP cells were
regular firing and expressed CCK. Paired recordings provided a comprehensive
battery of amplitude, kinetics, and short-term plasticity measurements for all four
unidirectional synaptic pairs among these two neuron types. Furthermore, the
fraction of connected neurons out of the number of tested pairs revealed specific
estimates of connection probability: 25.9% for HICAP→HICAP (15:58), 10.7%
for BC→BC (6:56), 16.3% for HICAP→BC (15:92), and 13.3% for BC→HICAP
(6:45). It is important to note that, while paired recording allows computation of
connection statistics, lack of connectivity cannot be inferred on the basis of absence
of signals without strong assumptions on the number of neurons as well as their
axonal and dendritic densities for each type (Song et al. 2005; Hellwig 2000; Sporns
and Zwi 2004; Gerhard et al. 2011; Jiang et al. 2015).

Although electrophysiological evidence proper mostly comes from paired
recording studies, the orderly circuit organization of the hippocampus may also
aid univocal connection assignments. For instance, the synaptic signal from dentate
granule cells to CA3 lucidum LAX interneurons (Toth and McBain 1998) was
characterized simply based on single whole-cell patch clamp and extracellular
stimulation (Maccaferri et al. 1998). The dentate granular layer or the CA3
lucidum layer was stimulated at low intensity in transverse hippocampal slices
while recording excitatory postsynaptic currents (EPSCs) from CA3 interneurons
located in the lucidum layer or at the border between the lucidum and radiatum
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layers. The postsynaptic neuron type was identified based on its unique distributions
of dendrites in the CA3 radiatum and lucidum layers (Fig. 2A1) and especially of
axons in the CA3 lucidum layer (spilling in the adjacent pyramidal layers), which
are different from those of other lucidum interneurons (hence the name LAX for
“lucidum axon”). The assignment of the presynaptic identity to DG granule cells
is less straightforward. Based on the presence of soma and axons in the dentate
granular layer and CA3 lucidum, semilunar granule cells (Larimer and Strowbridge
2010; Williams et al. 2007), hilar ectopic granule cells (Marti-Subirana et al. 1986;
McCloskey et al. 2006; Pierce et al. 2011; Scharfman et al. 2003; Scharfman and
Pierce 2012), and CA3 granule cells (Szabadics et al. 2010) could all be alternative
stimulus sources. Nevertheless, dentate granule cells can be confidently identified
as the presynaptic type based on their sheer number relative to those much rarer
neuronal populations, combined with specific pharmacological clues typical of
the mossy fiber origin of the stimuli, such as the EPSC blockage by mGluR2

Fig. 2 Neuron types and synaptic signals. A1, CA3 lucidum LAX cells are identified by the
presence of axons in CA3 pyramidal layer, both axon and dendrites in lucidum, and dendrites
CA3 radiatum layer. A2, One of the CA1 neurogliaform types invades both the dentate gyrus outer
molecular layer and the CA1 lacunosum-moleculare. A3, The other type of CA1 neurogliaform
cells is limited to the lacunosum-moleculare layer only. B1–B3, somatic EPSCs corresponding to
the three neuron types illustrated in panels A1–A3. C, CA1 pyramidal cells and somatic EPSPs
recorded before (blue) and after (red) focal bicuculline application to different layers of CA1
(axons, red; dendrites, blue). A1 and B1 are adopted from Maccaferri et al. (1998); A2, A3, B2,
and B3 from Price et al. (2005); and C from Empson and Heinemann (1995), all with permission.
All morphologies are from NeuroMorpho.Org (Scorza et al. 2011; Cossart et al. 2006; Markwardt
et al. 2011; Ascoli 2006; Ascoli et al. 2007)
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agonists but not NMDA receptor antagonists. Synaptic amplitude and kinetics can
be measured from numerous EPSC traces recorded in this study. Furthermore,
paired-pulse facilitation was also reported in these synapses, thus revealing short-
term synaptic plasticity as well (Fig. 2B1). Interestingly, this study also identifies
the first known case of monosynaptic LTD between a hippocampal principal cell
and an interneuron by high-frequency stimulation.

Fuzzy Evidence

As an example of fuzzy synaptic evidence, we consider the excitatory inputs to
CA1 neurogliaform cells in the lacunosum-moleculare layer (Price et al. 2005).
In horizontal hippocampal slices devoid of CA3 region, and in the presence of
GABAA receptor blocker, extracellular lacunosum-moleculare stimulation elicits
EPSCs in CA1 neurogliaform cells visually identified based on soma shape and size
(Fig. 2B2-3). Assuming that only axons are activated by extracellular stimulation
because of their lower threshold, all excitatory cells with axons in CA1 lacunosum-
moleculare are potential presynaptic cells, including local neurons as well as
projecting cells from entorhinal cortex, subiculum, thalamic nucleus reunions, and
amygdala (Amaral and Witter 1995). Focusing on the hippocampal formation, these
include entorhinal layer 3 pyramidal (Canto and Witter 2012b; Dickson et al. 1997;
Germroth et al. 1991; Steward and Scoville 1976; Steward 1976; Tahvildari and
Alonso 2005) and pyramidal-stellate neurons (Canto and Witter 2012a; Germroth et
al. 1989; Gloveli et al. 1997; Andersen 2007; Steward and Scoville 1976; Steward
1976; Tahvildari and Alonso 2005; van der Linden and Lopes da Silva 1998),
subicular CA1-projecting pyramidal neurons (Harris and Stewart 2001), and CA1
Cajal-Retzius cells (Anstotz et al. 2014; Quattrocolo and Maccaferri 2013, 2014).
The grouped synaptic data also likely include recording from two morphologically
distinct types of postsynaptic neurogliaform cells (Fig. 2 A2, 2A3). One of them,
with soma located closer to the radiatum border, has axons and dendrites completely
confined to the lacunosum-moleculare layer; the other type, with soma closer to the
hippocampal fissure, has axons and dendrites crossing well into the outer molecular
layer of DG. This second “projecting” variety of neurogliaform cells is considered
a distinct neuron type in Hippocampome.org since it can both receive inputs from
and send outputs to a portion of the circuit inaccessible to the “CA1-only” neurons.
Thus, the synaptic evidence for this connection could be potentially ascribable to
as many as eight distinct pre-/postsynaptic pairs (Table 1). When it comes to this
kind of fuzzy evidence, the underlying assumptions need to be evaluated to assess
the confidence of each assignment as (relatively) “high” or “low.” Since entorhinal
layer 3 pyramidal neurons are the principal cells of this projection, they are expected
to have the highest density of excitatory axons in lacunosum-moleculare. Thus,
the synaptic electrophysiology ascribed to these connections is marked as high
confidence evidence in Table 1 and the rest as low confidence.

http://hippocampome.org
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Table 1 Potential connections in an experiment in which the CA1 lacunosum-moleculare layer
was stimulated extracellularly while recording from CA1 Neurogliaform cells

Presynaptic Neuron Types Postsynaptic Neuron Types Confidence

EC LIII Pyramidal CA1 Neurogliaform High
EC LIII Pyramidal-Stellate CA1 Neurogliaform Low
SUB CA1-Projecting Pyramidal CA1 Neurogliaform Low
CA1 Cajal-Retzius CA1 Neurogliaform Low
EC LIII Pyramidal CA1 Neurogliaform Projecting High
EC LIII Pyramidal-Stellate CA1 Neurogliaform Projecting Low
SUB CA1-Projecting Pyramidal CA1 Neurogliaform Projecting Low
CA1 Cajal-Retzius CA1 Neurogliaform Projecting Low

Cell type assignment confidence of fuzzy evidence in synaptic electrophysiology
investigations may be boosted by enhancing the selectivity of excitation through
the anatomical or pharmacological ablation of a parcel. As an example of such
an approach, we consider again the extracellular stimulation of CA1 lacunosum-
moleculare in horizontal hippocampal slices after surgical ablation of both CA3 and
DG while recording intracellularly from the soma of CA1 pyramidal cells (Empson
and Heinemann 1995). In the absence of any pharmacologic blockers, IPSPs were
detected after EPSPs in the majority of cases, indicative of polysynaptic inhibition,
with larger IPSP amplitudes closer to the stimulation site. The few observed cases of
pure EPSPs had reversal potential (Erev) of −40 mV, reflecting mixed contributions
of multiple channels. Bath application of an AMPA/kainate receptor competitive
antagonist (CNQX) reduced the IPSP amplitude. Focal application of GABAA
antagonist (bicuculline) also affected IPSP amplitude but only when applied to the
radiatum and pyramidal layers and not to lacunosum-moleculare (Fig. 2C). These
results suggest that extracellular stimulation mainly activates excitatory cells with
axons in CA1 lacunosum-moleculare (explaining the monosynaptic EPSPs). As in
the previous example, entorhinal layer 3 pyramidal cells are assumed to be the
main presynaptic excitatory type. The majority of (polysynaptic) IPSPs may thus be
ascribed to inhibitory cells that have dendrites in CA1 lacunosum-moleculare and
axons in the radiatum or pyramidal layers. The monosynaptic IPSPs, only observed
in the presence of CNQX when the stimulation occurred close to the recording site,
were elicited by inhibitory cells with axons in lacunosum-moleculare. Based on
these assumptions, as many as 19 potential synaptic connections can be identified
(Table 2). Similarly as in Table 1, only one of the four excitatory connections can
be assigned with high confidence. Of the 15 low-confidence inhibitory connections,
6 are purely disynaptic, corresponding to presynaptic neuron types with dendrites
in lacunosum-moleculare and axons in radiatum or pyramidale; 6 are purely
monosynaptic, corresponding to presynaptic neuron types with axons in lacunosum-
moleculare; and 3 could connect both mono- and disynaptically corresponding
to neuron types with axons and dendrites in lacunosum-moleculare and axons in
radiatum or pyramidale.
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Table 2 Potential presynaptic neuron types in an experiment in which the CA1 lacunosum-
moleculare layer was stimulated extracellularly while recording somatically from CA1 pyramidal
cells (which constitute the postsynaptic neuron type in all cases)

Presynaptic neuron type Confidence Signal Connectivity

EC LIII pyramidal (+)223111p High Excitatory Monosynaptic

EC LIII pyramidal-stellate (+)223200p Low Excitatory Monosynaptic
CA1 Cajal-Retzius (+)3000 Low Excitatory Monosynaptic
SUB CA1-projecting pyramidal (+)331p Low Excitatory Monosynaptic
CA1 radial trilaminar (−)2333 Low Inhibitory Disynaptic
CA1 Schaffer collateral-assoc (−)2311 Low Inhibitory Disynaptic
CA1 axo-axonic (−)2232 Low Inhibitory Disynaptic
CA1 oriens/alveus (−)2233 Low Inhibitory Disynaptic
CA1 basket (−)2232 Low Inhibitory Disynaptic
CA1 basket CCK+ (−)2232 Low Inhibitory Disynaptic
CA1 LMR projecting (−)3300p Low Inhibitory Either/both
CA1 LMR (−)3300 Low Inhibitory Either/both
CA1 quadrilaminar (−)3333 Low Inhibitory Either/both
CA1 perforant path-associated (−)3200p Low Inhibitory Monosynaptic
CA1 neurogliaform projecting (−)3000p Low Inhibitory Monosynaptic
CA1 neurogliaform (−)3000 Low Inhibitory Monosynaptic
CA1 back-projection (−)1133p Low Inhibitory Monosynaptic
CA1 O-LM (−)1002 Low Inhibitory Monosynaptic
CA1 O-LMR (−)1102 Low Inhibitory Monosynaptic

Integrated Summary

Having illustrated the evidence-gathering approach, we can now evaluate the
availability of synaptic information in the published literature. This assessment
should only be considered a preliminary estimate at this time, since we have yet
to conclude the data mining process.

We started the process from the original 466 papers included in v1.0 of
Hippocampome.org, further mining the publications citing or referred to by these
articles to find additional evidence. Publications from Hippocampome.org are
already associated with specific neuron types, but may not contain synaptic electro-
physiology data. Papers obtained from the cited references are purposefully selected
based on the citation context as likely to contain synaptic electrophysiology data,
but linking this information to morphologically defined neuron types is not always
straightforward. When considering articles citing Hippocampome.org papers, both
the availability of synaptic data and cell type linking are initially unknown.

In all three cases, papers undergo a two-stage evaluation process: triage and
in-depth mining. Triage relies on the title, abstract, figures, and selected terms in
the full text to assess whether the article might provide information about synaptic
signals. Specifically, we leverage the “Vocabulary Highlighter” Firefox extension to
identify efficiently the possibly presence of ∼400 (empirically selected) keywords.

http://hippocampome.org
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This list includes a comprehensive collection of synaptic terms (such as “depo-
larization,” “IPSP,” “vesicle,” and “facilitation”) as well as (in different colors)
other words referring to morphological concepts (“axon,” “dendrite,” “soma,” etc.),
hippocampal parcels (e.g., “CA3,” “stratum oriens,” or “hilus”), and other relevant
information (species, cell types, electrophysiology, molecular marker, and more).
Triage only takes a few minutes per paper and is designed to minimize false
negatives: if we suspect that an article might possibly contain relevant data, it is
marked for further processing.

In the second stage, the papers that passed the previous selection are studied
in detail to find any data pertaining to synaptic electrophysiology. If no data are
found, the paper is moved to the “excluded” group along with the triaged ones. Any
evidence proper is annotated by associating the article identifier (typically PMID)
with the identity of the presynaptic and postsynaptic neuron types. If fuzzy evidence
is found, the annotation also includes a detailed explanation of the ambiguity and the
explicit assumptions needed to link the presynaptic and postsynaptic neuron types.
Lastly, the actual parameters regarding amplitude, kinetics, and short- and long-
term plasticity are extracted along with the covariates affecting the synaptic signals.
In order to maximize coverage and minimize redundancies, mining of papers in
the pipeline is prioritized to give precedence to the connections with no available
information to date.

Among 466 papers in Hippocampome.org, 348 were triaged or excluded upon
in-depth reading. Of the remaining 118 with linkable synaptic evidence, 39 have
already been mined, and 79 are currently in the pipeline. Furthermore, 149 new
articles were identified through references and citations. Three of these were
excluded, 37 were mined, and 109 are in the pipeline. Thus, a total of 615
publications have been evaluated so far: 76 were mined, 188 are in the pipeline,
and 351 were excluded. In other words, evaluating the references and citations of 76
mined articles yielded 146 additional papers with synaptic data. Of the 351 excluded
papers, 201 had no synaptic electrophysiology, 110 had no connectivity data, 35
were reviews or book chapters exclusively reporting secondhand information, 3
had only field potential electrophysiology, 1 pertained to an extra-hippocampal
connection, and 1 was from a slice culture.

Of the 3289 potential connections in the hippocampal formation among the
122 neuron types of Hippocampome.org, only 167 could be firmly established
and 72 could be refuted based on electrophysiological or histological evidence.
Obviously no synaptic information can be found for the refuted connections. Of
the validated connections, evidence proper was found for approximately half, while
fuzzy evidence is available for almost all of the rest. The remaining ∼92.7% of
the potential synapses remains “unknown,” and any synaptic evidence for these
connections can only be deemed fuzzy. Thus far, approximately 45% of potential
connections could be linked to proper or fuzzy electrophysiological evidence, the
vast majority of which (>90%) are low-confidence assignments (Fig. 3). For as
many as 1862 pairs of potentially connected neuron types, we have not yet found
synaptic evidence. Although we might be able to halve this amount through the
completion of the ongoing literature mining, we still expect a substantial proportion
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Fig. 3 Integrated summary. Of the 3289 potential connections in Hippocampome.org (left bar
chart), 72 can be refuted based on available histological evidence. The remaining 3217 can be
mapped into evidence proper (red), high-confidence fuzzy evidence (purple), low-confidence fuzzy
evidence (yellow), and no electrophysiology (gray) groups (right pie chart)

of synaptic parameters to remain unknown as the corresponding experiments were
never performed or published.

Implementation Requirements

In order to leverage the synaptic information gathered with the above-described
strategy to aid implementation of a real-scale spiking neural network simulation
of the hippocampal formation, several additional steps are necessary. First, the
evidence collected with different experimental techniques under a variety of con-
ditions must be normalized so as to be expressed within a uniform framework for
all connections. Second, the missing data for the “unknown” connections has to be
inferred based on patterns of similarities among the available data. Third and last,
appropriate models of synaptic signals and plasticity need to be defined consistent
with the collated knowledge.

Covariates and Data Normalization

Gleaning synaptic data from highly nonuniform sources makes data normalization
both challenging and essential. Synaptic signals are strongly affected by the exper-
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imental preparation, including the actual recording modality (voltage clamp vs.
current clamp) and conditions, such as temperature and holding current or voltage,
but also the stimulation technique, slice thickness and orientation, pharmacological
cocktails and chemical compositions in the electrode and in the bathing solution,
and the species, strain, age, and sex of the animal subject. Data normalization
with respect to all these covariates is crucial to produce meaningful and reliable
constraints for computational models. For instance, synaptic signals recorded at
room temperature must be corrected with appropriate Q10 coefficients, if available.
Most of the available synaptic data comes from young adult rodents (more than
2 weeks old); since synaptic amplitude tends to diminish with age, reasonable aging
coefficients need to be applied when pooling non-age-matched data. When exper-
iments are carried out in the presence of pharmacological agonists or antagonists
of synaptic receptors or voltage-gated channels, which might potentiate or depress
synaptic signals, such factors should be accounted and corrected for.

Inferential Data

In the absence of synaptic evidence for a connection, empirical rules or mathe-
matical methods might be used to infer the missing information. For instance, the
kinetics and amplitude of synaptic signals received by CA1 interneurons appear to
be related to the laminar distribution of their axons (Cossart et al. 2006), and similar
rules might apply to other subregions as suggested by the existence of an analogous
phenomenon in primary visual neocortex (Dumitriu et al. 2007). Similarly, unitary
synaptic amplitude correlates with the connection probability in the cortex (Jiang et
al. 2015), so that one could be predicted if the other is known. In addition to these
empirical observations, inferences can be derived directly from patterns of available
data. We describe next one such an approach.

To a first approximation, synaptic properties can be considered as the product of
distinct pre- and postsynaptic components. For example, the postsynaptic amplitude
can be viewed as the result of local synaptic conductance followed by dendritic
attenuation. Similarly, the dendritic filtering of the local postsynaptic current time
constant would yield the observed somatic time course. Because both active
and passive membrane properties depend on the location on the dendritic and
axonal arbors, it is reasonable to assume that the specific pre- and postsynaptic
characteristics of each neuron type vary depending on the layers and subregions
their neurites invade. For example, DG granule cells would have distinct presynaptic
properties for their axons in the hilus and in CA3 lucidum, relevant, respectively, for
their connection to mossy cells and CA3 pyramidal neurons. Similarly, granule cells
would also have distinct postsynaptic properties for their dendrites in the inner and
outer molecular layer, relevant, respectively, for their connection from mossy cells
and entorhinal layer 2 spiny stellate neurons.
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If the hippocampal formation is represented as a list of distinct layers and
subregions (such as inner and outer molecular layer, hilus, and CA3 lucidum), each
neuron type can then be described with an axonal and a dendritic “vector,” whose
components correspond to distinct anatomical locations. Since Hippocampome.org
divides the hippocampal formation in 26 such parcels, we can represent all neuron
types with 26-dimensional axonal and dendritic vectors with non-zero values that
represent the pre- and postsynaptic factors, respectively, corresponding to the
parcels they invade. Although these putative parcel-specific pre- and postsynaptic
factors are unknown for every neuron type, this formalism allows systematic
farming of similarity patterns in the data using techniques borrowed from matrix
algebra.

The set of all values for a given synaptic parameter, such as amplitude or the
decay time constant, for the entire hippocampal circuit can be described with a
122 × 122 square matrix (where 122 is the number of neuron types in Hip-
pocampome.org). The ijth entry of this matrix represents the value of the synaptic
parameter corresponding to the connection from the ith (presynaptic) neuron type
to the jth (postsynaptic) neuron type. This matrix can now be approximated by
singular value decomposition (SVD) into the product of three matrices: a 122 × 26
matrix corresponding to the “presynaptic” factors of the 122 neuron types over the
26 parcels, a 26 × 26 diagonal matrix of singular values, and a 26 × 122 matrix
corresponding to the “postsynaptic” factors of the 122 neuron types over the 26
parcels (Fig. 4). Even a small known sample of available data from each row and
column of the original 122 × 122 synaptic matrix may be sufficient to estimate
with high confidence the entries of the three decomposition matrices. Their product
then yields a useful prediction of all missing values in the synaptic matrix. Several
other similarly powerful methods exist for this classic matrix completion problem
(Candès and Recht 2009; Chen et al. 2012; Mazumder et al. 2010). The key is that
the missing synaptic values can be imputed based on the patterns of existing (though
incomplete) data.

Models of Synapses

Even after massive literature mining, careful data normalization, and sophisticated
inferential completion, a real-scale network model of the hippocampal formation
must realistically contend with sparse knowledge of synaptic data about more
than 3000 connection types. Several books and review articles offer a wealth of
options for modeling synapses at different levels of detail (Dayan and Abbott 2001;
Rothman 2015; Rothman and Silver 2014; Glyzin et al. 2013; De Schutter 2000,
2010; Feng 2004; Evans et al. 2004; Sterratt 2011; Wallisch 2014; Trappenberg
2010; Koch 1999), but the unavoidable sparsity of available constraints demands
a delicate balance between an acceptable description of the data and a judicious
minimization of the number of model parameters.

http://hippocampome.org
http://hippocampome.org


458 K. Moradi and G. A. Ascoli

Fig. 4 Matrix completion. Incremental singular value decomposition (SVD) decomposes a con-
nection matrix with missing values (pink cells) into U, D, and V matrices. The product of these
matrices with an appropriate number of singular values (r) reconstructs the connection matrix with
imputed values. Warm and cold colors in the connection matrix represent positive and negative
synaptic values, respectively

In chemical ionotropic synapses, presynaptic neurotransmitter release leads to
opening of ion channels on the postsynaptic membrane. Consequently, modeling
synaptic signals involve both presynaptic and postsynaptic factors. Synaptic ion
channels, similar to other ion channels, depend on gating and permeability. Complex
models of permeability can account for calcium currents, ionic selectivity, and
nonlinear current-voltage relationships (Coalson and Kurnikova 2005; Burger 2011;
Eisenberg 1999, 2010, 2012; Hodgkin et al. 1949; Goldman 1943; Lewis 1979;
Cooper et al. 1988; Chang et al. 1994; Jahr and Stevens 1987). Nevertheless, Ohm’s
law remains the simplest, most parsimonious, and most commonly adopted model:

Isyn = Gsyn.
(
Vm − Esyn

)
(1)

Where, Isyn is the synaptic current, Gsyn is the synaptic conductance, Vm is
the postsynaptic membrane potential, and Erev is the reversal potential of the
synaptic current, which under physiological conditions is typically close to 0 mV
for excitatory synapses and to −70 mV or lower for inhibitory ones.
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Channel gating actually involves modeling of Gsyn as a function of time,
presynaptic action potential time, and Vm. Synaptic amplitude, kinetics, and short-
term and long-term synaptic plasticity can also all be described as multiplicative
modifications of this function:

Gsyn = Gmax.Po.Pst .wlt (2)

Where Gmax is the baseline maximal synaptic conductance that defines ampli-
tude, Po is the time dependent open probability that defines channel kinetic, Pst is
the release probability due to short-term plasticity, and wlt is the synaptic weight
coefficient due to long-term plasticity.

Models of synaptic gating range from single-exponential decay to complex bio-
physically detailed mechanisms involving several differential equations (Chapeau-
Blondeau and Chambet 1995; Stiles et al. 1996; Stiles and Bartol 2001; Scimemi
2014). For instance, Markov kinetic processes have been used to describe postsynap-
tic receptor gating by chemical reactions (Clarke and Johnson 2008; Raghavachari
and Lisman 2004; Patneau et al. 1992; Patneau and Mayer 1991) or simpler models
(Destexhe et al. 1994a, b, 1995; Jahr and Stevens 1990).

Applications of these models in neural network simulations, however, are limited.
In addition to their high computational costs, these models entail a larger number of
tuning parameters than is possible to constrain with the limited experimental data
available to date. Consequently, we next discuss simpler phenomenological models
to represent synaptic electrophysiology that are consistent with existing data while
optimizing model performance for real-scale hippocampal simulations.

For most purposes, synaptic amplitude can simply be defined in terms of maximal
conductance (Gmax):

Gmax = N.dsyn.γ (3)

Where N is the number of synaptic boutons, dsyn is the density of postsynaptic
channels, and γ is the single channel conductance. Although Gmax provides a
useful approximation of synaptic amplitude, it is important to remember that the
actual value also depends on stochastic neurotransmitter release probability, voltage-
dependent and intracellular or extracellular ligand-dependent channel blockage,
desensitization dynamics, and voltage-dependent postsynaptic gating. In NMDA
receptors, for instance, Mg2+ block is both concentration- and voltage-dependent,
which can be modeled with Boltzmann functions (Harsch and Robinson 2000;
Kuner and Schoepfer 1996; Nowak et al. 1984; Mayer et al. 1984; Kim and
Robinson 2011; Yang et al. 2010; Zhu and Auerbach 2001a) or Markov kinetics
(Antonov and Johnson 1999; Nikolaev et al. 2012; Qian and Johnson 2006;
Zhu and Auerbach 2001b). The voltage-dependent gating of NR1/2B subtype of
NMDA receptors in hippocampal neurons can be modeled with Hodgkin-Huxley-
like equations (Moradi et al. 2013) or Markov kinetics (Clarke and Johnson 2008).

Exponential functions are the most adopted phenomenological models of synap-
tic kinetics (Rothman and Silver 2014; Rothman 2015). These functions can often
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describe synaptic kinetics with just one parameter. Specifically, when the time
constant of synaptic activation (τ a) is small enough to assume instant synaptic
activation, the deactivation time constant (τ d) is sufficient to describe synaptic
kinetics as a single-exponential decay function:

Po = exp (−�t/τd) , if t ≥ tpre, �t = t − tpre (4)

Conversely, if a synapse has similar activation and deactivation time constant
(τ a ≈ τ d), the one-parameter alpha function can model its kinetics:

Po = �t/τa. exp (1 − �t/τa) (5)

Where τ a is the time constant that controls peak time. When synapses do
not meet the time constant requirements to employ the computationally fast and
parametrically simple single-exponential or alpha functions, multiple-exponential
functions are used to model different time courses (Rothman 2015). NMDA receptor
kinetics at body temperature, for instance, is better described with triple-exponential
functions (Moradi et al. 2013; Kim and Robinson 2011; Korinek et al. 2010; Hestrin
et al. 1990; Spruston et al. 1995).

Short-term synaptic plasticity, a dynamic presynaptic factor that affects release
probability, can be calculated “event based” whenever the synapse is stimulated
(Varela et al. 1997; Fuhrmann et al. 2002; Tsodyks and Markram 1997; Tsodyks
et al. 2000; Markram et al. 1998). Different variants of exponential functions
can model the time-dependent evolution of short-term synaptic plasticity. In order
to minimize the number of parameters, we assume synapses to be facilitating,
depressing, or pseudo-linear. Two parameters are in principle required for modeling
facilitation or depression: the facilitation amount, f, or depression fraction, d, and
the corresponding decay time constants, τ stf and τ std (Morrison et al. 2008).

Spike-timing-dependent plasticity (STDP) is the most popular model of long-
term plasticity in spiking neural networks (Markram et al. 2012; Morrison et al.
2008). In classic STDP, synapses are potentiated if the presynaptic neuron fires
before the postsynaptic neuron or depressed otherwise (Markram et al. 1997; Bi and
Poo 1998). Unlike short-term facilitation that is calculated based on presynaptic
firing only, the degree of long-term change in synaptic potency (�wlt) depends
on both presynaptic and postsynaptic firing times. Specifically, �wlt decreases
with the time difference between the two firing events, which can be modeled by
distinct potentiation and depression exponential decay functions with appropriate
time constants and learning rates (τ+, τ−, L+, and L−, respectively). Using constant
L values (additive rule), however, leads to a bimodal distribution of synaptic
amplitudes (Song et al. 2000), which contrasts the unimodal distribution observed
experimentally (Turrigiano et al. 1998; Song et al. 2005). Moreover, experimental
studies suggest that potentiation is smaller in strong synapses compared to weak
ones, while depression is not (van Rossum et al. 2000). Both of these problems
can be solved by using L values that depend on synaptic weight (Gutig et al. 2003;
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Morrison et al. 2007; Standage et al. 2007), which involves one additional parameter
(Markram et al. 2012).

STDP also depends on stimulation frequency, whereby increasing stimula-
tion leads to greater potentiation (Dudek and Bear 1993; Sjostrom et al. 2001;
Froemke et al. 2006). In classic STDP models, however, when several presynap-
tic stimulations are coupled with one postsynaptic firing, only the most recent
presynaptic spike potentiates the synapse, while all others depress it. Interestingly,
this phenomenon can be accurately described with τ+ and τ− without adding
extra parameters to the model by controlling potentiation through a “trace” of all
presynaptic firings that can be computed as a single-exponential decay function of
the presynaptic and postsynaptic firing times (Morrison et al. 2007). Even with all
these modifications, STDP models still provide incorrect predictions of triplet or
quadruplet spike pairing experiments. For instance, with symmetric timing, both
pre-post-pre and post-pre-post protocols should produce the same degree of change
in synaptic weight. Experimentally, however, although in pre-post-pre protocol
potentiation and depression cancel each other out, post-pre-post protocol yields net
potentiation (Bi and Wang 2002). Significant deviations from model prediction are
observed with asymmetric timing protocols as well (Froemke and Dan 2002; Wang
et al. 2005). Modifying potentiation with another postsynaptic firing trace solves
this problem at the cost of an additional time constant (Pfister and Gerstner 2006).

Future Directions

Although suitable mathematical models exist when it comes to the phenomeno-
logical description of synaptic electrophysiology, the actual gathering of synaptic
data needs to receive more attention by the neuroscience community. Specifically,
ascribing synaptic data to specific cell types remains tremendously time consuming
with existing experimental techniques. This process also requires a complete
knowledge model of hippocampal cell types, such as the framework offered by
Hippocampome.org, to provide a manageable data search domain.

Despite the plethora of up-and-coming optogenetic methods, the old-school,
labor-intensive paired recording technique remains the most reliable method to
gather synaptic data at cell type to cell type resolution. New clustered simultaneous
recording techniques are rapidly improving the yield of synaptic data recording,
enabling the recent mapping of the complete mice neocortical circuit in a single
study, which led to discovering not only previously unknown cell types but also a
novel rule-based theory of connectivity (Jiang et al. 2015). Expecting similar studies
in the hippocampal formation makes a complete map of hippocampal synaptic
electrophysiology linked to cell types a realistically achievable endeavor. Rapid
advancements in genomics may also foster discoveries in connectomics, as specific
genes might predict synaptic connectivity and cell typing (Kaufman et al. 2006;
Varadan et al. 2006).

http://hippocampome.org
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Spatiotemporal Patterns of Granule Cell
Activity Revealed by a Large-Scale,
Biologically Realistic Model
of the Hippocampal Dentate Gyrus

Gene J. Yu, Phillip J. Hendrickson, Dong Song, and Theodore W. Berger

Abstract Interest in the hippocampus has generated vast amounts of experimen-
tal data describing hippocampal properties, including anatomical, morphological,
biophysical, and synaptic transmission levels of analysis. However, this wealth of
structural and functional detail has not guaranteed insight into higher levels of
system operation.

In this chapter, we propose a computational framework that can integrate the
available, quantitative information at various levels of organization to construct
a three-dimensional, large-scale, biologically realistic, spiking neuronal network
model with the goal of representing all major neurons and neuron types, and the
synaptic connectivity, found in the rat hippocampus. In this approach, detailed
neuron models are constructed using a multi-compartment approach.

Simulations were performed to investigate the role of network architecture on
the spatiotemporal patterns of activity generated by the dentate gyrus. The results
show that the topographical projection of axons between the entorhinal cortex
and the dentate granule cells organizes the postsynaptic population into subgroups
of neurons that exhibit correlated firing expressed as spatiotemporal clusters of
firing. These clusters may represent a potential “intermediate” level of hippocampal
function. Furthermore, the effects of inhibitory and excitatory circuits, and their
interactions, on the population granule cell response were explored using dentate
basket cells and hilar mossy cells.
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Overview

Comprehensive Computational Framework for Neural Systems

Possibly more than any other brain area, interest in the hippocampus has generated
vast amounts of experimental data through the efforts of the neuroscience commu-
nity. This has led to the accumulation of large amounts of quantitative information
describing the properties of the hippocampus, including anatomical, morphological,
biophysical, biochemical, and synaptic transmission levels of analysis. As with
other brain areas, however, this wealth of structural and functional detail has not
guaranteed insight into higher levels of system operation. The field continues, and
rightfully so, to struggle to understand how all of the cellular and network properties
of the hippocampus dynamically interact to produce the global functional properties
of the larger system.

Multiple theories and hypotheses have been put forward to contextualize and
interpret subsets of the huge amount of hippocampal data. These works have
attempted to provide possible explanations for various behavioral and cognitive
functions believed to be subserved by the hippocampus (Marr 1971; McNaughton
and Morris 1987; Levy 1989; Treves and Rolls 1994; McClelland et al. 1995;
Hasselmo 2005; Solstad et al. 2006; Myers and Scharfman 2011). Although these
studies are highly admirable and have helped guide the field in its thinking about
the cellular and network bases of hippocampal memory, they are limited by the
narrow or partial scope of the quantitative experimental data on which they are
based and by the multiple levels of neural organization that various models and
theories must “reach over” to account for system/behavioral phenomena. There
remain few computational frameworks (see Morgan and Soltesz 2010) that integrate
at least a significant portion of the quantitative cellular and anatomical data of the
hippocampus for its multiple subfields. As a consequence, there are no models to
date that successfully integrate such data and extend those “lower-level” properties
to putative explanations of “higher-level” function, be it at the system level or the
cognitive and behavioral levels.

Hippocampal Architectural Constraints on Network Function

If there is any one brain structure that provides an opportunity for understanding
integration from molecular to system neural function, it is the hippocampus. One
basis for this argument has already been mentioned, namely, the large body of
quantitative information already collected about its molecular, cellular, and network
structure and function. The second basis is the nature and relative simplicity of the
structural organization of the hippocampus.

There is a highly well-defined organization to the hippocampal formation con-
sisting of a predominantly feedforward architecture wherein activity is propagated
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from entorhinal cortex to the dentate gyrus, to the CA3/4 pyramidal zones, and
finally to the CA1/2 pyramidal regions (Andersen et al. 1971; Swanson et al.
1978). The projections between each of the subfields exhibit unique organizational
principles (e.g., targets and topography) (Swanson et al. 1978; Ishizuka et al. 1990;
Freund and Buzsáki 1996; Dolorfo and Amaral 1998). These studies reveal a
topographic projection between neural populations in that they are incomplete (in
the sense that any one neuron within a subfield does not project to all neurons in the
next subfield) and nonrandom nature of hippocampal connectivity. The topography
describes the ordered structural connectivity of a neural system which organizes
individual neurons into collections of neurons and offers a bridge between lower-
level cellular dynamics and higher-level population dynamics.

General Framework of the Model

We are proposing a computational framework that is able to integrate the majority
of available, quantitative structural and functional information at various levels
of organization to generate a large-scale, biologically realistic, neuronal network
model with the goal of representing all of the major neurons and neuron types,
and the synaptic connectivity, found in one hemisphere of the rat hippocampus. In
this approach, detailed neuron models are constructed using a multi-compartment
approach (on the order of hundreds of compartments per neuron) which are
then geometrically arranged based on anatomical data to encompass the entire
longitudinal extent of the hippocampus and finally synaptically connected using the
topographical constraints describing the region.

Using this framework, a series of simulations were performed which primarily
explored the role of network architecture on the spatiotemporal patterns of activity
generated by populations of granule cells in the dentate gyrus. The simulations
involved pulse (all-or-none, spike-like) inputs from layer II cells of the entorhinal
cortex and the spike-like granule cell and basket cell outputs from the dentate
gyrus, with AMPA receptor channel-mediated excitatory synapses of granule cells
and GABAA receptor channel-mediated inhibitory synapses of basket cells. The
simulations in this chapter show specifically that the topographical projection of
axons between the entorhinal cortex and the dentate granule cell regions of the
hippocampal formation organizes the postsynaptic population into subgroups of
neurons that exhibit correlated firing expressed as spatiotemporal clusters of firing.
These findings strongly suggest that topography may act as a spatial filter whose
functional characteristics are dependent on the three-dimensional properties of
that topography. During this investigation, the effects of inhibitory and excitatory
circuits, and their interactions, on the population granule cell response also were
systematically explored by including study of feedforward and feedback inhibition
and study of the hierarchical regulation of lower-level excitatory and inhibitory
circuitry by dentate hilar mossy cells.
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“Intermediate” Levels of System Function

One of the fundamental issues that has arisen in using our multi-level model of the
hippocampus is that there is a need to identify what might be termed “intermediate”
levels of hippocampal function. There are generally well-understood interpretations
of “synaptic function” (presynaptic release, postsynaptic current and/or poten-
tial, etc.) and “cellular function” (metabolism, action potential generation, etc.).
Although there are multiple possible definitions for each level of functionality,
there is general agreement on what are the small number of possibilities in each
case. But once “molecular,” “synaptic,” and “cellular functions” are accounted for,
what is the definition of “multicellular” or “system” function, upon which there is
generally little if any universal agreement? Even more difficult to address is the
identification of levels of functions that lie between “cellular” or “multicellular”
and behavioral or cognitive functions. Behavioral and inferred cognitive functions
for the hippocampus have a theoretically rich and experimentally broad history
(O’Keefe and Nadel 1978; Berger et al. 1986; Squire 1986; Berger and Bassett
1992; Cohen and Eichenbaum 1993; Nadel and Moscovitch 1997; Aggleton and
Brown 1999). How hippocampal cognitive and behavioral functions derive from
cellular and molecular dynamics remains a mystery.

For insights to be reached on this issue, we must identify levels of system or
subsystem function that lie between the cellular and the behavioral. One of the main
objectives in developing the large-scale model of the hippocampus described here
was so that it would be possible to “observe” simulated spiking activity of large
numbers of neurons simultaneously – the activity of many more neurons than had
ever been observed previously, either computationally or experimentally. If there
were regularities in granule cell firing that became apparent beyond the level of
tens of neurons, i.e., beyond the levels typically used in previous studies identifying
behavioral or cognitive population “correlates” of hippocampal cell activity (Berger
et al. 1983, 2011; Berger and Weisz 1987; Eichenbaum et al. 1989; Hampson
et al. 1999; Krupic et al. 2012; MacKenzie et al. 2014), such “regularities” in
population firing of hippocampal neurons would indicate the existence of some
kind of higher-level “structure” in the organization of the hippocampal system.
The computational studies reviewed here have revealed one such an organizational
structure: the “clusters” of granule cell firing revealed by the present analyses
indicate cyclical, correlated levels of excitability distributed both in space and time
throughout the rostro-caudal extent of the hippocampus in response to low levels of
random entorhinal cortical activity. Because such correlated, clustering of granule
cell firing is expressed to a low level of relatively even entorhinal input and does
not require a radically, strong, and/or rhythmic bursting from entorhinal cortex, we
believe the granule cell clusters represent a preferential space-time filtering by the
dentate gyrus that constitutes a first-order level of processing by the multiple stages
of hippocampal circuitry.
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The Model

Though much data on the hippocampus exists, the search, quantification, and imple-
mentation of these data into a comprehensive model is problematic, considering
the large variety of techniques that can be applied to characterize any particular
hippocampal feature and the number of features that require investigation. Below,
we review the experimental work that has been incorporated into this version of
the model and the methods we used to extract and implement the results of those
studies.

Anatomical Boundaries

Anatomical Description of the Hippocampus and Dentate Gyrus

The three-dimensional structure of the hippocampus resembles a curved cylinder
(see Fig. 1) with a single homogeneous granule cell layer and a pyramidal cell
layer that traditionally has been divided into four subsections (Lorente de Nó 1934;
Ramón y Cajal 1968). A cross section of the hippocampus can reveal its principal
internal structure in the form of two interlocking C-shapes. One of the structures is
known as the dentate gyrus, and the other is known as the cornus ammonis (CA)
which is commonly divided into four main subfields, the CA3/4 and the CA1/2.

The dentate gyrus is commonly divided into two blades, the upper and lower half
of its C-shape. The suprapyramidal blade, also known as the enclosed or dorsal

Fig. 1 Schematic representation of the rat hippocampus. (Left) Location of the hippocampus
(yellow) relative to the rest of the rat brain (neocortex removed). (Middle) Depiction of how
transverse slices typically are obtained relative to the septo-temporal axis of the hippocampus.
(Right) The classical trisynaptic circuit of the hippocampus where the entorhinal cortex (EC)
projects its inputs to the dentate gyrus (DG), the dentate projects to the CA3/4 regions, the CA3/4
projects to the CA1/2 regions, and the CA1 provides the output of the hippocampus to other cortical
structures. Not shown here are entorhinal projections to the distal dendrites of CA3 (from layer II)
and to the distal dendrites of CA1 (from layer III)
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Fig. 2 Division of the dentate gyrus into the molecular, granule cell, and polymorphic layers. The
molecular layer contains the dendrites of the granule cells. The densely packed cell bodies of the
granule cells form the granule cell layer. The polymorphic layer is comprised of inhibitory and
excitatory interneurons. Granule cell axons collateralize within the polymorphic layer to provide
input to the interneurons. Granule cells also send axons through the polymorphic layer to synapse
with CA3/4 pyramidal cells

blade, refers to the half of the dentate that is encapsulated by the CA regions.
The remaining half is labeled the infrapyramidal blade, also known as the exposed
or ventral blade, and the crest refers to the region where the infrapyramidal and
suprapyramidal blades join. Furthermore, the dentate gyrus is divided into three
layers. The outermost layer is the molecular layer, the middle layer is the granule
cell layer, and the final layer is the hilus or the polymorphic layer (see Fig. 2).

The entorhinal cortex, which lies outside the hippocampus (but is formally
defined as part of the hippocampal formation), contributes significantly to the input
of the hippocampus. Layer II cells of the entorhinal cortex send axons to the outer
two-thirds of the molecular layer of the dentate gyrus and synapse along the infra-
and suprapyramidal blades as well as extend into and form synapses within the CA3
region (Hjorth-Simonsen and Jeune 1972; Yeckel and Berger 1990; Witter 2007).
Layer III cells of the entorhinal project monosynaptically to the CA1/2 pyramidal
cells (Yeckel and Berger 1995).
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Formation of Anatomical Maps and Distribution of Neurons

Swanson et al. (1978) had developed a method to “unfold” the hippocampus to
create two-dimensional, flattened representations of its various subfields (this flat-
tened representation can extend to the entorhinal cortex as well) that still preserves
well most of the relative anatomical geometry that exists in the original three-
dimensional structure. Much of the data involving topography and the distributions
of cellular populations is presented using such two-dimensional maps or, in some
cases, along a one-dimensional axis. The axes describing the flattened maps can be
used to easily project such two-dimensional data onto a proper three-dimensional
hippocampal structure.

The work of Gaarskjaer (1978) was used in the model to create a more
detailed anatomical map of the dentate gyrus due to its inclusion of both length
measurements and granule cell body density measurements along the extents of
both the suprapyramidal and infrapyramidal blades of the dentate gyrus. The basket
cell distribution within the dentate has been less completely investigated, but ratios
of granule cells and interneurons have been reported with septo-temporal and infra-
and suprapyramidal differences. The granule cell/basket cell ratio in the suprapyra-
midal blade is approximately 100:1 at the septal end and approximately 150:1 at the
temporal end, while the ratio in the infrapyramidal blade is 180:1 septally and 300:1
temporally (Seress and Pokorny 1981). The ratios were interpolated to provide a
complete distribution of basket cell densities along the dentate gyrus. Buckmaster
and Jongen-Rêlo (1999) reported the longitudinal distribution of mossy cells with
the temporal pole having a density approximately ten times greater than that of the
septal pole. The total number of the relevant neurons that are in the entorhinal-
dentate system of the rat is listed in Table 1.

Multi-compartmental Neuron Models

The three main dentate neuron types that were included in the model were the
granule cells, basket cells, and mossy cells. Granule cells are the principal neurons
of the dentate gyrus and are situated with their somata in the granule cell layer. Their

Table 1 Cell numbers in the
large-scale model

Cell number

Lateral entorhinal cortex cellsa 46,000
Medial entorhinal cortex cellsa 66,000
Granule cellsa 1,200,000
Basket cellsb 4500
Mossy cellsc 30,000

aMulders et al. (1997); bBuckmaster and Dudek
(1997); cBuckmaster and Jongen-Rêlo (1999)
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Fig. 3 Schematic of the neural circuits in the dentate gyrus model. The feedback inhibition
circuit is formed by granule and basket cells. Feedforward inhibition is achieved by the entorhinal
activation of basket cells. Mossy cells form the associational system and provide excitatory
feedback to granule cells. Mossy cells also disynaptically inhibit granule cells by activating basket
cells

apical dendrites extend into and span the molecular layer. Granule cells receive the
majority of the entorhinal inputs which are excitatory. Their axons, while arborizing
within the hilus, project a single primary axon, known as the mossy fiber, to cells in
the CA3/4 regions.

Basket cells are interneurons within the granule cell layer that provide inhibitory
input to granule cells (Gamrani et al. 1986). Many basket cells have apical dendrites
that extend into the molecular layer from which they receive excitatory input from
the entorhinal cortex and basal dendrites that arborize within the hilus from which
they receive excitatory input from granule cells (Seress and Pokorny 1978; Ribak
and Seress 1983; Zipp et al. 1989; Ribak et al. 1990; Acsády et al. 2000). Basket cell
axons collateralize extensively in the granule cell layer and the innermost regions
of the molecular layer where they form GABAergic synapses with granule cells,
primarily on their cell bodies and the initial segments of their axons (Seress and
Ribak 1983). Thus, synaptic arrangements exist that provide the basis for both
feedforward and feedback inhibition (Fig. 3).

Mossy cells are hilar interneurons that contribute to the associational-
commissural fibers that arise from both the ipsilateral and contralateral hippocampus
(Zimmer 1971; Gottlieb and Cowan 1973; Berger et al. 1981). The dendrites of
mossy cells are restricted to the hilus, but their axons collateralize extensively
within the inner third of the molecular layer (Buckmaster et al. 1996; Ribak and
Shapiro 2007). Mossy cells primarily serve an excitatory role by directly activating
granule cells via glutamatergic synapses (Buckmaster et al. 1992; Soriano and
Frotscher 1994; Ribak and Shapiro 2007). However, associational-commissural
inputs have also been shown to activate inhibitory circuits within the dentate
gyrus (Douglas et al. 1983; Scharfman et al. 1990; Scharfman 1995). These data
indicate that mossy cells participate in both an excitatory and inhibitory capacity by
monosynaptically exciting granule cells and disynaptically inhibiting granule cells
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via other interneurons. In the present model, basket cells receive input from the
mossy cells to provide the disynaptic inhibitory effect mediated by the mossy cells
(Fig. 3).

Generation of Dendritic Morphologies

Neurons are commonly classified, in part, based on stereotypical morphological fea-
tures that describe the branching of their dendrites. The diversity of morphological
types has led many neuroscientists to investigate the functional role of different
branching characteristics. The dendritic morphology of neurons has been shown to
greatly influence several factors during input processing such as the propagation
and attenuation of postsynaptic potentials and the linear or nonlinear integration of
multiple inputs (Krueppel et al. 2011). Given this morphological diversity and its
functional importance, the database NeuroMorpho.Org was used to obtain three-
dimensional reconstructions of granule cell morphologies which were then used
to generate the distributions of the relevant parameters using L-Measure (Rihn and
Claiborne 1990; Ascoli et al. 2007; Scorcioni et al. 2008). The parameters were used
by a software tool called L-NEURON to generate unique dendritic morphologies for
each granule cell in the network (Ascoli and Krichmar 2000; see Hendrickson et al.
2015). The parameters provide the geometrical points at which a bifurcation can
occur, the number of branches, their angles, etc. (see Table 2).

The dendritic morphology of basket cells and mossy cells varies as a function
of cell location and the shape of the curvature of the hippocampus at that location.
Due to the limited sample size of reconstructions, proper morphologies were not
considered for these cell types. Due to the lack of information and to decrease

Table 2 Morphological parameters for granule cells

Distribution Mean/min Std. dev./max

Soma diameter Gaussian 9.0 2.0
Number of stems Uniform 2 4
Stem initial diameter Gaussian 1.51 0.39
Branching diameter Gaussian 0.49 0.28
IBF branch length Gaussian 10.7 8.4
Term. branch length Gaussian 10.7 8.4
Daughter ratio Uniform 1 2
Taper ratio Gaussian 0.10 0.08
Rall power Constant 1.5 –
Bifurcation amplitude Gaussian 42 13
Tree elev. (narrow) Gaussian 10 2
Tree elev. (medium) Gaussian 42 2
Tree elev. (wide) Gaussian 75 2
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the computational load of the simulations, basket and mossy cells for this level of
analysis were represented using a single somatic compartment.

Specification of Passive and Active Properties

The specification of morphology accounts for some of the passive propagation of
electrical activity, i.e., the electrotonic response, but to create a complete model
of the dendritic processing of granule cells, the parameters for passive properties
needed to be augmented by active dendritic properties due to voltage-dependent
channels also found in the dendritic regions (Krueppel et al. 2011).

The discretization of dendritic morphologies into compartments, the embedding
of passive and active mechanisms into the compartments, and the simulation of the
resulting model was performed using the NEURON simulation environment v7.3
and scripted using Python v2.8 (Carnevale and Hines 2006; Oliphant 2007; Hines
et al. 2009). The passive and active properties can be set to match experimental
data (see Fig. 4), much of which has been pioneered by previous groups. The
works of these groups are the basis of our current neuron models (Yuen and
Durand 1991; Aradi and Holmes 1999; Aradi and Soltesz 2002; Santhakumar
et al. 2005). The active and passive properties used are summarized in Table 3.
The resulting heterogeneous distribution of ion channel densities and the similarly
heterogeneous nature of the morphologies then were able to closely approximate
the electrophysiological responses of granule cells.

Topographic Connectivity

With the anatomical map and distribution of neurons within the map defined,
the next step in completing the large-scale neural network was to connect the
neuron models to each other. The connectivity methods used in this work are
largely derived from the work of Patton and McNaughton (1995), who compiled an
extensive amount of information concerning the connectivity of the dentate gyrus
and described a method of distance-based probabilistic connectivity.

The present large-scale model makes a critical assumption about the function of
axons in that it assumes that an axon acts merely as a propagator of action potentials
from generation near the soma to the end of the terminal. Though studies exist that
catalogue the role of axons in modulating synaptic transmission, the present model
did not explicitly model axon morphologies and compartments. Rather, axons were
functionally represented by incorporating the delay associated with the propagation
of the action potential from the soma to the corresponding presynaptic terminal.
This was calculated using the physical distance between the soma and the synapse
and reported action potential propagation velocities.

Connectivity in the model was represented using probability distributions that
were constrained by experimental data. The main concerns were, given the origin
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Fig. 4 Granule cell electrophysiology. Simulation results are on the top row. Experimental data
are on the bottom row. (Top left) When current is injected at the soma, the granule cell responds by
firing an action potential with a latency of approximately 100 ms. (Top right) When the current
amplitude is just over the threshold required to elicit a second action potential, its latency is
approximately 350 ms. This matches experimental data (bottom, reproduced from Spruston and
Johnston 1992). Reproduced from Hendrickson et al. 2016 with permission.

of the axon, the postsynaptic region to which the axon is sent and, once the axon
arrives at the postsynaptic region, the spatial distribution of the axon terminals. The
next challenge after finding such data was the quantification of the work which was
a nontrivial task due to the qualitative manner in which a majority of the works were
presented. The key works that were used to constrain the projection from entorhinal
cortex to dentate gyrus are detailed below.
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Entorhinal-Dentate Topography

A major division of the entorhinal cortex is its separation into the medial and lateral
regions. The projection of the axons from the entorhinal cortex to the hippocampus
is termed the perforant path. An important topographical distinction between the
medial and lateral entorhinal cortex is that upon reaching the dentate gyrus, the
lateral perforant path terminates within the outer third of molecular layer and the
medial perforant path terminates within the middle third (Hjorth-Simonsen and
Jeune 1972; Witter 2007). This anatomical feature is preserved in the present model
by limiting the respective connections to the appropriate regions of the granule cell
morphologies.

A significant study by Dolorfo and Amaral (1998) was used to guide our models
of the regional mappings from entorhinal cortex to the dentate gyrus. By injecting
retrograde dye tracers in the dentate gyri of rats, the entorhinal origins of the cells
projecting to those injection sites in the dentate were revealed. Injections were
performed along the entire septo-temporal, or longitudinal, extent of the dentate,
creating a thorough topographic map of the organization of entorhinal-dentate
projections. Each injection was performed in a separate rat, and the result of the
injection was presented as a grayscale heat map overlaid on a two-dimensional,
flattened representation of the entorhinal cortex of the rat. The grayscale heat map
represented the density of entorhinal neurons that projected to the injection site
(Fig. 5).

Quantifying the data to use in the model proved a challenge due to the qualitative
presentation of the results and the dissimilarity of brain shapes for each rat. To

Fig. 5 Summary of the image-processing pipeline used to quantify the connectivity of entorhinal
cortical projections to the dentate gyrus. Not all data are shown. (1) The data in the anatomical
subject maps are digitized and grouped according to injection location. (2) The maps are projected
onto a standard coordinate space. (3) The sets are averaged. (4) The averaged group data
are projected onto an average anatomical map. The compass represents the rostro-caudal and
mediolateral axes. Reproduced from Hendrickson et al. 2016 with permission.
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Fig. 6 Connectivity mapping from the lateral and medial entorhinal cortices (LEC and MEC) to
the dentate gyrus (DG). Like colors between the entorhinal cortex and dentate gyrus correspond to
the origin and destination of a projection, e.g., red entorhinal regions project to red dentate regions,
blue entorhinal regions project to blue dentate regions, etc.

address this, a processing workflow was developed (Fig. 5). In the first step, the
results of each injection were digitized, and the unique shape of the entorhinal
cortex was extracted. Next, the individual entorhinal maps were transformed into
a standard map, and the standardized maps were grouped based on the region
of projection. The grouped, standardized maps were averaged, and the resulting
averaged maps were transformed back to a representative entorhinal map that was
created by calculating the average of all the entorhinal maps. The final grayscale heat
maps were used to determine, given the origin of the neuron in the entorhinal cortex,
the probabilistic location within the dentate gyrus to which the axon was connected.
The final mapping depicts a mediolateral gradient in the lateral entorhinal cortex that
projects along the longitudinal axis of the dentate gyrus. In the medial entorhinal
cortex, there is a dorsoventral gradient that projects along the longitudinal axis of
the dentate gyrus. A summary of the mapping is shown in Fig. 6.

The above study informed the regional mapping of the entorhinal-dentate
projection, but it did not describe the morphology of the entorhinal axonal arbors. At
the cellular level, Tamamaki and Nojyo (1993) produced some of the few reported
single entorhinal neuron perforant path axon terminal field reconstructions. Based
on their work, the septo-temporal extent of the axon terminals was constrained to be
in the range of 1–1.5 mm. Given that the axon terminals cover the entire transverse
extent of the dentate gyrus, the entorhinal axons in the model were represented using
Gaussian distributions with a standard deviation 0.167 mm which corresponds to
approximately 1 mm being covered within three standard deviations from the center
of the axon terminal field. These distributions determined the connectivity between
the entorhinal neurons and the granule cells, providing the basis for feedforward
excitation in this system.
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Topography Within the Dentate Gyrus

Upon identifying a neuron and filling it with dye, septo-temporal cross sections
of the hippocampus can be made, and the total length of axon that exists in the
cross sections can be quantified. Such experiments have yielded histograms of the
total axon length of a neuron as a function of distance away from the cell body.
The histograms were fitted to Gaussian functions to extract the standard deviations
that parameterize the spatial distributions of axon terminal fields of dentate granule
cells and basket cells. The septo-temporal and transverse standard deviations for
granule cells were estimated to be 0.152 mm and 0.333 mm, respectively (Patton
and McNaughton 1995; Buckmaster and Dudek 1999). The corresponding standard
deviations for basket cells were estimated to be 0.215 and 0.150 mm (Han et
al. 1993; Sík et al. 1997). The resulting two-dimensional Gaussian distributions
described the probability of connectivity between granule cells and basket cells.

The associational system of the dentate gyrus is provided by the mossy cells, and
their axons extend predominantly into the inner third of the molecular layer (Buck-
master et al. 1996; Ribak and Shapiro 2007). Mossy cell axon terminals contact both
granule cell and basket cell dendrites within the inner third (Scharfman et al. 1990;
Scharfman 1995). The longitudinal extent of the axon terminal field is dependent
on the location of their soma with fields that span 7.5 and 1.5 mm for mossy
cells located septally and temporally, respectively (Zimmer 1971; Hendrickson et
al. 2015).

Conduction Velocity of Action Potentials

To account for the time delay between the generation of an action potential and its
arrival at the presynaptic terminal where it triggers neurotransmitter release, conduc-
tion velocity values, taken from the literature, and the Euclidean distance between
the neurons were used. For the entorhinal conduction delays, a bifurcation point
was assigned at the crest of the dentate gyrus at a longitudinal location according to
topographic rules described earlier. The distance between the perforation point and
the postsynaptic neuron was used to calculate the delay. The conduction velocity
was estimated to be 0.3 m/s (Andersen et al. 1978).

Synaptic Density

The inputs to a postsynaptic neuron for each possible presynaptic cell type were
determined by calculating the pairwise distance between the postsynaptic neuron
and all of the presynaptic neurons and computing the connection probability
using an appropriate probability distribution. Inputs were randomly selected until a
threshold number of inputs, determined by the convergence value for the presynaptic
cell type, were satisfied. The convergence value denotes the number of afferent
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connections that a postsynaptic neuron receives from a given presynaptic neuron
type and was estimated by considering the number of synapses that was available
for a presynaptic neuron type. The determination of the convergence is detailed
below.

Granule Cell Synapse Counts

Hama et al. (1989) quantified the spine density of granule cells by performing
analyses on electron microscopy images of the granule cell dendrites. Though Hama
et al. did not separately quantify the synaptic density based on the location of the
granule cells with respect to the suprapyramidal and infrapyramidal blades of the
dentate gyrus, Desmond and Levy (1985) reported significant differences between
the blades. However, the methodology of Hama et al. was preferred as they used
higher resolution electron microscopy imaging to perform the counting rather than
light microscopy. Using the ratio of the spine densities between the blades as
reported by Desmond and Levy, the spine densities for the infrapyramidal blade
based on the work of Hama et al. were estimated. Furthermore, Crain et al. (1973)
were able to identify asymmetric synapses in only a certain proportion of spines in
the distal and middle dendrites, signifying excitatory synapses presumably from
perforant path input. Claiborne et al. (1990) characterized the dendritic lengths
of axons that lie in the various strata. With a total mean length of 3,478 μm for
suprapyramidal granule cells and 2,793 μm for infrapyramidal granule cells and a
mean of 30% of the dendrites in the middle third of the molecular layer and 40% in
the distal third, the mean numbers of synapses available for the lateral and medial
perforant path were computed as 2,417 and 2,117 for suprapyramidal granule cells
and 1,480 and 1,253 for infrapyramidal cells, respectively (Table 4).

Halasy and Somogyi (1993) reported that 7–8% of synapses on granule cell
dendrites in the molecular layer are GABA-immunopositive and these dendritic
synapses represent 75% of the inhibitory synapses on granule cells with the
remaining 25% located in the granule cell layer. Given total spine counts of 8,695
and 5,533 for suprapyramidal and infrapyramidal granule cells, respectively, the
number of inhibitory inputs in the molecular layer would be 652 and 415. This
would then leave 217 and 138 synapses in the granule cell layer. Basket cells send
their axon collaterals predominantly to the granule cell layer, but they are not the
only interneurons to do so. Chandelier cells, not included in this study, are hilar cells
that also provide inhibitory input to the granule cell layer (Soriano and Frotscher
1989; Buhl et al. 1994). Given the average number of boutons between basket cells
and chandelier cells, 11,400 and 3,800, approximately 75% of the synapses in the
granule cell layer should be dedicated for basket cell input (Sík et al. 1997). The
convergence of basket cells onto granule cells should then be 174 and 110 for the
suprapyramidal and infrapyramidal granule cells. However, parvalbumin-positive
basket cells only make up 62% of the basket cell population, so the convergence is
appropriately shifted to 108 and 68, respectively (Buckmaster and Dudek 1997).
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Mossy cells have been reported to create 30,000–40,000 synapses within the
inner third of the molecular layer (Buckmaster et al. 1996). Assuming that mossy
cells maximally form one synapse per granule cell and there are 30,000 mossy cells
and 1,200,000 granule cells, then a granule cell would receive an average of 875
mossy cell inputs. This number is less than the estimated number of spines in the
inner molecular layer for granule cells (Table 4), but the mossy cell connections that
were being investigated originated from ipsilateral connections and do not consider
commissural input from the contralateral hippocampus.

Basket Cell Synapse Counts

The total dendritic length of dentate basket cells has been reported to be 4,530 μm.
Of this length, the basal dendrites receive input from the granule cells. The
proportion of dendrite that lies in the molecular layer (apical dendrites) versus the
hilus (basal dendrites) was estimated from measurements of surface area with an
apical surface area of 7,600 μm2 and a basal surface area of 2,200 μm2 (Vida 2010).
The synaptic density for the dentate basket cell was taken from an estimate made by
Patton and McNaughton (1995) which was 1 synapse/μm. Another study reported
that approximately 10% of synapses in CA1 basket cells are GABAergic (Gulyás
et al. 1999). Using these data, the mean number of granule cell inputs for a basket
cell was estimated to be 915. Assuming that the distribution of basket cell dendrites
in the molecular layer was similar to that of granule cells, the number of lateral
and medial entorhinal inputs for a basket cell was calculated to be 1,045 and 783,
respectively. Similarly, the number of synapses in the inner third of the molecular
layer was estimated to be 783. Considering that only a third of the inner molecular
synapses of the granule cells were used for ipsilateral mossy cell connections,
the same ratio was used for basket cells to estimate 260 mossy cell connections.
Pyramidal basket cells also receive mossy cell input through its basal dendrites. Of
the reported 2,700 synaptic contacts that mossy cells were found to make in the
hilus, 60% was estimated to occur with inhibitory interneurons (Buckmaster et al.
1996; Wenzel et al. 1997). We assumed that all hilar interneurons have an equal
probability of receiving a mossy cell input and that a hilar interneuron receives an
average of two synaptic contacts from a single mossy cell (Buckmaster et al. 1996).
Given a total hilar inhibitory interneuron population of 20,000 (Buckmaster and
Jongen-Rêlo 1999), the estimated number of hilar mossy cell inputs to basket cells
was 1,200. This would lead to a total number of mossy cell inputs to be 1,460.

Mossy Cell Synapse Counts

The present model only considers the granule cell input to mossy cells. Mossy cell
excitation of other mossy cells and inhibitory inputs to mossy cells have yet to be
included but are planned for future works. Acsády et al. (1998) reported that granule
cells form synapses with 7–12 hilar mossy cells. Given a granule cell population of
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Table 5 Parameters for
AMPA synapses

Granule cell Basket cell Mossy cell

Medial perforant patha

gmax (μS) 1.17e−5 4.21e−6 –
τ 1 (ms) 1.05 1.05 –
τ 2 (ms) 5.75 5.75 –
Convergence 2,117/1,253 783 –
Lateral perforant patha

gmax (μS) 1.50e−5 4.21e−6 –
τ 1 (ms) 1.05 1.05q –
τ 2 (ms) 5.75 5.75 –
Convergence 2,417/1,480 1,045 –
Granule cellb

gmax (μS) – 1.13e−4 2.00e−5
τ 1 (ms) – 0.1 0.3
τ 2 (ms) – 0.49 0.6
Convergence – 915 380
Mossy cellc

gmax (μS) 1.17e−6 2.27e−5 –
τ 1 (ms) 1.05 1.05 –
τ 2 (ms) 5.75 0.49 –
Convergence 875 1,460 –

Presynaptic neurons are in the first column. Postsynaptic
neurons are in the first row. The reversal potentials for
AMPA synapses were 0 mV. The parameters for the post-
synaptic potentials were optimized based on experimental
data from the following papers: aFoster et al. (1991);
bGeiger et al. (1997); and cScharfman (1995). Conver-
gence values for granule cells are divided into supra- and
infrapyramidal blades (supra/infra).

1,200,000 and a mossy cell population of 30,000, the estimated number of granule
cell inputs that a mossy cell receives was 380. A summary of the convergence values
is listed in Table 5.

Synaptic Model

In the currently described large-scale network, synapses were the exclusive mecha-
nism through which neuron-to-neuron communication was mediated. The synapse
was phenomenologically and deterministically represented so, upon being triggered
by an action potential, the synaptic conductance would follow a time course
dictated by a double exponential function according to the Exp2Syn mechanism
in NEURON.
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Table 6 Parameters for
GABAA synapses

Granule cell Basket cell Mossy cell

Basket cell
gmax (μS) 1.24e−3 – –
τ 1 (ms) 0.1 – –
τ 2 (ms) 12.35 – –
Convergence 108/68 – –

Presynaptic neurons are in the first column. Postsynaptic
neurons are in the first row. The reversal potentials for
GABA synapses were −75 mV. The parameters for the
postsynaptic potentials were optimized based on experi-
mental data (Buhl et al. 1995).

g(t) ∝ e

−t
/

τ2 − e

−t
/

τ1

Though NMDA is crucial to synaptic plasticity, synaptic function for this
implementation of the model was limited to AMPA, which allowed a base response
of the neural network to be expressed and focused on the analysis on the two
properties in question: topography and inhibition. Inhibitory GABAergic synapses
for the present model were restricted to the GABAA subtype and also were modeled
using the Exp2Syn mechanism. The parameters of synapses between the various
cell type pairs are summarized in Tables 5 and 6.

Simulation Results

Characterization of Baseline Dentate Response to Random
Entorhinal Cortical Input

For our initial simulation study to characterize dentate granule cell responses to
entorhinal input, the dentate network was driven using independent, identically
distributed Poisson point processes which generated interstimulus intervals (ISIs)
at a mean frequency of 3 Hz. The 3 Hz was chosen to represent a baseline of
spontaneous activity for the entorhinal cortex. A Poisson process was used to
generate ISIs that would perturb the synapses at a broad range of frequencies
approximating a white noise input with which to investigate the entorhinal-dentate
system. The resulting entorhinal activity was uncorrelated spatially and temporally.
Once the inputs were generated, the same ISIs were used to perturb the network for
all of the simulations that are described in this work.

The culmination of all of these steps resulted in the formation of a neural
network approximating the entorhinal-dentate system of the hippocampus. Random,
uncorrelated activity from the entorhinal cortex was projected to the dentate
gyrus and spatially distributed according to experimentally established rules that
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determine topographical connectivity. The activity was converted into postsynaptic
potentials (PSPs) in the corresponding granule cells and basket cells based on the
synaptic equations that determined the response. The PSPs were propagated through
the dendritic morphologies, interacting with PSPs arising from other input timings
and activating voltage-gated ion channels, resulting in a nonlinear transformation of
the PSPs as they traveled toward, and were integrated at, the soma. Upon reaching
a threshold, which was determined by the ion channel composition and density,
the soma would generate an action potential which would activate neural circuits
based on the local topography of the granule and basket cell axons and provoke a
similar sequence of events from which large-scale population dynamics could be
expressed in the form of spatiotemporal patterns of spiking. Initial simulations were
performed at the full number of neurons in the entorhinal cortex and dentate gyrus
(Table 1). To explore the various phenomena that were observed at the full-scale
network, subsequent simulations were performed at a reduced scale with a tenth of
the number of neurons to decrease the simulation times. Simulations performed at
the reduced scale continued to exhibit the relevant phenomena seen at the full scale.

Simulations were performed on a computing cluster (hpc.usc.edu) using 125 dual
quad-core 2.33 Ghz Intel-based nodes with 16 GB of RAM per node for a total
of 1000 processor cores and 2 TB of RAM. The nodes were connected by a 10G
Myrinet networking backbone. At full scale with 112,000 entorhinal cortex cells,
1,200,000 granule cells, and 4,000 basket cells with a simulation time of 4,000 ms,
simulations required approximately 87 h to complete. Reduced scale simulations
required approximately 9 h.

Spatiotemporal Clusters as an Emergent Property

The spiking activity of the network is depicted using raster plots with time on
the x-axis. The entorhinal activity is sorted by cell ID which demonstrates the
uncorrelated properties of its spatiotemporal firing pattern. For neurons in the
dentate, the longitudinal location of a spike within the dentate is plotted on the
y-axis. The basket cell activity is plotted similarly. The initial expectation was
that spatiotemporally uncorrelated input from the entorhinal cortex would result in
spatiotemporally uncorrelated output of granule cells. Contrary to that hypothesis,
the dentate system responded with localized regions of spatially and temporally
dense activity that were interspersed with periods of reduced activity. The dense
activity spanned a spatial extent of 1–3 mm and persisted for approximately 50–
75 ms with periods of reduced activity lasting 50–100 ms. Regions of dense activity
were called “clusters” (Fig. 7).

The clustered activity was not a transient response but was the steady-state
response after approximately 1 s of simulation had passed. The transient response
was characterized by synchronized, oscillatory behavior (not shown). During this
phase, the entire extent of the dentate gyrus alternated between periods of activity
and inactivity before evolving into clustered activity which persisted indefinitely for

http://hpc.usc.edu
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Fig. 7 Simulation result for topographically constrained entorhinal-dentate network with feed-
back inhibition at full scale with 1,200,000 granule cells. (Top) Entorhinal activity was generated
by homogeneous Poisson process and was spatially and temporally uncorrelated. Medial entorhinal
activity is in red and lateral entorhinal activity is in blue. (Middle) Granule cell activity displays
spatiotemporal clustering with local regions of dense activity. (Bottom) Basket cell activity was
also clustered, being driven, and activated in a feedback manner by granule cell activity

the rest of the simulation. Clusters persisted even after the network was scaled to
one-tenth of the full scale (Fig. 9). The mean firing rate of the granule cells was
1.28 Hz.

A density-based clustering algorithm, DENCLUE 2.0 (Hinneburg and Gabriel
2007), was used to detect clusters for more in-depth characterization (Fig. 8). The
mean number of spikes that contributed to each cluster in the reduced network was
156. Clusters had a mean temporal width of 18 ms and spatial extent of 0.90 mm.
The mean density of the clusters was 12 spikes/ms•mm2, and the intercentroid time
between the clusters was 11 ms. Clusters were not formed due to bursts of spikes
by individual granule cells. Rather, clusters were a result of increased population
activity.

The clusters are an expression of a spatiotemporal correlation in the system.
To test the robustness of this correlation, spatiotemporal correlation maps were
computed in which the cross-correlations between cell pairs from the network were
computed and the longitudinal distance between the cells was used to sort the
correlations (Fig. 9). The spike times were sorted using a time bin of 5 ms, and
the resolution of the cell distance was set to 0.05 mm. A uniform random sampling
of 10,000 cells was performed, and the correlations were calculated with all unique
cell pair combinations from this sampling. The resulting maps capture the average
features of the clusters that are apparent visually and verify the existence of a
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Fig. 8 DENCLUE analysis of granule cell-spiking activity which identifies clusters based on the
local density. Each identified cluster is plotted with a separate color. The cluster analysis shows
that clusters are organized by the transverse axis in addition to the longitudinal and temporal axes

spatiotemporal correlation in the dentate population which was not present in the
entorhinal population.

Removal of Extrinsic and Intrinsic Sources of Inhibition

To identify the properties that were responsible for the spatiotemporal correlation,
physiological components were successively removed until the clusters were sub-
stantially modified or no longer detected. The initial hypothesis was that the clusters
were formed due to sources of inhibition. First, basket cells were considered as
an extrinsic source of inhibition due to the inhibitory feedback they provide to
granule cells. The dynamics of inhibition and spatial distribution of fibers should
generally correspond to the inter-cluster timing and cluster size. The removal of
basket cells from the network increased the level of background activity or “noise”
in the system but changed the shape of clusters only subtly (Fig. 9). Next, an
intrinsic source of inhibition was investigated, the afterhyperpolarization (AHP)
of granule cells. The reduced spiking during the AHP could contribute to the
reduced inter-cluster activity. The amplitude of the fast AHP of the granule cells was
reduced by half, and the half-height width was reduced by one-third by removing
the calcium-dependent potassium conductances (the small conductance calcium-
activated potassium channel, SK, and the large conductance calcium-activated
potassium channel, BK). In the absence of basket cell inhibition and the AHP, a
greater amount of noise was present making clusters more difficult to detect visually,
but the correlation maps continued to demonstrate the presence of a substantial
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Fig. 9 Raster plots of activity from an entorhinal-dentate network at 1/10th of the full scale
while cumulatively removing extrinsic and intrinsic sources of inhibition as well as topographical
connectivity constraints. The corresponding correlation maps are to the right of each raster plot.
(a) Clustered activity persists in a network that is scaled down. The correlation map exhibits spatial
and temporal correlation that matches the size and extent of the dentate clusters. (b) Basket cells
are removed as a source of extrinsic inhibition, but clustered activity remains. (c) Extrinsic and
intrinsic sources of inhibition are eliminated by reducing the AHP amplitude and removing basket
cells. Background activity increases, but clusters are still present. (d) In the absence of basket
cells and AHP, entorhinal cortical cells and granule cells are randomly connected to eliminate
topography. It is only after topographical connectivity constraints are removed that the clusters
disappear

spatiotemporal correlation (Fig. 9). Both of these simulations indicated that clusters
were not a result of neurobiological mechanisms that contribute to the inhibition of
granule cell activity.

Topographic Connectivity as a Source of Spatial Correlation

The next simulation sought to eliminate topography. With topography, entorhinal
cortical cells exhibited an axon terminal field that spanned a longitudinal extent
of 1 mm, constraining their postsynaptic targets to granule cells within this extent.
Topography was removed by using a random connectivity; entorhinal cortical cells
were allowed to synapse with any dentate granule cell with equal probability. Each
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Fig. 10 Effect of increasing the axon terminal field extent in the septo-temporal direction. Raster
plots of the granule cell activity are in the left column. Correlation maps are plotted on the right.
As the terminal field extent is increased, the cluster size is increased, and this is further reflected
by the expanding spatial extent of the correlation

neuron received the same number of connections as before, but the potential origin
of the inputs was entirely random. The result of removing the topography of the
entorhinal projection, in the absence of basket cells and a reduced AHP, was the
elimination of clustered activity (Fig. 9). This result demonstrated that the spatial
correlation and clusters are primarily dependent on the topography of the entorhinal-
dentate system.

Given that both the spatial extent of the clusters and the span of the axon terminal
field were approximately 1 mm, it was presumed that the axon terminal field could
be acting as a spatial filter that controlled the spatial correlation in the population
activity. To test this hypothesis, the axon terminal field of the entorhinal-dentate
projection was varied from 0.5 to 5 mm (Fig. 10). Basket cells were not included
in these simulations, and the granule cell models were restored to their original ion
channel composition, i.e., amplitudes of AHPs were not reduced. The simulations
verified that the extent of the axon terminal field determines the spatial extent of the
clustered activity. However, the temporal extent of the clusters was not affected by
the axon terminal field.
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Fig. 11 Granule cell activity if the time course of the entorhinal-dentate EPSP is expanded. Fewer
clusters were seen in the granule cell activity, but the temporal width of the clusters increased. This
is also seen in the correlation map

Sources of Temporal Correlation

Though extrinsic and intrinsic sources of inhibition, i.e., basket cells and AHP, were
not found to be the source of clusters, they were able to modulate the appearance of
the clusters and the temporal aspect of the correlation maps (Fig. 9). In particular,
they affected the regions of negative correlation that appeared on either sides of
the positive correlation lobes. However, neither processes significantly changed the
width of the lobes. We hypothesized that by changing the temporal properties of the
EPSP, the temporal width of both the clusters and correlation could be manipulated.
The second time constant τ 2 of the double exponential equation that describes the
synaptic dynamics primarily influences the width of the resulting PSP. To extend
the temporal width of the PSP, τ 2 was increased by a factor of 10. The first time
constant τ 1 primarily affects the rise time of the PSP and was not manipulated
for this simulation. In order to maintain similar levels of activity, the amplitude
of the EPSP was altered such that its integral remained unchanged with respect to
the original, experimentally based EPSP waveform. The population responded with
wider but fewer clusters that appeared with a different spatiotemporal pattern than
the control. The simulations verified that the temporal extent of the clusters and
correlation were proportional to the temporal extent of the EPSP (Fig. 11).

Modulation of Clusters via Interneurons

The model of the dentate gyrus used in the present studies was comprehensive,
particularly with respect to the morphologies of granule cells, topographic orga-
nization of perforant path fibers, biophysical properties of granule cell bodies and
dendrites, relative numbers of granule cells and basket cell inhibitory interneurons,
total numbers of neurons included in the model, and other prominent features
known to be characteristic of the hippocampal entorhinal-dentate system in the
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Fig. 12 Results of increasing the strength of feedback inhibition. As feedback inhibition
increased, synchrony increased and oscillatory behavior became apparent. The Fourier transforms
depict a strengthening of oscillation at 22 Hz. Reproduced from Hendrickson et al. 2016 with
permission

rat. In addition, and relevant to the current volume, in the present model, we have
investigated the role of basket cells forming feedforward and feedback inhibitory
pathways and mossy cells contributing feedback from the hilus to granule cells
and inhibitory interneurons (Hendrickson et al. 2015, 2016). Positive feedback
was mediated by mossy cells which monosynaptically provided excitatory input
to granule cells but also disynaptically provoked an inhibitory effect by activating
basket cells.

The role of feedback inhibition was investigated by increasing the strength of
basket cell activation by granule cells and observing the granule cell activity. As
the coupling strength was increased, the clustered activity began to align temporally
(Fig. 12). At higher coupling strengths, the aligned clusters became joined into a
single vertical band, and the granule cell activity appeared as an oscillation between
periods of activity and inactivity. The oscillation frequency of the synchronous
activity was evaluated using Fourier analysis which exhibited a primary peak at
22 Hz and, at the higher coupling strengths, a resonant peak at 45 Hz.

Feedforward inhibition was investigated by increasing the strength of basket cell
activation by entorhinal cortical cells and observing granule cell activity. Alone,
feedforward inhibition acted to dampen activity and eventually ceased any granule
cell activity from occurring at higher coupling strengths (figure not shown). The
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Fig. 13 Results of increasing the strength of feedforward inhibition while the network was in an
oscillatory state due to feedback inhibition. As feedforward inhibition was increased, the oscillation
frequency increased, but beyond a certain level, oscillatory activity was dampened, and the granule
cells begin to exhibit clustered activity

interactions between feedforward and feedback inhibition then were explored (Fig.
13). The strength of feedback inhibition was set such that granule cells exhibited
a 22 Hz oscillation. In this state, the entorhinal-basket cell coupling strength was
steadily increased. At lower coupling strengths, the 22 Hz oscillation was shifted
toward higher frequencies, but beyond a certain level, the peak oscillation was
weakened and eventually eliminated, reverting to clustered activity.

Mossy cells were found to affect the shape of the clusters and the prevalence of
excitatory activity in the network. Clusters were denser and started and terminated
more sharply (Fig. 14). Larger clusters that spanned 4–6 mm of the longitudinal
extent of the dentate also began to appear. The introduction of mossy cells further
introduced a global oscillation dynamic in that the system would alternate between
a period of strong and densely packed clusters and a period of weaker and more
dispersed clusters. A Fourier analysis showed that the oscillation occurred in the low
theta region in the range of 2–5 Hz. By manipulating the synaptic strength between
the mossy-granule cell projection and the mossy-basket cell projection, the dentate
network could be easily induced to enter an aberrant bursting state reminiscent of
epileptic activity (Fig. 14). Changing the strengths by a factor of 2 was sufficient
to elicit a bursting response during the strong cluster period. The results support
both the “irritable mossy cell” hypothesis, which proposes a strengthened coupling
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Fig. 14 Dentate activity in a network containing granule cells (black), basket cells (magenta), and
mossy cells (red). A global oscillation is seen where the network responds with periods of strong
and dense clusters and periods of weak and sparse clusters. When the strength of the mossy-granule
cell synapses is increased, the strong cluster period exhibits epileptic activity. Similarly, when the
strength of the mossy-basket cell synapses is decreased, the strong cluster period exhibits epileptic
activity

between mossy cells and granule cells, and the “dormant basket cell” hypothesis,
which proposes a weakened coupling between mossy cells and basket cells, that
both explain a network level mechanism behind epilepsy (Santhakumar et al. 2000;
Sloviter et al. 2003; Dyhrfjeld-Johnsen et al. 2007). Morgan and Soltesz (2010)
developed a large-scale model of the dentate gyrus to investigate a biologically
plausible mechanism by which the hyperexcitability seen in epilepsy could be
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generated. Injury was simulated by adding granule cell-to-granule cell connections,
a phenomenon called mossy fiber sprouting, and reducing the number of mossy cells
in the network. Their study demonstrated that the formation of hub cells, highly
connected granule cells with large numbers of incoming and outgoing connections,
may explain hyperexcitability in epilepsy.

The relatively wide range of network parameters associated with the network
tendency for high levels of excitability and epileptiform firing also demonstrates
the difficulty in controlling a network as its complexity grows. Strictly from a
modeling and simulation standpoint, this may be particularly troublesome given that
computational studies of the hippocampus and other brain systems will increasingly
seek to include greater and greater numbers of interconnects and neuron types to
achieve biological completeness.

The additional hierarchical organization imposed by the mossy cells and basket
cells resulted in a more unstable system which raises more questions on the role
of hierarchies in a complex network and how stability is maintained in such
systems. The investigations reviewed here lacked other key dentate interneurons
such as chandelier, HICAP, HIPP, IS, and MOPP cells which, to complete the
dentate network, will be included in future studies. Their inclusion will undoubtedly
introduce many more sources of instability as the number of hierarchical circuit
interactions grows, but understanding the intricacies of such a network will offer
important insights into the conditions generating abnormal dentate system activity,
as well as suggesting mechanisms behind disease states.

Discussion and Future Work

Spatiotemporal Clusters as a Higher Level of Functional
Organization

The large-scale model introduced here offers one of the few insights into in vivo
population dynamics by incorporating an anatomically derived connectivity and
large numbers of detailed, biologically realistic neuron models. The emergence
of spatially and temporally finite clusters in the spiking activity, indicative of a
spatiotemporal correlation in the network, is a unique discovery that has yet to
be validated experimentally but remains an hypothesis highly suggestive of how
population activity could be organized at a higher level in the hippocampal dentate
system. Topography, terminal field size, and synaptic communication are integral
properties that underlie all neural systems and were found to significantly influence
the shape of the clusters. The fundamental nature of topography, terminal fields, and
synaptic transmission suggests that clusters could be found in many neural systems
and that clusters may act as a basic unit of neuronal activity at the population level.

Though the correlation maps were able to be computed through averaging, the
magnitude of the correlations was relatively low for all simulation cases. Clusters



Spatiotemporal Patterns of Granule Cell Activity Revealed by a Large-Scale,. . . 503

could be visualized or detected only because of the scale of the network in terms
of the geometry and the number of neurons. A network that is restricted in scale
to that of a typical 400 μm hippocampal in vitro slice would not exhibit clustered
activity because the spatial extent of the system would be insufficient to observe
the spatial boundaries of a cluster which are approximately 1 mm. Without having
constructed a network of the magnitude reported here, the number of observable
spikes would not be sufficient to calculate the correlations. As described above, the
clusters themselves are sparse, with an average of 156 spikes per cluster. This is not
to suggest that the clusters represent a minor aspect of granule cell activity but rather
to emphasize that the phenomena would otherwise be overlooked had a large-scale
network not been constructed.

Propagation and Transformation of Clusters

By extending the model beyond the dentate gyrus and incorporating the CA3/4 and
CA2/1 subfields, the propagation and transformation of the granule cell clusters
will be investigated in future studies (Yu et al. 2015). Because the topography of the
projections between each of the subfields is unique, multiple connectivity schemes
will be tested and compared. The mossy fibers, which are composed of the axonal
projection from the dentate granule cells to the CA3/4 pyramidal cells, originate
from a large presynaptic population and have a low divergence on the postsynaptic
population, i.e., each granule cell contacts 11–15 CA3 pyramidal cells (Acsády et
al. 1998). Conversely, the entorhinal projections to CA3 (projections do not extend
to CA4) have high divergence values similar to the entorhinal-dentate projection.
Within the CA3 region, there is an extensive, widely diverging associational system.
Finally, the Schaffer collaterals that describe the CA3/4 projection to CA1 contain
axon terminal fields that span large portions of the CA1 subfield (Ishizuka et al.
1990). An implementation of the entorhinal-dentate-CA3 topography has already
been constructed, and so many of these studies are already underway (Yu et al.
2014).

Behaviorally Relevant Inputs to the Hippocampus

In the current studies, entorhinal cortical activity has been represented using homo-
geneous Poisson processes based on white noise system identification principles,
but this activity is nonphysiological. Toward implementing a behaviorally relevant
input for the hippocampal neural network, the activity of grid cells in the medial
entorhinal cortex (Hafting et al. 2005) is being modeled using experimentally
based rate maps and heterogeneous Poisson processes (Yu et al. 2016). Using
this input paradigm, the lower levels of hippocampal dynamics can be linked
to an even higher-level function toward the behavioral level: the encoding of
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spatial information. Using the network generated by our framework, the biological
determinants of spatial encoding and spatial processing can be explored. The
network model can also be used to explore spatial processing in the context of
other proposed functions of the hippocampal subfields such as pattern separation
and pattern completion.
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A Model of Spatial Reach in LFP
Recordings

Henrik Lindén, Tom Tetzlaff, Szymon Łęski, Klas H. Pettersen, Sonja Grün,
Markus Diesmann, and Gaute T. Einevoll

Abstract The measurement of local field potentials (LFP), the low-frequency part
of extracellularly recorded potentials, is one of the most commonly used methods
for probing hippocampal and cortical activity in vivo. It offers the possibility to
monitor the activity of many neurons close to the recording electrode simultaneously
but has the limitation that it may be difficult to interpret and relate to the underlying
neuronal activity. The recording electrode picks up activity from proximal neurons,
but what about more distant neurons? An important piece of information for a
correct interpretation of the LFP is to decide the size of the tissue that substantially
contributes to the LFP, i.e., the reach of the LFP signal. In this chapter we present
a simple model that describes how population geometry, spatial decay of single-
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cell LFP contributions, and correlation between LFP sources determine the relation
between LFP amplitude and population size and use it to study the spatial reach of
the LFP. The model can also be used to study different frequency bands of the LFP
separately as well as the spatial decay outside the active neuronal population.

Overview

What is the Model

The recording of electrical potentials with extracellular electrodes has for many
decades been the work horse in in vivo studies of cortical and hippocampal
function (Buzsáki et al., 2012). The high-frequency part (�500 Hz), the multiunit
activity (MUA), mainly reflects spiking in neurons surrounding the electrode con-
tact. In contrast, the low-frequency part, the local field potential (LFP), is thought to
mainly reflect synaptic inputs and their subthreshold dendritic processing (Einevoll
et al., 2013b) (at least for LFP frequencies below, say, 100 Hz Schomburg et al.
2012).

In the context of hippocampal studies, the LFP has commonly been used to inves-
tigate characteristic oscillations at a wide range of frequencies: low-frequency theta
oscillations (∼5–10 Hz) (Buzsáki, 2002), gamma oscillations (∼30–100 Hz) (Bra-
gin et al., 1995), and very high-frequency “ripples” (∼100–200 Hz) (Ylinen et al.,
1995; Siapas and Wilson, 1998; Maier et al., 2011). When recorded across the
hippocampal lamina, the LFP has also been used to extract current source densities
(CSDs) (Brankack et al., 1993; Sirota et al., 2003; Buzsáki et al., 2012) and to
estimate synaptic pathways into the hippocampus (Herreras et al., 2015). Further,
the hippocampal LFP has been shown to encode spatial position, in analogy with
the spiking of hippocampal place cells (Agarwal et al., 2014; Taxidis et al., 2015).

The LFP is, despite its name, a much less local measure of neural activity
than spikes as the signal in general stems from populations of thousands or more
neurons surrounding the electrode (Einevoll et al., 2013a). Thus while offering
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an attractive opportunity for monitoring population activity, the LFP also has a
strong limitation: it can be difficult to interpret where the signal comes from and
what it represents. Proper mathematical modeling and analysis is thus needed to
properly infer the underlying neural activity from the signal (Einevoll et al., 2013b).
A key aspect for a correct interpretation of the LFP is knowing the size of the
region that generates it, i.e., knowing the spatial reach of the LFP. A number of
experimental studies have addressed this issue (Liu and Newsome, 2006; Kreiman
et al., 2006; Berens et al., 2008; Katzner et al., 2009; Xing et al., 2009; Kajikawa and
Schroeder, 2011) but have come with contradictory evidence regarding the spatial
reach, ranging from a few hundred micrometers (Katzner et al., 2009; Xing et al.,
2009) to several millimeters (Kreiman et al., 2006). One possible explanation for
this discrepancy is that the reach of the LFP is not a fixed quantity, but rather
changes with experimental conditions as the neuronal network state changes due
to behavioral context, stimulation, or level of anesthesia.

For spikes, i.e., the extracellular signatures of action potentials extracted from
the MUA, the definition of spatial reach is rather straightforward. Since (1)
the spike amplitude decays sharply with distance between the neuron and the
recording electrode and (2) spikes of relevant neighboring neurons typically are
nonoverlapping in time, it is natural to ask at which distance a spike becomes
indiscernible from the background noise (Buzsáki, 2004; Pettersen and Einevoll,
2008). For LFPs the situation is quite different. Since the LFP is primarily generated
by slower synaptic events, the contributions from different sources are overlapping
in time resulting in a signal that is a sum over many contributions.

So what determines the reach of the LFP? Intuitively, the reach of the LFP is
the result of two opposing scaling effects: as in the case of extracellular action
potentials, the contribution from a single neuron to the LFP still decays with
distance from the recording electrode (Lindén et al., 2010), but the number of
potentially contributing neurons increases with distance. There is, however, also a
third important factor that influences the LFP: whether the LFP contributions from
separate neurons are correlated or not. Just like water waves from several sources
may interfere constructively if they are synchronized, both the amplitude as well as
the spatial reach of the LFP may be drastically changed depending on the level of
correlation in the generating neuronal population (Lindén et al., 2011).

Questions Addressed

In this chapter we describe a compact model of LFP generation that encapsulates
how population geometry, single-cell features, and population-level correlations
determine the size of the region generating the LFP measured in the center of a
neuronal population (Einevoll et al., 2013b). The model can also be used to model
the spatial decay outside the active neuronal population which, in turn, may help
to understand the relative LFP contributions from simultaneously active neuronal
populations.
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The present model assumes passive dendrites and considers LFPs due to synaptic
currents and the associated return currents but could straightforwardly be extended
to model, e.g., active subthreshold conductances (Ness et al., 2015).

Levels of Detail/Rationale

The spatial reach of the LFP is difficult to measure experimentally because it is in
general difficult to precisely control or measure the neuronal activity that generates
the signal. To complicate matters further, the LFP can in principle be composed
of contributions from several local and distant populations that spread via volume
conduction. Here we take an analytical approach to address the question of LFP
reach for a situation where a single population dominates the signal and derive a
model that relies on numerical simulations of synaptically activated neurons for
certain components of the model. This approach has the advantage that we can fully
control both the size and activity of the neuronal population. Specifically, in contrast
to experiments, we can vary the size of the population to study the effects on the LFP.

The Model

Model Components

Let us consider an LFP measured in the center of a disclike neuronal population
(Fig. 1). The size of the population is defined by the radius R. Each cell i in the
population gives a contribution φi(t) to the population LFP φ(t) = ∑

i φi(t). How
does the amplitude of the LFP fluctuations (that we here quantify by the standard
deviation σ ) increase with the population radius R? As we will explain below, the
answer to this question depends on three factors:

A B

Fig. 1 Illustration of model setup. We study a model of the population LFP based on the spatial
summation of single-neuron LFP contributions from many neurons. (a) An electrode is placed
in the center of a disclike population, and by varying the radius R, we can investigate how
the amplitude of the LFP increases with population radius. (b) Each neuron (ordered by their
distance ri from the recording electrode) gives a contribution φi(t) to the population LFP φ(t).
The amplitude of the LFP is measured by the standard deviation σ of the LFP fluctuations over
time. (Adapted with permission from Lindén et al. 2011)
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1. The distance dependence of the amplitude of the single-neuron contributions
φi(t) characterized by the shape function F(r),

2. the number of neurons as a function of distance from the recording electrode,
given by the population geometry,

3. the level of correlation between the LFP contributions from different neurons.

We will first turn to numerical simulations of single-cell LFP contributions gen-
erated by multi-compartment neuron models to find the shape functions F(r) (point
1) and then derive an analytical expression for the LFP amplitude encapsulating all
three factors above. Based on this we will give a precise definition of the reach of
the LFP that we will test against full numerical population simulations and briefly
describe how the model can be extended to study separate individual frequency
components of the LFP (section “Results”).

Single-Cell Shape Function

How does the amplitude of the LFP contribution from a cell depend on the distance
to the recording electrode? To answer this question, we performed simulations
of synaptically activated multi-compartment neuron models and computed the
resulting LFP at the soma level for different radial distances to the electrode (Lindén
et al., 2011). The LFP was calculated using the line-source formalism (Holt and
Koch, 1999) as implemented in the software LFPy (http://lfpy.github.io) (Lindén
et al., 2014), and the neurons were activated using uncorrelated spike trains. Results
of these simulations are shown in Fig. 2.

We see that the amplitude typically decays as ∼1/r2 with distance r for
distances further away than 200–300 μm from electrode (Fig. 2a, dashed line). This
is consistent with the spatial decay of the electric potential generated by a current
dipole. Closer to the electrode, the decay is less steep, roughly ∼1/r1/2. This is
likely due to the dendritic extent of the neurons that typically is on the order of a
few hundred micrometers.

This picture is very similar for neurons with different morphologies (Fig. 2a),
but we see that the spatial decay changes somewhat for different synaptic input
scenarios (Fig. 2b). The distance at which the decay changes slope from low to high
is further away from the cell in the case of only apical input onto a pyramidal L5
neuron compared to when inputs are distributed basally or homogeneously over
the whole cell. Because of the vertical extent of the pyramidal neuron (which is
approximately 1200 μm), the synapses in this scenario are further away from the
recording positions which also causes a lower amplitude of the LFP compared to
basal input.

Based on these examples, we can formulate simplified expressions for the spatial
decay F(r) of the amplitude from a single-neuron LFP contribution (Einevoll et al.,
2013a):

http://lfpy.github.io
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Fig. 2 Spatial decay of the LFP contribution from a single neuron. Multi-compartment neuron
models were placed at different radial distances r away from a virtual recording electrode, and the
LFP amplitude was computed at each distance. The distance dependence of the LFP amplitude is
captured by the shape function F(r) (see text). For further details of the simulation, we refer to
Lindén et al. (2011). (a) Shape function for three types of cortical V1 neurons (layer 3 and layer 5
pyramidal neurons as well as a layer 4 stellate neuron). (b) Dependence of the shape function on the
synaptic input region for the layer 5 pyramidal neuron. (c) Illustration of simplified shape function
F(r) given by Eq. 1 with rε = 10 μm and F0 = 1 for three different values of the cutoff distance
rx = [100,200,500] μm (indicated by line style). ((a) and (b) adapted with permission from Lindén
et al. 2011)

F(r) =
⎧
⎨

⎩

F0 r < rε,

F0(rε/r)1/2 rε < r ≤ rx,

F0(rε/rx)
1/2(rx/r)2 r ≥ rx,

(1)

where rx is the cutoff distance where the decay changes slope and rε is a minimal
radial distance introduced to avoid an unphysical divergence as r goes to zero. (This
could represent, e.g., the distance to the cell closest to the electrode, but we leave
this unspecified here.) For an illustration of this simplified shape function F(r), see
Fig. 2c.
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Derivation of the Simplified Model

Let us now consider a population of neurons distributed in a disclike volume with
radius R. How does the amplitude of compound LFP φ(t) measured in the center of
the population depend on the population radius? In the following we will describe
a simple analytical model that gives the answer to this question (Einevoll et al.,
2013a).

First, let us assume that the contribution φi(t) from a neuron i can be decomposed
into a temporal and spatial part:

φi(t) = ξi(t)F (ri) (2)

where ξi(t) is a time-dependent variable with zero mean and unit variance which
describes the temporal fluctuations of the LFP contribution and f (ri) is the shape
function described above.

For the disclike population considered here, the number of neurons at a specific
distance r from the electrode is determined by:

N(r) = 2πrρ (3)

where ρ is the area density of neuronal LFP sources. If all LFP sources were
uncorrelated, that is, Et [φi(t)φj (t)] = 0 for i �= j where Et [ · ] represents
expectation value over time, the variance σ 2 of the LFP from cells at a particular
distance would increase linearly with the number of LFP sources at that distance.
In the continuum limit, the total LFP amplitude can be formulated as an integral
(Lindén et al., 2011):

σ 2(R) = G0(R) =
∫ R

0
dr N(r)F (r)2 = ρ

∫ R

0
dr 2πrF(r)2 (4)

where we have made use of Eq. (3) above.
It is clear from this expression that the shape function F(r) is the key factor

determining the way the amplitude of the compound LFP increases with distance. In
Fig. 3a, we show how the LFP amplitude σ(R) = √

G0(R) increases with distance
in the case of uncorrelated neuronal sources using the shape function defined in
Eq. 1. We see from the plot that the LFP amplitude in this case quickly appears
to saturate to a maximum value. It can be shown analytically (Lindén et al., 2011;
Einevoll et al., 2013a) that when the spatial decay of neuronal sources decreases as
∼1/r2 or more steeply, the LFP amplitude indeed converges to a fixed values as
R → ∞. This convergence suggest an intuitive definition of the reach of the LFP
as the population radius R∗ at which the LFP amplitude σ(R) has obtained a certain
fraction α of the amplitude at infinite population size σ(R → ∞).

If, on the other hand, the LFP sources are completely correlated, i.e.,
Et [φi(t)φj (t)] = Et [ξi(t)ξj (t)]FiFj = FiFj , the variance of the amplitude of
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the compound LFP from cells at a particular distance increases as the square of the
number of LFP sources at that distance, and we get (Lindén et al., 2011):

σ 2(R) = G1(R) =
(∫ R

0
dr N(r)F (r)

)2

= ρ2
(∫ R

0
dr 2πrF(r)

)2

(5)

A more general expression valid for any level of correlation cφ = Et [φi(t)φj (t)]
between LFP sources is given by Lindén et al. (2011):

σ(R) = √
(1 − cφ)G0(R) + cφG1(R) . (6)

Here the terms for uncorrelated (Eq. 4) and correlated sources (Eq. 5) have been
combined and are scaled by the correlation coefficient cφ . Equation 6 can be
computed by numerical integration of G0(R) and G1(R) for any shape function
F(r) and also for a numerically derived one as in Fig. 2. For the simplified shape
function F(r) given by Eq. 1, we may, however, even find analytical expressions for
the results of the integrals in Eqs. 4 and 5 (Einevoll et al., 2013a):

G0(R) =
⎧
⎨

⎩

F 2
0 ρπR2 R ≤ rε,

F 2
0 ρπrε(2R − rε) rε ≤ R ≤ rx,

F 2
0 ρπrε(3rx − rε − r3

x /R2) R ≥ rx,

(7)

G1(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F 2
0 ρ2π2R4 R ≤ rε,

F 2
0 ρ2 1

9π2
(
r2
ε − 4r

1/2
ε R3/2

)2
rε ≤ R ≤ rx,

F 2
0 ρ2 1

9π2rε

(
r

3/2
ε − (4 + 6ln(R/rx))r

3/2
x

)2
R ≥ rx.

(8)

Frequency-Dependent Formulation of the Simplified Model

The simplified model outlined so far predicts the variance σ 2 ∼
∫

df P (f )

of the compound LFP, i.e., the integral of the LFP power spectrum P(f ). All
frequency components are hence collapsed into a single measure. The model can
however easily be reformulated to obtain a frequency-resolved version, resulting in
the following expression for the power spectrum P(f,R) of the compound LFP of
a cell population of radius R, analogous to Eq. 6 (for details of the derivation, see
Łęski et al. 2013):

P(f,R) = (1 − cφ(f ))G0(f, R) + cφ(f )G1(f, R). (9)
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Here, cφ(f ) denotes the population-averaged coherence between single-cell LFP
contributions. Analogous to Eqs. 4 and 5, the functions

G0(f, R) =
R∫

0

dr N(r)F (f, r)2 (10)

and

G1(f, R) =
⎛

⎝
R∫

0

dr N(r)F (f, r)

⎞

⎠

2

(11)

are determined by the shape function F(f, r) describing the dependence of the
single-cell LFP amplitude at frequency f at the cell-electrode distance r and
N(r) giving the number of LFP sources at distance r (cf. Eq. 3 for a disclike
population geometry). For the results shown in section “Frequency Dependence
of LFP Power and Reach,” we will use the phenomenological model of the shape
function defined in Eq. 1. The frequency dependence of the shape function F(f, r)

results from introducing a frequency-dependent cutoff distance rx = rx(f ). This
frequency dependence of the cutoff distance (Fig. 5a) is obtained by fitting F(f, r)

to the results of simulations of multi-compartment neurons stimulated by white-
noise synaptic input, i.e., synaptic input with a flat power spectrum (same setup as
explained in section “Single-Cell Shape Function”). The second source of frequency
dependence in Eq. 9 is the LFP coherence cφ(f ). Again, the shape of cφ(f ) (Fig. 5b)
is obtained from simulations of multi-compartment neurons fed by white, partially
shared synaptic input (see section “Simulations with Multi-compartment Neuron
Models”).

Spatial Decay Outside the Neuronal Population

All the equations above apply to a scenario where the LFP electrode is placed in the
center of the disclike population. The expressions for G0 and G1 can, however, also
be extended to account for a situation where the electrode is placed at a distance X

away from the center (Einevoll et al., 2013a):

G0(R,X) = ρ

∫

{|r|≤R}
d2r F (|r − X|)2

= ρ

∫ 2π

0
dθ

∫ R

0
dr r F

(√
(X − r cos θ)2 + (r sin θ)2

)2
,

(12)
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G1(R,X) =
(

ρ

∫

{|r|≤R}
d2r F (|r − X|)

)2

= ρ2
( ∫ 2π

0
dθ

∫ R

0
dr r F

(√
(X − r cos θ)2 + (r sin θ)2

) )2

.

(13)

Here, r denotes the position vectors of the LFP sources and X the vector Xex with
ex being a unit vector in the x-direction.

Results

We will first go through some of the predictions of the simplified model derived
above and then in the next section compare these predictions against numerical
population simulations. Finally, we will briefly illustrate the spatial decay of the
LFP outside the active population.

Analytical Predictions for Amplitude and Reach

The model equations above (Eqs. 4, 5 and 6) predict two qualitatively different
scaling behaviors for uncorrelated and correlated neuronal activity, respectively.
This is illustrated in Fig. 3a, b where the two components

√
G0 and

√
G1 are plotted

separately for a population of radius 1 mm. In the case of uncorrelated activity, the
amplitude σ(R) of the compound LFP converges to a fixed value that would not
increase even if the neuron population were infinitely sized (Fig. 3a, see also Lindén
et al. 2011; Einevoll et al. 2013a). With the definition of spatial reach introduced
above, as the population radius R∗ where the LFP amplitude has obtained a fraction
α of the infinite-size population, the LFP sources that are positioned within a radius
R∗ contributes a proportion α of the total LFP amplitude even if they are embedded
in population with infinite size. In Lindén et al. (2011), and Einevoll et al. (2013a)
we have used α = 0.95 which is illustrated with a dashed line in Fig. 3a. In this case
the spatial reach is small, roughly ∼200 μm.

In contrast, if the neuronal LFP sources were fully correlated, the amplitude
increase with population radius is markedly different (Fig. 3b). In this case the LFP
amplitude no longer converges to a fixed value. With the same definition of the
spatial reach as in the uncorrelated case, the LFP now contains contributions from
most of the neuronal population (>800 μm). Furthermore, the amplitude of the LFP
is markedly higher.

For intermediate values of the correlation cφ , the contributions from the two
terms G0 and G1 are weighted according to Eq. 6 to give intermediate scaling behav-
ior of the LFP amplitude compared to the uncorrelated or fully uncorrelated case
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Fig. 3 Components of and results from the simplified model. Results of Eq. (6) using expres-
sions for G0 and G1 given by Eqs.7 and 8 with area density ρ = 10,000 neurons/mm2 derived using
single-cell shape function F(r) as defined in Eq. (1) with rε = 10 μm, rx = 100 μm and F0 = 1.
(a) When the LFP sources are uncorrelated, the amplitude σ(R) of the compound signal is given
by Eq. 4. In this case the amplitude converges to a fixed value for large R, and we here define
the spatial reach of the LFP as the population radius R∗ (dotted line) where the amplitude has
obtained 95% of the maximum value (dashed line), here compared against the largest population
radius considered in the study (R = 1000 μm). (b) The amplitude σ(R) in the case of fully
correlated neuronal LFP sources, given by Eq. (5). (c) The LFP amplitude σ(R) for intermediate
levels of correlation cφ (see legend in (d)). (d) Same as in (c), but normalized against the value at
R = 1000 μm. (e) LFP amplitude for population size R = 1000 μm as a function of correlation
level cφ . (f) LFP reach R∗ as a function of correlation level cφ . Dots in (e) and (f) illustrate the
examples shown in (c) and (d)

illustrated by three examples in Fig. 3c, d. As consequence, the LFP amplitude for
large population radiuses becomes markedly higher as the correlation is increased
(Fig. 3c). By normalizing the amplitude by that obtained for R = 1000 μm, we show
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in Fig. 3d how this affects the LFP reach: due to the larger increase in LFP amplitude
with population radius, the spatial reach becomes larger with higher correlations.

In Fig. 3c, we plot the maximum LFP amplitude σ(R = 1000 μm) for a wide
range of correlations cφ , and in Fig. 3d, the corresponding values for the LFP reach
are shown. Already at low levels (cφ =∼ 10−4), the correlations start to play a
role in determining the LFP reach, and in the range between ∼10−4 and ∼10−2,
there is a dramatic effect on the reach due to increasing correlation. Above this
range ( ∼ 10−2), the LFP is already getting substantial contributions from most of
the population, and the reach does not increase further if the correlation level is
increased. The amplitude σ(R = 1000 μm), however, continues to increase up to the
maximum correlation cφ = 1.

Simulations with Multi-compartment Neuron Models

The simplified LFP model described above neatly encapsulates the dependence
of the LFP amplitude on the level of correlation between LFP contributions from
different neurons in the population. In the above examples, we treated the level of
correlation (cφ) as a free parameter. In an experimental setting, however, the correla-
tion between LFP sources depends on several factors, including (1) the correlation in
synaptic input and (2) the spatial arrangement of dendrites and synaptic distributions
on to the cells. As an example, one would expect larger LFP amplitude to be
generated by synchronized input to spatially aligned cells with extended dendrites
(in a so-called “open-field” arrangement) than asynchronous input on to spherically
symmetric stellate cell (in so-called closed-field arrangements) (Mitzdorf, 1985;
Lindén et al., 2010).

To test the predictions of the simplified model and to examine how the results
depend on morphological features of the cells, we performed numerical simulations
of populations of multi-compartment neuron models (Lindén et al., 2011) using
digital reconstructions of V1 neurons from (Mainen and Sejnowski (1996)). We
set up populations of 10,000 neurons in disclike populations of radius 1 mm (i.e.,
same scenario as in the model example above in Fig. 4) where correlations in the
synaptic input could be systematically varied. This was done using a common
pool of uncorrelated presynaptic spike trains with size N from which each neuron
received nsyn spike trains. This generated a mean pair-wise correlation between the
synaptic input to different cells of cξ = nsyn/N (for details see Lindén et al. 2011).
The resulting LFP was calculated using the line-source formalism (Holt and Koch,
1999; Lindén et al., 2014) for each cell separately, and the population LFP was then
computed as a sum over contributions from cells within a specific radius R.

In Fig. 4a, b the results of such a simulation is shown for a population of
pyramidal neurons activated by synapses distributed over the basal dendrites, for
different levels of input correlation (indicated by line type). As predicted by the
simplified model (Eq. 6), we see that the amplitude σ(R) and the resulting LFP
reach R∗ are drastically changed by the correlation level. For this example, a change
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Fig. 4 Simulations of populations of multi-compartment neuron models. Results from the
simplified model in Eq. 6 are compared with detailed numerical simulations of the LFP. Populations
of 10,000 neurons were distributed in a disclike population with radius 1 mm2 (layer 3 pyramidal
neurons [red], layer 5 pyramidal neurons [blue], and layer 4 stellate neurons [green]). Neurons
were synaptically activated using presynaptic spike trains from a common pool, and the degree of
input correlation was varied by varying the pool size. The resulting LFP was computed using the
line-source formalism (Holt and Koch, 1999). For details of the simulations we refer to Lindén
et al. (2011). (a) LFP amplitude σ(R) as a function of population radius R for a population
of basally activated layer 5 pyramidal neurons. Line styles indicate the level of correlation
between the incoming spike trains to different neurons (see inset in (b)). (b) Same as in (a), but
normalized against the maximum value σ(R = 1000 μm). (c) Resulting correlation cφ between
LFP contributions from different neurons in the population as a function of correlation cξ in
incoming spike trains. Cell type and synaptic input region indicated by color and symbol (see inset).
Lines show linear interpolation between numerical values (d) LFP amplitude σ(R = 1000 μm) as
a function of LFP correlation cφ . (e) LFP reach R∗ as a function of LFP correlation cφ . In (d)
and (e) lines show predictions from the simplified model (Eq. 6) using a numerically derived shape
function F(r) (as in Fig. 2) and symbols show numerical results for the LFP from population
simulations. (Adapted with permission from Lindén et al. 2011)

between uncorrelation synaptic input cξ = 0 and fully correlated synaptic input
cξ = 1 results in a change in spatial reach R∗ of the LFP from small (∼150 μm) to
large (∼800 μm) (Fig. 4b) accompanied by a tenfold increase in amplitude (Fig. 4a).
For this example a correlation in synaptic input cξ in the range of [0,1] translates into
a correlation between LFP contributions from different cells cφ in the approximate
range of [10−6,10−1] (Fig. 4c). According to the simplified model (Fig. 3f), this
range covers the whole range of values in which the LFP reach is markedly affected
by the correlations. For asymmetric input onto large extended dendrites like in this
example, the simplified model thus correctly predicts that a change in correlation
due to changing network state as a result of, e.g., external activation would increase
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the spatial reach of the LFP from very local (for uncorrelated activity) to very large,
essentially capturing the whole neuronal population (for correlated synaptic input to
all neurons).

To test how general the above findings are, we also performed population
simulations of other synaptic input regions (homogeneously distributed or only
onto apical dendrites) and other cell types (smaller layer 3 pyramidal neurons and
more symmetrical layer 4 stellate neurons) (Lindén et al., 2011). We found that
the same range of synaptic correlations cξ resulted in very different ranges of LFP
contribution correlations cφ (Fig. 4c). For homogeneously distributed synaptic input
onto asymmetric dendrites, the induced LFP correlations cφ were smaller than for
asymmetric input (to either basal or apical dendrites, see symbols in Fig. 4c), and
for symmetric neurons, a change in the synaptic correlations did not substantially
change the resulting LFP correlation (Fig. 4c, green). As a consequence, the
same level of synaptic correlation will result in very different LFP amplitude
σ(R = 1000 μm) (Fig. 4d) and LFP reach (Fig. 4e) for different cell types and spatial
distribution of synapses. The simplified model can notably capture this effect when
the resulting LFP correlation is extracted from the numerical simulation and used
with Eq. 6 (see lines in Fig. 4d, e). Note, however, that the model predictions differ
slightly between simulations since we here used a shape function extracted from
numerical simulations (as in Fig. 2) rather than a common simplified shape function
given by Eq. 1.

Frequency Dependence of LFP Power and Reach

The investigation of LFPs is often focused on specific frequency bands. Research
on hippocampal LFP, for example, often focuses on extracellular potentials in the
theta band (∼5–10 Hz; for a review, see Buzsáki 2002), gamma band (∼30–100 Hz;
e.g., Bragin et al. 1995), or even higher frequencies characteristic of “ripples”
(∼100–200 Hz; see Maier et al. 2011 and references therein), as well as interactions
between these components (cross-frequency coupling; see, e.g., Belluscio et al.
2012). In the neocortex, the tuning properties (Liu and Newsome, 2006; Berens
et al., 2008) and information contents (Belitski et al., 2008; Mazzoni et al., 2011)
of the LFP are frequency-dependent. To understand the biophysical origin of
LFP components at different frequencies and to correctly interpret experimental
findings, it is essential to know which neuron populations contribute to the different
frequency modes picked up at the recording electrode or, in other words, what
the spatial reach of these different LFP components is. In Łęski et al. (2013),
we approached this problem by means of a simplified mathematical model (see
section “Frequency-Dependent Formulation of the Simplified Model”) combined
with simulations of multi-compartment neurons with realistic morphologies. Here,
we will briefly summarize the main results of this study.

The simplified model outlined in section “Derivation of the Simplified Model”
highlights three key factors dominating the power and reach of the compound LFP:
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(1) the single-cell shape function F(r), (2) the population geometry captured by the
number of cells (LFP sources) N(r) at distance r from the recording electrode, and
(3) the coherence (correlation) cφ between the LFP contributions of different cells.
In general, the factors (1) and (3) depend on the frequency f , i.e., F(r) = F(f, r)

and cφ = cφ(f ).
We have previously observed (Pettersen and Einevoll, 2008; Lindén et al.,

2010) that intrinsic dendritic filtering leads to low-pass filtering of the LFP. In
effect, the single-cell shape functions are different for different frequency bands
of the LFP. As shown in Łęski et al. (2013), this can be modeled by replacing
the frequency-independent function F(r) in Eq. (1) with its frequency-resolved
counterpart F(f, r), where the dependence on the frequency is fully captured by
a frequency-dependent cutoff distance rx(f ) (see Fig. 2c and section “Frequen-
cy-Dependent Formulation of the Simplified Model”). The decrease of rx(f ) with
frequency f (Fig. 5a) is observed across a range of different cell morphologies and
synaptic input distributions (see Fig. 4 in Łęski et al. 2013). It can be understood as
a reduction of the dendritic electrotonic length constant with increasing frequency:
For higher frequencies, the transition to the dipole (far-field) decay ∼r−2 occurs at
smaller distances than for the low frequencies (Pettersen et al., 2012).

The frequency dependence of the shape function F(f, r) alone is not sufficient
to correctly predict the compound LFP power spectrum. The additional required
ingredient is the frequency dependence of the coherence cφ(f ) between individual
single-cell LFP contributions. The ultimate source of correlations between single-
cell LFPs (i.e., nonvanishing cφ(f )) is correlated synaptic input which may result
from the dynamics of the presynaptic networks and/or overlap in presynaptic cell
populations (shared-input correlations). Input correlations arising from the network
dynamics are typically frequency-dependent, i.e., cξ = cξ (f ). Network dynamics
leading to oscillations, for example, often results in an increased synaptic input
coherence at the oscillation frequency (Tetzlaff et al., 2008). Shared synaptic input,
on the other hand, gives rise to frequency-independent input correlations cξ (Tetzlaff
et al., 2008).

A priori, it is not obvious how correlations cξ (f ) between synaptic inputs
are transferred to correlations cφ(f ) between single-cell LFP contributions at
a particular frequency f . In general, this correlation transfer is modulated by
dendritic filtering and by the variability in synapse positions and cell morphologies.
Even if the synaptic input currents at all synapses of two different cells are
identical (cξ = 1), differences in synapse positions and cell morphologies lead
to nonidentical transmembrane current distributions and, hence, different LFP
contributions (cφ < 1). Similar to the procedure described in section “Simulations
with Multi-compartment Neuron Models,” we measured the frequency dependence
of the correlation transfer cξ �→ cφ(f ) in simulations of multi-compartment neurons
receiving partially shared, white synaptic input (i.e., frequency-independent cξ ).

For pyramidal neurons, we observe that the LFP coherence cφ(f ) is largest at
low frequencies and decays monotonously with increasing frequency (see example
in Fig. 5b). This observation can be explained by the fact that at higher frequencies,
the return currents are closer to the synapse positions, so that the effective
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Fig. 5 Components and results of the frequency-resolved simplified model. (a) Frequency
dependence of the cut-off distance rx . (b) Frequency dependence of the population-averaged LFP
coherence c� for different input correlation levels cξ . (c) Power spectra of the total LFP in the
center of a population of radius R = 1000 μm. (d) Frequency dependence of the spatial reach. All
panels show results for soma-level LFPs generated by cortical layer-5 pyramidal cells with white
(frequency-independent) synaptic input to basal dendrites. Symbols in (a) and (b) depict results
of multi-compartment-neuron simulations. Lines serve to guide the eye. Symbols not connected
by lines indicate that the absolute value is plotted in place of spurious negative values. Lines and
symbols in (c) and (d) show results of the simplified model (see section “Frequency-Dependent
Formulation of the Simplified Model”) and simulations for populations of multi-compartment
neurons, respectively. (Adapted from Łęski et al. 2013)

current dipoles become shorter. For pyramidal neurons, the variability in dendrite
orientation is largest at small spatial scales (e.g., within the basal bush). Hence,
the high-frequency LFP components of individual neurons are decorrelated. At
low frequencies, in contrast, the effective dipoles generated by synaptic input to
pyramidal cells become larger and more aligned (parallel to the main cell axis).
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For pyramidal cells, synaptic input correlations cξ are therefore more robustly
transferred to LFP correlations cφ at low frequencies than at high frequencies. For
more symmetric stellate cells, the LFP correlations are typically much smaller (see
Fig. 4c, green curve) and frequency-independent (Łęski et al., 2013).

Combining the frequency-dependent shape functions F(f, r) and the LFP
coherence cφ(f ) in the simplified model, Eq. (9) yields predictions for the power
spectrum of the compound LFP (Fig. 5c) and the frequency dependence of the
spatial reach (Fig. 5d). A comparison of the simplified-model predictions with the
results of simulations of multi-compartment-neuron populations shows qualitative
agreement for all investigated cell types and synapse distributions. In many cases,
the predictions of the simplified model match the results of the simulations
with multi-compartment models even quantitatively (compare dots and curves in
Fig. 5c, d).

For pyramidal neurons, non-zero (frequency-independent) synaptic input corre-
lations cξ > 0 can lead to a substantial amplification of the compound LFP power, in
particular at low frequencies (Fig. 5c). The amplification of power at low frequencies
results in a faster decay of the power spectrum. Note that this observation is
compatible with findings showing larger EEG decay exponents during sleep as
compared to awake states (Bédard et al., 2006). For vanishing input correlation
cξ = 0, the frequency dependence of the reach is solely due to the frequency
dependence of the cutoff distance rx(f ). As a result, the frequency dependence of
the reach is weak (Fig. 5d).

For nonvanishing input correlations cξ > 0, the compound LFP power and,
hence, the LFP reach are more and more dominated by the frequency dependence
of the LFP coherence cφ(f ). In the presence of intermediate input correlations
0 < cξ < 1, the reach can exhibit a strong frequency dependence. For the example
shown in Fig. 5d with cξ = 0.01, the reach can be as large as 800 μm at ∼0 Hz
and drop to about 200 μm for frequencies above 100 Hz. For sufficiently large input
correlations cξ , even the high-frequency LFP correlations cφ become substantial
(Fig. 5b). In consequence, the reach is close to the maximum population radius for
all frequencies (cf. cξ = 1 in Fig. 5d).

Note that the results shown here were obtained for white synaptic input and
frequency-independent (shared) input correlations cξ . In addition to the effects
described here, the power and reach of the LFP at a particular frequency f are
determined by the spectral properties of the synaptic input (e.g., resulting from the
dynamics of presynaptic networks), in particular by the frequency dependence of
cξ (f ). In general, our results suggest that the LFP power and reach are dominated
by coherent frequency components. Due to the low-pass characteristics of the
correlation transfer depicted in Fig. 5b, however, input components with non-zero
coherence cξ (f1) = c∗ > 0 at some frequency f1 will dominate components with
the same level of coherence cξ (f2) = c∗ at a higher frequency f2 > f1. Theta
oscillations in the synaptic input, for example, would give rise to a larger LFP reach
than gamma oscillations, even if the gamma coherence is as large as the coherence
in the theta band.
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Spatial Decay Outside the Neuronal Population

All the results shown so far have been for the situation where the LFP electrode
is placed in the center of the neuronal population generating the LFP. Our simpli-
fied analytical formulas can, however, be extended to cover scenarios where the
electrode is not in the center but some distance X away from the center position
(see Eqs. 12 and 13). While we now return to the frequency-independent case and
describe the total LFP amplitude σ as a sum over all frequencies, it should be noted
that the spatial decay outside the population can in a similar manner as in Fig. 5 also
be studied for different frequency components separately (for details and numerical
results on this, we refer to Łęski et al. 2013).

In Fig. 6a we show how the LFP amplitude decays as a function of distance X

for three different population sizes. For the case of uncorrelated LFP contributions,
Eq. 6 gives that σ(R,X) = √

G0(R,X) (solid lines), while the LFP from
completely correlated LFP sources is given by σ(R,X) = √

G1(R,X) (dotted
lines).

For uncorrelated LFP sources, we see that there is a steep decay in LFP amplitude
around the edge of the population. For all three population sizes plotted, the
amplitude starts to decay around 200 μm from the edge of the population and has
decreased to a fraction of ∼0.7 of the amplitude in the center of the population
(Fig. 6a, solid lines) at the population boundary. When the electrode is moved away
beyond the population boundary, the LFP amplitude decays quickly and has for all
three population sizes decreased by a factor ten compared to the center amplitude
within 250 μm from the population edge. Relative to the population radius, the
spatial decay is however more steep for larger populations than for smaller ones,
as seen in Fig. 6b.

For correlated LFP sources (Fig. 6a, b, dotted lines), the spatial falloff is less
abrupt than for uncorrelated sources. In this case the LFP amplitude starts to
decay considerably already for off-center positions close to the population center.
Outside the population, the LFP extends further beyond the population edge than
for uncorrelated activity (compared dotted and solid lines in Fig. 6a). This effect is
more pronounced for larger populations than for smaller ones: while the amplitude
decay for uncorrelated compared to correlated sources is very similar for a small
population (R = 250 μm, Fig. 6a, black lines) outside the population, we see that the
distance at which the amplitude has dropped to a fraction 0.1 of the center amplitude
is increased for a population with radius R =1000 μm to about 500 μm from the
population boundary (Fig. 6a, green lines).

The simplified model formulated for off-center electrode positions (Eqs. 12
and 13) also allows us to examine how much crosstalk one would expect between
neighboring populations, i.e., to which extent the LFP recorded in the center of
one population would also contain contributions (or noise) from other neighboring
neuronal populations. In Fig. 6c we show an example of such a situation with two
neighboring populations with radius R = 250 μm that are positioned right next to
each other. We assume that the two populations are uncorrelated with each other and
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Fig. 6 Predictions for spatial decay outside the neuronal population. LFP amplitude σ(R,X)

at a distance X from the center of a population with radius R calculated from Eq. 6 using numerical
integration of Eqs.12 and 13 with single-cell shape function F(r) as defined in Eq. 1 for parameters
ρ = 10,000 neurons/mm2, rε = 10 μm, rx = 100 μm and F0 = 1. (a) LFP amplitude σ(R,X)

for three different population sizes R = [250,500,1000] μm (indicated by color) for uncorrelated
(solid lines) and correlated (dotted lines) LFP contributions. Curves have been normalized to the
amplitude at the center of the population σ(R,X = 0). (b) Same as in A with x-axis normalized
by the population size R. (c) LFP amplitudes for two neighboring populations with radius R =
250 μm centered at X = 0 and X = 500 μm, respectively, for different levels of correlation cφ

(indicated by line style). Curves have been normalized to the LFP amplitude in the center of the
population for uncorrelated LFP sources (cφ = 0). In all plots thin vertical lines represent the edge
of the population

plot the LFP from each population separately. We see that the level of correlation
between LFP sources in one population has a large effect on the overall amplitude
of the LFP from that population as we would expect from our previous results on
the LFP in the center of the population (see, e.g., Eq. 6 and Fig. 3e). This, however,
also means that if the LFP sources within one population have a high degree of
correlation, there is a large “spillover” to the neighboring population. In the example
in Fig. 6c, we note that if we have one LFP electrode in the center of each population,
the LFP generated by the other population may actually be larger than that from
the local population, if the neighboring population is correlated, while the local
population is uncorrelated. This, however, assumes that the overall activity in both
populations is the same and that nothing else differs than the level of correlation
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between LFP contributions within the populations. Since the overall LFP amplitude
depends on several factors, such as synaptic strengths and activation rates, as well
as synaptic placement (Lindén et al., 2011), a proper assessment of crosstalk would
require a more detailed analysis. This is beyond the scope of this chapter, however.

Model Justification

Data for Model Components and Parameter Values

The simplified LFP model presented in this chapter is valid for a range of parameter
values which are explicitly stated in the model formulation and does therefore not
rely on specific choices of parameters. The model formulation was, however, made
using a number of assumptions which we will list and discuss below.

Population geometry The presented formulation of the simplified model assumes
a cylinder-like population geometry which seems like a good first approximation
for several brain regions with a prominent layer structure as found both in the
hippocampus and cortex. If the spatial reach is large enough, as the model predicts
for a large area with correlated LFP sources, this assumed population geometry
may be oversimplified. In the dentate gyrus, for example, the macroscopic curvature
of the brain tissue creates large LFPs that are even larger outside the synaptically
activated region that generates it (Fernandez-Ruiz et al., 2013). To model such brain
regions, one would have to extend the model using a more realistic geometry (see
below).

Spatially homogeneous LFP correlations When deriving the simplified model,
we assumed that the LFP contribution from each cell can be decomposed into a
temporal and spatial part (Eq. 2). As a consequence, the correlation between the
LFP contributions from cells will be independent of the distance to the recording
electrode, and we could therefore use a single parameter cφ to represent the
correlation for the entire population. Due to spatially distributed synapses and
dendritic filtering (Lindén et al., 2011), we expect this assumption to not be
valid under all circumstances. Indeed, when comparing with detailed population
simulations, we saw some deviations that may be due to this assumption (see
red markers in Fig. 4e). In the frequency-dependent model formulation (Eqs. 9, 10
and 11), we correspondingly assume the coherence to be spatially homogenous.
While the model could be extended to include distant-dependent measures of
correlation/coherence (see below), the simplified model performs quite well in
comparison with the detailed numerical simulations also in the present form.

Definition of cells as individual LFP sources The model presented in this
chapter views each cell as an individual LFP source, and the shape function F(r)

consequently describes the spatial decay of single-cell LFP contributions (Fig. 2). It
would, however, be equally possible to formulate the model at the level of synapses,
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so that the total LFP would be a sum over synaptic contributions, where different
classes of synapses (based on, e.g., their spatial positioning on the dendrites) could
be assigned different shape functions.

LFP calculations The LFP calculations in the detailed simulations were made
assuming a linear, isotropic, homogenous, and ohmic extracellular medium which
seems to be well-fulfilled for the frequencies studied here (Nunez and Srinivasan,
2006; Logothetis et al., 2007) (for further discussion, see Pettersen et al. 2012.)
If warranted, however, other assumption about the extracellular medium could be
accounted for in the biophysical forward-modeling scheme (Lindén et al., 2014)
used to compute the shape function F(r) and the LFP population correlation
coefficient cφ .

Passive dendritic conductances The present model assumes passive (RC) den-
drites, but it can be extended to include active dendritic conductances. In particular,
a recent study showed that the effect of subthreshold active conductances on the
single-neuron LFP contribution, and thus the shape function F(r), can be well
described by means of so-called “quasi-active” linearization (Ness et al., 2015).
Thus these active conductances can be included in the model without introducing
any nonlinearity in the LFP generation, thus still allowing each frequency compo-
nent to be treated independently in the model.

Successes and Limitations

The simplified model presented in this chapter encapsulates how the amplitude and
reach of the LFP depends on three crucial factors: (1) the population geometry,
(2) the spatial decay of single-neuron LFP contributions, and (3) the correlation
between the LFP contributions from different cells. As the level of correlation
between LFP sources depends on the state of the underlying network dynamic, our
model demonstrates that the reach of the LFP is not a fixed quantity, but changes
with the network state. Our model, thus, offers a putative explanation to the disparity
between different experimental studies investigating the LFP reach, with estimates
ranging from a few hundred micrometers (Katzner et al., 2009; Xing et al., 2009) to
several millimeters (Kreiman et al., 2006).

The simplified model can straightforwardly be formulated in a frequency-specific
manner that allows the investigation of different frequency bands of the LFP
separately. The limited results shown here illustrate how frequency-specific spatial
decay of single-cell contributions combined with frequency-specific coherence
between LFP sources may lead to substantially larger spatial reach for low-
frequency components of the LFP compared to higher frequencies. This directly
influences the power spectrum of the LFP to have higher power at low compared to
high frequencies.
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The above results have focused on situations with the electrode placed in the
center of the population at the depth of the somata, but the simplified model has
proven equally applicable for other electrode positions; for example, see Lindén
et al. (2011), and Łęski et al. (2013).

The Future

Model Extensions

The model presented in this chapter could be extended in several ways. As
mentioned above a natural extension would be to adapt it for more realistic
population geometries. This would be of particular interest for brain regions that
have a clear macroscopic structure as, for instance, in the dentate gyrus. It has been
shown by combined experimental and modeling work that for this particular system
the curved shape of the cellular layers creates large amplitude LFPs that are due
to the spatial summation of LFP contributions from different sites at the curved
structure (Fernandez-Ruiz et al., 2013). To extend the model presented here to study
such effects, one would have to replace Eq. 3 with a more appropriate expression and
perform the analytical model derivation based on that. Alternatively, a numerical
integration of Eqs. 4 and 5 using appropriate summation boundaries can also be
done.

For some experimental setups, it may also be relevant to relax the assumption
of homogeneous LFP correlations (see above) to include finer spatial structure
of correlations. This could be important for capturing LFP correlations induced
by spatially specific external inputs or for specific connectivity structures of the
underlying neuronal circuits. This would make the integral expressions in Eqs. 4
and 5 more complicated; one can always use numerical summation of LFP sources
to compute estimates of the spatial reach of the LFP.

New Uses of Model

The model presented in this chapter does not make any assumptions about the
underlying neuronal network activity. In the multi-compartment simulations, we
used random (Poissonian) spike trains to activate synapses and a simple common-
input model to generate correlations between the input to different cells. Since
LFP computed from the multi-compartment models with current-based synapses are
linear with respect to the input level (see Lindén et al. 2011; Łęski et al. 2013), only
the mean input correlation will affect the resulting LFP reach, while the synaptic
rate will only affect the resulting LFP amplitude (through the constant F0 in Eq. 1).
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To use our model for a specific experimental setup, it would be possible to adapt
our model to more closely match the hippocampal (or cortical) region of study. This
could be done through the following steps:

1. By extracting the single-cell shape function F(r) using reconstructed morpholo-
gies from the specific hippocampal (or cortical) area under study using a similar
approach as in Fig. 2.

2. To use a more realistic model of spiking dynamics that would give a correlation
structure in the synaptic inputs with, e.g., realistic oscillatory dynamics in
frequency bands of interest. If these inputs then were used to activate multi-
compartment neuron models (similar to the setup illustrated in Fig. 4), the
transfer from correlation between input spikes to correlation between LFP
contributions could be estimated (as in Fig. 4c).

3. By setting the upper limit of population radius R according to known geometrical
constraints in the region of study.

This could allow a detailed investigation of the LFP amplitude and the LFP reach
for, e.g., theta compared to gamma oscillations.
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Models of Rate and Phase Coding
of Place Cells in Hippocampal
Microcircuits

Vassilis Cutsuridis

Overview

Place cells are neurons that fire when the animal occupies a specific location within
its environment (O’Keefe and Nadel 1978). As different place cells have different
place fields (locations where they fire), they are thought to provide a cognitive
map for the rat. Furthermore, place cells are speed-dependent oscillators, as their
oscillation frequency is determined by the animal’s traveling speed (Buzsaki 2011).
Their firing rates and phases also change with respect to LFP theta (O’Keefe
and Recce 1993; Johnson and Redish 2007; Skaggs et al. 1996; Wilson and
McNaughton 1993). Theta oscillations (4–10 Hz) are observed during animal
exploration and rapid eye movement sleep (Buzsaki 2002). During exploration
(Fig. 1 top) hippocampal place cells’ firing rate increases as the position of the
rat in the place field increases, reaching a maximal value just after the middle of
the place field and beyond this point it decreases again (Fig. 1 medium; Harris et al.
2002; Mehta et al. 2002). Place cells have also been shown to systematically shift
their phase of firing to earlier phases of the theta rhythm as the animal transverses
the place field (a phenomenon known as theta phase precession) (Fig. 1 bottom;
O’Keefe and Recce 1993; Skaggs et al. 1996).

The goal of this chapter is to present computer models of place cell rate and
phase coding in hippocampal microcircuits in order to explore the mechanisms by
which both coding schemes are generated and/or maintained in these microcircuits.
Of crucial importance is how theta-modulated inhibition interacts with synaptic
plasticity in order to preserve the rate and phase coding properties of place cells
in the CA1 microcircuits.
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Fig. 1 (Top) A rat running along a linear track. Light blue filled ellipses represent the place fields
of four pyramidal cells (place cells) in the network. Note their fields are nonoverlapping. The time
the rat spends in each place field is equal to nine theta cycles, with each theta cycle lasting 250 ms,
a total time of 2250 ms. (Medium) Firing rate of a place cell inside its place field (Skaggs et al.
1996; O’Keefe and Recce 1993). Firing rate is low in the beginning of the field, maximum just
after the middle of the field and low in the end. (Bottom) Theta phase precession of a place cell’s
firing as the rat transverses the place field. As the rat transverses the place field, each place cell
shifts its firing to earlier phases of the theta rhythm. (Skaggs et al. 1996; O’Keefe and Recce 1993)

The Model

A canonical CA1 microcircuit model (Cutsuridis and Hasselmo 2012) consisting
of just four pyramidal cells (place cells) and six types of inhibitory interneurons:
a BC, an AAC, a BSC, four IVYs, four NGLs and an OLM cell is presented (see
Fig. 2). Hodgkin-Huxley mathematical formalism was used to describe the ionic
and synaptic mechanisms of all cells (see APPENDIX).

Pyramidal Cells Each PC consisted of four compartments: an axon, a soma, a
proximal dendrite and a distal dendrite. Active properties included a fast Na+
current, a delayed K+ rectifier current, a low-voltage-activated (LVA) L-type
Ca2+ current, an A-type K+ current, an h-current and a calcium-activated mAHP
K+ current (see the appendix for mathematical details of these currents). The
conductance of the h-current was set to 0.005 mS/cm2 at the soma, 0.01 mS/cm2

at the proximal dendrite and 0.02 mS/cm2 at the distal dendrite. No recurrent
connections were assumed between PCs in the network.
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Fig. 2 Hippocampal CA1 microcircuit showing major cell types and their connectivity. Grey
arrow lines: excitatory input connections. Black arrow lines: excitatory PC feedback connections.
Blue filled circles: CA1 inhibitory connections. Orange filled circles: medial septal inhibitory
connections. EC: entorhinal layer III perforant path (PP) input. SC: CA3 Schaffer collateral input.
AAC axo-axonic cell; BC basket cell; BSC bistratified cell; NGL neurogliaform cell; IVY ivy cell;
OLM oriens lacunosum-moleculare cell

Each PC received AMPA and NMDA excitation from the CA3 Schaffer collat-
erals and entorhinal cortex (EC) in their proximal and distal dendrites, respectively,
and GABAA synaptic inhibition from BC cells to the soma, from AAC cells to the
axon, from BSC and IVY cells to the proximal dendrite and from NGL and OLM
cells to the distal dendrite.

Inhibitory Interneurons All inhibitory interneurons (INs) consisted of a single
compartment (soma). Active properties of BC, AAC, BSC and IVY included a
fast Na+, a delayed rectifier K+, a leakage and a type A K+ currents (Cutsuridis
et al. 2010; Cutsuridis and Hasselmo 2010). Active properties of the OLM cell
included a fast Na+ current, a delayed rectifier K+ current, a persistent Na+ current,
a leakage current and an h-current (Cutsuridis and Hasselmo 2010; Kunec et al.
2005), whereas those of the NGL cell included a fast Na+ current, a delayed rectifier
K+ current and a leakage current (see the appendix for mathematical details of these
currents).

AAC and BC received excitatory inputs from the EC perforant path and the CA3
Schaffer collaterals and inhibition from the medial septum (MS). The BC received
additional inhibition from the BSC. The BSC was excited by the CA3 Schaffer
collateral input only, inhibited by the MS and the BC. Each IVY cell in the network
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was recurrently excited by its companion PC. NGL cells were excited by the EC
input only and inhibited by the OLM cell (Capogna 2011). The OLM cell received
recurrent excitation from all PCs and feedforward inhibition from the MS.

Model Inputs The dynamics of the network were influenced by a number of
external inputs. Excitatory inputs (spikes) to network cells originated from the EC
and the CA3 Schaffer collaterals, whereas external inhibitory input originated from
the MS. The EC input excited the distal dendrites of the PCs, whereas the CA3 input
excited the proximal dendrites.

Each pyramidal cell in the network received a different set of EC and CA3 inputs
(PC1 was excited by EC1 and CA31, PC2 by EC2 and CA32, PC3 by EC3 and CA33
and PC4 by EC4 and CA34). The proper order by which the EC and CA3 inputs
were presented to each PC (EC1 and CA31 first, followed by EC2 and CA32, then
by EC3 and CA33 and finally by EC4 and CA4) was ensured (gated) by dopamine
in the LM layer (see “Dopamine Modulation” section for details). The duration of
each set of EC and CA3 inputs is 2250 ms, which corresponded to nine theta cycles,
each theta cycle with duration of 250 ms. This was designed to match the average
number of theta cycles within a place field reported in Maurer and McNaughton
(2007). The presentation frequencies of the EC and CA3 inputs are set to 100 Hz
(interspike interval (ISI) = 10 ms) and 50 Hz (ISI = 20 ms), respectively (Colgin
et al. 2009).

Inhibitory MS inputs (spikes) were theta modulated. One MS input was tuned
to near the peak of the extracellular theta (MS180) (Borhegyi et al. 2004), whereas
the other one to its trough (MS360) (Dragoi et al. 1999). All network inhibitory
interneurons except for the IVY and NGL cells were inhibited by the MS inputs
(Borhegyi et al. 2004).

Presynaptic GABAB Inhibition A presynaptic GABAB inhibition that cyclically
changed with respect to the external theta rhythm (Molyneaux and Hasselmo 2002)
modulated the strength of Schaffer collateral input to the PC proximal synapses.
This GABAB modulation was modelled with a 50% decrease in the CA3 input
strength during the peak phase of each theta cycle and a return to its full strength
during the trough phase of each theta cycle (Cutsuridis et al. 2010).

Synaptic Plasticity A mechanism for STDP in each PC dendrite was used to
model plasticity effects. The mechanism had a modular structure consisting of three
biochemical detectors: a potentiation (P) detector, a depression (D) detector and a
veto (V) detector (Rubin et al. 2005). Each detector responded to the instantaneous
calcium level and its time course in the dendrite. The potentiation (P) detector
triggered LTP every time the calcium levels were above a high threshold (4 μM).
The depression (D) detector detected calcium levels exceeding a low threshold level
(0.6 μM). When the calcium levels remained above this threshold for a minimum
time period, LTD was triggered. The veto (V) detector detected levels exceeding a
mid-level threshold (2 μM) and triggered a veto to the D response. P and D compete
to influence the plasticity variable W (see Eq. 48), which serves as a measure of the
sign and magnitude of synaptic strength changes from the baseline.
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Fig. 3 Pyramidal (place) cell model with calcium detectors in distal and proximal dendrites.
Synaptic plasticity at the dendritic synapses (circled regions) is governed by two model calcium
detector systems. P potentiation detector, A, B intermediate elements, D depression detector
activated by B and vetoed by V, V veto detector, W synaptic weight. P and D compete to influence
the plasticity variable W, which serves as a measure of the sign and magnitude of synaptic strength
changes from the baseline

Calcium entered the neuron through (1) voltage-gated calcium channels
(VGCCs) and (2) NMDA channels located at each dendrite. Plasticity resulted
from the synergistic action of these two calcium sources (NMDA and VGCC). A
graphical schematic of the model pyramidal cell and its calcium detectors for STDP
is shown in Fig. 3.

During the peak phases of theta, the AMPA and NMDA synaptic conductances
in the proximal dendrite of the PCs were modelled as

gsyn = (ws · w + W) · gmax (1)

where ws is the scaling factor (set to 0.5 for the present simulations) due to
presynaptic GABAB inhibition, w is synaptic strength and W is given by Eq. (48).
During the trough phases of theta, the GABAB inhibition was removed (i.e. ws = 1),
and the proximal AMPA and NMDA conductances were described as

gsyn = (w + W) · gmax (2)

During theta the AMPA and NMDA synaptic conductances in the distal dendrites
of the pyramidal cells were described by

gsyn = (w + W) · gmax (3)
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Dopamine Modulation In hippocampal microcircuits the primary targets of
dopamine (DA) are the subiculum and region CA1 (Gasbarri et al. 1997). In
CA1, the distal and proximal dendrites of pyramidal neurons are both targeted by
the DAergic neurons (Cobb and Lawrence 2010). Previous studies have shown
that when DA is applied to the bathing solution, the field EPSP (fEPSP) evoked
by the EC temporoammonic (TA) pathway stimulation is depressed, whereas the
fEPSP by the CA3 Schaffer collateral (SC) pathway stimulation remains unaltered
(Otmakhova and Lisman 1999). Subsequent studies by Ito and Schuman (2007)
demonstrated that DA acts as a gate on the direct cortical input to the CA1 PC
distal dendrites, modulating the information flow and the synaptic plasticity in
a frequency-dependent manner. During low-frequency stimulation, DA depresses
the excitatory TA inputs to both CA1 pyramidal cells and NGL interneurons via
presynaptic inhibition, whereas during high-frequency stimulation, DA potently
facilitates the TA excitatory drive onto CA1 pyramidal neurons while diminishing
the feedforward NGL inhibition to the distal PC dendrites.

Although we did not explicitly model the activity of DA cells, we assumed a
tonic presence of DA and modelled effects of the tonic DA in the following way
(see Eq. 50): when a pyramidal cell (place cell) was inside its place field, then high-
frequency EC stimulation impinged on both NGL interneuron and the PC distal
dendrite. During this high-frequency stimulation environment, the strength of the
NGL inhibition to the PC distal dendrites was set to 1.1 (wngl-to-pc = 1.1), whereas
the DA level was set to 0.73, thus reducing the inhibitory effect of the NGL cell to
the PC distal dendrite and hence opening the gate. Dendritic spikes in the distal
PC dendrites are evident, which propagate to the PC soma and generate action
potentials. On the other hand, when a place cell was outside its place field, then
both PC and NGL neurons received low-frequency EC and CA3 stimulations (1–3
spikes per theta cycle (Alonso and García-Austt 1987)). Although the strength of the
NGL inhibition to PC distal dendrites remained unchanged, the modulation level of
DA on the strength of the NGL inhibition was increased to 1 in order to simulate the
closing of the gate by DA. The low-frequency stimulation then allowed the NGL to
feedforwardly inhibit the PC distal dendrites, thus causing the PC to stop firing or
at most fire one spike per theta cycle.

Results on Rate and Phase Coding of Place Cells in CA1
Microcircuit

Results on how place cell rate and phase coding can be supported by the sheer
complexity of the CA1 microcircuit will be presented in this section. Out of a wide
range of possible models, I present here four microcircuit models:

• Model with both pyramidal (place) and inhibitory cells stimulated tonically by
non-precessing high-gamma EC and non-precessing low-gamma CA3 inputs.
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• Model with tonic non-precessing high-gamma EC input exciting PC and IN
distal dendrites, a non-precessing low-gamma CA3 input exciting IN proximal
dendrites and a constant-rate phase-precessing low-gamma CA3 input exciting
PC proximal dendrites.

• Model with tonic constant-rate non-phase-precessing high-gamma EC input
exciting PC and IN distal dendrites, constant-rate phase-precessing low-gamma
CA3 input exciting PC and IN proximal dendrites and constant-rate phase-
precessing septal inhibition inhibiting all CA1 Ins.

• Model with tonic constant-rate non-phase-precessing high-gamma EC input
exciting PC and IN distal dendrites, variable-rate (rate increased linearly from
25 to 50 Hz from the beginning to the middle of the place field and decreased
linearly by the same amount from the middle to the end of the field) phase-
precessing low-gamma CA3 input exciting PC and IN proximal dendrites, a
constant-rate phase-precessing septal inhibition inhibiting all CA1 Ins and a
suppressed constant-rate phase-precessing presynaptic GABAB inhibition.

Figure 4 provides a summary of a place cell firing rate in each theta cycle in each
model.
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Fig. 4 Firing rate (number of spikes) of a pyramidal (place) cell as a function of theta cycle
number for each of the four models
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Fig. 5 Spike phase advancement of a place cell during a linear track running episode (model 1)

Model 1 This model attempted to answer the question of whether rate and phase
coding of place cells can be generated by the CA1 microcircuit. In the model both
pyramidal (place) and inhibitory cells were stimulated tonically by non-precessing
high-gamma EC and non-precessing low-gamma CA3 inputs. We observe (see
Fig. 5) that at the beginning of the place field (first theta cycle), the PC (place cell)
fired its first spike near the trough of the external theta. As the rat approached the
end of the place field (ninth theta cycle), the PC fired its first spike just after the peak
of theta, having precessed almost 180◦. This phase advancement was because of the
constantly increasing synaptic strength of the proximal synapse, which allowed the
PC to overcome the dendritic inhibition (BSC and IVY inhibition) and fire at earlier
phases of the LFP theta. Despite these first-spike phase advancements, the remaining
spikes in the train remained anchored to the end of each theta cycle. Furthermore, the
rate of firing of each place cell increased at each theta cycle as the rat transversed the
field. These observations come in disagreement with the experimentally observed
evidence (O’Keefe and Recce 1993; Kamondi et al. 1998; Harris et al. 2002; Mehta
et al. 2002; Skaggs et al. 1996), where the entire spike train and not just the first-
spike theta phase precesses and the firing rate of place cells is initially low when
the rat enters the place field, reaches its maximum rate as the rat approaches the
middle of the field and decreases as the rat exits the field. Also in contrast to the
experimental evidence (Klausberger and Somogyi 2008; Klausberger et al. 2003,
2004; Klausberger 2009; Somogyi and Klausberger 2005), the phase relationships
of the INs with respect to the PCs and the LFP theta are disrupted.
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Fig. 6 Spike phase advancement of a place cell during a linear track running episode (model 2 –
low GABA)

The following three models tackle the question of under what conditions could
the rate and theta phase coding of CA1 place cells be maintained, but not generated
by the CA1 microcircuit.

Model 2 In the model, tonic non-precessing high-gamma EC-PP input excited both
CA1 PC and IN distal dendrites, whereas a non-precessing low-gamma CA3-SC
input excited the IN proximal dendrites. PC proximal dendrites were excited by a
constant-rate phase-precessing low-gamma CA3-SC input. This phase-precessing
CA3-SC input was modelled to precess by approximately 40◦ in every subsequent
theta cycle having precessed a full 360◦ by the ninth theta cycle (rat exits the
place field). When the INs inhibition was low (see Fig. 6), then the place cell
discharge pattern was identical to model 1. When the INs inhibition was high (see
Fig. 7), then the place cell’s discharge did not phase-precess and it was restricted
to the trough of each theta cycle. Its firing rate remained constant in each theta
cycle throughout the simulation. The firing phase relationships of pyramidal (place)
cells and inhibitory interneurons with respect to the LFP theta were preserved
(Klausberger and Somogyi 2008; Klausberger et al. 2003, 2004).

Model 3 In the model, tonic constant-rate non-phase-precessing high-gamma EC-
PP input excited both CA1 PC and IN distal dendrites, whereas constant-rate phase-
precessing low-gamma CA3-SC input excited both PC and IN proximal dendrites.
Constant-rate phase-precessing septal inhibition inhibited all CA1 INs. CA3-SC and
MS inputs were modelled to phase advanced by 40◦ in every theta cycle having
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Fig. 7 Spike phase advancement of a place cell during a linear track running episode (model 2 –
high GABA)

precessed a complete 360◦ by the end of the place field (ninth theta cycle). We
observe that the PC firing precessed a full 360◦ by the end of the place field and so
all INs (see Fig. 8). Phase relationships between the PCs and INs are also preserved
due to the precessing of the septal inhibition. However, the firing rate of the PCs
is not consistent with the experimental findings (Harris et al. 2002; Mehta et al.
2002). Their firing rate was high in the beginning of the field, low in the middle
of the field and very high at the end of field. These firing rate inconsistencies were
due to the nonlinear interaction of the inhibition and the calcium accumulation in
the proximal PC dendrite, which caused the synaptic strength of the PC proximal
synapse to increase with a high rate towards the end of the place field. In the first few
theta cycles, inhibition is dominating, and the calcium level in the proximal dendrite
is low (synapse is depressed). Thus, the proximal synaptic weight is decreasing
(PC firing is low). In subsequent theta cycles, calcium level increases (synapses are
potentiated) and inhibition is overcome, causing the PC firing rate to increase and
thus PC to fire more spikes in every subsequent theta cycle.

Model 4 In the model, tonic constant-rate non-phase-precessing high-gamma EC-
PP input excited both CA1 PC and IN distal dendrites, whereas variable-rate (rate
increased linearly from 25 to 50 Hz from the beginning to the middle of the place
field and decreased linearly by the same amount from the middle to the end of
the field) phase-precessing low-gamma CA3-SC input excited both PC and IN
proximal dendrites. Constant-rate phase-precessing septal inhibition inhibited all
CA1 INs, whereas a constant-rate phase-precessing presynaptic GABAB inhibition
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Fig. 8 Spike phase advancement of a place cell during a linear track running episode (model 3)

suppressed was also assumed. We observe (see Fig. 9) all of the experimentally
observed characteristics of rate and phase coding of place cell firing: (1) the firing
of the place cell starts at the trough of the external theta (beginning of the place
field), (2) the firing of the place cell phase advances in every subsequent theta, (3)
phase precession is almost 360◦ by the end of the place field (ninth theta cycle) and
(4) the firing rate of the place cell increases as the rat transverses the field, peaks
at about 200◦ and decreases as the rat approaches the end of the place field. The
latter observation is due to the depressed throughout the simulation run (nine theta
cycles) proximal PC synapse (data not shown), thus allowing the variable-rate and
phase-precessed SC input to take charge of the firing of the CA1 place cell. The
cell fired sparsely in the first 1 s of the trial run, after which its firing increased
and phase precessed. In addition, the firing phase relationships between PCs and
INs as they have been observed in the Klausberger studies (2003, 2004, 2008) are
preserved (data not shown here, but see Fig. 12A in Cutsuridis and Hasselmo 2012).
Thus, within these sets of parameters explored here, this model appears to most
effectively match the experimental data.

Discussion and the Future

The main finding of the computer models presented in this chapter is that rate
and phase coding of CA1 place cells are externally dictated by the CA3 Schaffer
collateral inputs driving their proximal dendrites. In order for rate coding and phase
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Fig. 9 Spike phase advancement of a place cell during a linear track running episode (model
4). The cell fired sparsely until 1 s into the trial, when an intense period of firing occurred,
accompanied by phase precession

precession to be maintained by the internal CA1 architecture, then certain conditions
need to be met. First, in order for the CA1 pyramidal cells (place cells) to phase
precess to a full 360◦ as the rat reaches the end of the place field, then an excitatory
precessing input (CA3 Schaffer collateral input) should drive not only the PCs but
also the inhibitory interneurons causing them to also precess to earlier phases of the
LFP theta. In addition, phase-precessing theta-modulated medial septal inhibitory
inputs (MS180 and MS360), inhibiting the CA1 inhibitory interneurons, are required
to ensure that the between-phase relationships of the CA1 PCs and the inhibitory
INs with respect to LFP theta are also maintained. These simulated findings are in
line with the experimental evidence which has shown that layer 2 EC cells are phase
precessing, but not the EC layer 3 cells (Mizuseki et al. 2009; Hafting et al. 2008).
The EC layer 2 cells drive both the DG and CA3 excitatory cells, which in turn excite
the proximal dendrites of the CA1 PCs, whereas the EC layer 3 cells excite only
the distal dendrites of the CA1 PCs. Transient disruption of the CA3 input to CA1
PCs has been shown to cause a transient block of their phase precession dynamics
(Zugaro et al. 2005). Therefore, our model assumption to model only the CA3 input
as a phase-precessing input is consistent with the observed experimental findings.
Other experimental evidence has shown that during spatial exploratory behaviour on
a linear track, inhibitory interneurons also show phase precession dynamics (Ego-
Stengel and Wilson 2007; Maurer et al. 2006). This finding supports our model
assumption that also the CA1 inhibitory interneurons should be driven by the CA3
phase-precessing input causing them to phase precess.
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Second, in order for the firing rate of CA1 place cells to increase as the rat moves
through the place field reaching a maximum value just after the middle of the field,
beyond which, it decreases again (Harris et al. 2002; Mehta et al. 2002), then (1) a
variable-rate (linearly increasing from the start till the middle of the place field and
linearly decreasing from the middle till the end of the field) low-gamma CA3 SC
input must drive the CA1 PCs and INs; and (2) CA1 PC proximal synapses must be
depressed, thus preventing the tendency due to synaptic potentiation PCs to increase
their discharge activities in each theta cycle as the rat tranverses the field (see, e.g.
Fig. 5 of model 1) and allowing the CA3 SC inputs to dictate their firing rates (see
Fig. 9 of model 4).

Several extensions to model 4 deserve further consideration. One idea is to
scale up the network to match the relative percentages of excitatory and inhibitory
cells in CA1 (Vida 2010; Baude et al. 2007). Scaling up the model will allow it
to circumvent the case of a single theta phase-precessing interneuron inhibiting
pyramidal cells with place fields at different and overlapping locations, thus
simultaneously inhibiting pyramidal cells that are at different stages (i.e. theta
phases) of phase precession. In this case, a single theta phase-precessing interneuron
may only correctly time only a few of its postsynaptic pyramidal cells. However,
if our scaled up network consisted of, for example, 400 PCs and 24 inhibitory
interneurons (i.e. less than 10% inhibition), with each set of 100 PCs and 6 INs
representing a microcircuit coding for a spatial location, driven by EC and CA3
inputs presented at different but overlapping times, then the potentially simultaneous
inhibition of PCs at different stages (i.e. theta phases) of phase precession maybe
overcome.

Another idea is to test the robustness of the scaled up model. How would the
firing patterns of CA1 interneurons and place cells change with more realistic,
noisy, input coming from multiple EC and CA3 cells? How would random synaptic
delays affect the results? How will the results scale with noise in connectivity
parameters?

Appendix

CA1 Pyramidal Cell

The axonic (ax), somatic (s), proximal dendritic (pd) and distal dendritic (dd) com-
partments of the pyramidal neuron obey the following current balance equations:

Cm
dVax

dt
= IL + INa,ax + IK,ax + Icoup + Isyn + Iin (4)
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Cm
dVs

dt
= IL + INa,s + IKdr,s + IA,s + Im,AHAP,s + ICaL,s + Ih + Icoup + Isyn + Iin

(5)

Cm
dVpd

dt
= IL + INa,d + IKdr,d + IA,d + ICaL,d + Ih + Icoup + Isyn + Iin (6)

Cm
dVdd

dt
= IL + INa,d + IKdr,d + IA,d + ICaL,d + Ih + Icoup + Isyn + Iin (7)

where IL is the leak current, INa is the sodium current, IK is the delayed rectifier
potassium current, IA is the type A potassium current, Im,AHP is the medium Ca2+-
activated K+ after-hyperpolarization current, ICaL is the L-type Ca2+ current, Ih
is the h-current, Icoup is the electrical coupling between compartments, Iin is the
injected current and Isyn is the synaptic current. Table 1 displays the ionic parameter
values of the CA1 pyramidal cell.

The coupling currents for all compartments are

I axon
coup = gaxon,soma · (Vsoma − Vaxon) (8)

Table 1 Pyramidal cell
parameter values. Units: g,
mS/cm2; Cm, μF/cm2; V,
mV; T, celcius

Name Value Name Value

Cm 1 gA,dend 12
gL 0.1 asap 0.001
VL −70 ζ p 30
gcoup 1.125 inact 72
gNa,soma 30 inact2 0.11
gNa,axon 100 inact3 2
VNa 60 inact4 64
gNa,dend 30 inact5 1
natt 0 gK,dr,axon 20
T 23 gK,dr,soma 14
gA,soma 7.5 gK,dr,dend 14
gmAHP 25 Vk −80
qhat 1 qma 0.00048
qmb 0.28 βs 0.083
gCaL,soma 7 βd 0.083
gCaL,dend 25 buff 0
VCa 140 nonc 6
Ca2+ 2 Caτ 1000
ϕs 0.1 s1 0
ϕd 0.1 s2 40
χ0,s 0.05 s3 3.6
χ0,d 0.07 Mg2+ 2
κ 7
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I soma
coup = gsoma,axon · (Vaxon − Vsoma) + gsoma,dendprox ·

(
Vpd − Vsoma

)
(9)

I
dendprox
coup = gsoma,dendprox ·

(
Vsoma − Vpd

) + gdenddist,dendprox

(
Vdd − Vpd

)
(10)

I denddist
coup = gdendprox,denddist

(
Vpd − Vdd

)
(11)

The leak current is described by

IL = gL · (V − VL) (12)

where gL is the leak conductance and VL is the leak reversal potential.
The sodium current at the axon and soma is described by

INa = −gNa · M2
Na · HNa · (V − VNa) (13)

where gNa is the maximal conductance of the Na+ current, MNa and HNa are the
activation and inactivation constants and VNa is the reversal potential of the Na+
current. The activation and inactivation constants at the soma are given by

MNa = αM(V )/ (αM(V ) + βM(V ))

αM(V ) = 0.32 · (−46.9 − V ) / (exp ((−46.9 − V ) /4.0) − 1.0)

βM(V ) = 0.28 · (V + 19.9) / (exp ((V + 19.9) /5.0) − 1.0)

H ′
Na = αH(V ) − (αH(V ) + βH(V )) · HNa

αH(V ) = 0.128 · exp ((−43 − V ) /18)

βH(V ) = 4/(1 + exp ((−20 − V ) /5)

The sodium current at the dendrite is described by

INa,d = −gNa,d · M2
Na,d · HNa,d · DNa,d · (Vd − VNa) (14)

where
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M ′
Na,d = (

M∞Na,d − MNa,d
)
/τMNa,d

M∞Na,d = 1/ (1 + exp ((−Vd − 40) /3))

τMNa,d = 0.1

H ′
Na,d = (

H∞Na,d − HNa,d
)
/τHNa,d

H∞Na,d = 1/ (1 + exp ((Vd + 45) /3))

τHNa,d = 0.5

D′
Na,d = (

D∞Na,d − DNa,d
)
/τDNa,d

D∞Na,d = (1 + natt · exp ((Vd + 60) /2)) / (1 + exp ((Vd + 60) /2))

τDNa,d = max(0.1, (0.00333 · exp(0.0024 · (Vd + 60) · Q))/

(1 + exp(0.0012 · (Vd + 60) · Q)))

Q = 96480/(8.315 · (273.16
◦ + T ))

where T is the temperature in Celsius and natt is the Na+ attenuation. The type A
K+ current at the soma and dendrite is given by

IKA,d = −gKA,d · Ad · Bd · (Vd − VK) (15)

The activation and inactivation constants are given by

A′
d = (

A∞d − Ad
)
/τAd

A∞d = 1/
(
1 + Aα,d

)

Aα,d = exp (asap · ς (Vd) · (Vd + 1) · Q)

Aβ,d = exp (0.00039 · Q · (Vd + 1) · ς2 (Vd))
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τAd = max
(
Aβ,d/

((
1 + Aα,d

)
· QT · 0.1

)
, 0.1

)

ς (Vd) = −1.5 − (
1/

(
1 + exp

((
Vd + ςp

)
/5

)))

ς2 (Vd) = −1.8 − (1/ (1 + exp ((Vd + 40) /5)))

B ′
d = (

B∞d − Bd
)
/τBd

B∞d = 0.3 + 0.7/ (1 + exp (inact2 · (Vs + inact) · Q))

τBd = κ · max (inact3 · (Vs + inact4) , inact5)

The delayed rectifier K+ current at the axon and soma is given by

IKdr = −gKdr · N · (V − VK) (16)

where gKds is the maximal conductance. The activation constant, N, is given by

N ′ = αN(V ) − (αN(V ) + βN(V )) · N

αN(V ) = 0.016 · (−24.9 − V ) / (exp ((−24.9 − V ) /5) − 1)

βN(V ) = 0.25 · exp (−1 − 0.025 · V )

The delayed rectifier K+ current at the dendrite is given by

IKdr,d = −gKdr,d · N2
d · (Vd − VK) (17)

where gKdr,d is the maximal conductance. The activation constant, Nd, is given by

N ′
d = (

N∞d − Nd
)
/τNd

N∞d = 1/(1 + exp ((−Vd − 42) /2)

τNd = 2.2
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The medium Ca2+-activated K+ after-hyperpolarization current at the soma is given
by

ImAHP = −gmAHP · Qm · (Vs − VK) (18)

where gKmAHP is the maximal conductance. The activation constant, Qm, is given
by

Q′
m = (

Qm∞ − Qm
)
/τQm

Qm∞ = qhat · Qmα · τQm

Qmα = qma · χs/ (0.001 · χs + 0.18 · exp (−1.68 · Vs · Q))

Qmβ = (qmb · exp (−0.022 · Vs · Q)) / (exp (−0.022 · Vs · Q) + 0.001 · χs)

τQm = 1/
(
Qmα + Qmβ

)

The h-current (Cutsuridis et al. 2010) at the soma and dendrite is described by

Ih = −gh · t t · (V − Eh) (19)

dt t

dt
= t t∞ − t t

τtt

t t∞ = 1

1 + e−(V −Vhalf)/kl

τtt = e0.0378 · ς · gmt · (V −Vhalft)

qtl · q10(T −33)/10 · a0t · (1 + att )

att = e0.00378 · ς · (V −Vhalft)

where gh is the maximal conductance of the h-current and Eh is the reversal
potential. The L-type Ca2+ current at the soma is described by

ICaLs = −gCaLs · Ss · ghk (Vs, χs) · (1/ (1 + χs)) (20)

where gCaL,s is the maximal conductance and
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S′
s = (

S∞s − Ss
)
/τss

S∞s = αs (Vs) / (αa (Vs) + βs (Vs))

τSs = 1/ (5 · (αs (Vs) + βs (Vs)))

αs (Vs) = −0.055 · (Vs + 27.01) / (exp ((−Vs − 27.01) /3.8) − 1)

βs (Vs) = 0.94 · exp ((−Vs − 63.01) /17)

xx = 0.0853 · (273.16 + T ) /2

f (z) = (1 − z/2) · f2(z) + (z/ (exp(z) − 1)) · f3(z)

f2(z) = H (0.0001 − |z|)

f3(z) = H (|z| − 0.0001)

ghk = −xx · (1 − ((χs/Ca) · exp (Vs/xx))) · f (Vs/xx)

The Ca2+ concentrations in the soma and dendrites are given by

χ ′
s = ϕs · ICaLs − (

βs ·
(
χs − χ0,s

)) + (
χpd − χs

)
/Caτ − (βs/nonc) · χ2

s (21)

χ ′
pd = ϕd ·

(
ICaLd + ICa,NMDA

) − βd ·
(
χpd − χ0,d

) − (βd/nonc) · χ2
pd − buff · χpd

(22)

χ ′
dd = ϕd ·

(
ICaLd + ICa,NMDA

) − βd ·
(
χdd − χ0,d

) − (βd/nonc) · χ2
dd − buff · χdd

(23)

The L-type Ca2+ current at the dendrite is described by

ICaLd = −gCaLd · S3
d · Td · (Vd − VCa) (24)



554 V. Cutsuridis

S′
d = (

S∞d − Sd
)
/τsd

S∞d = 1/ (1 + exp (−Vd − 37))

τsd = s3 + s1/ (1 + exp (Vd + s2))

T ′
d = (

T∞d − Td
)
/τTd

T∞d = 1/ (1 + exp ((Vd + 41) /0.5))

τTd = 29

Basket, Axo-axonic, Bistratified and Ivy Cells

The membrane potential of the basket, axo-axonic, bistratified and ivy cell obeys
the following equation:

Cm
dV

dt
= IL + INa + IKdr + IA + Iin + Isyn (25)

where Cm is the membrane capacitance, V is the membrane potential, IL is the leak
current, INa is the sodium current, IKdr is the fast delayed rectifier K+ current, IA is
the A-type K+ current and Isyn is the synaptic current.

The sodium current and its kinetics are described by

INa = gNam
3h (V − ENa) (26)

dm

dt
= αm (1 − m) − βmm

αm = 0.1 (V + 40)
(
1 − e(V +40)/10

)

βm = 4 · e(−(v+65)/18)
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dh

dt
= αh (1 − h) − βhh

αh = 0.07 · e−(V +65)/20

βh = 1
(
1 + e−(V +35)/10

)

The fast delayed rectifier K+ current, IKdr, is given by

IKdr = gKdrn
4 (V − EK) (27)

dn

dt
= αn (1 − n) − βnn

αn = 0.01 (V + 55)
(
1 − e−(V +55)/10

)

βn = 0.125e−(v+65)/80

The A-type K+ current, IA, is described by

IA = gAab (V − Ek) (28)

da

dt
= αa (1 − a) − βaa

αa = 0.02 (13.1 − V )

e

(
13.1−V

10

)

− 1

βa = 0.0175 (V − 40.1)

e

(
V −40.1

10

)

− 1

db

dt
= αb (1 − b) − βbb

αb = 0.0016e

( −13−V
18

)
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Table 2 Inhibitory cell
parameter values. Units: g,
mS/cm2; Cm, μF/cm2; V, mV

Name Value Name Value

Cm 1 gK,dr 23
gL 0.18 gK,dr,OLM 36
VL −60 Vk,OLM −77
gNa 150 Vk −90
gNa,OLM 120 gNaP 2.5
VNa 55 gh 1.5
VNa,OLM 50 VNaP 50
gL,OLM 0.3 Vh −20
VL,OLM −54.4 gA 10

βb = 0.05

1 + e

(
10.1−V

5

)

The ionic parameter values are depicted in Table 2.

Neurogliaform Cell

The membrane potential of the neurogliaform cell obeys the following equation:

Cm
dV

dt
= IL + INa + IKdr + Iin + Isyn (29)

where Cm is the membrane capacitance, V is the membrane potential, IL is the leak
current, INa is the sodium current, IKdr is the fast delayed rectifier K+ current and
Isyn is the synaptic current.

The sodium current and its kinetics are described by

INa = gNam
3h (V − ENa) (30)

dm

dt
= αm (1 − m) − βmm

αm = 0.1 (V + 40)
(
1 − e(V +40)/10

)

βm = 4 · e(−(v+65)/18)
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dh

dt
= αh (1 − h) − βhh

αh = 0.07 · e−(V +65)/20

βh = 1
(
1 + e−(V +35)/10

)

The fast delayed rectifier K+ current, IKdr, is given by

IKdr = gKdrn
4 (V − EK) (31)

dn

dt
= αn (1 − n) − βnn

αn = 0.01 (V + 55)
(
1 − e−(V +55)/10

)

βn = 0.125e−(v+65)/80

The ionic parameter values are depicted in Table 2.

OLM Cell

The membrane potential of the OLM cell obeys the following equation:

Cm
dV

dt
= IL + INa + IKdr + INaP + IH + Isyn + Iin (32)

where Cm is the membrane capacitance, V is the membrane potential, IL is the leak
current, INa is the sodium current, IKdr is the fast delayed rectifier K+ current, INaP
is the persistent sodium current, Ih is the h-current and Isyn is the synaptic current.

The sodium current and its kinetics are described by

INa = gNam
3h (V − ENa) (33)

dm

dt
= αm (1 − m) − βmm
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αm = 0.1 (V + 40)
(
1 − e(V +40)/10

)

βm = 4 · e(−(v+65)/18)

dh

dt
= αh (1 − h) − βhh

αh = 0.07 · e−(V +65)/20

βh = 1
(
1 + e−(V +35)/10

)

The fast delayed rectifier K+ current, IKdr, is given by

IKdr = gKdrn
4 (V − EK) (34)

dn

dt
= αn (1 − n) − βnn

αn = 0.01 (V + 55)
(
1 − e−(V +55)/10

)

βn = 0.125e−(v+65)/80

The NaP current was assembled from the Kunec et al. (2005) studies and it was
described by

INaP = −gNaP · mpo · (V − VNa) (35)

dmpo

dt
= αmpo(V )

(
1 − mpo

) − βmpo(V ) · mpo

αmpo = 1

0.15
(
1 + e−(V +38)/6.5

)

βmpo = e−(V +38)/6.5

0.15
(
1 + e−(V +38)/6.5

)
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Similarly, the h-current was assembled from Kunec et al. (2005) studies and it
was described by

Ih = −gh (0.65λfo + 0.35λso) (V − Vh) (36)

dλfo

dt
= λf∞(V ) − λfo

τλf(V )

λf∞(V ) = 1
(
1 + e(V +79.2)/9.78

)

τλf(V ) = 0.51

e(v−1.7)/10 + e−(V +340)/52
+ 1

dλso

dt
= λs∞(V ) − λso

τλs(V )

λs∞(V ) = 1
(
1 + e(V +2.83)/15.9

)58

τλs(V ) = 5.6

e(v−1.7)/14 + e−(V +260)/43
+ 1

The ionic parameter values are depicted in Table 2.

Input Spike Generator

The input spike generator simulating the CA3 Schaffer collateral, the EC perforant
path and the MS inputs were described by

Fpre = H (t − 1) · (H (sin (2π · (t − 2) /T )) · (1 − H (sin (2π · (t − 1) /T ))))

(37)

where T is the period of oscillation and H( ) is the Heaviside function.

Input-to-Cell Synaptic Currents

The Ca2+-NMDA, AMPA, GABAA and NMDA synaptic currents are given by
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ICa,NMDA = −gsyn · sNMDA · mCa,NMDA ·
(
Vd − VCa,NMDA

)
(38)

INMDA = −gsyn · sNMDA · mNMDA · (Vd − VNMDA) (39)

IAMPA = −gsyn · sAMPA · (Vd − VAMPA) (40)

IGABA = −gsyn · sGABA · (Vd − VGABA) (41)

where gsyn is the synaptic conductance expressed either by Eqs. (50) or (1–3) and

mNMDA = 1/ (1 + 0.3 · Mg · exp (−0.062 · Vd))

mCa,NMDA = 1/ (1 + 0.3 · Mg · exp (−0.124 · Vd))

with Mg2+ = 2 mM. The activation equations for AMPA, NMDA and GABAA
currents are

sx = sxfast + sxslow + sxrise (42)

where x stands for AMPA, NMDA, GABA and

s′
NMDArise

= −20 ·
(
1 − sNMDAfast − sNMDAslow

)
· Fpre − (1/2) · sNMDArise

s′
NMDAfast

= 20 ·
(
0.527 − sNMDAfast

)
· Fpre − (1/10) · sNMDAfast

s′
NMDAslow

= 20 ·
(
0.473 − sNMDAslow

)
· Fpre − (1/45) · sNMDAslow

s′
AMPArise

= −20 ·
(
1 − sAMPAfast − sAMPAslow

)
· Fpre − (1/0.58) · sAMPArise

s′
AMPAfast

= 20 ·
(
0.903 − sAMPAfast

)
· Fpre − (1/7.6) · sAMPAfast

s′
AMPAslow

= 20 ·
(
0.097 − sAMPAslow

)
· Fpre − (1/25.69) · sAMPAslow

and
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Table 3 Input-to-cell and
cell-to-cell synaptic
parameter values. Units: g,
mS/cm2; V, mV

Name Value Name Value

gCa,NMDA 25 VCa,NMDA 140
gNMDA 0.3 VNMDA 0
gAMPA 0.05 VAMPA 0
gGABA 0.05 VGABA −75

s′
GABArise

= −20 ·
(
1 − sGABAfast − sGABAslow

)
· Fpre − (1/1.18) · sGABArise

s′
GABAfast

= 20 ·
(
0.803 − sGABAfast

)
· Fpre − (1/8.5) · sGABAfast

s′
GABAslow

= 20 ·
(
0.197 − sGABAslow

)
· Fpre − (1/30.01) · sGABAslow

where Fpre is the input spike generator simulating the CA3 Schaffer collateral, the
EC perforant path and the MS inputs. The input-to-cell synaptic parameter values
are displayed in Table 3.

Synaptic Plasticity Model

The calcium detector model is governed by the following six equations:

P ′ = (
ϕa (χd) − cp · A · P

)
/τp (43)

V ′ = (ϕb (χd) − V ) /τV (44)

A′ = (ϕc (χd) − A) /τA (45)

B ′ = (ϕe(A) − B − cd · B · V ) /τB (46)

D′ = (ϕd(B) − D) /τD (47)

The change in the synaptic weight is governed by the following equation:

W ′ = (αw/ (1 + exp ((P − a) /pa)) − βw/ (1 + (exp ((D − d) /pd)) − W) /τw
(48)
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Table 4 Calcium detector
model parameter values.
Units: g, mS/cm2; V, mV; α,
1/ms; β, 1/ms

Name Value Name Value

cp 5 numb 1
τ p 500 numc 1
τ v 10 numd 1
τA 5 nume 5
τB 40 CmHC 4
τD 250 CmHN 4
τw 500 CnHC 0.6
αw 0.8 CnHN 3
βw 0.6 θc 2
a 0.3 θd 2.6
pa −0.1 θe 0.55
d 0.05 σ c −0.05
pd −0.002 σ d −0.01

where P is the potentiation detector dynamics, V is the veto detector dynamics, D is
the depression detector dynamics, A and B are the intermediate steps leading up to
D and W is the readout variable (see Fig. 2). The Hill equations are

ϕa(x) = numa ·
(
(x/CmHC)CmHN

)
/
(

1 + (x/CmHC)CmHN
)

ϕb(x) = numb ·
(
(x/CnHC)CnHN

)
/
(

1 + (x/CnHC)CnHN
)

ϕc(x) = numc/ (1 + exp ((x − θc) /σc))

ϕd(x) = numd/ (1 + exp ((x − θd) /σd))

ϕe(x) = nume/ (1 + exp ((x − θe) /σe))

The calcium detector parameter values are displayed in Table 4.

Cell-to-Cell Synaptic Currents

The synaptic current is given by

Isyn = gsyn · s · (V − Erev) (49)
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Table 5 Synaptic strength
parameter values

Name Value theta Name Value theta

wec-to-pcAMPA 1.4 + W3 waac-to-pc 1.0
wca3-to-pcAMPA 2.4 + W1 wbc-to-pc 0.1
wec-to-pcNMDA 1.4 + W3 wbc-to-bsc 20
wca3-to-pcNMDA 2.4 + W1 wbsc-to-pc 0.3
wec-to-aac 0.9 wpc-to-bsc 0
wca3-to-aac 0.8 wbsc-to-bc 0.5
wec-to-bc 0.8 wolm-to-pc 0.5
wca3-to-bc 0.8 wpc-to-olm 1.1
wca3-to-bsc 2 wivy-to-pc 0.15
wsep360-to-aac 10 wpc-to-ivy 1
wsep360-to-bc 10 wec-to-ngl 3
wsep180-to-bsc 8 wngl-to-pc 0.8
wsep180-to-olm 30 wbc-to-pc 0.1

where gsyn is the synaptic conductance and Erev is the reversal potential. The
synaptic conductance is expressed by

gsyn = w · DA · gmax (50)

where gmax is the maximal synaptic conductance, DA is the dopamine level and w
is the synaptic strength. The DA level is always 1 unless mentioned otherwise. The
values of the synaptic strengths are given in Table 5. In the model three synaptic
currents are included: AMPA, NMDA and GABAA. The values of the synaptic
parameters are displayed in Table 3. The gating variable, s, which represents the
fraction of the open synaptic ion channels, obeys the following differential equation:

ds

dt
= α · F

(
Vpre

)
· (1 − s) − β · s (51)

where the normalized concentration of the postsynaptic transmitter-receptor com-
plex, F(Vpre), is assumed to be an instantaneous and sigmoid functions of the
presynaptic membrane potential

F
(
Vpre

) = 1/
(

1 + e−(Vpre−θ)/2
)

(52)

where θ = 0 mV is high enough so that the transmitter release occurs only when
the presynaptic cell emits a spike (Cutsuridis et al. 2007). The values of the channel
opening and closing rates are displayed in Table 6.
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Table 6 Cell-to-cell
synaptic parameter values.
Units: g, mS/cm2; V, mV; α,
1/ms; β, 1/ms

Name Value Name Value

αAAC2PC 5 βAAC2PC 0.01
αBC2PC 5 βBC2PC 0.015
αBSC2PC 5 βBSC2PC 0.01
αOLM2PC 5 βOLM2PC 0.01
αIVY2PC 1 βIVY2PC 0.0015
αBC2BC 3.5 βBC2BC 0.18
αBC2BSC 3.5 βBC2BSC 0.18
αBSC2BC 3.5 βBSC2BC 0.18
αNGL2PC 5 βNGL2PC 0.015
αPC2BC 20 βPC2BC 0.19
αPC2BSC 20 βPC2BSC 0.19
αPC2AAC 20 βPC2AAC 0.19
αPC2IVY 20 βPC2IVY 0.19
αPC2OLM 20 βPC2OLM 0.19
αOLM2NGL 5 βOLM2NGL 0.01

Pyramidal Cell

Axonic (a) and somatic (s) compartments receive GABAA inhibition from axo-
axonic and basket cells, respectively. The proximal dendritic (pd) compartment
receives both AMPA and NMDA excitation from the CA3 Schaffer collateral input
and GABAA inhibition from the bistratified and ivy cells. The distal dendritic (dd)
compartment receives AMPA and NMDA excitation from the EC perforant path and
GABAA inhibition from the neurogliaform and OLM cells. Both pd and dd AMPA
and NMDA synapses are plastic and change according to the Eqs. (1), (2) and (3).

Axo-axonic and Basket Cells

The somatic (s) compartments of both axo-axonic and basket cells receive AMPA
excitation from both the EC perforant and the CA3 Schaffer collateral paths. Axo-
axonic cells receive also GABAA inhibition from the medial septal cells. Basket
cells receive GABAA inhibition from the bistratified cells and the medial septal
cells.

Bistratified Cells

The somatic (s) compartment of the bistratified cells receive s AMPA excitation only
from the CA3 Schaffer collateral path and GABAA inhibition from the basket cells
and the medial septal cells.
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OLM, Neurogliaform and IVY Cells

The IVY cells receive recurrent AMPA excitation from the pyramidal cells and
GABAA inhibition from the medial septal cells. The neurogliaform cells receive
AMPA excitation from the EC perforant path and GABA inhibition from OLM
cells, whereas the OLM cells receive AMPA excitation from the pyramidal cells
and GABAA inhibition from the septum.
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A Model for Grid Firing
and Theta-Nested Gamma Oscillations
in Layer 2 of the Medial
Entorhinal Cortex

Matt Nolan

Abstract Grid cell circuits in the superficial layers of the medial entorhinal cortex
have become a focus of considerable experimental and theoretical attention as a
model for investigating neural mechanisms of cognition. Together, grid firing and
associated theta-nested gamma oscillations can be considered as a minimal set of
phenomena which a satisfactory model of superficial entorhinal circuits should
account for. The model presented here focuses on stellate cells in layer 2 (L2SCs)
and their indirect interactions through inhibitory interneurons. In the model, L2SCs
and inhibitory interneurons are represented as distinct excitatory and inhibitory cell
populations. To enable investigation of network activity patterns as well as network
computations, the model is implemented using spiking exponential integrate and
fire neurons. The model demonstrates that indirect interactions between L2SCs
mediated via inhibitory neurons are sufficient for emergence of grid firing and nested
game oscillations.

Overview

What Is the Model

The medial entorhinal cortex (MEC) is a critical brain structure for spatial navi-
gation and memory (Steffenach et al. 2005). Following the discovery of grid cells,
it has become a focus of considerable experimental and theoretical attention as a
model circuit for investigating neural mechanisms of cognition (Moser and Moser
2013). Grid cells are neurons that encode location through grid-like spatial firing
fields (Fyhn et al. 2004; Hafting et al. 2005). Grid fields have been recorded from
neurons in the MEC and adjacent parahippocampal structures (Boccara et al. 2010),
with the highest proportion of grid cells in layer 2 of the MEC (Sargolini et al.
2006). During behaviors in which grid firing takes place, field potential oscillations
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reflecting network activity in theta (6–12 Hz) and gamma (60–120 Hz) bands can
also be recorded from layer 2 of the MEC (Chrobak and Buzsaki 1998; Colgin et
al. 2009). The gamma band oscillations have amplitude that is modulated according
to theta phase (Chrobak and Buzsaki 1998; Colgin et al. 2009). Thus, the gamma
signal is largest at times close to the trough of theta and smallest around the peak of
theta. Together, grid firing and theta-nested gamma oscillations can be considered
as a minimal set of phenomena that a satisfactory model of layer 2 circuits should
account for.

Within layer 2 of the MEC, there are two principle cell types. Layer 2 stellate
cells (L2SCs), also previously called ocean cells, send axonal projections to the
dentate gyrus and CA3 regions of the hippocampus and to deep layers of the MEC
(Alonso and Klink 1993; Jones 1994; Klink and Alonso 1997; Pastoll et al. 2012;
Sürmeli et al. 2015; Varga et al. 2010). Layer 2 pyramidal cells (L2PCs) send
axonal projections to the CA1 region of the hippocampus (Alonso and Klink 1993;
Kitamura et al. 2015; Klink and Alonso 1997; Sürmeli et al. 2015; Varga et al. 2010).
Intermediate cell populations have also recently been identified, but their projections
are unknown (Fuchs et al. 2016). L2SCs have been most extensively studied, and
a good deal is known about their intrinsic electrophysiological properties (Pastoll
et al. 2012). L2SCs and L2PCs can be distinguished at a molecular level by their
respective expression of the proteins reelin and calbindin (Kitamura et al. 2014;
Ray et al. 2014; Sürmeli et al. 2015; Varga et al. 2010). They are also distinguished
by the activity of promoters that have been used to genetically identify each cell
population using Cre driver lines (Fuchs et al. 2016; Kitamura et al. 2014; Sürmeli
et al. 2015). L2SCs are unusual in comparison with many cortical excitatory neurons
in that they do not appear to make direct local connections with one another (Couey
et al. 2013; Dhillon and Jones 2000; Fuchs et al. 2016; Pastoll et al. 2013). Instead,
they interact indirectly via local inhibitory interneurons. The model addresses the
general question of whether L2SCs and their indirect interactions through inhibitory
interneurons are sufficient to account for grid firing or nested gamma oscillations.

The model focuses on L2SCs and their indirect interactions through inhibitory
interneurons (Pastoll et al. 2013). In the model, L2SCs and inhibitory interneurons
are represented as distinct excitatory (E) and inhibitory (I) cell populations. To
investigate consequences of indirect communication mediated via interneurons, in
initial versions of the model, E cells are only allowed to synapse with I cells, and I
cells are only allowed to synapse with E cells. To enable investigation of network
activity patterns, as well as network computations, the model is implemented using
spiking exponential integrate and fire neurons.

Questions Addressed

Development of the model was motivated by three specific questions. First, can
excitatory-inhibitory (E-I) interactions between L2SCs and local interneurons
account for grid firing patterns? Second, can E-I interactions account for theta-
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nested gamma oscillations? Third, if grid firing and nested gamma oscillations share
a common mechanism, then how are they related to one another?

Previously, models with continuous attractor network dynamics had been shown
to account for grid firing (Burak and Fiete 2009; Fuhs and Touretzky 2006; Guanella
et al. 2007). To do this, they were configured to generate a spatial code by integrating
velocity inputs (McNaughton et al. 2006; Samsonovich and McNaughton 1997;
Zhang 1996). Periodic spatial firing emerged either through cyclic movement of
activity bumps in periodic networks with a toroidal structure (Guanella et al. 2007;
Samsonovich and McNaughton 1997) or through competitive interactions between
multiple activity bumps on an extended neural sheet (Burak and Fiete 2009; Fuhs
and Touretzky 2006). However, these networks were either implemented with local
excitatory interactions or with purely inhibitory cell populations. In contrast, our
experimental investigations indicated that L2SCs, which are excitatory, are only
able to interact indirectly via inhibitory interneurons (Pastoll et al. 2013). It was
not immediately clear to us whether this connectivity would be able to support
grid firing under physiologically plausible network configurations. Nevertheless, we
suspected that if this is possible, then models based on this connectivity might lead
to new mechanistic insights and predictions.

Many previous theoretical studies had also shown that E-I interactions could
generate gamma oscillations (Tiesinga and Sejnowski 2009; Whittington et al.
2011). Our experimental data indicated that local optogenetic activation of layer 2
of the MEC is sufficient to generate nested gamma oscillations (Pastoll et al. 2013).
However, it had not been shown that this observation could be accounted for by
E-I models. More challengingly, it was not clear whether a single model based on
E-I connectivity would be able to explain both grid firing and theta-nested gamma
oscillations.

Level of Detail and Rationale

We chose to implement the model using exponential integrate and fire (EIF)
neurons (Fourcaud-Trocme et al. 2003), with membrane and synaptic time constants
approximating our experimental observations (Pastoll et al. 2013). We introduced
separate populations of excitatory neurons, to simulate L2SCs, and inhibitory
neurons, to simulate local interneurons. While previous studies had shown that grid
firing could be accounted for in models based solely on firing rate equations, we
wanted to approximate physiological membrane potential dynamics for two reasons.
First, we reasoned that this would be required to account for gamma frequency
oscillations. Second, we were concerned that attractor network models of grid firing
may be sensitive to noise but that this may be overlooked in previous more abstract
models, perhaps leading to overconfidence in the models’ stability in physiological
conditions. While we, and others, have previously implemented detailed ionic
conductance-based models of L2SCs (Dodson et al. 2011; Dudman and Nolan 2009;
Fransen et al. 2004; Garden et al. 2008), we did not use this level of detail in the
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model for three reasons. First, our aim was to establish whether the general network
architecture we had found experimentally could account for behaviorally relevant
phenomena. Our findings would therefore be more robust if they did not require
fine-tuning of ionic conductances. Second, while ionic mechanisms of L2SCs have
received considerable experimental attention, and previous models can account for
their subthreshold dynamics and spiking properties, we nevertheless still lack a
basic understanding of their dendritic integrative mechanisms, and so more detailed
models would at present be under constrained. Third, a more pragmatic issue is
that we wished to simulate networks of several thousand cells and in later studies
to systematically investigate the parameter space of these networks. Therefore, the
shorter simulation time from use of EIF rather than more detailed models was a
clear advantage.

The Model

Model Components and Parameters

Neurons

The model contains a population of inhibitory neurons and a population of
excitatory neurons. Each neuron is implemented as an EIF unit, such that

C
∂Vm

∂t
= gL (EL − Vm) + gahp

(
Eahp − Vm

) + gL�T exp

(
Vm − Vt

�T

)

+ Isyn + Iext + η (1)

where C is the membrane capacitance; Vm is the membrane potential; gL and EL
are the leak conductance and its reversal potential; gahp and Eahp are the after
hyperpolarization conductance and its reversal potential; �T and Vt are constants
that determine the sharpness of the action potential rise phase and its threshold for
initiation; Isyn is the local synaptic current; Iext is the externally applied current,
which can include a theta-modulated input, a velocity input, and simulated inputs
from place cells; and η is the noise current. The parameters for each type of neuron
were chosen by hand to approximate the dynamics of the corresponding cell type
observed during patch-clamp recordings in brain slices.

Internal Connectivity (Synapses)

The synaptic input to each neuron was modeled as the sum of several conductances.

Isyn = gGABA(t)
(
EGABAA − Vm

) + gAMPA(t) (EAMPA − Vm)

+ gNMDA(t) (ENMDA − Vm) (2)
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Synaptic connections from E to I cells are modeled as a sum of instantaneously
activating and fast-decaying (gAMPA) and slow-decaying (gNMDA) conductances.
While the peak NMDA component is only 2% of the peak AMPA conductance,
its prolonged time course is important for maintenance of network states across
the inhibitory phase of the theta cycle. Both AMPA and NMDA conductances
are modeled as voltage-independent. We omit the known voltage dependence of
NMDA conductances in part for simplicity and in part because it is the slow kinetics
of NMDA conductances rather than their voltage dependence that is relevant to
their primary role in the model, which is to maintain activity across the full theta
cycle. Synaptic connections from I to E cells are modeled with a single (GABA)
conductance with time course described by the difference between two exponentials,
so as to give a rapid rise and slower decay. The GABA conductance has a reversal
potential (EGABA) of −75 mV, whereas the AMPA and NMDA conductances have
a reversal potential of 0 mV (EAMPA and ENMDA).

Internal Connectivity (Topology)

Generation of attractor states and grid firing depends upon the structure of the E−I
connectivity in the model. In network space, each population of neurons can be
conceived of as being uniformly distributed across a sheet that is wrapped onto on a
twisted torus. In our initial version of the model, the sheet of E cells has dimensions
of 68 × 58, and the sheet of I cells has dimensions of 34 × 30. The normalized
dimensions of the torus are 1 × 0.5sqrt(3) (cf. (Guanella et al. 2007)). The model
can be connected so that E- > I connections are local and I- > E connections have
a surround organization (I-surround configuration) or vice versa, so that I- > E
connections are local and E- > I connections have a surround organization (E-
surround configuration) (Pastoll et al. 2013).

For connections from E to I cells in the E-surround configuration,

Wij = Gexc exp

(
−(d (i, j, C) − μexc)

2

2σ 2
exc

)

(3)

d (i, j, C) = ∣∣ui − uj − Cep

∣∣ (4)

where Wij is the AMPA (or NMDA) conductance of the connection from excitatory
neuron i to inhibitory neuron j, Gexc is the maximal AMPA (or NMDA) conduc-
tance, d is the distance between neurons i and j on the network torus, μexc is the
diameter of the connectivity ring, σ exc is the width of the connectivity ring, ui and uj

are vectors for the positions of neuron i and neuron j, C is an offset in the excitatory
profile used to ensure translation of the activity bump in response to velocity inputs,
and ep is a unit vector oriented in the direction of the excitatory neuron’s preferred
movement direction.



572 M. Nolan

For connections from I to E cells,

Uij = Ginh exp

(
−(d (i, j, C))2

2σ 2
inh

)

(5)

where Uij is the GABA conductance of the connection from inhibitory neuron i to
excitatory neuron j, Ginh is the maximal AMPA conductance, and other parameters
are as for Eq. 3.

This topography can be implemented either through variation in the strength of
connections as shown here or through variation in the probability of connections
(Solanka et al. 2015). In our initial versions of the model, excitatory neurons make
synaptic connections exclusively with inhibitory neurons, and inhibitory neurons
make connections exclusively with excitatory neurons. Grid firing and gamma
oscillations continue to be generated when E-E and I-I connections are added to
the model, although their properties may be modified (Solanka et al. 2015).

External Inputs

The external input to the model Iext is the sum of four components.

Iext = Iconst(t) + Iθ (t) + Ivel(t) + Iplace(t) (6)

A theta-modulated current (Iθ ) input and a constant current input (Iconst) to E and
I cells are used, respectively, to generate theta frequency activation of the network
and to drive the network toward an active state. For the theta-modulated current,

Iθ (t) = Aθ

2
(1 + sin (2πfθ t + φθ )) (7)

where Aθ , fθ , and øθ , respectively, provide the amplitude, frequency, and phase of
the theta oscillation.

A velocity-modulated input is used to drive bumps of activity around the network
according to the simulated animal’s speed and direction of movement. For a given
neuron i,

Iivel(t) = Cvv(t) · ei
p (8)

Cv = Nx

aλgrid
(9)

Here, Cv is the gain of the velocity input, Nx is the number of neurons through
which the bump must travel so as to return to its starting position on the torus, a is the
slope of the relationship between speed of movement of the bump and real-world
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movement, and λgrid is the grid field spacing. For simplicity, velocity-modulated
inputs are tuned to one of four movement directions at 90 degrees from one another.
Each neuron receives input tuned to only one of these directions. The mapping of the
output from that neuron to cells in the other layer is shifted so that when the neuron
becomes active, it moves the bump through the network in a direction appropriate
for its input. The model can generate grid firing patterns when velocity-modulated
inputs connected to either E or I cells (Pastoll et al. 2013).

Finally, E cells in the model receive input from place cells (Iplace). In the simplest
implementation, the summed place cell input to each neuron has spatial organization
similar to the grid firing field of the E cell. In our initial implementation of the
model, this input is active only every 10 s and acts to oppose drift in the grid
representation that otherwise arises through intrinsic dynamics of the circuit (Pastoll
et al. 2013). It is important to note that if this input were continuously active and
were implemented with sufficiently strong connections, then it would be able to
drive grid firing irrespective of the velocity integration mechanisms operating within
the E-I circuit.

Noise Sources

Noise in the network (η) is simulated by injection into each neuron of independent
Gaussian-distributed current, with zero mean and standard deviation (σ ) typically
in the range 0–300 pA. In the initial version of the model, σ was adjusted so that for
each neuron, the resting fluctuations in its membrane potential had an amplitude of
2 mV (Pastoll et al. 2013). The level of intrinsic noise may be a critical functional
parameter, as changing σ impacts grid firing patterns and emergence of gamma
frequency network oscillations (Solanka et al. 2015).

Code for versions of the model used to generate data in Pastoll et al. (2013)
is available from https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?
model=150031. Code for versions of the model used to generate data in Solanka et
al. (2015) is available from https://senselab.med.yale.edu/ModelDB/ShowModel.
cshtml?model=183017. Additional code and documentation are available from
https://github.com/MattNolanLab.

Limited Results

Network Attractor States and Grid Firing

In the absence of any place or velocity input, the network spontaneously generates
an attractor state, which manifests as a bump of activity on the sheet of E cells
(Fig. 1a). When movement is simulated by modulation of the velocity inputs, then
the activity bump is moved around the sheet. Plotting the activity of individual
neurons as a function of the simulated location produces grid firing fields (Fig.

https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=183017
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=183017
https://github.com/MattNolanLab
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Table 1 Biophysical and input properties of E and I cells

Property Symbol (units) Value (E cells) Value (I cells)

Membrane capacitance C (pF) 211.4 227.3
Leak conductance gL (nS) 22.73 22.73
Leak reversal potential EL (mV) −68.5 −60
Maximal AHP conductance gahp_max (nS) 5 22
AHP decay time constant τahp (ms) 10 7.5
AHP reversal potential Eahp (mV) −80 −60
Action potential slope factor �T (mV) 0.4 0.4
Action potential threshold Vt (mV) −50 −45
Maximal GABA conductance Ginh (nS) 2.12 –
GABA reversal potential EGABA (mV) −75 –
GABA activation time constant τact_GABA (ms) 0.1 –
GABA decay time constant τdec_GABA (ms) 5 –
Maximal AMPA conductance GAMPA (pS) – 355
AMPA reversal potential EAMPA (mV) – 0
AMPA decay time constant τdec_AMPA (ms) – 1
Maximal NMDA conductance GNMDA (pS) – 7.1
NMDA reversal potential ENMDA (mV) – 0
NMDA time constant τdec_NMDA (ms) – 100
Constant input current Iconst 300 200
Theta current amplitude Aθ 375 25
Theta current frequency fθ 8 8
Theta current phase offset øθ 0 0

Properties are for the version of the model published in Pastoll et al. (2013). In later iterations of
the model, some properties and their implementation are modified

1a). Because the bump velocity is linear as a function of movement speed, grid
patterns are maintained across a range of running speeds corresponding to those of
freely behaving animals. Thus, playing experimentally recorded trajectories into the
model generates grid firing patterns in the activity of individual E cells.

The firing pattern generated by I cells depends on the configuration of the model
(Pastoll et al. 2013). In the I-surround configuration, I cells also generate grid firing
fields. In this configuration, the sheet of I cells contains a regular activity bump, with
its maxima at a location in neural space corresponding to the position of the center of
the activity bump on the E sheet. If the network is in the E-surround configuration,
then the I cells have inverted grid firing fields (Fig. 1a). In this configuration, the
sheet of I cells contains an inverted activity bump, with its minima at a location in
neural space corresponding to the position of the center of the activity bump on the
E sheet. The network continues to generate grid fields if the theta input is switched
off (Pastoll et al. 2013). In contrast, if the intermittent place cell input is switched
off, the grid pattern becomes smeared because of drift in the position of the activity
bump.
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Fig. 1 Continuous E-I network attractors account for grid firing and theta-nested gamma
oscillations. (a) Heat maps of firing of E cells (upper left) and I cells (upper right) as a function of
location. The sixfold rotational symmetry shown in the spatial autocorrelation for the E cell (lower
left) is a characteristic of grid firing. While the firing fields of I cells have an inverted grid-like
organization, this symmetry appears to be absent from their spatial autocorrelation (lower right).
(b) Inhibitory synaptic input to an E cell, excitatory synaptic input to an I cell, and spectrogram of
the E cell membrane current for a single theta cycle. The network generates four cycles of gamma
frequency activity during the theta cycle. (Data are from Pastoll et al. 2013)

Gamma Oscillations

Activation of the model leads to gamma frequency network oscillations in addition
to generation of network attractor states (Fig. 1b). When the model receives theta
frequency-modulated input, then the amplitude of the gamma oscillations becomes
modulated according to the theta phase. The properties of these theta-nested gamma
oscillations closely resemble observations made while recording from superficial
layers of the MEC in behaving animals (cf. Chrobak and Buzsaki 1998). Each
gamma cycle is initiated by spiking in a subset of E cells, resulting in rapid
excitatory input to I cells. This triggers spiking of a majority of I cells at a relatively
short latency from the E cell spikes. I cell spiking curtails any further activity of
E cells within the gamma cycle. The next gamma cycle initiates as the inhibition
decays. This corresponds to E-I gamma oscillations described in a number of other
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Fig. 2 Adjustment of recurrent connectivity enables tuning of gamma oscillations while
maintaining grid firing. (a) Grid score as a function of the strength of recurrent excitatory (gE) and
inhibitory (gI) connections. The black lines indicate regions where the gridness score is >0.5. The
grid score is obtained by first calculating the spatial autocorrelation of the firing field, then rotating
the autocorrelation in steps of 3 degrees, and for each rotation calculating a Pearson correlation
coefficient with the original autocorrelation. The grid score is then calculated as the maximum
values at 30-, 90-, and 150-degree rotation minus the minimum values at 60- and 120-degree
rotation. (b–c) Amplitude of the first autocorrelation peak (b) and oscillation frequency (c) as a
function of the strength of recurrent excitatory and inhibitory connections for networks in which
the gridness score is >0.5. Results are from simulations of models in which intrinsic noise for each
neuron has a standard deviation of 150 pA. (Data are from Solanka et al. 2015)

brain systems. Depending on the model parameters, the gamma oscillations can
have frequency anywhere across the high gamma range (60–120 Hz) (Solanka et al.
2015) (Fig. 2).

Model Justification

Data for Model Components and Parameter Values

Neurons

The somatic integrative properties of L2SCs have been well studied with whole-cell
and intracellular recordings in mouse and rat brain slices (reviewed in Pastoll et
al. (2012)). Several key properties vary systematically according to the location of
L2SCs along the dorsoventral axis of the MEC. For example, input resistance ranges
from approximately 20 M� in dorsal neurons to approximately 80 M� in ventral
neurons (Garden et al. 2008). Similarly, membrane time constants range from 6 ms
dorsally to 15 ms ventrally (Garden et al. 2008). We set the parameter values of
E cells so that the dynamics of synaptic integration approximate our experimental
observations from more dorsally located stellate cells. Thus, the resting membrane
potential is set at −68.5 mV, the spike threshold at −50 mV, and the average
membrane time constant at 9.3 ms. Following an action potential, the membrane
potential in the model resets to −68.5 mV. This is substantially more negative
than the afterhyperpolarization observed experimentally but was required to obtain
relatively slow spike rates observed experimentally within the constraints of the EIF
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model. The model E cells also do not have resonant properties reported for L2SCs
(Dickson et al. 2000; Giocomo et al. 2007; Nolan et al. 2007).

While the membrane properties of interneurons in L2 of the MEC are less well
studied than those of L2SCs, our patch-clamp recordings in mouse brain slices
indicated that fast-spiking interneurons in L2 have membrane properties similar to
those in other brain areas (Pastoll et al. 2013). We therefore selected parameters
to enable I cells to integrate synaptic input more rapidly than E cells and to fire
at higher frequencies. Thus, the membrane potential is set at −60 mV, the spike
threshold at −45 mV, and the average membrane time constant at 7.5 ms. The
afterhyperpolarization conductance also had faster kinetics than that of the E cells
and a less negative equilibrium potential.

Internal Connectivity (Synapses)

Voltage-clamp data describing conductances specifically for L2SC to interneuron or
interneuron to L2SC connections is not currently available. We therefore based the
kinetics of excitatory and inhibitory conductances on parameters used in existing
models for other brain areas (e.g., Bartos et al. 2001). The strength of conductances
was set so that the range of membrane potential changes associated with each input
approximated our observations from simultaneous recordings from pairs of L2SCs
and fast-spiking interneurons.

Internal Connectivity (Topology)

There is currently no data on the network-wide topology of connectivity in L2 of
the MEC. The connectivity profiles that we selected – surround excitation/inhibition
and local inhibition/excitation – instead came from theoretical considerations. In
particular, we aimed for connectivity that would result in emergence of a single
activity bump on the network sheet. Similarly, the twisted torus configuration of
the two neural sheets was selected in order to achieve repeated firing fields with a
grid-like organization (cf. Guanella et al. 2007). It is noteworthy that more recent
modeling studies suggest that this type of network structure might emerge through
spike timing-dependent plasticity processes operating during development of the
circuit (Widloski and Fiete 2014).

External Inputs

Constant Current Because in brain slices L2SCs and fast-spiking interneurons are
silent with negative resting membrane potentials (Pastoll et al. 2013), whereas in
behaving animals these neurons have more depolarized membrane potentials and
can fire action potentials (Domnisoru et al. 2013; Schmidt-Hieber and Hausser
2013), we reasoned that they must receive excitatory drive, which we simulate using
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a constant offset current. This drive may arise from the hippocampus, as inactivation
of the CA1 region reduces the firing rate of grid cells in layer 2 (Bonnevie et al.
2013). It is not clear whether this reflects a direct input to L2 or relay of synaptic
signals via the deep layers of the MEC. Anatomical and optogenetic experiments
demonstrate projections from CA1 and the subiculum to neurons in deep layers
of the MEC (Sürmeli et al. 2015). There is evidence from transsynaptic tracing
experiments that CA2 neurons project to L2SCs (Rowland et al. 2013), although we
have not been able to find evidence for axons in L2 following labeling of neurons in
CA2 (unpublished).

Theta-Modulated Current The membrane potential and spike firing of L2SCs and
fast-spiking interneurons are modulated at theta frequency in behaving animals
(Domnisoru et al. 2013; Schmidt-Hieber and Hausser 2013). In the model, we
assume this is an externally imposed theta-driven oscillation. For example, it may
originate from neurons in layer 3, which have strongly theta-modulated firing and
are thought to project to layer 2 (Beed et al. 2010; Hafting et al. 2008; Mizuseki et
al. 2009).

Velocity Signals The nature of the velocity signal required for models of path
integration within the MEC is unclear. This is therefore a theoretical assumption
of the model that requires experimental investigation. Recently characterized speed
cells in the MEC may form a component of the velocity signal required for path
integration (Kropff et al. 2015). It seems that the majority of head direction cells
are unlikely to have appropriate firing properties to support path integration as head
direction is often distinct from heading direction (Raudies et al. 2015). Thus, in
the future, it will be important to identify heading direction cells and to establish
whether they connect to grid cell networks.

Spatial Inputs We assume that spatial signals required to oppose drift in the grid
representation arise from place cells in the hippocampus (cf. (Guanella et al. 2007)).
Loss of grid firing following inactivation of CA1 neurons is consistent with an
important role for hippocampal inputs (Bonnevie et al. 2013). As we mention above,
hippocampal inputs to the MEC could be relayed via deep layers or may possibly
project directly from CA2.

Noise Sources

Noise within the nervous system arises from stochastic ion channel gating and from
the stochastic dynamics of neurotransmission (Faisal et al. 2008). In the model,
these noise sources are not implemented directly, as this would add considerably to
the computational resources required for simulation. Instead the standard deviation
of a noisy current source was adjusted so that the membrane potential variability
approximates that of in vivo recordings.
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Selected Results

Common Mechanism for Grid Firing and Gamma Oscillations

The primary goal for the initial development of the model was to establish whether
nested gamma oscillations and grid firing fields could arise from a shared synaptic
mechanism (Pastoll et al. 2013). The model establishes in principle the feasibility
of this idea (Fig. 1). Moreover, it does so using parameters that at a first pass are
well constrained by biological data. The further successes of the model arise both
from predictions resulting from exploration of its dynamics and from identification
of key areas for which experimental data is at present lacking (Pastoll et al. 2013;
Solanka et al. 2015).

Relationship Between E-I Strength, Network Computation, and Network
Oscillations

A major goal for neuroscience is to establish mechanisms for cognitive phenomena
and disorders. Many studies have associated cognitive measures with synaptic
properties and with observations of network activity (Uhlhaas and Singer 2012).
However, moving from observed correlations to convincing mechanistic explana-
tions is challenging. The model takes a step in this direction by allowing exploration
of the effects of systematic variation of synaptic and cellular parameters on gamma
oscillations on the one hand and on path integration as a cognitive computation
on the other (Solanka et al. 2015). We find that a wide range of excitatory and
inhibitory synaptic strengths support grid firing and gamma oscillatory activity
(Fig. 2). However, within this range, variation in excitatory or inhibitory synaptic
strengths can be used to tune gamma frequency and power (Fig. 2b). This finding
has two general implications. First, it suggests that gamma oscillations are not
a reliable index of rate-coded computations, as grid firing is possible across a
wide range of gamma frequency and power. Second, it suggests that fine-tuning of
gamma by modulating local synaptic strength could be used to multiplex gamma
coherence-based codes within rate code firing patterns generated by continuous
attractor networks.

Assumptions About Connectivity

The assumptions required to generate the model highlight areas for further exper-
imental and theoretical work. A key assumption is that the model at present is
inspired solely by connectivity between stellate cells and interneurons in layer 2
of the MEC. The model neglects connectivity between L2SCs and pyramidal cells
also found in layer 2 (Fuchs et al. 2016). It also does not include connectivity
between L2SCs and neurons in other layers of the MEC (Beed et al. 2010; Sürmeli
et al. 2015). In this context, recently discovered connections between L2SCs and
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principle cells in layer 5b may be particularly important (Sürmeli et al. 2015). If
the neurons in layer 5b that receive input from L2SCs are also part of deep layer
circuits that project to stellate cells, then it may be important for future models to
incorporate feedback loops operating across layers of the MEC.

A second key assumption is that the connections within the model that enable
the emergence of attractor states and that cause translation of attractor bumps with
movement are based on theoretical considerations and are not yet constrained by
experimental data. This assumption applies to the local recurrent connections (both
excitatory to inhibitory and inhibitory to excitatory), the velocity inputs, and the
spatial inputs. It will be important for future experimental work to address the basis
for these assumptions.

The Model Does Not Account for Theta Phase Precession

While the model successfully explains rate-coded grid firing and theta-nested
gamma oscillations through a shared circuit mechanism, it does not yet account for
the experimentally observed timing of grid cell firing relative to the theta rhythm.
Thus, experimental data indicates that a subset of grid cells in layer 2 fire action
potentials at phases of the theta rhythm that advance with movement through the
cell’s firing field (Hafting et al. 2008). This phase precession can be accounted for by
models for grid firing based on oscillatory interference (O’Keefe and Burgess 2005)
and by hybrid models that combine attractor networks with oscillatory interference
mechanisms (Bush and Burgess 2014; Schmidt-Hieber and Hausser 2013). Phase
precession has also been demonstrated in linear attractor network models of grid
firing (Navratilova et al. 2012).

The Future

Model Extensions

Future development of the model will benefit from exploration of interactions
between additional cell populations. Existing experimental data suggest two areas
that could be explored. First, additional intra-layer mechanisms could be incorpo-
rated by addition of cell populations representing L2PCs and distinct interneuron
populations found in L2 (Fuchs et al. 2016; Varga et al. 2010). Second, interlayer
mechanisms could be incorporated, for example, to investigate interactions of
L2SCs with cell populations in deeper layers (Sürmeli et al. 2015). An interesting
study using a simpler model has recently shown that a network attractor containing
structured connectivity required to generate grid firing patterns can in addition drive
grid firing in a downstream attractor network that would not on its own generate
grid firing (Tocker et al. 2015). While in this study the upstream attractor was
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interpreted as corresponding to circuits in deep entorhinal layers, the discovery of
connections from L2SCs to L5b suggests that a core attractor in L2 could equally
entrain cells in deeper layers (Sürmeli et al. 2015). Exploration of extended versions
of the model that account for this connectivity may generate predictions that enable
these possibilities to be tested experimentally.

New Uses of Model

There are a number of questions for which the model, and its future extensions, may
be useful:

1. How are spatial representations anchored to an environment? In the current
version of the model, pre-configured place cell inputs are used to anchor
representations to the environment. Future uses of the model might include
investigation of how representations become anchored after entry into novel
environments.

2. How are grid representations maintained across theta cycles? Neural inactivation
during the positive phase of theta can destabilize the network attractor. In the
model, slow NMDA conductances are used to sustain representations (Pastoll
et al. 2013), while other studies have proposed roles for slow potassium
conductances (Navratilova et al. 2012). The model may be used in the future
to distinguish these and other possibilities.

3. How is theta phase precession generated? Related models suggest ways for
generation of phase precession in continuous attractor networks (Navratilova
et al. 2012). Future investigation will be required to establish how this can
be achieved in E-I networks that generate gamma oscillatory activity and two-
dimensional grid firing. A critical and as yet relatively unexplored goal is likely
to be to establish how to do this efficiently using as few neurons as possible.

Finally, it may be that the principles established through models that focus on
the MEC can be applied to other brain systems. Because of the robustness of
spatial firing fields in the MEC, it is attractive as a potentially tractable system
for understanding higher order cortical computations in general (Moser and Moser
2013). The model shows how populations of interacting inhibitory and excitatory
neurons can integrate time-varying input signals, with the output expressed as a rate-
coded population code. In principle, similar circuitry could implement this generic
computation in other parts of the brain. In this case, the output would not be rate-
coded grid fields but instead would reflect the nature of the information processed. It
may be interesting in the future to establish whether such computations are carried
out in a way that is consistent with the predictions of the model.
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Computational Models of Grid Cell
Firing

Daniel Bush and Christoph Schmidt-Hieber

Abstract Grid cells in the medial entorhinal cortex (mEC) fire whenever the
animal enters a regular triangular array of locations that cover its environment.
Since their discovery, several models that can account for these remarkably regular
spatial firing patterns have been proposed. These generally fall into one of three
classes, generating grid cell firing patterns either by oscillatory interference, through
continuous attractor dynamics, or as a result of spatially modulated input from
a place cell population. Neural network simulations have been used to explore
the implications and predictions made by each class of model, while subsequent
experimental data have allowed their architecture to be refined. Here, we describe
implementations of two classes of grid cell model – oscillatory interference and
continuous attractor dynamics – alongside a hybrid model that incorporates the
principal features of each. These models are intended to be both parsimonious and
make testable predictions. We discuss the strengths and weaknesses of each model
and the predictions they make for future experimental manipulations of the grid cell
network in vivo.

Experimental Data

Grid cells recorded in freely moving rodents fire action potentials at multiple spatial
locations. These firing fields form the vertices of a regular triangular array covering
the whole environment of a navigating animal (Hafting et al. 2005; Fig. 1a). Grid
cells were initially discovered in the superficial layers of rodent medial entorhinal
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cortex (mEC; Hafting et al. 2005; Fyhn et al. 2008) but have since been identified in
the pre- and para-subiculum (PreS and PaS; Boccara et al. 2010) and in the deeper
layers of mEC, where their firing rate is often modulated by heading direction
(Sargolini et al. 2006). Moreover, grid-like responses have been recorded in the
parahippocampal cortices of the bat (Yartsev et al. 2011), human (Doeller et al.
2010; Jacobs et al. 2013) and non-human primate (Killian et al. 2012). In the rodent,
grid cells are most often recorded in layer II of mEC (mECII), where they are
likely comprised of both reelin-positive stellate (or ‘ocean’) cells, which form the
majority of principal neurons in mECII (Gatome et al. 2010), and calbindin-positive
(or ‘island’) pyramidal cells (Domnisoru et al. 2013; Kitamura et al. 2014; Ray et al.
2014; Sun et al. 2015).

Grid cell firing patterns can be characterised by their scale (i.e. the distance
between adjacent firing fields), orientation (of one principal grid axis relative to an
external cue) and the phase or spatial offset of their firing fields (Fig. 1a). Grid scale
has been shown to increase in discrete steps along the dorsoventral axis of mEC
(Fig. 1b; Barry et al. 2007; Stensola et al. 2012), and evidence suggests that grid cells
which share a common scale form a single functional module (Stensola et al. 2012;
Yoon et al. 2013). The scale, relative orientation and offset of grid firing patterns
within each module are generally conserved across environments (Fyhn et al. 2007),
aside from a transient expansion of grid scale in novel environments that returns to
baseline with experience (Barry et al. 2012a). The spatial phases of individual grid
cells are uniformly distributed across the environment but, importantly, the relative
spatial phase of any two simultaneously recorded grid cells from the same module
is also conserved across all environments visited by the animal (Fyhn et al. 2007;
Yoon et al. 2013).

Principal cells and interneurons in the rodent entorhinal cortex and hippocampus
are each modulated by a 5–12 Hz theta rhythm during movement (Vanderwolf 1969;
O’Keefe and Nadel 1978). Both the power (Vanderwolf 1969; McFarland et al.
1975) and frequency (McFarland et al. 1975; Rivas et al. 1996; Jeewajee et al.
2008) of theta oscillations increase with running speed. Importantly, the majority
of grid cells in layers II, V and VI of rodent mEC exhibit theta phase precession,
firing spikes at progressively earlier phases of the ongoing movement-related theta
rhythm as the grid firing field is traversed (Hafting et al. 2008; Reifenstein et al.
2012; Climer et al. 2013; Jeewajee et al. 2014; Reifenstein et al. 2014; Fig. 1c). This
theta phase precession appears to be independent of input from the hippocampus
(Hafting et al. 2008). Conversely, the majority of layer III grid cells exhibit theta
phase locking, firing spikes at the trough of the ongoing theta rhythm throughout
the firing field (Hafting et al. 2008; Climer et al. 2013). Interestingly, inactivation
of the medial septum, which abolishes the theta rhythm, also impairs grid cell firing
patterns while leaving head direction, border and place cell firing patterns unaffected
(Brandon et al. 2011; Koenig et al. 2011).

Grid cell firing patterns, like those of place cells, remain stable for a limited
period of time in the dark (Hafting et al. 2005). This, along with the fact that grid
firing patterns are preserved across all environments visited by the animal, has led to
the suggestion that grid cells perform path integration, updating their firing patterns
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Fig. 1 Properties of grid cells. (a) The grid cell firing rate code. Left panel: schematic of single
unit recording in the freely moving rodent. Middle left panel: the animal’s path through the
environment is indicated by the black line, and the locations at which action potentials were fired
by a single neuron in rodent mEC are superimposed in blue. Middle right panel: firing rate map
for the same mEC grid cell, with high firing rates indicated by hot colours and low firing rates
by cold colours. Right panel: the firing pattern of this mEC grid cell can be characterised by its
scale (the distance between any two adjacent firing fields), orientation (relative to some external
cue) and offset or spatial ‘phase’ (relative to some arbitrary point in the environment; adapted from
Bush et al. 2015). (b) Grid cells appear to be organised into discrete functional modules whose
scale increases in discrete steps along the dorsoventral axis of mEC (adapted from Barry et al.
2007). (c) The grid cell temporal code. As the animal crosses a grid firing field, spikes are fired
at successively earlier phases of the 5–12 Hz theta rhythm recorded from the local field potential
(LFP), resulting in a negative circular-linear correlation (red line) between the theta phase of firing
and progress through the grid field (adapted from Bush et al. 2015)

on the basis of self-motion information (Fuhs and Touretzky 2006; McNaughton
et al. 2006). Indeed, grid cell firing patterns are abolished when self-motion signals
are reduced by passive transport of the animal (Winter et al. 2015). However, grid
firing patterns of individual cells are also stable between visits to an environment
(Hafting et al. 2005; Fyhn et al. 2007), oriented to distal visual cues (Hafting et al.
2005), dependent on visual input (Chen et al. 2016; Pérez-Escobar et al. 2016) and
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rescale parametrically in response to the reshaping of a familiar environment (Barry
et al. 2007). This suggests that grid cell firing patterns become anchored to sensory
cues with experience, analogous to the reset of a path integration system by sensory
inputs to reduce integrated error where possible (Fuhs and Touretzky 2006; Evans
et al. 2016). In addition, theoretical studies have demonstrated that the grid cell
population provides a highly efficient code for location (Fiete et al. 2008) and may
be used for goal-directed navigation (Bush et al. 2015; Stemmler et al. 2015).

Recent evidence suggests that sensory inputs to grid cells may be mediated by
place and/or boundary cells (Langston et al. 2010; Wills et al. 2010; Bonnevie
et al. 2013; Hardcastle et al. 2015; Evans et al. 2016). For example, stable grid
cell firing patterns appear after stable head direction (HD), place and boundary cell
responses during development and several days after rats leave the nest and actively
explore their environment for the first time (Langston et al. 2010; Wills et al. 2010).
Similarly, inactivating the hippocampus – and thus eliminating place cell inputs
to mEC – impairs grid cell firing patterns (Bonnevie et al. 2013). Finally, it has
been demonstrated that grid cell firing patterns drift coherently during excursions
into the centre of an open-field environment and that this accumulated error is
eliminated by contact with environmental boundaries (Hardcastle et al. 2015). This
is complemented by the observation that environmental boundaries have a strong
influence on the orientation and ellipticity of grid cell firing patterns (Derdikman
et al. 2009; Krupic et al. 2015) that develops with experience (Stensola et al. 2015).
Each of these effects is likely to be mediated by input from boundary cells (Barry
et al. 2006; Savelli et al. 2008; Solstad et al. 2008; Lever et al. 2009).

The Models

Any computational model of grid cell firing patterns must account for the exper-
imental data described above while remaining faithful to the known neurobiology
of the medial entorhinal cortex. Ideally, such a model should replicate both the rate
and temporal code exhibited by grid cells – that is, generate both a triangular lattice
of spatial receptive fields and phase precession against an ongoing oscillation in the
local field potential. In accordance with their hypothesised role in path integration,
most models assume that the principal input to grid cells is a self-motion signal
corresponding to the animal’s velocity. However, to account for the stability of their
firing patterns relative to the environment, grid cells must also receive environmental
sensory inputs from place or boundary cells which may have an effect on those firing
patterns. Finally, the stability of grid firing patterns relative to one another, and their
modular organisation, also suggest that there are strong, local interactions between
grid cells in mEC.

A number of grid cell models that can account for some or all of these properties
have been proposed, each differing in how the animal’s location is encoded, updated
and decoded (reviewed by Giocomo et al. 2011; Zilli 2012). These models are not
mutually exclusive, however, and the properties of grid cells may best be accounted
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for by a ‘hybrid’ model that incorporates features from each class (Schmidt-Hieber
and Häusser 2013; Bush and Burgess 2014). Grid cell models can be broadly divided
into several principal classes. The first class are oscillatory interference (OI) models,
which hypothesise that grid cell firing patterns are formed at the single-cell level
by constructive interference (i.e. coincidence detection) among velocity-controlled
oscillator (VCO) inputs (Burgess et al. 2005, 2007; Blair et al. 2008; Burgess 2008;
Hasselmo 2008). The second class are continuous attractor network (CAN) models,
which hypothesise that grid cell firing patterns are generated at the network level
by local interactions characterised by a circular surround synaptic weight profile
(Fuhs and Touretzky 2006; McNaughton et al. 2006; Guanella et al. 2007; Burak
and Fiete 2009; Pastoll et al. 2013). Another class of models suggest that grid
cell firing patterns arise at the single-cell level as a result of spatially modulated
inputs from place cells, performing a process equivalent to principal component
analysis (PCA) on the spatial representation provided by the hippocampus (Kropff
and Treves 2008; Dordek et al. 2016). Finally, grid cell firing may emerge as a result
of a self-organising learning process (Mhatre et al. 2012).

Here, we describe neural network models of two of these major classes of grid
cell model, using either oscillatory interference or continuous attractor dynamics to
generate grid firing patterns, alongside an appraisal of their strengths, weaknesses
and relationship to experimental data. We then present a hybrid model that
incorporates features of each class in order to account for a wider array of the known
properties of grid cells. Finally, we provide suggestions for future experimental
studies that will help to further refine the biological validity of grid cell models,
and critical tests of each model.

The Oscillatory Interference Model

The oscillatory interference (OI) model was originally proposed to account for theta
phase precession in place cells (O’Keefe and Recce 1993; Lengyel et al. 2003). This
model proposes that grid firing patterns can be accounted for at the single-cell level
by constructive interference between two or more oscillatory inputs (Burgess et al.
2005, 2007; Blair et al. 2008; Burgess 2008; Hasselmo 2008). In its simplest 1D
form, one oscillator is assumed to have a constant baseline frequency, and the other
‘velocity-controlled oscillator’ (VCO) is assumed to have a frequency that varies
linearly with the speed of movement (Equation 1; Burgess 2008). In rodents, the
baseline frequency is generally assumed to be the 5–12 Hz movement-related theta
oscillation (Vanderwolf 1969; O’Keefe and Nadel 1978; Burgess et al. 2007).

Input from these two signals generates grid cell membrane potential oscillations
(MPOs) which are modulated by an ‘envelope’ frequency that is equal to the
difference in baseline and VCO frequencies and a ‘carrier’ frequency that is equal
to the mean of those two frequencies (Fig. 2a). The envelope corresponds to the grid
cell rate code, being spatially periodic and approximately Gaussian or cosine tuned;
while the carrier corresponds to the temporal code, being higher in frequency than
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Fig. 2 The oscillatory interference model. (a) In 1D, consider a baseline oscillation with
frequency fbase (red line) and a velocity-controlled oscillation (VCO) with a frequency fVCO
(green line) that varies linearly with movement speed. Constructive interference between these
two oscillations generates a spatially periodic activity pattern with a carrier frequency (blue)
equal to their mean frequency (fbase + fVCO)/2 and an envelope frequency (pink) equal to their
difference in frequency (fVCO – fbase). This activity pattern corresponds to spatially periodic,
approximately Gaussian firing fields (top) within which spikes are fired at progressively earlier
phases of the baseline oscillation (bottom), as observed in grid cells (following Blair et al. 2008).
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the baseline oscillation and thus causing the grid cell to fire at progressively earlier
phases of that baseline oscillation as the firing field is traversed (i.e. generating
phase precession; Fig. 2a). The scale of the resultant grid firing pattern is controlled
by the slope of the VCO movement speed/burst firing frequency relationship β,
which determines how quickly the VCO and baseline oscillation move in and out of
phase during movement.

vVCO(t) = s(t) cos (∅(t) − ∅VCO)

fVCO(t) = fbase + βvVCO(t)

Equation 1 The relationship between VCO burst firing frequency and movement
velocity. VCO burst firing frequency fVCO deviates linearly from the baseline
frequency fbase according to the component of movement velocity along the VCO’s
preferred direction vVCO, which is dictated by the absolute speed s and direction
∅ of the animal’s movement relative to the preferred direction of that VCO ∅VCO.
The scale of the resultant grid firing pattern is dictated by the slope of the linear
relationship between burst firing frequency and velocity, β.

The OI model can be extended to account for grid firing patterns in 2D by
incorporating input from multiple VCOs whose burst firing frequencies vary linearly
with movement speed along different preferred directions. Because distance is the
time integral of velocity, and phase is the time integral of frequency, the phase of
each VCO – if sampled at fixed intervals (i.e. at the peak or trough of the baseline
oscillation) – encodes (periodic) displacement in its preferred direction (Fig. 2b).
A grid cell that receives input from two or more VCOs whose preferred directions
differ by multiples of 60◦ will exhibit a triangular array of firing fields at locations
where those VCO inputs are in phase (Fig. 2b). The specific location or offset of
those firing fields can be manipulated by adding a constant phase shift to one or
more VCO inputs. Hence, the OI model proposes that each VCO performs path
integration along different one-dimensional axes, while grid cells simply ‘read-out’
the activity of multiple VCO inputs by firing whenever they are in phase (Fig. 2b).
Importantly, it is the phase difference between VCO and baseline oscillations that
encodes location, and the baseline oscillation can therefore take any frequency value
and need not be constant over time (Burgess 2008; Blair et al. 2014; Orchard 2015).

What is the source of these VCO inputs to grid cells? Early implementations of
OI grid cell models suggested that spontaneous independent intrinsic oscillations
in dendritic subunits, driven by animal velocity, may represent VCOs (‘intrinsic

�
Fig. 2 (continued) (b) Velocity-controlled oscillators (VCOs) with different preferred firing
directions ∅i encode periodic displacement along that direction in their firing phase. Combining
input from two or more VCOs with preferred firing directions that differ by multiples of 60◦ can
then account for the periodic firing fields exhibited by grid cells, which fire when their VCO inputs
are in phase. (Adapted from Bush and Burgess 2014)
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VCOs’; Burgess et al. 2007). This idea was inspired by the finding that mECII
stellate cells can produce spontaneous somatic membrane potential oscillations in
the theta frequency range (theta MPOs) when depolarised close to spike threshold
(Alonso and Llinas 1989). Moreover, the frequency of these MPOs, along with
several intrinsic membrane properties, shows a dorsal-ventral gradient (Giocomo
et al. 2007; Garden et al. 2008) that mirrors the parallel anatomical gradient in
grid spacing (Hafting et al. 2005). However, as biophysical modelling has revealed
that dendritic intrinsic MPOs will rapidly phase lock (Remme et al. 2010), more
recent OI model implementations assume that VCOs are represented by neurons
projecting to grid cells that display velocity-dependent theta-modulated firing
(‘external VCOs’; Burgess 2008; Welday et al. 2011; Schmidt-Hieber and Häusser
2013; Bush and Burgess 2014).

How can we predict membrane potential Vm and spike rate from an OI model of
grid cell firing? The simplest way is to analytically compute Vm for an OI model
neuron that receives input from n VCOs with preferred firing directions that differ
by multiples of 60◦, each oscillating at frequency fVCO, i (see Equation 1) according
to Equation 2.

Vm(t) =
n∏

i=1

[
cos (2πfbaset) + cos

(
2πfVCO,i (t)t

) + ϕi

]
+

Equation 2 Membrane potential of a grid cell simulated using the OI model. The
membrane potential Vm of the simulated grid cell at time step t is dictated by the
baseline frequency fbase, VCO burst firing frequency fVCO,i (see Equation 1) and
spatial phase offset of the ith VCO ϕi, with [x]+ = max{0, x} (Burgess et al. 2007;
Burgess 2008).

Figure 3a shows an example of the membrane potential Vm of a simulated grid
cell in a 2D environment generated by two VCO inputs with preferred directions
∅VCO, 1 = 0

◦
and ∅VCO, 2 = 60

◦
. Although two VCO inputs and a baseline

oscillation are sufficient to produce a hexagonal grid, more circular firing fields that
better approximate experimental recordings can be generated by six VCO inputs
with preferred firing directions that differ by multiples of 60◦ (Burgess et al. 2007).
This configuration is also necessary to produce omnidirectional phase precession
in 2D, if the firing rate of VCOs is directionally tuned such that VCOs only fire
spikes when movement velocity in their preferred direction is positive – i.e. when
the running direction does not exceed ∅VCO, i ± 90

◦
(Burgess 2008; Climer et al.

2013).
To obtain a more biophysically realistic estimate of grid cell activity, integrate-

and-fire neurons (Welday et al. 2011; Bush and Burgess 2014) or detailed compart-
mental modelling (Schmidt-Hieber and Häusser 2013) have been employed. These
implementations typically convert fVCO, i, which is continuous in time, into discrete
spike trains driving synaptic inputs to a model neuron. For example, discrete Poisson
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Fig. 3 Implementations of the oscillatory interference model. (a) In the simple implementation,
following Equation 2, the membrane voltage Vm of a simulated grid cell is generated by 2 VCO
inputs with preferred directions of ∅VCO, 1 = 0

◦
and ∅VCO, 2 = 60

◦
. (b) In a more detailed

implementation, Poissonian VCO spike trains, following Equation 3, are used as input to six
excitatory synapses (red circles) located on the distal dendrites of a compartmental stellate cell
model, while the baseline oscillation takes the form of an inhibitory conductance ginh applied
directly to the soma (blue circle). In both cases, the results shown here were generated by 90 linear
runs with s = 0.2 ms−1 from the bottom left corner to the opposing boundaries of a 2 m sided square
arena at angles spaced by 1◦. For further details, see Schmidt-Hieber and Häusser (2013); code
is available on ModelDB (accession number 150239). (c) Simulations demonstrate a discrepancy
between the predictions of the OI model and whole-cell recordings of grid cell membrane potential
in behaving animals (Schmidt-Hieber and Häusser 2013; Domnisoru et al. 2013). The OI model
predicts no change in the average membrane voltage of a grid cell (middle panel) as the firing
field is traversed (top panel) but does predict an increase in the amplitude of theta band membrane
potential oscillations (MPOθ ) as VCO inputs become synchronised in the centre of the firing field
(bottom panel). Conversely, experimental recordings indicate a sustained ‘ramp’ depolarisation that
mirrors the change in firing rate within the grid field, but no change in the amplitude of theta band
MPOs. (d) Simulations demonstrate that the predictions of the OI model are consistent with the
properties of phase precession described by whole-cell recordings of grid cell membrane potential
in behaving animals (Schmidt-Hieber and Häusser 2013; Domnisoru et al. 2013). The phases of
action potentials (APs) with respect to LFP theta (left), theta band MPOs with respect to LFP theta
(middle) and action potentials with respect to theta band MPOs (right) are plotted as a function
of normalised position within firing fields of stellate cells recorded intracellularly in vivo. Action
potentials show phase precession with respect to the LFP but are phase locked with MPOs. (e) The
compartmental model correctly predicts the experimental observations. (Panels d–e adapted from
Schmidt-Hieber and Häusser 2013)
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spike trains can be generated by computing the firing probability pVCO, i for VCOi

according to Equation 3, where the time step �t is chosen so that p � 1. Predictions
for the membrane voltage Vm and spike rate from a detailed compartmental model
are shown in Fig. 3b (adapted from Schmidt-Hieber and Häusser 2013). While
an isolated single-cell OI model fails to reproduce the experimentally recorded
membrane potential ramps during firing field crossings (Fig. 3c), it can account
for the observed phase precession phenotype, with both action potentials and theta
membrane potential oscillations showing phase precession with reference to LFP
theta (Fig. 3d, e).

pVCO,i (t, t + �t) = rVCO
[
cos

(
2πfVCO,i (t)t + ϕVCO,i

) + 1
]
�t

Equation 3 Simulated VCO spike train in the OI model of grid cell firing. The
probability of an input spike in time step t is dictated by VCO mean firing frequency
rVCO, burst firing frequency fVCO,i (see Equation 1), the spatial phase of that VCO
input ϕVCO, i and length of the time step �t. Firing probability is converted to input
spikes by drawing a random number r from the interval [0, 1] for each time step. A
spike is produced if r ≤ p.

Critique of the Oscillatory Interference Model

The OI model accounts for both the rate and temporal firing patterns of grid
cells – that is, it generates both hexagonally arranged firing fields and phase
precession. In accordance with the OI model, grid cell burst firing frequency has
been shown to increase with running speed (Jeewajee et al. 2008) and decrease
in novel environments, when grid scale expands (Barry et al. 2012a; Wells et al.
2013). Moreover, cells with VCO-like properties have been identified in and around
the entorhinal cortex (Welday et al. 2011); gridness scores correlate with spike train
theta rhythmicity (Boccara et al. 2010); and grid cell firing patterns are impaired
when theta power is reduced by inactivation of the medial septum (Brandon et al.
2011; Koenig et al. 2011) or when the influence of running speed on theta frequency
is abolished by passive transport of the animal (Winter et al. 2015).

The OI model has recently been challenged by the finding that grid cell
firing patterns in crawling bats exist in the absence of a continuous theta rhythm
(Yartsev et al. 2011, but see Barry et al. 2012b). Similarly, continuous low-
frequency oscillations are rarely observed in the human hippocampal formation
during virtual navigation tasks (Ekstrom et al. 2005; Jacobs et al. 2013; Watrous
et al. 2013). However, it is important to note that the OI model functions equally
well with a baseline oscillation of any frequency, which need not be constant
over time, as integrated displacement is encoded in the phase difference between
baseline and VCO oscillations – irrespective of the absolute phase or frequency of
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either oscillation (Burgess 2008; Blair et al. 2014; Orchard 2015). Indeed, several
computational models of grid cells effectively make use of oscillatory interference
with a baseline frequency of 0 Hz, in which case each VCO is equivalent to a non-
oscillating ‘stripe’ or ‘band’ cell (Mhatre et al. 2012; Horiuchi and Moss 2015).
Moreover, recent recordings from bats have revealed that, despite a lack of clear LFP
rhythmicity, neurons still exhibit phase precession with respect to broadband low-
frequency oscillations in the non-rhythmic LFP (Eliav et al. 2015). These data can
be accounted for by an OI model with a baseline oscillation that varies dynamically
over a wide range. Hence, the absence of any clear, sustained oscillatory activity in
the LFP or grid cell spike train is not sufficient to disprove the OI model.

The OI model has also been criticised as being particularly susceptible to noise in
the burst firing frequency of VCO inputs (Welinder et al. 2008). However, the phase
precession of grid and place cell firing demonstrates that oscillations with the precise
timing required to generate grid cell firing patterns by oscillatory interference do
exist in the rodent hippocampal formation (O’Keefe and Recce 1993; Hafting
et al. 2008). It is well known that grid firing patterns – like any hypothetical
path integration system – will rapidly accrue error over time in the absence of
sensory inputs (Hafting et al. 2005; Evans et al. 2016). Theoretical studies have
demonstrated that input from place or boundary cells is sufficient to stabilise grid
firing patterns in the face of phase noise (Bush and Burgess 2014). Similarly, the OI
model has been criticised for relying on the preferred direction of VCO inputs to a
grid cell being separated by multiples of 60◦, but theoretical studies have shown that
such inputs may be selected by a Hebbian learning mechanism during development
as they most frequently co-occur in space (Burgess et al. 2007; Mhatre et al. 2012)
and therefore offer optimal noise reduction (Burgess and Burgess 2014).

The OI model cannot, however, account for the relative stability of grid cell
firing patterns within a module (Yoon et al. 2013). Oscillatory interference is a
single-cell model and makes no comment on potential interactions between grid
cells, while experimental evidence demonstrates that grid cell firing patterns from
the same functional module are tightly coupled, responding coherently to changes
in a familiar environment and maintaining their relative spatial phase between
environments (Hafting et al. 2005; Barry et al. 2007; Fyhn et al. 2007; Stensola
et al. 2012; Yoon et al. 2013). Organising VCO inputs into ring attractor circuits
provides some stability between firing patterns of different grid cells (Blair et al.
2008) but overlooks the functional consequences of the known synaptic interactions
between grid cells. Similarly, the observations of an in-field ‘ramp’ depolarisation
in grid cell subthreshold membrane potentials, as well as the lack of increase in
in-field theta amplitude, are not consistent with an OI model (Fig. 3c; Domnisoru
et al. 2013; Schmidt-Hieber and Häusser 2013). Hence, some modification of the
model or additional mechanism is required to account for both interactions between
grid cells within each functional module, and the subthreshold membrane potential
dynamics of grid cells recorded in vivo.
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Fig. 4 The continuous attractor network model. (a) A sheet of topographically arranged neurons
(left panel) are connected by disynaptic inhibitory projections with a circular surround profile
(right panel), such that neurons which are proximate on the neural sheet inhibit each other. In the
multiple bump CAN model, uniform excitatory input to such a network generates a grid firing
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Continuous Attractor Network Models

Continuous attractor network (CAN) models were originally proposed to account
for the properties of head direction (Zhang 1996) and place cells (Samsonovich
and McNaughton 1997; Conklin and Eliasmith 2005). This class of model proposes
that spatially modulated firing patterns can be accounted for by local, recurrent
interactions among cells (Fuhs and Touretzky 2006; McNaughton et al. 2006;
Guanella et al. 2007; Burak and Fiete 2009). The requisite recurrent connectivity
is characterised by a circular, centre-surround synaptic weight profile on a topo-
graphically arranged sheet of neurons (Fig. 4a). In the case of grid cells, this implies
that the strength of synaptic connections between cells decreases as a function
of the distance between their firing fields (i.e. the difference in spatial phase).
This establishes cooperation between grid cells with similar spatial phase, and
competition between grid cells with different spatial phases (Fuhs and Touretzky
2006). Note that grid cells need not be topographically arranged in the actual brain,
this formalism is introduced purely to aid visualisation (but see Heys et al. 2014;
Naumann et al. 2015).

As direct recurrent excitatory connections between grid cell candidate neurons
in mECII are sparse, recurrent connectivity in most CAN model implementations
is mediated by disynaptic inhibition from interneurons, which have been shown to
densely innervate mECII principal neurons (Dhillon and Jones 2000; Couey et al.
2013; Pastoll et al. 2013; Fuchs et al. 2016). Uniform excitatory input to such a
network will generate one or more stable activity packets or ‘bumps’, and self-
motion information can then be used to translate the position of this activity packet
across the neural sheet in accordance with the animal’s movement in the real world.

�
Fig. 4 (continued) pattern, as activity bump(s) form at the triangular array of inhibitory minima
produced by close packing of the circular connectivity profile. In the single-bump CAN model,
not illustrated here, a single activity bump forms at an arbitrary location on the neural sheet.
Note that neurons need not be topographically arranged in the actual brain. (b) The location of
the(se) activity bump(s) can be shifted by asymmetric interactions between grid cells. For example,
if conjunctive grid cells, whose firing rate is modulated by movement direction, have recurrent
inhibitory connections that are skewed along their preferred firing direction, then their activity
will create inhibitory minima just ahead of the activity bump(s) in that direction on the neural
sheet. The activity bump(s) will subsequently move across the neural sheet, tracking the animal’s
movement in the real world. A mixture of conjunctive grid cells with different preferred firing
directions can therefore both establish and shift the grid firing pattern in any direction (following
Burak and Fiete 2009). (c) To account for smooth changes in grid cell firing over large distances,
a periodic continuous attractor network must adopt a twisted torus topology, such that movement
along orientations that differ by multiples of 60◦ will return the activity bump to its original location
on the sheet of cells once some integer number of grid scales have been travelled. Hence, if a grid
cell is active at some location in the real world (red circle, left panel), then it will also be active at
a fixed distance equal to the grid scale along any grid axis. Similarly, if an activity bump is located
over some grid cell on a neural sheet that exhibits a twisted torus topology (red sphere, right panel),
then movement of a fixed distance equal to the grid scale along any grid axis will return the activity
bump to its original location (adapted from Bush et al. 2015)
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The majority of CAN models suggest that the activity bump is shifted by asymmetric
interactions between grid cells in the neural sheet. This can be achieved by rate-
coded input from conjunctive grid × movement direction cells, which have also
been identified in the deeper layers of mEC (Sargolini et al. 2006). If the recurrent
inhibitory input from these conjunctive cells to other cells in the network is shifted
along the axis of their preferred firing direction, then their firing will shift the activity
bump in the movement direction (Fig. 4b).

In the case of a single activity bump, the network must exhibit a twisted torus
topology, such that movement of a set distance in a direction corresponding to
any multiple of 60◦ across the neural sheet will return it to its original position,
thus accounting for the hexagonal symmetry of the grid firing pattern in the real
world (Fig. 4c; Guanella et al. 2007; Pastoll et al. 2013). In the case of multiple
bumps, the circular weight profile dictates that the location of activity bumps on the
neural sheet exhibit sixfold symmetry through circular close packing. To ensure
that activity bumps smoothly appear and disappear at the edges of the neural
sheet, either periodic boundary conditions are imposed (which places constraints
on the dimensions of the neural sheet), or alternatively the synaptic weights (Fuhs
and Touretzky 2006) or feedforward synaptic inputs (Burak and Fiete 2009) are
smoothly modulated to zero towards the edges of the neural sheet. Importantly,
population activity is constrained by the synaptic connections between neurons
such that grid cell firing patterns can only ever encode a single location at any
time. Hence, grid cells in the continuous attractor network effectively perform path
integration, tracking the animal’s location by integrating self-motion signals.

An influential rate-based implementation of a multiple bump CAN model was
proposed by Burak and Fiete (2009). In this model, each neuron i is arranged on a
rectangular sheet and assigned one of four preferred directions (∅i=0◦, 90◦, 180◦,
or 270◦). Typical sizes of the neuronal sheet range from 40 × 40 to 256 × 256
neurons – larger networks provide higher integration accuracy (Burak and Fiete
2009). The neuronal dynamics of each simulated grid cell are described by Equation
4, where ri is the firing rate of neuron i, τ is the integration time constant, Ri are
recurrent inputs and Bi are feedforward inputs. Recurrent inputs Ri are equal to
the sum of all presynaptic firing rates rj multiplied by the corresponding recurrent
synaptic weights wij.

τ
dri

dt
+ ri = [Ri + Bi]+

Ri =
∑

j

wij rj

Equation 4 Firing rate dynamics of a grid cell simulated using the CAN model.
The firing rate ri of neuron i is dictated by the time constant τ , recurrent input Ri

and feedforward inputs Bi, with [x]+ = max{0, x}. Recurrent inputs are equal to
the sum of all presynaptic firing rates rj multiplied by the corresponding recurrent
synaptic weights wij (Burak and Fiete 2009).
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The strength of recurrent inputs wij depends on the distance between the 2D
positions xi and xj of pre- and postsynaptic neurons j and i on the neuronal sheet and
is shifted by a vector l̂uφj

, where ûφj
is a unit vector in the preferred direction ∅j

and l defines the amplitude of the shift (typically, a small number, e.g. two neurons;
Equation 5). The dependence of this shift on ∅j, the preferred direction of the
presynaptic neuron, indicates that it is applied to the outgoing weights. The centre-
surround synaptic weight matrix W0 classically takes the shape of a ‘Mexican hat’,
with excitation dominating the centre and inhibition forming a brim in the periphery
(Fuhs and Touretzky 2006). This can be generated as a difference of Gaussians
(Equation 5), where a defines the amplitude and γ the width of the excitatory centre
and κ determines the width of the inhibitory brim.

In the original implementation, the recurrent weight matrix was purely inhibitory
(using a = 1). Interestingly, this implementation was suggested before detailed
analysis of the functional connectivity in mECII revealed that direct excitatory
recurrent connections between principal cells are sparse or lacking (Couey et al.
2013; Pastoll et al. 2013; Fuchs et al. 2016). Following more detailed analysis of
the connectivity between mECII stellate cells, variations of the centre-surround
connectivity matrix with steep edges that resemble a frying pan or ‘Lincoln Hat’
have also been used in CAN models (as illustrated in Fig. 4; Couey et al. 2013).

wij = f
(
xi − xj − l̂uφj

)

f (x) = ae−γ |x|2 − e−κ|x|2

Equation 5 Recurrent synaptic weight profile in the CAN model of grid cell
firing. The strength of recurrent connectivity wij between presynaptic neuron j and
postsynaptic neuron i is a function of the distance between their 2D locations xi

and xj on the neural sheet and is skewed along the preferred direction ∅j of the
presynaptic neuron according to the product of a constant l and unit vector in that
direction ûφj

. In canonical implementations of the CAN model, synaptic weights
follow a ‘Mexican hat’ profile, consisting of excitatory projections to proximate
neurons and inhibitory projections to more distant neurons on the neuronal sheet.
This can be generated by a difference of Gaussian distributions, where a defines the
amplitude of synaptic weights and γ and κ control the width of the excitatory and
inhibitory components, respectively.

Finally, feedforward inputs in the CAN model Bi are modulated by the animal’s
running direction, as defined by Equation 6, where v is the animal’s velocity and
α determines the amplitude of the directional modulation of feedforward input.
Hence, coupling of network activity to the animal’s trajectory is realised through
the combination of two mechanisms: a neuron receives more feedforward input
if the animal is running in its preferred direction (Equation 6); and the outgoing
weights of each neuron are shifted by a small number of neurons along that preferred
direction (Equation 5). As a consequence, if the animal is running in a certain
direction, neurons that prefer this direction (or components of this direction) will be
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activated by their feedforward input and can then impose a shift in network activity
towards their preferred direction. In contrast, neurons with preferred directions that
point away from the running direction will receive less feedforward input, and their
outgoing weights, which are shifted in the opposite direction, will be less effective.
Importantly, attractor dynamics ensure that the firing rate of these cells may not be
significantly modulated by running direction (Bonnevie et al. 2013), such that they
would not be classed as conjunctive cells if recorded experimentally (Sargolini et al.
2006).

Bi = 1 + αûφi
· v

Equation 6 Directionally modulated external input in the CAN model of grid cell
firing. In order to shift the activity bump in concert with the animal’s movement in
the real world, external input to a simulated grid cell is modulated by the velocity
of movement v multiplied by a unit vector û in the preferred direction ∅j of that
grid cell and a positive constant α. The outgoing synaptic weight profile of each
grid cell is also skewed along the preferred firing direction (Equation 5), creating
an inhibitory minimum adjacent to the activity bump in that direction on the neural
sheet.

The Burak and Fiete (2009) multiple bump CAN model shown in Fig. 5a is
particularly efficient as it can be implemented as a convolutional neural network
of rate-based or simple spiking neurons where, instead of computing the input
to each neuron separately, network activity is convolved with the synaptic weight
matrix in a single step. A more biophysically realistic single-bump implementation
using separate layers of excitatory and inhibitory integrate-and-fire neurons has also
been shown to produce theta-nested gamma oscillations in model grid cells (Pastoll
et al. 2013). CANs consisting of detailed compartmental neurons have not yet been
implemented, as simulating several minutes of grid cell firing in a network of >1000
model neurons is computationally prohibitive at this time. A simplified approach
can be taken, however, where synaptic input rates are first derived from one of the
rate-based model neurons and then fed into a single compartmental model neuron
in a separate simulation (Schmidt-Hieber and Häusser 2013; Fig. 5b). For example,
probabilities of firing for excitatory and inhibitory inputs can be derived from one
of the rate-based model neurons (according to Pexc(t, t + �t) = f (Bi)�t and Pinh(t,
t + �t) = f (−Ri)�t, respectively) and used to generate Poisson input spike trains
driving excitatory and inhibitory synaptic conductances in a compartmental model,
similar to the approach described in Equation 3.

Critique of the Continuous Attractor Network Model

The CAN model can readily account for the modular organisation of grid cells
(Barry et al. 2007; Stensola et al. 2012), and strong functional interactions between
grid cells from within the same module in both 1D and 2D environments (Yoon
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Fig. 5 Implementations of the continuous attractor network model. (a) In the simple implemen-
tation, 1282 rate-based neurons are arranged on a neural sheet with periodic boundary conditions
and Mexican hat connectivity as described by Equation 5. The left panel shows activity of each
neuron in network space at a given moment in time. Note the periodic activity bumps that form
spontaneously in the network. The right panel shows a colour-coded spatial map of the activity of
an individual neuron averaged across time during simulated navigation within a square-shaped
environment. (b) In a more detailed implementation, the probabilities of excitatory (red) and
inhibitory (blue) input spikes in each time step are derived from the simple rate-based model
in (A) and used to generate input to a compartmental stellate cell model. For further details see
Schmidt-Hieber and Häusser (2013); code is available on ModelDB (accession number 150239).
(c) Simulations demonstrate that the predictions of the CAN model closely match whole-cell
recordings of grid cell membrane potential in behaving animals (Schmidt-Hieber and Häusser
2013; Domnisoru et al. 2013). The CAN model predicts a ramped depolarisation of the grid cell
membrane voltage (Vm; middle panel) as the firing field is traversed (top panel), but no change
in the amplitude of theta band membrane potential oscillations (MPOθ ) across the firing field.
However, the CAN model does not account for the theta modulation or phase precession of grid
cell firing (data not shown). Panels B-C adapted from Schmidt-Hieber and Häusser 2013

et al. 2013, 2016). For example, the coherent shift in firing field orientation (Hafting
et al. 2005; Fyhn et al. 2007) and rescaling (Barry et al. 2007, 2012a; Stensola et al.
2012) of simultaneously recorded grid cells from the same module in 2D suggest
that these are functionally coupled. In addition, instabilities in grid cell activity over
time apparently correspond to drifts in a stable grid firing pattern relative to the
environment, as opposed to corruption of the grid firing pattern itself, consistent
with a CAN model (Hardcastle et al. 2015; Chen et al. 2016; Perez-Escobar et al.,
2016).

The CAN model predicts the observed ramp depolarisation of grid cells in their
firing field (Fig. 5c; Domnisoru et al. 2013; Schmidt-Hieber and Häusser 2013; Bush
and Burgess 2014). Moreover, it has been demonstrated that stellate cells in mEC
exhibit extensive recurrent inhibitory circuitry (Dhillon and Jones 2000; Couey
et al. 2013; Fuchs et al. 2016) that is, in principle, sufficient to mediate continuous
attractor dynamics (Burak and Fiete 2009; Pastoll et al. 2013; Shipston-Sharman
et al. 2016). In addition, inhibitory inputs to stellate cells in mEC appear around the
same time point during development as stable, adult-like grid cell firing patterns
(Langston et al. 2010; Wills et al. 2010; Couey et al. 2013). Recent theoretical
studies have demonstrated how this recurrent synaptic connectivity might be learned
in an unsupervised manner (Widlowski and Fiete 2014), although it is also possible
that some other mechanism is responsible for the initial generation of grid firing
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patterns (McNaughton et al. 2006; Burgess et al. 2007; Kropff and Treves 2008;
Bush and Burgess 2014; Dordek et al. 2016). Finally, cells with conjunctive grid ×
head direction responses, which are required to shift the activity bump in traditional
CAN models, have been identified in the deeper layers of mEC (McNaughton et al.
2006; Sargolini et al. 2006; Navratilova et al. 2012). Similarly, the directionally
modulated firing patterns exhibited by grid cells when excitatory drive to mEC is
reduced by inactivation of the hippocampus are consistent with later CAN models
(Bonnevie et al. 2013).

Implementations of CAN models with inhibitory disynaptic recurrent connec-
tivity predict that silencing inhibitory interneurons in the mEC should eliminate
grid cell firing patterns and that the same interneurons should exhibit spatially
modulated firing patterns, as they are driven by input from grid cells (Pastoll et al.
2013; Bush and Burgess 2014). To date, it has been demonstrated that the firing
patterns of parvalbumin-positive interneurons in mEC, which have strong, recurrent
connections with grid cells, tend to show low spatial selectivity and gridness scores
and that these interneurons receive input from grid cells with a wide range of
spatial phases (Buetfering et al. 2014). This raises the question of whether they
can support continuous attractor dynamics in the grid cell population. Nonetheless,
several other classes of interneurons in the local circuits of mEC could be used
to support continuous attractor dynamics, and further experiments are required to
ascertain whether those neurons exhibit spatially modulated firing patterns or are
necessary to support grid cell activity. Moreover, recent theoretical studies have
demonstrated that adding spatially uncorrelated noise input to inhibitory neurons in
a spiking CAN model (Pastoll et al. 2013) reduces spatial selectivity and impairs
grid firing patterns in the interneuron population without compromising those in
excitatory cells (Solanka et al. 2015).

Despite this wealth of evidence in support of attractor dynamics in grid cell firing
patterns, very few CAN models of grid cell firing can account for theta modulation
or phase precession. Those that do rely on subthreshold currents both to maintain
the position of the activity bump between theta cycles (Pastoll et al. 2013) and to
account for the temporal code of grid cell firing (Navratilova et al. 2012). This
solution becomes problematic during periods when the animal is stationary, and
grid cells are temporarily inactive or represent distant locations (Ólafsdóttir et al.
2016). As CAN models encode path integration information in the location of the
activity bump, some mechanism must reinstantiate that activity bump in the same
location within the network when the animal starts to move again and grid cell firing
resumes. In familiar environments, theoretical studies have demonstrated that place
or boundary cell input can eliminate drift of the attractor bump over time (Fuhs and
Touretzky 2006; Guanella et al. 2007; Pastoll et al. 2013; Hardcastle et al. 2015).
In novel environments, however, where the associations between grid, place and
boundary cell responses have not been learned, there is no obvious solution to this
problem.

It is also important to consider that grid firing patterns and phase precession
may be functionally independent phenomena. For example, grid cells in layer III of
the rodent mEC exhibit a triangular array of firing fields without phase precession,
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spike times instead being phase locked to the trough of the ongoing theta oscillation
(Hafting et al. 2008; Climer et al. 2013; Jeewajee et al. 2014). This raises the
possibility that models of grid cell firing need not account for phase precession.
However, these data also indicate that the firing of layer III grid cells follows that
of layer II grid cells within each theta cycle, suggesting that they may inherit grid
firing patterns from generative mechanisms in the more superficial layer (Hafting
et al. 2008). In addition, there are – to date – no experimental manipulations that
can eliminate grid cell phase precession without also eliminating grid firing patterns,
indicating that the two phenomena may be co-dependent.

A Hybrid Grid Cell Model

The simulations and discussion above illustrate weaknesses in both the OI and CAN
models – primarily, that the OI model fails to account for functional interactions
between grid cell firing patterns or the subthreshold ramp depolarisation of grid cells
in their firing fields and the CAN model fails to account for the phase precession
of grid cell firing in the absence of an additional mechanism. In light of this, it
is important to note that these two classes of grid cell model are not mutually
exclusive – they each account for different properties of grid firing patterns using
different mechanisms and can therefore be reconciled within a single ‘hybrid’ model
(Burgess et al. 2007; Zilli 2012; Schmidt-Hieber and Häusser 2013; Bush and
Burgess 2014). We now describe such a model, which makes use of continuous
attractor dynamics to ensure relative stability among the firing patterns of grid cells
from within the same module and produce subthreshold ramp depolarisation within
firing fields, while oscillatory interference is used to shift the activity bump, generate
phase precession and store path integration information in VCO phases between
theta cycles and when the grid cell network is inactive.

In this implementation, grid cells are modelled as leaky integrate-and-fire

neurons with a membrane time constant of τm = cm
/

gm
(Equation 7). Simulated

neurons integrate current input I(t) until the membrane potential Vm reaches a
threshold Vt, at which point a spike is fired and the membrane potential is reset
to Vreset.

dVm

dt
= 1

cm
(I (t) − gm (Vm − Vl))

Equation 7 The leaky integrate-and-fire neuron model. The membrane potential
Vm of a simulated neuron is dependent on the membrane capacitance cm, membrane
conductance gm, applied current I and leak reversal potential Vl.

Grid cells receive synaptic input with fixed strength wVCO from six populations
of inhibitory VCOs that are arranged in ring attractor circuits (Blair et al. 2008;
Welday et al. 2011; Bush and Burgess 2014). VCOs in each ring attractor circuit
share a single preferred firing direction ∅VCO but differ in their initial phase ϕVCO.
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To generate hexagonal grid-like firing patterns, the preferred firing directions of each
VCO ring attractor circuit differ by multiples of 60◦; and to produce evenly spaced
grid fields, the initial phase of VCOs within each ring attractor circuit are uniformly
distributed among Noffset values. To produce more realistic membrane dynamics in
the grid cell population by increasing the number of inputs, NVcopy copies of each
VCO input (i.e. combination of preferred firing direction and phase) are used.

The burst firing frequency of VCO inputs fVCO increases linearly above a
constant baseline oscillation frequency of fbase=8 Hz according to movement speed
in the preferred direction (as described by Equation 1). Each VCO input produces
an inhomogeneous, inhibitory Poissonian spike train only when movement speed in
the preferred direction vVCO is positive, with the probability p(n, t) of firing n spikes
in time step t described by Equation 8.

p (n, t) = λn
VCO(t)e−λVCO(t)

n! H [vVCO]

λVCO(t) = rVCO (cos (2πfVCO(t)t + ϕVCO) + 1)�t

Equation 8 Simulated VCO input spike train in the hybrid model of grid cell firing.
The probability of a VCO input firing n spikes in time step t is dictated by the rate
function λVCO, where H[x] = 0 for x < 0 and H[x] = 1 for x ≥ 0. The rate function
is, in turn, dictated by the mean VCO firing rate rVCO, burst firing frequency fVCO
(see Equation 1), spatial phase offset of that VCO input ϕVCO and length of the time
step �t.

Each grid cell in the hybrid network model is recurrently connected to a
population of inhibitory interneurons that are also modelled as integrate-and-fire
neurons according to Equation 7. All NGcopy grid cells that share a spatial phase
send excitatory synapses with strength wGC to a unique subpopulation of NIcopy
interneurons, which subsequently exhibit grid firing patterns with the same spatial
phase. This interneuron subpopulation sends reciprocal projections with strength
wINH to the entire grid cell population with synaptic weights that are a cosine-
tuned function of their difference in spatial phase to create a ‘twisted torus’ topology
(Fig. 4c). Finally, to elicit firing, grid cells receive a tonic excitatory current Iexc(t)
that is drawn randomly from a Gaussian distribution with mean Iexc and standard
deviation σ exc at each time step.

Simulations of the hybrid model demonstrate that it can produce periodic,
grid-like firing patterns in one- or two-dimensional environments (Fig. 6). In
addition, theta phase precession of firing is observed as each grid field is traversed
(Fig. 6b(v)). Moreover, the combination of rhythmic VCO input and recurrent
inhibition can account for the experimentally observed pattern of subthreshold
membrane potential dynamics (Domnisoru et al. 2013; Schmidt-Hieber and Häusser
2013). First, recurrent inhibition hyperpolarises grid cells outside of their fir-
ing fields, generating a slow, ramped depolarisation on entry to the firing field
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Fig. 6 A hybrid oscillatory interference (OI) and continuous attractor network (CAN) model
(adapted from Bush and Burgess 2014). (a) Simulations of the hybrid OI/CAN model in a 1m2

2D arena. VCO inputs determine the location of the activity bump and integrate movement over
time, thereby shifting its location according to self-motion. Synaptic interactions between grid
cells couple their firing patterns, providing relative stability. (i) Path taken by the animal (grey)
and the location of spikes fired by a typical grid cell (red), (ii) smoothed firing rate map and (iii)
smoothed spatial autocorrelation. (b) Simulations of the hybrid OI/CAN model on a 1D track. (i)
Mean grid cell firing rate, (ii) membrane potential of a typical grid cell, (iii) mean low-frequency
(<3 Hz) ‘ramp’ amplitude in the membrane potential, (iv) mean 5–11 Hz theta amplitude in the
membrane potential and (v) phase of firing relative to LFP theta. In- (light grey background) and
out-of-field (dark grey background) regions are used to compute mean ramp depolarisation and
theta band MPO amplitude inside (red dashed line) and outside (blue dashed line) grid firing fields.
The hybrid model predicts a ramped depolarisation of the grid cell membrane voltage as the firing
field is traversed, and no change in the amplitude of membrane potential oscillations (MPO) across
the firing field, in line with experimental data (Domnisoru and Tank 2013; Schmidt-Hieber and
Häusser 2013)
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(Fig. 6biii). Second, recurrent inhibition is theta modulated – as it is driven by active
grid cells with theta-modulated firing – and so there is no significant difference
in membrane potential theta amplitude in and out of the grid firing field, where
subthreshold theta oscillations are driven by VCO inputs and recurrent inhibition,
respectively (Fig. 6b(iv); see Bush and Burgess 2014, for more details).

Critique of the Hybrid Model

The hybrid model can account for a wide range of experimental data, including
both the rate and temporal firing pattern of grid cells, the relative stability of grid
cell firing patterns from the same module, and the subthreshold ramp depolarisation
of grid cells inside the firing field. However, the hybrid model also exhibits
some weaknesses. Firstly, it offers no explanation for the function of conjunctive
cells in the deeper layers of mEC, or for the directional modulation of grid cell
firing patterns when excitatory drive from the hippocampus is reduced, as the
population activity bump is shifted by input from VCOs. It is possible that redundant
mechanisms exist for path integration and both conjunctive cells or grid cells with
directionally modulated input and VCOs are capable of updating grid cell firing
during movement. Intriguingly, the majority of conjunctive cells do not show phase
precession, suggesting that their firing patterns may be accounted for by a different
mechanism (Climer et al. 2013). In its current form, then, the hybrid model predicts
that silencing conjunctive cells should have no effect on grid firing patterns but
that silencing VCO inputs should prevent the grid firing pattern from being updated
during movement.

Secondly, the hybrid model – like all other CAN models – predicts that
interneurons in circuits local to grid cell populations should exhibit spatially
modulated firing patterns and that silencing those interneurons should impair grid
firing patterns. As described above, it has been demonstrated that parvalbumin-
positive inhibitory cells in mEC – which are strongly, recurrently connected to
grid cells – show low spatial selectivity and low gridness scores and receive input
from grid cells with a wide range of spatial phases (Buetfering et al. 2014). This
suggests that this class of interneurons may not be able to support continuous
attractor dynamics, although several other classes of interneurons exist in mEC and
further experiments are required to ascertain their firing patterns and relationship to
grid cell activity (Solanka et al. 2015). In addition, because grid cells in the hybrid
model – unlike the majority of previous CAN models – exhibit phase precession, the
interneurons that support continuous attractor dynamics should also exhibit phase
precession (Bush and Burgess 2014). Whether interneurons in mEC exhibit this
temporal code has yet to be established.

Finally, the hybrid model presented here also fails to account for sensory inputs
to the grid cell network, which are likely to be important for reducing accumulated
error during path integration (Fuhs and Touretzky 2006; Pastoll et al. 2013; Bush and
Burgess 2014; Evans et al. 2016). Such inputs are straightforward to incorporate
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into the model, however, by allowing the unsupervised learning of excitatory
connections from place or boundary cells to grid cells. It is interesting to note
that this spatially modulated input might, in familiar environments, be sufficient
to produce a subthreshold ramp depolarisation in grid cells (Domnisoru et al. 2013;
Schmidt-Hieber and Häusser 2013) and correlations in spike-timing at very short
time lags between grid cells with similar spatial phases (Tocker et al. 2015).

The Future

Current experimental and theoretical data highlight several outstanding questions
that are critical to the development of the next generation of grid cell models.
First, both OI and CAN models assume that the primary function of grid cells is
path integration and thus that grid firing patterns should primarily be accounted
for by self-motion information. However, experimental evidence in support of this
key assumption is currently lacking. Second, the effect of optogenetically silencing
inhibitory interneurons in mEC on grid cell firing patterns should provide evidence
either for or against the assumption, made by CAN models, that grid firing patterns
are generated by recurrent inhibitory interactions between grid cells. Similarly, it
would be of great interest to ascertain whether grid cells in other species, and
in the rodent pre- and para-subiculum, exist within microcircuits of a similar
structure or whether it is possible that independent mechanisms for generating
grid firing patterns have evolved in disparate cortical and phylogenetic loci. Third,
any mechanism that accounts for the existence of grid cell firing patterns must
also provide some explanation for the sudden appearance of stable, adult-like grid
cell responses in the rodent mEC during development. Fourth, optogenetic and
juxtacellular recording techniques could shed light on the relationship between grid
firing patterns in reelin-positive stellate (or ‘ocean’) cells and calbindin-positive
pyramidal (or ‘island’) cells in mEC and how this relationship constrains the
mechanism that generates grid firing patterns in each of these cell types across
development.

Finally, most network-level models of grid cell firing assume that the individual
rate-based or integrate-and-fire model neurons have uniform integrative properties
and perform simple linear transformations of synaptic inputs into action potential
output (Equation 4). However, grid cell candidate neurons in mEC express a rich
repertoire of active nonlinear conductances, some of which are tuned to their
functional grid cell properties (reviewed in Pastoll et al. 2012; Schmidt-Hieber
and Häusser 2014; Schmidt-Hieber and Nolan 2017). Moreover, the functional
distribution of synaptic inputs on the dendritic tree of grid cells may strongly affect
how signals are integrated and transformed into action potential output. Imaging
and electrophysiological studies suggest an important function for active dendritic
conductances in the generation of place fields in CA1 (Lee et al. 2012; Bittner et al.
2015; Sheffield and Dombeck 2015). Similarly, active dendrites may improve the
robustness and precision of the rate and temporal codes of grid cells, suggesting an
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important role for nonlinear integration in the computation performed by grid cells
(Schmidt-Hieber et al. 2017).

It is important to note that current experimental data also presents several
challenges to all current models of grid cell firing patterns. First, distortions of the
grid pattern close to environmental boundaries (Krupic et al. 2015; Stensola et al.
2015) present an issue to any model that accounts for grid cell firing patterns purely
in terms of self-motion inputs, as it implies that an animal’s perception of its own
motion is perturbed by proximity to environmental boundaries. This issue might
be solved by appealing to environmental sensory inputs to grid cells, which are
likely to come from boundary cells (Evans et al. 2016; Hardcastle et al. 2015), but
the question of why such inputs would actively distort the grid firing pattern, rather
than simply reducing accumulated error, remain. It is possible that the observed grid
field distortion offers a functional advantage, but if so, this has yet to be identified.
Second, the stable differences in firing rate between different grid fields of a single
cell are not accounted for by any of the models described above, although these
differences may be important to encode contextual information and contribute to
place cell remapping (Rolls et al. 2006; Andrzejak and Bicanski 2007; but see Fyhn
et al. 2007). Finally, and most importantly, both OI and CAN models assume that
self-motion input is readily available to the grid cell network and used to update grid
firing patterns according to self-motion information. However, the overwhelming
majority of single-cell responses in and around mEC encode head direction, not
movement direction, even when those two signals differ significantly (Raudies et al.
2015). The importance of movement direction information is reinforced by the
demonstration that phase precession follows body movement – rather than head
direction – when rats travel backwards through place fields on a linear track (Cei
et al. 2014). The origin of the movement direction signal that is clearly required to
update grid cell firing patterns in this case, and during normal locomotion, has yet
to be identified.
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Resources

A list of freely available code for various grid cell simulations is given below.

Burak and Fiete (2009) CAN simulations: http://clm.utexas.edu/fietelab/code.htm
Compilation of various grid cell model implementations by Eric Zilli (Zilli 2012):

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144006
Pastoll et al. (2013) CAN simulations: https://senselab.med.yale.edu/ModelDB/

ShowModel.cshtml?model=150031

http://clm.utexas.edu/fietelab/code.htm
https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144006
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150031


Computational Models of Grid Cell Firing 609

Schmidt-Hieber and Häusser (2013) compartmental model: https://senselab.med.
yale.edu/modeldb/showModel.cshtml?model=150239

Solanka et al. (2015) CAN simulations: https://github.com/MattNolanLab/ei-
attractor

Matlab code for hybrid model simulations presented in this chapter: https://senselab.
med.yale.edu/ModelDB/ShowModel.cshtml?model=218085
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Modeling Synaptic Plasticity in
Hippocampus: A
Calcium-Based Approach

Michael Graupner and Nicolas Brunel

Abstract Multiple stimulation protocols using firing rate and spike-timing corre-
lations have been found to be effective in changing synaptic efficacy by inducing
long-term potentiation or depression. In many of those protocols, increases in
postsynaptic calcium concentration have been shown to play a crucial role. To which
extent the plasticity outcome can be explained by the dynamics of the postsynaptic
calcium alone remains unclear. Here, we discuss a minimal calcium-based model
of a synapse in which potentiation and depression mechanisms are triggered by
calcium. We illustrate that this model gives rise to a large diversity of spike timing-
dependent plasticity curves, most of which have been observed experimentally in
different systems. It accounts quantitatively for plasticity outcomes evoked by pro-
tocols involving patterns with variable spike timing and firing rate in hippocampus
and neocortex. Furthermore, we use the model to predict memory decay times and
plasticity in the presence of uncorrelated Poisson firing. The calcium model provides
a mechanistic understanding of how various stimulation protocols provoke specific
synaptic changes through the dynamics of calcium concentration and thresholds
implementing in simplified fashion protein signaling cascades, leading to long-term
potentiation and long-term depression.
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Overview

Motivation for Including Biophysical Processes in Synaptic
Plasticity Models

Activity-dependent, long-lasting changes in synaptic transmission efficacy
(i.e., synaptic plasticity) underlie the functional reorganization of neuronal circuits,
which in turn has been proposed as the biological substrate for learning and memory
(Hebb, 1949). Long-term synaptic modifications have long been postulated to occur
in response to the simultaneous activation of both pre- and postsynaptic neurons
(Hebb, 1949). The first experiments on plasticity showed that a long-lasting increase
in synaptic weight (long-term potentiation, LTP) could be induced by a repetitive
high-frequency stimulation of the synaptic inputs (Bliss and Lømo, 1973), while
a long-lasting decrease in synaptic weight (long-term depression, LTD) could
be induced by a repetitive low-frequency stimulation (Dudek and Bear, 1993).
More recent experiments provide evidence at the single-cell level that coincidence
between afferent input with postsynaptic spiking evokes long-term modifications.
In general, presynaptic input (onset of the excitatory postsynaptic potential – EPSP)
occurring with little time difference to the postsynaptic action potential results in
maximal synaptic modification, while no plasticity occurs if the temporal difference
between both is large. In the hippocampus (Levy and Steward, 1983; Gustafsson
et al., 1987; Magee and Johnston, 1997; Bi and Poo, 1998) an EPSP occurring
repeatedly prior to the backpropagating action potential (pre-post pairing) typically
evokes LTP, and the anti-causal order, i.e., an EPSP occurring repeatedly after
the postsynaptic neuron spiked (post-pre pairing), typically leads to LTD. Such a
temporal order of potentiation and depression occurrence is generally referred to as
the “classical” spike-timing-dependent plasticity (STDP) rule.

Since the early STDP experiments, numerous studies in different brain regions
and under varying experimental conditions have revealed a plethora of shapes
of STDP curves. A second LTD window has been seen at large positive time
differences between pre- and postsynaptic spike by a few studies in the hippocampus
(Nishiyama et al., 2000; Wittenberg and Wang, 2006). In another form of STDP, the
plasticity outcome does not depend on the order of the pre- and the postsynaptic
spike but on the absolute value of the relative time difference alone (Egger et al.,
1999; Wang et al., 2000; Wittenberg and Wang, 2006). Further studies investigating
plasticity results in response to triplets and quadruplets of spikes have highlighted
the nonlinearity of plasticity results (Bi and Wang, 2002; Froemke and Dan, 2002;
Wang et al., 2005). These experiments have shown that whether the synapse
gets potentiated or depressed in response to repetitive presentation of triplets or
quadruplets of spikes cannot be deduced by adding linearly the changes emerging
from pairs of spikes composing those activity patterns. These findings have led to
phenomenological models which try to directly link spike patterns to the observed
plasticity outcome (Sjöström et al., 2001; Froemke and Dan, 2002; Pfister and Ger-
stner, 2006; Clopath et al., 2010). Alternatively, it has been suggested that the link



Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach 617

between spike patterns and plasticity outcomes could arise naturally when taking
into account biochemical intermediates such as the calcium concentration as the
trigger of synaptic changes (Shouval et al., 2002, 2010; Graupner and Brunel, 2012).
In that view, both firing rate and spike-timing-dependent plasticity are consequences
of activity-dependent changes in the intracellular calcium concentration.

Here, we focus on the approach to link the calcium dynamics evoked by pre-
and postsynaptic activity to observed plasticity outcomes. In particular, we will
discuss a biologically plausible but simplified calcium-based model that provides
links between stimulation protocols, calcium transients, protein signaling cascades,
and evoked synaptic changes. The model implements in a schematic fashion two
opposing calcium-triggered pathways mediating increases of synaptic strength
(LTP; i.e., protein kinase cascades) and decreases of synaptic strength (LTD; i.e.,
protein phosphatase cascades or G-protein cascades). The model is shown to be
able to account for a wide range of experimental plasticity outcomes in hippocampal
cultures and hippocampal slices. Fitting this data quantitatively allows us to predict
differences in the underlying calcium dynamics between these different experi-
mental systems. The model allows us furthermore to predict plasticity outcomes
in response to more realistic activity patterns than the periodic spike trains that
are typically used in experiments. In particular, we present plasticity outcomes in
response to uncorrelated pre- and postsynaptic Poisson firing.

Biophysical Underpinnings of Synaptic Plasticity at the Synapse

In glutamatergic synapses onto pyramidal cells in hippocampus and neocortex,
synaptic activation leads to calcium entry in the postsynaptic terminal through
N-methyl-D-aspartic acid receptor (NMDA-R)-channels (Koester and Sakmann,
1998; Kovalchuk et al., 2000; Yuste et al., 1999). Backpropagating action potentials
(BPAPs) produce calcium influx through voltage-dependent calcium channels
(VDCCs) (Jaffe et al., 1992; Majewska et al., 2000; Sabatini and Svoboda, 2000;
Yuste and Denk, 1995). The induction of LTP at the hippocampal Schaffer collateral
– CA1 neuron synapse necessitates activation of NMDA receptors (Collingridge
et al., 1983; Bliss and Collingridge, 1993), while basal synaptic transmission and the
maintenance of the potentiated state are not affected by NMDA blockade (Morris
et al., 1986). The requirement of NMDA activation for LTP induction has also
been identified between thick, tufted layer V pyramidal neurons in rat visual cortex
(Artola and Singer, 1987; Bear et al., 1992; Markram et al., 1997; Sjöström et al.,
2001), in layer IV to layer II/III pyramidal cell synapses in the somatosensory cortex
(Castro-Alamancos et al., 1995; Feldman, 2000; Nevian and Sakmann, 2006), and
in the lateral geniculate nucleus (Hahm et al., 1991; Mooney et al., 1993).

LTP induction evoked by STDP protocols also depends on the large calcium
influx through NMDA-Rs in the hippocampus (Magee and Johnston, 1997) and the
somatosensory cortex (Nevian and Sakmann, 2006). The induction of spike-timing-
dependent LTD in visual and somatosensory cortex, however, is mediated by the
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activation of presynaptic NMDA-Rs (Sjöström et al., 2003; Bender et al., 2006;
Nevian and Sakmann, 2006). Nevian and Sakmann (2006) show in the somatosen-
sory cortex that burst-pairing-induced LTD is independent of postsynaptic activation
of NMDA-Rs, while the postsynaptic calcium influx through VDCCs is necessary
for the induction of LTD. On the other hand, VDCC antagonists (nimodipine for L-
type channels or Ni2+ for T-type channels) block spike-timing evoked LTP without
any effect on baseline EPSPs in hippocampal slices (Magee and Johnston, 1997). In
hippocampal cultures, (Bi and Poo, 1998) report that blocking L-type Ca2+ channels
(by nimodipine) does not affect LTP induction by pre-post pairings but prevents LTD
induction in response to post-pre pairings.

LTP and LTD rely on calcium influx through different channels, but both require
postsynaptic calcium elevations (Lynch et al. 1983; Malenka et al. 1988; Neveu
and Zucker 1996; Yang et al. 1999; Zucker 1999; Mizuno et al. 2001; Ismailov
et al. 2004; Nevian and Sakmann 2006 – but see Nabavi et al. 2013). One of the
main conclusions from those studies is that LTP is triggered by a brief increase
of calcium with relatively high magnitude, whereas a prolonged modest rise of
calcium reliably induces LTD. Neveu and Zucker (1996) show that the release of
caged calcium by photolysis in hippocampal CA1 pyramidal cells is sufficient to
evoke LTP and LTD and that concurrent presynaptic activity is not required. Nevian
and Sakmann (2006) demonstrate that LTP and LTD are equally sensitive to fast
(1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid – BAPTA) and slow
(ethylene glycol tetraacetic acid – EGTA) Ca2+ buffers loaded in the postsynaptic
cell. They conclude that the calcium sensors that trigger the long-lasting synaptic
changes respond to the global, volume-averaged increase in intracellular calcium
concentration rather than to local calcium concentrations in microdomains. Note
that cortical LTD involving the activation of metabotropic glutamate receptors
(mGluRs) and retrograde signaling also requires postsynaptic calcium elevations
(Nevian and Sakmann, 2006).

Modeling Approaches Using Calcium as the Plasticity Trigger

Calcium-based plasticity models determine the induced synaptic weight change
based on the time course of the calcium transients triggered by pre- and postsynaptic
spikes during specific stimulation protocols. The implementations differ in how
activity patterns are translated into an intracellular calcium signal and how this
signal is converted into a change in synaptic strength.

The Shouval et al. Model

Shouval et al. (2002) proposed a model in which the synaptic weight change is
directly determined by the time course of the calcium transients triggered by pre-
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Fig. 1 Calcium dynamics in response to pairs of pre- and postsynaptic spikes for different
�ts. Calcium transients for five different time differences (marked in the panel in ms) are
shown. The transients are generated using the model for postsynaptic calcium and postsynaptic
membrane potential dynamics presented in Graupner and Brunel (2007). The postsynaptic
membrane potential is modeled using the Hodgkin-Huxley formalism in a single compartment.
In the model, calcium influx is mediated by VDCCs (high-voltage activated L-type current) and
voltage-dependent NMDA-Rs. The presynaptic spike occurs at t = 0 ms. The presynaptically
evoked calcium amplitude is 0.6 μM, and the postsynaptic calcium amplitude is 1.2 μM (Sabatini
et al., 2002). Note that the calcium amplitudes are the only parameters that are changed compared
to Graupner and Brunel (2007). (Figure adapted from Graupner and Brunel 2010)

and postsynaptic spikes (Shouval et al., 2002; Cai et al., 2007). While this model
readily accounts for LTD induction in response to post-pre pairs and for LTP in
response to pre-post pairs, it leads to a second LTD window for pre-post pairs with
large time differences, �t , between pre- and postsynaptic spikes.

We start by discussing the properties of postsynaptic calcium transients evoked
by pairs of spikes with different �ts. An isolated postsynaptic spike generates a
short-lasting calcium transient due to opening of VDCCs induced by the depo-
larization through the BPAP (see �t = −100 ms case in Fig. 1). Likewise, an
isolated presynaptic spike generates a long-lasting calcium transient due to NMDA
channel opening (Fig. 1). When the presynaptic spike is immediately followed by
a postsynaptic spike, the strong depolarization by the BPAP increases drastically
the voltage-dependent NMDA-R mediated calcium current due to removal of the
magnesium block (Nowak et al. 1984; Jahr and Stevens 1990; magenta line in
Fig. 1). This supralinear superposition of the two contributions at positive �ts
generates a strong increase in the maximal amplitude and the integral of the calcium
transients.

The induced synaptic weight change is then determined by the time course of the
calcium transients (Shouval et al., 2002; Cai et al., 2007). The magnitude and sign of
the resulting synaptic changes are based on the calcium control hypothesis (Fig. 2a)
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Fig. 2 Plasticity results based on calcium control hypothesis. (a) Calcium control hypothesis.
The calcium control hypothesis posits that low calcium levels do not evoke any changes,
intermediate calcium levels (between θd and θp) depress the synapse (leading to LTD), and
high amplitude calcium transients (above θp) potentiate the synapse (leading to LTP). Note that
depression and potentiation are not sudden events but occur with a calcium-dependent time
constant, such that LTP induction is faster than LTD induction (see Shouval et al. 2002 for more
details). (b) Calcium transients evoked by pairs of spikes and mediated exclusively by NMDA-Rs.
In this plot, we use the model of Graupner and Brunel (2007), except that calcium influx occurs
through NMDA-Rs only, i.e., there is no Ca2+ current mediated by VDCCs, as in Shouval et al.
(2002). Otherwise, we use the same parameters as in Fig. 1, i.e., the presynaptically evoked Ca2+
amplitude is 0.6 μM. Calcium transients are shown for four different �ts (values given in the
panel in ms). The timing of the presynaptic spike is indicated by an arrow for each particular �t .
The thresholds θd (dotted line) and θp (dashed line) from the calcium control hypothesis (see a)
are chosen appropriately, that is, large �t transients do not cross any threshold, short negative
�t transients cross θd, and short positive �t transients cross θp. (c) Maximal calcium amplitude
as a function of �t , plotted together with the thresholds θd (dotted line) and θp (dashed line). (d)
Plasticity outcomes in response to pairs of spikes. Pairs of spikes with short positive �ts evoke LTP.
Pairs of spikes with short negative and with large positive �ts lead to LTD. Figure reproduced from
Shouval et al. (2002). Note the large extent of the LTD range for short negative �ts as compared
to c. The difference is due to the slow after-depolarizing tail of the BPAP used in Shouval et al.
(2002). See text for more details. (Figure adapted from Graupner and Brunel 2010)
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which is derived from experimental evidence showing that different calcium levels
trigger different forms of synaptic plasticity (Zucker, 1999; Yang et al., 1999;
Mizuno et al., 2001; Ismailov et al., 2004; Nevian and Sakmann, 2006). According
to this hypothesis, no modification occurs when the calcium level is below a
threshold θd which is larger than the resting concentration. If calcium resides in an
intermediate calcium range, between θd and a second threshold θp > θd, the synaptic
weight is decreased. Finally, if calcium increases above the second threshold, θp, the
synaptic strength is potentiated (Fig. 2a).

This model explains to a large extent the spike-timing dependence of plasticity,
as shown in Fig. 2, provided the maximal amplitude of the calcium transient for
pre-post pairings at short �t is larger than the potentiating threshold θp. Post-pre
pairings evoke calcium transients which linearly superimpose and therefore yield
moderate calcium elevations promoting LTD. Pre-post pairings result in supralinear
superpositions of the calcium transients which attain high calcium levels required
to evoke LTP. If �t grows larger, the calcium transients pass again through a region
of moderate levels inducing LTD (see Fig. 2c). Note that Shouval et al. (2002)
assume the dominant source of calcium influx to be NMDA-Rs (compare Figs. 1a
and 2b). They furthermore model the BPAPs with a slow after-depolarizing tail
which increases the range of interaction between the postsynaptic spike and NMDA
activation by the presynaptic action potential for �t < 0. That interaction range
defines the width of the LTD window in their model (compare LTD range in Fig. 2c
without after-depolarizing tail, and the LTD range obtained in Shouval et al. 2002,
reproduced in Fig. 2d).

Most STDP spike-pair experiments however have not found a “second LTD
window” at large positive �t (but see Nishiyama et al. 2000 and Wittenberg and
Wang 2006). Shouval and Kalantzis (2005) show that stochastic properties of
synaptic transmission can markedly reduce the LTD magnitude at positive time
lags. The main idea is that the NMDA-mediated calcium transients at large positive
�ts show a high level of relative fluctuations (high coefficient of variation) since
the effective number of activated NMDA receptors is small. It is shown that a
low number of NMDA-Rs (∼10) gives rise to a sufficient amount of variability
to average out the second LTD window (Shouval and Kalantzis, 2005).

Adding features such as short-term depression, stochastic transmitter release,
and BPAP depression/facilitation to calcium-based models allows to reproduce
spike-triplet data of hippocampal and visual cortex neurons (Cai et al., 2007). The
nonlinearity of plasticity results between pre-post-pre and post-pre-post triplets is
attributed in this model to the consecutive occurrence of either two presynaptic
or two postsynaptic spikes, respectively. Depending on the recovery dynamics of
neurotransmitter release, release probability and the depression/facilitation dynam-
ics of BPAPs, two successive presynaptic spikes (in pre-post-pre triplets) and two
successive postsynaptic spikes (in post-pre-post triplets) can generate markedly
different calcium dynamics leading to different plasticity results. Models based on
the calcium control hypothesis readily account for the frequency dependence of the
plasticity (Shouval et al., 2002) and predict an optimal frequency for inducing LTP
when the number of spikes in the stimulus is kept fixed (Kumar and Mehta, 2011).
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The model described in this section has been surprisingly successful in repro-
ducing experimental results about spike-timing dependent plasticity, given its
simplicity. However, it leaves open the question of the mechanisms that translate
a given calcium level into a particular synaptic change.

Models Including Biochemical Signaling Cascades Beyond
Calcium

We now turn to models that include additional dynamical variables driven by the
calcium concentration. These phenomenological variables can be seen as calcium-
sensitive “detectors” mediating LTP and LTD (Karmarkar et al., 2002; Abarbanel
et al., 2003; Rubin et al., 2005; Badoual et al., 2006). Such phenomenological
detectors are assumed to represent biological signaling pathways in an abstract
fashion.

Both Karmarkar et al. (2002) and Badoual et al. (2006) account for STDP
using distinct but converging dynamical variables modeling calcium- and mGluR-
activated pathways. In Badoual et al. (2006), an “LTP-mediating” enzyme is
activated by large calcium transients. In contrast, LTD is evoked by the coincident
activation of two enzymes, one activated by calcium and the other briefly activated
by the presence of glutamate, potentially describing a mGluR-mediated signaling
cascade. In turn, LTD occurs only when calcium is present at the time of the
occurrence of the presynaptic spike, which is the case if the presynaptic spike is
preceded by a BPAP. The model also accounts for plasticity results in response to
pre-post-pre triplets in the visual cortex (Froemke and Dan, 2002). Karmarkar and
Buonomano (2002) implement the calcium- and the mGluR pathway by assuming
two functionally distinct calcium pools. In that view, calcium influx through VDCCs
modulates the mGluR-mediated pathway leading to LTD induction, while calcium
from NMDA-Rs is involved in LTP induction.

Abarbanel et al. (2003) propose a nonlinear competition between two calcium-
sensitive detectors to evoke LTP/LTD, that is, phosphorylation and dephospho-
rylation processes which relate to the α-amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate receptor (AMPA-R, see next section) conductance. The half activation
concentrations of the two opposing processes (described by Hill functions) are
chosen well above the calcium amplitudes of single pre- or postsynaptic transients
(Abarbanel et al., 2003). In consequence and similar to the results of Shouval et al.
(2002), plasticity results in response to spike-pair stimulation yield LTD for short
negative �ts, LTP for short positive �ts, and a further LTD window for large
positive �ts (Abarbanel et al., 2003).

Rubin et al. (2005) propose a “detector” system based on pathways resem-
bling the CaMKII kinase-phosphatase system (see Graupner and Brunel 2007),
implementing three calcium-sensitive detectors (“P”, “A”, and “V”). In that model,
high, short-lasting calcium levels evoke LTP by activating a detector promoting
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the increase of synaptic weight (“P” in their model). Another detector builds up
in response to low and prolonged calcium elevations (agent “A” and in turn “B”)
evoking LTD above a certain threshold. Importantly, intermediate calcium levels
activate a “Veto” agent (“V”) with a fast time constant providing fast tracking of the
calcium transient. This veto mechanism suppresses the LTD induction pathway. The
dynamics of the “veto” mechanism prevents in particular the appearance of LTD for
large positive �ts in response to spike-pair stimulation (see Gerkin et al. 2010 for
an in-depth review of the model).

Attention should be drawn to the fact that in all the models discussed so far,
the time constant of the synaptic variable has to become essentially infinite at
resting calcium concentration for the evoked synaptic changes not to decay after the
presentation of the stimulation protocol. In the presence of noise and/or finite time
constants, such models cannot maintain the evoked synaptic changes in a stable
manner. This is in contrast to the model described in the next section, in which
bistability leads naturally to maintenance of the evoked synaptic state.

A Minimal Calcium-Based Model

To get additional insights in the factors that govern the shape of STDP curves
and the dependence of plasticity on other factors such as firing rates of pre- and
postsynaptic neurons, spike patterns, and dendritic location, we recently developed
and analyzed a simplified calcium-based rule (Graupner and Brunel, 2012). This
simplification allowed us to compute analytically plasticity outcomes in response to
standard protocols, as well as pre- and postsynaptic Poisson firing.

The model implements in a schematic fashion two opposing calcium-triggered
pathways mediating increases of synaptic strength (LTP; i.e., protein kinase cas-
cades) and decreases of synaptic strength (LTD; i.e., protein phosphatase cascades
or G-protein coupled cascades). Both cascades are activated by calcium, and the
resulting synaptic weight dynamics is described by

τ ρ̇ = −ρ(1−ρ)(ρ�−ρ)−γdρ�[c(t)−θd ]+γp(1−ρ)�[c(t)−θp]+Noise(t). (1)

τ is the time constant of synaptic efficacy changes happening on the order of seconds
to minutes. The first term on the right-hand side describes the dynamics of the
synaptic efficacy in the absence of pre- and postsynaptic activity. Here, we choose
a cubic function of ρ that endows the synapse with two stable states at rest: one at
ρ = 0, a DOWN state corresponding to low efficacy, and one at ρ = 1, an UP state
corresponding to high efficacy. ρ� = 0.5 is the boundary of the basins of attraction
of the two stable states. This bistable behavior is consistent with some experiments
(Petersen et al., 1998; Bagal et al., 2005; O’Connor et al., 2005b) as well as some
biochemically detailed models (Zhabotinsky, 2000; Graupner and Brunel, 2007).
The next two terms in Eq. (1) describe calcium-dependent cascades leading to
synaptic potentiation and depression, respectively. The synaptic efficacy variable
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tends to increase, or decrease, when the instantaneous calcium concentration, c(t), is
above the potentiation (θp) or the depression threshold (θd ), respectively (� denotes
the Heaviside function, �[c − θ ] = 0 for c < θ and �[c − θ ] = 1 for c ≥ θ ). The
parameter γp (resp. γd ) measures the rate of synaptic increase (resp. decrease) when
the potentiation (resp. depression) threshold is exceeded.

The last term in Eq. (1) is an activity-dependent noise term, Noise(t) =
σ
√

τ
√

�[c(t) − min(θd, θp)]η(t), where σ measures the amplitude of the noise,
η(t) is a Gaussian white noise process with unit variance, and the � function
gives an activity dependence to noise (it is present whenever calcium is above the
potentiation and/or depression threshold). This term accounts for activity-dependent
fluctuations. See Fig. 3 and Graupner and Brunel (2012) for more details.

The postsynaptic calcium dynamics is described by

c(t) =
∑

i

Cpre exp

(
− t − ti − D

τCa

)
�(t − ti − D)

+
∑

j

Cpost exp

(
− t − tj

τCa

)
�

(
t − tj

)
, (2)

where c is the total calcium concentration, τCa the calcium decay time constant, and
Cpre and Cpost the pre- and postsynaptically evoked calcium amplitudes (Fig. 3a).
The sums run over all pre- and postsynaptic spikes occurring at times ti and tj ,
respectively. The time delay, D, between the presynaptic spike and the occurrence
of the corresponding postsynaptic calcium transient accounts for the slow rise time
of the NMDAR-mediated calcium influx.

The model is simple enough, so that the probabilities to induce LTP and LTD
can be calculated analytically. The analytical results reproduce the model behavior
under two assumptions: (i) single calcium transients induce small changes in the
synaptic efficacy (Fig. 3c), and (ii) the depression and potentiation rates (γd and
γp) are sufficiently large so that one can neglect the cubic term in Eq. (1) during
synaptic stimulation (Fig. 3d, note the different scales for quadratic and double-well
potentials). These assumptions reduce Eq. (1) to an Ornstein-Uhlenbeck process
for which the potential of ρ during stimulation is quadratic with the minimum
at ρ̄ (Fig. 3b, d). This simplification allows to compute analytically the transition
probabilities that the system will converge to the UP, U , or the DOWN state, D,
using the Fokker-Planck formalism (Risken, 1996). The transitions induced by a
particular plasticity protocol are largely determined by whether ρ̄ is above or below
the unstable fixed point ρ� = 0.5. LTP tends to be induced if ρ̄ > ρ� (Fig. 3c, right),
whereas LTD tends to be induced if ρ̄ < ρ� (Fig. 3c, left). See Graupner and Brunel
(2012) for details of the calculation.

We assume the synaptic strength is linearly related to ρ as w = w0+ρ(w1−w0),
where w0/w1 is the synaptic strength of the DOWN/UP state. Synaptic strength
as used here is typically measured in experiments as the excitatory postsynaptic
potential (EPSP)/excitatory postsynaptic current (EPSC) amplitude, the initial EPSP
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Fig. 3 Repeated calcium transients induce transitions between the two stable states of
synaptic efficacy. (a) A presynaptic spike at time t = 0 ms induces a postsynaptic calcium
transient of amplitude Cpre after a delay D = 13.7 ms. The two panels show transients with
two different amplitudes, indicated on top of the panel. The times spent above the depression
(turquoise) and the potentiation (orange) thresholds are indicated by shaded regions. (b) The higher
the induced calcium transient, Cpre, the more time is spent above the depression (turquoise) and the
potentiation (orange) thresholds (left-hand y-axis). Depression and potentiation together determine
the average asymptotic value of synaptic efficacy, ρ̄ (black, right-hand y-axis). The two examples
from a are indicated by diamonds. (c) Repeated calcium transients of high amplitude can lead
to a transition from the DOWN to the UP state. The dynamics of ρ is shown in response to 60
presynaptic spikes at 1 Hz inducing calcium transients of low (left-hand panel) and high (right-
hand panel) amplitude. ρ resides initially in the UP or the DOWN state. Two instances of noise are
shown for each initial condition (gray lines). A DOWN-to-UP transition occurs for the case marked
with the star (right panel). The inset shows the temporal evolution of ρ on a longer time scale for the
two cases starting at the DOWN state in the right-hand panel. The dynamics of the mean (colored
line) and the standard deviation (shaded area) for the corresponding Ornstein-Uhlenbeck processes
are depicted for each stimulation protocol and the two initial conditions. (d) During stimulation,
the potential of the synaptic efficacy is approximately quadratic and has a single minimum at ρ̄

(indicated by a colored arrow, shown for the two cases of c, bottom scale). In the absence of
activity, the potential has two minima (black line, corresponding to two stable states, top scale).
Note the different scales of the potential during (bottom) and in the absence (top) of synaptic
activity (since γp, γd � 1, see text). (Adapted from Graupner and Brunel 2012)

slope, or the current in a 2 ms window at the peak of the EPSC. We assume that,
before a stimulation protocol, a fraction β of the ensemble of stimulated synapses
is in the DOWN state. The average initial synaptic strength is, therefore, equal to
βw0 + [1 − β]w1. After the stimulation protocol, the average synaptic strength is
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w0[(1−U)β+D(1−β)]+w1[Uβ+(1−D)(1−β)], where U/D are the probabilities
of making a transition from the down to the up state/from the up to the down state,
respectively. As in experiments, we consider the change in synaptic strength, α, as
the ratio between the average synaptic strengths after and before the stimulation,
i.e.,

α = (1 − U)β + D(1 − β) + b[Uβ + (1 − D)(1 − β)]
β + (1 − β)b

, (3)

with b = w1/w0. This change in synaptic strength can be computed analytically
using the methods outlined above or using numerical simulations. Simulation results
shown in Figs. 5 and 6 were obtained by simulating the model (Eq. (1)) 1,000 times
with identical model parameters but different random number generator seeds for
the Gaussian white noise process.

Fitting the Model to the Data

We explicitly fitted the above presented calcium-based model to experimental
plasticity data obtained from synapses in hippocampal cultures (Wang et al., 2005)
and slices (Wittenberg and Wang, 2006). A parameter set reproducing visual cortex
plasticity data is furthermore provided in Graupner and Brunel (2012).

The stimulation protocol employed by Wittenberg and Wang (2006) explores
plasticity at the Schaffer collateral – CA1 synapse for pre-post spike patterns
with one or two postsynaptic spikes and for various number of spike pattern
presentations. Pre- and postsynaptic spike pairings with one postsynaptic spike
induce LTD only. LTP at positive values of �t occurs when a burst of two spikes
in close succession is combined with the presynaptic stimulation (as in the model
by Kumar and Mehta 2011). Reducing the number of presentations of the pre-
spike and post-burst pattern leaves LTP only (Wittenberg and Wang, 2006). Wang
et al. (2005) induce pairs of spikes, triplets and quadruplets between neuron pairs
with all patterns presented at 1 Hz for 60 times. Beyond the “classical STDP”
curve obtained in response to pairs, the triplets and quadruplets uncover some
nonlinearities underlying plasticity: (1) post-pre-post triplets induce LTP while pre-
post-pre triplets induce little plasticity even though both patterns are comprised of
the same spike pairings; (2) pre-post – post-pre quadruplets evoked no synaptic
change, while post-pre – pre-post quadruplets evoked LTP (Wang et al., 2005).

Both hippocampal datasets provide the ideal test for the calcium-based model as
the experimental conditions, and the synapse type can be assumed to be constant
within each dataset. The only parameter which has been varied during each set of
experiments is the activity patterns evoked in the pre- and postsynaptic neuron. In
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Table 1 Parameters of the synapse model. The “hippocampal slices” and “cultures” parameters
are obtained from fitting the synapse model to experimental data. Values in bold were fixed
and were not allowed to be optimized by the fitting routine. The experimental external calcium
concentrations is used to fit the respective data (Wittenberg and Wang, 2006; Wang et al., 2005);
the external calcium concentration expected in vivo is given in brackets. The in vivo calcium
amplitudes are derived using the estimated in vivo calcium concentration 1.5 mM and are given in
brackets (Silver and Erecińska 1990, see text for more details). The right column shows the values
of an example parameter set with balanced calcium amplitudes; other parameters are identical to
the hippocampal slices dataset except for γp and β which were adjusted by hand to yield LTD at
intermediate firing rates in Fig. 8c, f

Hippocampal slices Hippocampal cultures Balanced amplitudes

Parameter (Wittenberg and Wang, 2006) (Wang et al., 2005) example

[Ca]ext (mM) 2 (1.5) 3 (1.5) –

τCa (ms) 48.8373 11.9536 48.8373

Cpre 1 (0.75) 0.58156 (0.29078) 0.7

Cpost 0.275865 (0.2069) 1.76444 (0.88222) 0.7

θd 1 1 1

θp 1.3 1.3 1.3

γd 313.0965 61.141 313.0965

γp 1645.59 113.6545 600

σ 9.1844 2.5654 9.1844

τ (sec) 688.355 33.7596 688.355

ρ� 0.5 0.5 0.5

D (ms) 18.8008 10 18.8008

β 0.7 0.5 0.5

b 5.28145 36.0263 5.28145

turn, the model should account for the observed plasticity outcomes in response to
all employed stimulation protocols using the same parameter set accounting for the
investigated synapse.

We defined the goodness of fit to the experimental data by a cost function which
is the sum of all squared distances between data points and the analytical solution of
the calcium-based model. We furthermore included two terms in the cost function
which assured that synaptic changes induced by single calcium transients are small
and that synaptic changes are slow compared to the calcium dynamics (τ � τCa).
We drew initial parameter values from a uniform distribution and use the Powell
method of gradient descent to search the minimum of the cost function. The fit is
repeated >109 times as the nonlinearities due to the calcium thresholding create a
landscape with many local minima. The parameter set with the lowest cost function
is used (Table 1). The 100 fit results with the lowest cost functions are shown in
Fig. 4c (squares for the hippocampal slices and circles for the hippocampal cultures
dataset) with respect to Cpre and Cpost.
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Fig. 4 Diversity of STDP curves in response to spike pair stimulation. (a), Compound calcium
transients evoked by a pair of pre- and postsynaptic spikes for two values of �t (indicated on top of
the panels) for Cpre = 1 and Cpost = 2. (b), Fraction of time spent above the depression (turquoise
line) and potentiation thresholds (orange) and average asymptotic value of the synaptic efficacy
(ρ̄; black) as a function of �t for the parameters of a. The two examples from a are indicated
by diamonds in the same color. (c) The Cpre-Cpost plane is shown for θd = 1, θp = 1.3. The
seven regions of different possible STDP outcomes for spike-pair stimulation are indicated with
respect to the occurrence of potentiation (P) and depression (D) along the �t axis and illustrated
in the left and right column of the panel. The gray squares and circles show outcomes from fitting
the model to experimental data obtained in hippocampal slices (Wittenberg and Wang, 2006) and
hippocampal cultures (Wang et al., 2005), respectively. The 100 best fit results obtained from
randomly drawn initial conditions are shown for each of the two systems. The fit results used in
Figs. 5, 6, 7 and 8 are shown as black symbols (see Table 1). Fits of the data from hippocampal
slices lie in the D region, with small amplitudes of the presynaptically triggered calcium transient
(Wang et al., 2005). Fits from hippocampal cultures lie in the DP region, with large amplitudes of
the postsynaptically triggered calcium transient (Wang et al., 2005). Interestingly, all fits to the two
different datasets yield comparable presynaptic calcium amplitudes. The location of the example
parameter set with equal pre- and postsynaptic amplitudes (used in Fig. 8) is shown by the triangle
(see Table 1). (Adapted from Graupner and Brunel 2012)



Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach 629

Model Results

Diversity of STDP Curves

We start by explaining how the model reproduces the “classical” STDP curve, that
is, depression for post-pre and potentiation for pre-post pairs. Such a curve can
be obtained when the potentiation threshold is larger than the depression threshold
(θp > θd , consistent with O’Connor et al. 2005a); the amplitude of the postsynaptic
calcium transient is larger than the potentiation threshold (Cpost > θp), and the
amplitude of the presynaptic transient is smaller than the potentiation threshold
(Cpre < θp). In addition, we impose that pairs of spikes with a large time difference
should not evoke efficacy changes. This is the case if potentiation and depression
rates balance on average during the protocol (i.e., ρ̄ = 0.5). These conditions yield
the “classical” STDP curve (Fig. 4b).

For large �t , pre- and postsynaptic calcium transients do not interact, and
contributions from potentiation (due to the postsynaptic spike) and depression
(due to the postsynaptic spike and to the presynaptic spike if Cpre > θd ) cancel
each other, leading to no synaptic changes on average. For short negative �t ,
the presynaptically evoked calcium transient rises above the depression threshold.
Consequently, depression increases, while potentiation remains constant, which
brings the potential minimum closer to the DOWN state (ρ̄ < 0.5) leading to LTD
induction (Fig. 4a, b). For short positive �t , on the other hand, the postsynaptically
evoked calcium transient rides on top of the presynaptic transient and increases
activation of both depression and potentiation. This brings the potential minimum
closer to the UP state (ρ̄ > 0.5) and in turn gives rise to potentiation, since the rate of
potentiation is larger than the rate of depression (γp > γd , Fig. 4a, b). As observed in
experiments, the transition from maximal potentiation to maximal depression occurs
within a small range of time lags.

We now turn to discuss how STDP curves change when amplitudes of calcium
transients or thresholds for potentiation and depression are varied. We find that a
total of 10 qualitatively different STDP curves can be observed, D, D’, DP, DPD,
DPD’, P, P’, PD, PDP, and PDP’, where D refers to depression and P to potentiation
(see Fig. 4c side panels for some illustrations), depending on parameters. For
example, in region D, depression occurs at all values of �t , while region DPD means
that when one increases �t from large negative values, one first sees depression,
then potentiation, and again depression. We impose no synaptic changes for large
�t (i.e., ρ̄ = 0.5) in regions where potentiation and depression are activated by
individual calcium transients (P, DP, and PD). That requirement fixes the ratio
γp/γd . A prime (e.g., D’) means that in the corresponding region, potentiation
and depression cannot be balanced for large �t . This occurs when single calcium
transients cross the depression but not the potentiation threshold (or vice versa). We
furthermore choose γp and γd to yield both potentiation and depression in the DPD,
PDP, DPD’, and PDP’ regions. For example, in the DPD’ region, D’ behavior can
also be observed if γp is not large enough.
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In Fig. 4c, these regions are plotted in the Cpre-Cpost plane, for fixed values of the
potentiation and depression thresholds (θp = 1.3, θd = 1). Starting from the already
discussed DP region (“classical” STDP curve, top left corner of middle panel in
Fig. 4c), we see that decreasing the amplitude of postsynaptic calcium transients
leads to the DPD’ and DPD regions, in which a second LTD window appears
at positive �t . Decreasing Cpre and Cpost further so that their sum is below the
potentiation threshold leads to the D and D’ regions (depression occurs at all �t). If
both calcium transients are individually larger than the potentiation threshold, then
only potentiation occurs (P region). Exchanging pre and post leads to an inversion
of the curves along the �t-axis – for example, Cpre > θp > Cpost leads to a
STDP curve that is inverted (PD) compared to the “classical” one (DP), as seen
in some systems (Bell et al., 1997; Paille et al., 2013). Furthermore, a DPD curve
occurs if both thresholds are crossed by interacting calcium transients only, a region
originally described by Shouval et al. (2002).

The diversity of STDP curves emerges solely from a combination of linear
superpositions of calcium transients from pre- and postsynaptic spikes, followed
by the potentiation/depression threshold nonlinearities.

Dependence of Synaptic Plasticity on Spike Patterns

We demonstrate here that the model can quantitatively reproduce the data of
Wittenberg and Wang (2006) from CA3-CA1 slices and of Wang et al. (2005)
from hippocampal cultures. Our fit allows us to infer information about the calcium
transients, and we illustrate that the model predicts that the postsynaptically evoked
calcium transient is markedly different.

We find that all the results of the Wittenberg and Wang (2006) experiment can be
reproduced by our model (see Fig. 5), provided the parameters of the model are such
that it is located in the D region for single pairs of spikes at low frequency (Fig. 4).
This naturally reproduces the results for the protocol in which the postsynaptic
neuron emits a single spike (Fig. 5a, b). Adding a second postsynaptic spike with
a short inter-spike interval between the two leads to a pronounced increase in the
amplitude of the compound calcium trace (Fig. 5c), giving rise to LTP at short
positive �t (DPD curve), provided the potentiation rate γp is large enough (Fig. 5d).
Interestingly, the model then produces a faster induction of LTP than LTD (as also
seen in Froemke et al. 2006), which explains why only potentiation is seen when
the duration of the protocol is reduced (Fig. 5e). The model parameters can be fitted
quantitatively to the data of Wittenberg and Wang (2006) (see Table 1), yielding a
reasonable fit between both. The model can then be used to predict the plasticity
outcomes for arbitrary protocols in the same experimental setting. For example, we
predict that adding a third spike in the burst would yield broader and stronger LTP
at positive �t and short negative �t (Fig. 5f)

The fit of the model to the plasticity data from hippocampal slices (Wittenberg
and Wang, 2006) yields a strong asymmetry between pre- and postsynaptically
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Fig. 5 Number of postsynaptic spikes and number of repetitions of the stimulation motif
change qualitatively the STDP curve. (a) Compound calcium trace evoked by a spike-pair for
Cpre = 1, Cpost = 0.276, and �t = 20 ms. For these parameter values, the calcium trace remains
below the potentiation threshold (θp = 1.3, θd = 1). (b) For the parameters of a, spike-pair
simulation induces synaptic depression for small positive and negative values of �t . (c) Adding a
postsynaptic spike, resulting in a postsynaptic burst with an inter-burst interval of 11.5 ms, leads
to crossing of the potentiation threshold. (d) Pre-spike and post-burst stimulation results in a DPD
curve. (e) Reducing the number of pre-spike, post-burst motif presentations from 100 to 30 turns
the DPD curve into a PD curve exhibiting potentiation, with little depression at positive �t . (f)
Pre-spike and post-burst stimulation with three postsynaptic spikes amplify potentiation at short
positive �ts. All data points are taken from plasticity experiments in hippocampal slices (mean ±
SEM, Wittenberg and Wang 2006). Analytical results of changes in synaptic strength are shown in
magenta, and simulation results in cyan. See Table 1 for parameters. (Adapted from Graupner and
Brunel 2012)

induced calcium amplitudes with a small postsynaptic amplitude (see Table 1). In
turn, the fit results gather in the lower part of the D region (see Fig. 4c). The size
of Cpost depends on the distance between θd and θp as adding a single postsynaptic
spike moves the system from the D – for pre-post spike pairs – to the DPD region,
for pre-spike and post-burst. In turn, choosing a larger difference between the two
thresholds would yield more balanced calcium amplitudes.

We now demonstrate that our synapse model naturally reproduces nonlinearities
of spike-triplet and quadruplet experiments, if calcium amplitudes of pre- and post-
synaptically evoked transients have different amplitudes. In those experiments from
hippocampal cultures, post-pre-post triplets and post-pre-pre-post quadruplets are
shown to evoke LTP, while pre-post-pre triplets and pre-post-post-pre quadruplets
induce no synaptic changes (or little potentiation, Wang et al. 2005).
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Fig. 6 Nonlinearities in response to spike-triplet and quadruplet stimulation in hippocampal
cultures. (a) Calcium transients evoked by a pre-post-pre triplet (red line, �t1 > 0, �t2 < 0, see
Wang et al. 2005 for the convention of �t1 and �t2) and a post-pre-post triplet (blue, �t1 < 0,
�t2 > 0). Note the large calcium transients evoked by postsynaptic spikes (Cpost = 1.7644, Cpre =
0.5816). (b) The fractions of time spent above the depression (turquoise) and the potentiation
threshold (orange, left-hand y-axis) as well as position of the potential minimum, ρ̄, (black, right-
hand y-axis) are shown with respect to �t2 for the case of symmetrical spike triplets, i.e., �t1 =
−�t2. The two examples from a are indicated by symbols in the same color. (c) The change in
synaptic strength for symmetrical spike triplets (�t1 = −�t2) shows a clear imbalance: pre-post-
pre triplets evoke no change or little potentiation, while post-pre-post triplets induce potentiation.
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We fitted the synapse model to experimental plasticity results from protocols with
spike-triplets and quadruplets (Fig. 6, Wang et al. 2005). The resulting parameter
sets are located in the DP region (Fig. 4), consistent with the experimental results on
pairs of spikes in hippocampal cultures (Bi and Poo, 1998; Wang et al., 2005) and
in particular consistently yield a large postsynaptically evoked calcium amplitude,
Cpost > Cpre (Fig. 6a). Consequently, post-pre-post triplets lead to stronger
activation of potentiation compared to pre-post-pre triplets (Fig. 6b). Together with
a potentiation rate that is larger than the depression rate (γp > γd ), this creates
an imbalance in plasticity outcomes between pre-post-pre and post-pre-post triplets
(Fig. 6c, d). The model is also able to fit the quadruplet data (Fig. 6e), again due
to the pronounced difference between pre- and postsynaptically evoked calcium
transients. Finally, parameters that best fit triplet and quadruplet data also reproduce
the pair data (Fig. 6f).

Plasticity in Physiological Conditions

The above studied deterministic spike patterns are at odds with experimentally
recorded spike trains in vivo, which show a pronounced temporal variability.
Furthermore, most of the in vitro experiments evoking synaptic changes use elevated
extracellular calcium concentrations (≥2 mM), while in vivo calcium levels are
estimated to be around 1.5 mM or lower (Silver and Erecińska, 1990). We therefore
turn to investigate the impact of reduced calcium entry due to the lower extracellular
calcium concentration in vivo and of uncorrelated Poisson spike trains of pre- and
postsynaptic neurons on synaptic plasticity (Figs. 7 and 8).

We first investigate the synaptic memory time constants in the presence of uncor-
related pre- and postsynaptic Poisson firing at various rates and for experimental

�
Fig. 6 (continued) The inset shows triplets with �t1 = �t2 + 20 ms for −20 < �t2 < 0 ms
and �t1 = �t2 − 20 ms for 0 < �t2 < 20 ms (see d). (d) The imbalance in plasticity outcomes
between pre-post-pre and post-pre-post triplets becomes more apparent in the �t1 - �t2 plane.
The color code depicts the change in synaptic strength as given by analytical results. Post-pre-post
triplets evoke strong synaptic potentiation for small |�t1| and |�t2|. The magenta and the green
lines indicate the pairs of �t1, �t2 exemplified in C in the same color. The middle diagonal (black
line) separates pre-post-pre (upper-left triangle) and post-pre-post triplets (lower right triangle).
(e) In line with experiments, spike-quadruplet stimulation yields stronger potentiation for post-
pre-pre-post quadruplets (convention: �T > 0) as compared to pre-post-post-pre quadruplets
(�T < 0; �t = 5 ms and −5 ms for pre-post and post-pre pairs, respectively). (f) Using the
same parameter set as in a–e, the model reproduces the classical STDP curve (DP) in response to
spike-pair stimulation as seen in experiments. All changes in synaptic strength are in response to
the presentation of 60 motifs at 1 Hz. All data points in this figure are taken from Wang et al. (2005)
(mean ± SEM, if multiple points are available). Analytical results of changes in synaptic strength
are shown in magenta, and simulation results in cyan. The “hippocampal cultures” parameter set
is used in this figure (see Table 1). (Adapted from Graupner and Brunel 2012)
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Fig. 7 Stable states and memory decay for a single bistable synapse in the presence of
uncorrelated pre- and postsynaptic Poisson firing. (a, b) Steady states of synaptic efficacy as a
function of firing rate for the in vitro (green) and the in vivo (orange) parameter sets accounting for
hippocampal slices (a) and cultures (b) data. Stable states are shown by solid lines and unstable
states by dotted lines. Synaptic efficacy is bistable at low rates and monostable at intermediate to
high firing rates. (c, d) Single exponential decay time constant as a function of the firing rate for the
in vitro (green) and the in vivo (orange) parameter sets for hippocampal slices (c) and cultures (d).
The effective decay time is greatly extended at around and below the vertical lines which mark the
appearance of the two stable states – bistability (compare panels a and b). The decay time in the
bistable region can be predicted using Kramers escape rate (dashed line, see text for more details).
The hippocampal slices parameter set is used in the left panels and the hippocampal cultures set in
the right panels (see Table 1)

and in vivo external calcium concentrations (Higgins et al., 2014). Again, we use
datasets that best fit plasticity data obtained in hippocampal slices (Wittenberg and
Wang, 2006) and cultures (Wang et al., 2005). In those experiments, the extracellular
calcium concentration was set to be 2 mM (Wittenberg and Wang, 2006) and
3 mM (Wang et al., 2005), which is significantly higher than the estimated in vivo
concentration of about 1.5 mM (Silver and Erecińska, 1990). Here we assume that
a decrease in extracellular calcium concentration leads to a proportional decrease
in the calcium influx into the postsynaptic spine. Using this assumption, we can
readily predict the effects of decreasing the extracellular calcium concentration on
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Fig. 8 Change in synaptic strength in response to pre- and postsynaptic Poisson firing. (a,
b, c) The change in synaptic strength for pre- and postsynaptic Poisson firing at equal rates
(νpre = νpost) for the hippocampal slices (a external calcium concentration corresponding to in
vitro condition, green; external calcium concentration corresponding to in vivo condition, orange),
hippocampal cultures (b, in vitro, green; in vivo, orange), and the balanced amplitudes parameter
sets (c, see Table 1). Analytical results of changes in synaptic strength are shown as derived
in Graupner and Brunel (2012). (d–h) The change in synaptic strength (analytical results) in
response to Poisson stimulation is shown for combinations of pre- and postsynaptic rates for
the hippocampal slices (in vitro, d; in vivo, g), hippocampal cultures (in vitro, e; in vivo, h), and
the balanced amplitudes parameter sets (f). The cases of equal pre- and postsynaptic firing rates
depicted in panels a–c are illustrated by the green (in vitro) and orange (in vivo) lines. All changes
are in response to a 10 s stimulation, i.e., total number of spikes varies with the firing rate

the plasticity rule in the calcium-based model by scaling the amplitudes of the pre-
and postsynaptically evoked calcium transients according to the ratio of calcium
concentrations, i.e., 1.5/2 = 0.75 and 1.5/3 = 0.5 for Wittenberg and Wang (2006)
and Wang et al. (2005), respectively. Values of all parameters for both conditions are
indicated in Table 1. We will refer to the parameters for the high external calcium
concentration as to the in vitro dataset and to the parameters for the realistic calcium
concentration (1.5 mM) as to the in vivo dataset.
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To study the time scales of synaptic decay, we initialize the synaptic efficacy to
1 and investigate the time constant of decay of a bistable synapse (Eq. (1)) in the
presence of an ongoing constant firing rate. There are two distinct regions of firing
rates with respect to the stable states of synaptic efficacy. For sufficiently low rates,
the synaptic efficacy has two stable states, one at high (“UP” state) and one at low
(“DOWN” state) efficacy (Fig. 7a, b), and one unstable state separating the basins
of attraction of the two stable states. There is a critical value of the rates at which
the high or low efficacy minimum disappears through a saddle-node bifurcation
(indicated by vertical lines in Fig. 7c, d). Beyond this rate, the synapse is no longer
bistable, and synaptic efficacy has one stable state only (Fig. 7a, b). The transition
from double-well to single-well regimes occurs at lower firing rates for the in vitro
than the in vivo datasets due to the larger calcium amplitudes in the former.

In the monostable region, that is, for high firing rates, a fully potentiated synapse
decays on average exponentially to the stable fixed point (Higgins et al., 2014). The
time constant of this decay is much longer in the case of the in vivo data-set than
in the in vitro data-set (compare green and blue lines in Fig. 7c, d, respectively). In
the presence of two stable states at low firing rates, the decay of memory occurs
only due to fluctuations that push the synaptic efficacy out of the UP state. The
influence of the double-well potential on the dynamics of the synaptic efficacy traps
synapses in the UP state leading to long dwell times before crossing the potential
barrier and converging to the low efficacy state, effectively prolongating memory
durations. The increase in memory decay time occurs at higher firing rates for the
in vivo datasets and can be accurately predicted using Kramers escape rate for the
mean first passage time across a potential barrier (dashed colored lines in Fig. 7c, d,
Higgins et al. 2014).

We now turn to investigate synaptic plasticity in response to irregular pre- and
postsynaptic firing. Increasing the rate of uncorrelated, Poisson firing in both pre-
and postsynaptic neurons gives rise to two qualitatively different types of behaviors,
depending on parameters. For hippocampal slice parameters (Fig. 8a) and the in
vitro hippocampal culture dataset (Fig. 8b, green line), we observe a monotonically
increasing synaptic change vs. firing rate curve: no change at low rates and
potentiation at intermediate and high rates. In contrast, in the in vivo hippocampal
cultures dataset, the curve exhibits three regions: no changes at low firing rates,
depression at intermediate rates and potentiation at high rates, reminiscent of the
Bienenstock-Cooper-Munro (BCM) curve (Bienenstock et al. 1982, Fig. 8b, orange
line). In a balanced dataset in which Cpre = Cpost, we observe a similar behavior
provided γp is not too large (Fig. 8c).

We show in Fig. 8d–f how synaptic changes depend on any combination of pre-
and postsynaptic firing rates. We see that in the case of different pre- and postsy-
naptic firing rates, plasticity depends mostly on the source of the largest calcium
transient – presynaptic rate in the hippocampal slice dataset and postsynaptic rate
in the hippocampal culture dataset. In a balanced dataset, plasticity depends on the
sum of both pre- and postsynaptic rates, such that “iso-plasticity” lines are straight
lines with −1 slope (Fig. 8f).
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Discussion and Future Directions

The model presented here posits that synaptic changes are driven by calcium tran-
sients evoked by pre- and postsynaptic spikes through potentiation and depression
thresholds that represent in a simplified fashion protein signaling cascades leading
to LTP and LTD. In this model, plasticity outcomes can be computed analytically
as a function of model parameters for deterministic as well as stochastic protocols.
This feature allows us to fully characterize the behavior of the model in response to
standard STDP protocols and show its ability to fit experimental data in different
hippocampal preparations. Because of the properties of calcium transients, our
synaptic learning rule (as is the experimental data) is naturally sensitive to both spike
timing and firing rates of both pre- and postsynaptic neurons. The model illustrates
that the calcium trace together with the nonlinear calcium-dependent activation of
signaling cascades are potentially sufficient to explain the diversity and nonlinearity
of plasticity outcomes.

One of the advantages of the simplicity of the model is the ability to fully
characterize all the possible STDP curves that can be generated in the space of
parameters of the model. In particular, we showed that six possible behaviors are
possible if θd < θp: DP, P, PD, DPD, D, or no plasticity at all (see Fig. 4c), as
two parameters are varied (Cpost and Cpre; equivalently θd and θp can be varied
to explore those regions, see Graupner and Brunel 2012). Interestingly, all these
behaviors have been seen, either in different preparations or sometimes in the same
preparations but by different groups or by the same group with different extracellular
solutions. DP curves have been seen in hippocampal cultures (Bi and Poo, 1998)
and cortical slices (Froemke and Dan, 2002); P curves have been observed in
hippocampal cultures in the presence of dopamine (Zhang et al., 2009) as well as
in CA3 recurrent collaterals in hippocampal slices (Mishra et al., 2016). PD curves
have been observed in a cerebellar-like structure in the electric fish (Bell et al., 1997)
and corticostriatal synapses with inhibition intact (Paille et al., 2013). DPD curves
have been observed in CA3-CA1 connections in hippocampal slices (Nishiyama
et al., 2000), but D curves were also observed in the same preparation (Wittenberg
and Wang, 2006). This suggests that synapses in all these preparations may obey
the same underlying mechanistic rule but be characterized by different parameters.
This also opens the possibility of a new type of metaplasticity: by changing the size
of the calcium transients (or the depression/potentiation thresholds), synapses might
be able to qualitatively change the way they respond to specific spike timings.

The model in its most basic form yields plasticity for purely pre- or postsynaptic
activity at sufficiently high frequencies. Synaptic plasticity has been reported
to occur in various experimental preparations in protocols in which either the
pre- or the postsynaptic pathways are silent. For instance, Kato et al. (2009)
observed a VDCC-dependent LTP upon repetitive depolarization of a neuron, in
the absence of presynaptic inputs. Tigaret et al. (2016) observed LTD for purely
presynaptic stimulation. Note however that such a behavior could be prevented in
the model through a frequency-dependent attenuation of the pre- or postsynaptically
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induced calcium transients, modeling failure in neurotransmitter release, reduction
in released neurotransmitter, or failure in backpropagating consecutive action
potentials at high frequencies, respectively.

The model presented here is characterized by a linear summation of calcium
transients induced by pre- and postsynaptic spikes. It therefore does not describe
nonlinear summation due to the NMDA receptor voltage dependence, which has
been observed in most calcium imaging studies of single dendritic spines (Yuste and
Denk 1995; Koester and Sakmann 1998; Schiller et al. 1998; Nevian and Sakmann
2004, 2006; Harnett et al. 2012; but see Jia et al. 2014), and is a prominent feature
of the Shouval et al. (2002) model. In spite of this lack of nonlinearity, we showed
that the model can reproduce experimentally observed STDP curves, indicating that
supralinearity per se is not crucial for the spike-timing dependence of plasticity.
In Graupner and Brunel (2012), we also proposed a simple nonlinear extension of
the model, which was shown to be able to reproduce qualitatively standard STDP
curves, and the basic pharmacology of spike pair evoked STDP (see Section 3.1.2
of the supplementary information of Graupner and Brunel 2012). It will be a subject
of future research to investigate systematically how such a nonlinearity affects the
dependence of plasticity on spike timing and firing rate.

The model could be generalized in various directions. One of such directions is
the implementation of a Bienenstock-Cooper-Munro (BCM)-like sliding threshold
by introducing activity-dependent calcium amplitudes. For low calcium amplitudes,
the synapse model exhibits only LTD in the physiological range of firing rates.
Increasing the calcium amplitudes leads to the appearance of LTP at high fre-
quencies, with a threshold between LTD and LTP that strongly depends on Cpre
and Cpost (see example in SI of Graupner and Brunel 2012). Therefore, adding an
activity dependence to the model, such that calcium amplitudes decrease when firing
rates increase, would naturally lead to a BCM-like rule. A similar behavior can be
obtained if potentiation and depression thresholds increase with firing rates.

A second generalization would be to include the effects of various neuromod-
ulators that are known to affect synaptic plasticity (Seol et al., 2007; Pawlak and
Kerr, 2008; Zhang et al., 2009; He et al., 2015). One simple way of implementing
neuromodulation would be to add neuromodulatory dependence to specific model
parameters such as the thresholds or the plasticity rates. Focusing in particular on
dopamine, experimental results of Zhang et al. (2009) (showing a change from
DP to P in the presence of dopamine) could be reproduced by a decrease of both
potentiation and depression thresholds when dopamine concentration is increased
(see Fig. 4c). Such an implementation could potentially lead to a more biophysical
grounding of reinforcement learning theories.

We showed that plasticity is dominated by either pre- or postsynaptic activity
whenever the pre- or the postsynaptically induced calcium amplitude is much larger
than the post- or presynaptic calcium amplitude, respectively. Correspondingly,
equal pre- and postsynaptic calcium amplitudes entail equal contribution of pre-
and post activity to plasticity changes. Depending on the calcium amplitude ratio,
synaptic plasticity in different systems could implement rules mostly sensitive
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to pre-, post-, or both activities and even shift sensitivity by changing calcium
amplitude ratios in an activity-dependent manner.

In the model, each pre- or postsynaptic spike elicits a stereotypical calcium
transient on the level of an individual synapse. In the intact brain, however, other
factors such as the high-conductance state (Rudolph et al., 2005; Delgado et al.,
2010), dendritic location (Froemke et al., 2005; Tsukada et al., 2005; Letzkus
et al., 2006; Aihara et al., 2007), or inhibition (Müllner et al., 2015) – often
blocked in in vitro studies – have been shown to influence the calcium dynamics
in dendritic spines. In other words, the surrounding neural network shapes the local
plasticity rule dynamically through setting the local depolarization level and through
inhibitory inputs, in addition to the presynaptic spikes and BPAPs. Calcium-based
plasticity models are a natural choice to take such influences into account and have
been shown to capture the impact on inhibitory inputs on the dendritic location
dependence of the STDP (Cutsuridis, 2011, 2012, 2013). More generally, they are
well suited to incorporate network effects on synaptic plasticity (see e.g., Cutsuridis
and Hasselmo 2012).

We have explored how the model responds to uncorrelated pre- and postsynaptic
Poisson spike trains. Such patterns of activity represent one step toward more
realistic spike trains compared to periodic spike trains, but they still lack some of the
features of spike trains of hippocampal neurons in vivo. Spike trains of individual
neurons are significantly different from homogeneous Poisson processes for several
reasons: first, firing rates are modulated by both external variables such as spatial
location but also by prominent population rhythms such as the theta rhythm; they
also exhibit a pronounced refractory period. Second, spike trains of pairs of neurons
often exhibit pronounced correlations, which can be due either to common inputs,
or monosynaptic connections, or both. Extending the mathematical analysis of the
model to such situations will be the subject of future studies.

Our model demonstrates that the levels of extracellular calcium concentrations
should have a major impact on plasticity. A first prediction is that plasticity
seen in standard STDP protocols should be greatly reduced (and even possibly
vanish altogether) at physiological calcium concentrations, which are significantly
lower than concentrations used in in vitro studies. While to our knowledge no
study has explicitly compared plasticity results at different extracellular calcium
concentration, comparisons between different studies using different extracellular
concentrations seem to be consistent with this prediction. In hippocampal slices,
a standard low-frequency STDP protocol produces LTD for all time differences
with 2 mM extracellular calcium (Wittenberg and Wang, 2006), while it produces
the standard STDP curve with 3 mM calcium (Campanac and Debanne, 2008). A
second prediction is that induced synaptic changes should be much more stable in
the face of ongoing pre- and postsynaptic activity. These results emphasize the need
for experimental studies at physiological calcium concentrations ∼1.5 mM (Silver
and Erecińska, 1990), unlike most published studies that used concentrations in
the range 2−3 mM. Our predictions could be easily tested in slice experiments,
by providing background activity at a specified rate after the plasticity-inducing
protocol. Similar experiments have been performed in the developing Xenopus
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retinotectal system in vivo (Zhou et al., 2003), where activity-induced modifications
were shown to be erased by subsequent 10 min of spontaneous activity. Our model
would predict that in hippocampal cultures, at 3 mM calcium, induced synaptic
changes should disappear on a time scale of minutes, while at 1.5 mM calcium, they
should be stable on a time scale of ∼1 h (at the background activity of ∼1 spk/sec).

To conclude, the synaptic learning rule described here provides a minimal
biophysical framework to understand how firing patterns of pre- and postsynaptic
neurons are translated into changes of synaptic efficacy, through the dynamics
of the postsynaptic calcium concentration and calcium thresholds implementing
biochemical signaling cascades in a simplified fashion. Its simplicity makes it an
ideal candidate for investigating the effects of learning at the network level.

References

Abarbanel HDI, Gibb L, Huerta R, Rabinovich M (2003) Biophysical model of synaptic plasticity
dynamics. Biol Cybern 89(3):214–26

Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation
between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1
network. Neuroscience 145(1):80–87

Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex.
Nature 330(6149):649–652

Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and
phenomenological models of multiple spike interactions in spike-timing dependent plasticity.
Int J Neural Syst 16(2):79–97

Bagal AA, Kao JPY, Tang C-M, Thompson SM (2005) Long-term potentiation of exogenous
glutamate responses at single dendritic spines. Proc Natl Acad Sci USA 102(40):14434–14439

Bear MF, Press WA, Connors BW (1992) Long-term potentiation in slices of kitten visual cortex
and the effects of NMDA receptor blockade. J Neurophysiol 67(4):841–851

Bell C, Han V, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure
depends on temporal order. Nature 387(6630):278–81

Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike
timing-dependent plasticity in somatosensory cortex. J Neurosci 26(16):4166–4177

Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike
timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

Bi GQ, Wang HX (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity.
Physiol Behav 77(4–5):551–555

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity:
orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

Bliss T, Collingridge G (1993) A synaptic model of memory: long-term potentiation in the
hippocampus. Nature 361(6407):31–39

Bliss T, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of
the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ (2007) Effect of stochastic synaptic
and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophys-
iol 97(1):375–386

Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning rule for dendritic
integration in rat ca1 pyramidal neurons. J Physiol 586(3):779–793

Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity
in somatosensory and motor areas of the neocortex. J Neurosci 15(7 Pt 2):5324–5333



Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach 641

Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of
voltage-based STDP with homeostasis. Nat Neurosci 13(3):344–352

Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission
in the schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

Cutsuridis V (2011) GABA inhibition modulates NMDA-R mediated spike timing dependent
plasticity (STDP) in a biophysical model. Neural Netw 24(1):29–42

Cutsuridis V (2012) Bursts shape the NMDA-R mediated spike timing dependent plasticity curve:
role of burst interspike interval and GABAergic inhibition. Cogn Neurody 6(5):421–441

Cutsuridis V (2013) Interaction of inhibition and triplets of excitatory spikes modulates the
NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent
plasticity. Hippocampus 23(1):75–86

Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession
of hippocampal neuronal activity during theta oscillations. Hippocampus 22(7):1597–1621

Delgado JY, Gómez-González JF, Desai NS (2010) Pyramidal neuron conductance state gates
spike-timing-dependent plasticity. J Neurosci 30(47):15713–15725

Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the
adult and immature hippocampus. J Neurosci 13(7):2910–2918

Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy
in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2(12):1098–1105

Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in
rat barrel cortex. Neuron 27(1):45–56

Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural
spike trains. Nature 416(6879):433–438

Froemke R, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on
dendritic location. Nature 434(7030):221–225

Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in
burst-induced long-term synaptic modification. J Neurophysiol 95(3):1620–1629

Gerkin RC, Bi G-Q, Rubin JE (2010) Hippocampal microcircuits: a computational modeler’s
resource book, vol 5. Springer series in computational neuroscience. Springer, New York

Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated
signaling pathways. PLoS Comput Biol 3(11):2299–2323

Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike-timing
dependent plasticity in biophysical synapse models. Front Comput Neurosci 4: pii, 136

Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic
changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci USA 109(10):3991–
3996

Gustafsson B, Wigström H, Abraham WC, Huang YY (1987) Long-term potentiation in the
hippocampus using depolarizing current pulses as the conditioning stimulus to single volley
synaptic potentials. J Neurosci 7(3):774–780

Hahm JO, Langdon RB, Sur M (1991) Disruption of retinogeniculate afferent segregation by
antagonists to NMDA receptors. Nature 351(6327):568–570

Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by
dendritic spines enhances input cooperativity. Nature 491(7425):599–602

He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H, Kirkwood A (2015) Distinct eligibility
traces for LTP and LTD in cortical synapses. Neuron 88:528–538

Hebb D (1949) The organization of behavior: a neurophsychological theory. Wiley, New York
Higgins D, Graupner M, Brunel N (2014) Memory maintenance in synapses with calcium-based

plasticity in the presence of background activity. PLoS Comput Biol 10(10):e1003834
Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium

predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861
Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread

of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons.
Nature 357(6375):244–246



642 M. Graupner and N. Brunel

Jahr C, Stevens C (1990) A quantitative description of NMDA receptor-channel kinetic behavior.
J Neurosci 10(6):1830–1837

Jia H, Varga Z, Sakmann B, Konnerth A (2014) Linear integration of spine Ca2+ signals in layer
4 cortical neurons in vivo. Proc Natl Acad Sci USA 111:9277–9282

Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two
coincidence detectors? J Neurophysiol 88(1):507–513

Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-
timing dependent plasticity. Biol Cybern 87(5–6):373–382

Kato HK, Watabe AM, Manabe T (2009) Non-Hebbian synaptic plasticity induced by repetitive
postsynaptic action potentials. J Neurosci 29(36):11153–11160

Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and
postsynaptic activity depend on relative timing of back-propagating action potentials and
subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95(16):9596–9601

Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold
Ca(2+) signals in spines of hippocampal neurons. J Neurosci 20(5):1791–1799

Kumar A, Mehta MR (2011) Frequency-dependent changes in NMDAR-dependent synaptic
plasticity. Front Comput Neurosci 5:38

Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity
depend on dendritic synapse location. J Neurosci 26(41):10420–10429

Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative
potentiation/depression in the hippocampus. Neuroscience 8(4):791–797

Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA
block induction of hippocampal long-term potentiation. Nature 305(5936):719–721

Magee J, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in
hippocampal neurons. Science 275(5297):209–213

Majewska A, Brown E, Ross J, Yuste R (2000) Mechanisms of calcium decay kinetics in
hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck
in biochemical compartmentalization. J Neurosci 20(5):1722–1734

Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for
potentiation of hippocampal synaptic transmission. Science 242(4875):81–84

Markram H, J. Lübke, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

Mishra RK, Kim S, Guzman SJ, Jonas P (2016) Symmetric spike timing-dependent plasticity
at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nat Com-
mun 7:11552

Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and LTD is not determined
solely by instantaneous calcium concentration: an essential involvement of a temporal factor.
Eur J Neurosci 14(4):701–708

Mooney R, Madison DV, Shatz CJ (1993) Enhancement of transmission at the developing
retinogeniculate synapse. Neuron 10(5):815–825

Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and
blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5.
Nature 319(6056):774–776

Müllner FE, Wierenga CJ, Bonhoeffer T (2015) Precision of inhibition: dendritic inhibition by
individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time.
Neuron 87(3):576–589

Nabavi S, Kessels HW, Alfonso S, Aow J, Fox R, Malinow R (2013) Metabotropic NMDA receptor
function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci
USA 110(10):4027–4032

Neveu D, Zucker RS (1996) Long-lasting potentiation and depression without presynaptic activity.
J Neurophysiol 75(5):2157–2160

Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and back-
propagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory
barrel cortex. J Neurosci 24(7):1689–1699



Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach 643

Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci 26(43):11001–11013

Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity
and input specificity of synaptic modification. Nature 408(6812):584–588

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-
activated channels in mouse central neurones. Nature 307(5950):462–465

O’Connor DH, Wittenberg GM, Wang SS-H (2005) Dissection of bidirectional synaptic plasticity
into saturable unidirectional processes. J Neurophysiol 94(2):1565–1573

O’Connor DH, Wittenberg GM, Wang SS-H (2005) Graded bidirectional synaptic plasticity is
composed of switch-like unitary events. Proc Natl Acad Sci USA 102(27):9679–9684

Paille V, Fino E, Du K, Morera-Herreras T, Perez S, Kotaleski JH, Venance L (2013) GABAergic
circuits control spike-timing-dependent plasticity. J Neurosci 33(22):9353–9363

Pawlak V, Kerr JND (2008) Dopamine receptor activation is required for corticostriatal spike-
timing-dependent plasticity. J Neurosci 28(10):2435–2446

Petersen C, Malenka R, Nicoll R, Hopfield J (1998) All-or-none potentiation at CA3-CA1
synapses. Proc Natl Acad Sci USA 95(8):4732–4737

Pfister J-P, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity.
J Neurosci 26(38):9673–9682

Risken H (1996) The Fokker-Planck equation, 2nd edn. Springer, Berlin/Heidelberg
Rubin JE, Gerkin RC, Bi G-Q, Chow CC (2005) Calcium time course as a signal for spike-timing-

dependent plasticity. J Neurophysiol 93(5):2600–2613
Rudolph M, Pelletier JG, Paré D, Destexhe A (2005) Characterization of synaptic conductances

and integrative properties during electrically induced EEG-activated states in neocortical
neurons in vivo. J Neurophysiol 94(4):2805–2821

Sabatini B, Svoboda K (2000) Analysis of calcium channels in single spines using optical
fluctuation analysis. Nature 408(6812):589–593

Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines.
Neuron 33(3):439–452

Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic
spines during associative pre- and postsynaptic activation. Nat Neurosci 1(2):114–118

Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, Huganir RL, Lee H-K, Kirkwood
A (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity.
Neuron 55(6):919–929

Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of
spike time-dependent plasticity curves. J Neurophysiol 93(2):1069–1073

Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent
bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99(16):10831–10836

Shouval HZ, Wang SS-H, Wittenberg GM (2010) Spike timing dependent plasticity: a consequence
of more fundamental learning rules. Front Comput Neurosci 4: pii, 19
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Simplified Compartmental Models
of CA1 Pyramidal Cells
of Theta-Modulated Inhibition Effects
on Spike Timing-Dependent Plasticity

Vassilis Cutsuridis

Overview

Spike timing-dependent plasticity (STDP) is a causal form of Hebb’s law of synaptic
plasticity, where the precise timing of the presynaptic and postsynaptic action
potentials determines the sign and magnitude of synaptic modifications (Bell et al.
1997; Bi and Poo 1998; Magee and Johnston 1997; Markram et al. 1997; Debanne
et al. 1998; Sjostrom et al. 2001; Yao and Dan 2001; Zhang et al. 1998). In their
pioneering study, Bi and Poo (1998) showed that the shape of the STDP curve in the
in vitro hippocampal network has an asymmetric shape with the largest LTP/LTD
value at �τ = tpost − tpre = +/−10 ms, respectively. New experimental evidence
has shown that the STDP asymmetry can sometimes change with the target and the
location of the synapse (Tzounopoulos et al. 2004; Froemke et al. 2005; Letzkus et
al. 2006; Caporale and Dan 2009) and can be dynamically regulated by the activity
of adjacent synapses (Harvey and Svoboda 2007; Caporale and Dan 2009) or by the
action of neuromodulators (Seol et al. 2007; Caporale and Dan 2009). Nishiyama et
al. (2000) reported that “ . . . the profile of STDP induced in the hippocampal CA1
network with inhibitory interneurons is symmetrical for the relative timing of pre-
and postsynaptic activation.” Optical imaging studies in CA1 revealed that the shape
of the STDP curve depends on the location on the stratum radiatum (SR) dendrite.
A symmetric STDP profile was observed in the proximal-to-the-soma SR dendrite
and an asymmetric STDP profile in the distal-to-the-soma one (Tsukada et al. 2005;
Aihara et al. 2007). They suggested that this change in the shape of the STDP curve
(i.e., from symmetry to asymmetry and vice versa) may be due to inhibition in the
proximal SR dendrites (Tsukada et al. 2005). The functional consequences of such
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a change in the STDP temporal kernel dynamics are of great importance in neural
network dynamics. A symmetrical STDP profile with short temporal windows may
serve as a coincidence detector between the incoming inputs and plays a functional
role in heteroassociation of memories (Cutsuridis et al. 2010). On the other hand an
asymmetric STDP profile with broad temporal windows may play a role in chunking
of ordered items in sequence learning (Hayashi and Igarashi 2009).

Up-to-now very few studies (Cutsuridis 2010, 2011, 2012, 2013) have inves-
tigated the inhibitory factors (frequency, strength, timing, etc.) that are responsible
for such a change in the shape in the STDP temporal kernel and the conditions under
which a transition from asymmetrical STDP kernel to a symmetrical STDP kernel
is possible. In this chapter, I will present two simplified compartmental models of
CA1 pyramidal cells in order to investigate the role of theta-modulated inhibition on
the shape, sign, and magnitude of the STDP kernel in CA1 pyramidal cell proximal
dendrites.

The Model

CA1 Pyramidal Cell

A two-compartment (soma and dendrite) CA1 pyramidal cell model is presented
(Fig. 1a). The somatic compartment contains the following ionic currents: a sodium
(Na+) current, a delayed rectifier K+ current, an A-type K+ current, a calcium-
activated after-hyperpolarizing (AHP) K+ current, and a HVA L-type CA2+ current.
The dendritic compartment contains the following ionic currents: a sodium (Na+)
current, a delayed rectifier K+ current, an A-type K+ current, and a HVA L-type
Ca2+ current. AMPA, NMDA, and GABAA synapses were present only in the
dendrite.

In the model, calcium enters the neuron through (1) voltage-gated calcium
channels (VGCCs) and (2) NMDA channels located at the SR dendrite. VGCCs
are activated by the arrival of back-propagating action potentials (BPAPs) initiated
in the soma by excitatory postsynaptic spikes. The NMDA channels are activated
by the synergistic action of excitatory and inhibitory postsynaptic potentials and
sufficient membrane potential depolarization due to the BPAP, which removes the
magnesium block and allows calcium to enter the cell.

Plasticity is measured by a deterministic Ca2+ dynamics model (Bi and Rubin
2005; Rubin et al. 2005). The Ca2+ dynamics model consists of three detectors
measuring the instantaneous calcium level and its time course in the dendrite and
changes the strength of the synapse accordingly (Fig. 1b). Its detection system
consists of (1) a potentiation detector (P), which detects calcium levels above a
high threshold (4 μM) and triggers LTP; (2) a depression filter (D), which detects
calcium levels that exceeds a low threshold level (0.6 μM) and triggers LTD; and



Simplified Compartmental Models of CA1 Pyramidal Cells of Theta-. . . 647

Fig. 1 (a) CA1 pyramidal cell. A presynaptic spike generates an EPSP at the dendrite which is
paired with a back-propagating action potential generated by current stimulation of the soma. (b)
Synaptic plasticity at the dendritic synapse (circled region) is governed by a model calcium detector
system. P, potentiation detector; A, depression detector; B, Intermediate element; D, depression
filter activated by B and vetoed by V; V, veto detector; W, synaptic weight. P and D compete to
influence the plasticity variable W, which serves as a measure of the sign and magnitude of synaptic
strength changes from the baseline

Table 1 Parameter values of all ionic and synaptic currents

Symbol Value Symbol Value Symbol Value Symbol Value

gL 0.1 gcoup 1.125 T 23 η 6
gNa,s 30 VAMPA,NMDA 0 Δτ Variable ξ 0.001
gNa,d 7 VGABA −75 ΔτGABA Variable λ 0
gmAHP,s 25 VNa 60 Period 300 q 1
gKA,s 75 VCa 140 ζ 72 s1 0
gKA,d 12 VK −80 ζ 2 0.11 s2 40
gKdr,s 14 VL −70 ζ 3 2 s3 3.6
gKdr,d 0.867 VCa,NMDA 140 ζ 4 64 NMDArate 2
gCaLs 7 χ0,s 0.05 ζ 5 1 ndf 10
gCaLd 25 χ0,d 0.07 ϕs 0.1 nds 45
gNMDA 0.3 Caτ 1000 ϕd 0.1 Buff 0
gAMPA 0.05 Ca 2 βs 0.083 κ 7
gCa,NMDA 22 Mg 2 βd 0.083 ζ p 30
gGABA 0 qmb 0.28 qma 0.00048

(3) a veto detector (V), which detects levels exceeding a mid-level threshold (2 μM)
and triggers a veto of the model’s depression components.

The detailed mathematical formalism of the model and its detector system can
be found in the Appendix. The parameters of all ionic and synaptic currents used in
the model are listed in Table 1. The parameters of the calcium detector system are
listed in Table 2.
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Table 2 Parameters in the calcium detector equations

Symbol Value Symbol Value Symbol Value Symbol Value

αw 0.8 τA 500 θc 2 numb 1
βw 0.6 τB 5 θd 2.6 numc 1
a 0.3 τC 10 θe 0.55 numd 1
d 0.05 τD 250 σ c −0.05 nume 5
pa −0.1 τE 40 σ d −0.01 CmHC 4
pd −0.002 cp 5 σ e −0.02 CmHN 4
τW 500 cd 4 numa 10 CnHC 0.6

CnHN 3

Inputs

Single Spike Inputs

To simulate the experimental spike-pair STDP protocol, two excitatory single spike
inputs to the soma and the dendrite are generated by two spike generators. The
dendritic spike generator is modelled as

Fdend = H (t − 1) · (H (sin (2π · (t − 2) /T )) · (1 − H (sin (2π · (t − 1) /T ))))

(1)

where T is the period of oscillation and H( ) is the Heaviside function. The somatic
spike generator is modelled as

Fsoma = H (t − 1) · (H (sin (2π · (t − 2 − �τ) /T ))

· (1 − H (sin (2π · (t − 1 − �τ) /T )))) (2)

where Δτ is the interval between the dendritic spike and the somatic spike. In
all spike-pair (doublet) experiments, the pairing of the two excitatory inputs was
repeated every 300 ms (3.5 Hz), typically for 5 s. The interstimulus interval Δτ

between the pre- and postsynaptic spikes was variable ranging from −100 to 100 in
increments of 10 ms, unless stated otherwise.

Excitatory Dendritic Bursts and Somatic Spikes

To simulate the experimental STDP protocol where a dendritic burst of spikes is
paired with a somatic spike, two spike generators are used. The dendritic burst
generator is modelled as

Fburst (t) = F1(t) + F2(t) + F3(t) (3)
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where

F1(t) = H (t − 1) · (H (sin (2π · (t − 2) /T )) · (1 − H (sin (2π · (t − 1) /T )))) ,

F2(t) = H (t − 1) · (H (sin (2π · (t − 2 − bISI) /T ))

· (1 − H (sin (2π · (t − 1 − bISI ) /T ))))

and

F3(t) = H (t − 1) · (H (sin (2π · (t − 2 − 2 · bISI) /T ))

· (1 − H (sin (2π · (t − 1 − 2 · bISI) /T ))))

where bISI is the interspike interval within a burst, T is the period of oscillation, and
H( ) is the Heaviside function.

The somatic spike generator is modelled as

Fspike(t) = H (t − 1) · (H (sin (2π · (t − 2 − �τ) /T ))

· (1 − H (sin (2π · (t − 1 − �τ) /T )))) (4)

where �τ is the interval between the first spike of the burst and the somatic spike. In
all experiments the pairing of the two excitatory inputs was repeated every 300 ms
(3.5 Hz), typically for 5 s. The interstimulus interval �τ between the dendritic and
somatic stimuli was variable ranging from −180 ms to 180 ms in increments of
5 ms, unless stated otherwise.

Inhibitory Inputs

Inhibitory inputs to the dendrite are modelled as

FGABA(t) =
11∑

i=1

FGABAi
(t) (5)

where

FGABAi
(t) = −aai · H (t − 1)

·
(
H (sin (2π · (t − 2 + off set − (i − 1) · �τGABA) /T ))

· (1 − H (sin (2π · (t − 1 + off set − (i − 1) · �τGABA) /T )))
)

where offset is the relative timing between the onset of the GABA spike train and
the presynaptic (dendritic)-postsynaptic (somatic) interstimulus interval, �τGABA is
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the GABA interspike interval, and aai is either 1 or 0 depending on the duration of
the interval between the dendritic and the somatic stimuli used.

Results

Model 1: Single Spikes Driving the Soma and Dendrite of CA1
Pyramidal Cell

Pairing of a Dendritic and a Somatic Spike in the Absence of Inhibition

When a presynaptic (dendritic) spike was paired with a postsynaptic (somatic) spike
in the absence of inhibition then an asymmetric STDP kernel appeared with the
largest LTP and LTD values at +5 ms and at −10 ms, respectively (Bi and Poo
1998). The saturated synaptic weight values (W∞) as a function of the interstimulus
interval, �τ = tpost – tpre, are depicted in Fig. 2. �τ is the interstimulus interval
between the presynaptic dendritic spike and the postsynaptic somatic spike. For
each �τ , the pre- and postsynaptic pairing was repeated every 300 ms (3.5 Hz) until
saturation, typically for 5 s. W∞ was measured as the saturated value of the readout
variable W at t = 5 s. In the case where the saturated W oscillated between two
values, W∞ was the mean value of these two values. Simulations were performed
with �τ ranging from −100 ms to 100 ms in increments of 5 ms. The area of
the LTP region (�τ > 0) is smaller than the area of the LTD region (�τ < 0), as
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Fig. 2 (a) Experimentally observed STDP temporal kernel as a function of spiking timing. Spike
timing was defined as the time interval between the onset of the EPSP and the peak of the
postsynaptic action potential during each cycle of repetitive stimulation (reprinted with permission
from Bi and Poo 1998). (b) Simulated STDP kernel from spike-pair simulations in the absence of
GABAA. W∞ is the saturated value of the readout variable W (see Fig. 1) measured at the end of
each simulation run multiplied by 100 (%). �τ (tpost − tpre) ranges from −100 ms to 100 ms in
increments of 5 ms
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Fig. 3 Postsynaptic calcium time courses in the absence of inhibition. Times shown are measured
relative to the onset of the stimulation experiments. (a) Pre-10-post case. (b) Pre-30-post case.
(c) Post-10-pre case. (d) Post-30-pre case. (Reprinted with permission from Cutsuridis 2011)

it has been experimentally observed (Bi and Poo 1998). At interstimulus intervals
�τ > +40 ms and �τ < −70 ms W∞ approached zero.

In the paired pre-10-post-stimulation protocol, where a presynaptic (dendritic)
stimulation was followed 10 ms later by a postsynaptic (somatic) stimulation, a large
calcium influx through the NMDA channels is evident in the SR dendrite due to the
removal of the magnesium block by the BPAP (Fig. 3a). In the pre-30-post scenario,
30 ms after the presynaptic (dendritic) stimulation a BPAP arrived at the dendrite
causing removal of the magnesium block from the NMDA channels. By then though
more and more NMDA channels were inactivated and hence the calcium influx were
greatly reduced (compare peak calcium level in Fig. 3a, b). The peak calcium level
continued to decrease as the pre-post interstimulus interval was lengthened.

In the post-10-pre scenario (see Fig. 3c), the calcium influx came through the
VGCCs producing a slight amplitude increase in calcium influx almost immediately,
followed by a second calcium with a lower peak. The valley that separated the
two peaks was above the 0.6 μM threshold, but below the 2 μM threshold,
which triggered the depression (D) detector, but not the veto (V) detector and



652 V. Cutsuridis

produced LTD. In the post-30-pre case, the two calcium level peaks were more
distinguishable, because of the 30 ms delay between the post-stimulation and the
pre-stimulation (see Fig. 3d). The valley that separated them dropped below the
0.6 μM threshold causing a much smaller LTD. The results summarized in this
section have been published before in Cutsuridis 2010, 2011, 2012, and 2013.

Theta-Modulated Inhibitory Single Spikes Have a Minimal Effect on Shape
of the Asymmetric STDP Curve

Experimental evidence has indicated that a symmetric STDP kernel is observed in
the proximal-to-the-soma dendrites of CA1 pyramidal cells, whereas an asymmetric
STDP kernel is observed in the distal-to-the-soma ones (Tsukada et al. 2005). In the
same study authors suggested that inhibition maybe a factor of this kernel shape
change (Tsukada et al. 2005). In this section and the next one I will present results
of the effects of inhibition on the STDP kernel shape.

I first examined the effect of a single presynaptic (dendritic) GABA spike
slid at different temporal delays with respect to the excitatory pre- (dendritic)
and postsynaptic (somatic) stimulation (see insets of Fig. 4 for input presentation
details). Both inhibitory and excitatory somatic and dendritic stimulations were
repeated every 300 ms (3.5 Hz) for about 5 s. Figure 4 depicts the saturated synaptic
weight values (W∞) with respect to the interstimulus interval �τ in the presence
of a single GABA spike. As before, �τ is the interstimulus interval between the

Fig. 4 Saturated synaptic weight values (W∞) as a function of interstimulus interval �τ = tpost
− tpre in the presence/absence of a single inhibitory spike of different strengths (reprinted with
permission from Cutsuridis 2011). �t is the time interval between the inhibitory spike and the
excitatory spike pair. (a) �t = 0 ms. (b) �t = 5 ms. (c) �t = 95 ms. (d) �t = −10 ms. (e)
�t = 110 ms
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presynaptic and postsynaptic stimulation. Simulations were performed with �τ

ranging from −100 to 100 in increments of 10 ms. An asymmetrical STDP kernel
is shown with the largest LTP value at 10 ms and the largest LTD value at −10 ms.
As the inhibitory strength (conductance) is increased (gGABA = 0.1 mS/cm2 to
0.2 mS/cm2), the STDP kernel shape is unaffected (asymmetry is preserved), but
either the peak LTP or the peak LTD is reduced depending on temporal delay
between the inhibitory spike and excitatory spike pair.

Frequency and Timing Effects of Theta-Modulated Inhibitory Bursts
on the Shape of the STDP Curve

I next examined the effects of an inhibitory burst (spike train) at different interspike
intervals (20 ms (50 Hz; low gamma) or 10 ms (100 Hz; high gamma)) (see Fig. 5).
The inhibitory spike train was bounded by the onsets of the presynaptic (dendritic)
and postsynaptic (somatic) excitatory spikes (i.e., no temporal delay (offset)). The
excitatory pre- and postsynaptic spike pair and the inhibitory burst were repeated
every 300 ms (3.5 Hz) for about 5 s. It is evident from Fig. 5 that the STDP kernel
shape depends on the frequency and strength of inhibition. At low gamma (50 Hz)
inhibition, the asymmetrical STDP kernel shape is preserved, but the peak LTP and
LTD values are reduced as the strength (conductance) of inhibition increases (see
Fig. 5a). At high gamma (100 Hz) inhibition, the STDP shape becomes symmetric
without any LTD regions as the strength of inhibition is increased (see Fig. 5b).

Then I examined the effect of inhibition on the STDP kernel shape when
inhibition is presented at various temporal delays (offsets) with respect to the
excitatory spike pair. The desired, in line with the experimental evidence (Tsukada
et al. 2005; Aihara et al. 2007) symmetric with a single LTP region and two LTD
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Fig. 5 Saturated synaptic weight values (W∞) as a function of the interstimulus interval �τ .
�τ = tpost − tpre and ranges from −100 to 100 in increments of 10 ms (reprinted with permission
from Cutsuridis 2011). (a) A low gamma (50 Hz) inhibitory burst bounded by �τ . (b) A high
gamma (100 Hz) inhibitory burst bounded by �τ
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Fig. 6 (a)–(d) Saturated synaptic weight values (W∞) as a function of �τ in the presence of
theta-modulated low gamma (50 Hz) burst with different temporal delays (offsets) and strengths.
(Reprinted with permission from Cutsuridis 2011)

flanks, STDP kernel is evident only when the inhibitory burst (spike train) overlaps
with (Fig. 6c) or is presented right after (Figs. 6d and 7d) the second spike of the
excitatory pair. The maximum LTP value is at +10 ms, whereas the two LTD peaks
are at −10 ms and + 50 ms, respectively.

Model 2: Interaction of Theta-Modulated Dendritic Bursts
and Somatic Spikes in a CA1 Pyramidal Cell

Pairing of a Dendritic Burst and a Somatic Spike in the Absence
of Inhibition

This stimulation protocol consisted of 16 sets of a dendritic burst and a somatic
spike repeated every 300 ms (3.5 Hz) for about 5 s. The dendritic burst consisted
of three spikes with variable interspike interval (ISI) (5 ms or 10 ms). Each pair
was characterized by �τ = tpostSpike – tpreBurst, where tpreBurst is the first spike of
the presynaptic (dendritic) burst and tpostSpike is the time of postsynaptic (somatic)
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Fig. 7 (a)–(d) Saturated synaptic weight values (W∞) as a function of �τ in the presence of
theta-modulated high gamma (100 Hz) burst with different temporal delays (offsets) and strengths.
(Reprinted with permission from Cutsuridis 2011)

spike. �τ was positive only when the dendritic burst preceded the somatic spike and
negative when otherwise. The saturated synaptic weight values (W∞) at the dendrite
as a function of the interstimulus interval, �τ = tpost − tpre, and burst interspike
interval (bISI) are depicted in Fig. 8a. As before W∞ is measured at the saturated
value of the readout variable W at t = 5 s. When the saturated W is oscillating
between two values, then W∞ is the mean of these two values. Simulations were
performed with �τ ranging from −180 ms to 180 ms in increments of 5 ms. An
asymmetric STDP kernel is shown with the largest LTP and LTD values at +15 ms
and at −5 ms, respectively, when bISI is 5 ms. As bISI is increased to 10 ms, the
shape of the STDP kernel remains asymmetric, but shifts to the right with the peak
LTP value increased by 0.14 units and at +40 ms and the lowest LTP value increased
by 0.1 units and set at 0 ms. The STDP curve levels off at 0.4 units and never decays
back to zero even at �τ = ±180 ms. This is due to the repetition period of the
pre-postsynaptic excitatory stimulation (every 300 ms), which allows the effects of
the postsynaptic spike at �τ > 150 ms to interact with the effects of the presynaptic
burst at the start of next pre-post excitatory stimulation.

In the preBurst-(40 ms)-postSpike case, the peak LTP value is larger when the
bISI is 10 ms than when bISI is 5 ms (data not shown, but see Fig. 6b in Cutsuridis
(2012)). This increase in potentiation is due to a larger amount of Ca2+ influx
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Fig. 8 (a) Simulated STDP temporal kernel as a function of burst interspike interval (burst ISI)
in the absence of inhibition (reprinted with permission from Cutsuridis 2012). �τ (tpost – tpre) is
the interstimulus interval between the first spike of the dendritic burst and the somatic spike. �τ

ranges from −180 ms to 180 ms in increments of 5 ms. (Inset-left) postSpike-preBurst scenario,
where somatic single spike precedes the dendritic burst, comprised of three spikes, by �τ . �τ

takes values from −5 ms to −180 ms in increments of 5 ms. The pairing repeats every 300 ms
for about 5 s. (Inset-right) preBurst-postSpike scenario, where a dendritic burst precedes the
somatic spike by �τ . �τ takes values from 0 ms to +180 ms in increments of 5 ms. The pairing
repeats every 300 ms for about 5 s. (b) Bottom: Graphical representation of preBurst-(+40 ms)-
postSpike stimulation paradigm in the absence of inhibition (reprinted with permission from
Cutsuridis 2012). Top: Time course of Ca2+ concentration (μM) as a function of burst interspike
intervals (ISIs) (5 ms and 10 ms) in the absence of inhibition in the preBurst-(+40 ms)-postSpike
scenario (reprinted with permission from Cutsuridis 2012). (c) Bottom: Graphical representation
of postSpike-(−10 ms)-preBurst stimulation paradigm in the absence of inhibition (reprinted with
permission from Cutsuridis 2012). Top: Time course of Ca2+ concentration (μM) as a function
of burst interspike intervals (ISIs) (5 ms and 10 ms) in the absence of inhibition in the postSpike-
(−10 ms)-preBurst scenario. (Reprinted with permission from Cutsuridis 2012)

through the NMDA channel when bISI is 10 ms, thus allowing the time course of
its concentration to stay above the potentiation (4 μM) and veto (2 μM) thresholds
for a longer period of time (approximately 70 ms) (see Fig. 8b).
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In the case of bISI at 5 ms, the calcium influx through the NMDA channel is
greatly reduced, followed by a second calcium pulse with a higher peak 40 ms
after the burst. The NMDA calcium pulse stays above the 2 μM veto threshold
for a small period of time (approximately 10 ms) and subsequently decays to values
below this threshold, thus triggering for 2–3 ms the depression (D) detector, which
counteracts any previously triggered potentiation. The D response is very brief and
it is followed by a calcium influx through the VGCC, which cause a second calcium
pulse to peak above the 4 μM threshold, which re-potentiates the synapse and causes
the synaptic weight to saturate to 0.27 units (data not shown, but see Fig. 6b in
Cutsuridis (2012)).

In the postSpike-(−10 ms)-preBurst case, the calcium influx is greatly reduced
due to a different time course than in the previous case. The first calcium spike
comes from the VGCC and peaks under the 2 μM threshold, thus triggering the
depression (D) detector (see Fig. 8c). The second calcium spike comes from the
NMDA channels at the dendrite which opened by the dendritic burst. When bISI is
5 ms, the second calcium spike peaked and stayed above the 2 μM threshold for
less than 5 ms and then decayed to zero. When bISI is 10 ms, the second calcium
spike peaked at 2.5 μM and stayed above the 2 μM threshold for a longer period of
time, thus triggering a larger veto response than before (data not shown). I remind
the reader that the veto (V) response inhibits and counteracts the response of the
depression (D) detector. Hence, the D response is larger in the 5 ms bISI case than
in the 10 ms bISI one. Thus, the synaptic weight (W) will saturate to a more positive
value when bISI is 10 ms than when bISI is 5 ms.

Pairing of a Dendritic Burst and a Somatic Spike in the Presence
Inhibition: Effects of Inhibition Strength and Burst Interspike Interval

In this stimulation protocol, an inhibitory spike train with 10 ms (100 Hz) interspike
interval, �τGABA, was repeated every 300 ms (3.5 Hz) for about 5 s (a total of 16
spike trains). Each inhibitory spike train was bounded by the onset and offset of the
dendritic burst-somatic spike stimulation. As the strength of inhibition is increased,
then the shape of the STDP kernel transitions from asymmetry to symmetry (see
Fig. 9). When gGABA is 0.1 mS/cm2, then the shape of the STDP kernel resembles
a Mexican hat consisting of a peak-positive phase at +10–15 ms when bISI is
5 ms and + 10 ms when bISI is 10 ms and two peak-negative regions at −5 ms
and + 65 ms when bISI is 5 ms and at −5 ms and + 80 ms when bISI is 10 ms.
As the strength of inhibition increases (gGABA = 0.2 mS/cm2), then the shape of the
STDP kernel becomes fully symmetric with flat negative tails and a single positive
region. When bISI is 5 ms, then the peak LTP value is slightly reduced as gGABA is
increased, but the peak LTD value remains unaffected (see Fig. 9a). Similarly, when
bISI is 10 ms, then the peak LTP value is slightly reduced as gGABA increases and is
shifted rightward by about 15 ms. A similar reduction is observed for the peak LTD
value when gGABA increases (see Fig. 9b).
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Fig. 9 Saturated synaptic weight (W∞) values as a function of interstimulus time interval,
�τ = tpostSpike − tpreBurst (reprinted with permission from Cutsuridis 2012). �τ ranges from
−180 ms to 180 ms in increments of 5 ms. An 100 Hz GABA spike train is present within �τ . (a)
Burst ISI is set to 5 ms. (b) Burst ISI is set to 10 ms

Discussion and the Future

The models presented in this chapter aimed to understand the conditions under
which the sign, magnitude, and shape of the STDP temporal kernel change in
the proximal-to-the-soma dendrites of CA1 pyramidal cells. Experimental evidence
has shown that the profile of the STDP induced in the hippocampal CA1 network
with inhibitory interneurons depends on the dendritic location and has a symmetric
profile in the proximal-to-the-soma dendrite and an asymmetric one in the distal-
to-the-soma one (Tsukada et al. 2005; Aihara et al. 2007). Further experimental
evidence has shown that the switch between symmetrical and asymmetrical STDP
operational modes is due to the presence of GABAergic inhibition in the proximal-
to-the-soma dendrites (Tsukada et al. 2005). In the models, the dendrites were
stimulated by either single spike or more complex (bursts) inputs. The parameters
that varied in order to investigate the effects of inhibition on the STDP profile
included input frequency (low gamma inhibition vs high gamma inhibition),
strength of inhibition, and relative timing of inhibition with respect to the excitatory
pre- and postsynaptic stimulation.

The central observation is that spike timing-dependent plasticity indeed under-
goes a switch in its operational mode (asymmetry to symmetry), which is due to
GABAA inhibition in the proximal-to-the-soma dendrite of a CA1 pyramidal cell,
as it has been experimentally observed (Nishiyama et al. 2000; Tsukada et al. 2005;
Aihara et al. 2007). In addition the models made further predictions:

• Theta-modulated inhibitory single spikes have a minimal effect on shape of the
STDP curve.

• Burst ISI, strength (conductance value), frequency, and relative timing of theta-
modulated inhibition with respect to theta-modulated excitatory spike pairs are
the main factors for asymmetry-to-symmetry change in the shape of STDP curve
in the dendrites of CA1 pyramidal cells.



Simplified Compartmental Models of CA1 Pyramidal Cells of Theta-. . . 659

• In contrast to experimental evidence (Tsukada et al. 2005; Aihara et al. 2007),
the LTP peak value of the symmetric STDP curve is at ±10 ms, whereas the two
LTD windows are at -10 ms and + 40 ms.

Several extensions to the basic idea of how inhibition affects the STDP profile
resulting from a single event of a pre- and postsynaptic spike pairing deserve
consideration. The dendritic trees of the CA1 pyramidal cells are extensive. An
interesting idea is how STDP is dynamically regulated by adjacent synapses on
the dendrites of CA1 pyramidal cells. Experimental evidence has shown that both
distal and proximal SR dendrites receive excitatory inputs from CA3 cells as well as
inhibitory inputs from local CA1 interneurons. An additional excitatory input drives
the lacunosum-moleculare (LM) dendrites of the CA1 pyramidal neuron. Pairings
of the SR and LM presynaptic excitatory and inhibitory inputs with the postsynaptic
somatic activation will provide us with a more realistic picture of STDP in the SR
dendrites.

Similarly, the same dendrites are also targeted by a number of neuromodulators
such as acetylcholine or dopamine (Cobb and Lawrence 2010). Recent experimental
evidence has shown that in the hippocampus, application of cholinergic agonists to
slices in vitro facilitates LTP (Auerbach and Segal 1996; Blitzer et al. 1990). Shinoe
et al. (2005) reported tetanic stimulation of hippocampal neurons in the presence
of ACh-enhanced LTP. Similar facilitation is observed when medial septum is
stimulated in vivo (Galey et al. 1994; Markevich et al. 1997). Differential effects
of subtype-specific nicotinic AChR agonists have been reported in early and late
hippocampal LTP (Kroker et al. 2011). The cholinergic drive to the hippocampus
seems to be important in the control of the LTP induction threshold (Ovsepian
et al. 2004; Boddeke et al. 1992). Sugisaki et al. (2011) showed that when
spike-pair stimuli were applied during the muscarinic induction of a slow EPSP
followed by repetitive stimulation in the stratum oriens, then an increase in ACh
concentration following application of the cholinesterase inhibitor eserine resulted
in LTP facilitation and abolition of LTD. Application of high ACh concentration
completely suppressed STDP, LTP, and LTD. Application of atropine suppressed
STDP.

Some of these issues are investigated by detailed compartmental models of CA1
pyramidal cells presented in next chapter by Saudargiene and Graham.

Appendix

The somatic (s) and dendritic (d) compartments of the pyramidal neuron obey the
following current balance equations:

Cm

dVs

dt
= IL + INa,s + IKdr,s

+ IA,s + Im,AHAP,s + ICaL,s + Icoup + Iin · Fpost

(6)
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Cm

dVd

dt
= IL + INa,d + IKdr,d

+ IA,d + Im,AHAP,d + ICaL,d

+ Icoup + IAMPA + INMDA + IGABA (7)

where IL is the leak current, INa is the sodium current, IKdr is the delayed rectifier
potassium current, IA is the type-A potassium current, Im,AHP is the medium Ca2+-
activated K+ after-hyperpolarization current, ICaL is the L-type Ca2+ current, Icoup

is the electrical coupling between compartments, Iin is the injected current, IAMPA is
the AMPA current, INMDA is the NMDA current, and IGABA is the GABA current.

The sodium current at the soma is described by

INa,s = −gNa,s · M2
Na,s · HNa,s · (Vs − VNa) (8)

where gNa,s is the maximal conductance of the Na+ current, MNa,s and HNa,s are the
activation and inactivation constants, and VNa is the reversal potential of the Na+
current. The activation and inactivation constants at the soma are given by

MNa,s = αM,s (Vs) /
(
αM,s (Vs) + βM,s (Vs)

)

αM,s (Vs) = 0.32 · (−46.9 − Vs) / (exp ((−46.9 − Vs) /4.0) − 1.0)

βM,s (Vs) = 0.28 · (Vs + 19.9) / (exp ((Vs + 19.9) /5.0) − 1.0)

H ′
Na,s = αH,s (Vs) − (

αH,s (Vs) + βH,s (Vs)
)

· HNa,s

αH,s (Vs) = 0.128 · exp ((−43 − Vs) /18)

βH,s (Vs) = 4/ (1 + exp ((−20 − Vs) /5)

The sodium current at the dendrite is described by

INa,d = −gNa,d · M2
Na,d · HNa,d · DNa,d · (Vd − VNa) (9)

where

M ′
Na,d = (

M∞Na,d
− MNa,d

)
/τMNa,d

M∞Na,d = 1/ (1 + exp ((−Vd − 40) /3))

τMNa,d = max (0.1, 0.05)

H ′
Na,d = (

H∞Na,d
− HNa,d

)
/τHNa,d
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H∞Na,d = 1/ (1 + exp ((Vd + 45) /3))

τHNa,d = 0.5

D
′
Na,d = (

D∞Na,d − DNa,d
)
/τDNa,d

D∞Na,d = (1 + natt · exp ((Vd + 60) /2)) / (1 + exp ((Vd + 60) /2)) τDNa,d

= max (0.1, (0.00333 · exp (0.0024 · (Vd + 60) · Q)) / (1 + exp (0.0012

· (Vd + 60) · Q)))

Q = 96480/ (8.315 · (273.16 + T))

where T is the temperature in Celsius and natt is the Na+ attenuation.
The type-A K+ current at the soma is given by

IKA,s = −gKA,s · As · Bs · (Vs − VK) (10)

where gKA,s is the maximal conductance, Vk is the reversal potential, and As and
Bs are the activation and inactivation constants. The activation and inactivation
constants are given by

A′
s = (

A∞s − As

)
/τAs

A∞s = 1/
(
1 + Aα,s

)

Aα,s = exp (0.001 · σ (Vs) · (Vs − 11) · Q)

τAs = max
(
Aβ,s/

((
1 + Aα,s

)
· QT · 0.05

)
, 0.1

)

Aβ,s = exp (0.00055 · Q · (Vs − 11) · σ (Vs))

σ (Vs) = −1.5 − (
1/

(
1 + exp

((
Vs + σp

)
/5

)))

QT = 5((T−24)/10)

B ′
s = (

B∞s − Bs

)
/τBs

B∞s = 0.3 + 0.7/ (1 + exp (0.02 · (Vs + 63.5) · Q))

τBs = κ · max (0.11 · (Vs + 62) , 2)
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The type-A K+ current at the dendrite is given by

IKA,d = −gKA,d · Ad · Bd · (Vd − VK) (11)

The activation and inactivation constants are given by

A′
d = (

A∞d
− Ad

)
/τAd

A∞d = 1/
(
1 + Aα,d

)

Aα,d = exp (asap · σ (Vd) · (Vd + 1) · Q)

Aβ,d = exp (0.00039 · Q · (Vd + 1) · σ2 (Vd))

τAd = max
(
Aβ,d/

((
1 + Aα,d

)
· QT · 0.1

)
, 0.1

)

σ (Vd) = −1.5 − (
1/

(
1 + exp

((
Vd + σp

)
/5

)))

σ2 (Vd) = −1.8 − (1/ (1 + exp ((Vd + 40) /5)))

B ′
d = (

B∞d
− Bd

)
/τBd

B∞d = 0.3 + 0.7/ (1 + exp (inact2 · (Vs + inact) · Q))

τBd = κ · max (inact3 · (Vs + inact4) , inact5)

The delayed rectifier K+ current at the soma is given by

IKdr,s = −gKdr,s · Ns · (Vs − VK) (12)

where gKdr,s is the maximal conductance. The activation constant, Ns, is given by

N ′
s = αNs (Vs) − (

αNs (Vs) + βNs (Vs)
)

· Ns

αNs (Vs) = 0.016 · (−24.9 − Vs) / (exp ((−24.9 − Vs) /5) − 1)

βNs (Vs) = 0.25 · exp (−1 − 0.025 · Vs)

The delayed rectifier K+ current at the dendrite is given by

IKdr,d = −gKdr,d · N2
d · (Vd − VK) (13)

where gKdr,d is the maximal conductance. The activation constant, Nd, is given by
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N ′
d = (

N∞d
− Nd

)
/τNd

N∞d = 1/ (1 + exp ((−Vd − 42) /2)

τNd = 2.2

The medium Ca2+-activated K+ after-hyperpolarization current is given by

ImAHP = −gmAHP · Qm · (Vs − VK) (14)

where gKmAHP is the maximal conductance. The activation constant, Qm, isgiven by

Q′
m = (

Qm∞ − Qm

)
/τQm

Qm∞ = qhat · Qmα · τQm

Qmα = qma · χ/ (0.001 · χ + 0.18 · exp (−1.68 · Vs · Q))

Qmβ = (qmb · exp (−0.022 · Vs · Q)) / (exp (−0.022 · Vs · Q) + 0.001 · χ)

τQm = 1/
(
Qmα + Qmβ

)

The L-type Ca2+ current at the soma is described by

ICaLs = −gCaLs · Ss · ghk (Vs, χs) · (1/ (1 + χs)) (15)

where gCaL,s is the maximal conductance and

S′
s = (

S∞s − Ss

)
/τss

S∞s = αs (Vs) / (αa (Vs) + βs (Vs))

τSs = 1/ (5 · (αs (Vs) + βs (Vs)))

αs (Vs) = −0.055 · (Vs + 27.01) / (exp ((−Vs − 27.01) /3.8) − 1)

βs (Vs) = 0.94 · exp ((−Vs − 63.01) /17)

xx = 0.0853 · (273.16 + T) /2

f (z) = (1 − z/2) · f2 (z) + (z/ (exp (z) − 1)) · f3 (z)

f2 (z) = H (0.0001 − |z|)
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f3 (z) = H (|z| − 0.0001)

ghk = −xx · (1 − ((χs/Ca) · exp (Vs/xx))) · f (Vs/xx)

χ ′
s = ϕs · ICaLs − (

βs ·
(
χs − χ0,s

)) + (χd − χs) /Caτ − (βs/nonc) · χ2
s

χ ′
d = ϕd ·

(
ICaLd

+ ICa,NMDA

) − βd ·
(
χd − χ0,d

) − (βd/nonc) · χ2
d − buff · χd

where χ s and χd are the Ca2+ concentrations in the soma and dendrite, respectively.
The L-type Ca2+ current at the dendrite is described by

ICaLd = −gCaLd · S3
d · Td · (Vd − VCa) (16)

S′
d = (

S∞d
− Sd

)
/τsd

S∞d = 1/ (1 + exp (−Vd − 37))

τsd = s3 + s1/ (1 + exp (Vd + s2))

T ′
d = (

T∞d
− Td

)
/τTd

T∞d = 1/ (1 + exp ((Vd + 41) /0.5))

τTd = 29

The coupling constant for the compartment i is

Icoup = gcoup ·
(
Vj − Vi

)
(17)

The Ca2+-NMDA, AMPA, GABA-A, and NMDA synaptic currents are given by

ICa,NMDA = −gCa,NMDA · sNMDA · mCa,NMDA ·
(
Vd − VCa,NMDA

)
(18)

INMDA = −gNMDA · sNMDA · mNMDA · (Vd − VNMDA) (19)

IAMPA = −gAMPA · sAMPA · (Vd − VAMPA) (20)

IGABA = −gGABA · sGABA · (Vd − VGABA) (21)

where
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mNMDA = 1/ (1 + 0.3 · Mg · exp (−0.062 · Vd))

mCa,NMDA = 1/ (1 + 0.3 · Mg · exp (−0.124 · Vd))

with Mg2+ = 2 mM. The activation equations for AMPA, NMDA, and GABA-A
currents are

sx = sxfast + sxslow + sxrise (22)

where x stands for AMPA, NMDA, and GABA and

s′
NMDArise

= −20 ·
(
1 − sNMDAf ast

− sNMDAslow

)

· Fpre − (1/NMDArate) · sNMDArise

s′
NMDAf ast

= 20 ·
(
0.527 − sNMDAf ast

)
· Fpre − (1/ndf ) · sNMDAf ast

s′
NMDAslow

= 20 ·
(
0.473 − sNMDAslow

)
· Fpre − (1/nds) · sNMDAslow

,

s′
AMPArise

= −20 ·
(
1 − sAMPAf ast

− sAMPAslow

)
· Fpre − (1/0.58) · sAMPArise

s′
AMPAf ast

= 20 ·
(
0.903 − sAMPAf ast

)
· Fpre − (1/7.6) · sAMPAf ast

s′
AMPAslow

= 20 ·
(
0.097 − sAMPAslow

)
· Fpre − (1/25.69) · sAMPAslow

and

s′
GABArise

= −20 ·
(
1 − sGABAf ast

− sGABAslow

)
· FGABA − (1/1.18) · sGABArise

s′
GABAf ast

= 20 ·
(
0.803 − sGABAf ast

)
· FGABA − (1/8.5) · sGABAf ast

s′
GABAslow

= 20 ·
(
0.197 − sGABAslow

)
· FGABA − (1/30.01) · sGABAslow

The calcium detector model is governed by the following six equations:

P ′ = (
ϕa (χd) − cp · A · P

)
/τp (23)

V ′ = (ϕb (χd) − V ) /τV (24)

A′ = (ϕc (χd) − A) /τA (25)

B ′ = (ϕe(A) − B − cd · B · V ) /τB (26)

D′ = (ϕd(B) − D) /τD (27)
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W ′ =
(
αw/ (1 + exp ((P − a) /pa)) − βw/ (1 + (exp ((D − d) /pd)) − W) /τw

(28)
where P is the potentiation detector dynamics, V is the veto detector dynamics, D is
the depression detector dynamics, A and B are the intermediate steps leading up to
D, and W is the readout variable (see Fig. 1b). The Hill equations are

φa (x) = numa ·
(
(x/CmHC)CmHN

)
/
(

1 + (x/CmHC)CmHN
)

(29)

φb (x) = numb ·
(
(x/CnHC)CnHN

)
/
(

1 + (x/CnHC)CnHN
)

(30)

φc (x) = numc/ (1 + exp ((x − θc) /σc)) (31)

φd (x) = numd/ (1 + exp ((x − θd) /σd)) (32)
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Factors Affecting STDP in the Dendrites
of CA1 Pyramidal Cells

Ausra Saudargiene and Bruce P. Graham

Abstract Synaptic spike-time-dependent plasticity (STDP) is a function of the
membrane depolarisation at the synapse, which is determined not only by somatic
spiking activity in the postsynaptic cell but also by the synaptic site in the dendrites
(distance from the cell body) and other local synaptic activities, particularly at
inhibitory synapses. These factors can result in spatio-temporal gradients of STDP
in a single neuron. In a pair of modelling studies (Saudargiene A, Graham BP,
Biosystems 130:37–50, 2015; Saudargiene A, et al., Hippocampus 25(2):208–
218, 2015), we have examined these effects for inputs onto synaptic spines at
different locations in the complex apical dendrites of a CA1 pyramidal cell. The
first study (Saudargiene A, Graham BP, Biosystems 130:37–50, 2015) examines the
temporal signal requirements for inducing long-term potentiation (LTP) or long-
term depression (LTD) at a synapse on a spine located at different locations in the
dendrites. It is also determined how dendritic inhibition can alter these signalling
requirements. The second study (Saudargiene A, et al., Hippocampus 25(2):208–
218, 2015) moves on to explore more physiological situations involving theta and
gamma rhythms in the hippocampus.

Overview

In simple terms, synaptic plasticity is a function of coincident presynaptic and
postsynaptic activity. A now vast volume of experimental and modelling work has
been aimed at discovering the plasticity ‘rules’ that determine the likely change in
synaptic strength for different patterns of pre- and postsynaptic activity. One family
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of such rules is written in terms of the relative timing of pre- and postsynaptic spikes
and is known as spike-time-dependent plasticity (STDP; see Graupner and Brunel,
this volume). Many factors can contribute to the same spiking patterns yielding
different STDP rules at different synaptic pathways (Buchanan and Mellor 2010).
A key factor is the depolarisation state of the postsynaptic neuron at the synaptic
site, which strongly influences calcium influx at the synapse and consequently
the plasticity outcome (Graham et al. 2014; Hardie and Spruston 2009; Sjöström
et al. 2008). In addition to somatic spiking activity in the postsynaptic cell, the
depolarisation state at the synapse is affected by the synaptic site in the dendrites
(distance from the cell body) and other local synaptic activities, particularly at
inhibitory synapses (Bar-Ilan et al. 2013). Neuromodulatory signals may also
influence transmitter release at synapses and the local postsynaptic membrane
excitability (Hasselmo et al. 2002b). These factors can result in spatio-temporal
gradients of STDP in a single neuron. In a pair of modelling studies (Saudargiene
and Graham 2015; Saudargiene et al. 2015), we have examined these effects for
inputs onto synaptic spines at different locations in the complex apical dendrites of
a CA1 pyramidal cell.

The first study (Saudargiene and Graham 2015) examines the temporal signal
requirements for inducing long-term potentiation (LTP) or long-term depression
(LTD) at a synapse on a spine located at different locations in the dendrites. It is
also determined how dendritic inhibition can alter these signalling requirements.
The classic form of STDP is that a postsynaptic spike occurring in a short time
window (a few tens of milliseconds) after a presynaptic spike can contribute to LTP
at that synapse, whereas if the postsynaptic spike occurs a short time before the
presynaptic spike, then LTD may result (Markram et al. 1997; Bi and Poo 1998,
2001). The actual plasticity outcome for a synapse depends on the frequency of pre-
and postsynaptic spike pairing, the duration of such pairing and spike bursting in the
postsynaptic cell (Mizuno et al. 2001; Nishiyama et al. 2000; Wittenberg and Wang
2006; Buchanan and Mellor 2010). The location of the synapse on the dendritic
tree also determines the plasticity outcome (Golding et al. 2002; Froemke et al.
2005, 2010; Letzkus et al. 2006; Sjöström and Häusser 2006; Sjöström et al. 2008).
In dendritic regions close to the soma, somatic back-propagating action potentials
provide the strong postsynaptic depolarisation necessary for induction of synaptic
modifications (Bi and Poo 2001; Wittenberg and Wang 2006). In more distal
dendrites, local dendritic regenerative spikes might drive synaptic modifications
(Magee and Johnston 1997; Golding et al. 2002; Froemke et al. 2005; Remy and
Spruston 2007) even in the absence of somatic spiking.

Thus, synapses undergo changes according to local rather than global synaptic
plasticity rules (Letzkus et al. 2006; Sjöström and Häusser 2006). Further, even
at a particular dendritic location, the plasticity rule can be altered dynamically by
local synaptic input, particularly inhibition, and neuromodulatory inputs. Specific
patterns of inhibition are rarely controlled in experiments, with inhibition either
blocked or allowed to be the result of unmeasured activity in local circuit interneu-
rons. Nonetheless, it has been shown that inhibition can contribute to the emergence
of a causal LTD window for a postsynaptic spike following a moderate time after a
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presynaptic spike (Tsukada et al. 2005). Most knowledge of the potential influence
of inhibition on plasticity comes from computational modelling studies (Bar-Ilan et
al. 2013; Cutsuridis 2011, 2012), such as the ones presented in this chapter.

The first study concentrates on experimentally used stimulation protocols. The
second study (Saudargiene et al. 2015) moves on to explore more physiological
situations involving theta and gamma rhythms in the hippocampus. In a series
of experimental and modelling studies, Hasselmo and colleagues (Hasselmo et
al. 2002a, b; Hyman et al. 2003; Judge and Hasselmo 2004; Manns et al. 2007;
Molyneaux and Hasselmo 2002; Wyble et al. 2000; Zilli and Hasselmo 2006) have
shown that plasticity of Schaffer collateral synapses from hippocampal CA3 PCs
onto CA1 PCs waxes and wanes between a propensity for LTP and a propensity
for LTD on different phases of the CA1 theta rhythm and that this can correspond
to a temporal distinction between memory encoding and retrieval. It is known that
inhibition onto CA1 PCs also varies across a theta cycle, with perisomatic and apical
dendritic inhibition being strongest on opposite phases of theta (Klausberger et al.
2003, 2004). Using a detailed spiking neuron model of the CA1 microcircuit, it has
been demonstrated that this rhythmic variation in inhibition can determine memory
encoding and retrieval during theta (Cutsuridis et al. 2010). The study presented
here incorporates a more detailed PC model (Poirazi et al. 2003) and a spine head
calcium-based plasticity model (Graupner and Brunel 2012) into this microcircuit
to take these findings further towards biophysical realism.

The Model

Model Details

A detailed multicompartmental model of a CA1 pyramidal cell (Poirazi et al.
2003) was embedded in a model of the CA1 pyramidal neuron microcircuit (Cut-
suridis et al. 2010) containing major input pathways from entorhinal cortex (EC)
and Schaffer collaterals and spatially specific inhibition from oriens lacunosum-
moleculare (OLM) and bistratified (BS), basket (B) and axo-axonic (AA) inhibitory
interneurons (Fig. 1).

CA1 Microcircuit

CA3 Schaffer collateral synaptic inputs and EC inputs activate AMPA synapses,
formed on the stratum radiatum (SR) and stratum lacunosum-moleculare (SLM)
dendrites of the CA1 pyramidal neuron, respectively. Bistratified interneurons
inhibit the SR dendrites, and OLM cells provide inhibition to SLM dendrites via
GABAA and GABAB synapses. Basket cell-driven GABAA synapses inhibit the
soma of the CA1 pyramidal cell. Axo-axonic cells drive GABAA synapses on
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Fig. 1 CA1 microcircuit. Compartmental model of a CA1 pyramidal neuron (Poirazi et al. 2003)
with the added AMPA/NMDA synapses on SLM spine and SR spines is embedded in a microcircuit
consisting of oriens lacunosum-moleculare (OLM) and bistratified (BS), basket (B) and axo-
axonic (AA) inhibitory interneurons (Cutsuridis et al. 2010). Synaptic inputs come from entorhinal
cortex (EC) and CA3 region. CA1 stratum lacunosum-moleculare (SLM), stratum radiatum (SR)
and stratum pyramidale (SP) layers are shown schematically (Redrawn with permission from
Saudargiene et al. (2015), Fig. 1. Copyright Wiley)

the axon of the CA1 pyramidal neuron. Bistratified, basket and axo-axonic cells
are activated by the CA3 Schaffer collateral synaptic inputs and somatic action
potentials of the CA1 pyramidal neuron. Basket and axo-axonic cells receive also
EC inputs. Basket and bistratified cells inhibit each other. OLM cells receive
excitatory input from the CA1 pyramidal neuron. The full details of the microcircuit
model, including details of the interneuron models, are given in Cutsuridis et al.
(2010).

Pyramidal Cell Model

CA1 pyramidal cell model (Poirazi et al. 2003) consists of 183 compartments and
includes a leak current, somatic/axonic and dendritic Hodgkin-Huxley-type sodium
and potassium currents, proximal and distal A-type potassium currents, m-type
potassium current, a mixed conductance hyperpolarisation-activated h-current, LVA
T-type calcium current, somatic and dendritic HVA R-type currents, somatic and
dendritic HVA L-type currents, two types of Ca2+-dependent potassium currents (a
slow AHP current and a medium AHP current) and a persistent sodium current.

Full details of the pyramidal neuron model are given in Poirazi et al. (2003).
Spines were added at specific locations to create the postsynaptic compartments for
excitatory synapses subject to plasticity (Fig. 1).
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Synaptic Plasticity

Synaptic plasticity is examined in proximal, medial and distal spines, formed on
the apical SR dendrites and in the spine on the SLM apical dendrite of the CA1
pyramidal cell. The spines have AMPA and NMDA receptor-gated channels. Spine
head diameter and length equal 0.5 μm, and spine neck diameter is 0.2 μm and
length 1 μm. Spines contain the same ion channels as their parent dendrites. How-
ever, calcium109 channels were not inserted in the SLM spine as there is a lack of
knowledge of the calcium levels observed in spines on distal apical dendrites during
dendritic spike induction. Details of synaptic dynamics and calcium transients are
given in the Appendix.

The two studies used different calcium-driven models of synaptic plasticity. The
first study used a biophysically detailed model of the plasticity signalling pathways.
This was replaced by a simple phenomenological model (Graupner and Brunel
2012) in the second study to make the simulations computationally feasible. Details
of these models are given in the Appendix.

Study 1

The first study (Saudargiene and Graham 2015) sought to replicate hippocampal
slice experiments (Wittenberg and Wang 2006) by applying the experimental pre-
and postsynaptic stimulation protocols to the CA1 pyramidal cell and examining the
plasticity outcome for a synapse on a spine head at different locations in the apical
dendrites.

Synaptic Plasticity Model

A biophysically realistic, calcium-driven plasticity model was used to generate
STDP curves.

The model of synaptic plasticity is based on molecular pathways of LTP and
LTD induction, involving activation of Ca2+/calmodulin-dependent protein kinase
II (CaMKII) (Graupner and Brunel 2007) and protein phosphatase 2 (PP2A) (Pi and
Lisman 2008), and the interaction of CaMKII and PP2A that leads to the AMPA
receptor phosphorylation or dephosphorylation (Fig. 2) underlying LTP and LTD
(Lisman et al. 1997). These pathways are driven by the intracellular calcium signal
in spines of the CA1 pyramidal neuron model.

CaMKII is responsible for LTP induction: calcium binds to calmodulin and so
activates CaMKII, resulting in AMPAr phosphorylation and synaptic strengthen-
ing. As CaMKII activity becomes high, the autophosphorylation process enables
CaMKII to retain activity even in the absence of calcium-bound calmodulin. Protein
phosphatase inhibitor-1 (I1) and type 1 protein phosphatase (PP1) chains control the
rate of dephosphorylation of phosphorylated CaMKII subunits and enable a synapse
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Fig. 2 Protein signalling cascades governing AMPAr changes ( denotes activation;
denotes inhibition). (Reproduced with permission from Saudargiene and Graham (2015), Fig. 2.
Copyright Elsevier)

to act like a binary switch. CaMKII dynamics is described by a complex bistable
model consisting of a large set of differential equations (Graupner and Brunel 2007).

In the LTD induction pathway, phosphatase PP2A is dephosphorylated by
calcium and being in its active form inhibits CaMKII, dephosphorylates AMPAr
and leads to LTD. PP2A is bistable, and a high level of active PP2A triggers
autodephosphorylation of PP2A and allows PP2A to stay activated for resting
calcium concentrations. PP2A activity is described by a single differential equation
(Pi and Lisman 2008). In addition, CaMKII and PP2A mutually inhibit each other. If
CaMKII wins over PP2A, AMPAr is potentiated, and it is depressed if PP2A activity
overwhelms CaMKII.

Stimulation Protocols

Calcium transients are obtained by two different stimulation protocols (Fig. 3)
applied to induce synaptic modifications at SR and SLM synapses:

1. A presynaptic action potential at the SR spines close to the soma is paired with
a burst-like doublet of somatic action potentials or a single action potential, fol-
lowing the experimental protocol of Wittenberg and Wang (2006); postsynaptic
action potentials in doublets are spaced 10 ms apart.

2. A presynaptic action potential at a distal SLM spine is paired with a dendritic
spike, as in Golding et al. (2002).

The temporal difference T between the presynaptic action potential and the first
(or second for a doublet) postsynaptic action potential is varied from −100 ms up
to 100 ms. Causal presynaptic-postsynaptic pairings correspond to positive T, and
negative T denotes anti-causal postsynaptic-presynaptic pairings. Somatic action
potentials and dendritic spikes are induced by postsynaptic depolarisation gener-
ated by two somatic and one dendritic artificial excitatory synapses, respectively,
modelled with double exponential functions (Eq. 1).
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Fig. 3 Stimulation protocol of the CA1 pyramidal neuron used to analyse the influence of
dendritic synapse location on plasticity. At the SR spines, a presynaptic action potential is paired
with a burst-like doublet of back-propagating (BP) somatic action potentials or a single action
potential; postsynaptic action potentials in doublets are spaced 10 ms apart. At a SLM spine,
a presynaptic action potential is paired with a dendritic spike (DS). Stimulation protocols are
presented 100 and 30 times at 5 Hz and 0.5 Hz. Temporal difference T between the presynaptic
action potential and the postsynaptic action potential is varied from −100 ms up to 100 ms

Stimulation protocols are applied 30 and 100 times at 5 Hz and at 0.5 Hz, as per
Wittenberg and Wang (2006).

To make the simulations computationally feasible, the pyramidal cell with synap-
tic inputs was simulated in NEURON, and a single epoch of pre-post stimulation
was given, and the resultant spine head calcium transient was recorded. This was
then fed in multiple times (to simulate a complete experiment) to a separate,
computationally efficient implementation (in C++) of the plasticity model.

Results

Temporal Effects
If the presynaptic action potential precedes the second postsynaptic spike by
T = 10 ms, the depolarisation provided by the back-propagating spikes in the
proximal SR region (Fig. 4a, black solid line) together with the presynaptically
released glutamate opens NMDAr-gated channels, and the calcium concentration in
the SR spine reaches a high level of 3.8 μM (Fig. 4b, solid line). One hundred such
causal pairings at 5 Hz result in CaMKII phosphorylation and PP2A inhibition and
lead to AMPAr potentiation (Fig. 4c, solid line). If the temporal order of the pairings
is reversed, the presynaptic action potential follows the second postsynaptic action
potential. For T = −10 ms, the depolarisation provided by the back-propagating
spikes in the SR region decreases by the time NMDAr is activated (Fig. 4a, dashed
line); therefore the peak calcium concentration is low, approximately 1.2 μM
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Fig. 4 (a and b) Membrane potential and calcium concentration in a proximal SR spine during a
single pre-post pairing. (a) Membrane potential in spine (black solid line, T = 10 ms; black dashed
line, T = −10 ms) and in soma (grey line). The postsynaptic action potentials are generated at 20
and 30 ms (two-spike burst, doublet; second postsynaptic action potential is used as a reference
point for T definition). Presynaptic action potential is induced at 20 ms when T = 10 ms or at
40 ms when T = −10 ms. (b) Calcium concentration in spine (solid line, T = 10 ms; dashed line,
T = −10 ms). (c, d) AMPAr weight changes in a proximal SR spine after 20 s of stimulation
with 100 pairings (c) and 6 s of stimulation with 30 pairings (d) at 5 Hz of 1 presynaptic and 2
postsynaptic action potentials, followed by 180 s of presynaptic and postsynaptic inactivity of a
CA1 pyramidal neuron (c) solid line, T = 10 ms; AMPAr is potentiated; dashed line, T = −10 ms;
AMPAr is depressed after 100 pairings of stimulation; (d) solid line, T = 10 ms; AMPAr is
potentiated; dashed line, T = −10 ms: AMPAr remains at a basal level after 30 pairings of
stimulation). (Reproduced with permission from Saudargiene and Graham (2015), Figs. 3 and 4c,f.
Copyright Elsevier)

(Fig. 4b, dashed line). This weak calcium signal is not sufficient to phosphorylate
CaMKII but activates PP2A and leads to AMPAr depression (Fig. 4c, dashed line).
LTP still occurs with only 30 causal pairings with T = 10 ms (Fig. 4d, solid
line). However, 30 anti-causal pairings fail to induce LTD and leave the synapse
unmodified (Fig. 4d, dashed line), as the calcium signal is not sufficient to activate
PP2A.

Synaptic weight changes and peak calcium concentrations in the proximal SR
spine for temporal difference T values [−100 ms, 100 ms] are presented in Fig. 5a,
b. High peak calcium concentrations above 2.5 μM are observed for causal pairings
at 5 Hz, specifically for the positive T window from 0 ms up to 20 ms (Fig. 5a), and
result in AMPAr potentiation (Fig. 5b, black line). Lower calcium concentrations
below 2.5 μM and above 1 μM lead to AMPAr depression: LTD is obtained for
anti-causal pairings within the T interval [−50 ms,-10 ms] and for causal pairings
within the T interval [30 ms, 50 ms]. AMPAr stays at its basal level if the peak
calcium concentration is low. The sombrero-shaped curve of synaptic modifications,
however, is obtained only if the stimulation consists of 100 pairings at 5 Hz. Thirty
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Fig. 5 (a) Peak calcium concentration in a proximal SR spine. (b–d) Synaptic weight change
in the proximal, medial and distal SR synapses as a function of T, temporal difference between
the presynaptic and a second postsynaptic action potential, after 100 pairings (black line) and 30
pairings (grey line) at 5 Hz, followed by 400 s of presynaptic and postsynaptic inactivity. Proximal
SR spine is located 94 μm from the soma, medial SR spine is located 121 μm from the soma, and
distal SR spine is located 157 μm from the soma (Reproduced with permission from Saudargiene
and Graham (2015), Figs. 5a and 7a–c. Copyright Elsevier)

pairings at 5 Hz abolishes LTD and results in a potentiation-only plasticity rule (Fig.
5b, grey line).

In contrast, decreasing the frequency of stimulation to 0.5 Hz leads to a
depression-only learning rule for both 30 and 100 pairings (not shown). Similarly,
a single postsynaptic action potential, paired with a presynaptic action potential
100 times at 5 Hz, evokes depression, and 30 such pairings fail to induce synaptic
changes as the calcium influx is reduced.

These simulation results show that the weight change curve is not a simple
function of peak calcium but also depends on temporal factors such as the number
of repetitions, pattern of postsynaptic activity and frequency of the pairing protocol.

Spatial Effects
The medial SR synapse, having the same synaptic strength as the proximal SR
synapse, undergoes LTP for causal pairings and LTD for anti-causal and causal
pairings within very narrow T intervals (Fig. 5c, black line). The decreased temporal
width of the STDP curve is due to the fact that the back-propagating spike reaches
the medial SR spine with a lower amplitude and results in reduced calcium influx
both for anti-causal and causal pairings. Calcium levels at long, causal T are no
longer sufficient to generate a causal LTD window. The distal SR spine receives
even weaker depolarisation by the back-propagating spike; therefore calcium levels
are not sufficient to induce synaptic changes for anti-causal pairings, and only LTD
is observed within a limited T interval [0 ms, 20 ms] for 100 pairings (Fig. 5d, black
line).
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Fig. 6 (a and b) Membrane potential and calcium concentration in a SLM spine. (a) Membrane
potential in spine (black solid line, T = 10 ms; black dashed line, T = −10 ms) and in soma
(grey line). The presynaptic action potential is induced at 10 ms (black solid line, T = 10 ms)
or at 30 ms (black dashed line, T = −10 ms), and the postsynaptic dendritic spike is induced at
20 ms by suprathreshold dendritic current injection. (b) Calcium concentration in spine (solid line,
T = 10 ms; dashed line, T = −10 ms). (c, d)Synaptic modifications in a SLM spine evoked by
pairing a presynaptic action potential with a dendritic spike at 5 Hz. (c) Peak calcium concentration
in spine as a function of T. (d) Synaptic weight change as a function of T, temporal difference
between the presynaptic action potential and the onset of dendritic spike, after 100 pairings (black
line) and 30 pairings (grey line), followed by 400 s of presynaptic and postsynaptic inactivity. The
postsynaptic dendritic spike is induced by suprathreshold dendritic current injection. (Reproduced
with permission from Saudargiene and Graham (2015), Figs. 8 and 9. Copyright Elsevier)

Excitatory synapses in distal SLM dendrites of a CA1 pyramidal neuron are
largely influenced by local dendritic regenerative action potentials but not much
by somatic action potentials, as these fail to invade distal dendritic regions (Golding
et al. 2002; Froemke et al. 2005; Letzkus et al. 2006). Changes at the synapse on a
distal SLM spine thus are modelled by pairing a local dendritic spike as a source
of postsynaptic depolarisation with the presynaptic action potential at varying
temporal difference T values. The dendritic spike is induced by suprathreshold
dendritic current injection. This spike consists of a sodium spike followed by a
high-amplitude calcium spike (Fig. 6a) that provides depolarisation for NMDAr-
gated channels even when anti-causal pairings are applied (Fig. 6b). Causal pairings
at T = 10 ms induce high calcium influx and cause LTP (Fig. 6a, b, black solid
lines; Fig. 6d, T = 10 ms). However, larger temporal difference T values in the
interval [20 ms, 100 ms] lead to LTD as the postsynaptic sodium spike is not strong
enough to effectively open NMDAr-gated channels and the subsequent calcium
spike arrives too late, but moderate depolarisation at the postsynaptic site is provided
by a dendritic spike of the preceding pre- and postsynaptic spike pair. Consequently,
the synapse is weakened for 100 pairings and remains unmodified for 30 pairings at
5 Hz in the T interval [20 ms, 100 ms] (Fig. 6d, black and grey lines, respectively).
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For anti-causal pairings and T = −10 ms, NMDAr-gated channels are strongly
depolarised by the dendritic calcium spike, calcium levels rises to 7.8 μM (Fig. 6a,
b, black dashed lines), and 100 and 30 such pairings at 5 Hz lead to LTP. Synaptic
weight changes and peak calcium concentration in the SLM spine for temporal
difference T values are shown in Fig. 6c, d. Peak calcium concentration is high
for negative T and leads to LTP in a wide T interval [−30 ms, 10 ms] and to LTD in
the T intervals [−100 ms, −40 ms] and [20 ms, 100 ms] for 100 pairings at 5 Hz.
Decreasing the number of pairings to 30 abolishes LTD and results in a LTP-only
synaptic plasticity rule.

These results show that synapses in distal SLM dendritic regions of the CA1
pyramidal neuron are potentiated if activated shortly before or during the induction
of a long-lasting dendritic spike and depressed if triggered once the dendritic
membrane potential has returned to the moderately depolarised level for anti-causal
and causal pairings. The temporal order of the pre- and local postsynaptic events
is neglected. Timing requirements for LTP are not as strict as for the plasticity rule
of excitatory synapses in the SR proximal dendritic region which shows a sharp
transition from LTD to LTP at 0 ms and has a narrow LTP window (Fig. 5b).

Effects of Inhibition
Pyramidal neurons in hippocampal CA1 regions are inhibited by spatially targeted
perisomatic and dendritic inhibitory inputs (Klausberger et al. 2003; Cutsuridis et
al. 2010). Specifically, basket interneurons provide perisomatic inhibition, while
dendritic inhibition is induced by bistratified and OLM interneurons.

To reveal the influence of the perisomatic inhibition on the plasticity in SR
synapses, the pyramidal neuron is inhibited by a basket cell. This interneuron is
activated by somatic spiking of the pyramidal cell (PC) (Cutsuridis et al. 2010),
inhibits the soma of the pyramidal neuron and prevents the generation of the second
action potential in the two-spike burst. As a result of the reduced PC somatic
spiking activity, the membrane potential at the SR synapse location and calcium
concentration in the SR spine are considerably reduced for pre-post and post-pre
pairing protocols.

The synapse is not modified if the presynaptic action potential arrives once the
inhibition is already triggered for anti-causal pairings. The basket interneuron not
only blocks a second postsynaptic action potential but effectively hyperpolarises
the soma for the tens of milliseconds, prevents depolarisation of a proximal SR
spine by a single back-propagating spike and thus reduces calcium influx through
NMDAr-gated channels. The synapse is depressed if the presynaptic activation
shortly precedes the somatic inhibition for 100 pairings (Fig. 7a, black line).
However, 30 pairings do not induce synaptic modifications (Fig. 7a, grey line).
Synaptic changes under the influence of a basket interneuron resemble the results
obtained applying a single postsynaptic action potential, as only LTD is induced.
Thus, perisomatic inhibition, mediated by basket interneurons, refines excitatory
synaptic modifications by terminating somatic burst firing, limiting calcium influx
into proximal spines, and leads to depression of the synapse if it is causally
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Fig. 7 Synaptic modifications in a proximal SR synapse evoked by pairing a presynaptic action
potential with a doublet of postsynaptic action potentials at 5 Hz under the inhibitory effect of a
basket cell and bistratified cell (a and b) and synaptic modifications in a SLM spine evoked by
pairing a presynaptic action potential with a dendritic spike at 5 Hz under the inhibitory effect of
an OLM cell (c). Proximal SR spine is located 94 μm from the soma; distal SLM spine is located
413 μm from the soma. (a) Synaptic weight change in the proximal SR spine as a function of T,
temporal difference between the presynaptic action potential and a dummy second postsynaptic
spike (not generated due to inhibition) after 100 pairings (black line) and 30 pairings (grey line)
at 5 Hz, followed by 400 s of presynaptic and postsynaptic inactivity. Soma of the CA1 pyramidal
neuron is inhibited by a basket cell that is activated by the first somatic action potential of the
pyramidal neuron. (b) Synaptic weight change in the proximal SR spine; SR dendritic membrane
potential of the CA1 pyramidal neuron is inhibited by a bistratified cell that is activated by the
same CA3 input as the SR synapse. (c) Synaptic weight change in the SLM spine as a function of
T, temporal difference between the presynaptic action potential and the onset of dendritic spike,
after 100 pairings (black line) and 30 pairings (grey line). The postsynaptic dendritic spike is
induced by suprathreshold dendritic current injection. SLM dendritic region of a pyramidal neuron
is inhibited by an OLM cell triggered by the somatic action potentials of the pyramidal cell with
approximately a 25 ms delay after the onset of the dendritic spike (Reproduced with permission
from Saudargiene and Graham (2015), Figs. 11b, 13c, 15b. Copyright Elsevier)
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activated within a narrow temporal window over many repetitions. Synapses remain
unmodified for short stimulation protocols.

Inhibition of the SR dendrites is provided by bistratified interneurons receiving
the same CA3 inputs that also stimulate excitatory synapses on SR dendrites
(Cutsuridis et al. 2010). In this study, the bistratified neuron is triggered by the same
presynaptic CA3 input that activates the SR synapse.

Dendritic inhibition impairs back-propagation of somatic action potentials and
consequently the membrane potential at the proximal SR synapse, and the calcium
concentration in the SR spine is reduced. Causal pairing with increasing T leads
to LTD within the T interval [20 ms; 40 ms] (Fig. 7b, positive T). However, the
membrane potential at the synapse and the calcium concentration are only slightly
affected by inhibition for anti-causal pairings as the bistratified cell is activated too
late to effectively inhibit the back-propagating action potentials. Thus the acausal
LTD window with 100 pairings is retained but is narrower than with no inhibition
(Fig. 7b, black solid line, negative T). In summary, the shape of the STDP curve
remains symmetrical for 100 pairings, but the causal LTP window is narrowed, and
the causal LTD side window is consequently left shifted towards smaller values of
T, compared with no inhibition (Fig. 7b, black line; compare with Fig. 5b, black
line). Short stimulation of 30 pairings abolishes LTD and leads to LTP in a temporal
window [0; 20 ms] (Fig.7b, grey line).

The distal SLM dendrites are affected by inhibition that is triggered by OLM
cells (Cutsuridis et al. 2010). In the model, OLM interneurons are activated by the
CA1 pyramidal neuron somatic action potential induced by the SLM dendritic spike
approximately 25 ms after its onset. Thus OLM inhibition reduces depolarisation at
the synapse location, and calcium levels in the SLM spine with a 25 ms delay in
respect to the postsynaptic activity (dendritic spike). Due to the delayed OLM cell
activation, calcium concentration is slightly affected within the T interval [−20 ms;
20 ms], and it is decreased for the remaining T values. Synaptic depression is
abolished for anti-causal pairings, and synaptic potentiation is observed within the
T interval [−20 ms; 10 ms] for long (100 pairings) stimulation (Fig. 7c, black line).
Short (30 pairings) stimulation leads to synaptic strengthening within the T interval
[−20 ms; 10 ms], and no synaptic modification for the remaining T values (Fig.
7c, grey line), which is very similar to when no inhibition, is present (Fig. 6d, grey
line). Thus, OLM inhibition removes LTD at acausal and long causal time intervals,
without causing much effect on LTP at shorter acausal or any causal time intervals,
when it is activated in response to a SLM dendritic spike.

Study 2

The second study explored the behavioural scenario of pattern storage during
theta/gamma activity (Hasselmo et al. 2002a, b; Cutsuridis et al. 2010). In this case
the pyramidal cell was driven by continuous theta/gamma-modulated excitatory
activity (with accompanying temporally and spatially varying inhibition) for a large
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number of theta cycles, with the synapse of interest being activated at different
phases of theta in different modelling experiments.

Synaptic Plasticity Model

To be able to run relatively long simulations in NEURON, a simpler but still
calcium-based model of synaptic plasticity (Graupner and Brunel 2012 and this
volume) was used to determine the plasticity outcome (LTP or LTD) at the end of
an experiment. Changes in synaptic weight are represented by the state transitions
of the synaptic efficacy variable ρ and are driven by the intracellular calcium
concentration in the spine. Synaptic efficacy variable ρ describes the competition
of kinases and phosphatases in an abstract way and represents a model of the binary
synapse: ρ can reside in two stable states, so-called DOWN and UP states. Transition
from the DOWN state to the UP state is triggered by high intracellular calcium
concentration levels and is considered as potentiation of the synapse. Transition
from the UP state to the DOWN state is induced by low prolonged calcium signals
and is regarded as depression of the synapse.

Synaptic plasticity is examined in a single spine of the CA1 pyramidal cell. This
spine is formed on a medial SR apical dendrite and has AMPA and NMDA receptor-
gated channels. AMPA synaptic conductance is 3nS if a synapse is activated on the
retrieval phase and reduced to 1.2 nS, if it is activated on the encoding (storage)
phase, this way capturing the suppression of the strength of Schaffer collateral
synaptic transmission during a half-theta cycle (Hasselmo et al. 2002a). Initially,
synaptic efficacy variable ρ is set to the DOWN or to the UP state, to represent
either an initially unpotentiated or a potentiated synapse, respectively. Transitions
from the DOWN to the UP or from the UP to the DOWN states are regarded as
changes in synaptic weight.

Network Stimulation

Cell populations in CA3 and EC exhibit gamma frequency (around 40 Hz) activity,
with average population activity waxing and waning at the slower theta frequency.
EC III theta is largely out of phase with CA3 theta (Mizuseki et al. 2009). We
model synaptic input during the theta retrieval phase as being strong CA3 input
only, represented by 20 CA3 inputs on two successive gamma cycles. Input on the
encoding theta phase consists of strong EC input on two successive gamma cycles
in combination with weak CA3 inputs on the same gamma cycles (but delayed by
9 ms on average, modelling the direct versus trisynaptic loop delay (Leung et al.
1995). These ‘bursts’ of two reliable inputs represent the likely synaptic outcome
of the theta burst protocol that is commonly required to induce LTP (Hyman et al.
2003). Cyclical changes during theta in the strength of synaptic input from the CA3
Schaffer collateral pathway (Wyble et al. 2000; Molyneaux and Hasselmo 2002) are
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modelled as a reduction of the AMPA synaptic weight during the theta trough. Theta
frequency is taken to be 4 Hz, and gamma frequency is 40 Hz.

Theta Retrieval/Encoding Phases

The combination of excitatory and inhibitory inputs results in the following
scenario. The CA1 pyramidal neuron is driven by spatially focussed patterns of
excitation and inhibition depending on the phase of theta. During the encoding
phase, EC inputs arrive at the apical SLM dendrites, and CA3 inputs arrive at
SR dendrites. EC inputs are strong enough to induce local dendritic spikes and
cause somatic spiking, whereas CA3 inputs are weak in this phase. However, axo-
axonic (AA) and and basket (B) interneurons receive activation from EC and CA3
inputs and inhibit the axon and soma of the pyramidal neuron preventing its spiking.
During the retrieval phase, EC inputs are weak or absent, and CA3 inputs are strong
to induce somatic spiking as AA and B cells are inactive. The apical dendrites are
inhibited by bistratified (BS) and OLM cells in this phase.

In the simulations, theta-modulated inputs from CA3 and EC were applied in a
consistent pattern for 16 theta cycles (4 s). During these cycles, the inputs to the CA3
synapse on the SR spine were applied either during the encoding or retrieval phase
of theta, depending on the experiment being performed. The following simulation
protocols of the pyramidal neuron were applied, based on the encoding/retrieval
hypothesis (Hasselmo et al. 2002a; Cutsuridis et al. 2010):

1. Weak CA3 inputs and EC inputs in encoding phase and strong CA3 inputs in
retrieval phase: Schaffer collateral synapse (on SR spine) is active in encoding
phase. This is a full implementation of the hypothesised encoding phase.

2. Weak CA3 inputs and EC inputs in encoding phase and strong CA3 inputs in
retrieval phase: Schaffer collateral synapse is active in retrieval phase. This is a
full implementation of the hypothesised retrieval phase.

Results

Encoding Phase
The first simulation protocol is a full implementation of the hypothesised encoding
phase of theta. Figure 8, left column, shows the raster plots of the CA3 and EC
inputs, somatic membrane potentials, SR spine head calcium concentration and
the induced transitions of the synaptic efficacy variable ρ in the spine for 16 theta
cycles in this protocol. In the encoding phases (0–0.125 s, 0.250 s–0.375 s, 0.500 s–
0.625 s, 0.750 s–0.875 s, 1.000–1.125 s, etc.), the Schaffer collateral pathway on
the SR spine is active, and weak CA3 inputs (Fig. 8b, grey dots) are paired with the
EC inputs (Fig. 8a) and induce dendritic spikes. However, perisomatic inhibition
provided by AA and B interneurons prevents somatic spiking during this phase
(Fig. 8c). Activation of NMDAr on the SR spine, paired with the strong postsynaptic
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Fig. 8 Regional membrane potential and spine calcium concentration in CA1 PC for simulation
protocols 1 (encoding, left column) and 2 (retrieval, right column). Medial SR spine is located
144 μm from the soma. (a and f) EC inputs are active on encoding phase. CA3 inputs are active
in (b) encoding phase (weak, grey dots) and on (g) retrieval phase (strong, black dots). (c and f)
Membrane potential in soma. (d and i) Calcium concentration in exemplar SR spine. (e and j)
Synaptic efficacy ρ in SR spine (initially in DOWN state—black line; initially in UP state, grey
line): (e) LTP is induced; (j) LTD is induced. (Reproduced with permission from Saudargiene et
al. (2015), Figs. 2 and 3. Copyright Wiley)

depolarisation (dendritic spikes), produces high prolonged calcium transients during
the encoding phases, rising up to 1.6 μM (Fig. 8d). In the retrieval phases (0.125 s–
0.250 s, 0.375–0.500 s, 0.625 s–0.500 s, 0.875 s–1 s, 1.125–1.250 s, etc.), EC inputs
are absent, but strong CA3 inputs (Fig. 8b, black dots) alone are sufficient to induce
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Fig. 9 Regional membrane potential and spine calcium concentration in CA1 PC from a single
theta cycle for the two simulation protocols: top row is protocol 1; bottom row is protocol 2. Left-
hand side, schematics of each protocol—triangles indicate which theta half-cycle the EC, CA3 and
exemplar SR spine inputs are active, with first half-cycle being the encoding phase and second
half-cycle is the retrieval phase (grey indicates weak input); solid horizontal line indicates the
presence of perisomatic inhibition, and dashed horizontal line is dendritic inhibition. Columns: (a–
c) membrane potential in soma, (b–d) calcium concentration in exemplar SR spine (Reproduced
with permission from Saudargiene et al. (2015), Fig. 4, rows 1, 2. Copyright Wiley)

somatic spiking (Fig. 8c). However, calcium levels in the SR spine do not reach the
heights of the encoding phases (Fig. 8d) as the SR dendritic region is inhibited by
BS interneurons, and, in addition, spine NMDAr are almost closed as no additional
spine inputs are assumed during this retrieval phase. This difference in calcium
transients is more clearly seen in the details of a single theta cycle (0–0.250 s),
shown in Fig. 9 (top row).

The high calcium transients in the SR spine during the encoding phase, induced
by the combined CA3 and EC inputs, lead to a transition of the synaptic efficacy
variable ρ from the DOWN state to the UP state (Fig. 8e, black line) and prevent
its transition from the UP state to the DOWN state (Fig. 8e, grey line). So an
unpotentiated synapse will undergo LTP induction, and an already potentiated
synapse will remain so. Thus the PC’s association with this CA3 input will be
increased due to its co-occurrence with the EC inputs, as per the hypothesis.

Retrieval Phase
The second simulation protocol is a full implementation of the hypothesised
retrieval phase, and the results are presented in Fig. 8, right column, and Fig. 9,
bottom row. The Schaffer collateral pathway on the test SR spine is now active
on the retrieval phase. In the encoding phase, weak CA3 inputs are again paired
with the EC inputs (Fig. 8f, g, grey dots) and induce dendritic spikes. However, as
there is no synaptic input to the spine on this phase, calcium currents are mediated
by voltage-sensitive calcium channels (VSCC) alone, as the NMDAr are closed.
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Therefore spine calcium levels remain low, approximately 0.9 μM (Fig. 8i). Somatic
spiking is prevented by perisomatic inhibition (Fig. 8h).

In the retrieval phase, strong CA3 inputs (Fig. 8g, black dots) again cause somatic
spiking (Fig. 8h). Although the SR spine is depolarised by the back-propagating
spike and the synapse on this SR spine is activated (NMDAr are open), the resulting
calcium concentration typically rises only slightly above 1.1 μM as the SR dendritic
region is inhibited by bistratified interneurons and the EC inputs are silent. In
addition, the SLM dendritic region is inhibited by OLM cells. For clarity, Fig. 9c, 9d
shows membrane potential and calcium levels in the SR spine for one encoding-
retrieval cycle (0–0.250 s).

The low-calcium concentrations seen by the SR spine during this protocol
provoke the transition of the synaptic efficacy variable ρ from the UP state to the
DOWN state (Fig. 8j, grey line), but are not sufficient to cause transition from
the DOWN state to the UP state (Fig. 8j, black line), and thus LTD induction is
promoted, particularly during the retrieval phase. Note that the spine head calcium
does reach the LTP threshold (set at 1.3 μM) a couple of times (at around 3 s in
this simulation), and so ρ starting in the DOWN state does increase, but does not get
near the level required to trigger LTP. SR activity contributes to CA1 PC spiking and
thus retrieval of previously encoded inputs but may be subject to depression if not
reinforced during subsequent encoding phases, leading to reversal of prior learning
(Hasselmo et al. 2002a).

Model Justification

Model Components

The model components are based on well-established and previously published
models:

1. CA1 microcircuit architecture (Cutsuridis et al. 2010)
2. CA1 pyramidal cell model (Poirazi et al. 2003)
3. CA1 interneuron models (Cutsuridis et al. 2010)
4. Synaptic plasticity models (Graupner and Brunel 2007, 2012; Pi and Lisman

2008)

Rather than repeat all the details of the complex models here, the reader is
referred to these papers and chapters in this volume (Graupner and Brunel) and
also its first edition (Graham et al. 2010; Poirazi and Pissadaki 2010). Details of the
plasticity models are given in the Appendix.

The motivation behind our modelling was to extend the CA1 microcircuit model
of Cutsuridis et al. (2010) by (1) increasing the spatial complexity of dendritic
synapse distributions by using a detailed compartmental model of a CA1 pyramidal
cell based on a real cell’s morphology and (2) using more biophysically realistic
synaptic plasticity based on continuous spine head calcium concentrations.
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Simulation Configurations

The intent of the work presented here was to increase the biophysical realism of
models exploring synaptic plasticity outcomes at excitatory synapses on CA1 PC
dendrites in response to experimentally used in vitro and behaviourally relevant in
vivo stimulation patterns.

The first study was aimed at replicating the in vitro experiments of Wittenberg
and Wang (2006) that demonstrated the importance of stimulus timing and repetition
on plasticity outcomes. As a consequence, model parameters, in particular synaptic
weights and spine head calcium transients, were tuned by hand to achieve the
appropriate outcomes. This was readily achieved without going beyond the known
physiological bounds of these quantities.

The second study looked at pattern storage and recall over theta cycles, with the
aim of increasing the biophysical realism of the established model of Cutsuridis et
al. (2010), which instantiated the hypothesis developed by Hasselmo and co-workers
(2002a) in a network of spiking neurons. The main advance presented here is to
study calcium-based plasticity in a spine head as a function of the timing of synaptic
stimulation relative to ongoing theta-modulated activity in the CA1 circuit. As in the
first study, hand tuning was sufficient to achieve a physiologically reasonable model
that did indeed support the hypothesis of separate encoding and retrieval phases
during theta activity.

The Future

As indicated above, in both studies, it was possible to hand-tune the models to
replicate the experimental data and satisfy the theta storage/recall hypothesis. In
addition, the first study makes predictions about the effects of synaptic location in
the dendrites and spatially targeted inhibition on synaptic plasticity, as defined by
STDP curves.

These results could be extended in a number of ways. Given sufficient computing
resources and time, automated explorations of the parameter space could be carried
out to explore the robustness of the derived STDP curves. This should include
variations in synaptic position in a dendritic layer and strengths of inhibition. We
predict that the results will be independent of within-layer synaptic location but
may require tuning of spine head calcium transients as a function of position. Such
tuning could be implemented by variations in spine head size and calcium buffering.

The theta activity simulated here corresponds to high levels of the neuromodula-
tor acetylcholine in the network (Hasselmo et al. 2002b). This neuromodulation is
not modelled explicitly, but its effects are implicit in the model parameters, includ-
ing synaptic strengths and cellular membrane properties. It would be interesting to
redefine the parameters to a low acetylcholine state to give greater insight into the
contribution of such neuromodulation to the situations explored here.
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Many details are still simplified in these models, including subcellular, cellular
and network properties. Membrane properties of all cell types in the CA1 circuit are
not fully known. Many known cell types are not included in the microcircuit model.
Active properties of spine heads are particularly important here as they strongly
determine the relationship between synaptic activity and plasticity. As such details
become available from experimental data, the models can be refined and retested. A
major advance would be a truly generalizable model of synaptic plasticity that gives
insight into the ‘learning rules’ employed at different synaptic connections under
physiological conditions. Experimentally, being able to visualise individual synaptic
activity and measure changes in synaptic strength in awake, behaving animals is an
ideal that still awaits realisation.

These modelling studies represent just one stage on a continuing journey towards
understanding the neural basis of learning and memory in the brain. Increasingly
complex, biophysically based models of cortical circuitry are being developed and
can be simulated on supercomputers (e.g. Markram et al. 2015). However, simplified
models are still required to enable simulations of behaviourally relevant time periods
(seconds to minutes). An ideal is the development of closed-loop models of whole
animal behaviour. For example, this CA1 microcircuit model could be at the centre
of a model of a rat or mouse undertaking a spatial navigation or choice selection
task. Current models have needed many further simplifications to achieve this,
typically using rate-based models of neural activity rather than detailed spiking in
individual neurons (Hasselmo et al. 2002b; Strösslin et al. 2005), but computing
power and techniques are becoming sufficient to create more realistic models of
cognitive behaviour based on the biophysics of neurons and their synaptic plasticity.
Hybrid models involving combinations of rate-based population-level activity with
the spiking of individual neurons and combinations of hardware-based (Furber and
Temple 2007; Rast et al. 2011; Pfeil et al. 2013) and software-based simulation will
allow this to be achieved.

Appendix

Detailed Biochemical Model of STDP

STDP model is described by the following set of equations. Parameter definitions
and values are presented in Table A1.

Concentration of calcium-calmodulin complex (Graupner and Brunel 2007):

CaM = CaMTot

1 + K4[
Ca2+] + K3K4[

Ca2+]2 + K2K3K4[
Ca2+]3 + K1K2K3K4[

Ca2+]4

. (A.1)
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Table A.1 Parameters of the STDP model

Parameter Value Units Definition and reference

CaMKII
KPKA 0.175 μM PKA half activity concentration; defines the LTP

threshold; adjusted
kPP2A 0.14 s−1 Rate of CaMKII subunit dephosphorylation by PP2A;

adjusted
kPP1 6000 s−1 Maximal rate of CaMKII subunit dephosphorylation by

PP1 (Graupner and Brunel 2007)
KM 0.4 μM Michaelis-Menten constant of CaMKII subunit

dephosphorylation (Graupner and Brunel 2007)
K1 0.1 μM Dissociation constant to calcium binding to calmodulin

(Graupner and Brunel 2007)
K2 0.025 μM Dissociation constant to calcium binding to calmodulin

(Graupner and Brunel 2007)
K3 0.32 μM Dissociation constant to calcium binding to calmodulin

(Graupner and Brunel 2007)
K4 0.4 μM Dissociation constant to calcium binding to calmodulin

(Graupner and Brunel 2007)
K5 0.1 μM Dissociation constant between dephosphorylated CaMKII

subunit and calmodulin (Graupner and Brunel 2007)
k6 6 s−1 Rate of CaMKII subunit autophosphorylation; calmodulin

is bound to the two interacting and not phosphorylated
CaMKII subunits (Graupner and Brunel 2007)

k7 6 s−1 Rate of CaMKII subunit autophosphorylation; calmodulin
is bound to the phosphorylated CaMKII subunit and to the
CaMKII subunit to be phosphorylated; or phosphorylated
CaMKII subunit is calmodulin-free, and the CaMKII
subunit to be phosphorylated is bound with calmodulin
(Graupner and Brunel 2007)

kPP1 500 (s μM)−1 I1P, PP1 association rate (Graupner and Brunel 2007)
k_PP1 0.1 s−1 I1P, PP1 dissociation rate (Graupner and Brunel 2007)
nCaN 3 – Calcineurin Hill coefficient (Graupner and Brunel 2007)
k0

CaN 0.1 s−1 Calcineurin base activity (Graupner and Brunel 2007)
kCaN 18 s−1 Maximum calcium-calmodulin-dependent calcineurin

activity (Graupner and Brunel 2007)
KCaN 0.053 μM Calcineurin half-activation concentration (Graupner and

Brunel 2007)
nPKA 8 – PKA Hill coefficient (Graupner and Brunel 2007)
k0

PKA 0.00359 s−1 PKA base activity (Graupner and Brunel 2007)
kPKA 100 s−1 Maximum calcium-calmodulin-dependent PKA activity

(Graupner and Brunel 2007)
PP1Tot 0.2 μM Total PP1 concentration (Graupner and Brunel 2007)
CaMKIITot 33.3 μM Total CaMKII concentration (Graupner and Brunel 2007)
CaMTot 0.1 μM Total calmodulin concentration (Graupner and Brunel

2007)
I1Tot 1 μM Total I1 concentration (Graupner and Brunel 2007)

(continued)
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Table A.1 (continued)

Parameter Value Units Definition and reference

PP2A
Km 1.95 μM Dissociation constant for calcium, defines the LTD threshold;

adjusted
Km11 15 μM Michaelis-Menten constant for PP2A autodephosphorylation;

adjusted
Km12 1 μM Michaelis-Menten constant for PP2A phosphorylation (Pi and

Lisman 2008)
k11 0.05 s−1 Rate constant of PP2A autodephosphorylation; adjusted
k12 0.0026 s−1 Rate constant of PP2A phosphorylation by CaMKII, adjusted
k13 0.025 s−1 Rate constant of PP2A basal activity; adjusted
k14 2 s−1 Rate constant of calcium-dependent PP2A dephosphorylation;

adjusted
CaMKII0 71.4 μM Basal concentration of phosphorylated CaMKII subunits;

adjusted
PP2A0 0.0425 μM Basal concentration dephosphorylated PP2A; adjusted
PP2ATot 20 μM Total concentration PP2A (Pi and Lisman 2008)
AMPAr
c1 0.054 – Scaling constant; adjusted
c2 0.520 – Scaling constant; adjusted
c3 1.014 s−1 Rate constant independent from CaMKII activity; adjusted
c4 1 s−1 Rate constant independent from PP2A activity; adjusted
AMPA 1 – Normalised total concentration of AMPAr (Pi and Lisman 2008)

Reproduced with permission from Saudargiene and Graham (2015), Table A1 Copyright Elsevier

PKA activity (Graupner and Brunel 2007):

vPKA = ko
PKA + kPKA

1 +
(

KPKA
CaM

)nPKA
. (A.2)

Calcineurin activity (Graupner and Brunel 2007):

vCaN = ko
CaN + kCaN

1 +
(

KCaN
CaM

)nCaN
. (A.3)

Concentration of active PP1 (Graupner and Brunel 2007):

d

dt
PP1 = −kPP1I1P · PP1 + kPP1 (PP1Tot − PP1) . (A.4)

Concentration of active I1P (Graupner and Brunel 2007):

d

dt
I1P = −kPP1I1P · PP1 + kPP1 (PP1Tot − PP1) + vPKAI1PTot − vCaNI1P. (A.5)
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Probability that CaMKII subunit binds with calcium-calmodulin complex
(Graupner and Brunel 2007):

γ = CaM

K5 + CaM
. (A.6)

Rate of CaMKII subunit dephosphorylation (a modified equation from Graupner
and Brunel (2007)):

kD = kPP1PP1 + kPP2APP2A

KM + CaMKII
. (A.7)

Concentrations of CaMKII with different numbers of phosphorylated subunits
(Graupner and Brunel 2007):

d

dt
S0 = −6k6γ

2S0 + kDS1, (A.8)

d

dt
S1 = 6k6γ

2S0 − 4k6γ
2S1 − k7γ S1 − kDS1 + 2kD (S2 + S3 + S4) , (A.9)

d

dt
S2 = k6γ

2S1 + k7γ S1 − 3k6γ
2S2 − k7γ S2 − 2kDS2 + kD (2S5 + S6 + S7) ,

(A.10)

d

dt
S3 = 2k6γ

2S1 − 2k6γ
2S3 − 2k7γ S3 − 2kDS3 + kD (S5 + S6 + S7 + 3S8) ,

(A.11)

d

dt
S4 = k6γ

2S1 − 2k6γ
2S4 − 2k7γ S4 − 2kDS4 + kD (S6 + S7) , (A.12)

d

dt
S5 = k6γ

2S2 + k7γ
2 (S2 + S3) − 2k6γ

2S5 − k7γ S5 − 3kDS5 + kD (2S9 + S10) ,

(A.13)

d

dt
S6 = k6γ

2 (S2 + S3) + 2k7γ S4

− k6γ
2S6 − 2k7γ S6 − 3kDS6 + kD (S9 + S10 + 2S11) , (A.14)

d

dt
S7 = k6γ

2 (S2 + S4) + k7γ S3 − k6γ
2S7 − 2k7γ S7

− 3kDS7 + kD (S9 + S10 + 2S11) , (A.15)
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d

dt
S8 = k6γ

2S3 − 3k7γ S8 − 3kDS8 + kDS10, (A.16)

d

dt
S9 = k6γ

2S5 + k7γ (S5 + S6 + S7) − 2k6γ
2S9 − 2k7γ S9 − 4kDS9 + 2kDS12,

(A.17)

d

dt
S10 = k6γ

2 (S5 + S6) + k7γ (S7 + 3S8) − 2k7γ
2S10 − 4kDS10 + 2kDS12,

(A.18)

d

dt
S11 = k6γ

2S7 + k7γ S6 − 2k7γ S11 − 4kDS11 + 2kDS12, (A.19)

d

dt
S12 = k6γ

2S9 + k7γ (S9 + 2S10 + 2S11) − k7γ S12 − 5kDS12 + 6kDS13,

(A.20)

d

dt
S13 = k7γ S12 − 6kDS13. (A.21)

Concentration of phosphorylated CaMKII subunits (Graupner and Brunel 2007):

CaMKII = S1 + 2 (S2 + S3 + S4) + 5 (S5 + S6 + S7 + S8)

+ 4 (S9 + S10 + S11) + 5S12 + 6S13. (A.22)

Concentration of dephosphorylated PP2A (a modified equation from Pi and
Lisman (2008)):

d
dt

PP2A = k11
PP2ATot − PP2A

Km11 + PP2AT ot − PP2A
PP2A−

− k12
PP2A

Km12 + PP2A
(CaMKII + CaMKII0)+

+ k13PP2A0 + k14

[
Ca2+]3

K3
m + [

Ca2+]3 (PP2ATot − PP2A) .

(A.23)

Rate of AMPAr phosphorylation (Pi and Lisman 2008):

kAMPA = c1CaMKII + c2. (A.24)

Rate of AMPAr dephosphorylation (Pi and Lisman 2008):
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Table A.2 Parameters of the STDP model

Parameter Value Units Definition and reference

θd 1 μM LTD threshold (adjusted)
θp 1.3 μM LTP threshold (adjusted)
γd 300 – Rate of decrease in ρ (adjusted)
γp 1600 – Rate of increase in ρ (adjusted)
τ 100 s Time constant of ρ changes (Graupner and Brunel 2012)
ρ* 0.5 – Unstable ρ state (Graupner and Brunel 2012)

Reproduced with permission from Saudargiene et al. (2015), Table A2. Copyright Wiley

kAMPA = c3PP2A + c4. (A.25)

Concentration of active AMPAr (Pi and Lisman 2008):

d

dt
AMPA = kAMPA (AMPATot − AMPA) − k−AMPAAMPA. (A.26)

Phenomenological Model of STDP

Synaptic efficacy variable ρ is described by a first-order differential equation
(Graupner and Brunel 2012):

τ
dρ

dt
= −ρ (1 − ρ) (ρ∗ − ρ) + γp (1 − ρ) �

[
c(t) − θp

]

− γdρ� [c(t) − θd ] + Noise(t), (A.27)

where c(t) is the instantaneous calcium concentration, � denotes the Heaviside
function and all the remaining parameters and their values are presented in Table
A2. Noise term Noise(t) is not implemented.

Synaptic Conductances

Study 1 (Detailed Biochemical Model of STDP Used)

AMPA, GABA-A and GABA-B synaptic conductances are modelled as a double
exponential function:

gsyn = gsyn

(
e−(t−tpre)/τfall − e−(t−tpre)/τrise

)
, (A.28)
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where τ rise is the rising time constant, τ fall is the decay time constant, gsyn is a peak
synaptic conductance and tpre is the time of the synapse activation. Time constants,
peak synaptic conductances and reversal potentials are presented in Tables A3
and A4.

Kinetic model of the NMDAr-gated channel is described by the activation and
deactivation reactions for Mg-bound and Mg-free channel states (Vargas-Caballero
and Robinson 2004; Erreger et al. 2005).

Mg-bound NMDAr channel states are given:

d

dt
RMg = koffRAMg − 2konRMg, (A.29)

d

dt
RAMg = 2konRMg + 2koff RA2Mg − (kon + koff) RAMg, (A.30)

d
dt

RA2Mg = konRAMg + kf offRA2f Mg + ksoffRA2sMg

− (
2koff + kf on + kson

)
RA2Mg,

(A.31)

d

dt
RA2f Mg = kf onRA2Mg + ksoffROMg − (

kf off + kson
)
RA2f Mg, (A.32)

d

dt
RA2sMg = ksonRA2Mg + kf offROMg − (

ksoff + kf on
)
RA2sMg, (A.33)

d
dt

ROMg = ksonRA2f Mg + kf onRA2sMg + kMgonRO−(
ksoff + kf off + kMgoff

)
ROMg.

(A.34)

Mg-free NMDAr channel states are expressed:

d

dt
R = koffRA − 2konR, (A.35)

d

dt
RA = 2konR + 2koffRA2 − (kon + koff) RA, (A.36)

d

dt
RA2 = konRA + kf offRA2f + ksoffRA2s − (

2koff + kf on + kson
)
RA2, (A.37)

d

dt
RA2f = kf onRA2 + ksoffRO − (

kf off + kson
)
RA2f , (A.38)

d

dt
RA2s = ksonRA2 + kf offRO − (

ksoff + kf on
)
RA2s . (A.39)
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Conducting open state of the NMDAr is equal:

d
dt

RO = ksonRA2f + kf onRA2s + kMgoffROMg−(
ksoff + kf off + kMgon

)
RO.

(A.40)

Calcium current through open NMDAr-gated channel is described:

ICa = 0.06 gNMDARO (V − ECa) . (A.41)

Parameter values and definitions are presented in Table A5.

Study 2 (Phenomenological Model of STDP Used)

AMPA, GABA-A and GABA-B synaptic conductances are modelled as in Eq. A.28.
The NMDAr-mediated synaptic response is expressed:

gsyn = gsyn
e−(t−tpre)/τfall − e−(t−tpre)/τrise

1 + μ
[
Mg2+]

e−γV
, (A.42)

where τ rise is the rising time constant, τ fall is the decay time constant, gsyn is a peak
synaptic conductance, tpre is the time of the synapse activation and [Mg2+] = 1 mM
is Mg concentration, μ = 0.33/mM, γ = 0.08/mV.

Time constants, peak synaptic conductance and reversal potential of AMPA,
GABA-A, GABA-B and NMDA synapse are given in Tables A6 and A7.

Calcium Concentration

Calcium concentration in a spine is modelled as (Badoual et al. 2006):

d

dt

[
Ca2+]

= − ICa

2Fd × 18
+

([
Ca2+]

∞ − [
Ca2+])

τCa
, (A.43)

where [Ca2+] is the calcium concentration in a spine, ICa is the calcium current, F
is the Faraday constant, d = 0.1 μm is the depth of dendritic shell and τCa = 15 ms
is the time constant of calcium concentration decay (Badoual et al. 2006). Factor 18
reflects the influence of the endogenous buffers (Badoual et al. 2006).
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Network Parameters

Study 1 (Detailed Biochemical Model of STDP)

Table A.3 Time constants, reversal potential and peak synaptic conductance of AMPA, GABA-A
and GABA-B synapses and two somatic and one SLM dendritic excitatory synapses used to induce
doublets of somatic action potentials and a dendritic spike in the CA1 pyramidal neuron model

Synapse
Rising time
constant τ rise, ms

Decay time
constant τ fall, ms

Reversal
potential, mV

AMPA 0.5 3 0
GABA-A 1 8 −75
GABA-B 35 100 −75
Excitatory somatic slow 4 5 0
Excitatory somatic fast 0.2 2 0
Excitatory SLM dendritic 0.2 0.5 0

Reproduced with permission from Saudargiene and Graham (2015), Table A1. Copyright Elsevier

Table A.4 Peak synaptic conductances (nS for AMPA, GABA-A, GABA-B, nS/cm2 for NMDA)
(type of postsynaptic receptor is indicated in parentheses)

Presynaptic Postsynaptic

CA1 pyramidal neuron PC BC BSC OLM
EC 2.2 (AMPA) – – –

65 (NMDA)
CA3 2.2 (AMPA) – 5 (AMPA) –

13 (strong AMPA)
65 (NMDA)

BC 500 (GABA-A) – – –
BSC 10 (strong GABA-A) – – –

1 (strong GABA-B)
5 (weak GABA-A)
0.5 (weak GABA-B)

OLM 50 (GABA-A) – – –
10 (GABA-B)

CA1
pyramidal
neuron PC

– 100 (AMPA) – 10 (AMPA)

– 20 (excitatory somatic slow) – – –
– 20 (excitatory somatic fast) – – –
– 500 (excitatory SLM dendritic) – – –

Reproduced with permission from Saudargiene and Graham (2015), Table A2. Copyright Elsevier
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Table A.5 Parameters of NMDAr channel kinetic model

Parameter Value Units Definition and reference

kon 31.6 Glu (s μM)−1 Rate, dependent on presynaptic glutamate
concentration Glu (Erreger et al. 2005); glutamate
concentration is modelled as a pulse of 1 mM
amplitude and 1 ms duration

koff 1010 s−1 Rate constant (Erreger et al. 2005)
kf_on 3140 s−1 Rate constant (Erreger et al. 2005)
kf_off 174 s−1 Rate constant (Erreger et al. 2005)
ks_on0 230 s−1 Rate constant (Erreger et al. 2005)
ks_off 178 s−1 Rate constant (Erreger et al. 2005)
kMg_on 0.610 e(−V/17) (s μM)−1 Rate of Mg2+ binding, dependent on membrane

potential V (Vargas-Caballero and Robinson 2004)
kMg_off 5400 e(−V/47) s−1 Rate of Mg2+ unbinding, dependent on membrane

potential V (Vargas-Caballero and Robinson 2004)
ks_on ks _ on0e(V + /47) s−1 Rate, dependent on membrane potential V

gNMDA 65 nS/cm2 Peak NMDA synaptic conductance (adjusted)
ECa 140 mV Ca2+ reversal potential

Study 2 (Phenomenological Model of STDP)

Table A.6 Time constants, reversal potential and peak synaptic conductance of NMDA, AMPA,
GABA-A and GABA-B synapses

Synapse Rising time constant τ rise, ms Decay time constant τ fall, ms Reversal potential, mV

NMDA 3 100 0
AMPA 0.5 3 0
GABA-A 1 8 −75
GABA-B 35 100 −75

Table A.7 Peak synaptic conductances (nS)

Presynaptic Postsynaptic

CA1 pyramidal neuron BSC B AA OLM
CA3 Synapse on a SR spine

0.05 (NMDA)
1.2 (AMPA, encoding
phase)
3 (AMPA, retrieval
phase)

CA3 40(AMPA, encoding
phase)

1 (AMPA) 0.05 (AMPA) 0.02 (AMPA) –

100(AMPA, retrieval
phase)

(continued)
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Table A.7 (continued)

Presynaptic Postsynaptic

EC 80 (AMPA) – 2.5 (AMPA) 2.5 (AMPA) –
BSC 4(GABA-A) – 10 (GABA-A) – –

0.1 (GABA-B)
B 100 (GABA-A) 50 (GABA-A) – – –
AA 40 (GABA-A) – – – –
OLM 20(GABA-A) – – – –

20 (GABA-B)
CA1
pyramidal
neuron

– 0.5(AMPA) 0.5 (AMPA) 1(AMPA) 1 (AMPA)

Type of the postsynaptic receptor is indicated in parentheses (Reproduced with permission from
Saudargiene et al. (2015), Table A1. Copyright Wiley)
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Abstract Long-term potentiation (LTP) and long-term depression (LTD) are two
forms of long-lasting synaptic plasticity. To protect synaptic weights from extreme
increase or decrease, neurons need to regulate their activities; this phenomenon is
called homeostatic plasticity. The induction of homosynaptic plasticity by high-
frequency stimulation (HFS) increases the strength of synaptic weights dramatically
which makes a neuron loses balance. However, heterosynaptic plasticity keeps the
synaptic weights away from the extreme increase and brings them into a stable
range. Therefore, neurons need both homosynaptic and heterosynaptic plasticity to
regulate their synaptic weights. In most previous studies of spike-timing-dependent
plasticity (STDP) models, postsynaptic spikes are treated as all-or-none events;
however, in this study, we calculate the voltage of the postsynaptic spikes instead
of counting the number of spikes. Further, we incorporate a modified model of

The original version of this chapter was revised: two of the chapter authors were inadvertently
missed in the authors list which has been added now. The correction to this chapter is available at
https://doi.org/10.1007/978-3-319-99103-0_27

A. Shirrafiardekani (�)
Department of Computer Science, University of Otago, Dunedin, New Zealand
e-mail: ashirrafi@cs.otago.ac.nz

J. Frauendiener
Mathematics & Statistics, University of Otago, New Zealand
e-mail: joerg.frauendiener@otago.ac.nz

A. A. Moustafa
School of Social Sciences and Psychology & Marcs Institute for Brain and Behaviour, Western
Sydney University, Sydney, NSW, Australia
e-mail: A.Moustafa@westernsydney.edu.au

L. Benuskova
Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius
University, Bratislava, Slovakia
e-mail: lubica@ii.fmph.uniba.sk

© Springer Nature Switzerland AG 2018
V. Cutsuridis et al. (eds.), Hippocampal Microcircuits, Springer Series
in Computational Neuroscience, https://doi.org/10.1007/978-3-319-99103-0_20

701

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99103-0_20&domain=pdf
https://doi.org/10.1007/978-3-319-99103-0_27
mailto:ashirrafi@cs.otago.ac.nz
mailto:joerg.frauendiener@otago.ac.nz
mailto:A.Moustafa@westernsydney.edu.au
mailto:lubica@ii.fmph.uniba.sk
https://doi.org/10.1007/978-3-319-99103-0_20


702 A. Shirrafiardekani et al.

metaplasticity based on the voltage of the spike rather than the spike count.
To model synaptic plasticity of dentate granule cells, we used computational
simulations and employed STDP rules accompanied with metaplasticity model and
noisy spontaneous activity to address these questions; firstly, could our plasticity
and metaplasticity models produce homosynaptic LTP in one pathway and het-
erosynaptic LTD in the neighbouring pathway? Secondly, does the magnitude of
spontaneous activity after stimulation determine the level of heterosynaptic LTD?
Thirdly, when two stimulations with the same frequency are applied to the same
synapse at different time interval, will both stimulations produce the same level of
synaptic plasticity? Our result shows that employing STDP and metaplasticity rules
based on the voltage of the spikes accompanied with noisy spontaneous activity
could replicate homosynaptic LTP in the stimulated pathway and heterosynaptic
LTD in the non-stimulated neighbouring pathway of the dentate granule cell, as
shown experimentally (Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate
WP, Proc Natl Acad Sci 98(19):10924–10929, 2001; Abraham WC, Logan B, Wolff
A, Benuskova L, J Neurophysiol 98(2):1048–1051, 2007).

Introduction

Neural stem cells have a capacity of generating new neurons. This phenomenon is
called neurogenesis. Hippocampal dentate granule is one of a few areas in the brain
that could reproduce the adult neurogenesis (Barker et al. 2011). According to the
new studies, synaptic plasticity of adult-born dentate granule cells is highly involved
in the process of learning and memory formation Snyder et al. (2001). Therefore,
for further investigation of synaptic plasticity in the adult dentate granule cell, our
work is concentrated in this specific cell type of the hippocampus. The ability of
synapses to change their efficacy in respond to activity is called synaptic plasticity.
There are two forms of long-lasting synaptic plasticity, long-term potentiation (LTP)
and long-term depression (LTD). Bliss and LØmo were the first to observe LTP
in the dentate gyrus in anaesthetized rabbits (Bliss and Cooke 2011). Following
that Douglas and Goddard in 1975 found that high-frequency stimulation (HFS)
could reproduce longer and stronger LTP. LTP and LTD could occur simultaneously
in the neighbouring pathways of the dentate granule cells (Douglas and Goddard
1975). A mechanism in which a synapse is activated by presynaptic stimulation
is called homosynaptic plasticity. However, when activations of other synapses
cause synaptic plasticity at inactivated synapse, heterosynaptic plasticity occurs.
In dentate granule neurons, both forms of homo- and heterosynaptic plasticity
are required for the modulation of synaptic plasticity. There are some activities
of the brain that put the neurons in the unstable condition; therefore, to stabilize
the synaptic plasticity and control synaptic weights, neurons use a mechanism
called homeostatic plasticity (Watt and Desai 2010). For example, homosynaptic
plasticity extremely increases the synaptic weights, while heterosynaptic plasticity
could modify the affected synapse by returning the synaptic weights to balance
(Chistiakova et al. 2014). Heterosynaptic LTD of the dentate granule cells for the
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first time was observed in vivo in 1979. To produce longer homosynaptic LTP
in the hippocampus, heterosynaptic plasticity needs to be induced. Experimental
studies from dentate granule cells reveal that homosynaptic LTP in the activated
synapse is accompanied by heterosynaptic LTD in the inactivated ones (Foy 2001).
Another mechanism that might be involved in the regulation of synaptic plasticity
is metaplasticity. Metaplasticity is a form of homeostatic plasticity, in which the
previous activity of the neuron regulates further synaptic plasticity. More precisely,
if the induction of specific stimulation causes synaptic plasticity in a synapse, with
the induction of the same stimulation at the same synapse only a few minutes later,
the same amplitude of synaptic plasticity will not be produced (Morrison 2012).
This mechanism modifies the firing rate of the neuron and prevents the synaptic
weights from excessive growth (Yger and Gilson 2015). Metaplasticity can also
be classified as homosynaptic and heterosynaptic metaplasticity. In homosynaptic
metaplasticity induction, synaptic plasticity is modified by the previous activity at
the same synapse. However, in heterosynaptic metaplasticity, synaptic plasticity is
modified by the previous activity from other synapses (Abraham et al. 2001).

Experimental studies from Levy and Steward in 1983 revealed that besides the
frequency of presynaptic activity, the precise timing between pre- and postsynaptic
spikes is also crucial for the LTP induction. This mechanism is called spike-timing-
dependent plasticity (STDP). In this work, we have used computer simulation to
test that which of the above mechanisms might be involved on the induction of
synaptic plasticity. Noisy spontaneous activity is a background activity of the brain.
Bienenstock, Cooper and Munro (BCM) was the first plasticity rule that took into
account the role of this activity. However, in this work, we show that the frequency
of noisy spontaneous activity determines the amplitude of LTP and LTD. Therefore,
it will be a critical factor for our plasticity model as well. Although, in most
STDP models, the postsynaptic spike count is calculated for induction of synaptic
plasticity, in our STDP model, the postsynaptic voltage is calculated for induction
of synaptic plasticity, because some evidence from experimental studies show that
the average of postsynaptic voltage is significant for induction of synaptic plasticity
rather than the spike count.

In this work, our modified metaplasticity model is also based on the postsynaptic
voltage because we think synaptic plasticity can be produced if the average of
postsynaptic voltage is bigger than the threshold. Furthermore, in this model of
metaplasticity, only one factor either potentiation or depression is needed to be
controlled by model.

In this work, we used nine-compartmental model of granule cell accompanied
with STDP and metaplasticity mechanisms with noisy spontaneous activity to
address the following questions:

1. With our model, could we replicate homosynaptic LTP in the tetanized pathway
and concurrent heterosynaptic LTD in the neighbouring non-tetanized pathway?

2. Could the frequency of noisy spontaneous activity determine the magnitude of
heterosynaptic LTD?
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3. Does the metaplasticity of the first stimulation impact on the level of synaptic
plasticity caused by the second HFS?

To answer the above questions and test our metaplasticity and plasticity models,
we use experimental studies by Abraham et al. (2001) and Abraham et al. (2007).

In the first simulation, we replicated the data from Abraham et al. (2001), when
HFS is applied to the medial perforant pathway (MPP). The aim of this simulation
is to examine our plasticity and metaplasticity models on induction of homosynaptic
LTP and concurrent heterosynaptic LTD.

In the second simulation, we replicated the data from Abraham et al. (2007),
when HFS is applied to the medial pathway and simultaneous spontaneous activity
is switched off in the lateral perforant pathway (LPP) only during the medial HFS.
The goal of this simulation was to examine the role of noisy spontaneous activity in
producing heterosynaptic LTD in the lateral perforant pathway (LPP).

In the third simulation, we also replicated the data from Abraham et al. (2007),
when two HFS with the same patterns are applied to the medial pathway and
simultaneous lateral spontaneous activity is switched off only during the first medial
HFS. The aim of this simulation is to examine the metaplasticity impact of the first
medial HFS on synaptic plasticity produced by the second HFS. In this work, we
show that with our STDP and metaplasticity models based on the voltage of the
postsynaptic spikes accompanied with noisy spontaneous activity, our model can
replicate experimental studies by Abraham et al. (2001) and Abraham et al. (2007),
while the granule cell model is a realistic nine-compartmental model.

In the first section of the chapter, we will describe relevant experimental
studies. After that, we will describe our novel model and explain how it relates
to experimental data presented in the first section.

Review of In Vivo Experimental Studies that We Model

In this section we will briefly review two in vivo experimental studies from Abraham
et al. (2001) and Abraham et al. (2007). In Abraham et al. (2001), the role
of sliding modification threshold from the BCM rule in homosynaptic LTP and
heterosynaptic LTD of the awake rats was examined. The first goal of experimental
studies by Abraham et al. (2007) was to examine the role of spontaneous activity
in heterosynaptic plasticity LTD of the anaesthetized rats. And the second goal was
to examine the metaplastic effect of the first stimulation on the synaptic plasticity
produced by the second stimulation.

Description for Experimental Studies by Abraham et al. (2001)

In Abraham et al. (2001) various experiments have been conducted to investigate
synaptic plasticity in the dentate granule cells, but we only describe one part of
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their experimental studies, when only one specific pattern of HFS was applied to
the medial pathway.

Adult male Sprague-Dawley rats (400–550 g) were prepared and chronically
implanted with stimulating and recording electrodes (Abraham and Goddard 1983).
Activation of the medial and lateral perforant path fibres by stimulating an electrode
evokes field excitatory postsynaptic potentials (fEPSPs) within the dentate granule
hilus (McNaughton and Barnes 1977). After surgery, animals were put into the
recording chamber, and an experimental procedure was started, while animals were
awake (Abraham et al. 2001). According to Abraham et al. (2001), following the
stability of fEPSPs baseline, different patterns of HFS were applied to the medial
pathway. As we only describe one of the experiments, we examine the effect of one
pattern of HFS. As can be seen from Fig. 2, the first HFS pattern was 400 Hz delta-
burst stimulation (DBS) with 30-s interburst intervals repeated ten times, applied to
the medial pathway. Delta-burst stimulation as a train within one burst is delivered at
the delta frequency of 1 Hz. After applying HFS, the field EPSP slope is expressed as
a percentage change from the average baseline value prior to injection. The percent
change of data was presented as mean ± SEM (Abraham et al. 1985).

The aim of this paper was to examine the homosynaptic LTP and heterosynaptic
LTD within the two neighbouring pathways of the granule cells with sliding
modification threshold using the BCM rule. As can be seen from Fig. 3, before
applying HFS, both medial and lateral pathways are quite stable. When the first
HFS was applied to the medial pathway, the percentage of the average of fEPSP
slope increased by (37 ± 5%) which means homosynaptic LTP occurred in this
pathway. However, in the lateral pathway, the percentage of the average of fEPSP
slope simultaneously decreased by (30 ± 5%), which means heterosynaptic LTD
occurred in this pathway.

Description of Experimental Studies by Abraham et al. (2007)

The first experimental condition from Abraham et al. (2007) investigates the role
of spontaneous activity in heterosynaptic LTD of dentate granule cell. The second
experimental condition examines the metaplasticity impact of the previous plasticity
on synaptic plasticity produced by the second stimulation at different time intervals.
All experiments from Abraham et al. (2007) are examined with two control and
procaine groups. In the procaine group, the lateral pathway will be blocked during
the first medial HFS. However, in the control group, both pathways are open during
the whole experiments (Fig. 1).

In this procedure, the first adult male Sprague-Dawley rats (2–4 mo) were
anaesthetized with urethan. Then, stimulating electrodes were implemented to the
medial and lateral pathway by stereotaxic method. Recording electrodes were also
implemented to the dentate hilus to record the extracellular field potential (Christie
and Abraham 1992). After about 30 min that both pathways became stable, HFS was
applied to the medial pathway, and simultaneously PBS or procaine was injected to
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Fig. 1 Position of the
stimulating (far left, end of
medial and lateral paths) and
recording (centre right)
electrodes in the rat
hippocampus. (Source:
Bowden et al. 2012)

Fig. 2 Schematic illustration of the 400 Hz delta-burst stimulation (DBS) of HFS consists of five
trains at 1 Hz, while each train contains ten spikes at 400 Hz. Bursts are repeated ten times at every
30-s. (Source Shirrafiardekani et al. 2017)

the lateral pathway. As can be seen from Fig. 4, in this experiment, HFS consists
of 400 Hz DBS (delta-burst stimulation) with 60-s interburst intervals repeated ten
times. After injecting HFS, the percentage change of the average of fEPSP slope
was calculated from the baseline for both medial and lateral path responses, and all
data were demonstrated as means ±SE (Figs. 2 and 3).

Examining the synaptic plasticity and metaplasticity in the dentate granule cell
in vivo is more accurate than in vitro (like slice). The reason of that is because of
the level of spontaneous activity. Unlike in vivo, the degree of spontaneous activity
in slice is zero.

The first aim of experimental studies by Abraham et al. (2007) was to examine the
impact of the spontaneous activity on heterosynaptic plasticity LTD in the dentate
granule cell. As we explained before, all the experimental studies from Abraham
et al. (2007) are tested with two control and procaine groups. In the procaine
group, when the first pattern of HFS (Fig. 4) was applied to the medial pathway,
simultaneously either procaine or PBS was injected to the lateral pathway to block
the spontaneous activity in this pathway. As can be seen from Fig. 6 (black circle),
procaine also blocked the response evoked by the test pulses which firstly caused
a large “depression” in this pathway that is considered to be artefact. After a few
minutes that procaine washed out, the magnitude of fEPSP slope was decreased to
(−5 ± 8% n = 6) in the lateral pathway. However, blocking the spontaneous activity
in the lateral pathway did not affect the synaptic plasticity in the medial pathway.
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Fig. 3 The percentage of changes of synaptic weights in medial and lateral pathways is calculated
by the field excitatory postsynaptic potential (fEPSP). 50 Med is the first HFS (400 Hz delta-burst
stimulation (DBS) with 30-s interburst intervals repeated ten times) applied to the medial pathway.
The percentage of the average change of synaptic weights in the medial pathway is shown with
unfilled circles, and the percentage of the average change of synaptic weights in the lateral pathway
is shown with filled circles. With applying the first HFS to the medial pathway, (37 ± 5%) LTP is
observed in this pathway, and (30 ± 5%) LTD is observed in the lateral pathway. (Source: Abraham
et al. 2001)

Fig. 4 Schematic illustration of the 400 Hz delta-burst stimulation (DBS) of HFS consists of five
trains at 1 Hz, while each train contains ten spikes at 400 Hz. Bursts are repeated ten times at every
60-s. (Source Shirrafiardekani et al. 2017)

Therefore, the percentage of the average of fEPSP slope raised by (37 ± 5%, n = 7)
which caused homosynaptic LTP in this pathway (Fig. 5 white circle). However,
with applying the first medial HFS in the control group, the magnitude of fEPSP
slope decreased by (24 ± 3%, n = 7) in the lateral pathway (Fig. 6 white circle),
while the magnitude of fEPSP slope increased by (37 ± 5%, n = 7) in the medial
pathway. Comparing the results from procaine group and control group in the lateral
pathway reveals the requirement of spontaneous activity for heterosynaptic LTD in
the granule cell.

The purpose of the second experimental condition of Abraham et al. (2007)
was to investigate the role of metaplasticity from the first stimulation on synaptic
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Fig. 5 The percentage of changes of synaptic fEPSP slope for the medial pathway in the control
group (unfilled circle) and for the procaine group (filled circle) is shown. When the first HFS was
applied to the medial pathway, simultaneously lateral pathway will be blocked by procaine to block
the degree of spontaneous activity. With applying the first medial HFS, the fEPSP slope increased
by (37 ± 5%, n = 7) in the medial pathway, but when the second HFS was applied, it causes no
larger LTP in this pathway for both procaine and control groups. (Source: Abraham et al. 2007)

Fig. 6 The average change in the slope of fEPSP in the lateral pathway in the control group
(unfilled circles) and the procaine group (filled circle). With applying the first medial HFS, procaine
was injected to the lateral pathway to block the lateral spontaneous activity. Therefore, LTD
was inhibited in this group. The reason why we see depression (filled circles) is that procaine
also inhibits the response evoked by the test pulses. However, in the control group, fEPSP slope
decreased by (24 ± 3%, n = 7). When the second medial HFS was applied, no further LTD was
observed in neither of groups. (Source: Abraham et al. 2007)
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plasticity produced by the second stimulation. Therefore, a few minutes after
applying the first medial HFS, the second HFS with the same pattern as the first
one was applied to the medial pathway.

As can be seen from Fig. 5, in both procaine and control groups, although LTP
occurred in the second HFS, no further increase in the average of fEPSP slope
was observed in this pathway. However, when the second medial HFS was applied,
although LTD was observed in the control group, no further LTD occurred in this
pathway (Fig. 6 white circle). The same results were observed in the procaine group,
when the second medial HFS was applied, and no further LTD was observed in the
lateral pathway in this group (Fig. 6 black circle).

These results prove that the metaplasticity impact of the previous plasticity does
not let the second HFS to reproduce the same level of plasticity as the first HFS.

Model Overview

Mathematical and computational neuroscientists benefit from a variety of numer-
ical and analytical techniques for examining different mechanisms that might be
involved in the processing information in the nervous system. Therefore, with
employing a variety of mathematical and computational tools, it will be possible
for scientists to propose different hypotheses and evaluate new aspects of the
experimental studies (Ulinski 1999). In this section we introduce some plasticity
rules, and then we describe the compartmental model of neuron and plasticity
and metaplasticity rules that we have employed to examine the synaptic plasticity
in the granule cells. In this work we have simulated the experimental studies of
Abraham et al. (2001) and Abraham et al. (2007). Using simulations and employing
STDP and metaplasticity models based on the voltage accompanied with reduced
compartmental model of neuron and noisy spontaneous activity, we addressed three
questions; the first question was: Could our model replicate homosynaptic LTD in
the triggered MPP and heterosynaptic LTD in the neighbouring inactivated LPP of
the dentate granule cell? With this question in mind, we will test the plasticity model.
The second question that we addressed was: Does the frequency of spontaneous
activity impact the level of heterosynaptic plasticity LTD? The purpose of this
question was to investigate the role of frequency of spontaneous activity on the
synaptic plasticity. The third question we addressed was: When two high-frequency
stimulations (HFS) with the same pattern at different times are applied to the
synaptic pathway, do they both produce the same level of synaptic plasticity in our
model? The aim of this question is to examine our metaplasticity model.

Modelling the Dentate Granule Cells

There are two computational models for implementing the dentate granule cells:
realistic and simplified models. In the realistic models, biological details such as
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cellular mechanism with different concentrations of ion channels are described
(DAngelo et al. 2013). However, in the simplified models, the biological details
are not described as much as the realistic models. Because only specific properties
of the neural dynamics are desired, these models do not need to be more detailed.
Multi-compartmental model of the neuron is an example of a realistic model, and
integrate-and-fire model is known as simplified model of neuron (Izhikevich 2004).

The dendritic tree of the dentate granule cells consists of four parts: the granule
cell layer dendrites (GCLD), the proximal (PD), the middle (MD) and distal (DD)
dendrites. The proximal dendrite (PD) receives inputs from commissural. The
middle dendrite (MD) receives inputs from the medial entorhinal cortex, and the
distal dendrite (DD) receives inputs from the lateral entorhinal cortex (Andersen
et al. 2006). The entorhinal cortex transfers inputs via medial perforant pathway
(MPP) to the MD of the granule cells, while lateral perforant pathway (LPP) of the
entorhinal cortex transfers inputs to the DD of the granule cells (Scharfman 2011).

As the length and the size of dendritic tree (or axon) increases, the amount
of inputs that will be received by each branch might be different. Therefore, to
describe complicated structure of the dendrites (or axons), it is important to use
a compartmental model. When each dendrite (or axon) is divided into smaller
compartments, each compartment will have its own radius, length and voltage that
can be formulated by ordinary differential equations (Sterratt et al. 2011). Desmond
and Levy in 1982 were the first to introduce the full-morphology compartmental
model of the dentate granule cells (Desmond and Levy 1982). Since then, the
reduced compartmental model with four ion channels was introduced by Yuen and
Durand in 1991, but this model could not describe some important properties of
the granule cells (Yuen and Durand 1991). A reduced 60-compartmental model
with nine types of ion channels was extended by Aradi and Holmes in 1999.
Aradi and Holmes’ model could explain varieties of experimental studies quite
well (Tejada et al. 2014). This model has 2 dendrites, while each dendrite has
14 compartments. It also has one compartment for soma and an axon with 31
compartments (Aradi and Holmes 1999). Our dentate granule cell model is based on
a reduced compartmental model of Aradi and Holmes (1999) which is implemented
in Neuron by Santhakumar et al. (2005). We first downloaded simulation files from
the ModelDB database at (http://senselab.med.yale.edu/modeldb/, accession No.
51781). Because we did not want to produce the propagation of action potential, we
did not include the axon into the model. To reduce the simulation time, our model
has only nine compartments: One compartment for soma and four compartments for
each dendrite, and each dendrite has 150 excitatory synapses.

Our granule cell model has seven ion channels: fast sodium (Na), fast delayed
rectifier potassium (fKDR), slow delayed rectifier potassium (sKDR), A-type
potassium (KA) and large conductance T-type (TCa), Ntype (NCa) and L-type
(LCa) calcium channels from Aradi and Holmes (1999). The GC files can be
downloaded from the ModelDB at http://senselab.med.yale.edu/modeldb/, accession
No. 51781.

http://senselab.med.yale.edu/modeldb
http://senselab.med.yale.edu/modeldb
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Table 1 Parameter values of all compartments of GC model

Parameters Distal Middle Proximal Granule cell Soma

Cm (μF/cm2) 1.6 1.6 1.6 1 1
gNa (S/cm2) 0 0.008 0.013 0.018 0.12
gf KDR

(S/cm2) 0.001 0.001 0.004 0.004 0.16
gsKDR

(S/cm2) 0.008 0.006 0.006 0.006 0.006
gNa (S/cm2) 0 0 0 0 0.012
gTCa (S/cm2) 0.001 0.005 2.5 × 10−4 7.5 × 10−5 3.7 × 10−5

gNCa(S/cm2) 0.001 0.001 0.001 0.003 0.002
gLCa (S/cm2) 0 0.0005 0.0075 0.0075 0.005
ENa(mV) 45 45 45 45 45
EK (mV) −90 −90 −90 −90 −90
El(mV) −75 −75 −75 −75 −75
ECa (mV) 130 130 130 130 130
τ rise (ms) 0.2 0.2 0.2 0.2 0.2
τ decay(ms) 2.5 2.5 2.5 2.5 2.5

Source: Santhakumar et al. (2005)

Table 2 Parameter values
for individual compartments

Parameters DD MD PD GCLD Soma

Ra (�cm2) 210 210 210 210 210
L (μm) 150 150 150 150 16.8
ϕ (μm) 3 3 3 3 16.8

Source: Santhakumar et al. (2005)

The following equations describe the membrane current density at each com-

partment with unit mA
/

cm2 . All the parameter values and units are taken from

(Santhakumar et al. 2005) and demonstrated in Tables 1 and 2.

Fast Sodium Current

The equations for INa, i current at compartment i are:

INa,i = GNa,i (Vi − ENa) (1)

GNa,i = gNa,imi
3hi

where Vi is a membrane potential, i is the number of compartment, gNa, i is the
maximum conductance of the sodium channel and ENa is the reverse potential.
Variable mi is dimensionless sodium activation gate, and hi is dimensionless
inactivation gate (see Eqs. 9, 10, 11,12 and 13 from Appendix (rate function)).
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Fast and Slow Delayed Rectifier Potassium Currents

The equations for fKDR current at the compartment i are:

If KDR,i
= Gf KDR,i (Vi − EK) (2)

Gf KDR,i
= gf KDR,i

n4
f,i

where Vi is a membrane potential, i is the number of compartment, gf KDR,i
is the

maximum conductance of the fast delayed rectifier potassium and EK is the reverse
potential. Variable nf, i is dimensionless fast potassium activation gate (see Eqs. 9,
14 and 15 from Appendix (rate functions)).

The equations for sKDR current at the compartment i are:

IsKDR,i
= GsKDR,i (Vi − EK) (3)

GsKDR,i
= gsKDR,i

n4
s,i

where Vi is a membrane potential, I is the number of compartment, gsKDR,i
is the

maximum conductance of the slow delayed rectifier potassium and EK is the reverse
potential. Variable ns, i is dimensionless slow potassium activation gate (see Eqs. 9,
16 and 17 from Appendix (rate functions)).

A-Type Potassium Current

The equations for A-type potassium current at the compartment i are:

IKA,i = GKA,i (Vi − EK) (4)

GKA,i = gKA,iki li

where Vi is a membrane potential, i is the number of compartment, gKA,i is the max-
imum conductance of the A-type potassium and EK is the reverse potential. Variable
ki is dimensionless A-type potassium activation gate, and li is dimensionless A-type
potassium inactivation gate (see Eqs. 9, 18, 19, 20 and 21 from Appendix (rate
functions)).

Calcium Channels

T-, N- and L-type voltage-gated calcium channels are specified for dentate granule
cell. The rate of change of the intracellular calcium concentration at compartment i
was given by:

d
[
Ca2+]

i

dt
= Bi

(
IT Ca,i + INCa,i + ILCa,i

) −
[
Ca2+]

i
− [

Ca2+]
0

τ
(5)
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where Bi
5.2×10−6

Ad
is unit of mol

/

c.m3 for a shell of surface area A and thickness d

(0.2 μm), τ = 10 ms was the calcium removal rate and [Ca2+]0 = 70 nM was the
resting calcium concentration (Aradi and Holmes 1999).

The equations for calcium channels at the compartment i were:

IT Ca,i = GT Ca,i (Vi − ECa) (6)

GT Ca,i = gT Ca,ia
2
i bi

INCa,i = GNCa,i (Vi − ECa) (7)

GNCa,i = gNCa,ic
2
i di

ILCa,i = GLCa,i (Vi − ECa) (8)

GLCa,i = gLCa,ie
2
i

where Vi is a membrane potential, i represents the number of the compartment and
gTCa, i, gNCa, i and gLCa, i are the maximum conductance of T-, N- and L-type cal-
cium, respectively. ECa is the reverse potential. Variables ai and bi are dimensionless
T-type calcium activation and inactivation gates, respectively. Variables ci and di

are dimensionless N-type calcium activation and inactivation gates, respectively.
Variable ei is dimensionless L-type calcium activation gates (see Eqs. A.9, A.22,
A.23, A.24, A.25, A.26, A.27, A.28, A.29, A.30 and A.31 from Appendix (rate
functions)).

Neural Plasticity Models

A variety of plasticity models have been created within the last few decades; each
of them has tried to model new features of synaptic plasticity with more details.
In this section we describe three models of synaptic plasticity called Hebb rules,
Bienenstock, Cooper and Munro (BCM) rules and spike-timing-dependent plasticity
(STDP) rule. We also describe plasticity models we incorporated in our simulation
studies.

Hebbian Plasticity Rule

Donald Hebb was the first one who introduced the plasticity models. He discovered
that the correlation between pre- and postsynaptic activities makes a stronger
connectivity between neurons. Homosynaptic LTP can be described with the
Hebbian plasticity model, but this model is unable to explain the synaptic depression
(Bush et al. 2010).

dwij

dt
= α.viuj (9)
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where wij is the synaptic weight between presynaptic vi and postsynaptic uj, uj is
the jth presynaptic activity, vi is the ith postsynaptic activity and α is a learning rule.
Implementation of the model shows that synaptic weights increase extremely as no
boundary was defined for the synaptic weight in this model (Yger and Gilson 2015).

BCM Rule

BCM rule was another classic model of synaptic plasticity based on experimental
studies from the visual cortex, and it was the first model that took into account
the role of spontaneous activity. In the BCM model, a concept is introduced to
determine the direction of synaptic plasticity called sliding modification threshold
or θm. Sliding modification threshold is a non-linear function of the time average of
postsynaptic activity. BCM rule (Bienenstock et al. 1982; Cooper et al. 2004) can
be formulated according to the following equations:

∅

(
v(t), θm

(
t
) )

= v(t) (v(t) − θm(t)) (10)

v(t) =
∑

u(t)w(t) (11)

dw

dt
= η∅u (12)

where v(t) is the average of postsynaptic activity over time, u(t) is the presynaptic
activity over time, w(t) is the synaptic weight over time, ∅ is the synaptic modifica-
tion function and η is the modification rate (Fig. 7). When postsynaptic activity is
less than θm and above the baseline, synaptic weight decreases which shows LTD
has occurred. While when postsynaptic activity is bigger than θm and below the
baseline, synaptic weight increases which shows LTD has occurred (Jedlicka 2002).
To investigate synaptic plasticity of the single dentate granule cell, we employed
mechanism called nearest-neighbour spike-timing-dependent plasticity (STDP) and
metaplasticity rules accompanied with the brain background activity called noisy
spontaneous activity. The selected neuron model in this investigation is a nine-
compartmental model of the granule cell (Santhakumar et al. 2005) (Fig. 8).

Fig. 7 v is a postsynaptic
activity, and θm is a
modification threshold. �(v)
is a BCM function which
shows the synaptic changes.
(Source: http://
www.scholarpedia.org/article/
BCM/)

http://www.scholarpedia.org/article/BCM
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Fig. 8 (a) is a 9-compartmental model of the dentate granule cell, which has 2 dendrites with 300
excitatory synapses (each dendrite has 150 synapses). Each dendrite consists of four compartments,
and soma has one compartment. This model does not have an axon. The lateral perforant pathway
(LPP) relays presynaptic inputs from the entorhinal cortex to the distal part of the dendrites,
and medial perforant pathway (MPP) relays presynaptic inputs from the entorhinal cortex to the
middle parts of the dendrites. Lines showing LPP and MPP pathways are only for illustration,
because input spikes are delivered directly to synapses in our model. Filled arrows show the flow
of input activities and empty arrows the direction of backpropagating action potential. Currents
flow through the axial resistance between compartments. (b) Somatic action potential (the biggest
spike) and backpropagation of action potential plus EPSPs from MPP (the smallest spike) and
LPP (the medium spike) before HFS. (c) Somatic membrane potential (the biggest spike) and
backpropagation of action potential plus EPSPs from MPP (the smallest spike) and LPP (the
medium spike) during HFS. (Source: Shirrafiardekani et al. 2017)

The STDP Rule

Several experimental studies from different areas of the brain suggest that precise
timing between pre- and postsynaptic activity is one of the key factors that is
involved in the synaptic plasticity processing. It has also shown experimentally
that excitatory synapses from different circuits follow the STDP rules. Repeated
presynaptic spikes that precede postsynaptic spikes within a certain time window
produce LTP; however, if repeated presynaptic spikes follow postsynaptic spikes
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within a certain time window, LTD occurs (Sjöström and Gerstner 2010). Classical
spike pair-based STDP is one of the STDP models which propose how pre- and
postsynaptic spikes interact together. This model that is based on experimental
studies by Lin et al. (2006) indicates that delivering pre- and postsynaptic activities
to the granule cell in order, pre-post or post-pre, causes STDP with two exponential
windows. Pairing the presynaptic spike with the following postsynaptic spike in
the specific time window causes LTP, and pairing the presynaptic spike with the
proceeding postsynaptic spike in the specific time window causes LTD (Lin et al.
2006). The following equations show the classical spike pair-based STDP:

�w+ = P exp

(
−�t

τp

)
if �t > 0 (13)

�w− = D exp

(
−�t

τd

)
if �t < 0 (14)

where Δt = tpost − tpre is the time difference between the incoming time of
postsynaptic spike and the outcoming time of presynaptic spike. τ p is the decay
constant for the LTP window, and τ d is the decay constant for the LTD window.
P is the amplitude for potentiation value, and D is the amplitude for depression
parameter. All-to-all interaction and nearest-neighbour interaction are two ways
to implement the spike pair-based STDP model. In the all-to-all interaction, each
presynaptic spike pairs with all postsynaptic spikes, and each postsynaptic spike
pairs with all presynaptic spikes (Fig. 9a). However, in the nearest-neighbour
interaction, each presynaptic spike pairs only with two postsynaptic spikes: the

Fig. 9 (a) Interaction of pre- and postsynaptic spikes with all-in-all interaction. In this interaction
each presynaptic spike pairs with all postsynaptic spikes. (b) The nearest-neighbour interaction. In
this interaction, each postsynaptic spike pairs only with the two most closely precedes presynaptic
spikes: and each presynaptic spike pairs only with the most closely follows postsynaptic spikes.
(Source: Shirrafiardekani et al. 2017)
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postsynaptic spike that most closely precedes the given presynaptic spike and
the postsynaptic spike that most closely follows the given presynaptic spike (Van
Rossum et al. 2000); see Fig. 9b. Our STDP implementation is based on spike pair-
based nearest-neighbour STDP which is formulated by the following equation:

�w (t + �t) = w(t) (1 + �w+ + �w−) (15)

Synaptic weight updates when the second postsynaptic spike in the nearest
neighbours is detected.

Metaplasticity Models

In this section we first introduce two metaplasticity models, Benuskova and Abra-
ham rule and Clopath metaplasticity model, and then will describe the metaplasticity
model that we have used in our simulations.

Benuskova and Abraham Rule

According to investigations by Izhikevich and Desai (2003), there is a correlation
between the nearest-neighbour STDP model and BCM rule. They suggested that
the sliding modification threshold (θm) from the BCM rule is equal to the following
equation:

θm =
P
τd

+ D
τp

P + D
(16)

where P and D are potentiation and depression values from Eqs. 13 and 14 and
τ pand τ d are decay constants for LTP and LTD windows from the STDP rule (see
Eqs. 13 and 14). In their idea the value of θm is fixed which means P and D are
fixed as well. However, in the Benuskova and Abraham model, the value of sliding
modification threshold is not fixed, and it is equal to the average of postsynaptic
activity or 〈c(t)〉. According to this theory, the average of postsynaptic activity is
calculated by the following equation:

〈c(t)〉 = c0

τm

∫ t

−∞
c
(
t ′
)

exp

(

−
(
t − t ′

)

τm

)

dt ′ (17)

where c0 is a scaling constant, τm is a time constant and c(t) is a postsynaptic spike
count with time. When there is a postsynaptic spike at time t, c(t) = 1, and when
there is no postsynaptic spike, c(t) = 0.
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The following equations show how the relation between the average of postsy-
naptic activity and amplitude of potentiation and depression values is calculated:

P = P(0)

〈c(t)〉 and D = D(0) 〈c(t)〉 (18)

Here, 〈c(t)〉 is an average of postsynaptic activity; P(0) and D(0) are the initial
amplitudes for P and D. According to this idea when the average of postsynaptic
activity is high, less LTP will be induced, but it is more likely to induce LTD
(Benuskova and Abraham 2007).

Clopath Metaplasticity Model

Basically, in the Clopath et al. (2010) metaplasticity model, the potentiation and
depression factors are introduced differently. While the potentiation factor (ALTP)
is defined as a fixed value, the depression factor (ALTD(u=)) is introduced as a
function based on a homeostatic variable, which is equivalent with the average of
postsynaptic activity from Benuskova and Abraham rule (Clopath et al. 2010):

ALTD

(=
u
)

= ALTD

=
u

2

u2
ref

(19)

where u2
ref is a constant value and

=
u

2
is a homeostatic variable which is dependent

on a low-pass filter of the average of postsynaptic potential or u−.
They calculated the spikes are based on the average of postsynaptic potential.

Therefore, in their model, at each time step, they have treated the spikes as the
continuous events.

τx

dx

dt
= −x(t) + X(t) (20)

when a presynaptic spike is coming, X(t) = 1 and 0 otherwise and τ x is the decay
time constant. In their model u− is calculated by:

τ−
du−
dt

= −u−(t) + u(t) (21)

where u(t) is the postsynaptic membrane potential and τ− is the time decay constant.
Therefore, synaptic weights are calculated as follows:

dw−

dt
= −A− (u) X(t) (u−(t) − θ−) if w > wmin (22)

dw+

dt
= −A+x(t) (u − θ+) if w < wmax (23)
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where u is the membrane potential, θ− and θ+ are adjustable parameters and A+
and A− are potentiation and depression factors.

Metaplasticity Model Used in This Work

As we explained in Clopath et al.’s metaplasticity model, only depression factor
depends on the average of postsynaptic activity, while potentiation factor is fixed.
We incorporated their idea to test our metaplasticity model with only depression
factor being depended on the average of postsynaptic activity. Therefore, we ran our
simulation, while our metaplasticity model was from the following equations:

P(t) = P(0) and D(t) = 1.5D(0) 〈c(t)〉 (24)

where P(0) and D(0) are initial values for potentiation and depression factors,
〈c(t)〉 is the average of postsynaptic activity and 1.5 is the scaling constant value
(Shirrafiardekani et al. 2017).

We also extended their idea to test our model considering the depression factor as
a fixed value and potentiation factor being depended on the average of postsynaptic
activity. Therefore, we ran our simulation, while our metaplasticity model was from
the following equations:

P(t) = 0.75P(0)

〈c(t)〉 and D(t) = D(0) (25)

where P(0) and D(0) are initial values for potentiation and depression factors,
〈c(t)〉 is the average of postsynaptic activity and 0.75 is the scaling constant
value. Surprisingly, running the simulations with both metaplasticity models did
not show the significant difference in our results. Therefore, we concluded that
if only one of the potentiation or depression factors is being dependent on the
average of postsynaptic activity, it will be sufficient to produce synaptic plasticity
(Shirrafiardekani et al. 2017).

As we explained in the last section, the average postsynaptic activity from
Abraham and Benuskova rule is based on counting the number of spikes (see Eq.
17). This means they have treated the spikes as all-or-nothing events. However, in
our model, the postsynaptic voltage is calculated rather than a postsynaptic spike
count. Therefore, the average postsynaptic activity is calculated by the difference
between the postsynaptic voltage and resting potential at the soma which is shown
by the following equations:

〈c(t)〉τ = c0

τ

∫ t

−∞
(
V

(
t ′
) − Vrest

)2 exp

(

−
(
t − t ′

)

τ

)

dt ′ (26)

where 〈c(t)〉 is calculated numerically. The scaling constant c0 is equal to 0.0025
1/mV2. (V(t

′
) − Vrest)2 is the difference between the postsynaptic voltage and

resting potential at the soma, and Vrest is the initial resting potential and equal
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to −75 mV. By taking the second power of this difference, we ensure that
〈c(t)〉 ≥ 0 (Shirrafiardekani et al. 2017).

Modelling Spontaneous Presynaptic Activity and HFS

Spontaneous activity (background activity) is not based on the external stimulation.
It is a consequence of interaction between the neural networks and electrophysio-
logical properties of the single neuron (Herz et al. 2006). In our model, simulated
granule cells receive the presynaptic noisy spontaneous activity via the LPP and
MPP from the entorhinal cortex. In this work, we have used the Poisson process
model to generate the random Poisson spike train along the MPP and LPP (Fellous
et al. 2003). In all of our simulations, we have chosen the frequency of presynaptic
spontaneous activity to be less than 10 HZ (Gloveli et al. 1997), and the interspike
interval (ISI) of spiking activity is generated according to the following equation:

ISI = (1 − n) ISI0 + neg (−nISI0) (27)

where n is noise with 0 < n < 1, “negexp(−x)” is the negative exponential
distribution and it is equal to homogeneous Poisson distribution with probability of
the next spike occurring after time “ISI.” ISI0 is the initial value, and in this work, it
is equal to 125 ms. With n = 0, ISI = ISI0 shows spiking activity periodically. With
0 < n < 1, the spiking activity is quasi-periodic. The value of noise has been chosen
by n = 0.02 in our model.

As we discussed above, HFS was the other source of inputs that granule cell
neuron has received. In the first simulation based on experimental studies by
Abraham et al. (2001), 400 Hz DBS at 30-s intervals was applied to the MPP. In
the second simulation based on experimental studies by Abraham et al. (2007), the
same patterns of HFS as the first one but at 60-s intervals were applied to the MPP.
In all simulations, presynaptic spontaneous activity is along with HFS, except those
where it is deliberately blocked.

Simulation and Integration Methods for the Model

To calculate the percentage of changes of LTP and LTD, we have implemented the
STDP and metaplasticity rules in the Neuron environment and included into the
granule cell model. Thus, the complete set of our simulation files is available for
download from the ModelDB database (accession number 185350): http://senselab.
med.yale.edu/modeldb/.

The integration method that we have used in our simulations is the Crank-
Nicolson integration. We used this method as we have to deal with some non-linear
equations which need to be solved by iteration with small time steps (Hines and
Carnevale 1997). In all of our simulations, we have chosen the time step dt = 0.2 ms.

http://senselab.med.yale.edu/modeldb/
http://senselab.med.yale.edu/modeldb/
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The Plasticity Parameters Obtained for the Model

Although numerous parameters are involved in the synaptic plasticity mechanism,
in our work, we found these five parameters; τ p, τ d, initial synaptic weights and
frequency of medial and lateral noisy spontaneous activity are quite critical for
our plasticity model in the dentate granule cell. Parameters are obtained manually,
and we have changed the values until to achieve a right match with experimental
studies. Because looking for a right value of parameters and adjusting them to
match with experimental studies consume a lot of time and energy, it is reasonable
to find those ones that are highly involved in synaptic plasticity process. Finding
the correct values is also very important because wrong values cause inaccurate
results. To find the mentioned parameters and test our plasticity and metaplasticity
models, we used experimental studies by Abraham et al. (2001). Therefore, we
calculated the magnitude of LTP and LTD as a function of changing the values
of parameters,τ p, τ d,initial synaptic weights and frequency of medial and lateral
noisy spontaneous activity. With analysing all these functions, we found that
with our plasticity and metaplasticity models, the parameter values from Table 3
could reproduce homosynaptic LTP and concurrent heterosynaptic LTD from the
experimental studies quite well.

Model Justification

As we mentioned from the method section, our granule cell model had nine com-
partments, one for soma and four for each dendrite. According to “Description for
experimental studies by Abraham et al. (2001)” the granule cell model from Aradi
and Holmes (1999) consists of 29 compartments (14 compartments for dendrites and
one compartment for soma). We simulated our model with both 9 compartments and
29 compartments and observed the same plasticity results (Shirrafiardekani et al.
2017). Therefore, to reduce the simulation time, our compartmental model has only
nine compartments.

Our model also has two ion channels less than Aradi and Holmes’ (1999) model.
Our results with the lack of calcium-voltage-dependent potassium (BK) and

small conductance calcium-dependent potassium (SK) channels (Aradi and Holmes
1999) did not show significant difference when these two channels were included

Table 3 Parameter values for optimal match with the experimental data (Shirrafiardekani et al.
2017)

D(0) P(0) τ p τ d

Initial
weight

Medial
frequency

Lateral
frequency α τ

0.001 0.004 95 ms 25 ms 0.65
(nS)

2.9 Hz 6.8 Hz 0.2500 60 s
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to the model. Therefore at least our model shows synaptic plasticity the same as
experimental studies without needing these two ion channels.

First Simulation Study Based on Abraham et al. (2001) and Testing
the Synaptic Plasticity Model

In this section, we have employed STDP rules from Eqs. 13, 14 and 15 and
metaplasticity model from Eq. 25 accompanied by nine-compartmental model of
dentate granule cell and noisy spontaneous activity to test our plasticity model with
the first part of experimental studies by Abraham et al. (2001).

In this simulation, our plasticity parameters are taken from Table 3. As we
explained in experimental part, when the first HFS pattern was applied to the MPP,
synaptic weights increased by (37 ± 5%) in this pathway, and homosynaptic LTP
occurred. However, in the LPP, heterosynaptic plasticity occurred simultaneously,
and synaptic weights decreased by (30 ± 5%) in this pathway (see Fig. 3,
experimental section). In our simulation, HFS pattern was the same as in Fig. 2
in the experimental section. After starting simulation, it takes a couple of second for
both average of synaptic weights in MPP and LPP to get stable and stay at baseline
level. As can be seen from Fig. 10, both synaptic weights get almost no change until
the coming of the first burst of HFS. When HFS is applied to the medial pathway, as
a result of STDP combined with the metaplasticity rule, synaptic weights increase

Fig. 10 The thick trace over the baseline shows the average weight of medial synapses, and the
thick trace under the baseline corresponds to the average weight of lateral synapses. Narrow traces
around the thick ones (over the baseline) are for individual medial synapses, and narrow traces
around the thick ones (under the baseline) are for individual lateral synapses. Before medial HFS,
both synaptic pathways are stable. During HFS, synaptic weights increase in the medial pathway
and decrease in the lateral pathway. In this run, we observe +37% LTP in the medial pathway and
−27% LTD in the lateral pathway. (Source Shirrafiardekani et al. 2017) (Fig. 12)
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in the medial pathway, and we could observe approximately 37% homosynaptic
LTP. However, in the lateral pathways, simultaneously LTD occurred, and we could
observe approximately – 25% LTD from the baseline. Comparing our results shows
a good consistency with the results from experimental studies (Shirrafiardekani et al.
2017).

Second Simulation Study Based on Abraham et al. (2007) and Examining
the Role of Spontaneous Activity

In this section we replicate the first part of experimental studies from Abraham et al.
(2007), when only one HFS is applied to the medial pathway and simultaneously
spontaneous activity is blocked in the lateral pathway during the HFS (procaine
group). The aim of this study is to investigate the requirement of noisy spontaneous
activity for induction of heterosynaptic LTD. In our simulation to replicate the
procaine inhibition of spontaneous activity, we switched lateral spontaneous activity
off during the first medial HFS, while at the end of HFS, we switched the lateral
activity on with different values of frequency. As can be seen from Fig. 6 in
the experimental studies section, after injecting procaine, it takes sometimes for
it to be washed out. Therefore, during this time, procaine reduces the frequency
of spontaneous activity. According to that, we introduced a new parameter called
lateral frequency after HFS (LAH) to demonstrate the frequency of lateral activity
after HFS. The percentage of synaptic weights in the MPP and LPP as a function
of lateral spontaneous frequency after HFS (LAH) is shown in Table 4 while
the plasticity parameters are taken from Table 3. As can be seen in Fig. 11, the
fluctuation of synaptic weight as a function of LAH in the medial pathway is
very slow. But in the lateral pathway, as the frequency increases, synaptic weights
increase as well. That means when the frequency of LAH is low, we observe less
LTD. This can be explained by the BCM rule as well. When the level of input
activity is low, the sliding modification threshold shifts very little to the left which
shows the less amount of LTD. According to Table 4, when the level of LAH is
3.5 HZ, only −6% LTD was observed in the LPP. However, in real experiments
−10 ± 6% LTD was also observed. This shows that even after injecting procaine
to the lateral pathway, still small amount of LTD can be observed in this pathway.
Therefore, we concluded that to explain the procaine inhibition in our model, the
frequency of lateral spontaneous activity after HFS should be less than 4 Hz to get
almost no LTD in the lateral pathway (Shirrafiardekani et al. 2017).

Third Simulation Based on Abraham et al. (2007) for Testing
the Metaplasticity Model

The aim of this section is to test our metaplasticity model with the data from
Abraham et al. (2007). As we explained above, Abraham et al. (2007) have
conducted their experiment with two different groups, control and procaine. In the
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Table 4 Percentage of LTP
and LTD as a function of
frequency of lateral activity
after HFS

LAH (Hz) LTP % LTD % Firing rate (Hz)

6.5 54 −22.2 1.4
6.2 52 −20 1.2
5.8 55.5 −18.6 1.34
5.5 54.5 −15 1.1
5 58.3 −12 1
4.7 60 −11 1.3
4.5 58.5 −9 1.3
4 58.5 −8 1
3.7 59.5 −7 1.1
3.5 60 −6 0.9

Fig. 11 The line contained
with squares shows the
amplitude of LTP as a
function of lateral frequency
after HFS (LAH), and the line
contained with triangles
shows the amplitude of LTD
as a function of lateral
activity after HFS (LAH)
(Shirrafiardekani et al. 2017)

experimental studies in the control group, when the first medial HFS was applied,
synaptic weight increased by (37 ± 5) % in the medial pathway. As the second
medial HFS was applied, as a result of metaplasticity, no further LTP was observed
in this pathway (Fig. 5 experimental section). As can be seen from Fig. 6, during the
first medial HFS, synaptic weights depressed by (24 ± 3%) in the lateral pathway.
When the second medial HFS was induced, as a result of metaplasticity, no further
LTD occurred in this pathway.

In the computational model, our simulations are conducted for both procaine and
control groups with the plasticity parameters taken from Table 3. For both groups,
we have used two separate figures to demonstrate the amplitude of the average
synaptic plasticity in the MPP and LPP. In the control group, a few seconds after
starting simulations, both averages of medial and lateral synaptic weights become
stable. When the first HFS (see Fig. 13a) was applied to the MPP as a result of
STDP and metaplasticity models accompanied with noisy spontaneous activity,
the average of synaptic weights increases in this pathway, and we could observe
45% homosynaptic LTP. When the second medial HFS was applied a few minutes
after the first one, the average of synaptic weights increases, but as a result of
metaplasticity, we could observe only 9% more LTP from the second HFS (see
Fig. 13a). However, in the lateral pathway, when the first medial HFS was applied,
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Fig. 12 The thick curve above the baseline is the average of medial synaptic weights, and the
narrow curves around the thick ones (above the baseline) are synaptic weights from 150 medial
synapses. Thick curve under the baseline is the average of lateral synaptic weights, and narrow
curves around the thick ones (under the baseline) are lateral synaptic weights. As the HFS starts at
the medial pathway, synaptic weights increase in this pathway. However, almost no LTD happens
in the lateral pathway as we switch the lateral activity off during HFS (Shirrafiardekani et al. 2017)

simultaneously synaptic weights depressed in this pathway, and we could observe
−27% heterosynaptic LTD in this pathway. When the second medial HFS was
applied, although synaptic weight decreases in the lateral pathway, as a result of
metaplasticity, we could observe only −12% more LTD in this pathway (see Fig.
13b). In the procaine group from the experimental studies, as the first medial HFS
was applied, simultaneously procaine was injected to the lateral pathway to block
the lateral spontaneous activity; after the procaine was washed out −10 ± 6%,
LTD was observed in this pathway. With applying the second medial HFS, as a
metaplasticity effect of the first HFS, no further LTD was observed in the LPP (Fig.
6). In our computational model, we switched the lateral activity off during the first
medial HFS, and then we switched it on after the HFS with lower lateral frequency
as before HFS. Because we think it will take a few minutes for procaine to be washed
out; therefore, the frequency of lateral pathway after HFS is lower than before HFS.
Thus, with our model, we observed −6% LTD. When the second medial HFS was
applied, as a result of metaplasticity, we observed only −4% more LTD in the
lateral pathway (see Fig. 14b). These results show that previous plasticity from the
first HFS affects on synaptic plasticity generated by the second HFS and causes
metaplasticity; therefore, the same amount of LTP and LTD cannot be observed
by the second HFS (Morrison 2012). This experiment can be explained with the
BCM rule; after the first medial HFS, medial pathway will be highly activated which
increases the threshold and makes further LTP more difficult. This interpretation is
also valid for further LTD induction. Comparing results from our simulations with
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Fig. 13 (a) The average of medial synaptic weights is shown by thick curve above the baseline,
and the individual medial synaptic weights are shown by narrow curves around the thick ones.
During the first HFS, the average of synaptic weights increases up to 45% in the medial pathway.
After applying the second HFS, the synaptic weight increases slightly, and additional 9% LTP is
observed. (b) The average of lateral synaptic weights is shown by thick curve under the baseline,
and the individual medial synaptic weights are shown by narrow curves around the thick ones. After
the first HFS, average synaptic weights depress in the lateral pathway by about −27%. After the
second HFS, average synaptic weight decreases by only additional −12%. (Source Shirrafiardekani
et al. 2017)

the experimental studies shows also a good match with the model data and shows
that our metaplasticity model could reproduce the experimental studies quite well
(Shirrafiardekani et al. 2017).

Discussion

The main purpose of this work was to show that our model could reproduce synaptic
plasticity and metaplasticity across a range of experimental conditions. To achieve
this, we used computational modelling and employed reduced nine-compartmental
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Fig. 14 Results for two medial HFS and later spontaneous activity off during the first HFS. (a)
Thick curve above the baseline is the average of medial synaptic weights, and narrow curves around
the thick ones are the individual medial synaptic weights from 150 synapses. During the first HFS,
the average of synaptic weights increases in the medial pathway but not much further increases
in synaptic weights during the second HFS occurs. (b) Thick curve under the baseline shows the
average of lateral synaptic weights, and narrow curves around the thick ones show the individual
lateral weights from 150 synapses. In the lateral pathway as the lateral activity is off during the first
HFS, no LTD happens, while after the first HFS, as lateral activity switches on with low frequency,
hardly any LTD occurs during and after the second HFS (Shirrafiardekani et al. 2017)

model of dentate granule cell with paired-based nearest-neighbours STDP and
metaplasticity model based on the voltage accompanied with noisy spontaneous
activity. Our reduced nine-compartmental model with one compartment for soma
and four compartments for each dendrite was introduced by Aradi and Holmes
(1999) and implemented in Neuron by Santhakumar et al. (2005). With our
simulations, we assessed all the compartments and concluded that all of them are



728 A. Shirrafiardekani et al.

required for synaptic plasticity induction. We also assessed the necessity of nine
ion channels from Aradi and Holmes (1999) to replicate synaptic plasticity. We
found out that at least with our model, only seven ion channels are required for
reproducing synaptic plasticity. In this work, STDP and metaplasticity rules are
based on Eqs. 13, 14, 15 and 25, such that all 300 synapses are affected by these
rules. To test our model, we used two experimental studies from Abraham et al.
(2001) and Abraham et al. (2007). The aim of the first simulation was to reproduce
data from experimental studies by Abraham et al. (2001). With our model we could
reproduce homosynaptic LTP in the medial pathway and concurrent heterosynaptic
LTD in the non-tetanized lateral pathway.

Our second and third simulations were based on experimental studies by
Abraham et al. (2007). The aim of our second simulation was to test the effect
of procaine inhibition on heterosynaptic LTD. For this purpose, during the first
medial HFS, we switched the lateral spontaneous activity off; therefore, no LTD was
observed in this pathway. This result showed that the presence of noisy spontaneous
activity is critical for LTD induction. After HFS, a parameter called LAH was
introduced (lateral frequency after HFS) to show the effect of procaine inhibition.
When the frequency of LAH was reducing, the magnitude of LTD was reducing as
well. Therefore, we concluded that the level of frequency of spontaneous activity
after HFS impacts on the magnitude of heterosynaptic LTD in the lateral pathway.

The goal of the third simulation was to examine our metaplasticity model. With
our model we examined two control and procaine groups. Our simulations from the
control group indicated that after inducing the second HFS, although small amount
of LTP and LTD observed in both pathways, the same level of synaptic plasticity
caused by the first HFS was not occurred by the second HFS in either of pathways. In
the procaine group, the lateral activity was switched off during the first medial HFS,
while, after that, it was switched on again with lower frequency. After inducing the
second medial HFS, synaptic weight increased in the medial pathway, but the same
level of LTP that occurred by the first HFS was not occurred by the second HFS.
In the lateral pathway also, small amount of LTD was observed after the second
medial HFS, but the magnitude of LTD produced by the second HFS was less than
the magnitude of LTD produced by the first HFS (Shirrafiardekani et al. 2017).

Model Limitations and Strength

With our plasticity and metaplasticity rules, accompanied with noisy spontaneous
activity and nine-compartmental model of dentate granule cell, we could replicate
homosynaptic LTP in the MPP and heterosynaptic LTD in the LPP in the first
simulation. Also our results show a good consistency with real experimental
studies by Abraham et al. (2001). Our second and third simulations were based on
experimental studies by Abraham et al. (2007). In the first experiments, we showed
that the level of noisy spontaneous activity after HFS determined the magnitude of
heterosynaptic LTD in the lateral pathway.
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In the third simulation, we showed when two HFS apply to the same synapse with
a few minutes time difference, the same level of LTP and LTD will not occur with
the second stimulation (metaplasticity). This results also were in a good consistency
with real experimental studies. One of the highlights of this work was finding good
parameters that could make a reasonable match between our model simulations
and a variety of the range of experimental studies. It is also interesting that in
all simulations, we have used the same parameters in Table 3; however, in other
computational studies for each experiment, parameters need to be changed. In many
computational studies, the role of spontaneous activity is neglected; however, in our
work, spontaneous activity is critical for induction of heterosynaptic plasticity.

Although most plasticity models are investigated from CA1 circuits, our work
was based on synaptic plasticity of the dentate granule cell. In the Benuskova
and Abraham metaplasticity rule, both potentiation and depression factors from
plasticity rules depend on the average postsynaptic activity. However, our simu-
lations show either potentiation or depression factor being dependent on average
postsynaptic spikes is enough to reproduce homosynaptic LTP and heterosynaptic
LTD. In our pair-based STDP model, we have used a more realistic model to
calculate the voltage of the postsynaptic spikes. In this model, spikes are considered
as continuous events rather than treat them as all-or-no events. As we mentioned
in the last section, the frequency of spontaneous activity has not been recorded in
the reviewed experimental studies; however, in this work, we could find parameter
values for frequency of lateral spontaneous activity (6.8 Hz) and frequency of medial
spontaneous activity (2.9 Hz) which are in agreement with experimental studies by
Gloveli et al. (1997). To simulate the dentate granule cell model, we only added two
synapses to the model, while thousands of synapses of the granule cell are involved
in the synaptic plasticity mechanism. In our simulations we did not include the axon
to the model; however, in real neurons, the backpropagation of action potential
is also part of the spike. It will be more realistic to add the axon to the model.
In this work we only modelled the excitatory synapses, while inhibitory synapses
also produce synaptic plasticity. Our plasticity and metaplasticity models are only
examined with a simulated granule cell, and they have not been tested with other
dentate gyrus cells like mossy cells and basket cells.

Future Directions

Investigation by Zheng et al. (2014) shows that the duration of action potential (AP)
has an important role on STDP rule; therefore they included AP into the STDP
model and called their new model dSTDP. It will be worthwhile to test our model
with the new dSTDP model and see the amplitude of synaptic plasticity. We only
tested our detailed plasticity model with a single granule cell. If we want to test our
detail model with the large number of networks, simulation will get too complicated,
but for the future work, we are interested to simulate our detailed model with the
small network. As we mentioned before, this work was limited to the granule cell;
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in the extension work, we will examine our plasticity model with other hippocampal
cells if in vivo LTP and LTD data are available. Our plasticity model is only tested
with three experimental studies; in the further work, we will test our model with
other real experimental studies.

In this work all the synapses were excitatory; in the further work, we will
test our model with inhibitory synapses as well. As we explained in the method
section, our granule cell model does not have an axon, to include the property of
backpropagation of action potential from the axon to the postsynaptic activity; it
is worthwhile to add the axon to the model. Our granule cell model has only two
dendrites, but the real granule cell has many. In the further work, to propose a more
realistic model of granule cell, it is important to include more than two dendrites to
the model (Shirrafiardekani et al. 2017).

Appendix

Integration Method of Crank-Nicolson

The Crank-Nicolson method or the central difference is a finite difference method
with the accuracy of the second order in time, which was developed by Crank
and Nicolson. The error oscillation of this method decays with time; therefore
the solution is stable and safe for most solutions. The Crank-Nicolson method
is a combination of the backward and forward Euler methods. It is equivalent to
advancing by one-half step using backward Euler and then advancing by one-half
step using forward Euler. The global error for this method is proportional to the
square of the step size (Hines and Carnevale 1997).

By considering the forward Euler method as:

yn+1 − yn

�t
= f (tn, yn) (A.1)

and the backward Euler method as:

yn+1 − yn

�t
= f (tn+1, yn+1) (A.2)

Therefor the Crank-Nicolson method can be calculated as:

yn+1 − yn

�t
= f (tn, yn) + f (tn+1, yn+1)

2
(A.3)
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The RC Circuit

With injecting the current into the circuit, the membrane potential changes. There-
fore, Kirchhoff’s current law indicates that the total current entering into the
junction is equal to the total current leaving the junction. The summation of the
membrane current Ia and injected current Ie is equal to the summation of the
capacitance current Ica and ionic current Iia. a is the curved surface area of the
cylinder (Sterratt et al. 2011).

Ia + Ie = Ica + Iia (A.4)

The following equation shows the ionic current flows through the resistor:

Iia = V − Em

Rm

a

(A.5)

where Rm

a
is the membrane resistance and Em is the equilibrium potential of

the membrane. According to the following equation, the capacitive current is
proportional to the rate of change of the voltage:

Ica = Cma
dV

dt
(A.6)

The membrane capacitance is Cma. If we suppose that the circuit is isolated, then Ia
is zero. With substituting the Ii and Ic in Eq. 4, we have:

Cm

dV

dt
= Em + V

Rm

+ Ie

a
(A.7)

This is the first-order ordinary differential equation (ODE) for the membrane
potential V with units from Table 5 (Sterratt et al. 2011).

Multi-compartmental Models

Multi-compartmental models are useful techniques to model dendritic trees of the
neuron. In this model, dendritic tree breaks up into the small compartment. With
considering each compartment as a cylinder with a length l and a diameter d, the
surface area will be equal to a = πdl (Ermentrout and Terman 2010). Current
flows through each compartment into the membrane capacitance and the membrane
resistance. It also flows through intracellular and extracellular of the membrane and
can be modelled by axial resistances. The extracellular resistance can be considered
zero. Ra is the specific axial resistance with units � cm, and the axial resistance
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Table 5 Passive quantities

Quantity Description Typical units Relationships

d Diameter of neurite μm
l Length of compartment μm
Rm Specific membrane resistance �cm2

Cm Specific membrane capacitance μFcm−2

Ra Specific axial resistance �cm
rm Membrane resistance per inverse unit length �cm rm = Rm

πd

cm Membrane capacitance per unit length μFcm−1 cm = Cmπd

ra Axial resistance per unit length �
/

cm−1 ra = 4Ra

πd2

V Membrane potential mV
Em Leakage reversal potential due to different ions mV
I Membrane current density μAcm−2

Ie Injected current nA

Ic Capacitive current density nA
/

cm2

Ii Ionic current density mA
/

cm2

of the cylindrical compartment is 4Ra l/πd2 in which πd2/4 is a cross-sectional
area. j is the number of compartment, and Vj is the membrane potential in the
j the compartment, and Ie,j is the injected current into the compartment j. The
membrane current Ij is equal to the sum of the leftwards and rightwards axial
currents. Therefore, according to Ohm’s law:

Ij a = Vj+1 − Vj

4Ral
/

πd2

+ Vj−1 − Vj

4Ral
/

πd2

(A.8)

where Ija is a current, and according Kirchhoff’s current law:

Ic,j a + Ii,j a = Ij a + Ie,j (A.9)

Ic,j a + Ii,j a = Vj+1 − Vj

4Ral
/

πd2

+ Vj−1 − Vj

4Ral
/

πd2

+ Ie,j (A.10)

The following equations are similar to Eq. 10 for a patch of membrane with two
extra equations which describe the flowing current through two compartments j − 1
and j + 1:

πdlCm

dVj

dt
= Em − Vj

Rm
/

πdl

+ Vj+1 − Vj

4Ral
/

πd2

+ Vj−1 − Vj

4Ral
/

πd2

+ Ie,j (A.11)

Where a is the surface area of the cylinder.
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Cm

dVj

dt
= Em − Vj

Rm

+ d

4Ra

(
Vj+1 − Vj

l2 + Vj−1 − Vj

l2

)
+ Ie,j

πdl
(A.12)

This equation is the fundamental equation for the compartmental model (Sterratt
et al. 2011).

Rate Functions for Nine-Compartmental Models of GC

Activation and inactivation gates at compartment i are formulated as:

dzi

dt
= αzi i

− (
αzi

+ βzi

)
zi (A.13)

(
zi : mi, hi, nf,i , ns,i , ki, li , ai, bi, ci , di, ei , ri , qi

)

variable zi represents mi, hi, nf, i, ns, i, ki, li, ai, bi, ci, di, ei, ri and qi ion-gating
variables. Rate functions at compartment i determine the transition between open
and closed states of the ion channels. The following equations show the rate
functions at compartment i (Aradi and Holmes 1999):

αm,i(V ) = −0.3 (Vi − 25)
[
exp

(
Vi−25

−5

)
− 1

] (A.14)

βm,i(V ) = 0.3 (Vi − 53)
[
exp

(
Vi−53

5

)
− 1

] (A.15)

αh,i(V ) = 0.23

exp
(

Vi−3
20

) (A.16)

βh,i(V ) = 3.33
[
exp

(
Vi−55.5

−10

)
+ 1

] (A.17)

αnf ,i(V ) = −0.07 (Vi − 47)
[
exp

(
Vi−47

−6

)
− 1

] (A.18)

βnf ,i(V ) = 0.264

exp
(

Vi−22
40

) (A.19)
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αns,i(V ) = −0.028 (Vi − 35)
[
exp

(
Vi−35

−6

)
− 1

] (A.20)

βns,i (V ) = 0.1056

exp
(

Vi−10
40

) (A.21)

αk,i(V ) = −0.05 (Vi + 25)
[
exp

(
Vi+25

−5

)
− 1

] (A.22)

βk,i(V ) = 0.1 (Vi + 15)
[
exp

(
Vi+15

8

)
− 1

] (A.23)

αl,i(V ) = 0.00015

exp
(

Vi+13
15

) (A.24)

βl,i(V ) = 0.06
[
exp

(
Vi+68
−12

)
+ 1

] (A.25)

αa,i(V ) = 0.2 (19.26 − Vi)[
exp

(
19.26−Vi

10

)
− 1

] (A.26)

βa,i(V ) = 0.009 exp

( −Vi

22.03

)
(A.27)

αb,i(V ) = 10−6 exp

( −Vi

16.26

)
(A.28)

βb,i(V ) = 1
[
exp

(
29.76−Vi

10

)
+ 1

] (A.29)

αc,i(V ) = 0.19 (19.88 − Vi)[
exp

(
19.88−V

10

)
− 1

] (A.30)

βc,i(V ) = 0.046 exp

( −Vi

20.76

)
(A.31)
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αd,i(V ) = 1.6 × 10−4 exp

( −Vi

148.4

)
(A.32)

βd,i(V ) = 1
[
exp

(
39−Vi

10

)
+ 1

] (A.33)

αe,i(V ) = 15.69 (81.5 − Vi)[
exp

(
81.5−Vi

10

)
− 1

] (A.34)

βe,i(V ) = 0.29 exp

( −Vi

10.86

)
(A.35)
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Schizophrenia: Clinical Pathways of Disorder

A recent genome-wide association study (GWAS) demonstrated 108 association
loci that are associated with development of schizophrenia (Schizophrenia Working
Group, 2014). These are just the sites that can be implicated using the statistical
power conferred by current data. It is expected that many more sites will be
uncovered as new studies use larger numbers of cases and controls. The number
of likely associated loci is uncertain, but one estimate suggests it may be in the
thousands International Schizophrenia Consortium and Others et al. (2009). For
any given patient, only a small subset of these locations will show mutations. The
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clinical pathway hypothesis for polygenic diseases predicts that the various sites
of damage associated with a given disease reflect sets of mutationally damaged
genes that together produce the disease (we will use the term clinical pathway
so as to distinguish it from the traditional definition of a pathway as a biochemical
sequence) (Sullivan, 2012). What is a clinical pathway? This term remains weakly
defined and will differ between diseases and even within a single disease. For
example, multiple clinical pathways in schizophrenia may well involve (1) devel-
opmental sequences, (2) intracellular cascade sequences such as second-messenger
cascades in neurons, (3) genetic activation sequences or RNA transcriptional
control sequences, (4) immunological and scavenging pathways (e.g., synapse and
cell elimination in schizophrenia Sullivan 2012), and (5) pathways of dynamical
physiological interactions that together provide physiological activity.

Schizophrenia is triggered by insults and anomalies that act at various times
of life. Susceptibility at each of these stages of pathological influence would
be expected to be associated with a different clinical pathway or set of clinical
pathways. One clinical pathway would confer susceptibility to the perinatal insult
that is believed to predispose to the disease. Subsequently, there is a likelihood of
a clinical pathway involving synaptic pruning in late adolescence (Sekar et al.,
2016). This may be the same or different from a clinical pathway that confers
susceptibility in response to external stress, an important factor in the onset of
clinical disease (Tost and Meyer, 2012). Finally, there will be one or more clinical
pathways that produce the various signs and symptoms of schizophrenia – cognitive
disorder, positive symptoms such as hallucinations, and negative symptoms of social
withdrawal.

Given this complexity, it is expected that multiple pathway “hits,” with various
hits within each involved pathway, determine the clusters of clinical manifesta-
tions that make it difficult to clearly define schizophrenia or to define clinical
subtypes (Rajiv et al., 2013). The welter of schizophrenia definitions, and the
mix of symptoms, has led the US National Institute of Mental Health to move
away from symptom-based disease definition in favor of future biomarker-based
diagnosis (Insel et al., 2010). In this context, one notes the genetic overlap with
other disorders that feature particular symptoms of schizophrenia: bipolar disorder
in which one may have hallucinations and autism whose characteristic feature is
social withdrawal (Sullivan, 2012). At some schizophrenia-associated loci, a more
damaging mutation will produce one of these other disorders, rather than a more
severe form of schizophrenia.

In this chapter, we discuss our explorations of alterations in theta and gamma
activity in hippocampal area CA3, using multiscale modeling to show how changes
in ion channels at molecular scale will alter network activity. We then show how
anomalies in brain waves can be correlated with explicit alterations in information
flow (measured using information theory) and thereby could help explain alterations
in cognitive function.
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Ih and NMDA: Clinical Pathway Partners?

We focus here on two identified genomic/proteomic factors that we have studied
through physiological simulation: Ih channels and NMDA receptors (Neymotin
et al., 2011b, 2013, 2016). We propose that these mutations will be part of the same
clinical pathway involved in generating oscillations (a potential biomarker) and in
producing the cognitive dysfunction hypothesized to be an underlying disorder in
schizophrenia (Nicolas et al., 2013). Ih current is mediated by hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels. A putative mutation in the HCN1
gene (5p21) is near one of the 108 loci implicated in schizophrenia (Schizophre-
nia Working Group, 2014). The other implicated mutation that we study here is
in the GRIN2A gene (glutamate ionotropic NMDA-type receptor subunit 2A on
16p13), a subunit that forms part of the ionotropic NMDA-type glutamatergic
receptor (NMDAR). Changes in either the NMDAR synaptic current or in Ih will
alter cortical oscillations. Of course, additional factors will also be expected to be
involved in this clinical pathway, altering cortical oscillations. For example, basket
cells are reduced in schizophrenia (David et al., 2012). These cells play an important
role in generating fast oscillations through PING (pyramidal-interneuron network
gamma) and ING (interneuron network gamma) mechanisms (Cobb et al., 1995;
Lytton and Sejnowski, 1991).

A recent set of observations indicates that patients diagnosed with schizophrenia
have increased spontaneous and driven gamma (30–80 Hz) compared to controls
(Hirano, 2015). Other studies have shown differences in gamma activation between
patients and controls performing complicated recognition tasks (Uhlhaas et al.,
2008; Uhlhaas and Singer, 2010). These changes in gamma are similar to what
is seen in animal models of schizophrenia (Lazarewicz, 2010; Lee et al., 2014).
Animal models also show a reduction in theta power (6–10 Hz with different ranges
by species). We focused on these two physiological markers, using alterations in
gamma or in theta-gamma balance as an indicator of pathology in our simulations.
Network oscillation anomalies are also implicated in the genesis and expression of
many other neurological and psychiatric disorders, including the epilepsies (Lytton,
2008) and mild cognitive impairment (Moretti et al., 2013; de Haan et al., 2012).

The HCN ion channel, providing current Ih, is a voltage-gated channel involved
in maintaining resting potential, augmenting subthreshold resonance, and providing
depolarization with activation (Accili et al., 2002; Chen et al., 2001; Santoro and
Baram, 2003; Zemankovics et al., 2010; Dyhrfjeld-Johnsen et al., 2008, 2009;
Poolos et al., 2002). HCN has four defined isoforms (HCN1–HCN4); HCN1 and
HCN2 are the dominant forms in neurons. HCN1 is implicated in schizophrenia.
Inhomogeneous isoform distributions of the HCN channel lead to differential
expression and modulation of Ih in different cell types (Accili et al., 2002; Aponte
et al., 2006; Bender et al., 2001; Santoro and Baram, 2003). Neurotransmitters
from different brain areas and local neuromodulators provide multiple pathways for
regulating Ih (Hagiwara and Irisawa, 1989). Multiple functions, multiple types, and
multiple routes for modulation make HCN a complex control point in the circuit.
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HCN channels are unusual in terms of their behavior compared to other voltage-
and ligand-sensitive membrane channels. The HCN-associated current is called an
anomalous rectifier because it is activated by neuronal membrane hyperpolarization
(hence Ih), rather than by the depolarization that is typical for most voltage-gated
ion channels. Ih is also unusual in having an intermediate reversal potential (−30 to
−40 mV).

The focus of much literature on NMDAR has been on the role that it plays in
plasticity, specifically on long-term potentiation. In that context, NMDAR serves
an adjunctive role by signaling, via calcium levels, an activity level which is then
translated into altered synaptic strength (Lisman and Raghavachari, 2006; Yafell
et al., 2007). A separate, but likely related, aspect of NMDAs role is as a synaptic
receptor and ionotropic channel that complements AMPA in excitatory activation of
a postsynaptic cell (Chover et al., 2001; Hasselmo and Bower, 1992; Hasselmo,
2005). NMDAR is voltage-dependent via a Mg+2 blockade that is relieved by
postsynaptic depolarization. It shows permeability to both Ca2+ and Na+ so that
activation provides a local depolarization, as well as Ca2+ signaling of postsynaptic
cascades. These direct ionotropic effects provide a postsynaptic activation that is
complementary to the more rapid, earlier, and less prolonged excitatory postsynaptic
potentials due to AMPA. This complementarity can be viewed as dynamically
providing the network with a second matrix of connectivity (Chover et al., 2001).
Prior to the evidence from GWAS, the psychotomimetic effects of NMDA blockade
with drugs such as phencyclidine (PCP) and ketamine had already suggested that
NMDARs might play an important role in schizophrenia and other psychotic
disorders.

Network Simulation

Oscillation generation involves interactions among inhibitory cells (ING) and
between inhibitory cells and pyramidal cells (PING) (Börgers and Kopell, 2003).
As in other brain regions, Ih is present in all cell types in the hippocampus. In
our network simulations, we model pyramidal cells (PYR), basket cells (BAS),
and oriens lacunosum-moleculare (OLM) cells. Interneurons in our network are
driven by oscillatory output from the medial septum. Our network consisted of
800 five-compartment PYR cells, 200 one-compartment BAS cells, and 200 one-
compartment OLM cells (Fig. 1) (Neymotin et al., 2013). The model contained
152,000 synapses, with baseline activity maintained by providing background
white-noise external inputs. Basket cells synapsed on somata of both pyramidal and
other basket cells. OLM cells synapsed on pyramidal cell apical dendrites. Con-
nectivity was determined by connection densities so that specific connectivity in a
given network was random. Parameters were based on the literature where available,
as well as on previous computer models (Cutsuridis et al., 2010; Neymotin et al.,
2011b; Tort et al., 2007; Wang, 2002; Wang and Buzsaki, 1996; White et al., 2000).
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Fig. 1 Schematic representation of the network. Each symbol represents a population: 800
pyramidal cells (P, PYR), 200 basket cells (B, BAS), and 200 oriens lacunosum-moleculare (OLM)
cells. Convergence values (number of inputs for an individual synapse) are shown near synapses:
GABAA receptors (filled circles), AMPA receptors (open circles), and NMDA receptors (open
squares). External stimulation from other areas was modeled by synaptic bombardment (synapses
with truncated lines)

The basic simulation produces robust theta and gamma activity (Fig. 2), mea-
sured from an LFP (top) generated from the pyramidal cells (spikes in red in raster
plot at bottom). The interplay among the BAS cells produced robust ING (Buzsáki
and Wang, 2012; Lytton and Sejnowski, 1991; White et al., 2000), visualizable in the
raster by noting the strong rapid synchrony among the BAS cells in green (see also
Fig. 3 from Neymotin et al. 2013). Theta oscillation was augmented by oscillatory
driving from the medial septum via the OLM (blue) and basket cells (green). Theta
was still present in the absence of medial septum drive (Neymotin et al., 2011b).

HCN Effects on Ih

Through its non-zero conductance and a relatively depolarized reversal potential
(Eh of −40 to −30), Ih contributes to neuronal resting membrane potential (RMP).
Because of this, increase in Ih produced depolarization, leading to increased cell
firing. Depolarization also increased the driving force for inhibition and decreased
the driving force for excitation. Paradoxically however, EPSP strength increased
with increasing Ih due to a boosting effect through partial activation of sodium
currents.

Control of Ih by the second messenger cAMP could permit Ih to function as
a control point for hippocampal oscillations. Differential activation of cAMP in
different cell populations would then allow Ih to have different effects depending
on this modulatory activation pattern. We hypothesized that Ih control on different
populations would produce specific gamma or theta frequency shifts and changes
in power. We look first at effects on the BAS cells, which we predicted would give
strong gamma control, since BAS activity is associated with production of gamma
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Fig. 2 Network generates theta and gamma activity. Raster plot (bottom) shows firing times of
individual cells – note the strong gamma in the green BAS cells (∼8 cycles in 200 ms) and theta
from the blue OLM cells (∼2 cycles in 200 ms). Spectrum from local field potential (LFP, red at
top) generated by PYR cells. (Adapted from Neymotin et al. 2013)
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Fig. 3 Gamma power increases with Ih increase in basket (BAS) cells. (a) Local field potentials
(LFPs) from one simulation show fast frequency power increasing with increasing BAS Ih.
Center shows scatter plots of theta and gamma peak frequency and power (arbitrary units) – each
point from a single simulation with different random activation and wiring. Bottom shows the
average power spectrum across simulations bounded by standard error of the mean (SEM). n = 180
simulations; (Adapted from Neymotin et al. 2013)

through both ING and PING. The simulations confirmed this effect on gamma and
showed inconsistent effects on theta with different randomized networks (Fig. 3;
networks are randomized with different white-noise drive and different specific
wiring). With increased Ih the amplitude of gamma increased (Fig. 3, top: green,
orange LFPs). With decreased Ih, gamma amplitude was reduced (red, black LFPs).
The scatter plots at center of Fig. 3 demonstrate the variability in network dynamic
effects due to different random seeds. The average power spectra (Fig. 3, bottom)
demonstrated the overall effect on gamma. Increased gamma with increased Ih can
be explained as a consequence of the increased IPSP amplitude which will tend to
augment ING effects particularly, producing greater cooperativity among the BAS
cells (Carlos, 1999). These increased IPSPs also increased the gamma period.

Alteration of Ih in OLM did not produce regular-tending effects (Fig. 4 top).
Change of OLM Ih in either direction tended to abolish theta – note near-zero values
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Fig. 4 Changes in theta and gamma power and frequency with alteration in OLM and PYR
Ih. Alterations in OLM in either direction tended to wipe out theta. Increased OLM Ih also
reduced gamma while decreased produced a high gamma state (note y-axis up to 6 in upper right
panel). Increased PYR Ih produced relatively isolated effect on theta – increasing theta power and
frequency with little effect on gamma. (Adapted from Neymotin et al. 2013)

for 2× (orange) and 0× (black) at upper left. Reduced OLM Ih gave extremely high
gamma – 0× (black) and 0.5× (red) at upper right (note maximum y-axis value
here). Ih increase in PYR produced augmentation of theta power with a slight shift
to higher frequency and little change in gamma (Fig. 4 bottom). This effect was
mediated by increased PYR firing driving OLM firing. From Figs. 3 and 4, we see
that BAS Ih could be a control point for gamma, while PYR Ih could function as
a control point for theta modulation. Manipulating both PYR and BAS Ih together
produced augmentation of both theta and gamma power in tandem (Fig. 5). This was
associated with an increase in theta frequency with a decrease in gamma frequency.
Alteration of Ih at all three sites (PYR, BAS, OLM) gave a pattern of change similar
to that of OLM alone (not shown).

Pyramidal cell Ih control of theta with basket cell Ih control of gamma suggested
that simultaneous control could be achieved through comodulation of Ih in both
of these cell types. This could occur either through similar control mechanisms or
through more complex modulation utilizing different second messengers, different
isoform second-messenger sensitivity, or neuromodulators with differing down-
stream effects. Cyclic adenosine monophosphate (cAMP) selectively modulates
HCN2 (Wahl-Schott and Biel, 2009; Zong et al., 2012), and p38 mitogen-activated
protein kinase (MAP kinase) modulates HCN1 (Nicholas et al., 2006). We note here
that this type of complex comodulation control mechanisms would provide many
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Fig. 5 Changes in theta and gamma power and frequency with simultaneous alteration in
PYR and BAS Ih. Augmentation at these two sites increased power in both frequency bands while
increasing theta and decreasing gamma frequency

points of vulnerability along a clinical pathway, points that could be detected in the
clinical population via GWAS.

Simultaneous increase of Ih at both PYR and BAS locations produced power
increases in both theta and gamma (Fig. 5). Power increases and frequency shifts
seen with comodulation were similar to those produced by modulation of each
independently – compare with Fig. 4 for effects on theta (lower left) and Fig. 3 for
effects on gamma (arrow in Fig. 3). Relatively little cross interference was seen,
not surprising in that each locus of control showed such specific effects on one
frequency band, with little effect on the other. This independence was confirmed by
independently altering PYR and BAS Ih (Fig. 6). There was practically no influence
of BAS Ih on theta (left panel): power gradually increased with increased PYR Ih
along y direction with almost no alteration with changed BAS Ih (x-axis). There
was however some influence of PYR Ih on gamma (center panel): high gamma
required PYR Ih at or above baseline. Some effect here is expected because PYR
contributes to gamma via the PING mechanism as well as by modulation of gamma
by theta. This modulation of gamma by theta was measured using cross-frequency
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Fig. 6 Changes in theta and gamma power (z-axis color code) as function of BAS Ih augmentation
(x-axis; 0× – 2× baseline values as before) and PYR Ih augmentation (y-axis; 0× – 2× baseline).
Third panel shows strength of influence of theta on gamma at different values using cross-
frequency coherence (CFC)

coherence (CFC; right panel): high modulation of gamma was seen with the high
theta associated with high PYR Ih. The influence of BAS Ih on CFC was more
subtle, with the strongest modulation seen at relatively low values of BAS Ih. With
high values of BAS Ih, the powerful gamma is high at all times and is unmodulated.
Modulation of spiking by gamma and of gamma by theta has been suggested as a
mechanism of item separation for short-term memory (Lisman and Idiart, 1995).

GRIN2A Effects on NMDA

GRIN2A encodes the NR2A subunit of the NMDA receptor. A mutation in this
subunit could potentially alter one or more attributes of this synaptic channel,
including conductance, Mg+2 responsivity, and Zn+2 sensitivity (Cull-Candy et al.,
2001). For these simulations, we assumed that the mutation would reduce NMDA
conductance and examined how decreased NMDA conductance would change
network properties. As shown in Fig. 1, NMDARs are located at each of the three
cell locations in the circuit (squares). Reducing NMDA conductance at each location
produces different effects on theta and gamma waves: ↓ θ ↓ γ at PYR, ↑ θ ↓ γ at
BAS, and ↓θ ↑γ at OLM locations (Fig. 7). Combinations of block at two or more
locations generally produced the ↓θ ↓γ pattern of PYR blockage (Neymotin et al.,
2011b). As noted above, both animal model and human studies of schizophrenia
show gamma increase, and animal models also show theta decrease. We therefore
predict that schizophrenia-associated mutations in GRIN2A would primarily reduce
the conductance for OLM NMDAR, producing this increased gamma and decreased
theta. This further predicts that one or both of the OLM NMDAR NR2 wild-type
isoforms would be NR2A. This could be tested in vitro using the characteristic
effects of TPEN (a zinc chelator) on NR2A-containing NMDARs (Cull-Candy et al.,
2001). An alternative hypothesis would be that gamma increase could be produced
by a GRIN2A-based NR2A conductance increase at one of the other two sites, BAS
or PYR.
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Fig. 7 Changes in theta and gamma power with NMDA conductance reduction at three locations.
OLM NMDA block increases gamma and decreases theta. PYR dendrite NMDA block produces
decrease in both bands. BAS NMDA block produces reduction in gamma and increase in theta.
Axes are in units of standard deviation from the mean compared to control based on 25 different
simulations with different seeds. (Adapted from Fig 6 of Neymotin et al. 2011b)

Fig. 8 Shift in theta and gamma power as a function of OLM NMDAR decreased conduction
from orange (high conductance, wild type) to lower conductance values in sequence: green, blue,
red, black. Decreased conductance here leads to greater gamma. Note that y scale (power) in these
panels differ from those in prior figures due to a different algorithm having been used to calculate
LFP

Gradual reduction of OLM NMDA conductance produced gradual augmentation
of gamma with decrement in theta power, associated with a slight shift of gamma
peak frequency (Fig. 8). Note that the increase in gamma seen here occurs with
decreased NMDAR conductance, opposed to the direction of effect of Ih, where
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increased gamma was seen with increased Ih conductance in BAS (Fig. 3). With
OLM NMDAR conductance decrease, we have a single location which alters both
gamma and theta in tandem – increasing gamma and reducing theta. By contrast,
when changing Ih we found that one location, BAS Ih, primarily controlled gamma,
while another locations, PYR Ih, controlled theta (Fig. 6).

Information Flow-Through

In addition to assessing the effects on frequency, we evaluated how alterations
in dynamics would change the ability of our CA3 network to accurately convey
signals. This is important because it starts to make the connection between
dynamics – the study of how neurons and networks are active over time through
spiking and oscillations – and information, in the Shannon information theoretic
sense (Claude and Warren, 1949). Shannon information theory is concerned with
abstract symbols and signals rather than with the meaning, if any, of a symbol
or signal. However, in the quest to examine correlation and causality between
neurodynamics and cognitive representations, information theory does represent an
important first step. This connection is particularly relevant to schizophrenia, whose
manifestations include alterations in thought processing, changes in cognition and
sensory processing, and difficulties in distinguishing external stimuli from internal
activations – hallucinations.

It is currently believed that the pathology of schizophrenia involves a cognitive
core that underlies the more obvious positive symptoms (e.g., hallucinations and
delusions) and negative symptoms (e.g., social withdrawal) (Silverstein et al.,
2006; Uhlhaas et al., 2006b,c). The difficulty in cognitive coordination associated
with schizophrenia can be shown by assessing the patient’s ability to identify
a complex object, a gestalt. Gestalt perception requires binding many individual
aspects of a scene, pulling them together to see an object – for example, the
camouflaged animal in Fig. 9 (Uhlhaas and Silverstein, 2005). Gestalt perception
requires coordination of activity across multiple areas of cortex, all the more so
when a perception is multisensory rather than just visual. This neural coordination
is postulated to underlie the cognitive coordination required for gestalt perception.
Neural coordination is thought to be mediated by ensemble formation by matching
of firing through oscillations in gamma and beta bands (Dumenko, 2002; Fries et al.,
2007; Lisman and Idiart, 1995; Uhlhaas et al., 2006a). Therefore, schizophrenia
illustrates a disorder where one can start to make connections between neural
and cognitive processing and between the dynamics of oscillations, the flow of
information, attribution of meaning, and coordination of perception.

Technical aside We used normalized transfer entropy (nTE) to measure the
influence of synaptic inputs on spiking outputs, providing our information theoretic
measure of information flow-through. The nTE algorithm allows us to determine
how much signal, coming in as postsynaptic potentials (PSPs), comes out of the cell
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Fig. 9 There is a dog hidden in this picture. If you’re having difficulty finding it search internet
images “gestalt dog speckle” for a guided tour of this and related gestalt images

as a lagged spike output. A single cell, with a Poisson input and identical lagged out-
put (incoming EPSP reliably triggers a spike), provides full input/output information
transfer – a loss-less communication line. In this case, nTE would be high, although
it would not be 1.0 due both to the statistical nature of the measure and of its nor-
malization. By contrast, two identical Poisson spike trains with no lag would have
nTE near 0 – previous input does not predict output at all – any effects of spike train
structure on history will be subtracted out by the algorithm. When a cell is embedded
within a network, in the present case within the CA3 network, the network itself
interferes with the information that flows from external inputs (local afferents)
through the network to outputs (local efferents). We measured information flow
cell-by-cell from external inputs (the drive) onto an individual pyramidal cell, with
output the spiking of that cell. We then average these to get network nTE (Fig. 10).
This results in low nTE values that are nonetheless significant, as can be shown by
assessing the change in nTE while gradually connecting up a network, starting from
independent individual cells with no effect on one another (Neymotin et al., 2011a).

Reduced OLM NMDAR conductance is associated not only with higher gamma
but also with reduced information flow-through (Fig. 10). A correlation between
dynamics and information capacity here is not unexpected – increased gamma is
an indicator of increased activity structure – spiking in the network will be more
constrained by the oscillations such that individual cell spike firing will occur with
a higher probability at the peak of the cycle. This increased constraint is necessarily
associated with a reduction in the ability of firing to follow inputs that come in
at arbitrary times, a decrease in the number of possible states of the network, and
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Fig. 10 Shift in gamma power (x-axis) and information flow through the network as a function of
OLM NMDAR conduction from orange (high, wild type) to lower values in sequence: green, blue,
red, black. As gamma increases information flow-through measured by nTE decreases

a decrease in network entropy. Borrowing a clinical term from schizophrenia, we
can characterize this reduced entropy as increased stereotypy. This suggests that
a reduction in variability of information flow, and information processing, in the
gamma-bound network would be associated with a rigidity of thought and reduction
of behavioral responsivity to changing circumstances. The thought patterns and
behavior of patients suffering from schizophrenia do show this combination of
reduced gestalt perceptual ability, decreased flexibility of thought (e.g., in paranoia),
and stereotypic patterns of behavior.

Conclusions

While only including a bare sketch of the scales circled in Fig. 11, our basic
multiscale model of CA3 was used to provide connections from the molecular scale
of genomics, proteomics, and pharmacology to observations at the high levels of
cognition and behavior. This is a “bare sketch” insofar as much detail has been
omitted, even at the scales of focus – notably in the use of five-compartment models
for the pyramidal cells, leaving out the complexity of ion channel distribution across
the dendritic tree and the complexities of dendritic signal alterations. This particular
simplification can be explained by the limitations of knowledge and the limitations
of computer power. Considering HCN, there is evidence for a difference in density
at different locations in the pyramidal dendritic tree, possibly associated with
differential distribution of HCN1 and HCN2; however, the details of this distribution
are not fully described. With regard to computational load, the use of random
background inputs and random specific wiring based on wiring densities between
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Fig. 11 Scales for multiscale modeling. We have focused on the scale from dendrite to local circuit
(green circle) but have reached downward to the level of molecules (synaptic receptor and ion
channel populations) and upward to the levels of information and cognition. One key aspect of the
multiscale brain is the great overlap across levels. An example is the wiring complexity (network
scale) of projections from dentate gyrus and entorhinal cortex which show layer scale organization
which directly impacts dendritic and cell processing due to the projection of dendrite across layers

populations requires that we run multiple simulations to confirm the robustness
and consistency of any result, therefore requiring that even these relatively simple
simulations be run on high performance computing (HPC) platforms (Lytton et al.,
2016).

Despite these many limitations, we are able to elaborate and extend existing
general concepts that connect channel alterations to cell and network physiology
and connect network physiology to cognitive disorders of schizophrenia, allowing
us to make specific predictions that would not be possible without representing
each scale with needed detail. Rather than considering the minimum detail that is
needed to represent the overall phenomenon,we ask what details are needed at each
scale in order to be able to represent system queries (clinical tests) or system inputs
(pharmacological, electrical, behavioral treatments) at these many scales.

We predict that the HCN and GRIN2 mutations suggested for schizophrenia are
involved in the same clinical pathway and that the abnormalities in this clinical
pathway produce alterations in oscillations and in deficits in cognitive coordination.
We specifically suggest that the GRIN2A-associated mutations associated with
schizophrenia would produce decreased conductance for NMDARs on oriens
lacunosum-moleculare (OLM) cells and that HCN1 mutations would involved
increased conductance for Ih on basket (BAS) cells and possibly on pyramidal cells
as well. These alterations would be associated with augmented gamma activity in
CA3 and reduced nTE from mossy fibers input to Schaffer collateral output.
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Modelling Epileptic Activity
in Hippocampal CA3

Sanjay M. and Srinivasa B. Krothapalli

Abstract This chapter is about developing a computational model of the mech-
anism of epileptic activity generation in the hippocampal CA3 subfield, a very
well-known area that initiates it presumably due to high recurrent connectivity
between its constituent neurons, specifically, epileptic activity due to degeneration
of OLM interneurons. The model consists of 800 pyramidal neurons, 200 basket and
200 OLM interneurons. The degeneration of OLM interneurons primarily leads to
reduced dendritic inhibition on pyramidal neurons. What this leads to is a cascade
of network changes including chemical changes as validated by published literature.
The biophysical features of the model are explained, and how these changes lead to
epileptic activity is described and modelled. Such a proposed model would help
to investigate if the progression to epileptic activity generation can be contained
at some stage. This could imply a therapeutic strategy for validation using further
experimental studies, hence the relevance of the model.

Overview

Epilepsy is a neurodegenerative disorder with a variety of aetiologies, generally
arising due to altered balance between excitatory and inhibitory interactions in a
neuronal network (Dudek and Staley 2007). Temporal lobe epilepsy (TLE) is a
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common type of epilepsy named after the brain area of origin – the temporal lobe
structures of the brain. The hippocampus and entorhinal cortices of the temporal
lobe are reported to be two independent originators of epileptic activity (Lytton
et al. 2005). The mechanisms of epileptogenesis including that for temporal lobe
structures are still not fully understood. Various experimental studies using animal
models have attempted to study its generation, route of spread, severity, activity
patterns, etc. Experimental methods, viz. electrical stimulation, enhanced potassium
in artificial cerebrospinal fluid (aCSF) (Dzhala and Staley 2003; Id Bihi et al.
2005), zero magnesium in aCSF (Barbarosie and Avoli 1997; Whittington et al.
1995), adding chemical convulsants (e.g. bicuculline) to aCSF (Stoop and Pralong
2000), in vivo intraperitoneal administration of pilocarpine (Dinocourt et al. 2003;
Cymerblit-Sabba and Schiller 2012) etc., induce epileptic activity through different
mechanisms that are not exactly known. All these studies are performed to mimic
pathological states similar to that observed in human epileptic patients, with a view
to understand the underlying mechanisms better with an ultimate aim to develop
therapeutic methods.

The advancements in the field of computational neuroscience have tremendously
helped in unravelling the detailed functions of nervous system right from channel
mechanisms to systems level. Simulating the normal function at molecular, cellular,
network, and systems levels helps further to understand the mechanisms of patho-
logical states including epilepsy. This will enable us to tailor drugs to restore normal
function. It can also help us to understand the action of current antiepileptic drugs
on specific channels regarding its efficacy and limitation.

This chapter focusses on development of an in silico model of epileptic activity
generation in the highly vulnerable CA3 subfield of hippocampus. This subfield
is known to have a low threshold to initiate epileptic activity which then spreads
to other connected areas. This propensity of CA3 subfield to become epileptic is
thought to be due to its high degree of recurrent connections between the neurons,
especially the pyramidal cells (Witter 2007). Compared to experimental studies on
CA3 subfield, computational studies involving biophysically detailed CA3 models
have been very few.

Specifically in this study, the role of changes in neuronal connectivity in
hippocampal CA3 subfield in generation of epileptiform activity was investigated.
Consistent with experimental observations in pilocarpine models (Cossart et al.
2001; Dinocourt et al. 2003; Cymerblit-Sabba and Schiller 2012) and clinical
observations (Mora et al. 2009; Furman 2013), this study focusses on loss of
dendritic inhibition as a cause of epileptic activity generation. This altered inhibition
was reported to lead to sprouting in pyramidal cell dendrites (McAllister 2000;
Ren et al. 2014), leading to increased reception of excitatory external inputs
mainly from the entorhinal cortex. The increased pyramidal cell excitability causes
potentiation of synaptic mechanisms and also suppresses other inhibitory inputs
in the network leading to generation of an experimentally comparable epileptic
pattern. From a baseline network generating theta-modulated gamma oscillations,
stepwise changes in neuronal connectivity and synaptic mechanisms are performed
to generate epileptic activity.
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The Model

The biophysical model of CA3 neuronal network described in this chapter (Sanjay
et al. 2015) was adopted from the ModelDB of Neuron software (Neymotin et al.
2011). The full source code of this model is available in the ModelDB (Accession
No. 139421). Additional connectivities as described in Sanjay et al. (2015) were
added as per published anatomical data. After establishing the normal baseline
network activity, systematic network changes were simulated to explore how (1)
reduced connectivity from OLM to pyramidal cells alone influences overall network
activity, (2) changes in external inputs received by pyramidal neurons alter the
network activity and (3) changes in connectivity between all the neurons affect the
overall network activity. This in silico model of CA3 subfield is available in the
ModelDB (https://senselab.med.yale.edu/ModelDB, Accession No. 186768).

The following sub-sections first describe the features of the normal baseline
network model that generates theta-modulated gamma oscillations.

Cell Types and Currents

Pyramidal Cells

A pyramidal neuron has a pyramid-shaped cell body or soma with two distinct
classes of dendrites – apical and basal. There is a single axon for sending the
signal along and transmission to the connected neurons. The pyramidal neurons
of CA3 subfield of hippocampus have varying morphologies within the subfield.
The high degree of recurrent connections between the pyramidal cells is a particular
feature of hippocampal CA3 subfield. This recurrent connectivity is thought to play
a significant role in enhancing the neuronal excitability in this subfield and even
leading to pathological state-like epilepsy.

The network had 800 pyramidal cells each with 5 compartments – 1 somatic
compartment, 3 apical dendritic compartments and 1 basal dendritic compartment.
In order to get a stable baseline activity, a current of −50 pA is injected in this
cell model. This injected current substitutes for the absence of external inputs that
were not exclusively modelled. The pyramidal cell contained leak current, transient
sodium current INa, delayed rectifier current IK-DR, A-type potassium current IK-A
and hyperpolarization-activated current Ih. The leak currents, INa and IK-DR, were
for action potential generation and IK-A for rapid inactivation.

Basket Cells

A basket cell is an inhibitory neuron, the dendrites of which make a basket-like
shape around the cell body. They are placed close to the somatic regions of the
pyramidal neurons and connected to the somatic and perisomatic regions of the

https://senselab.med.yale.edu/ModelDB
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pyramidal cell. The proximity of basket cells to pyramidal cells leads to their
easier excitation due to the drive from the pyramidal neurons. Their close proximity
and projection to soma control pyramidal cells’ hyperexcitability. The feedback
interactions from pyramidal to basket cell and back generated the gamma frequency
oscillations of about 35 Hz in a normally connected network. These oscillations are
important in learning and memory, encoding and retrieval (Colgin and Moser 2010).
There were 200 basket cells in the network, each simulated as a one-compartment
model. The basket cells contained leak current, transient sodium current INa and
delayed rectifier potassium current IK-DR.

OLM Interneurons

The oriens-lacunosum moleculare (OLM) inhibitory interneurons have their
anatomical presentation extending from stratum oriens to the stratum lacunosum-
moleculare in the hippocampus and their axons synapse onto the distal apical
dendrites of the pyramidal cells. The feedback interactions from pyramidal to
OLM cells and back generate the theta oscillations of about 4–8 Hz in a normally
connected network. The theta oscillations play a significant role in spatial navigation
and motor behaviour (Colgin and Moser 2010).

The model network contained 200 one-compartment OLM interneurons.
Apart from leak currents, INa and IK-DR, the OLM interneurons contained
calcium-activated potassium current IK-Ca, high-threshold calcium current IL,
hyperpolarization-activated current Ih and intracellular calcium dynamics. IK-Ca
allowed long-lasting inactivation after bursting, IL augmented bursting and activated
IK-Ca, and Ih allowed bursting.

All the current types were based on the published work by Tort et al. (2007). The
selection of these currents and synaptic and connectivity parameters established the
normal baseline activity of the CA3 network.

Neuronal Connectivity and Synaptic Mechanisms

The interconnectivity of neurons in a network is a significant factor that determines
its overall activity. This section describes the connectivity of different neurons in the
model network (Fig. 1), the synaptic mechanisms involved, the number of neurons
synapsing on each type (convergence) and external inputs to these neurons.

The pyramidal neurons in the model are recurrently connected similar to
anatomical observation (Witter 2007; Amaral 1993). A pyramidal cell receives
excitatory inputs through AMPA and NMDA receptors from 25 other pyramidal
cells at their basal dendritic compartment. The pyramidal cell excites the basket
cells and OLM interneurons through both AMPA and NMDA receptors. A single
pyramidal neuron receives inhibitory inputs from 50 basket cells at the soma and
20 OLM interneurons at the middle apical dendritic compartment, both through
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Fig. 1 Schematic network
with 800 pyramidal cells
(Pyr), 200 basket cells (BC),
200 OLM interneurons. The
number of inputs for an
individual synapse
(convergence) is shown near
synapses. Synapses with
truncated lines – external
random inputs. MS medial
septum inputs

GABAA receptors. External random inputs are received by the pyramidal cells at
their somatic compartment through AMPA and GABAA receptors. Similar inputs
are received at the distal most apical dendritic compartment through AMPA, NMDA
and GABAA receptors. These inputs at apical dendrites mainly simulate the inputs
received from the entorhinal cortex.

The basket cells are recurrently connected, similar to pyramidal cells. A single
basket cell receives inhibitory inputs through GABAA receptors from 60 other
basket cells and excitatory inputs through AMPA and NMDA receptors from
100 pyramidal cells. The basket cells somatically inhibit pyramidal cells through
GABAA synapses. An additional connection from basket cells to OLM interneurons
was added to the model through GABAA synapses based on anatomical information
(Cobb et al. 1997). External random inputs are received by basket cells through
AMPA and GABAA receptors.

The OLM interneurons inhibit pyramidal cell dendrites and synapse through
GABAA receptors in the middle compartment of the apical dendrite. An OLM
interneuron receives excitatory inputs through AMPA and NMDA receptors from
10 pyramidal cells and inhibitory inputs through GABAA receptors from 15 basket
cells. External random inputs are received by OLM interneurons through AMPA
and GABAA receptors.

Altogether there are 155,000 synapses in the model. The basket cells and OLM
interneurons receive GABAAergic inhibitory inputs from the medial septum (MS)
which acts as a pacemaker (Stewart and Fox 1990; Dragoi et al. 1999; Borhegyi
et al. 2004). Its effect on inhibitory cells is modelled as a rhythmic input received
every 150 ms.
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Proposed Mechanism of Epileptic Activity Generation

A step-by-step approach was taken to study how decreased connectivity from
OLM interneurons to pyramidal cells leads to hyperexcitability, a characteristic of
epileptic activity in the network. Three scenarios are given below:

1. Reducing the OLM interneuron to pyramidal cell connectivity alone, without any
other changes in the network

2. Proportionate increment of external excitatory input received by the pyramidal
cells in addition to first scenario

3. Changes in synaptic strength simulated at all the synapses in the network

The network activity was considered epileptic when (i) there is total disruption
of baseline theta-modulated gamma activity; (ii) the constituent cells show high rate
of firing, especially firing rate of pyramidal cells close to 5 Hz (consistent with
experimental observations (Ziburkus et al. 2006)); and (iii) the spiking pattern in
local field potential record was similar to an experimental ictal condition (10–20
ictal spikes per second (Isaev et al. 2007; Cymerblit-Sabba and Schiller 2012)).

Scenario 1

In the first scenario (Fig. 2), the weight of connection from OLM interneurons to
pyramidal cells was reduced in steps from the baseline 100% to 80%, 60%, 40%,
20%, 10%, 5% and 0% (total loss). This was done to understand the influence of
dendritic inhibition by OLM interneurons in the network and specifically if this
change alone could lead to hyperexcitability in the network.

Fig. 2 Reduced schematic diagram showing normal baseline connectivity (left) and reduction in
OLM to pyramidal cell connectivity alone (right). PYR pyramidal cell, BAS basket cell, OLM
oriens-lacunosum moleculare interneuron, Ext external input
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Fig. 3 Reduced schematic diagram. Left shows normal baseline connectivity. Right shows
reduction (red arrow) in OLM-pyramidal connectivity along with increase (blue arrow) in external
excitatory inputs. PYR pyramidal cell, BAS basket cell, OLM oriens-lacunosum moleculare
interneuron, Ext external input

Scenario 2

In the second scenario (Fig. 3), along with reduction in dendritic inhibition provided
by OLM interneurons, a proportionate increment of external excitatory inputs
received by the pyramidal cells at their distal dendritic compartment was simulated.
These excitatory inputs are mainly received from the entorhinal cortex. The OLM
interneuron to pyramidal cell connectivity is reduced in steps from the baseline
100% to 80%, 60%, 40% 20%, 10%, 5% and 0% (total loss of this connectivity).
Concurrently, the reception of external inputs at the distal dendritic compartment of
pyramidal cells was increased from baseline 100% to 120%, 140%, 160%, 180%,
190%, 195% and 200%, respectively.

Scenario 3

In this scenario (Fig. 4), with reduction in dendritic inhibition and corresponding
increase in reception of external excitatory inputs by pyramidal cells, the synaptic
strengths between the different neuron types were altered in a stepwise manner. The
extent of changes in synaptic strengths was assumed arbitrarily and modelled since
there were no quantitative information available from experimental or anatomical
studies to show exactly how much change in synaptic strength in vivo or in
vitro predisposes the hippocampal neuronal network towards epilepsy. When the
dendritic inhibition was reduced, the following changes were assumed to occur and
simulated accordingly (Fig. 4).

• The excitability of pyramidal cells increases due to increased reception of
external excitatory inputs at their distal dendritic compartment.

• The enhanced excitability of pyramidal cells strengthens the communication
between them due to their recurrent connections. The overall excitatory output
from the pyramidal cell population increases which drives the connected cells.
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Fig. 4 Stepwise simulation of network connectivity changes leading to epileptic activity genera-
tion in a CA3 network. Blue arrows with ‘+’ sign show strengthened synaptic responses, red arrows
with ‘−’ sign show weakened synaptic responses. The dashed arrow from OLM to pyramidal
cell shows the input condition – reduced dendritic inhibition. The number in parenthesis shows
the sequence of network changes. PYR pyramidal cell, BAS basket cell, OLM oriens-lacunosum
moleculare interneuron, Ext external input

• The basket cells and OLM interneurons are strongly excited by the pyramidal
cells.

• The recurrent inhibition between basket cells is increased, and this further
disinhibits the pyramidal cells.

• The increased activity of pyramidal cells drives OLM interneurons, but the
reduced connectivity from them to the pyramidal cells prevents increased
dendritic inhibition of pyramidal cells.

• The increased reception of external excitatory inputs by the pyramidal cells
simulates the sprouting and formation of spines in their distal apical dendrites, as
reported in the literature (McAllister 2000).

Based on these proposed changes in the network, two representative conditions
are shown – reduction of OLM to pyramidal cell connectivity to (1) 50% (50%
impairment of dendritic inhibition) (Fig. 5a) and (2) 30% (70% impairment of
dendritic inhibition) (Fig. 5b) of the baseline along with changes in strength of
connectivity between the other neurons.
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Fig. 5 Network connectivity changes when dendritic inhibition was reduced to 50% (0.5x) of the
baseline (a) and 30% (0.3x) of the baseline (b). Blue arrows with ‘+’ sign show strengthened
synaptic responses; red arrows with ‘−’ sign show weakened synaptic responses. The dashed
arrow from OLM to pyramidal cell shows the input condition – reduced dendritic inhibition. PYR
pyramidal cell, OLM oriens-lacunosum moleculare interneuron, BAS basket ell, Ext external input

With reduction in OLM to pyramidal cell connectivity to 50% of the baseline
(50% impairment), the following connectivity changes were simulated. Compared
to the baseline normal levels:

• External excitatory inputs as received by the pyramidal cells doubled.
• Pyramidal cell to pyramidal cell recurrent connectivity strengthened by four

times.
• Pyramidal cell to OLM interneuron interactions strengthened twice.
• Pyramidal cell to basket cells interactions strengthened twice.
• Basket to basket interactions strengthened twice.
• Basket cell to pyramidal cell inhibition reduced to 80% of baseline.
• Basket cell to OLM interneuron inhibition reduced to 80% of baseline.

With reduction in OLM to pyramidal cell connectivity to 30% of the baseline
(70% impairment), the following connectivity changes were simulated. Compared
to baseline normal levels:

• External excitatory inputs received by the pyramidal cells increased by four
times.

• Pyramidal cell to pyramidal cell recurrent connectivity strengthened by eight
times.

• Pyramidal cell to OLM interneuron interactions strengthened by four times.
• Pyramidal cell to basket cell interactions strengthened by four times.
• Basket to basket interactions strengthened by four times.
• Basket cell to pyramidal cell inhibition reduced to 50% of baseline.
• Basket cell to OLM interneuron inhibition reduced to 50% of baseline.
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Simulations and Analysis

The simulations were run on a quad core 2.66 GHz Linux-based 64-bit system using
the Neuron simulator with Python Interpreter (Hines et al. 2009; Carnevale and
Hines 2006). A single simulation (5s, 1200 neurons) with a time step of 0.1 ms took
about 5 min to run. More than 500 simulations have been done for this study. The
output of the simulations including the individual cell firing patterns and local field
potentials was saved as text files. The data were imported to the software pClamp
v.10 (Molecular Devices Inc., USA) for analysis. Analysis of the data included
average firing frequency of each type of neuron, synchronous activity between the
neuron types, changes in firing rates of individual cell types, theta and gamma
frequencies and their power.

Results

Baseline Activity Generation

The normal baseline activity of the network obtained as the local field potential
(LFP) is a combined response of pyramidal-OLM interneuron interaction generating
theta oscillations and pyramidal-basket cell interaction generating gamma oscilla-
tions (Fig. 6). The medial septal inputs inhibited the activity of OLM interneurons
and basket cells, the effect being more pronounced on OLM interneurons because
of greater excitatory drive received by basket cells from the pyramidal cells. The
baseline theta-modulated gamma oscillations had a theta component of 6.7 Hz and
gamma component of 33 Hz. The average firing rates were 2.36 ± 0.024 Hz for
pyramidal cells, 16.05 ± 0.15 Hz for basket cells and 0.96 ± 0.027 Hz for OLM
interneurons. The powers of the theta and gamma components, respectively, were
5.35 mV2/Hz and 2.55 mV2/Hz.

Scenario 1: Reducing the Dendritic Inhibition Alone

The stepwise reduction of OLM interneuron to pyramidal cell connectivity alone
increased the firing rates of all individual cell types. Specifically, at 5% OLM-
pyramidal cell connectivity – the firing of all three cell types significantly increased.

Fig. 6 Baseline activity – theta-modulated gamma oscillations simulated as local field potential
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Fig. 7 The simulated local field potential record, with total impairment of dendritic inhibition of
pyramidal cells. The theta oscillations have disappeared, and only the gamma component of about
33 Hz remains

The firing rate of pyramidal and basket cells almost doubled at 0% OLM (pyramidal
cell connectivity): 2.36 ± 0.02 Hz at baseline to 4.19 ± 0.04 Hz for pyramidal cells
and 16.05 ± 0.15 Hz to 30.98 ± 0.07 Hz for basket cells. The firing rate of OLM
interneurons increased by almost three times, from 0.96 ± 0.03 Hz to 2.7 ± 0.03 Hz.

A fairly constant theta and gamma frequencies of 6.7 and 33 Hz were maintained
till the OLM-pyramidal cell connectivity was reduced to 5%. At total lack of
this connectivity, theta oscillations disappeared with only the gamma component
remaining in the local field potential record (Fig. 7). The powers of theta and
gamma oscillations changed in inverse fashion. While theta power reduced from
5.35 mV2/Hz at baseline to 0.95 mV2/Hz at 5% OLM-pyramidal cell connectivity
and then to 0 at 0% connectivity, the gamma power increased from 2.55 to
8.7 mV2/Hz.

Scenario 2: Increasing External Dendritic Inputs to Pyramidal Cells Along
with Decrease in Dendritic Inhibition

With reduction in OLM-pyramidal cell connectivity from baseline 100% to 80%,
60%, 40%, 20%, 10%, 5% and 0%, the external inputs received were increased,
respectively, from 100% to 120%, 140%, 160%, 180%, 190%, 195% and 200%.
All the cell types showed increased firing with this change in connectivity. At 0%
OLM-pyramidal cell connectivity and 200% reception of external excitatory inputs,
the firing rates were 6.14 ± 0.05 Hz for pyramidal cells, 24.26 ± 0.44 Hz for basket
cells and 4.98 ± 0.035 Hz for OLM interneurons.

The theta frequency remained at 6.7 Hz till the OLM-pyramidal connectivity was
reduced to 5%, due to the medial septum inputs. The theta frequency is reduced to
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0 when there was total lack of this connectivity. The gamma frequency remained
fairly constant around 33 Hz till the connectivity was reduced to 10%. On further
reduction of OLM-pyramidal connectivity to 0%, this frequency increased to about
39 Hz. The theta power reduced from 5.35 mV2/Hz to 0 at total lack of dendritic
inhibition, while gamma power increased to a significant level at 10% OLM-
pyramidal cell connectivity and sharply dropped to 1.3 mV2/Hz when there was
total lack of dendritic inhibition.

It was observed that the rhythmic oscillatory pattern of baseline theta-modulated
gamma activity (LFP) was noticeably disturbed at 10% OLM-pyramidal cell
connectivity. Hence, a special condition was tested by increasing the external inputs
to pyramidal cells by about 15 times the baseline (8 times over the already set
increment of 1.9 times (190%)) (Fig. 8, top). In this condition the basket cells
entered a state of depolarization block, i.e. not being able to fire action potentials
due to excessive excitation from pyramidal cells. The local field potential showed a
characteristic epileptic activity (Fig. 8, bottom) which started 1.45 s after the start
of the simulation. This epileptic pattern was comparable to published experimental
results (Cymerblit-Sabba and Yitzhak Schiller (J Neurophysiol 107:1718–1730,
2012, Fig. 2, p. 1721 – Ictal Phase-I); Isaev et al. (Hippocampus 17:210–219, 2007,
Fig. 6B-b (left panel), p. 216)).

The firing rates of cells were 10.45 ± 0.1 Hz, 44.2 ± 0.24 Hz and
11.52 ± 0.07 Hz for pyramidal cells, basket cells and OLM interneurons,
respectively, before the depolarization block of basket cells. These further increased
to 19.09 ± 0.09 Hz for pyramidal cells and 18.56 ± 0.03 Hz for OLM interneurons
after depolarization block.

Scenario 3: Changes in Connectivity at All the Synapses

Two conditions were described in this scenario: reduction of OLM to pyramidal
cell connectivity to 50% (50% impaired dendritic inhibition) and then to 30% (70%
impaired dendritic inhibition).

At 50% OLM to pyramidal cell connectivity along with the changes in con-
nectivity across all synapses, the firing rates for pyramidal, basket and OLM
cells changed from baseline values to 1.93 ± 0.02 Hz, 10.58 ± 0.24 Hz and
3.52 ± 0.03 Hz, respectively. The theta and gamma frequencies were 6.8 Hz and
34.9 Hz, respectively, and their powers 0.4 mv2/Hz and 0.36 mv2/Hz, respectively.
There was a disruption in baseline theta-modulated gamma oscillations due to
reduced synchrony of basket cells with other neurons in the network, but this did
not lead to epileptic activity.

At 30% OLM to pyramidal cell connectivity (70% impaired dendritic inhibition),
with changes in connectivity between other neurons, the basket cells entered
depolarization block, and a pattern characteristic of epileptic activity (ictal tonic)
was seen in the local field potential record (Fig. 9). This pattern commenced 1.3 s
after the start of the simulations and was comparable to published experimental
results (Isaev et al. 2007; Cymerblit-Sabba and Schiller 2012). The firing rates of
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Fig. 8 Top: network schematic diagram showing the condition that generated epileptiform
activity; 0.1X–10% baseline connectivity (90% impaired inhibition) and 15X–15 times increase in
reception of external excitatory inputs by pyramidal cells. Bottom: simulated epileptic activity seen
in the local field potential (LFP) record along with individual cell firing patterns. The depolarization
block of basket cells leads to epileptic activity as shown in the LFP
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Fig. 9 Simulated epileptic activity due to 70% impaired dendritic inhibition seen in the local field
potential (LFP) record along with individual cell firing patterns. The depolarization block of basket
cells may be particularly noted after which the LFP shows epileptic activity

the cell types before the depolarization block of basket cells were 3.14 ± 0.06 Hz
for pyramidal cells, 13.9 ± 0.39 Hz for basket cells and 11.6 ± 0.11 Hz for OLM
interneurons. The theta and gamma frequency components were 10 Hz and 32.7 Hz,
respectively, and their powers 0.175 mv2/Hz and 0.0075 mv2/Hz, respectively. The
firing rates of pyramidal and OLM cells more than doubled to 7.17 ± 0.03 Hz and
23.8 ± 0.05 Hz after the depolarization block of basket cells. The theta frequency
remained at 10 Hz, while its power increased to 5.4 mv2/Hz. The gamma power
component was zero since basket cell was not firing.

The results show that the depolarization block of basket cells led to epileptic
activity as seen from the LFP record. This was observed in two scenarios: in scenario
2, when the 90% of dendritic inhibition was impaired and reception of external
inputs by pyramidal cells increased to about 15 times the baseline, and scenario 3,
when there was 70% impairment in dendritic inhibition and simultaneous changes
in connectivity strengths between all the neurons in the network. The scenario 2
indicates that epileptiform activity could occur due to high external input reception
in a neuronal network with significantly impaired inhibition. These ‘high’ inputs
could be visual (flashes of bright light), auditory (loud sounds), etc. The third
scenario indicates synaptic changes that could occur slowly over a period of time
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due to impaired inhibition in a neuronal network, contributed even by secondary
reasons like brain injuries.

Model Justification

The Baseline Normal Network

In this study, an in silico model of CA3 subfield of hippocampus with necessary
modifications was used to investigate what changes in this model network leads
to epileptiform activity generation when there is impaired dendritic inhibition of
pyramidal neurons. The baseline activity of the network, viz. theta-modulated
gamma oscillations, was simulated first. The theta oscillations are significant in
spatial navigation and motor behaviour and gamma oscillations in learning, memory
encoding and retrieval. Experimental observations show that they co-occur in
synchrony in field potential records even though originating from different cell
assemblies independently (Colgin and Moser 2010).

After standardizing the model with the generation of baseline normal activity,
stepwise reduction of OLM interneuron to pyramidal cell connectivity was done
to simulate impairment of dendritic inhibition. As mentioned earlier, this type
of structural changes have been observed in human subjects (Mora et al. 2009;
Furman 2013) and also in animal models that led to epileptic activity (intraperitoneal
administration of pilocarpine, Dinocourt et al. 2003; Cymerblit-Sabba and Schiller
2012).

Simulating Epileptic Activity Generation: The Three Scenarios

The three scenarios that were simulated in this study were systematic approaches to
understand the extent of network changes (excitatory-inhibitory balance) required
to generate a characteristic epileptic activity. There was no quantitative information
from published data regarding how much the synaptic strength changes are required
to cause a pathological situation. Hence, linear or proportionate changes in synaptic
strengths were assumed and simulated.

In the first scenario, dendritic inhibition to the pyramidal cells alone was
decreased by reducing the synaptic strength from OLM interneurons to pyramidal
cells, without making any other changes in the network. This was to study in
isolation the contribution of this connectivity in maintaining the normal activity
of the network and to understand if this reduction alone could make the network
hyperexcitable. The results showed that this impaired connectivity did not lead to
epileptic activity per se but noticeably altered the baseline network activity, blocking
theta oscillations (Fig. 7).
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In the second scenario, the reception of external excitatory inputs was increased
by increasing the synaptic weights for these inputs at the distal dendritic compart-
ment of pyramidal cells, as a consequence of reduction in dendritic inhibition. The
fact that the external excitatory input reception increases is justified by studies
showing dendritic sprouting with spine formation when inhibitory responses in
those segments are reduced (McAllister 2000). For simulations, a linear and inverse
change in the connectivities was assumed. For example, when dendritic inhibition
was reduced by 40%, the reception of external inputs was increased by 40%. This
was a simplified assumption again as there are no experimental data available as to
how much of these changes occur in a realistic network.

As in the first scenario, the combination of these two changes alone did not lead
to epileptic activity generation. An additional strong external excitatory input was
further required to make the network epileptic, that too only at high impairment of
dendritic inhibition (90% impairment, 10% OLM-pyramidal cell connectivity). The
main source of these inputs is the entorhinal cortex that receives inputs from other
cortical areas (Amaral 1993; Witter 2007). Hence, excessive inputs such as light
flashes (visual) or large sounds (auditory) might potentially trigger hyperactivity in
the vulnerable hippocampus (Manganotti et al. 1998; Seddigh et al. 1999).

The third scenario simulates an intuitively more realistic situation, whereby
changes in synaptic strengths of one set of connections in a neuronal network lead to
further changes in a cascade, ultimately leading to pathological state. As mentioned
earlier, the extent of changes in synaptic strengths in this scenario was a simplified
model assumption due to lack of quantitative experimental or anatomical data. For
example, a two-time increment in external excitatory inputs received by pyramidal
cells was assumed to strengthen the communication between pyramidal cells by
four times through their recurrent connections. At 70% impairment in dendritic
inhibition, the network showed epileptic activity generation that is comparable with
experimental observations (Cymerblit-Sabba and Schiller 2012; Isaev et al. 2007).

The epileptiform activity was generated in the network due to depolarization
block of basket cells which compromised the residual inhibitory responses of the
network (somatic inhibition of pyramidal cells) as well. In all the three scenarios,
the OLM interneurons and basket cells received rhythmic medial septal inputs every
150 ms that paced theta oscillations in the baseline network. It is observed that the
theta rhythm was resilient to partial network changes, probably due to the strong
pacing by medial septal inputs.

The enhanced neuronal activity and potentiation of network activity have
been observed in different studies on epilepsy. Experimental studies showing
enhancement of synaptic strength leading to epileptic activity in temporal lobe
including hippocampus have been described by Leite et al. (2005). Similarly,
McAllister (2000) has described the enhancement of activity in neuronal networks
due to sprouting at dendrites which could lead to epileptic activity generation. The
contribution of enhanced neuronal connectivity (long-term potentiation) leading to
epileptic activity in human central nervous system has been discussed by Cooke and
Bliss (2006). Hence, the generation of epileptic activity could be an effect of gross
network changes in the brain rather than at those at specific connections.
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Depolarization Block of Basket Cells

In this study, the depolarization block of basket cells is the contributing factor that
caused epileptic activity generation due to excessive excitatory drive from pyramidal
cells. Karlocai et al. (2014) mention few reasons why this could be possible. One
is their perisomatic organization which facilitates their faster activation due to
enhanced pyramidal cell firing. Second, the synaptic inputs received by them are
high due to recurrently connected pyramidal cells. Third is the absence of K+
channel-mediated hyperpolarizing currents and M-currents. The group observed
depolarization block of basket cells in three epileptogenic treatments – high
extracellular potassium, zero magnesium and addition of 4-amino-pyridine in
hippocampal CA3 subfield. The firing rates of pyramidal cells and interneurons in
the network increased in all these methods leading to depolarization block of basket
cells due to their high excitation. After the depolarization block, pyramidal cells and
the dendrite-inhibiting interneurons continued firing. Similarly, many other studies
also showed inactivation of basket cells and other interneurons in pathological states
(Bikson et al. 2003; Sloviter et al. 2003; Ziburkus et al. 2006; Zhang and Buckmaster
2009; Curley and Lewis 2012).

Successes and Limitations of the Model

This study used a computational model of CA3 network successfully generating
baseline theta-modulated gamma oscillations (Neymotin et al. 2011). Computa-
tional models of CA3 have been fewer in number, compared to CA1 subfield, though
CA3 is the originator of epileptic activity as shown in many experimental studies
(Stoop and Pralong 2000; Lytton et al. 2005). The less number of CA3 models is
presumably due to the highly heterogeneous connectivity patterns as well as the
lack of exact information on its biophysical parameters. The three neuron types in
this model have biophysical parameters comparable to those in other model neurons
displaying normal physiology.

Many studies have been conducted to understand how excitation-inhibition
imbalance in neuronal networks leads to abnormal pathologically implicated activity
patterns (Wittner et al. 2005; El-Hassar et al. 2007). This work shows that inhibitory
activity is compromised in the network. It also demonstrated and proposed a
quantitative extent of impairment of dendritic inhibition (threshold of connectivity
changes, 70% as in scenario 3) as well as a set of changes in synaptic connectivities
that made the network hyperexcitable. The simulated hyperactivity in the network
was comparable to experimental observations. It is also worth noting from the model
results that the network was able to withstand the stable activity till a significant
extent of neurodegeneration occurred. This also indicates the resilience of brain
networks to insults that could predispose them to pathological conditions.
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This work is not devoid of limitations as in the case of other computer models.
The exact mechanisms of epileptogenesis are not yet fully known. Hence, many
assumptions and simplifications had to be made. The three model neurons in
the network had highly reduced anatomical features, though necessary biophysics
have been added. Only two main inhibitory mechanisms have been considered –
somatic and dendritic through two contributing neurons, the basket cells and OLM
interneurons, respectively. Other interneurons that are part of CA3 network in vivo
have not been included in the model. The extent of changes in synaptic weights was
a model assumption due to lack of related information from published anatomical
and experimental studies.

The Future

This computational model could be further expanded by including more neuron
types, alternate connectivity patterns, different number of each neuron types,
receptors and biochemistry to more realistically replicate anatomical details. Since
hippocampal CA3 subfield plays a significant role in learning, memory encoding
and retrieval, cognitive processes, and spatial navigation, the changes in the network
could potentially lead to impairment of these processes in an affected individual.
After adding additional relevant biophysical parameters, the resilience of the
updated model to alterations of normal baseline activity leading to pathological
states could be tested.

Experimental studies could be planned to quantify the extent of impairment
of dendritic inhibition that can lead to epileptic activity. Another interesting
set of studies could help to understand how network modifications alter their
oscillatory behaviour in pathological conditions. A significant but challenging step
for the future would be devising methods for controlling epileptic activity gener-
ation. Therapies designed to restore excitatory-inhibitory balance are particularly
promising in reducing pathological dynamics. The computational studies should
be combined with future experiments to advance our present understanding and
develop therapeutic strategies for neurodegenerative disorders.

Appendix: Additional Model Information

Information on the Various Parameters Considered for Baseline
Model

The model mentioned in this chapter is primarily based on a published model of
CA3 neuron and hence adapted mainly from Neymotin et al. 2011 and Neymotin
et al. 2013. The various information to build the model have been considered from
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Table A.1 Parameters for modelling background random activity

Cell type Section Synapse Type τ1(ms) τ2 (ms) Conductance (nS)

Pyramidal Dendrite AMPA Excitatory 0.05 5.3 0.05
Pyramidal Dendrite NMDA Excitatory 15 150 6.5
Pyramidal Dendrite GABAA Inhibitory 0.07 9.1 0.012
Pyramidal Soma AMPA Excitatory 0.05 5.3 0.05
Pyramidal Soma GABAA Inhibitory 0.07 9.1 0.012
Basket Soma AMPA Excitatory 0.05 5.3 0.02
Basket Soma GABAA Inhibitory 0.07 9.1 0.2
OLM Soma AMPA Excitatory 0.05 5.3 0.0625
OLM Soma GABAA Inhibitory 0.07 9.1 0.2

These parameters are based on publications (Neymotin et al. 2011, 2013; Destexhe et al. 2003)

Table A.2 Synaptic parameters for neuronal connectivity in the model

Presynaptic Postsynaptic Receptor Type τ1(ms) τ2 (ms) Conductance (nS)

Pyramidal Pyramidal AMPA Excitatory 0.05 5.3 0.02
Pyramidal Pyramidal NMDA Excitatory 15 150 0.004
Pyramidal Basket AMPA Excitatory 0.05 5.3 0.36
Pyramidal Basket NMDA Excitatory 15 150 1.38
Pyramidal OLM AMPA Excitatory 0.05 5.3 0.36
Pyramidal OLM NMDA Excitatory 15 150 0.7
Basket Pyramidal GABAA Inhibitory 0.07 9.1 0.72
Basket Basket GABAA Inhibitory 0.07 9.1 4.5
*Basket OLM GABAA Inhibitory 0.07 9.1 0.0288
OLM Pyramidal GABAA Inhibitory 0.2 20 72
Medial septum Basket GABAA Inhibitory 20 40 1.6
Medial septum OLM GABAA Inhibitory 20 40 1.6

the experimental and computational studies by Stewart and Fox (1990), White et al.
(2000), Destexhe et al. (2003), Gloveli et al. (2005), Tort et al. (2007), Hangya et al.
(2009), Stacey et al. (2009), and Neymotin et al. (2011). Modifications as mentioned
in Sanjay et al*. (2015) are incorporated.

Specifically, the studies by White et al. (2000) and Gloveli et al. (2005) empha-
size the importance of pyramidal-OLM interneuron connectivity in generating
theta oscillations and pyramidal-basket cell connectivity in generating gamma
oscillations and modulating gamma component by the theta component as observed
experimentally.
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A Network Model Reveals That
the Experimentally Observed Switch
of the Granule Cell Phenotype During
Epilepsy Can Maintain the Pattern
Separation Function of the Dentate
Gyrus

Alexander Hanuschkin, Man Yi Yim, and Jakob Wolfart

Overview

What Is the Model?

The model is a conductance-based neural network model of the brain circuit thought
to be involved in pattern separation during hippocampal memory acquisition: the
dentate gyrus (DG). In this chapter we explain the concepts of pattern separation and
how it was tested in our model. Our hypothesis is that experimentally constrained
homeostatic adaptations of intrinsic neuronal properties can restore the pattern
separation ability of the DG network, if it was lost during epileptic excitability
(Stegen et al. 2009; Young et al. 2009; Yim et al. 2015).

What Is Pattern Separation?

One definition of a pattern is spatial, based on cell identities (i.e., an active cell
population is a pattern) and is usually employed without the temporal dimension.
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Alternatively, a pattern can be defined as a set of action potentials (APs) or
excitatory postsynaptic potentials (EPSPs) with specific time intervals. Obviously,
the physiological situation is a combination of the two definitions.

Theoreticians who studied pattern separation in the brain often focused on the
DG of the hippocampal formation and mostly used the above spatial definition of
patterns (Marr 1969, 1971; Mittenthal 1974; Torioka 1978; Gibson et al. 1991;
Treves and Rolls 1992; O’Reilly and McClelland 1994). They defined pattern
separation as the process of making two similar (overlapping, parallel) patterns more
distinguishable (non-overlapping, orthogonal), while they are transmitted from an
upstream cell layer to a downstream cell layer. This computational process is also
called orthogonalization, while the opposite is pattern completion, sometimes called
pattern convergence (Santoro 2013). Although pattern separation is defined as an
interregional phenomenon, we adopt a simplified description such as “the DG
performs pattern separation,” implicitly adding “with the input pattern from the
upstream layer.” To quantify pattern separation or completion, the percent pattern
overlap of two output patterns can be calculated as a function of overlap of the
respective input patterns. If the ratio of output pattern overlap to input pattern
overlap is smaller than 1, i.e., the outputs are less similar than the inputs, the network
performs pattern separation (Fig. 1a).

What Is the Experimental Evidence that Pattern Separation Occurs in the
DG?

In behavioral studies, the ability to discriminate small spatial changes is called
behavioral pattern separation; a more precise term is behavioral discrimination
(Santoro 2013). An example of such a task would be that the shape of a box,
in which a rat has to orientate, is modified in small steps. Experiments that
combined behavioral tests with selective lesions to hippocampal substructures
suggest that the DG is particularly needed, when very similar spatial cues have to be
differentiated during hippocampal memory acquisition (Fig. 1b) (Gilbert et al. 2001;
Goodrich-Hunsaker et al. 2008; Kesner 2013). When DG cells are recorded in vivo
during a behavioral discrimination task, they are more effective than CA3 cells in
decorrelating neuronal activity representing very similar shapes (Fig. 1c) (Leutgeb
et al. 2007). The above explained (computational) pattern separation is seen as the
mechanism underlying behavioral discrimination. However, it should be noted that
different forms of behavioral discrimination exist and that some do not depend
on the DG (Gilbert and Kesner 2002, 2006; Potvin et al. 2009; Santoro 2013). In
summary, although the precise relationship between behavioral discrimination and
computational pattern separation is not clarified in all details, the discussed and
other evidence (Fig. 1d) (McHugh et al. 2007; Bakker et al. 2008; Moser et al.
2008) points to the DG as an ideal candidate to perform pattern separation with the
input it receives.
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Fig. 1 Previous studies on the role of the DG in pattern separation. (a) Results from a statistical
model adapted from Figure 8 in O’Reilly and McClelland (1994) comparing the overlap of two
output patterns as a function of the two respective input patterns. The lower the function is below
the line of equality (dashed), the better is the pattern separation. All models perform pattern
separation because the processing is split in different stages; however, the DG is best suited for
this task. (b) Results from a behavioral experiment adapted from Figure 2B in Gilbert et al. (2001).
In a delayed-match-to-sample-for-spatial-location-task, rats with DG lesion (but not with CA1
lesion) experience particular problems to distinguish small spatial differences (DG lesion: smaller
correlation coefficient) indicating a crucial role of the DG pattern separation. (c) Results from
behavioral experiments, combined with in vivo single unit DG recordings, modified from Figure
3A in Leutgeb et al. (2007). Rats are trained to compare boxes (the shape of which is increasingly
different from left to right on x-axis), while correlation of place cell firing of CA3 and DG cells is
measured (y-axis). In similar surroundings correlation is higher than in dissimilar boxes. However,
DG cells show a specific drop in correlation in the region of very similar shapes compared to CA3
cells. DG*, The dashed line with empty circles is derived from Figure 4B in Myers and Scharfman
(2009) which simulated this experiment in a DG network model with patterns defined as spatial
cell population activity (Adapted with permission from the authors). (d) Results adapted from
Figure 4F in McHugh et al. (2007). Genetic deletion of postsynaptic NMDA receptors (which
are important for LTP-dependent learning) specifically in GCs leads to decreases in behavioral
discrimination ability
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Biological Constraints for Pattern Separation

During the transmission of a pattern from one brain area to another, two factors
are crucial for the degree of pattern separation. The most important factor for the
degree of pattern separation is the activity level in the output layer; if it is too high,
pattern separation is severely hampered (Torioka and Ikeda 1988, 1990; Gibson et
al. 1991; O’Reilly and McClelland 1994). In the DG, the output is generated from
granule cells (GCs) via their axons, the mossy fibers (MFs), to the dendrites of
pyramidal cells in the CA3 region. Thus, for pattern separation to be successfully
performed by the DG, the ratio of activated to silent GCs has to remain low. This
is known as sparse coding and is a general coding strategy of the brain which
can but does not have to be related to pattern separation (Vinje and Gallant 2000;
Hahnloser et al. 2002; Olshausen and Field 2004). The activity level in the output
layer can be kept down by different mechanisms. Local inhibition is one such
mechanism (Torioka 1978). In the DG this is realized via strong inhibitory feedback
which might implement winner-take-all mechanisms among GCs (O’Reilly and
McClelland 1994; Lawrence and McBain 2003; de Almeida et al. 2009; Jinde et
al. 2012). Another possibility to reduce the number of activated GCs is to keep the
intrinsic excitability of GCs low, and this is precisely the basis of the present model:
the excitability of GCs is kept low via activity-dependent intrinsic plasticity (Stegen
et al. 2009, 2012; Young et al. 2009; Kirchheim et al. 2013). Consistent with sparse
GC activation during hippocampus-dependent learning, in vivo recordings in the DG
rarely discovered spiking GCs (Jung and McNaughton 1993; Leutgeb et al. 2007),
and retrospective analysis found only few activity-labeled GCs (Chawla et al. 2005).
Other factors which improve pattern separation but are dispensable are sources of
variability, like the stochastic nature of transmitter release (Gibson et al. 1991).

The other important constraining factor is anatomical. A small output layer pop-
ulation has a reduced capacity to represent patterns, compared to a big population,
i.e., it is easier to keep two patterns non-overlapping in the big cell population
(Torioka 1978; O’Reilly and McClelland 1994). Additionally, the interlayer con-
nectivity can be convergent or divergent: a divergence factor larger than 1 means
that (on average) every neuron of the input layer connects to more than 1 cell of the
output layer. The DG receives its excitatory input from entorhinal cortex (EC) layer
II cells which project via their perforant path (PP) axons to the dendrites of GCs.
The number of EC layer II cells vs. GCs is approximately 110,000 vs. 1,200,000 in
rats and 660,000 vs. 18,000,000 in humans (Amaral and Lavenex 2006), suggesting
considerable divergence from EC to DG, although it should be noted that the real
connectivity cannot be inferred via cell numbers alone. In summary, a pattern
separation function can be obtained in two different manners: either by activating
more different cells or by activating less overlapping cells. It turns out the latter is
biologically more probable and also computationally more efficient.
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Behavioral Context of Pattern Separation and Completion

The real-life importance of pattern separation becomes evident when considering
that a neuronal pattern encodes for a food location – space is the main information
processed in this context (Kesner et al. 2000). Clearly the animal has to be able
to distinguish similar environments (pattern separation). However, if only partial
information on the food location is available, the full memory of the location has
to be recovered, i.e., pattern completion must also occur in hippocampus-dependent
learning and retrieval. Thus, a major question in the field is: how can two clearly
competing tasks be achieved in one brain area? Mainly inspired by connectivity, a
division of labor was suggested with the DG achieving sparse coding and pattern
separation and CA3 as an autoassociative network performing pattern completion
(McNaughton and Morris 1987; Treves and Rolls 1992).

Epilepsy and the Dentate Gyrus

As discussed above, the activity level of GCs is an important factor of the DG’s
performance in pattern separation. Therefore epilepsy with massive seizure activity
invading the DG should be disastrous for the above proposed capacities. On the
other hand, we observed that the GC excitability was reduced during temporal lobe
epilepsy (TLE) in humans (Stegen et al. 2009) as well as in an animal model of
TLE (Young et al. 2009). To explain TLE: the affected patients experience partial
memory and consciousness impairments due to focal seizures in the hippocampal
formation; the mechanisms underlying TLE are unclear (Spencer 2002; Bonilha
et al. 2007). Due to its anatomical and physiological properties, the DG has been
implicated as a “filter” or “gate” to the hippocampus which could be of major
importance for the spread of epileptic seizures (Heinemann et al. 1992; Lothman
et al. 1992; Hsu 2007; Krook-Magnuson et al. 2015). Some of the mechanisms
proposed to underlie TLE are based on anatomical changes such as the backsprout-
ing of GC MFs resulting in recurrent excitation of GCs (Tauck and Nadler 1985;
Nadler 2003; Buckmaster 2012; Artinian et al. 2015). The MF sprouting scenario
inspired several modeling studies showing that recurrent excitatory connections can
produce runaway excitation in the DG network (Santhakumar et al. 2005; Morgan
and Soltesz 2008; Schneider et al. 2012). Another view supported by experimental
evidence is that the seizure activity is already present in the EC and fed into the DG
via elevated PP input (Spencer and Spencer 1994; Kobayashi et al. 2003; Bonilha
et al. 2007). Furthermore, there are many genetic and acquired ion channel changes
which potentially contribute to the seizure-prone network in one way or another
(Hoffman 1995; Waxman 2001; Kullmann and Waxman 2010; Wolfart and Laker
2015; Köhling and Wolfart 2016).
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Goals of Our Model

In the present study, we modified a previously designed model of the DG circuit
(Santhakumar et al. 2005). In particular, we implemented a quantifiable spatiotem-
poral pattern separation task as well as experimentally determined ion channels
changes of GCs in TLE (Young et al. 2009; Yim et al. 2015) in order to address
the questions formulated in the following section.

Questions Addressed

While it is well accepted that ion channel expression controls the functional phe-
notype of isolated neurons, the intrinsic cellular details are usually not considered
when studying the computation of entire neuronal networks. In contrast, large-scale
neuronal networks are typically built with only a few detailed but stereotypical
cell type models or even only with point neurons and yet successfully reproduce
a wide range of physiological activity patterns (Koch 1999; Dayan and Abbott
2001; Izhikevich 2007; Rolls 2010). Thus, in most studies, intrinsic properties are
either not implemented, or they are considered uniform and stable. Therefore a first,
general question we address in the present study is:

How plausible is it that cell type-specific intrinsic plasticity controls the function of
local neuronal networks?

Secondly, from the perspective of epilepsy research (Stegen et al. 2009; Young
et al. 2009), we ask:

Why is it that during TLE, GCs from sclerotic hippocampi exhibit these abnormally
high “leak” conductances?

Theoretically, an elevated resting conductance (i.e., reduced input resistance)
renders the neuron’s voltage responses (V) less responsive to excitatory current
input (I) as predicted by Ohm’s law (V = R × I). Therefore, one explanation
for the intrinsic plasticity observed during TLE is that it insures cell survival in
conditions of enhanced excitotoxicity which is indeed one likely factor (Kirchheim
et al. 2013). Here we focus on an additional hypothesis which combines the former
two questions:

Are these leak channel adaptations – at least theoretically – in a position to
homeostatically adjust the performance of the DG network in separating spa-
tiotemporal patterns?
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Level of Detail and Rationale

It was necessary to use a conductance-based model in order to directly implement
the experimental observed cell type-specific rescaling. Abstract neuron models with
reduced dynamics (e.g., Myers and Scharfman 2009, 2011) might be used after the
development of a faithful theory of how to implement cell type-specific rescaling.

Theoretical studies on pattern separation have stressed the importance of output
activity, interlayer connectivity, and local inhibition (see section “What Is the
Model?”). Hence, realistic GC properties and strong inhibitory feedback are needed
in order to reproduce a low activity level of GCs. Furthermore, realistic interlayer
connectivity and spatiotemporal input pattern from EC to DG are important. Since
there is no theoretical hint that the absolute network size would influence pattern
separation function, a small network size with reduced model complexity should
be sufficient for a proof of principle. The previously published conductance-based
network model of the DG (Santhakumar et al. 2005) fulfills the major requirements
as a basic model for our purposes, with slight modifications and extension described
in the following.

The Model

Model Components

As in the original study, the DG model consists of biophysically relatively realistic
multicompartmental models of the principal cell types of the DG (see Overview
in Fig. 2a): excitatory GCs, inhibitory basket cells (BCs), excitatory mossy cells
(MCs), and hilar neurons with axon distributed in the PP termination zone (HIPP
cells or HCs in Fig. 2a). These cell types and characteristics were carefully
elaborated in the original study (Santhakumar et al. 2005). All cells contain a variety
of voltage-dependent sodium, potassium, calcium, and unspecific leak channels. We
modified the DG model on two levels: synaptic weights and intrinsic changes in GCs
(Tables 1 and 2).

The GC model (within the DG model) was originally developed by Aradi and
Holmes (1999) which itself was mainly based on data from Yuen and Durand (1991)
(Table 2). We added two additional conductances to this GC model. According to
our experimental data from the intrahippocampal kainate injection mouse model
of TLE, an inward rectifier potassium conductance (Kir) and a tonic GABAA
chloride conductance (sensitive to picrotoxin and bicuculline) are upregulated in
GCs of the seizure-experienced hippocampus (Young et al. 2009). Thus, two
different GC phenotypes exist in control vs. epileptic animals: control GCs with
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Fig. 2 Scheme of DG network model with focus on the intrinsic properties of GCs (Yim et al.
2015). (a) Control situation with basic wiring and GC properties (CTRL DG/CTRL GCs). Besides
GCs, basket cells (BC), HIPP cells (HC), and Mossy cells (MC) were modeled. Perforant path
(PP) inputs to GCs and GC action potential (AP) output via mossy fibers (MF) are symbolized
with vertical tics. Only one of two modeled GC dendrites is displayed. Round arrow heads indicate
inhibitory connections and triangular arrow heads excitatory connections. Locations of synaptic
weight changes vs. Santhakumar et al. (2005) are grayed. (b) The two modeled GC phenotypes:
CTRL GCs (black) and Leak GCs (orange) with increased Kir channel and tonic GABAA channel
conductances. The latter leads to smaller subthreshold voltage responses (left traces, scale bars
1 mV, 100 ms) and lower likelihood to fire APs, despite identical input from PP and BCs (middle
panel). Right panel, AP frequency vs. injected current: the gain of Leak GCs is moderately lowered.
(c) The changes in connectivity and synaptic weights to simulate CTRL vs. epileptic: “SPR30 DG,”
recurrent excitation via sprouted MFs from GCs to GCs, and “PP160SPR10 DG,” combination of
increased PP input and weak MF sprouting. (d) Subcellular distribution of conductance density
for each channel type of the GC model. The relative density is symbolized as gray values between
maximum black = 1 and minimum white = 0. For further abbreviations see text
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Table 1 Parameters of the network model during control condition

From (row)/to (column) GC BC MC HIPP

PP
Connectivity (%) 20 (CC) 20* (CC)
Weight (nS) 2.0* 1.0* –* –
Delay (ms) 3 3
GC
Connectivity (%) Sprouted 16.7† 6.7 50
Weight (nS) 2.0 14.1* 0.2 0.5
Delay (ms) 0.8 0.8 1.5 1.5
BC
Connectivity (%) 20 33.3 20†

Weight (nS) 4.8* 7.6 1.5 –
Delay (ms) 0.85 0.8 1.5
MC
Connectivity (%) 40 16.7 20 33.3
Weight (nS) 0.3 0.3 0.5 0.2
Delay (ms) 3 3 2 3
HIPP
Connectivity (%) 32 66.7 26.7
Weight (nS) 0.5 0.5 1.5† –
Delay (ms) 1.6 1.6 1

Explanations: CC, convergent connection (each postsynaptic cell receives the same number of
presynaptic afferents); all other connections are divergent (postsynaptic cell can have different
numbers of presynaptic afferents). Values marked with * were modified from the original model.
Entries marked with † differed between Santhakumar et al. (2005) and their ModelDB script. If the
two types of neurons have no connection, the corresponding field is marked with –

an input resistance of around 420 M� (CTRL GCs) and leaky GCs with an
input resistance of about 260 M� (∼60% of CTRL, Leak GC). To simulate these
phenotypes appropriately, we incorporated Kir and tonic GABAA as additional
“leak” conductances into the GC model and scaled them to approximate the
experimentally determined subthreshold and spiking phenotype (Fig. 2b). It should
be noted that physiologists use the term “leak” channel not necessarily meaning
that the native channel displays an absolutely linear current-voltage relationship
across the whole voltage range. For example, Kir2 channels are here called “leak
channels” because they are constitutively open at resting potential (Stanfield et al.
2002). When the membrane is strongly depolarized, the channels are blocked by
intracellular magnesium, hence the name.

To probe network function, we added in particular the option to pass increasingly
different spatiotemporal input patterns (IPs) as synaptic input to GCs (Figs. 2a,
b and 3a). Otherwise we adopted the connection probabilities and connectivity
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strengths of the local network with a ring structure from the original study, except
slight modifications to accomplish sparse coding (see section “Parameters” and Yim
et al. 2015 for details). After each simulation the similarity of all pairs of IPs was
computed vs. the similarity of the respective GC output patterns (OPs, Fig. 3a).
A total of 13 IPs were presented in turn to the network with decreasing overlap
from IP1 to 7. IP1 and IP8 are not overlapping. Each PP input line could transmit
three excitatory events, evoking EPSPs in one time window. To obtain sparse GC
activation as required for pattern separation (see section “What Is the Model?”) and
as observed in vivo (Jung and McNaughton 1993), we reduced the strength of PP
input synapses to GCs (and BCs) to 10% of the original model.

In addition to this control DG network connectivity (CTRL DG), various forms
of epileptic hyperexcitability were simulated (Figs. 2c and, 3b, c, e). Backsprouting
of MF, leading to recurrent excitation of GCs, is a proposed TLE seizure mechanism
(see section “What Is the Model?”), and MF sprouting is also present in the
TLE animal model (Suzuki et al. 1997) in which we recorded the GC properties.
Therefore we used MF sprouting to render the network epileptic (Fig. 2c, SPR30
DG), similar to the original model (Santhakumar et al. 2005). Another mechanism
thought to underlie hyperexcitability in TLE is the elevated synaptic input strength
from PP to GCs (see section “What Is the Model?”). Therefore we increased PP
synaptic weight up to 160% (PP160) of our CTRL DG condition (Fig. 2c).

In order to quantify the pattern separation performance, a similarity score was
defined as the average Pearson correlation coefficient of the low-pass filtered spike
trains over all PPs (and GCs) in the model. These correlations were computed within
a 200 ms time window, consistent with the physiologically relevant oscillatory
activities in the hippocampus (Lisman et al. 2005; Rangel et al. 2013). The method
also corrects for rate dependence through baseline subtraction and normalization.
The ratio between the amount of similarity between two OPs and the similarity
between the two respective IPs was then used to compare the pattern separation
ability of the DG network (Fig. 3a, right panel).

Parameters

As mentioned above, most of the parameters were inherited from the original model
(Santhakumar et al. 2005), and details of the added connectivity and conductances
can be found in Yim et al. (2015) and Tables 1 and 2. As the intrinsic properties
of GCs are in focus here, we provide an additional table in which the experimental
origins of the GC ion channel model parameters of our model are listed (Table 2;
see also Fig. 2d for spatial channel distribution).
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Limited Results

Under control conditions, i.e., with control network connectivity in the DG (CTRL
DG, Fig. 2a) and control intrinsic properties of GCs (CTRL GCs, Fig. 2b), the DG
network model separates patterns well: the PP input pattern similarity is always
greater than the GC output similarity (Fig. 3a, right panel). Note also the sparse
GCs activity generated by the PP input to the DG network (Yim et al. 2015).

Implementing 30% MF sprouting (Spr30 DG) forces the DG network to massive
seizure-like hyperexcitation in response to PP input: all GCs of the network are
driven to long barrages of APs (Fig. 3b, left panel). With 30% sprouting, the DG fails
the pattern separation task completely (Fig. 3b, right panel). The output similarity
is always higher than the input similarity, i.e., in the area of pattern completion.
Implementing leaky GCs in this network to test their influence on pattern separation,
a dichotomous effect is observed: the network falls silent (not shown), or seizures
remain (Fig. 3b, right panel inset, orange Leak GCs), i.e., leaky GCs cannot restore
pattern separation in this network with heavy recurrent excitation.

As justified above and below (sections “What Is the Model?” and “Data for
Model Components and Parameter Value”), we designed a mixed epileptic condition
with PP-GC input strength increased to 160%, together with 10% sprouting
(PP160Spr10 DG, Fig. 3c, left panel). In this epileptic network, CTRL GCs also
show a seizure-like level of activity, and the DG does not separate the patterns
for small input similarities (Fig. 3c, right panel). For higher input similarities, the
network does perform pattern separation but not nearly as good as the CTRL DG.
Thus, with a more realistic epilepsy scenario of increased EC input combined with
mild MF sprouting, DG-mediated pattern separation is degraded but not abolished.
Introducing now the experimentally observed leaky GC phenotype into the more
realistic epileptic DG network (PP160Spr10 DG/Leak GCs, Fig. 3d), the sparse GC
activity is restored (Fig. 3d, left panel). Importantly, the pattern separation ability of
the epileptic DG network is improved to CTRL DG levels with leaky GCs (Fig. 3,
right panel). We scanned the parameter space with respect to different levels of MF
sprouting and PP input strength and basically found that the effect of leaky GCs on
pattern separation is robust in most situations (Fig. 3e). These simulations indicate
that the intrinsic adaptations observed in GCs could restore or ameliorate the pattern
separation ability of the DG (Yim et al. 2015).

Model Justification

Data for Model Components and Parameter Values

If not mentioned otherwise, data and parameter values were as in the original model
(Santhakumar et al. 2005). The DG connectivity of our model is summarized in
Table 1. As mentioned above (section “Model Components”), we added Kir and
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Fig. 3 Pattern separation in DG network under different forms of epileptic hyperexcitation with
and without leaky GCs (Modified from Yim et al. (2015)). (a) Left panels show 4 of 13
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GABAA channel mechanisms (Table 2) to reproduce the leaky GC phenotype.
This phenotype was described in numerous studies, not only in TLE animal model
(Young et al. 2009; Kirchheim et al. 2013) but also in TLE patients (Stegen et al.
2009; Stegen et al. 2012). Although more than one type of potassium channel plays
a role in the increased leak conductance (Young et al. 2009), the identification of a
strong contribution of the Kir channel (subfamily Kir2) to the leaky GC phenotype
was revealed via several methods: (i) pharmacology (Stegen et al. 2009, 2012;
Young et al. 2009), (ii) biophysical characteristics of the isolated currents (Stegen
et al. 2009; Young et al. 2009), (iii) immunocytochemistry (Young et al. 2009),
and (iv) single-cell reverse transcriptase polymerase chain reaction (supplementary
methods in Kirchheim et al. 2013). Note that neither the leaky GC phenotype nor the
presence of Kir channels has been reported in studies using the systemic pilocarpine
rat epilepsy model which displays less or no hippocampal sclerosis (see discussion
in Young et al. 2009; Wolfart and Laker 2015) although one pilocarpine study did
report leaky GCs (Mehranfard et al. 2014). The data of our and other labs clearly
show that Kir channels are important for GCs not only in the pathological but also
in the physiological situation (Mongiat et al. 2009; Stegen et al. 2009, 2012; Young
et al. 2009).

So-called tonic GABAA receptor-mediated chloride currents are known to exist
in GCs, and the underlying subunits are under discussion (Peng et al. 2002; Stell
et al. 2003; Farrant and Nusser 2005; Zhang et al. 2007; Glykys et al. 2008).
We identified an augmented GABAA component in leaky GCs via its picrotoxin
and bicuculline-sensitivity but did not further investigate the molecular GABAA
subunits (Young et al. 2009). Note that with respect to the relatively negative resting
potential of GCs, the reversal potential of the tonic GABAA chloride current is
depolarized although it is not known though how depolarized it really is (Farrant

�
Fig. 3 (continued) input patterns (IPs 1, 3, 5, and 7) with increasing spatiotemporal difference
and respective output patterns (OPs 1′, 3′, 5′, and 7′) under control conditions, i.e., with control
connectivity (CTRL DG) and control GC properties (CTRL GCs). Right panel shows similarity
scores between IPs and those of OPs fitted by a shifted power law. Data below dashed line indicate
pattern separation. (b) Same as in a (input not shown) but with epileptic 30% MF sprouting (SPR30
DG). With same input patterns as in a, seizure-like hyperexcitation occurs. Right graph shows
devastating effect on pattern separation performance. Leak GCs (inset orange) cannot restore
pattern separation in this situation (more graphs in Yim et al. 2015). (c) Same as in a (input
not shown) but with increased PP weights and 10% MF sprouting (PP160SPR10 DG). In this
epileptic situation, pattern separation is degraded but not abolished. (d) Same as c but with Leak
GCs. Despite epileptic wiring and input, the DG pattern separation abilities are restored with Leak
GCs (light blue line). Line for CTRL GC as in c (dark purple). (e) Scan of parameter space for
simulations as in a–d with different strengths of MF sprouting and PP input. The color-coded
pattern separation performance was measured as output similarity at 0.6 input similarity (right
scale). With combination of Leak GCs and PP80–100, similarity score cannot be computed (white
area). In many conditions of epileptic hyperexcitation, the DG with CTRL GCs fails to separate
patterns (left panel, red colors). In contrast, with Leak GCs pattern separation was restored under
most conditions (right panel, blue colors) suggesting that amelioration of pattern separation via
Leak GCs is robust
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and Nusser 2005; Pathak et al. 2007; Chiang et al. 2012). The effects of the leaky
GCs are not much affected by the reversal potential of GABAA conductance as long
as it is shunting and depolarizing.

So it appears that the GABAA leak fulfills the role of adding a depolarizing force
to the increased Kir conductance in the epilepsy-related leaky GC phenotype, such
that the excitability of GCs is reduced but their resting potential is not made too
negative (which would be the case if Kir would be elevated alone). To ensure a cell
type-specific resting potential is of critical importance: many metabolic functions
depend on a constant resting potential. In this context it is interesting to note
that in human GCs, the TLE-associated increase of a depolarizing shunt is not
mediated via a tonic GABAA conductance but by an enhanced hyperpolarization-
activated current (IH), mediated by hyperpolarization-activated nucleotide-gated
(HCN) channels (Stegen et al. 2012). This difference is likely due to the more severe,
time compressed progress of the epileptic disease in the animal model although
species difference cannot be ruled out at this point. In rodent GCs, the IH plays a
minor role, but it does contribute to the increased resting conductance (Young et
al. 2009). As in rodent GCs, the Kir leak was prominent in GCs of TLE patients
(Stegen et al. 2012).

As mentioned above (section “What Is the Model?”), we implemented two
mechanisms to create seizure-like activity in the DG network. The MF sprouting
hypothesis is quite popular although its functional impact is still controversial
(Scharfman et al. 2003; Buckmaster 2012; Heng et al. 2013). In contrast, it is quite
certain that TLE is associated with an increased PP input from EC to GCs (Spencer
2002; Kobayashi et al. 2003; Bonilha et al. 2007). Therefore, we implemented an
epileptic condition in our network model in which increased PP input was combined
with mild MF sprouting.

Since the precise strength of PP inputs is not known (Amaral and Lavenex 2006)
and hippocampal memory impairment in TLE patients is also gradual (Cashdollar
et al. 2009; Coras et al. 2014), we carefully investigated the regime where increased
PP input introduced gradual perturbations and calibrated our model input. For our
control condition, the baseline PP strength of the original model was lowered to
obtain a physiologically more realistic EPSP summation in GCs (McNaughton et al.
1981) and the low activity that GCs likely possess in vivo (Jung and McNaughton
1993; Leutgeb et al. 2007).

Successes and Limitations

The influence of topological changes on DG network activity and the generation of
seizure-like activity pattern have been investigated in several DG network models
(Santhakumar et al. 2005; Dyhrfjeld-Johnsen et al. 2007; Morgan and Soltesz 2008).
Similarly, multiple modeling studies examined the impact of intrinsic (non-synaptic)
properties in DG cell types on network activity (Howard et al. 2007; Thomas et al.
2009; 2010; Winkels et al. 2009; Thomas and Petrou 2013; Yu et al. 2013) and
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morphological changes (Tejada et al. 2012; Tejada and Roque 2014). These studies
show that epilepsy-related activity pattern can be generated by varying model
parameters that influence either local connectivity or neuronal excitability.

We hypothesized that due to the importance of sparse coding (section “What Is
the Model?”), it is very likely that intrinsic changes could also have an influence
on DG network function. Consistent with this hypothesis, our model shows that
only by intrinsic ion channel adaptations in one cell type, even a topologically
changed DG network can homeostatically assure sparseness of GC output and
thereby dynamically maintain the proposed DG function. Notably, this was achieved
by tightly constraining GC conductance parameters to experimentally observed
adaptations from “epileptic” tissue (Stegen et al. 2009, 2012; Young et al. 2009).
However, there are clear limitations in the ability of leaky GCs to rescue the pattern
separation ability of the DG: if the network activity is rendered all-or-none by strong
recurrent connectivity, meaningful pattern processing is basically eliminated: all
patterns are either transferred as identical or not transferred at all.

Our model belongs to the group of deterministic approaches which has been
often used to investigate the control of seizure activity (Tejada et al. 2013). While
no common framework for this kind of models exists, we decided to use the
open-source NEURON simulator (Hines and Carnevale 1997) because it is widely
used for multicompartmental models (Brette et al. 2007; Carnevale and Hines
2008), offers low-threshold interface to parallel computing resources (Sivagnanam
et al. 2013), and has an extensive database of models (ModelDB: https://senselab.
med.yale.edu/) which is publicly available. Publishing the simulation code makes
model and result verification feasible. A possible handicap is that implementation
errors might be inherited to the offspring models (De Schutter 2014). We marked
differences between published values and model implementation (see Table 1 and
Yim et al. 2015) and made our model available on ModelDB (https://senselab.med.
yale.edu/ModelDB/ShowModel.cshtml?model=185355) with commented channel
mechanisms. Further limitations of our approach are discussed below with the
possible extensions.

The Future

Model Extensions

Even though we added conductance mechanisms to GCs, the GC model and the
other cell type models could be made more realistic if they would be grounded
on more specific experimental data. It is not satisfying that many of the channel
models are based on data from different species, recorded with different recording
techniques at different temperatures (Table 2). With respect to the latter, it should be
noted that the compensation of temperature differences was not always implemented
consistently in published channel models. Some of these inconsistencies may be due

https://senselab.med.yale.edu/
https://senselab.med.yale.edu/
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=185355
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=185355
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to reusing the same channel model without or with only slightly adjusted parameters
for different cell types in offspring models (De Schutter 2014). This approach has
another potential problem: although it might be feasible to reproduce firing patterns
by tuning conductance densities alone (Almog and Korngreen 2016), in reality the
same channels could function in a completely different manner in an alternative
cell type (Wolfart and Roeper 2002; Wolfart et al. 2005; Marder and Goaillard
2006). Besides augmenting the existing channel models, an extension to our model
would be to implement other mechanisms which are subject to epilepsy-related
modification; many homeostatic and pathologic channel changes have been reported
from different cell types and models (Stegen et al. 2012; Kirchheim et al. 2013;
Artinian et al. 2015; Meier et al. 2015; for review see Wolfart and Laker 2015). All
these alterations could be sorted for cell types and pathologies and implemented for
free interaction into the model.

Within a given cell type, we have not implemented biophysical variability in
our current model. Neurons of the same type can exhibit differences in their
ion channel repertoire which in some cases lead to considerable heterogeneity
in the functional phenotype whereas in other cases not (Marder and Goaillard
2006; Marder and Taylor 2011). This heterogeneity obviously influences neuronal
spiking dynamics (Yim et al. 2013; Ly 2015) and network functions (Mejias
and Longtin 2012; Bernacchia and Wang 2013) and may enhance information
processing (Padmanabhan and Urban 2010). Also the morphology of DG cell types
is variable which alone can create a wealth of functional phenotypes (Mainen and
Sejnowski 1996) which may even specifically affect pattern separation (Chavlis et
al. 2017). As the cellular morphology can change during epilepsy, more precise
morphologies should be implemented in the model, ideally based on detailed cell
reconstructions (Young et al. 2009; Tejada and Roque 2014). Alternatively, synthetic
morphologies could be adapted with new automatic tools (Schneider et al. 2014).

The network size of the model used here has a scale down factor of ∼2000:1
(Santhakumar et al. 2005). While the model offers the appropriate level of detail for
testing our hypothesis (see section “Model Components”), it might be interesting
to reproduce our results with a larger size and complexity of the DG network.
Conductance-based DG network models with reduced scale down value and even
full-scale models already exist (Dyhrfjeld-Johnsen et al. 2007; Morgan and Soltesz
2008; Schneider et al. 2012; Hendrickson et al. 2016). Ideally, more detailed
models should incorporate the precise functional connectivity and its changes during
epilepsy (Ewell and Jones 2010). Ultimately, such DG models will have to be
included in a larger simulation, in terms of anatomy, i.e., including the entire
entorhinal-hippocampal loop (Jones 1993; Spencer and Spencer 1994), as well as
including associated functions like memory acquisition and retrieval (Franzius et
al. 2007). Finally, the internal and external oscillations in the theta and gamma
frequency range, which control much of the hippocampal activity in vivo (Chrobak
et al. 2000; Lisman et al. 2005), could be considered in a complete network model
of the hippocampal formation.
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New Uses of the Model

Previous studies have tested the effect of sodium channel manipulations across
all DG cell types on seizure spread in the network (Thomas et al. 2009, 2010;
Thomas and Petrou 2013). Others have also tested seizure spread with channel
manipulation in specific DG cell types (Artinian et al. 2015). A new use of our model
could be to test DG network function with further cell type-specific ion channel
modulations. Ultimately, if the link between pattern separation and an elaborated
DG network model and behavioral discrimination can be firmly established, such
simulations could help to predict behavioral consequences after pharmacological
and gene therapy interventions.

In addition, the influence of particular DG cell types (as a whole) on pattern
separation could be tested in more detail. For example, analytical models suggested
a positive influence of local inhibition on pattern separation performance (Torioka
1978; Gibson et al. 1991; O’Reilly and McClelland 1994). On the other hand, in
an abstract deterministic DG model, the influence of inhibitory BCs on pattern
separation was not prominent (Myers and Scharfman 2009, 2011). This effect and
other indirect influences, e.g., via MC (Nakazawa 2017) activation of interneurons
which inhibit GCs (Jinde et al. 2012), could be tested in our model.

Adult neurogenesis is known from two brain regions, and the DG is one of
them. Behavioral experiments have suggested that neurogenesis (the addition of
newborn GCs) supports behavioral pattern separation (Clelland et al. 2009; Sahay et
al. 2011; Nakashiba et al. 2012; Tronel et al. 2012; Dery et al. 2013). Consistently,
computational studies stated that neurogenesis enhances pattern separation (Aimone
et al. 2009, 2010). Remember that in this context the term “pattern separation”
is used for different forms of behavioral discrimination and the term “pattern
completion” is used for behavioral memory recall (section “What Is the Model?”).
Some experimental studies proposed that only the immature GCs are involved
in pattern separation but not the mature ones (Alme et al. 2010) or mature GCs
even mediate memory recall (Nakashiba et al. 2012) which in turn had also been
attributed to adult-born GCs (Kee et al. 2007) or GCs in general (Deng et al. 2013).
Thus for a while, some confusion existed about the role of GC neurogenesis in
behavioral pattern separation.

One problem for the hypothesis that neurogenesis supports pattern separation is
immediately obvious to those who know how highly excitable immature GCs are
(Schmidt-Hieber et al. 2004; Bischofberger 2007); how can cells which respond to
almost every tiny input with APs – and even show increased long-term synaptic
potentiation (Schmidt-Hieber et al. 2004) – contribute to pattern separation? As
discussed above (section “What Is the Model?”), pattern separation crucially
depends on sparse activation of GCs (Finnegan and Becker 2015). Even when taking
into account the fewer PP synapses contacting adult-born GCs, there is a period
when they are much more easily activated than their mature counterparts during
memory formation (Bischofberger 2007; Kee et al. 2007).
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The solution for the neurogenesis puzzle in DG pattern separation may lie in a
secondary effect of immature GCs on mature GCs: apparently newborn GCs inhibit
old GCs via interneurons (Marin-Burgin et al. 2012; Drew et al. 2016). If this turns
out to be the case in vivo, the whole picture is consistent again. Alternatively or
additionally, GC neurogenesis may have a more sophisticated role in hippocampal
memory processing than to simply support mature GCs in pattern separation. Adult-
born GCs appear to be particularly likely to be activated by PP input in a specific
time window a couple of weeks after birth and thereby “time-stamp” memories
improving their resolution (Becker 2005; Bischofberger 2007; Alme et al. 2010;
Aimone et al. 2011; Rangel et al. 2013). In any case, our model is perfectly suitable
for future studies on the role of GC neurogenesis in DG pattern separation.

Suggested Experiments

Obviously, the most direct experiment to test our hypothesis would be to combine
behavioral discrimination experiments with a selective modification of the intrinsic
properties of GCs. For the latter, one possibility would be the generation of a
GC-selective transgene construct (McHugh et al. 2007; Krook-Magnuson et al.
2015), preferably graded in both directions, gain and loss of function for Kir and
GABAA channels. Other methods like viral GC transfection (Ahmed et al. 2004)
and intracerebral delivery of drugs could also allow modulation of the channels in
vivo. The precise effect on the GCs excitability would have to be titrated such that
it is in the range of the TLE-related GC phenotype (Stegen et al. 2009; Young et
al. 2009). The prediction would be that behavioral discrimination is sensitive to the
degree of GC leak channel expression accompanied by the reduced input resistance
and excitability. In addition, epileptic animals could be tested. If these would show
reduced behavioral discrimination capacities, elevating leak channel expression in
GCs should be able to improve these capacities again.

Independently of the precise channel identity, any manipulation of the activity
level of GCs should interfere with behavioral discrimination capabilities. One
approach would be indirectly manipulating the GC activity in vivo to influence
behavioral discrimination. For example, an indirect reduction of GC activity
presumably occurs after genetic ablation of MC function, and these animals are
indeed impaired in behavioral discrimination (Jinde et al. 2012). Another method
to achieve selective manipulation of GCs in vivo is via optogenetic activation of
light-sensitive ion channels genetically introduced into GCs (Drew et al. 2016;
Krook-Magnuson et al. 2015). Boosting the activity level of GCs during the task
would then be expected to weaken behavioral discrimination, while decreasing GC
activity in impaired animals could improve performance.
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Justas Birgiolas, Sharon M. Crook, and Richard C. Gerkin

Abstract Computational models of the nervous system help researchers discover
principles of brain operation and form/function relationships. They can provide
a framework for understanding empirical data and serve as an experimental
platform to test concepts and intuitions. In practice, the effective use of theoretical,
computational, and information theoretic approaches requires an ongoing cycle
of experiments, data analysis, modeling studies, and model-generated predictions
that are tested by further empirical work. This cycle requires that computational
scientists be able to build on the work of others. In this chapter, we provide an
overview of simulation tools and resources for creating computational models of
hippocampal function. First, we outline some of the most widely used software
applications for simulating models at various levels of biological detail. We also
describe resources that aid in reproducibility by allowing for model sharing and
reuse, for portability of models across simulation platforms, and for validation of
models against experimental data.

Introduction

The complexity of the nervous system implies that intuitive approaches will
not suffice for discovering the principles of brain operation and form/function
relationships. Computational approaches help researchers discover these principles
and make sense of empirical data and can serve as an experimental platform to test
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concepts and intuitions. In practice, the effective use of theoretical, computational,
and information theoretic approaches requires an ongoing cycle of experiments,
data analysis, modeling studies, and model-generated predictions that are tested by
further empirical work.

This cycle—a modern implementation of the scientific method—also requires
model reproducibility; that is, computational scientists must be able to build on
the work of others. In this chapter, we provide an overview of simulation tools
and resources for creating computational models of hippocampal function. First,
we outline some of the most widely used software applications for simulating
models at various levels of biological detail. We also describe resources that aid in
reproducibility by allowing for model sharing and reuse, for portability of models
across simulation platforms, and for validation of models against experimental data.

Simulators and Programming Languages

One of the first decisions that many computational neuroscientists wishing to
model a neural system face is the trade-off between the level of detail in indi-
vidual cell models and the number of cells in the network being modeled. The
cell or component detail can vary from abstract point neurons like perceptrons
(Rosenblatt 1958) or leaky integrate and fire (LIF) neurons (Lapicque 1907) to
multi-compartment, morphologically detailed, and biophysically realistic models
that model the stochastic kinetics of individual ion channels. Meanwhile, the
network scale can range from “networks” consisting of single cells with multiple
synaptic inputs to networks modeling entire brains (Markram 2006; Eliasmith
et al. 2012). A modeler must choose a combination of component detail and
network size that is expected to provide insight into a scientific question while
being within the computational budget defined by the resources available to the
modeler (Fig. 1). Optimization of this tractability/detail trade-off may be different
for different computational problems (Brette et al. 2007). Thus, to facilitate the
creation of models with different trade-offs, several simulator software packages
have been developed. For example, widely used simulators like NEURON and
GENESIS (Wilson et al. 1989) have specialized features and optimizations for
simulating biophysically detailed neuronal models, while NEST (Gewaltig and
Diesmann 2007) and Brian (Goodman and Brette 2009) favor simpler cells but
provide specialized features for defining the network connectivity patterns and spike
propagation between the cells. Other simulators and packages further specialize in
other niche areas of model development or analysis. In the following sections, we
survey the most widely used simulators and programming languages.
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Fig. 1 The combination of
increased cell detail with
increased network size results
in a rapidly growing
computational cost of
simulations. Simulations with
the largest number of cells,
each with the highest level of
detail, sit on top of “Mount
Infeasible.” In order to
remain within a
computational budget, a
modeler must make a
trade-off between the desired
network size and cell detail

Widely Used Simulators

In the following section, we review the most widely used simulators. All of these
simulators are mature and well documented and have large user bases with many
examples or tutorials available on the simulator websites and on the Internet in
general.

NEURON

Primary strengths Detailed cell and microcircuit specification
cluster/MPI support

Installation http://neuron.yale.edu/neuron/download
Documentation http://neuron.yale.edu/neuron/docs

https://neuron.yale.edu/neuron/static/new_doc/index.html
The NEURON book (Carnevale and Hines 2006)

Forum https://www.neuron.yale.edu/phpBB/
Models https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=1882
Platforms MacOS, Windows, Linux

The NEURON simulator allows users to define ion channel and synapse dynamics
in terms of differential equations (.mod files), reaction-diffusion systems, or electric
circuits. The channel dynamics can be placed on membrane sections that can be
subdivided into iso-potential compartments. The sections can be connected together
to form dendritic or axonal branches of the neuronal model. To build network mod-
els, cell sections can have synapses, which can send action potentials to other cell

http://neuron.yale.edu/neuron/download
http://neuron.yale.edu/neuron/docs
https://www.neuron.yale.edu/neuron/static/new_doc/index.html
https://www.neuron.yale.edu/phpBB/
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=1882
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sections. Inputs like current and voltage clamps can be attached to cell sections, and
state variables like membrane potential can be read, saved, and plotted as outputs.

The most common channel, cell, and network specifications can be performed via
the GUI. However, all aspects of the model and simulation control can be specified
via the simulator’s HOC/NMODL language or with Python (Hines et al. 2008).
NEURON supports both fixed time step and variable time step (CVODE) integration
methods. To facilitate large network simulations, the simulator supports parallel
multiprocessor and cluster programming via the Message Passing Interface (MPI).
Each cell and synapse, with corresponding equations, can be assigned to an MPI
node and executed in parallel. This allows large-scale simulation of networks con-
sisting of cells with detailed morphology. See, for example, Migliore et al. (2014).

NEST

Primary strengths Large-scale network connectivity specification
cluster/MPI support

Installation http://www.nest-simulator.org/installation/
http://www.nest-simulator.org/introduction-to-pynest/

Documentation http://nest-simulator.org/documentation/
Forum http://mail.nest-initiative.org/cgi-bin/mailman/listinfo/nest_user

https://github.com/nest/nest-simulator/issues
Models http://www.nest-simulator.org/publications/?sort=search&type=nest_

simulated
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=2832&
allsimu=true

Platforms MacOS, Linux, Solaris, Windows (via Linux Virtual Machine)

The NEST simulator (Gewaltig and Diesmann 2007) favors simpler, pre-defined,
point (or few-compartment) neuron models and focuses on advanced network
connectivity specification between those cells. In NEURON, every connection
must specify the source synapse and the target cell section, while in NEST, cell
connectivity can be specified with abstract rules. Cells can be grouped into layers of
various shapes, and different probability distributions can be specified to connect
the cells in those layers. Similarly, the synapse parameters that connect those
cells can be defined to follow various probability distributions. Like the NEURON
simulator, various inputs can be added to the network, and state variables can be read
and plotted as output. The focus on network connectivity allows users to rapidly
experiment with different network architectures and cell connectivity patterns.
Models can be specified in Python (Eppler et al. 2007) or using a native simulator
language. NEST has native parallel hardware support via MPI. The combination
of simpler cells, ease of specifying network architecture, and optimizations of
parallel hardware have allowed NEST to simulate some of the largest spiking neural
networks (Kunkel et al. 2014).

http://www.nest-simulator.org/installation/
http://www.nest-simulator.org/introduction-to-pynest/
http://nest-simulator.org/documentation/
http://mail.nest-initiative.org/cgi-bin/mailman/listinfo/nest_user
https://github.com/nest/nest-simulator/issues
http://www.nest-simulator.org/publications/?sort=search&type=nest_simulated
http://www.nest-simulator.org/publications/?sort=search&type=nest_simulated
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=2832&allsimu=true
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=2832&allsimu=true
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XPP

Primary strength Differential equation/dynamical system behavior analysis
Installation http://www.math.pitt.edu/∼bard/xpp/xpp.html
Documentation http://www.math.pitt.edu/∼bard/xpp/help/xpphelp.html

http://www.math.pitt.edu/∼bard/bardware/tut/start.html
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to
XPPAUT for Researchers and Students (Ermentrout 2002)

Forum https://mailman.ucsd.edu/mailman/listinfo/xppaut-l
Models https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=33977&

allsimu=true
Platforms MacOS, Windows, Linux, iOS

XPP (Ermentrout 2002) is a dynamical systems analysis tool that has been very
useful to neuroscience researchers. The tool allows the user to define systems of
differential equations and provides a rich set of features to analyze the behavior
of those systems. For example, the Hodgkin-Huxley equations can be specified in
plain text, and the user can select parameter values bound to the GUI slider controls.
The sliders can be adjusted, and a plot of the membrane potential versus time is
automatically refreshed, elucidating the effect of different parameter values. The
tool also allows plotting of nullclines, vector fields, Poincaré maps, and phase-
space plots. Additionally, the AUTO feature allows plotting of bifurcation diagrams
and exploring the stability of branch points. Finally, a curve fitter based on the
Levenberg-Marquardt algorithm is available.

Brian

Primary strengths Rapid prototyping with XPP-like equation specification
Python is native simulator language
GPU-accelerated model fitting

Installation http://brian2.readthedocs.io/en/latest/introduction/install.html
Documentation https://brian2.readthedocs.io/
Forum http://groups.google.com/group/briansupport
Models https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=113733
Platforms MacOS, Windows, Linux

The Brian simulator (Goodman and Brette 2009) can be viewed as a hybrid of the
intuitive equation editing of XPP with the network support of NEST. Like in XPP,
differential equations for individual neurons and synapses can be entered as plain
text. Similar to NEST, Brian enables the management of those cells and synapses
with groups and allows connectivity to be specified algorithmically. Unlike NEST
and XPP, Brian does not have a separate native simulator language; instead it is
implemented as a Python library (Goodman and Brette 2008). This can reduce the
learning curve for initial use of the simulator and allows for using popular Python

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/help/xpphelp.html
http://www.math.pitt.edu/~bard/bardware/tut/start.html
https://mailman.ucsd.edu/mailman/listinfo/xppaut-l
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=33977&allsimu=true
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=33977&allsimu=true
http://brian2.readthedocs.io/en/latest/introduction/install.html
https://brian2.readthedocs.io/
http://groups.google.com/group/briansupport
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=113733
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analysis and plotting packages directly. Support for parallel hardware is available
for Brian simulations. For example, parameter searches for neuron models can be
parallelized in a cluster environment via MPI or with the help of CUDA-based
graphics processing units (GPUs).

Other Simulators and Tools

PCSIM—A Parallel neural Circuit SIMulator (http://www.lsm.tugraz.at/
pcsim)
Similar to NEST, PCSIM (Pecevski et al. 2009) favors single-compartment or
abstract pre-defined neuron models to define and simulate large neural networks.
The simulator is implemented in C++, but Python is used as the main interface.
Supports parallel multi-threaded and cluster, via MPI, execution.

Platforms: Linux, others via Linux Virtual Machine.

GENESIS (http://genesis-sim.org)
GENESIS (Wilson et al. 1989) is a simulator with functionality similar to NEU-
RON. Historically, GENESIS was of similar popularity as NEURON; however, in
recent years, its use has waned. Many important models implemented in GENESIS
are still available on ModelDB.

Platforms: Linux, MacOS, Windows with Cygwin.

MOOSE (https://moose.ncbs.res.in)
The MOOSE simulator (Dudani et al. 2009) is a successor to GENESIS. Many of the
original features of GENESIS have been implemented using modern programming
techniques, and the simulator has a modern GUI as well as a Python interface.
MOOSE allows the user to define arbitrary multi-scale models. Models can be
assembled by defining and connecting reaction-diffusion models, single- and multi-
compartment neurons, synapses, and networks. The simulator features deterministic
and stochastic solvers and can import NeuroML, GENESIS, and NeuroMorpho.org
files.

Platforms: Linux, MacOS, Windows (via Linux Virtual Machine).

PSICS—Parallel Stochastic Ion Channel Simulator (http://psics.org)
PSICS (Cannon et al. 2010) allows modeling of stochastic ion channel behavior on
morphologically detailed cells. Cell morphology can be imported, and channels can
be placed either individually or algorithmically following a distribution.

Platforms: Linux, MacOS, Windows.

MCell—Monte Carlo Cell (http://mcell.org)
MCell (Stiles and Bartol 2001) together with the companion tool CellBlender
leverages the popular 3D modeling tool, Blender, to create detailed 3D models
of cells and simulate the movement and interaction of molecules using optimized
Monte Carlo algorithms.

http://www.lsm.tugraz.at/pcsim/
http://genesis-sim.org/
https://moose.ncbs.res.in/
http://neuromorpho.org
http://psics.org/
http://mcell.org/
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Platforms: Linux, MacOS, Windows.

STEPS—STochastic Engine for Pathway Simulation (http://steps.sourceforge.
net)
STEPS (Hepburn et al. 2012) is a set of Python modules for exact simulations of
stochastic reaction-diffusion systems within arbitrary 3D geometry. Also supports
local membrane potentials and voltage-gated ion channels.

Platforms: Linux, MacOS, Windows.

MUSIC—Multi-Simulation Coordinator (http://software.incf.org/software/
music)
MUSIC (Djurfeldt et al. 2010) is a C++ library that streamlines the building
of hybrid models that take advantages of different simulators by implementing
a communication protocol that can pass messages between the simulators. The
simulators can run in separate processes and communicate with each other via the
interface defined by MUSIC.

Platforms: Linux.

Programming Languages

Below, we review the most popular programing languages and their strengths for
model development.

MATLAB is a programming language developed by MathWorks, which has been
commercially developed and features detailed documentation and a large user base.
Many computational neuroscience models in MATLAB are available on ModelDB;
however, most simulators do not have a MATLAB interface. The language syntax
is optimized for matrix operations, and there are packages available for signal
analysis and visualization. MATLAB also has packages for interfacing with other
programming languages like Python and C++.

Python is an open-source scripting language that is designed to be easy to
learn and extend. It has many scientific libraries available for signal processing and
visualization. Many simulators have Python interfaces available, making Python a
good choice as a language for both model definition and analysis. One downside
of Python is that it is a scripted, dynamically typed language. This can impact
performance in computationally intensive applications. To alleviate this, the Cython
project (http://cython.org) allows for programming in Python but with the perfor-
mance and type-checking benefits of compilation (Behnel et al. 2011). Simulators
such as Brian utilize Cython to produce native Python simulations that run nearly as
fast as their counterparts in pure C code.

The iPython project (Pérez and Granger 2007) allows users to create interactive
notebooks that can be used to share code blocks and analysis results with others.
This has been extended to Jupyter (http://jupyter.org) which is not specific to Python.

C++ is a popular object-oriented version of the C programming language, which
generally is used when computational efficiency is critical. One downside of C++

http://steps.sourceforge.net
http://steps.sourceforge.net
http://software.incf.org/software/music
http://software.incf.org/software/music
http://cython.org/
http://jupyter.org
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is that it is a low-level, compiled language. This means that in order to achieve the
highest performance, tedious and error-prone techniques of memory management
and pointer arithmetic must be utilized. Because maintaining a large C++ project
can be costly in terms of productivity, it is not uncommon to see software that is
mostly developed in a more forgiving language (e.g., Python) with selected code
areas optimized with C++.

Simulator-Independent Languages

Models created using a general programming language or using a specific simulator
are often not usable by researchers using different simulators or languages without a
lengthy conversion process. Because there is a significant overlap in functionality of
some simulators, projects to standardize model specification have arisen to address
the problem of model reuse. The two main efforts are NeuroML, a declarative
XML model description language, and PyNN, a procedural Python-based library for
model specification. Modelers are strongly encouraged to describe most or at least
portions of their models using such a simulator-independent language (SIL). One of
the main benefits of doing so is that, once implemented, the toolchain of each SIL
can be used to convert the model into the language of a specific simulator. Another
is that the ability to determine the structure of the model, and its parameters make it
straightforward to programmatically manipulate models without specific knowledge
of the implementation details. This effectively makes models expressed using SILs
more useful to a wider audience than the same models implemented in a simulator
specific or a general programming language.

NeuroML (https://neuroml.org)
NeuroML is a declarative simulator-independent model specification language that
uses a standardized XML schema to describe neural models (Crook et al. 2007;
Gleeson et al. 2010). The language can specify ion channel and synapse dynamics,
abstract point neurons, morphologically detailed cells, and large networks. The
channel dynamics can be described by either reusing one of the numerous existing
formalisms such as the Hodgkin-Huxley-type conductance-based channel kinetics
or via the Low Entropy Model Specification (Cannon et al. 2014) language when
arbitrary dynamics are required.

Models can be specified in NeuroML as an XML file via a text editor or using an
editor with a GUI. neuroConstruct (Gleeson et al. 2007) is an application that allows
for the construction of NeuroML files and features an interface to visualize 3D cells
and networks. Once a model is specified, the pyNeuroML or jNeuroML ((Vella et
al. 2014) https://github.com/NeuroML) tools can be used to convert NeuroML files
to simulator- specific code that can be executed on a target simulator. The currently
supported simulators are NEURON, GENESIS, MOOSE, XPP, as well as Brian,
NEST, and others through PyNN. The tools also can export models to C, MATLAB,
NineML, SpineML, VHDL, and LEMS languages.

https://neuroml.org
https://github.com/NeuroML


Resources for Modeling in Computational Neuroscience 815

PyNN (http://neuralensemble.org/trac/PyNN)
PyNN is a set of Python libraries that allows simulator-independent model speci-
fication procedurally via Python code (Davison et al. 2007). The library features a
set of pre-defined neuron models and synapses and provides methods for defining
cell placement and connectivity rules. With a single line of code, the PyNN model
can then be directed to run on a supported simulator (currently NEURON, NEST,
PCSIM, or Brian). Similarly, PyNN models can be executed on neuromorphic
hardware; models that are supported by the target hardware can be run on either
the BrainScaleS (Schemmel et al. 2010) or the SpiNNaker (Furber et al. 2013)
platforms.

Simulators vs. Programming Languages

We have made a distinction between dedicated simulators and general programming
languages. Simulators generally include optimized integrators, abstractions for
easier definition of neural concepts or equations, input and output mechanisms, and
plotting and visualization features. Popular programming languages like MATLAB,
Python, Java, or C++ tend to have a large pool of skilled workers and generally have
libraries that can be used in modeling and analysis work. However, the development
teams of the popular simulators have invested considerable resources into building,
testing, debugging, and optimizing the simulation infrastructure. Re-implementing
that functionality in custom code takes considerable time, decreasing productivity.
More importantly, it would be difficult to reuse parts of previously built models,
and a nontrivial amount of time might be spent ensuring the re-implemented models
work correctly. Similarly, models that are easier to quickly reuse (e.g., copy and
paste) in a popular simulator are more likely to be reused and cited. While using a
simulator to define the model is a large part of model building, analysis of the model
simulation data often is performed using a general programming language.

A major component of simulator productivity comes from the documentation
and example models available to new users. The more widely used simulators
tend to have extensive documentation, large forums or mailing list archives, and
many tutorials and examples. Similarly, widely used programming languages have
large documentation and forum bases and also have mature integrated development
environments (IDEs) that make it easy to efficiently write, organize, debug, and
refactor code, as well as measure performance. To estimate the use of different
simulators within the computational neuroscience community, we counted the
number of models encoded in a particular simulator language that are available
in the ModelDB (Hines et al. 2004) database and the number of citations of the
publication describing the simulator on Google Scholar. Similarly, for programming
languages, we estimated their popularity by counting the number of models using
them in ModelDB, the number of job postings listing them on the global job
postings aggregator Indeed.com, and the number of questions tagged on the popular
programming question and answer site StackOverflow.com.

http://neuralensemble.org/trac/PyNN
http://indeed.com
http://stackoverflow.com
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Fig. 2 Popular simulators and programming languages used in computational neuroscience
models. Left: The number of models available on ModelDB for a given simulator and the Google
Scholar citation count for the simulator’s corresponding publication. Right: The number of models
on ModelDB implemented in a given programming language, the number of Indeed.com job
postings seeking candidates with experience in that language, and the number of questions on
StackOverflow.com tagged with that language

As shown in Fig. 2, these results suggest that NEURON, XPP, GENESIS, NEST,
and Brian are the most widely used simulators, while MATLAB, Python, and
C++ are the most popular programming languages within the computational neu-
roscience community. Python is the second most popular programming language;
however, many simulators and other resources have Python-based interfaces. These
include NEURON, NEST, Brian, NeuroML, neuroConstruct, PCSIM, and Nengo
(Stewart et al. 2009). These interfaces allow a user to define and set up the simulator
model using the Python language and in many cases bypass the native simulator
language, making Python a unique language that can be used for both model
definition and model result analysis.

Finally, if no single simulator can meet a research need, but a combination of
several simulators could, a tool like MUSIC (Djurfeldt et al. 2010) can be used to
obtain the benefits of multiple simulators. For example, a model implemented in
NEST was used to send and receive spike data to and from a model implemented in
MOOSE with the MUSIC library acting as the orchestrating middleware to facilitate
the communication (Djurfeldt et al. 2010).

Running, Fitting, Testing, and Visualizing Models

Data-driven model development requires fitting models to experimental data.
Additional challenges arise in visualizing simulation results and validating models
against more extensive simulation experiments that mimic multiple experimental
paradigms. Here, we describe resources to aid in these steps. For an overview, see
Fig. 3.

http://indeed.com
http://stackoverflow.com
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Fig. 3 Overview of the development of data-driven models including model fitting, model sharing,
and model validation. Experimental data are shared through open-source resources. Typically,
published results form the basis of the model, and additional open-source data or data from new
experiments are used to constrain model parameters during the model fitting process. Once the
basic properties have been established, computational models and results are shared through model
sharing resources. Model validation is performed to compare multiple models by testing how well
simulation outcomes match additional experimental results. The validation framework that makes
use of tests of individual properties also can be used during the fitting process

Running Models

All of the simulators discussed above execute their models on the CPU. As models
in neuroscience become more complex, computational efficiency is increasingly
important. To decrease simulation time, simulations can be parallelized across
several CPUs on a single machine, a cluster of machines, or a high-performance
MPI server cluster. Increasingly, there are resources for running models remotely
such as the Neuroscience Gateway Portal (NSG, http://nsgportal.org). The NSG
Portal is funded by the US National Science Foundation and provides free super-
computer access to neuroscience researchers. After requesting an account, data and
models can be uploaded through a website for execution on supercomputers at
the University of California San Diego or the University of Texas Austin. NSG

http://nsgportal.org


818 J. Birgiolas et al.

supports models written in Python, as well as the following simulators: Brian,
NEST, NEURON, PGENESIS, PyNN, and FreeSurfer. The availability of such
resources can be used to execute parallelized NeuroML models obtained from
OpenSourceBrain.org (Gleeson et al. 2015). For example, a NeuroML model can
be converted to parallel NEURON using the NetPyNE library ((Dura-Bernal et al.
2016); https://github.com/neurosim-lab/netpyne) and then executed at the NSG
Portal.

Hardware Acceleration: Graphics Processing Units
and Neuromorphic Hardware

Parallelization also can be achieved locally via utilization of off-the-shelf graphic
cards or specialized hardware. Generally, the more customized the hardware for
a specific model, the faster it will run. The customization can range from taking
advantage of the parallel processing cores of modern graphics cards to custom dig-
ital, or even analog, application-specific integrated chips (ASIC). The disadvantage
of customized hardware is reduced flexibility. Models have to be coded in a specific
fashion and usually have to be mindful of the specific hardware limitations.

Graphics processing units (GPUs) that have general programming capabilities
via languages like NVidia CUDA or OpenCL have hundreds or thousands of
cores that can execute sets of instructions in parallel. If those computations are
independent from each other, the performance gains compared to serial execution
can be several orders of magnitude. One such “embarrassingly parallel” application
in computational neuroscience is model parameter fitting. For example, the Brian
simulator has a feature to perform model fitting to electrophysiology data that can
result in 60-fold performance improvement (Goodman and Brette 2008) using GPUs
versus single processor execution.

Similarly, since many neural network models involve integrating hundreds or
thousands of mostly independent differential equations, they too can benefit from
the parallel execution on GPUs. For example, the GeNN framework can generate
arbitrary neuron model code that executes on a CUDA GPU and results in up to
200-fold performance improvement over a single CPU core (Yavuz et al. 2016). A
similar approach taken by NeMO simulated 40,000 Izhikevich neurons (Izhikevich
2004) with 1000 synapses each in real time (Fidjeland et al. 2009).

Field-programmable gate arrays (FPGAs) are special purpose-integrated cir-
cuits that have thousands of logic blocks that can be programmed to implement
arbitrary logic circuits. They are usually programmed using a hardware description
language like VHDL or Verilog. Because FPGAs are inherently parallel, speed
gains can be substantial. For example, using an FPGA board, Cheung et al. (2012)
simulated a network composed of 64,000 Izhikevich neurons, with 1000 synapses
each at 2.5 times the biological real time.

http://opensourcebrain.org
https://github.com/neurosim-lab/netpyne
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SpiNNaker is a microprocessor that has been specially designed for simulating
spiking neural networks. Each chip is composed of 20 ARM cores and can simulate
the activity of about 1000 arbitrary point neurons in real time (Khan et al. 2008).
The chips can be joined into larger boards, and the boards can be stacked to
accommodate large-scale neural networks. With the help of PyNN (Davison et al.
2007), models compatible with SpiNNaker can be seamlessly executed on a cluster
or on the SpiNNaker platform.

TrueNorth is a neuromorphic chip developed by IBM. One chip features one
million modified-LIF (Cassidy et al. 2013) neurons, with up to 256 synapses each
(Merolla et al. 2014). Just like SpiNNaker, these chips can be tilled in boards, and
boards can be stacked. In a performance test utilizing all the neurons on the chip and
random connectivity, the chip performed 500–1500 times faster than a single CPU
and 20–60 times faster than a 32-host Blue Gene cluster (Cassidy et al. 2014).

BrainScaleS is an analog hardware platform that features naturally stochastic
adaptive exponential (AdEx) neurons that can each have 10K synapses (Schemmel
et al. 2010). Because the neurons are based on an analog circuit, the chip is very
fast. For example, a simulation of 200K neurons, with 40M synapses, ran 10,000
times faster than biological real time (Schemmel et al. 2012). Similar to SpiNNaker,
PyNN models that are supported by the platform can be executed on BrainScaleS.
A web interface is available that allows uploading of PyNN models to be executed
on one of the Human Brain Project’s BrainScaleS hardware units.

The Human Brain Project Neuromorphic Computing Platform provides
HBP researchers and affiliates with access to the HBP neuromorphic hardware
chips: the analog BrainScaleS and the digital SpiNNaker. BrainScaleS models run
1000–10,000 times faster than real time, while SpiNNaker models run at biological
real time. Similar to the NSG Portal, models implemented with PyNN and supported
by the two hardware platforms can be uploaded via a web interface (or via Python
interface) and executed on one of the platforms. Submitting jobs requires an HBP
Collaboratory account, which can be requested online.

Visualizing Models and Results

Many simulators that emerged before Python became popular implemented their
own plotting and visualization functionalities. More recently developed simulators
(e.g., Brian, NEST) delegate plotting functionalities to specialized Python visual-
ization libraries.

NEURON features built-in 2D and 3D plotting capabilities. The 2D plots allow
visualization of any simulation variable (e.g., membrane potentials, currents) and
spike trains. The 3D plot functionality allows visualization of 3D morphology of
cells. Animations are also possible.

XPP’s default view shows a plot of the main integration variable versus time.
The UI also features three slider controls that can be assigned to modify the value
of a specific parameter. The sliders can then be dragged, and an updated version
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of the plotted variable is immediately displayed. The AUTO sub-package can plot
bifurcation diagrams. Many other custom plots including phase planes can be
selected through the menu items.

neuroConstruct (http://neuroconstruct.org) is able to construct or load cell
morphologies and network models in 3D (Gleeson et al. 2007). The full model can
be viewed in 3D, and individual sections can be selected so that their properties can
be inspected and modified. neuroConstruct can generate NeuroML for the resulting
model, as well as simulation code for a variety of simulators, and simulation results
can be displayed within the neuroConstruct user interface.

Geppetto (http://geppetto.org) is a web-based visualization and simulation
platform (Idili et al. 2011). The software is a web application that connects to a
backend simulator and provides a web-browser-based simulator user interface that
shows interactive 3D morphology and 2D plots. The 3D plot allows selection of
segments and inspection of their properties. The 2D plots can include variable versus
time plots and connectivity matrix widgets. Geppetto is used by OpenSourceBrain to
allow in-browser visualization of uploaded NeuroML models, while the OpenWorm
Project (http://www.openworm.org) uses the platform to display a 3D model of C.
elegans movement (Szigeti et al. 2014). Geppetto also supports the visualization of
electrophysiology data traces from Neurodata without Borders (NwB) files (Teeters
et al. 2015).

Fitting Models

Once the initial model has been implemented, researchers can use various optimiza-
tion tools to tune the model parameter values to fit experimental data. There is a
wide range of optimization algorithms available; see (2008) for review. The tools
described below utilize algorithms that are best suited for neuronal model fitting.

NEURON has a built-in curve fitter that provides a GUI to specify the param-
eter values for an arbitrary algebraic expression to fit against imported datasets.
Similarly, the Multiple Run Fitter (MRF) feature can be used to fit one or more
NEURON model variable values under different experimental conditions such as
different levels of current injection (Carnevale 2007). The curve fitter and the MRF
both use the PRAXIS algorithm (Brent 2013) to perform the optimization and can
be parallelized with MPI. Similar to NEURON, XPP features a curve fitter that
will optimize the XPP model parameter values to fit a specified dataset using the
Levenberg-Marquardt algorithm (Ermentrout 2002).

The Brian simulator has a model fitter to fit against experimental spike time data.
Parallelization is supported both via MPI and also notably via CUDA GPUs. In the
GPU case, the speedup versus a single CPU can be up to 60 fold (Goodman and
Brette 2009).

Neurofitter (Van Geit et al. 2007) and Optimizer (Friedrich et al. 2014) are
software packages that can be used with simulators to fit model parameters to
experimental data. Neurofitter uses XML files to set the optimization parameters,

http://neuroconstruct.org
http://geppetto.org
http://www.openworm.org/


Resources for Modeling in Computational Neuroscience 821

and Optimizer has a GUI for this task. Both tools feature a range of optimization
algorithms including evolutionary and simulated annealing algorithms. Neurofitter
supports parallelization via MPI. The BluePyOpt library performs similar functions
and provides additional visualization features and support for parallel hardware (Van
Geit et al. 2016).

Python libraries specializing in optimization also can be used for model fitting,
which can be used if a simulator has a Python interface. Two popular libraries with a
wide range of algorithms are scipy.optimize (Jones et al. 2001) and NLopt (Johnson
2014). NLopt is notable for a range of derivative-free optimization algorithms. The
parameter sweeps for both libraries can be parallelized using MPI with the help of
the mpi4py library (Dalcín et al. 2005).

Finding Models

There are many computational neuroscience models publicly available to
researchers. For this reason, it might be more productive to find a previously
built model and reuse it in its entirety or with some modifications. In some
cases, combining multiple different models could also yield productive results.
For example, several models of particular ion channel currents can be combined to
yield a cell with a particular behavior. In addition to the web resources listed above
for finding models written for the most widely used simulators, there are several
resources dedicated to model sharing and collaborative development.

ModelDB (https://senselab.med.yale.edu/ModelDB)
ModelDB (Hines et al. 2004) is a repository of models that have been published
in scientific journals. It is one of the largest repositories, featuring over 1000
models covering a wide range of simulators and programming languages. It has a
robust search engine, browsing and model viewing capabilities, and an online model
submission system.

OpenSourceBrain (http://opensourcebrain.org)
OpenSourceBrain (OSB) is the flagship model repository for NeuroML models that
fosters collaboration (Gleeson et al. 2015). The website allows creation of accounts
for laboratories, researchers, and projects and allows browsing and searching of
these models. Multiple researchers can then coordinate model development using
version control systems and show the results of automated tests via the Travis
system. OSB also has several features specific for NeuroML models. Models can be
marked to reflect how well their specific, auto-converted, simulator versions match
the original version. NeuroML models that specify morphology can be interactively
visualized via the web-based visualization and simulation platform Geppetto. As
with all NeuroML models, entire models or selected model components like
individual channels or cells can be converted to one of the supported simulator
formats and executed on the target simulator using the pyNeuroML or jNeuroML
tools or with NetPyNE.

https://senselab.med.yale.edu/ModelDB/
http://opensourcebrain.org
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NeuroML-DB (http://neuroml-db.org)
NeuroML-DB (Crook and Dietrich 2014) is a database of NeuroML models that
features a semantic search engine (Birgiolas et al. 2015). NeuroML models of ion
channels, cells, and networks can be searched and downloaded directly from the site.
The search engine will return direct keyword results as well as results semantically
related (via the Neuroscience Information Framework ontology) to the original
query. For example, searching for a cell will also return any ion channels that such
cell contains, as well as models of networks that contain the target cell. Combination
searches are possible too, for example, searching for the neurotransmitter glutamate
and hippocampus will return all glutamatergic hippocampal cells.

Model Validation

One obligatory step of the scientific method is checking the output of the model (the
hypothesis) against the experimental data. Too frequently, this is done informally,
selectively, and without consideration for continuous improvement of the model.
Part of the past challenge has been the lack of an infrastructure for model vali-
dation, beyond selecting a figure from the experimental literature and determining
whether a model can produce something that is qualitatively similar as determined
by eye.

SciUnit (Omar et al. 2014); http://sciunit.scidash.org) was developed to address
this problem, turning data-driven model validation into a process that looks more
like unit testing (Sarma et al. 2016), a process that is both essential to and
ubiquitous in professional software development. The idea is to write a series
of “tests,” each of which encodes a quantitative summary of some experimental
data, and then require each model or version of a model to take these tests,
producing a score that summarizes model-data agreement. SciUnit specifies an
interface to make this process reliable and to insure that models and tests are
paired appropriately. NeuronUnit (http://neuronunit.scidash.org) is a library based
on SciUnit that facilitates this process specifically for neuron and ion channel
models. It provides a wide range of tests related to the properties of models that
mimic electrophysiological measures and can automatically pull data from external
sources like those described in the next section, to parameterize each test with the
data relevant to the neuron or ion channel being modeled. Models expressed in
NeuroML can be validated directly using any NeuroML-compatible simulator; other
models require only a small Python wrapper giving access to the model functionality
(e.g., inject current, run the simulation, etc.) that the tests must access in order to
compute the result.

Testing models in this way achieves several important goals: (1) model per-
formance can be evaluated on a continuous basis during development or even
after publication as new data come to light; (2) different models across labs and

http://neuroml-db.org
http://sciunit.scidash.org
http://neuronunit.scidash.org
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institutions can use a common set of tests to evaluate models; and (3) the process
for validation is transparent and open source.

Resources for Experimental Data

It has become easier than ever to locate high-quality experimental data that can
be used to constrain model parameters or assess simulation outcomes through
validation. Previously, the state of the art was to identify specific journal articles and
use the subset of data reported therein or contact the authors directly for additional
data. Now, much of this same data is available in public databases that make it quite
easy to locate experiment files, waveforms, or summary statistics for a wide variety
of cell types and brain areas. Here, we discuss key experimental data resources for
each of several modalities.

Cell and Ion Channel Properties

There are several resources providing data specific to neurons and their electrophys-
iological, anatomical, or histological properties. For example, detailed anatomical
reconstructions of neurons, and statistical properties of their neurites, can be
found on NeuroMorpho (Ascoli et al. 2007). Currently, over 2000 reconstructions
are available from hippocampus alone, spanning all of the major anatomical
subdivisions. The Allen Institute’s Big Neuron project aims to use state-of-the-
art techniques to reconstruct a far larger number of neurons and make these
reconstructions available.

Alternatively, the Cell Centered Database (Martone et al. 2003) focuses on
images from light and electron microscopy, with excellent coverage of hippocampal
areas; although the data is largely nonquantitative, the images cover a wider range
of cell types including glial cells, which have become increasingly appreciated in
modeling work.

Electrophysiological properties of neurons, especially measurements typically
reported in journal article tables such as input resistance, action potential height
and width, and rheobase, are curated in the NeuroElectro Project (Tripathy et al.
2014). NeuroElectro contains over 1000 electrophysiological values from the CA1
pyramidal cell alone, and several hundred more from other hippocampal cell types.

The SenseLab at Yale has several databases, including NeuronDB and Cell-
PropDB, (Crasto et al. 2007), which contain mostly qualitative reports on the ionic
currents and neurotransmitters associated with different neuron types, including
their distribution across the dendritic tree.

More quantitative information on ion channels, including the dynamics needed
for modeling, is available at Channelpedia (Ranjan et al. 2011), a resource
produced by the Blue Brain Project. Recently two more large single neuron experi-
mental data resources have become available, both containing data produced using
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a standardized workflow to reduce heterogeneity across experiments. The Allen
Cell Types Database (ACTD), a product of the Allen Institute for Brain Science,
contains electrophysiology, anatomy, and gene expression data for dozens of cell
types across mouse visual cortex. While it does not contain any physiological data
about hippocampal neurons, it is comprehensive across cortical layers, including
those both afferent and efferent to hippocampal neurons. The Blue Brain Project
has a similar resource, also limited to neocortex, called Digital Reconstruction of
Neocortical Microcircuitry (DRNM, (Markram et al. 2015)), with electrophysio-
logical, anatomical, and microcircuit connectivity data about neurons.

Systems Physiology

The resources above mostly focus on data obtained in brain slices or sections, with
a focus on single or small groups of neurons. The corresponding recordings are
usually obtained via patch clamp or sharp electrodes. For researchers interested
in larger ensembles of neurons and/or recordings in intact organisms, the Collab-
orative Research in Computational Neuroscience (Teeters and Sommer 2009)
website hosts nearly 100 separate datasets, collected by a variety of investigators
and contributed to the site, spanning several brain areas and animal models. Like,
the ACTD and DRNM, these datasets usually contain most or all of the raw
physiology data, which for recording with large arrays can be tens of GB in
size. Documentation is provided by the contributors. CRCNS hosts six datasets
corresponding to hippocampal recordings, all from the lab of Dr. Gyorgy Buzsáki.

Systems Anatomy

For those interested in the connectivity of brain areas, there exist several resources,
each focusing on different scales of connectivity. The DRNM has abundant data
on synaptic connectivity (probability, strength, and dynamics of synapses between
neurons), but this is limited to the neocortex. There are other major projects
in development to provide large public resources for hippocampal data. Hip-
pocampome.org (Wheeler et al. 2015) provides extensive anatomical, histological,
connectivity, and electrophysiological data about hippocampal cell types. Compared
with NeuroElectro, Hippocampome.org utilizes a much finer division of cell types,
reporting electrophysiological properties for 122 distinct hippocampal cell types.
The Human Brain Project also is working on a rodent hippocampal data portal,
although the public-facing component of this project is still in development.

For longer range connectivity, The Brain Architecture Management System
(BAMS; (Bota et al. 2005)) contains neural connectivity information across species
that has been manually curated from the existing research literature. For those
modeling the primate brain, CoCoMac (Bakker et al. 2012) contains records of
tracing studies in the macaque.

http://hippocampome.org
http://hippocampome.org
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For an even more wider view of connectivity, The Human Connectome Project
(Van Essen et al. 2013) is a large-scale effort to map complete structural and
functional neural connections in vivo in individual humans. Similarly, Brain Map
(Laird et al. 2005) consists of a database and related software to search published
functional and structural human neuroimaging experiments.

Integration

There are also several useful uber databases that help integrate these resources, allow
them to be more easily searched, and link out to still more resources. NeuroLex
(Larson and Martone 2013) provides a platform for community annotation of neuron
types on the basis of anatomical, histological, and electrophysiological properties.
It is an excellent first place to start when one has a particular neuron or group of
neurons in mind. Some of the resources listed above use the NeuroLex nomenclature
and even the internal identification numbers to index their own neuron data.

Lastly, the Neuroscience Information Framework (NIF, (Marenco et al. 2010;
Cachat et al. 2012)) provides tools for searching across many of these databases.
The success of this search mechanism is based in part on their development of
domain-specific ontologies for neuroscience that link related concepts. For example,
in NIF, the search query “CA1 pyramidal cell” returns a number of database records
including links to relevant research literature, gene expression data, ion channel
information, and hits from BioNumbers (Milo et al. 2010), a compendium of
random quantitative facts extracted from the research literature. A useful example
of the latter: the approximate number of AMPA receptors opened by a single vesicle
in the dendrites of CA1 pyramidal neurons.

Outlook

Increasingly, computational models are being used by experimentalists to under-
stand complex neurophysiological data. Similarly, theoreticians use models to
investigate general principles underlying neural computation. A wide array of avail-
able resources and tools allow for more rapid creation, simulation, visualization, and
validation of data-driven models.

As models become more complex, model reproducibility, transparency, and reuse
become even more important to the success of the scientific method. Current efforts
toward model sharing databases, simulator-independent languages, and tools for
model validation play a vital role in addressing these issues. The range of tools
and resources for computational modeling is constantly expanding. In addition,
publicly available experimental data that can be used to constrain models are more
comprehensive, covering a broader range of scales, datatypes, and experimental
paradigms.
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Experimental data resource Web location Data type

Allen Cell Types Database http://celltypes.brain-map.org Anatomy, electrophysiology,
gene expression

Brain Architecture
Management System

http://bams2.bams1.org Neural connectivity

Big Neuron https://alleninstitute.org/
bigneuron

Anatomical reconstructions

Brain Map http://brainmap.org Functional and structural
neuroimaging experiments

Cell Centered Database http://ccdb.ucsd.edu Cell images
Channelpedia http://channelpedia.net Channel information and models
CoCoMac http://cocomac.g-node.org Tracing studies from Macaque
CRCNS http://crcns.org Electrophysiology data
Digital Reconstruction of
Neocortical Microcircuitry

https://bbp.epfl.ch/nmc-portal Anatomy, electrophysiology,
microcircuitry

Hippocampome http://hippocampome.org Anatomy, histology,
electrophysiology, microcircuitry

Human Connectome Project http://humanconnectomeproject.
org

Structural and functional
connectivity

NeuroElectro http://neuroelectro.org Electrophysiological properties
NeuroLex http://neurolex.org Ontological information
NeuroMorpho http://neuromorpho.org Anatomical reconstructions
NeuronDB/CellPropDB http://senselab.med.yale.edu/

NeuronDB
Channels/neurotransmitters

Neuroscience Information
Framework

http://neuinfo.org Federated database across
neuroscience
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Experiment-Modelling Cycling
with Populations of Multi-compartment
Models: Application to Hippocampal
Interneurons
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Abstract Understanding how neurons operate involves investigating how their
complements of ion channels interact dynamically along the extent of their soma-
todendritic trees to produce spiking output appropriate to the cell type in question.
This can be approached using experiments where individual ion channel activity
is manipulated. However, a large body of experimental and theoretical work has
demonstrated that a single neuron may dynamically alter its intrinsic ion channel
expression profile in order to maintain output that is required for it to perform
its functional role within the network that it is embedded. To appreciate this,
a clear sense of the cellular functional role would be required, and this is not
usually known. More typically, cellular output for an identified cell type can
be characterized and captured in models with different complements of intrinsic
properties. In this chapter we propose a cycling approach using experimental data
as constraints for building populations of multi-compartment models with a range
of ion channel expression patterns that underlie cell-type appropriate model output.
These populations or databases can be analyzed to develop predictions regarding
the intrinsic property balances for the cell type in question and for the proposed
function. Predicted balances and functions can be examined experimentally.
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Krembil Research Institute, University Health Network, Toronto, ON, Canada

Department of Physiology, University of Toronto, Toronto, ON, Canada
e-mail: vlad.sekulic@utoronto.ca

F. K. Skinner (�)
Krembil Research Institute, University Health Network, Toronto, ON, Canada

Departments of Medicine (Neurology) and Physiology, University of Toronto,
Toronto, ON, Canada
e-mail: frances.skinner@uhnresearch.ca; frances.skinner@utoronto.ca

© Springer Nature Switzerland AG 2018
V. Cutsuridis et al. (eds.), Hippocampal Microcircuits, Springer Series
in Computational Neuroscience, https://doi.org/10.1007/978-3-319-99103-0_25

831

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99103-0_25&domain=pdf
mailto:vlad.sekulic@utoronto.ca
mailto:frances.skinner@uhnresearch.ca
mailto:frances.skinner@utoronto.ca
https://doi.org/10.1007/978-3-319-99103-0_25
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Overview

Understanding how neurons operate involves investigating how the activity of
their complements of ion channels interact dynamically along the extent of their
somatodendritic trees to produce spiking output that is idiosyncratic to the neuronal
cell type in question. This can be approached using experiments, where individual
ion channel activity is manipulated using pharmacological, genetic, and other
techniques. However, a large body of experimental and theoretical work has
demonstrated that a single neuron may dynamically alter its intrinsic ion channel
expression profile in order to maintain output that is required for it to perform
its functional role within the network it is embedded in (Marder and Goaillard
2006). In fact, any given neuron from an apparently homogeneous population
may nevertheless exhibit strikingly different levels of expression of individual ion
channels at any given time, as measured by current or conductance densities, that
nevertheless produce spiking output that is appropriate to that cell type, if known
(Schulz et al. 2006; Swensen and Bean 2005; MacLean et al. 2003). To understand
how cell-type-specific spiking output arises as a function of intrinsic properties,
ideally one would investigate the range of homeostatic tuning rules of a given
neuronal type (O’Leary et al. 2013). However, a clear sense of the cellular functional
role would be required, which is not usually known. More typically, cellular output
for an identified cell type can be characterized and captured in models with different
complements of intrinsic properties.

In this chapter we outline a computational modelling approach to investigate
how the intrinsic properties of neurons, in this case inhibitory interneurons of the
hippocampus, give rise to output. We have proposed a cycling approach using exper-
imental data as constraints for building populations of multi-compartment models
(Sekulić et al. 2014). These models collectively capture a range of ion channel
expression patterns that underlie cell-type appropriate model output. Constraints
on co-regulations of model parameters, such as channel conductances, that give rise
to the appropriate output can also be found. Further, these populations or databases
can be analyzed to develop predictions regarding the balances of intrinsic properties
for functional outputs of the neuronal cell type in question. The predicted balances
can then be examined with targeted experiments.

From Hand-Tuned to Populations of Conductance-Based
Models

Computational modelling methods are well poised to study how intrinsic properties,
such as ion channel kinetics and conductance densities, interact to produce neuronal
output (Koch and Segev 1998; Dayan and Abbott 2001). The Hodgkin-Huxley
formalism provides a biophysical description of ion channel activity, allowing
for the direct incorporation of electrophysiological data in constraining model
parameters (Hodgkin and Huxley 1952). Thus, Hodgkin-Huxley or conductance-



Experiment-Modelling Cycling with Populations of Multi-compartment. . . 833

based computational modelling (Skinner 2006) provides a platform for assessing
the contribution of individual ionic currents to neuronal activity (Foster et al. 1993;
Golowasch et al. 1992). Furthermore, dendritic expression of voltage-gated ion
channels in different neuronal cell types interacts with synaptic inputs to generate
nonlinear computational properties of dendrites that go beyond passive integration
(London and Häusser 2005; Narayanan and Johnston 2012; Lai and Jan 2006;
Johnston and Narayanan 2008). Thus, the use of multi-compartment models that
are based on cable theory is required to develop insight into the interplay of
electrophysiology and morphology (Rall 2009; Niebur 2008; Segev and London
2000; Mainen and Sejnowski 1996). Traditionally, models with ion channel parame-
ters that are manually tuned to experimental data have been built and used. However,
due to the inherent variability in ion channel expression levels in biological neurons,
in addition to the inadequacy of using averaged electrophysiological measurements
for constraining these hand-tuned models (Golowasch et al. 2002), alternative
approaches are needed.

Constructing populations or databases of models has been an increasingly widely
used method for robustly exploring variability in parameters of conductance-based
models (Marder and Taylor 2011). In general, these methods perform a search of the
space of conductance-based model parameter values (Van Geit et al. 2008). Such
techniques span a range of search methods, from coarsely sampling the entirety
of the parameter search space (Prinz et al. 2003; Günay et al. 2008) to the use
of evolutionary algorithms that stochastically traverse the search space to find
models that optimally match some fitness criteria (Keren et al. 2005; Druckmann
et al. 2007). Each method has its share of benefits and drawbacks. Coarse-grained
search methods, for instance, perform a uniform and exhaustive sampling of the
entire parameter space yet are computationally expensive. Evolutionary algorithm
approaches, on the other hand, are more efficient in that they do not perform an
exhaustive search. However, they may be prone to converging on local minima and
thus miss regions of the parameter space that also contain appropriate models.

The Experiment-Modelling Cycling Approach

The motivation for generating populations of conductance-based models is typically
to answer the question: given a set of experimental data (e.g., voltage traces), what
combinations of model parameters can give rise to output that captures the features
of the experimental dataset? In other words, the goal is to obtain an appropriate
population of models that best represent a neuronal cell type in terms of electro-
physiological outputs. In most cases, studies using these approaches aim to find a
set of optimal models to capture some predetermined electrophysiological features
of interest, such as Ca2+ spikes triggered by back-propagating action potentials
in L5b pyramidal cells (Hay et al. 2011) or general spiking characteristics of
accommodating vs fast-spiking interneurons in somatosensory cortex (Druckmann
et al. 2007). However, any modelling approach tends to be under-constrained in
terms of the range of experimental recordings available, with the resulting models
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incompletely capturing the entirety of the character of a neuronal cell type. The
question therefore arises of how to use population-based modelling to address
unknown physiological properties of interest while simultaneously allowing for the
results of such work to be incorporated back into the models.

The approach we have proposed is a general methodology for how to incorporate
population modelling techniques in the course of investigating particular physio-
logical questions of neurons. Named the experiment-modelling cycling approach,
we propose from the outset that the goal of population-based modelling is not to
find optimal models per se but rather to develop a database of models in such a
way that a specific physiological question is addressed. There are four general steps
to this approach (Fig. 1): (i) develop a starting or reference model with acquired
experimental data to constrain the model parameters, and design the database so
that its analysis in subsequent steps can provide information pertaining to the
physiological question; (ii) build the database of models and find subset(s) of
models that best characterize the experimental data; (iii) perform model analysis to
determine constraints on parameters, including co-regulations between parameters,
of the model subset(s) in (ii); (iv) apply analysis for the question of interest,
determine limitations of the models, and formulate new physiological questions
that then lead back to a new cycle starting with step (i). We note that this is a

Fig. 1 The experiment-modelling cycling approach. Schematic highlighting the bidirectional
methodological links between stages in the approach. (Figure adapted from Sekulić et al. 2014)
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cyclical approach in that models are never considered to be “complete.” Instead,
the simulations as well as database development and analysis, in light of specific
physiological questions, lead to parameter constraints for the models which then
result in new experiments to address follow-up questions. The back-and-forth
cycling between experiments and models thus leads to continual refinement of the
model relative to the biological cell – as expressed collectively by a model database
and the parameter constraints extracted from the database – as well as guidance for
further experiments.

We have applied this approach to hippocampal interneurons, specifically the
oriens-lacunosum/moleculare (O-LM) cell in the CA1 region of mammalian hip-
pocampus (Sekulić et al. 2014). The O-LM cell plays an important role in
information flow, neuronal rhythms, and synaptic plasticity in CA1 (Bartos et al.
2011; Leão et al. 2012; Perez et al. 2001; Matt et al. 2011). O-LM cell somata
and dendrites are located in the stratum oriens layer, with their dense axonal
arborizations projecting to the lacunosum/moleculare layer. The principal axonal
targets of O-LM cells are the distal dendrites of local pyramidal neurons and are
thus ideally located to influence the efficacy of perforant path input (Sik et al.
1995; Freund and Buzsáki 1996). O-LM cells possess a variety of voltage-gated
ion channels across their somatodendritic tree. One feature of O-LM cells is the
“sag” response to hyperpolarizing current steps, indicative of the presence of the
nonselective, hyperpolarization-activated mixed cation current, or Ih (Maccaferri
and McBain 1996). Ih contributes to the spontaneous firing of O-LM cells in
vitro, and may allow them to contribute to the generation of population theta
activities (Rotstein et al. 2005). However, it is unknown whether Ih is present in the
dendrites of O-LM cells. This is an important question to consider as the integrative
properties of the dendritic tree in response to synaptic input are likely modulated by
dendritic Ih. Therefore, understanding the functional role of O-LM cells in in vivo
network contexts requires elucidating the question of whether they express dendritic
Ih. Unfortunately, performing non-somatic recordings on specific cell types is a
difficult endeavor in rats and is particularly challenging in mice. Although multi-
compartment O-LM cell models that capture salient features of experimental data
have been developed (Saraga et al. 2003; Lawrence et al. 2006a; Skinner and Saraga
2010), they only include somatically located Ih. Thus, the question of localization
of dendritic Ih in O-LM cells is ideally suited to an experiment-modelling cycling
approach using model databases.

We present here the work we performed in addressing this question (Sekulić et
al. 2014), using the experiment-modelling cycling approach. Briefly, we adapted
previously developed multi-compartment models of an O-LM cell (Lawrence et
al. 2006a; Skinner and Saraga 2010) and used them as reference models for
building a database of O-LM models. The database was designed to address
whether Ih is likely to be present in O-LM cell dendrites. We used experimental
recordings from O-LM cells to rank and extract a subset of O-LM models that best
represented the experimental dataset of O-LM cell output (Lawrence et al. 2006b).
We then analyzed the resulting population using techniques for the visualization
of high-dimensional parameter spaces as well as examining conductance density
histograms. We found three co-regulatory conductance balances, two of which were
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dependent on the presence of dendritic Ih. Full details pertaining to the model
development, justification, and results are presented below, including the next steps
performed to initiate a new “cycle” of experiment-modelling investigations.

Model Details and Justification

Reference Multi-compartment O-LM Model

The reference model used in this work was adapted from previous multi-
compartment models of O-LM cells that were constrained by current-clamp
experimental data (Lawrence et al. 2006b; Skinner and Saraga 2010). The reference
model included nine voltage-gated ionic conductances which are known to be
expressed in O-LM cells and was hand-tuned to experimental recordings. The
currents included are the Hodgkin and Huxley fast sodium current (Nad/Nas, with
somatic and dendritic treated separately), fast and slow delayed rectifier potassium
currents (Kdrf and Kdrs, respectively), the transient or A-type potassium current
(KA), the L- and T-type calcium currents (CaL and CaT, respectively), the calcium-
activated mixed cation current (AHP), the hyperpolarization-activated mixed cation
current (H), and the M current (M). Full details on the mathematical form of the
model are described in Lawrence et al. (2006a) and Skinner and Saraga (2010).

Experimental Data for Constraining the Model Database

The set of recordings used in the experiment-modelling cycling approach described
here consisted of those obtained during somatic whole-cell current-clamp conditions
of O-LM cells in a previous work (Lawrence et al. 2006b). The cells were
maintained at approximately −60 mV, which resulted in a membrane potential
of approximately −73.8 mV after junction potential correction of −13.8 mV. To
maintain the cells at −60 mV, a small negative bias or holding current was applied
through the recording pipette (−8.0 ± 4.0 pA, n = 11). Depending on experimental
protocol, an additional depolarizing (+90 pA) or hyperpolarizing (−90 pA) step
would then be applied for a duration of 1 s. The experimental recordings used in
this model database work consisted of ten identified O-LM cells in total, with traces
including ±90 pA current steps chosen for each cell, resulting in a dataset of 56
total experimental traces.

There was substantial variability in the experimental voltage waveform record-
ings (Fig. 2a). For instance, the depolarizing current step protocol results in O-LM
cells with varying firing frequencies. Similarly, in response to a -90pA current step,
variability was observed in the peak hyperpolarization of Vm, time course of the
sag response, and presence and number of post-inhibitory rebound spikes after
cessation of the current step. It is clear just from examination of the variability in
experimentally observed outputs that using single, hand-tuned models is inadequate
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Fig. 2 Example experimental data and model morphologies used in database construction. (a)
Experimental data showing somatic voltage responses to +90 pA (blue) and −90 pA (red) 1 s-
long current-clamp steps for two separate O-LM cells (Adapted from Sekulić et al. 2014). (b)
2D projections of morphology 1 (left) and morphology 2 (right) as displayed in the NEURON
simulation environment. Somatodendritic compartments are shown in red with axons in gray.
Arrows denote locations of cell bodies; axons are truncated in the models. Morphologies are from
different cells than the ones from which recordings were obtained in (a)

to capture the variability inherent in biological neurons and that a population of
models is needed to capture the range of responses observed.

Passive Properties and Compartmentalization

The recordings used in the construction of the model database described here
were obtained from a different experimental dataset (Lawrence et al. 2006b) than
the one used to constrain the original reference O-LM multi-compartment model
(Lawrence et al. 2006a). We did not have access to the morphologies from which the
electrophysiological traces were extracted, thus leading to discrepancies between
the passive membrane properties in the reference model morphologies and those of
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the unknown underlying morphologies from the experimental dataset. In order to
be able to use the recordings to constrain the voltage-gated channel conductances,
we refitted the passive membrane properties in the reference model to reproduce the
transient membrane responses observed in the experimental dataset. This was done
by averaging 50 voltage-clamp seal tests from each O-LM cell in the dataset, which
corresponded to the capacitative current elicited in response to a −5 mV step away
from a −74 mV holding potential.

The reference O-LM model included two different morphological reconstruc-
tions (Fig. 2b). For each of the two morphologies, an appropriate number of
compartments were determined to maintain the spatiotemporal accuracy of simula-
tions. This was done using the fraction of the frequency-dependent length constant
at 100 Hz, or λ100 (Hines and Carnevale 2001), and was determined by fitting the
passive properties of the model to the experimental O-LM seal test recordings using
the principal axis (PRAXIS) optimization procedure in the NEURON simulation
environment. The passive properties fitted in this way consisted of the specific
membrane resistivity (Rm), specific membrane capacitance (Cm), the leak reversal
potential (EL), and the potassium leak conductance (gKL). The fitting was continued
until the error value for the model did not change appreciably, thus indicating
that the model output was being simulated with sufficient accuracy. Intracellular
resistivity (Ra) is known to vary from 50 to 400 �cm in neurons (Holmes 2010).
However, allowing Ra to vary in addition to Rm leads to nonuniqueness in obtained
values since the two properties are interrelated, for instance, in determining the
dendritic length constant, λ (Rall et al. 1992). As a result, independently verifying
Ra is required in order to not introduce inappropriate estimates in the fitting of
Rm; however, this is a difficult measurement to make (Rall et al. 1992), and no
reported values are available for O-LM cells. We therefore decided to keep Ra fixed
at 300 �cm since this is in the upper range of reported Ra values, pertaining mostly
to mammalian neurons. In contrast, marine invertebrate neurons exhibit a threefold
increase in concentration of charge carriers in axoplasm, leading to much lower
measured Ra values (Rall et al. 1992). The resulting passive properties as well as
λ100 fraction, number of compartments, input resistance, and resulting membrane
time constant (τM) for each morphology are shown in Table 1.

Table 1 Passive membrane properties and number of compartments after passive property fitting
procedure

Property Model morphology 1 Model morphology 2

Ra (� · cm) 300 300
Cm (μF/cm2) 0.96857 0.9
Rm (� · cm2) 59,156 39,038
EL (mV) −73.588 −73.8424
gKL (S/cm2) 9.9005 × 10−10 1.0015 × 10−9

λ100 fraction 0.0101 0.00465
Number of compartments 1291 2413
Input resistance (M�) 474 530
Membrane time constant, τM (ms) 57 66
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Establishing Model Parameter Ranges

The values that the maximum conductance densities (g) for the various ion channels
were allowed to be assigned were determined on a case-by-case basis depending on
what was previously known about that ion channel type and specifically about its
presence and somatodendritic densities in the O-LM cell. Table 2 lists the final
maximum conductance density values used in the model database construction,
including the references consulted. The possible parameter values were chosen
so as to balance the coverage of plausible maximum conductance density values
while limiting computational burden. Therefore, each conductance was allowed a
range of 3–5 different possible values spanning the lowest and highest maximum
conductance density values reported in literature – or calculated from reported
current density values – with approximately uniform spacing in-between the values.
For H, because no current or conductance density values were available for O-LM
cells, we initially chose a range of values appropriate to the pyramidal cell literature
(“version 1”). Subsequent simulations showed that these values were too high, as
total inward current from H caused high firing rates for almost any combination
of conductances, leading to rejection of most models. Therefore, we lowered the
range of allowable gh (“version 2”) so that the highest value was the previous
lowest value. This resulted in a much larger set of acceptable model outputs and
is thus a prediction of possible H maximum conductance densities in O-LM cells
(see Discussion).

Generating Model Outputs Using High-Performance Computing

The coarse-grained parameter search method used here relies on systematically
varying all of the parameters and generating model output for each possible
combination of parameters (Van Geit et al. 2008; Günay et al. 2009). By varying
the maximum conductance densities of the various currents in the O-LM model,
of which there are ten (treating Nas and Nad separately – see Table 2), as well
as the distribution of H in somatic only versus somatodendritic compartments (2
options) and, finally, the morphology of the model used (2 options), there were a
total of 933,120 possible models. Considering that experiments for both −90 pA
and + 90 pA current injections needed to be applied to each model, this resulted
in 1,866,240 total simulations that potentially needed to be evaluated. Therefore,
the use of high-performance computing (HPC) was required. For this work, the
SciNet HPC supercomputer cluster was used for generating the model outputs. The
SciNet General Purpose Computing (GPC) cluster consists of 3780 nodes with 8
cores each (Loken et al. 2010). Each simulation required approximately 3–5 minutes
of simulation time, of which eight could be running simultaneously per cluster node
(one per core). The maximum allowable runtime on a single cluster node was 48 h.
We were typically able to allocate 12–24 nodes to run simulations at any given
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time, depending on the overall cluster usage and the fluctuating priority for our
compute jobs. The total compute time required for the work reported here, including
the fitting of holding current and several iterations of database development, was
approximately 107 core years. Being able to handle all of the model simulations
required significant software automation. We implemented three tools to facilitate
the management of simulation execution: (1) a script to generate the command-line
invocations for all of the models; (2) fully automated NEURON code to evaluate the
output of each model; (3) an efficient system for finding missing models that may
have resulted from jobs that exceeded their time limit and were thus terminated by
the SciNet job scheduler.

Pruning the Population: Removal of Models with Inappropriate
Resting Vm

The membrane potential of each O-LM cell was held at a fixed voltage to ensure
consistency in the state of activation of the voltage-gated ion channels present in
the membrane relative to action potential threshold. This was accomplished by
dynamically varying the amount of bias current or holding current which was
injected prior to, and concurrently with, the subsequent ±90 pA hyperpolarizing
or depolarizing current injection step in order to maintain a Vm of approximately
−74 mV prior to the current injection step. However, we found that many models
would exhibit premature action potential firing before reaching an experimentally
appropriate bias current, whereas others would need too much positive bias current,
relative to experimental values, to drive them to fire. Since these models did not
contain appropriate O-LM cell characteristics, they were discarded. By following
this procedure, 609,143 out of a total of 933,120 models were found to be
inadequate, with 323,977 models being considered acceptable and retained for
further analysis of conductance density balances.

Ranking of Models According to Goodness of Fit
to Experimental Data

Once model outputs were obtained, they were imported into PANDORA’s Toolbox,
a MATLAB toolbox for the statistical analysis of experimental and model voltage
traces (Günay et al. 2009). We chose 11 electrophysiological measures for the
−90 pA and 92 for the +90 pA experimental current-clamp traces (Table 3).

To obtain an aggregate measure of the “closeness” or error between a model
and experimental trace, we used a ranking function provided by PANDORA that
calculated the normalized Euclidean distance between models in the provided model
database and a single experimental trace, as per Eq. 1 (Günay et al. 2009):
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Table 3 Subset of electrophysiological measurements used to rank models

Measure Description
Average ±
standard deviation

IniSpontPotAvg (−, +) The average Vm value for the duration of
the spontaneous (prior to current
injection) period.

−74.1 ± 0.6 mV

PulsePotMin (−) The minimum value of Vm obtained
during the current injection period, i.e.,
the minimum membrane voltage
induced by the hyperpolarization

−113.9 ± 3.7 mV

PulsePotMinTime (−) The time at which the minimum of Vm
occurred during the current injection
period

166.8 ± 54.7 ms

PulsePotSag (−) The amount of sag (in mV) exhibited by
the trace as a result of the
hyperpolarization. This is a measure of
the depolarizing effects of the Ih current

14.2 ± 3.1 mV

PulsePotTau (−) The time constant for fitting an
exponential curve to the decay of the
hyperpolarization-induced sag

47.4 ± 8.0 ms

PulseSpikeRate (+) Firing frequency during the current
injection period

22.2 ± 3.0 Hz

PulseSpikeRateISI (+) Mean inter-spike interval (ISI) between
spikes during the current injection period

29.5 ± 7.0 ms

PulseSpikeAmplitudeMean (+) The mean amplitude of the spikes during
the current injection period. Amplitude
was calculated by taking the difference
in spike height from the Vm at spike
initiation

62.2 ± 6.8 mV

PulseSpikeFallTimeMean (+) The time a spike takes to fall from its
peak back to the spike initiation point,
averaged across all spikes in the current
injection period

1.5 ± 0.5 ms

PulseSpikeHalfVmMean (+) Vm equal to half of the spike height,
averaged across all spikes in the current
injection period

−20.9 ± 2.4 mV

PulseSpikeInitVmMean (+) Vm of spike threshold, averaged across
all spikes in the current injection period.
Calculated by finding the point of
maximum curvature in the V-dV/dt phase
plane. (PANDORA supports additional
methods for spike initiation detection)

−52.0 ± 1.6 mV

PulseSpikeMaxVmSlopeMean
(+)

Maximum slope or first-order derivative
of Vm during a spike

133.4 ± 29.5 mV

Names, descriptions, and values for a subset of the electrophysiological measurements extracted
from the ±90 pA current-clamp simulations. The same measurements were extracted from the
±90 pA current-clamp experimental traces. The (−) and (+) symbols after each measure name
denote whether the measure was applied to the −90pA or + 90 pA stimulus traces, respectively.
The reported values consist of averages of the measures across all experimental voltage traces
as well as the standard deviation of the measures within the experimental dataset. For full list of
measures, see Sekulić et al. (2014)
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dx,y =
N∑

i=1

|xi − yi |
Nσi

, (1)

where xi and yi represent the ith measure, out of N total measures or features, of
the model and experimental traces, respectively, σi is the standard deviation of the
measure in the experimental database, and dx,y is the Euclidean distance between
model trace x and experimental trace y. The importance of the σi normalization
term is to penalize models whose measures differ significantly when those measures
are tightly constrained in the experimental database – that is, when σi is small. On
the other hand, models with measures that vary significantly in the experimental
database – that is, when σi is large – will not be penalized by the distance
calculation if they differ significantly from the experimental measure, yi. Effectively,
the equation calculates the standard score, or z-score, of all of the model’s measures
against the experimental measures. The resulting distance value, dx,y, represents
how close of a match a model trace is to an experimental trace. Larger dx,y
values correspond to models that are “further away” from the experimental trace,
whereas lower dx,y values correspond to models that are “closer” or better matches
for the experimental trace. Note that this corresponds to the distance between
individual model and experimental traces. Distance values of per-model traces
against all experimental traces were then summed and normalized by the number
of experimental traces (Eq. 2):

dx = 1

Ny

∑

y

dx,y, (2)

where dx,y is the distance of model trace x against experimental trace y, Ny is the
total number of experimental traces, and dx is the distance of model trace x against
all of the experimental data traces. The total distance dx was normalized by the
number of experimental traces Ny so that distances between databases with different
Ny could be meaningfully compared to one another.

To obtain a subset of models that captured the output characteristics of O-LM
cells as exemplified by the experimental dataset, we ranked the models according
to their goodness of fit to the experimental dataset. This consisted in sorting the
Euclidean distance values, dx, for all models, x, from low to high values, such
that highly ranked models had low distance values, and poorly ranked models
had high distance values (Fig. 3a). Voltage responses to ±90 pA current steps
illustrated that a highly ranked (Fig. 3a, red arrow) O-LM cell model (Fig. 3b) better
represented O-LM cell properties than a poorly ranked (Fig. 3a, black arrow) O-LM
cell model (Fig. 3c). Furthermore, from comparing the model outputs with example
experimental data (Fig. 2a), it is apparent that the highly ranked models (Fig. 3b)
better represented the empirical set of physiological O-LM cell recordings (Fig. 2a),
as compared to lower-ranked ones (Fig. 3c). Thus, highly ranked models seemed to
capture important intrinsic properties of O-LM cells that the poorly ranked models
did not.
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Fig. 3 Ranking of O-LM models against experimental data. (a) The ranking of models against O-
LM cell experimental recordings shows a gradual decrease of the goodness of fit of a given model
as the rank of the model becomes poorer, i.e., as the distance values increase. Hyperpolarizing and
depolarizing voltage responses of two representative models, a highly ranked one (b, red arrow
in a) and poorly ranked one (c, black arrow in a), are shown for comparison purposes. (Figure
adapted from Sekulić et al. 2014)

Although it was clear that highly ranked models were better representations of
O-LM cells than poorly ranked models, it was not immediately obvious where
a cutoff point was to be applied to distinguish between them. This was because
the distance metric considered all features and ranked models in a continuous
or graded fashion. A principled cutoff criterion was therefore needed to extract
appropriate models. We first considered determining a cutoff point from the distance
measure itself, noting that the distance measure incorporated consideration of a
multitude of electrophysiological features. We referred to this cutoff point as the
general criterion. This was done by plotting the slopes of the distance measure
with respect to the model rank, which is equivalent to the difference of distances
between adjacent models in the ranking. Using the built-in MATLAB function diff,
the first-order derivative of dx was calculated to compare the rate of change of dx
as a function of the model rank. In order to test whether there were morphology-
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specific differences in the ranking of the O-LM models, the models using each of the
two reconstructed O-LM cell morphologies were ranked and analyzed separately.
After plotting the slopes for models of both morphologies, it was clear that the
distance values changed rapidly in the first few thousand highly ranked models,
after which they increased at a relatively constant rate (Fig. 4a, horizontal dashed
line). Eventually, the distance values of the ranked models for both morphologies
started changing again at a more rapid rate. We therefore set the point at which the
ranked models started to rapidly increase their distance values as the cutoff (Fig. 4a,
vertical dashed line). For models of morphology 1, this resulted in the first 60,000
highly ranked models counting as appropriate O-LM cell representations (Fig.
4a); likewise, for models of morphology 2, the first 90,000 highly ranked models
were incorporated into the ensemble of appropriate O-LM cell representations (not
shown). This total set of 150,000 models was considered the general subset of
appropriate O-LM models.

To assess the validity of the general criterion, we additionally considered
a more restricted criterion in order to check whether the conductance density
balances found in the two subsets would overlap. For this, we chose representative
electrophysiological measures for both the depolarizing and hyperpolarizing current
step voltage traces. We used the firing frequency of the models during the current
injection step as a representative measure of depolarizing current step traces and
the time constant of the hyperpolarization-induced sag response as a representative
measure of hyperpolarizing current step traces (Fig. 4b–d). When comparing the
firing frequencies of the highly ranked models for both morphologies, we noticed
that relatively early on in the ranking, some models exhibited behavior which we
termed “failure-to-fire.” These models were characterized by a combination of
conductance densities that prevented the model cell from firing more than one or
two action potentials during the +90 pA current injection step (Fig. 4c). Since
none of the experimental O-LM cell voltage traces had an observed instance of this
failure-to-fire behavior, we deemed models that possessed this characteristic to be
potentially inappropriate O-LM cell representations and set the restricted cutoff at
the rank prior to the first failure-to-fire model. In the case of models of morphology
1, the first failure-to-fire model occurred at rank 13,613 (Fig. 4b), whereas for
models of morphology 2, the first failure-to-fire model was found at rank 19,245
(not shown). The resulting set of 32,856 models (13,612 + 19,244 models without
failure-to-fire behavior) was considered one candidate for a restricted subset of
appropriate O-LM models as determined by the firing frequency measure.

For the representative measure of the hyperpolarizing traces, the time constant
of the sag response, we plotted the sag time constants as a function of model
rank (Fig. 4d) and compared them to the sag time constants exhibited in the
experimental dataset, by plotting the histogram of sag time constants for the latter
(Fig. 4e). We observed that the sag time constants for the highly ranked models
of either morphology exhibited appropriate values for the first tens of thousands
of highly ranked models – as determined by being within the range observed in
the physiological O-LM cells (Fig. 4e). However, at a certain point, the sag time
constants became markedly lower and fell outside the range of those observed in
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Fig. 4 Extracting subsets of appropriate O-LM models from the database. (a) Plot showing the
general subset cutoff determined by visual examination of the derivative of the distance metric with
respect to the model ranking in the database. Vertical dashed line shows cutoff point. (b) The firing
frequency plotted as a function of model rank demonstrates one restricted subset of O-LM models.
The arrow points to the first failure-to-fire model, thus marking the cutoff point for this restricted
subset. (c) The voltage traces of the failure-to-fire model shown in (b). (d) The time constant of
the hyperpolarization-induced sag plotted as a function of model rank. The vertical dashed line
shows the point in the ranking at which the time constant starts to deviate from the experimentally
observed time constants. (e) Histogram of hyperpolarization-induced sag time constants within the
experimental O-LM cell dataset. (Figure adapted from Sekulić et al. 2014)

the physiological O-LM cells (Fig. 4d, dashed line). We marked the approximate
rank at which the models started exhibiting inappropriate time constants as another
restricted cutoff point. This point was much further down the ranking of models
than the restricted cutoff point for the firing frequency criterion, however (compare
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the location of arrow in Fig. 4b and dashed line in Fig. 4d along the x-axis; data
for models of morphology 2 was similar and is not shown). Therefore, we only
considered the cutoff point determined by analyzing the firing frequency behavior
as forming the restricted subset of appropriate O-LM models to be used as a
comparison to the more general subset determined by the difference of distance
metric.

Ordering of Conductances According to Influence on Model
Outputs

Once the general and restricted subsets of appropriate O-LM models were deter-
mined, we examined the conductance density space of the models in each highly
ranked subset. For this, we generated conductance histograms. These plots consisted
of histograms of the number of highly ranked models contained in each subset of
appropriate O-LM models that possessed any combination of conductance density
values for the two ion channel conductances being considered. In order to avoid
having to consider the exhaustive set of possible conductance histogram plots,
we used clutter-based dimension reordering (CBDR), or dimensional stacking, an
algorithm for the visualization of high-dimensional data in two dimensions, as a
way to constrain which conductances were considered (Taylor et al. 2006; Peng et
al. 2004). See Fig. 5 for a dimensional stack image of the subset of ranked models
extracted using the general cutoff criterion. The ordering of the parameters in a
given “stack” is important in determining sensitivity of model outputs to parameter
changes. An optimal stack can be found where the models are organized in the
image such that highly ranked models cluster together more tightly than poorly
ranked models. In this case, the high-order parameters (conductance densities and
distributions) in the stack reflected those conductances whose changes in value were
associated with changes in model ranking, or goodness of fit to experimental data.
On the other hand, low-order parameters were those for which changes in their
values could be made and yet the ranking of the models would not be appreciably
affected. Therefore, high-order parameters were those to which the model distances
were most sensitive and therefore were the likeliest to demonstrate compensatory
balances with each other. To determine this, the high-order parameters were used to
construct conductance histograms. However, although the first-order parameters in
the dimensional stack images were clearly to be considered the highest-order and
the fifth-order parameters were clearly to be considered the lowest-order, it was not
entirely clear whether the third- and fourth-order parameters should be considered
high-order or low-order. Therefore, for the conductance histograms, third- and
fourth-order parameters were also used in order to check whether they showed
correlations with other conductances. Most high-order parameters, especially of
the first- and second-orders, were largely shared between the database subsets
corresponding to the two morphologies in both the general and restricted subsets.
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Fig. 5 Dimensional stack image of the highly ranked O-LM models in the general database subset.
Each colored point in the image corresponds to a model in the subset; black regions correspond
to models that are not included in the subset. See results of main text for description of general
database subset. The ranking of models is reflected in the color, from highest-ranked (red end
of spectrum) to lowest-ranked (blue end of spectrum) of the subset of highly ranked models.
Numbered bins, each containing an equal amount of models (except bin 0, black), are shown to
the right of the image. The axes show the ordering of model parameters as obtained by the clutter-
based dimension reordering (CBDR) algorithm (Taylor et al. 2006). The parameters include the
maximum conductance densities of all voltage-gated ion channels in the model as well as the
“cell” parameter which refers to the morphology of the model (one of two possibilities) and the
H distribution parameter, of which there are two possibilities (soma only vs soma and dendrites).
The vertical and horizontal lines in the axes show the region of models in the image for which
the maximum conductance density labelled in that particular axis is uniform in value. Thus, lower-
order conductances (small lines, e.g., CaT and CaL) are those for which the maximum conductance
density values can change without affecting the ranking of the models, as reflected in the regions
of similarly colored models that nevertheless possess different values of those conductances. In all
cases, the maximum conductance density values for each axis increase away from the origin in the
bottom left-hand corner

We could thus eliminate the low-order parameters from further consideration,
as they did not seem to affect the behavior of the models as exercised by the
particular depolarizing and hyperpolarizing current injection step protocols used.
The high-order parameters were Nad, KA, H, Kdrf, and Kdrs, whereas the low-
order parameters were Nas, M, AHP, CaL, and CaT. We proceeded to compute the
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correlation histograms for all pairwise combinations of the high-order parameters
as determined by CBDR analysis, in addition to one parameter that straddled the
boundary between high- and low-order parameters, AHP, that provided a check.
The AHP conductance was found to not show any clear interaction with any of the
higher-order parameters, which served as confirmation that AHP, and all lower-order
parameters, could be discounted from further analysis.

Verifying Passive Properties Fitting

After the models were ranked against the experimental data as described above,
it was important to verify that the passive properties of the models would not
appreciably change if refitted using the active conductances exhibited by highly
ranked models. This is because active conductances play a role in the current/voltage
dynamics of the experimental protocol used in fitting the passive properties. It
was thus conceivable that a model with the initial (reference) values of maximum
conductance densities may have resulted in a different fit of the passive properties
than if the maximum conductance densities of its ion channel models were allowed
to vary. To determine this, two highly ranked models of each model morphology
were taken from the database subset of appropriate O-LM models. In particular,
the most highly ranked model of each morphology with somatodendritic H was
found and used to refit the passive properties. This is because H in both somatic
and dendritic compartments cover a much greater surface of the cell’s membrane
and can therefore more strongly affect the model’s membrane response to the
passive properties experimental protocol. The two models obtained were rank 1
from the morphology 1-specific subset of the general database and rank 3 from
the morphology 2-specific subset of the general database. The parameters for these
two models are shown in Table 4. The same protocol described for the fitting of
passive properties to experimental data, above, was used in refitting the passive
properties using these two models. After the fitting procedure was completed, the
passive membrane properties of the two models were compared to those obtained
from the reference model. Table 5 shows the refit passive properties of the highly
ranked morphology 1 and morphology 2 models. Note that the passive properties did
not seem to vary appreciably as compared to the originally fit values in Table 1. To
verify that the differences in passive properties did not significantly affect the model
behavior, the voltage traces of the two highly ranked models before and after fitting
of the passive properties were compared (Fig. 6). The voltage responses were found
to be very similar regardless of whether the original or refit passive properties were
used. Therefore, it was determined that the passive properties obtained by fitting
the reference model against the experimental data were adequate for the ensemble
of models subsequently obtained and that it was not necessary to re-evaluate the
simulations using the newly fit passive properties.
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Table 4 Model parameters for the two highest-ranked per-morphology models with somatoden-
dritic H

Channel type

Maximum conductance density (g)
values for model morphology 1, rank
1 (pS/μm2)

Maximum conductance density (g)
values for model morphology 2, rank
3 (pS/μm2)

Nad 117 230
Nas 220 107
Kdrf 215 506
Kdrs 2.3 2.3
KA 2.5 32
H
(soma + den-
drites)

0.02 0.02

CaL 50 25
CaT 5 2.5
AHP 5.5 11
M 0.375 0.75

Table 5 Refit passive properties for the highly ranked morphology 1 and morphology 2 models

Passive properties
Refit values for model morphology
1, rank 1

Refit values for model morphology
2, rank 3

Ra (� · cm) 300 300
Cm (μF/cm2) 0.96857 0.9
Rm (� · cm2) 61,117 40,397
EL (mV) −71.4 −68.7
gKL (S/cm2) 9.9137 × 10−10 9.9256 × 10−10

Compare with the values fitted prior to the construction of the model database, in Table 1

Results

We found three categories of relationships between high-order conductances,
similar to that found in previous work in an ensemble of model neurons of the crus-
tacean stomatogastric ganglion network (Smolinski and Prinz 2009). Using similar
terminology, we found that conductances showed either (1) no clear interaction, (2)
a local peak or preference of conductance density values, or (3) a co-regulation. The
first two cases were not deemed to be of interest in terms of uncovering putative
conductance density balances. In the case of no clear interaction, any change in
the maximum conductance density of one or the other conductance had no effect
on the resulting models’ goodness of fit as measured by the number of highly
ranked models contained within the general or restricted subsets of appropriate
O-LM models and that possessed those conductance density values (Fig. 7a). For
the second case of local preference, more models in the highly ranked general or
restricted subsets of appropriate O-LM models exhibited one particular combination
of conductance density values, with tapering-off numbers of models exhibiting
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Fig. 6 Voltage traces of highly ranked models corresponding to original and refit passive
properties. The blue and red traces show the model responses to +90 pA current injection with,
respectively, the original and the refit passive properties, for the models with morphology 1, rank
1 (left), and morphology 2, rank 3 (right). The voltage responses are very similar regardless of
whether the original or refit passive properties were used

nearby combinations of conductance density values (Fig. 7b). In this case, although
there was a clear preference for a particular value of one or both conductances,
the two conductances did not interact in a meaningful way. The third category of
relationships, that of co-ordinated regulation or co-regulatory balance, was exhibited
by a characteristic “ridge” in the correlation plots of the two conductances in
question. Of all the examined pairwise combination of conductances, we only found
three co-regulatory balances. Intriguingly, these three co-regulations were equally
present in both the general as well as the restricted subsets of appropriate O-
LM models. An example of two conductance histogram plots for the same two
conductances, with one plot obtained from the general subset and the other from
the restricted subset, and showing similar co-regulatory “ridges” can be seen in Fig.
8a, b.

The first co-regulatory balance observed was that between Kdrf and Nad in
the case of all models of both morphologies (Fig. 8a, b). This indicates that Nad
is balanced against Kdrf: when maximum conductance densities of one of these
conductances is increased or decreased, the maximum conductance densities of
the other is also increased or decreased in a corresponding fashion in order to
maintain physiological O-LM cell output. The remaining two co-regulations were
only observed in those models that had H distributed in their dendrites – that of H
and Kdrs as well as H and KA (Fig. 8c–f). In this case, inward H was co-regulated
against outward Kdrs as well as KA such that increases of H occurred with increases
of Kdrs or KA. For models that expressed H in the somatic compartments only, there
was no co-regulatory balance found between H and either Kdrs and KA (Fig. 8c,
e). On the other hand, models with H uniformly distributed across all somatic and
dendritic compartments exhibited these co-regulations (Fig. 8d, f). In all cases, there
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Fig. 7 Conductance
histograms showing either no
clear interaction or local
preference. Pairwise
conductance histogram plots
show the number of highly
ranked models from the
general subset, expressed as a
percentage of the general
subset of O-LM models,
which possess the parameter
values for the two given
combinations of ion channel
maximum conductance
densities shown on the x- and
y-axes. (a) Conductance
histogram plot for Nas (gNas )
and AHP (gAHP ),
demonstrating no clear
interaction. (b) Conductance
histogram plot demonstrating
a local preference between
Kdrf (gKdrf ) and H (gh).
Note the peak in the middle
of the conductance density
range for both conductances.
(Figure adapted from Sekulić
et al. 2014)

were no specific differences in the patterns of co-regulations found for morphology
1 and 2, suggesting that the co-regulations were not dependent on morphological
details.

One of the motivating questions for this work was the possibility of expression of
dendritic H in O-LM cell models. Accordingly, the presence or absence of dendritic
H was included as a parameter in the model database that we constructed. We found
that there was an approximately equal number of models in the resulting subsets
of appropriate O-LM models that expressed somatic H only and that expressed
somatodendritic H with a uniform dendritic distribution. Although this showed that
it was possible for O-LM models to include dendritic H and also be considered
appropriate representations of O-LM cells, it did not lead to a clear prediction of
whether dendritic H was likely to be expressed in biological O-LM cells or not.
However, this led us to further investigate the question of dendritic H more fully,
which we did in subsequent work that leveraged the model database (Sekulić et al.
2015; see Discussion).
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Fig. 8 Conductance histograms for co-regulatory balances in the highly ranked model database
subsets. Histograms for pairwise conductance density values show three co-regulations between
four of the nine active conductances present in the highly ranked model subsets. Nad (gNad ) is
co-regulated with Kdrf (gKdrf ) as seen in both the general (a) and restricted (b) database subsets.
H (gh) is co-regulated with both Kdrs (gKdrs ) and KA (gKA), as seen by the characteristic ridge
in (d) and (f). These co-regulations are only present in the subset of models with H distributed
uniformly across the somatic and dendritic compartments (d and f) and not the models with H
distributed within the soma only (c and e). (Figure adapted from Sekulić et al. 2014)
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Discussion and Future Work

Extending the Model Database

In this chapter, we described our work on the development of a database of
O-LM cell models with varying parameter values that captured O-LM cell elec-
trophysiological features and led to predictions regarding ion channel conductance
density co-regulations. However, model limitations are always present relative to
the biology.

One limitation is the question of the composition of time- and voltage-
independent ionic conductances, or leak conductances, in O-LM cells. Leak
channels have been incorporated in almost all Hodgkin-Huxley-based compartmen-
tal models since Hodgkin and Huxley’s own pioneering work (Hodgkin and Huxley
1952). Initially, the leak conductance was introduced in computational models as a
general or “catch-all” conductance to account for the permeability of the membrane
at rest to K+ and Cl− ions. Over time, a wide variety of two-pore domain potassium
channels underlying leak conductances have been identified in central nervous
system (CNS) neurons, for instance, TWIK, TREK, TASK, and others (Enyedi
and Czirják 2010). Some of these channel types have been identified specifically
in hippocampal interneurons. In particular, a TASK-like (TWIK-Related Acid-
Sensitive K+ Channel) has been found in a subpopulation of horizontal interneurons
in stratum oriens in CA1, whose electrophysiological profiles resemble that of O-
LM cells (Talley et al. 2001; Torborg et al. 2006). TASK-like channels have been
proposed to provide a shunting effect during modulation of Ih in pyramidal cell
computational models (Migliore and Migliore 2012). Given the expression of Ih and
possibly TASK-like conductances in O-LM cells, investigating the computational
effect of TASK-like channels in O-LM cells is necessary to further elucidate O-
LM cell activity in functional contexts. Although the O-LM models used in our
work incorporated both “generic” leak as well as a leak conductance that follows a
K+ reversal potential, future work would ideally investigate the possibility of the
expression of specific two-pore-domain K+ channel types in O-LM cells, of which
there may be several.

Further limitations in the models involve the kinetics of H. We found here that
even with the highly ranked models in the database, the “sag” characteristic of H
channel activation was far less pronounced than that in the experimental dataset
used to constrain the models. One possible explanation was that either the kinetics
of the mathematical model for H, or the dendritic distribution of H in the models,
were not appropriate with respect to the particular O-LM cells from which the
experimental data was obtained. Accordingly, in a subsequent study, we developed
a more general mathematical representation of the time constant of activation of
H and examined the possibility of the presence of nonuniform distributions of
H (Sekulić et al. 2015). Using four of the top-ranked models in the database
developed here, as well as experimental traces of responses to hyperpolarizing
current-clamp stimuli, we fitted both the H time constant and a scaling factor for
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determining nonuniformity in dendritic H distributions. We found that we could
obtain better fits for the sag response in all four models used. Interestingly, we
observed a morphology-related trend in nonuniform distributions of H in that,
regardless of distribution, the total membrane conductance for the H current was
conserved on a per-morphology basis. A similar result was found in a mixed
modelling and experimental study in cerebellar Purkinje neuron dendrites, where
total H was conserved regardless of dendritic distribution (Angelo et al. 2007).
That study proposed that the electrotonically compact dendrites of Purkinje cells
was a factor in allowing for this flexibility in dendritic distributions. Since O-
LM cells also contain electrotonically compact dendrites, as opposed to those in
pyramidal neurons, it is not surprising that a similar constraint on total membrane
H would be observed. However, the constraints on dendritic H distribution may
change provided additional information regarding dendritic organization of synaptic
inputs onto O-LM cells, which are yet to be determined. Ultimately, the experiment-
modelling cycling approach utilized here allowed us to find aspects of the output of
highly ranked models that were not well fit to the experimental data, thus pointing
out specific deficiencies in the reference model. We thus focused on the kinetics
and distributions of H in a targeted way during subsequent modelling, leading to
predictions. In particular, we found that experiment-modelling cycling to further
assess kinetics and distributions of H using multi-compartment modelling needs to
be done using electrophysiological recordings and morphological reconstructions
obtained from the same O-LM cells. Most importantly, this ability of the model
database approach to highlight model parameters and behavior that cannot be
properly matched to experimental data is seen as a strength. Since no combination of
parameter values can result in models that capture these features, these deficiencies
in model outputs simply show what particular underlying biophysical features are
as yet insufficiently understood and thus improperly modelled. This then leads to the
natural formulation of precise follow-up questions for experimental investigation
and further model database formation and analysis, as per the experiment-cycling
approach.

Critical Issues in Population Modelling

Building databases of models may be done in several ways, each having its own
advantages and disadvantages. The method of database construction used here is
characterized by coarse-grained examination of the parameter space, also known as
the “brute-force” method (Prinz et al. 2003, 2004; Günay et al. 2009). The major
advantage of this approach is that the entire parameter space may be sampled, and,
provided that the steps between parameters are not too large, all of the regions of
the parameter space with models conforming to features or characteristics of interest
may be found. The major disadvantage of this approach is the trade-off between the
coarse nature of parameter changes and computational requirements. If the grid is
too widely spaced, then important regions of the parameter space may be missed.
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On the other hand, if the grid is too finely spaced, evaluating every combination
of parameters in a model will be prohibitively expensive. A balance between the
two can be achieved with several iterations of database construction. For instance,
in this work we described a “version 1” of the database with a larger gh range
initially taken from pyramidal cell literature that was then changed to a narrower and
lower range of values with “version 2.” Importantly, the amount of computational
burden – whether through fine-grained parameter values or multiple iterations of
database construction – is likely to be commensurate with the lack of experimental
constraints in the model parameters. An alternative is to use multi-objective
evolutionary algorithm approaches (MOEAs) where a genetic algorithm is utilized
to stochastically traverse the parameter space. This is done by both “mutating”
or randomly changing the values of some of the model parameters during each
iteration, as well as performing “crossover” operations where the models that
conform to desired features or characteristics – the objective function – have a subset
of their parameter values interchanged so as to introduce variation in the models.
These approaches have met with success in finding sets of conductance-based multi-
compartment models that conform to experimental constraints (Druckmann et al.
2007; Hay et al. 2011). An advantage of this approach is that it does not require
traversal of the entire parameter space, like with coarse-grid approaches. On the
other hand, due to the “greedy” nature of genetic algorithms, meaning that they
quickly converge to optimal models, there is a risk of getting trapped in local
minima, where models cannot be further improved in the immediate locale of
the parameter space, thus missing other acceptable models found elsewhere in the
space. Some specialized techniques have been applied to avoid local minima, for
instance, using simulated annealing to allow for uphill traversal in the objective
function gradient so as to escape the minima (Ingber 1993). Another technique is
to run several iterations of the genetic algorithm, each starting in different regions
of the parameter space. However, the more comprehensively the parameter space
is explored using these techniques, the more these approaches resemble the brute-
force method, chiefly via the incurring of increased computational burden. One
possible reconciliation of these two approaches may be in the application of a hybrid
method where an initial step of a brute-force search is performed using a coarse-grid
parameter space. Then, regions of the parameter space that seem promising with
respect to an objective function can be further traversed with a genetic algorithm to
find a larger range of models, with finer variability in their parameter values, within
each local minimum identified in the initial brute-force search.

An important issue in parameter space traversal and database construction is
the goal of such approaches. In our approach, the goal is not to find optimal
models, per se. It is in fact advantageous to find as many regions of the parameter
space as possible that contain models that address a specific physiological question,
rather than a potentially small subset of models that best optimize an objective
function, as the former can be more illustrative regarding the underlying dynamics
of the model and hence biological system. For instance, in the work related to the
model database described here, the physiological question under consideration was
whether H could be present in O-LM cell dendrites or not (Sekulić et al. 2014).
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We found that both combinations were possible, given the right balance of H
against two other conductances, that of KA and Kdrs, as per the conductance co-
regulations found (Fig. 7). This resulted in one full experiment-modelling “cycle”
(Fig. 1). Once the database was built, it could be leveraged in multiple ways to
create further cycles. For instance, we subsequently used the database to show
that the dendritic distributions of H could vary in O-LM cells, as long as total
H conductance across the membrane was maintained (Sekulić et al. 2015). This
led to a specific experimental protocol that was implemented in the lab of Dr.
J. J. Lawrence, the results of which will inform the next cycle of an entirely
new database, to be constructed in the near future. Crucially, once a cycle has
determined a possible “answer” to a physiological question, the parameters in the
model corresponding to that investigation can be fixed or constrained significantly.
Thus, there is a trade-off between considering variability in the model parameters
as capturing inherent biological variability and considering the model parameter
ranges as simply reflective of how unconstrained the experimental data for those
parameters are.

Another important issue to consider in the context of building a population of
models is the source and form of constraints from experimental data. This includes
sources of experimental data, i.e., what protocols should be used to generate data
that best constrain population modelling (Druckmann et al. 2011). But also, the
output features of the models, and the inclusion criteria for appropriate versus
inappropriate models, vary tremendously depending on what is known about the
cell type in question. For instance, the stomatogastric ganglion preparation (STG)
is in the favorable position of having its network and circuit dynamics fairly well
understood, so that the roles of any individual cell are more or less clearly delineated
(Marder and Bucher 2007). This makes it easier to develop objective functions for
populations of models for those cells. On the other hand, in vertebrate systems,
including hippocampus, there is much less known about the functional output
and role of any given cell in a circuit. This is starting to change, however, with
optogenetic studies that are beginning to tease apart contributions of individual
cell types, including those of inhibitory interneurons, to both network function and
behavior (Leão et al. 2012; Lovett-Barron et al. 2014; Kvitsiani et al. 2013; Pi et al.
2013; Royer et al. 2012). However, important limitations in inferring conclusions
regarding underlying circuit behavior using acute optogenetic manipulations remain
(Otchy et al. 2015).

Despite advances afforded by more precise experimental manipulations in vitro
and in vivo, a very real possibility exists that one will not fully understand the
functional role of a cell type of interest in the local network it is embedded from
the outset. This may impede database modelling of that cell type insofar as lack of
knowledge of its expected output may lead to difficulties in assessing good models
in the parameter space traversal. However, experimental investigations to examine
the intrinsic properties of the cells in order to develop a database of models that
collectively match the range of in vitro current- and voltage-clamp experimental
data are still possible and desirable. In particular, such work can provide needed
predictions or hypotheses of possible roles of cell types. This can be done both by
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giving insight into how the conductance density balances uncovered may lead to
the intrinsic properties observed in vitro, as well as using the population of models
to simulate in vivo-like conditions that may provide hints as to the possible ways
the cell type may contribute to circuit functioning. Moving forward, we hope that
population modelling in the spirit of what we have suggested in this chapter will
become a new standard for fruitful work in using conductance-based computational
models to inform experiments and clarify intrinsic and functional properties of the
various neuronal cell types in the CNS.

Glossary

CA1 A subfield in the mammalian hippocampus, referring to “Cornu Ammonis 1,”
or the first region in “Amun’s horns,” a name for the hippocampus coined by de
Garengeot in the mid-eighteenth century.

O-LM Oriens/lacunosum-moleculare; the abbreviation of a type of interneuron in
hippocampal CA1/CA3 with soma in stratum oriens and axons projecting to
stratum lacunosum/moleculare.

CBDR Clutter-based dimension reordering is a technique for the visualization of
high-dimensional parameter spaces in 2D (Taylor et al. 2006; Peng et al. 2004).

PANDORA’s toolbox An open-source MATLAB toolbox that provides an object-
oriented framework for assembling and manipulating databases of electrophysi-
ological data, whether from computational models or experiment.
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Hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels, 794

anomalous rectifier, 742
effects on Ih

BAS cells, 743, 745
gamma power, 745
neuronal resting membrane potential,

743
OLM and PYR Ih, alteration in,

745–746
pyramidal cell Ih control, 746
PYR and BAS Ih, alteration in, 746–748
theta and gamma power and frequency

changes, 745–748
Ih current, 741
isoforms, 741
putative mutation, 741

I
Identified neurons

anatomical and functional/behavioral
classification, 370

bistratified cells, 382–385
CA1 pyramidal cells, 383, 384
CA3 pyramidal cells, 383
channelrhodopsin, 370
electrophysiological characterization, 367
extracellular methods, 370
gamma oscillations, 383
grid cells, 377–378
HD cells, 378–379
hippocampal formation, cell types in, 368
immediate early genes, 369
interneurons, 380–382
in vivo patch-clamp recordings

CA1 place cells, 374–375
mouse MEC L2 grid cells, 376

neural circuits, 366
O-LM cells, 383
paired recordings, 382
patch-clamp recordings, 370
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place cells, 372–377
post hoc identification, 371
readouts of neuronal function

intracellular recordings, 390–393
juxtacellular recordings, 393–394

rodent preparations, experimental
techniques

anesthetized animals, 385–386
freely moving animals, 389–390
head-fixed awake animals, 387–389

single-cell recordings in vivo, 369, 372
SOM-or PV-expressing cells, 385
SWRs, 383
theta-modulated firing, 383
trade-off, 370
transfected neurons, 369, 370
viral stereotactic injections, 369

Immunological and scavenging pathways, 740
Infrapyramidal blade, 478, 479, 488
Inhibitory interneurons (INs), 537–538
Inhibitory postsynaptic currents (IPSCs), 161

GABAB IPSCs, 179, 180
synaptically evoked IPSCs, reversal

potential of, 174–176
uIPSCs

HICAP-HICAP synapses, 173–174
NGFCs, 169
O-LM cells, 172
PV-BCs, 161–163

Inhibitory postsynaptic potential (IPSP), 346,
347, 452

In silico model, epileptic activity, 758
baseline activity generation, 766
baseline normal network, 771
basket cells, depolarization block of, 773
cell types and currents

basket cells, 759–760
OLM interneurons, 760
pyramidal cells, 759

connectivity changes at all synapses, 768,
770–771

epileptic activity generation, proposed
mechanism, 762–765

future perspective, 774
increasing external dendritic inputs,

767–769
neuronal connectivity and synaptic

mechanisms, 760–761
parameters

modelling background random activity,
775

synaptic parameters, neuronal
connectivity, 775

reducing dendritic inhibition alone,
766–767

simulations and analysis, 766
successes and limitations, 773–774
systematic network changes, 759
three scenarios, simulation, 771–772

In situ hybridization (ISH), 370, 391, 396
Interneuronal network gamma

(ING), 334, 742
Interneurons (INs), 380–382

CA1–3 areas
back-projection interneurons, 71, 72
corticotropin-releasing hormone-

expressing interneurons, 72–73
dendritic inhibitory interneurons, 63–70
double-projecting interneurons, 73–74
interneuron-specific interneurons,

70–71
oriens/retrohippocampal projection

cells, 74
perisomatic inhibitory interneurons, 56,

58–63
radiatum/retrohippocampal projection

interneurons, 74
RADI cells, 73

characteristics, 30
cortical network function, 159
of DG and hilus

dendritic inhibitory interneurons, 75
perisomatic inhibitory interneurons,

74–75
GABAergic interneurons, 53–56
genetic diversity of, 76
intrinsic cholinergic interneurons, 237
perisomatic-and dendrite-targeting cells,

159
types, criteria, 159

Interneuron-specific cells (IS-3), 172
Interneuron-specific (IS) interneurons, 70–72
Interstimulus intervals (ISIs), 492
Intracellular recordings, 390–393
In vitro slice electrophysiology, 25
Ion channel activity, 832
Ionotropic NMDA-type glutamatergic receptor,

741
“Irritable mossy cell” hypothesis, 499, 500
Isoflurane, 386
Ivy interneurons, 64, 67–68

J
Juxtacellular recording technique, 329,

393–394
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K
Kainite receptors (KAR), 128, 130, 331, 334,

350
mossy fibers

postsynaptic receptors, 139–140
presynaptic receptors, 140–142

recombinant kainate receptors, 129
Schaffer collaterals, 147, 149
subunits, 129

Ketamine, 385
Kirchhoff’s current

law, 731, 733

L
Lacunosum-associated (LA) cell, 64, 66
Laser-scanning photostimulation (LSPS), 116
Lateral entorhinal cortex (LEC), 7, 8, 380, 486
Layer 2 of MEC, grid cells and theta-nested

gamma oscillations
assumptions about connectivity, 579–580
Cre driver lines, 568
EIF, 569–570
excitatory-inhibitory

gamma band oscillations, 568, 569,
575–576

interactions, 568
network attractor states and grid firing,

573–575
strength, network computation and

oscillations, 579
firing and gamma oscillations, common

mechanism for grid, 579
L2PCs, 568, 580
L2SCs, 568–570, 576–581
model components and parameters

external inputs, 572–573, 577–578
neurons, 570, 576–577
noise sources, 573, 578
synapses, internal connectivity,

570–571, 577
topology, internal connectivity,

571–572, 577
model extensions, 580–581
network attractor states and grid firing,

573–575
neural mechanisms of cognition, 567
new uses of model, 581
periodic spatial firing, 569
spatial code, 569
theta phase precession, 580

Layer 2 pyramidal cells (L2PCs), 568, 580
Layer 2 stellate cells (L2SCs), 568–570,

576–581

Leak current, 548–549
Line-source formalism, 520
L-NEURON, 481
Local field potential (LFP), 766, 769, 770

action potentials, extracellular signatures
of, 511

active neuronal population, 511
active subthreshold conductances, 512
characteristic oscillations, 510
data for model components and parameter

values
calculations, 529
as individual LFP sources, 528–529
passive dendritic conductances, 529
population geometry, 528
spatially homogeneous LFP

correlations, 528
model components, 512–513
model extensions, 530
MUA, 510, 511
neuronal population, spatial decay of,

517–518
new uses of model, 530–531
oscillations, 367, 369, 382
results

amplitude and reach, analytical
predictions for, 518–520

frequency dependence of, 522–525
multi-compartment neuron models,

simulations with, 520–522
spatial decay, neuronal population, 514,

526–528
simplified model

derivation of, 515–516
frequency-dependent formulation of,

516–517
single-cell shape function, 513–514
successes and limitations, 529–530
synaptically activated neurons, numerical

simulations of, 512
synaptic inputs and subthreshold dendritic

processing, 510
Locus coeruleus (LC), 350
Long-term depression (LTD), 202, 233, 234,

670, 673, 674, 676, 702
Long-term potentiation (LTP), 202, 233, 234,

252, 279, 670, 673, 676, 702
induction, 617–619, 621
mediating enzyme, 622

Long-term synaptic
plasticity, 446, 447

Low-voltage-activated (LVA) Ca2+ current,
536

Lucidum axon, 450
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M
mACHRs, see Metabotropic muscarinic

acetylcholine receptors (mAChRs)
Massive seizure-like hyperexcitation, 791
MATLAB, 813
Medetomidine, 385
Medial entorhinal area (MEA), 415
Medial entorhinal cortex (MEC), 7, 8, 486,

585–586
See also Layer 2 of MEC, grid cells and

theta-nested gamma oscillations
Medial ganglionic eminence (MGE), 240, 263
Medial septum/diagonal band of Broca

(MS-DBB), 235, 236, 247
Membrane potential oscillations (MPOs), 346,

589, 592–594
Memory space hypothesis, 427–428
Mesial temporal lobe epilepsy (mTLE),

352–353
Metabotropic glutamate receptor7 (mGluR7),

142
Metabotropic glutamate receptors (mGluRs),

130, 208, 350, 351
G proteins, 129
Group II and III receptors, 129
Group I receptors, 129
mossy fibers, 142
perforant pathway, 133–134
Schaffer collaterals, 147–149

Metabotropic muscarinic acetylcholine
receptors (mAChRs), 237–239

Metaplasticity, 210–211, 702–703
Benuskova and Abraham rule, 717–718
Clopath metaplasticity model, 718–719

mGluR-mediated signaling cascade, 622
ModelDB, 721, 821
Molecular layer perforant path-associated

(MOPP) interneurons, 75
Monte Carlo Cell (MCell), 812–813
MOOSE, 812
Morphology, of hippocampal neurons

anatomical structure and nomenclature,
30–32

golgi silver staining method, 76–77
immunocytochemistry, 77
interneurons (see Interneurons (INs))
principal cells

adult-born GCs, 51
CA1 pyramidal cells, 32–41
CA2 pyramidal cells, 46–47
CA3 pyramidal cells, 41–46
DG granule cells, 47–51
hilar mossy cells, 51–52

single cells

in vivo labeling of, 78
targeted labeling of, 77

Mossy cells, 479, 480, 487, 490–491, 500
Mossy fiber-associated interneurons (MFA

INs), 69–70, 172–173
Mossy fibers (MF), 143

AMPA receptors
CA3 pyramidal cell

synapses, 135–137
interneuron synapse, 137–138

kainate receptors
postsynaptic receptors, 139–140
presynaptic receptors, 140–142

metabotropic glutamate receptors, 142
NMDA receptors, 138–139
presynaptic terminals,

types of, 134–135
sprouting, 783, 790, 791, 794
synapses, salient features of, 135

mpi4py library, 821
MPOs, see Membrane potential oscillations
Multi-objective evolutionary algorithm

approaches (MOEAs), 856
Multi-Simulation Coordinator

(MUSIC), 813
Multiunit activity (MUA), 510, 511
Muscarinic acetylcholine (mAChR), 331, 332,

334, 351

N
NaP current, 558
Natural stimulus patterns, 216
Network oscillations, in vitro models

cell types, in rhythms
interneurons, 330–331
pyramidal cells, 330

cellular, synaptic and axonal mechanisms,
346–349

in disease
mTLE, 352–353
schizophrenia, 351–352

gamma oscillations
firing patterns in, 334–339
interdependence, SWRs, 344–345
nested theta and, 342–343

hippocampal population activity patterns,
in vivo and in vitro, 328–329

neuromodulators, 349–351
perspectives, 353–354
sharp-wave ripple

activity, 343–344
theta oscillations, 339–342

Neural coordination, 750
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Neural plasticity models
BCM rule, 714
Hebb rules, 713
STDP rules, 714–717

Neural simulation tool (NEST), 810
Neuroanatomical tract-tracing techniques, 25
NeuroConstruct, 820
NeuroElectro project, 823
Neurogenesis, 702, 797–798
Neurogliaform (NG) cell, 64, 66–67
Neurogliaform cells (NGFCs), 169–171
NeuroLex, 825
NeuroML models, 821, 822
Neuromodulation, of hippocampal cells and

circuits, 287–288
acetylcholine (see Acetylcholine (ACh))
vs. classical neurotransmission, 228
dopamine

DARs, 249–250
dopaminergic afferents, origin and

structural organization of, 249
excitatory synaptic transmission,

252–253
hippocampal-dependent learning, role

in, 248
inhibitory neurons, 252
inhibitory synapses, 253–254
principal cells, 250–251

endocannabinoids, 230
excitatory synapses, 276–277
inhibitory synapses, 277–278
intrinsic properties, 275, 276
production and release of, 274–275
receptors, 275, 276

excitatory synaptic transmission, 233
experimental techniques, 286–287
extrasynaptic receptors, 229–230
extrinsic neuromodulation, 228–230
histamine

in central nervous system functions, 267
excitatory synapses, 270
HAR, 267–269
hippocampal learning and retrieval, role

in, 267
histaminergic afferents, origin and

structural organization of, 267–268
inhibitory synapses, 270–271
interneurons, 269–270
pyramidal cells, 269

inhibitory synaptic transmission, 233–234
intrinsic neuromodulation, 229
intrinsic properties, modulation of,

231–233
neural networks, 228

neuropeptides
on intrinsic properties, 280–285
production and release of, 280

neurosteroids, 286
nitric oxide

effectors, 279
excitatory synapses, 279
inhibitory synapses, 280
intrinsic properties, action on, 279
production and release of, 278–279

norepinephrine
adrenoceptors, 255
central adrenergic afferents, origin and

laminar specificity of, 254
excitatory synapses, 257
inhibitory neurons, 256
inhibitory synaptic transmission, 257
in learning and memory processes, 254
principal cells, 255, 256

perisynaptic receptors, 229, 230
purines

excitatory synapses, 273–274
inhibitory synapses, 274
intrinsic properties, action on, 271, 273
purine receptors, 271, 272
transmitters, production and release of,

271
serotonin/5-HT

excitatory synapses, 264–266
fear learning, role in, 258
5-HT receptor, cell type-specific

expression of, 259–261
inhibitory neurons, 262–264
inhibitory synapses, 266–267
mood, anger and aggression, regulation

of, 258
principal cells, 261–262
serotonergic afferents, origin and

structural organization of, 258–259
sphingolipids, 280
synaptic receptors, 229, 230

Neuromorphic hardware, 818–819
NeuroMorpho.Org database, 481, 823
NEURON, 809–810, 823
Neuronal excitability, 795
NEURON simulation environment v7.3, 482
Neuropeptides

on intrinsic properties, 280–285
production and release of, 280

Neuropeptide Y (NPY), 341, 382
Neuroscience Information Framework (NIF),

825
Nicotinic acetylcholine receptors (nAChRs),

238, 239
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Nitric oxide (NO)
effectors, 279
excitatory synapses, 279
inhibitory synapses, 280
intrinsic properties, action on, 279
production and release of, 278–279

NLopt, 821
N-methyl-D-aspartate receptors (NMDARs),

128, 130, 206–208, 211–213, 741,
742

calcium influx, 624
channel kinetic model

basket interneuron, 679
depolarisation, 678
Mg-bound and Mg-free channel states,

694–695
parameters, 697

channels, 617–618
coincidence detectors, 206–208
GluN1 and GluN2A-D subunits,

heteromultimers of, 129
glycine and glutamate, 129
mossy fiber synapses, 138–139, 143
perforant pathway, 132–133
Schaffer collaterals, 145, 148
synaptic plasticity, role in, 129

Noisy spontaneous activity, 703
Non-associative synaptic plasticity, 204
Non-fast-spiking distal dendrite-targeting

O-LM cells, 331
Nonspatial and nontemporal firing properties,

420–423
Noradrenergic neurons, 350
Norepinephrine (NE)

adrenoceptors, 255
central adrenergic afferents, origin and

laminar specificity of, 254
on intrinsic properties

excitatory synapses, 257
inhibitory neurons, 256
inhibitory synaptic transmission, 257
principal cells, 255, 256

in learning and memory processes, 254
Normalized transfer entropy (nTE) algorithm,

750–751

O
OI models, see Oscillatory interference models
O-LM cells, see Oriens-lacunosum moleculare

(O-LM) cells
OpenSourceBrain, 821
Open-source NEURON simulator, 795
Optimizer, 820–821

Optogenetics, 116, 389
Oriens-lacunosum moleculare (O-LM) cells,

64, 68–69, 172, 331, 341, 350, 351,
353, 381, 383

vs. basket cells, 111
cells, 742

in CA1 region, 835
extracting subsets, 845–847
hyperpolarization-activated mixed

cation current, 835
multi-compartment models, 835–836
principal axonal targets, 835
ranking, 843–845
reference multi-compartment O-LM

model, 836
interneurons, 760
mAChR/nAChR activation, 239–240
potassium currents, 111–112
sodium currents, 111

Oriens/retrohippocampal projection cells, 74
Oscillatory interference (OI) models, 589

baseline oscillation, 589–591
critique, 594–595
‘envelope’ frequency, 589
membrane potential oscillations, 589,

592–594
simulated VCO spike train, 594
theta phase precession, 589
VCO burst firing frequency and movement

velocity, 589–592

P
Paired-pulse depression (PPD), 168
Parahippocampal cortex (PHC), 414, 415
Parallel neural Circuit SIMulator (PCSIM),

812
Parallel stochastic ion channel simulator

(PSICS), 812
Para-subiculum (PaS), 586
Parvalbumin (PV)-expressing interneurons,

330, 394
Parvalbumin-positive basket cells (PV-BCs),

56, 58–61, 74–75
cholinergic neuromodulation, 241
GABAergic transmission, 161–166

Patch-clamp recordings, 370, 374
Pattern separation, DG

behavioral context, 783
biological constraints, 782
cell type-specific intrinsic plasticity

controls, 784
definition, 779–780
experimental evidence, 780, 781
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Pattern separation, DG (cont.)
experiments, 798
leak channel adaptations, 784
level of detail and rationale, 785
limited results, 791, 792
model components

average Pearson correlation coefficient,
790

CTRL DG, 790
data for, 791–794
GC model, 785–786
intrinsic changes, 785
intrinsic properties, 785–787
synaptic weights, 785, 790

model extensions, 795–796
neuron’s voltage responses, 784
new uses of model, 797–798
parameters

data for, 791, 793–794
distributed conductance mechanisms,

788–790
network model during control condition,

787, 790
stereotypical cell type models, 784
successes and limitations, 794–795

Perforant path-associated (PPA) interneurons,
64, 66

Peri-event histograms (PETHs), 430
Perirhinal cortex (PRC), 413, 414
Perisomatic inhibition, GABAAR-mediated

transmission, 159–160
CCK-BCs, 166–167
chandelier/AA cells, 161, 167–168
dynamic properties, 168
kinetic properties, 164–165
PV-BCs, 161–166
PV-INs, 161

Perisomatic inhibitory interneurons
of CA1–3 areas

AACs, 61–63
CCK-BCs, 61, 62
PV-BCs, 56, 58–61

of DG and hilus
AACs, 75
CCK-BCs, 75
PV-BCs, 74–75

Philanthotoxin (PhTx), 128
Physiological properties, of hippocampal

neurons
CA1 pyramidal neurons

calcium-dependent potassium channels,
95, 97–98

hyperpolarization-activated current, 101
M-current, 98–99

voltage-gated calcium channels, 99–101
voltage-gated potassium channels, 92,

95–98
voltage-gated sodium currents, 92–95

CA2 pyramidal neurons
hyperpolarization-activated current, 104
input resistance, 104
intrinsic electrophysiological properties,

103
resting potential of, 103–104
voltage-gated potassium channels, 104

CA3 pyramidal neurons
calcium current, 102–103
dendritic Na+ channels, 103
potassium currents, 102
sodium currents, 101–102

dentate gyrus
granule cells, 104–107
mossy cells, 107–108

hippocampal interneurons
calcium currents, 110, 112
DG basket cells, 108
hyperpolarization-activated current,

110–111
potassium currents, 108–112
sodium currents, 108, 111
stratum oriens horizontal interneurons,

111
stratum radiatum-lacunosum-

moleculare, 112–113
intracellular and patch clamp recordings,

113–116
Picrotoxin, 793
Place cells, rate and phase coding of, 372–377

basket, axo-axonic, bistratified and ivy
cells, 554–556

CA1 microcircuit model
CA3 Schaffer collateral inputs, 545
constant-rate non-phase-precessing

high-gamma EC-PP input, CA1 PC
and IN distal dendrites, 543–544

dopamine modulation, 540
EC layer 2 cells, 546
EC layer 3 cells, 546
excitatory and inhibitory cells, 547
firing rates, 547
inhibitory interneurons, 537–538
LFP theta, 546
model inputs, 538
non-precessing high-gamma EC-PP

input, CA1 PC and IN distal
dendrites, 543

presynaptic GABAB inhibition, 538
pyramidal cells, 536–537, 547–554
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synaptic plasticity, 538–539
variable-rate, constant-rate non-phase-

precessing high-gamma EC-PP
input, CA1 PC and IN distal
dendrites, 544–545

cell-to-cell synaptic currents
axo-axonic and basket cells, 564
bistratified cells, 564
OLM, neurogliaform and IVY Cells,

565
parameter values, 564
presynaptic membrane potential, 563
pyramidal cell, 564
synaptic strength parameter values, 563

input spike generator, 559
input-to-cell synaptic currents, 559–561
neurogliaform cell, 556–557
OLM cell, 557–559
oscillation frequency, 535
speed-dependent oscillators, 535
synaptic plasticity model, 561–562
theta oscillations, 535

Place-selective firing, 373
Poisson process, 492, 503
Postsynaptic calcium dynamics, 624
Postsynaptic current (PSC), 447
Postsynaptic potentials (PSPs), 447, 493
Presubiculum (PrS), 378, 379, 586
Presynaptic muscarinic receptors, 244–245
Presynaptic nicotinic receptors, 246
Principal cells (PCs), 29–30

adult-born GCs, 51
CA1 pyramidal cells

anatomical, molecular, and functional
properties, positional differences in,
38, 40

axon collaterals, 38
axon initial segment, 36, 38
dendritic length and somatodendritic

surface area, 32–35
DHC and VHC neurons, morphological

differences, 40, 42
excitatory and inhibitory synapses,

laminar distribution of, 36–38
genetic analysis, 40, 41
spine density, 36
three-dimensional structure of, 32, 33

CA2 pyramidal cells, 46–47
CA3 pyramidal cells

axon of, 46
complex spine, 42, 46
dendritic length and somatodendritic

surface area, 41–42, 44–45
cortical principal cells, 30

DG granule cells, 47–48
dendritic length and spine numbers of,

48–50
excitatory synapses, 48
inhibitory synapses, 48, 51
mossy fibers, 51
SLGC, 51

D1-like and D2-like receptors, activation
of, 250, 251

gamma oscillations, 334–336
hilar mossy cells, 51–52
hilus, 30
histamine, 269
5-HT, 261–262
known cell-type specific genes, non-

exhaustive list of, 40, 43
norepinephrine, 255, 256

Projection interneurons, 330
Protein kinase cascades, 623
Protein phosphatase 2 (PP2A), 674, 676, 692
Protein phosphatase cascades, 623
Purines

excitatory synapses, 273–274
inhibitory synapses, 274
intrinsic properties, action on, 271, 273
purine receptors, 271, 272
transmitters, production and release of, 271

PV-BCs, see Parvalbumin-positive basket cells
(PV-BCs)

Pyramidal cells/neurons, CA1, 742, 825
anatomical, molecular, and functional

properties, positional differences in,
38, 40

axon collaterals, 38
axon initial segment, 36, 38
CA1 (see Pyramidal cells, CA1)
calcium-dependent potassium channels, 95,

97–98
calcium detector equations, 647, 648
calcium detector model, 665–666
Ca2+-NMDA, AMPA, GABA-A, and

NMDA synaptic currents, 664–665
current balance equations, 659–660
dendrites (see Dendrites, CA1 pyramidal

neuron microcircuit model)
dendritic compartment, 646, 647

delayed rectifier K+ current at, 662–663
L-type Ca2+ current at, 664
sodium current at, 660–661
type-A K+ current at, 662

dendritic length and somatodendritic
surface area, 32–35

DHC and VHC neurons, morphological
differences, 40, 42
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Pyramidal cells/neurons, CA1 (cont.)
excitatory and inhibitory synapses, laminar

distribution of, 36–38
genetic analysis, 40, 41
Hill equations, 666
hyperpolarization-activated

current, 101
ionic and synaptic currents, parameter

values, 647
M-current, 98–99
medium Ca2+-activated K+ after-

hyperpolarization
current, 663

network oscillations, in vitro
models, 330

NMDA channels, 646
plasticity measurement, 646
in silico model, epileptic

activity, 759
single spikes driving soma and dendrite

dendritic and somatic spike pairing in
absence of inhibition, 650–652

frequency and timing effects, theta-
modulated inhibitory bursts,
653–655

theta-modulated inhibitory single
spikes, 652–653

somatic compartment, 646, 647
activation and inactivation constants at,

660
delayed rectifier K+ current at, 662
L-type Ca2+ current at, 663–664
sodium current at, 660
type-A K+ current at, 661

somatic inhibition, 772
spine density, 36
theta-modulated dendritic bursts and

somatic spikes interaction
in absence of

inhibition, 654–657
in presence of inhibition, 657–658

three-dimensional structure of, 32, 33
voltage-gated calcium channels, 99–101,

646
voltage-gated potassium channels, 92,

95–98
voltage-gated sodium currents, 92–95

Pyramidal-interneuronal network gamma
(PING), 334, 742

Python, 482, 813–814, 821

Q
“Quasi-active” linearization, 529

R
Radiatum lacunosum-moleculare (R-LM)

cells, 331, 353
Radiatum/retrohippocampal projection

interneurons, 74
RADI cells, 73
Rapid eye movement (REM), 339
Representational similarity analysis (RSA),

427
Resting membrane potential (RMP), 743
RNA transcriptional control

sequences, 740

S
Schaffer collateral-associated (SCA)

interneurons, 64–66
Schaffer collaterals (SC), 46, 142, 143

AMPA receptors, 144–147
kainate receptors, 147, 149
metabotropic glutamate receptors, 147–149
NMDA receptors, 145, 148
pathway, 540, 564
synapses, 144

Schizophrenia
clinical pathways

association loci, 739
developmental sequences, 740
dynamical physiological interactions,

740
genetic activation sequences, 740
hypothesis, 740
Ih and NMDA, 741–742
immunological and scavenging

pathways, 740
intracellular cascade sequences, 740
susceptibility, 739

multiscale modeling, scales for, 752, 753
network simulation

GRIN2A effects on NMDA, 748–750
HCN effects on Ih, 743, 745–748
information flow-through, 750–752
interneurons, 742
schematic representation, 742, 743
theta and gamma activity, 743, 744

SciNet HPC supercomputer cluster, 839
SciUnit, 822
Semilunar granule cell (SLGC), 51
Serotonergic neurons, 350
Serotonin, see 5-Hydroxytryptamine (5-HT)
Shape function, 515, 517
Sharp-wave ripple (SWR), 343–344, 390–392
Short-term depression (STD), 202
Short-term plasticity, 446
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Short-term potentiation (STP), 202
Short-term synaptic plasticity, 202–204
Single spikes driving soma and dendrite

dendritic and somatic spike pairing in
absence of inhibition, 650–652

frequency and timing effects, theta-
modulated inhibitory bursts,
653–655

theta-modulated inhibitory single spikes,
652–653

Sodium current
basket, axo-axonic, bistratified and ivy cell,

554–555
neurogliaform cell, 556–557
OLM cell, 557–558
pyramidal cell, 549–550

Somatodendritic trees, 832
Somatostatin (SOM) cells, 381, 382
Spatial firing patterns, 415–418
Spatial reach, LFP, see Local field potential

(LFP)
Spatiotemporal clusters, as emergent property

behaviorally relevant inputs to
hippocampus, 503–504

extrinsic and intrinsic sources of inhibition,
removal of, 495–496

functional organization, higher level of,
502–503

propagation and transformation of, 503
spatial correlation, topographic connectivity

as, 496–497
temporal correlation, sources of, 498

Spatiotemporal patterns, GC
anatomical boundaries

formation of maps and distribution of
neurons, 479–481

hippocampus and dentate gyrus,
477–478

general framework, 475
multi-compartmental neuron models

dendritic morphologies, generation of,
481–482
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