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Abstract. So-called “phishing attacks” are attacks in which phishing
sites are disguised as legitimate websites in order to steal sensitive infor-
mation.

Our previous research [1] showed that phishing attacks tend to be
relaunched many times, after sometimes small modifications. In this
paper, we look into the details of these modifications and their evolu-
tion over time. We propose a model called the “Semi-Complete Linkage”
(SCL) graph to perform our evaluation, and we show that unlike usual
software, phishing attacks tend to be derived from a small set of mas-
ter versions, and even the most active attacks in our database only go
through a couple of iterations on average over their lifespan.

We also show that phishing attacks tend to evolve independently from
one another, without much cross-coordination.

Keywords: Phishing attacks · Attacks modifications
Evolution graph

1 Introduction

In 2016, the number of phishing attacks reached an all-time high, with at least
255,000 unique attack instances [2]. Unfortunately, the trend only worsened,
and there are already over 580,000 unique attack instances reported up to the
3rd Quarter of 2017 [3,4]. This growth occurred despite the public’s increasing
awareness and widespread tools that are used to combat these attacks. For exam-
ple, browsers such as Google Chrome, FireFox, Opera and Safari all use Google
Safe Browsing1 to provide to their users some level of built-in protection from
phishing attacks. Microsoft Internet Explorer and Edge browsers also include a
similar built-in defence mechanism, called SmartScreen2.
1 https://safebrowsing.google.com/.
2 https://support.microsoft.com/en-us/help/17443/windows-internet-explorer-

smartscreen-filter-faq.
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The majority of the literature on phishing attacks focuses on detection, e.g.
by using machine learning to train a detection model, or by using the reputa-
tion of the domains hosting the attacks, or by performing visual comparisons
between the phishing site and its target. However, Phishing is still very active;
for instance, a FBI report estimates that there were over 25,000 victims in 2017
for a total loss of almost 30 millions US dollars in the USA alone [5]. Our inability
to stop the onslaught of attacks shows that we need to go beyond merely detect-
ing attacks. We need to better understand why phishing attacks are growing so
fast and how phishers achieve this.

In our previous research [1], we showed that most phishing attacks are not
created from scratch, and they are actually duplicates or small variations of
previous attacks. Our experiments showed that over 90% of the phishing attacks
in our database were close duplicates of other attacks in the same database. This
created clusters of similar attacks.

In this paper, we explore the variations that are seen in these phishing attack
clusters, when the attacks are not the exact replica of another attack, and some
small modifications were performed over time. We try to answer the following
questions: (1) What reasons push phishers to create variations instead of simply
reusing exact replicas? (2) How are the attack typically modified when variations
are created? (3) Can we see common trends behind these modifications across
seemingly unrelated phishing attacks, or are the modifications specific to each
attack cluster? Our ability to answer these questions will further enhance our
understanding of the phishing ecosystem and it will help with combating the
problem more effectively.

In order to answer these questions, we are using a database of over 54,000 veri-
fied phishing attack instances collected between January 2016 and October 2017.
This represents a small sampling of the total number of attacks (for instance, the
Anti-Phishing Working Group reports about 2 million attacks during that same
period3). Moreover, our dataset is mostly made of attacks occurring in North
America and Europe. However, the model and analysis we proposed could be
applied to a larger dataset. In order to explore the evolution of phishing attacks
modifications over time, we propose a new cluster structure based on what we
call a semi-complete linkage graph (SCL). We find that most attacks are derived
from a small set of master versions, with few consecutive updates and long shelf
life. Moreover, we find that new variations created from a given attack usually
uses patterns specific to that attack. All of the data used in this research is
publicly available at http://ssrg.site.uottawa.ca/phishing variation/.

The paper is organized as follows: In Sect. 2, we introduce various mathe-
matical concepts that we use in our analysis. Then in Sect. 3, we present the
basic results of our experiments. We discuss these results and provide a detailed
analysis in Sect. 4. We provide an overview of the literature in Sect. 5 before the
conclusion in Sect. 6.

3 https://www.antiphishing.org/resources/apwg-reports/.

http://ssrg.site.uottawa.ca/phishing_variation/
https://www.antiphishing.org/resources/apwg-reports/
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2 Phishing Attacks Clustering

In order to analyze phishing attack modifications over time, we must first
group together attacks that are related and share similar features. In this section,
we introduce and discuss the mathematical concepts and algorithms that we used
to cluster these phishing attacks.

2.1 DOM Similarity Between Phishing Attacks

The Document Object Model (DOM) is a tree structure in which each node
represents one HTML element of a web page. In previous research, a variety of
techniques have been used to compare the similarity of DOMs [6]. The Tree Edit
Distance (TED) is one of the most popular metrics for measuring the structural
similarity between two DOMs. It represents the minimal number of operations
(adding, removing and replacing) to convert one document into the other. How-
ever, the complexity of the best TED algorithm to date, AP-TED [7], is still
O(n3), where n is the number of nodes in the DOM. To reduce the complex-
ity of computing TED, some approaches based on fuzzy hash [8] or information
retrieval [9,10] have been proposed. These methods are however limited and can-
not be used to find out the specific differences between the trees. Therefore, they
cannot be used to perform an analysis of the modifications between the trees.
Our previous research [1] proposed a trade-off method, introducing tag vectors
to compare the similarity of the DOM of phishing attacks with complexity O(n).
A tag vector is based on an ordered list of 107 possible HTML tags. The tag
vector of a given DOM is a vector of size 107, and each element of the vector is
the number of occurrences of the corresponding HTML tag in the DOM. This
method does not capture the structure of the DOM, which may lead to the
grouping of DOMs that have different structures but have a similar number of
each type of HTML tags. However, we have looked at the trees of DOMs that
have the same tag vectors in our database. We found that only 521 of these
DOMs (or 0.95% of our phishing attack database) have the same tag vector but
a different DOM tree. It is thus safe to use tag vectors in our case.

To compare the distance between tag vectors, in [1] we proposed to use the
Proportional Distance (PD), which divides the Hamming Distance of the vectors
by the number of tags that appear in at least one of the two DOMs. Formally,
given two non-null tag vectors t1 and t2, the proportional distance between t1
and t2 is given as:

PD(t1, t2) =
∑n

i=1 D(t1[i], t2[i])∑n
i=1 L(t1[i], t2[i])

where D(x, y) =

{
1 if x �= y

0 otherwise
and L(x, y) =

{
1 if x �= 0 OR y �= 0
0 otherwise

The proportional distance PD as defined in [1] does not emphasize on the
“amount” of differences between each HTML tag, and simply focuses on whether
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the number of tags is the same. For example, the vector t1 = {1, 2, 5, 6} and
t2 = {109, 2, 5, 6} both have the same distance to the vector t3 = {2, 2, 5, 6},
that is, PD(t1, t3) = PD(t2, t3). For our study, we would like to capture the
fact that t2 is more different from t3 than t1 is. Therefore, we define a new
distance, called the Weighted Proportional Distance (WPD)4 to compare the
similarity of phishing attack instances. Instead of using the Hamming Distance
as the numerator, we use the sum of the Weighted Differences (WD), defined
by the following formula:

WD(t1, t2) =
n∑

i=1

|t1[i] − t2[i]|
max(t1[i], t2[i])

whereas the value of D for a given tag was boolean (0 or 1), for tags that are
used in both vectors, WD will be in the range [0, 1). The larger the difference
between the number of tag, the larger WD.

We define S as follows:

S(t1, t2) =
n∑

i=1

EQU(t1[i], t2[i])

where EQU(t1[i], t2[i]) =

{
1 if t1[i] = t2[i] AND t1[i] �= 0
0 otherwise

Finally, the Weighted Proportional Distance (WPD) is defined as follows:

WPD(t1, t2) =
WD(t1, t2)

WD(t1, t2) + S(t1, t2)

In the rest of the paper, we use WPD as the distance between our tag vectors. It
should be noted that other distance metrics could be used with probably similar
results. We used WPD because it is fast to compute and works well for our goal.

2.2 Optimal Threshold

In order to create clusters of similar attacks, we need to find out a good threshold
for grouping vectors together. If the distance between two vectors is less than
this threshold, they are considered similar and grouped into the same cluster.
Otherwise, they are separated into different clusters. The optimal threshold is
one that yields clusters that are fairly compact inside while the distance between
clusters is large. Before computing this optimal threshold for our database, we
first must define how vectors are connected inside each cluster.

4 For consistency with the name PD, we call this value the “Weighted” PD. However,
it should be noted that WPD is not a distance in the mathematical sense of it.
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2.3 Intra-cluster Vectors Connections

There are at least two common models that are widely used when it comes to
intra-cluster connections: (1) Single-linkage, where each node inside the cluster
is connected to at most one parent, creating a minimal spanning tree over the
elements of the cluster, or (2) Complete-linkage, where a complete graph is
created between all the elements of the clusters. However, neither of these two
models can accurately capture what we are trying to do here, that is, capture the
evolution of the elements inside a cluster. A good model should keep a connection
between the elements of a series of modifications done to a given attack (and
some of these elements may end up being fairly far apart after a long series of
modifications), but it should also capture the fact that some elements are at a
very small distance from each other within the cluster. This idea is illustrated
on Fig. 1. Vectors a, b, c and d are close to one another, meaning that there is
little variation between these four vectors. On the other hand, Vector e, while
still part of the same cluster, is actually relatively “far” from these first four
vectors, and is only linked to them through a long series of small variations.

To capture these series of modifications done to the phishing attacks inside a
cluster, we proposed to use a Semi-Complete Linkage (SCL) model. Specifically,
for any pair of tag vectors ti and tj in the same cluster, where i �= j, we have
an edge E(ti, tj) ∈ SCL if and only if WPD(t1, t2) � OPT , where OPT is
the optimal threshold for tag vector clusters defined in Sect. 2.4. A simple way
to see this model is that inside a cluster, vectors that are “similar” are linked
together. This model is an intermediate model between the spanning tree and
the complete graph.

Fig. 1. An illustration of a Semi-Complete Linkage graph.

2.4 Quality of Clustering

We now explain how we define the quality of clustering and how we will com-
pute the optimal threshold. We define Min(Ci, Cj) to be the minimal distance
between two clusters, which is defined as the minimum distance that can be
found between two vectors, one in Ci and one in Cj . That is:

Min(Ci, Cj) = min({WPD(x, y)|∀x ∈ Ci,∀y ∈ Cj})

As discussed in Sect. 2.3, we use the SCL model to capture the connections
inside tag vector clusters. Thus, we define the quality of vector clusters with
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the following formula, which computes the total distance inside the clusters, and
divides it by the distance between clusters. We will experimentally try different
threshold to find one that minimizes this formula. The formula, which only
includes the clusters that have more than one element, is as follows:

1
k

∑k
i=1

1
|Ei|

∑|Ei|
j=1{WPD(x, y)|Ej(x, y) ∈ SCLi}

min{Min(Ci, Cj)|i �= j, 1 � i, j � k}
where k is the number of clusters having more than one element, E(x, y) is the
edge between x and y in the SCL graph, Ci is the ith cluster with more than
one element, SCLi is the SCL for Ci and |Ei| is the number of edges in SCLi.

Fig. 2. Example of phishing attacks modifications graph

2.5 Phishing Attacks Modifications Graph

To analyze the evolution of phishing attacks, we computed the SCL model for
each tag vector cluster, as illustrated in Fig. 2. Each node represents a unique tag
vector, and the nodes label shows the number of phishing attack instances using
this vector. The directed edge E(x, y) captures an evolution from vector x to vec-
tor y, that is, a modification made to the corresponding attack, which transforms
the original attack (which has vector x) into a slightly different attack (which
has vector y). The text on the edge provides the details of the modifications.
For example, an edge with the label “div:+2, input:-3” should be interpreted as
meaning that two div tags where added to the attack and three input tags where
removed in the creation of the new variation of the attack. The direction of the
edge is determined by the reported date of the two connected vectors; the edge
flows from the earlier attack to the later attack. Since several attacks will have
the same vector, we consider that the “reported date” of a vector is the date at
which we learned of the first attack that produced this vector.

As a consequence of this definition, a source node of the graph, that is, a
node that has an in-degree of zero, is the earliest reported attack instance in
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our data source from this series of modifications. We color these nodes in green.
Node that are variations of previously reported attacks have a positive in-degree
and are shown in blue in our graph.

3 Experiments

3.1 Phishing Sites Database

We have compiled our phishing database by collecting the URLs of phishing-
attack instances from the community-driven portal PhishTank5 and the enter-
prise security analysis platform IBM X-Force6. A total of 54,575 “verified” phish-
ing sites were collected by fetching the daily archive from PhishTank between
January 1st, 2016 and October 31st, 2017 and from IBM X-Force between June
12th, 2017 and October 31st, 2017. For each phishing site, we fetched the DOM,
the first URL (the reported one), the final URL (which is different from the first
URL only when redirection has been used by the attacker), and a screenshot of
the final page. To compare the performance of our new model with the model
proposed in [1], we used a database of 24,800 legitimate sites found on Alexa7,
made of 9,737 URLs coming from the lists of “top 500” most popular sites by
countries [11] and another 15,063 URLs randomly selected from the Alexa’s top
100,000 to 460,697 web sites. The list of URL is available on http://ssrg.site.
uottawa.ca/phishingdata/.

3.2 Vectors and Clustering Results

To compute the set of tag vectors, as was done in [1], we used the complete
set of HTML elements provided by the World Wide Web Consortium [12], and
removed the common tags <body>, <head> and <html>. That gave us a corpus
of 107 unique tags. We then counted the number of occurrences of each tag in
each DOM and used these number to create integer vectors of 107 features. We
obtained 8,397 unique tag vectors out of the DOMs of our 54,575 phishing attack
instances.

In order to compare the performance of our model to the one proposed in [1],
we first trained both models with the same phishing database and computed
the phishing attacks clusters and related optimal threshold. We then used our
database of legitimate sites to see how many false positives each model yields.

As shown in Table 1, the SCL model has a smaller optimal threshold, but
captures many more attacks than our previous models (only 3,869 undetected
attacks, compared to 4,351 with the previous model). There was however a slight
increase in the false positive rate, which remains very low at 0.26%. This shows
that the model proposed here is more efficient than the one proposed in [1] if the
aim is to detect phishing attack replicas. Similar to [1], the false negative rate is
unknown since we don’t know how many of the 3,869 unflagged attacks have a
replica in our database.
5 https://www.phishtank.com/.
6 https://exchange.xforce.ibmcloud.com/.
7 https://www.alexa.com/.

http://ssrg.site.uottawa.ca/phishingdata/
http://ssrg.site.uottawa.ca/phishingdata/
https://www.phishtank.com/
https://exchange.xforce.ibmcloud.com/
https://www.alexa.com/
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Table 1. Vector and clustering results for both models. “Flagged” cluster have more
than one element, and the corresponding attacks are detected.

SCL Model Model of [1]

Optimal threshold 0.24 0.33

# of vectors 8,400 8,400

# of multiple-element clusters (“flagged”) 941 908

# of single-element clusters 3,869 4351

# of phishing sites in flagged clusters 50,706 (92.9%) 50,224 (92.03%)

# of “similar” legitimate sites (false positive) 65 (0.26%) 58 (0.23%)

4 Analysis of the Modifications Seen in Phishing Attacks

4.1 Who Made Modifications, Phishers or Hosts?

One possible explanation for the modifications we see on different instances of
the same attack is that the attack was not actually modified by the attacker,
but by the hosting server, which is automatically injecting some html into the
pages, e.g. some Google Analytics tracking links, some WordPress plugins or
some other Javascript libraries. Since a given attack will be hosted on a range
of servers, these modifications would be misinterpreted as modifications to the
attack itself.

To verify this, we compared the DOM of the phishing attacks to the DOM
of homepages of the server hosting these attacks. We removed all the “blanks”
(including \t \r \n \f \v) from both DOMs, and we then extracted the content
that was common between the two DOMs. This content could have been coming
from the hosting server, and not from the attack itself. We did this for all the
attack instances in our database for which the host homepage could be reached
and had a different tag vector from the attack8.

We were able to collect the DOMs of 14,584 such homepages9. Of these, 2,566
had some common content with the hosted attacks. A closer look at the tags
involved in these common contents showed that the tag <meta> was involved in
2,280 of these cases, which is not surprising since <meta> is used for information
such as encoding, page size etc., information usually set by the hosting server.
The tag <script> was a very distant second present in only 96 cases. This
shows that the tag <meta> is the only tag for which the hosting server can
really impact our results. Therefore, we decided to remove that tag altogether
from our tag vectors. Redoing the experiment of Sect. 3.2 without that tag,
we find the same optimal threshold (0.24), and end up with 8,290 tag vectors
distributed across 913 flagged clusters (cluster with at least 2 vectors) and 3,912
single-vector clusters. The false positive rate drops to 0.25%, as a couple of

8 This excludes attacks that are located right at the homepage of the hosting server.
9 Many hosting servers were not reachable anymore by the time we did this experiment.
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legitimate sites are now correctly flagged. Out of an abundance of caution, we
used that updated model in the analysis presented in the next sections.

4.2 Clusters Sample Selection

We applied the SCL model discussed in Sect. 2.3 to our 913 flagged clusters. We
observed that there are several clusters with very few edges in their SCL graph,
meaning that for these clusters, our database does not contain many variations
of the corresponding attacks. Table 2 shows a detailed distribution of sizes of the
SCL graphs. As already pointed out in [1], a small minority of the clusters cover
the vast majority of the attacks. In this case, only 46.88% of the clusters have
a SCL graph with two or more edges, but they contain more than 75% of the
phishing attack instances. For our study, we selected the clusters having a SCL
graph with 30 or more edges because they capture the majority of the phishing
attack instances (52%) and they contain enough variations of the attacks to
study their evolution over time.

Table 2. Number of edges and pages distribution among clusters

# of edges in
the cluster

# of clusters
(%-tage of total)

# of pages covered
(%-tage of total)

# of edges
covered

≥2 428 (46.88%) 41,229 (75.55%) 18,636

≥3 394 (43.15%) 40,579 (74.35%) 18,568

≥4 258 (28.26%) 38,059 (69.74%) 18,160

≥5 243 (26.62%) 37,321 (68.38%) 18,100

≥10 150 (16.43%) 34,539 (63.29%) 17,504

≥15 107 (11.72%) 31,638 (57.97%) 17,043

≥20 88 (9.64%) 30,797 (56.43%) 16,732

≥30 62 (6.79%) 28,801 (52.77%) 16,113

≥40 47 (5.15%) 26,298 (48.19%) 15,591

≥50 42 (4.60%) 25,306 (46.37%) 15,381

4.3 Analysis of Master Vectors

As explained in Sect. 2.5, the orientation of the edges in the SCL graphs is
determined by the reported date of the DOMs creating the tag vectors, from the
earlier one to the later one. We call a tag vector of in-degree zero in the SCL
graph a master vector. Master vector represents one of the initial versions of the
attack in our database. Of course, each cluster contains at least one master vector
(the earliest reported vector in that cluster), but they can have several ones when
the distance between the vectors is too large for them to be connected in the
SCL graph. Having several master vectors in a cluster means that some attacks
have been substantially modified at once, or that we are missing to intermediate
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steps in our database. Each non-master vector can be reached from at least one
of the master vectors in the cluster. Those master vectors provide a view of the
initial attacks and the non-master vectors give a view of how they evolved over
time. Figure 3 shows the SCL graphs of the two largest clusters in our database
(master vectors in green, non-master vectors in blue). We can see that there are
far fewer master vectors than non-master ones, indicating that the majority of
attacks in these clusters evolved from the original vectors.

(a) SCL graph of cluster 0 (b) SCL graph of cluster 1

Fig. 3. Examples of SCL graphs

Table 3 provides an overview of the results for all 62 clusters: overall, there
are 190 (10.47%) master vectors, covering around 35% of the attack instances.
This shows that the master vectors are often reused to relaunch the attacks.
Moreover, 34 clusters (54.84%) have two or more master vectors, suggesting
several initial versions of the attack which were later merged through a series of
updates.

Table 3. Overview of master/non-master vectors in the 62 largest clusters.

# of clusters 62

# of vectors 1814

# of attack instances 28,455

# of master vectors 190 (10.47%)

# of attack instances in master vectors 9,855 (34.22%)

# of clusters with two or more master vectors 34 (54.84%)

# of clusters with only one master vector 28 (45.16%)

By manually inspecting the DOMs of master vectors, we found that master
vectors can be grouped into three categories: (1) Different initial versions of
the attack by attackers, with enough changes to push the distance beyond the



Phishing Attacks Modifications and Evolutions 253

threshold. It could be the case that the target is modified or that several new
features are released at once. Figure 4(a) shows such an example. (2) Different
steps of the same attack. Some attacks go through several steps as they attempt
to gather additional information from the victim. For example, in Fig. 4(b), a
first step is used to capture login information, and if it is provided, a second
step follows in which credit card details are requested. These different steps are
recognized as belonging to the same attack, but the difference between them
is too large for the threshold and there is no directed path between them in
the SCL graph. (3) Copies of different versions of the target site. As shown
in Fig. 4(c), sometimes the master vectors are essentially copies of the target
sites taken at different times. The target site was modified, so the corresponding
attack instances do not initially match. It is also possible that in some cases

(a) Different versions developed by phishers

(b) Different steps of the same attacks

(c) Different versions copied from legitimate sites (Yahoo
login page, circa 2015 and 2016)

Fig. 4. Examples of master vectors
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our database is missing an even earlier version of the attack that would yield an
initial, sole master vector.

4.4 Analysis of Variation History

In order to analyze the evolution of the attacks in our database, we first introduce
a few definitions. As explained before, every non-master vector v has at least
one directed path in SCL from a master vector to v.

We call the Evolution Path of v (EPv) the directed path from a master vector
to v for which the sum of Weighted Proportional Distances of the edges along
the path is minimal. In other words, EPv is the directed path from one of the
master vector to v for which the amount of transformation was the smallest.

For a non-master vector v and its evolution path EPv = [t0, t1, . . . , tk−1, tk =
v], we have the following definitions:

1. The Path Distance (PDv) is the sum of the weighted proportional distance
of the edges along the evolution path EPv. It represents an evaluation of the
“amount” of difference between v and its master vector.

PDv =
k−1∑

i=0

(WPD(ti, ti+1))

2. The Evolution Distance (EDv) is the average weighted proportional distance
of edges along the evolution path EPv. It represents the average “amount”
of difference in each modification. Formally, EDv = PDv/k.

3. The Variation Lifespan (V Lv) is the time difference between the reported
date of v and the reported date of its master vector. It represents the com-
plete length of time during which this attack has been actively modified. If
Treport(ti) is the reporting date of vector ti, we have

V Lv = Treport(tk) − Treport(t0)

4. The Update Interval (UIv), is the average of the time difference between
consecutive vectors along the evolution path EPv. It represents how often
modifications are being deployed. Formally, UIv = V Lv/k.

Table 4. Analysis of the evolution paths in our database.

# of evolution paths 1,230

Average Path Distance 0.1719

Average Evolution Distance 0.111

Average Variation Lifespan 267 days

Average Update Interval 186 days



Phishing Attacks Modifications and Evolutions 255

Table 4 provides the average values of these attributes for all evolution paths
in the selected 62 clusters. To compute these values, we have not included Evo-
lution Paths that are included into other, longer evolution paths. The results
show that in general, the attacks are only modified once every six months (186
days) and that the modifications are usually not drastic (the average WPD
between these modifications is 0.111). We also see that average path distance
is low, only 0.1719. Consequently, the average length of the evolution paths is
only 0.1719/0.111 < 2, less than two edges. This indicates that attackers usu-
ally do not maintain long evolution paths to create lots of variations over time.
Instead, they tend to re-create new variations from the same master vectors over
and over. We also find that each variation tends to stay active for a long time,
around nine months (267 days).

In conclusion, we see that most phishing attack modifications are derived
from a small set of master versions. Each of these modifications tend to be reused
as is for an extended period of time. This behavior matches the “crimeware-as-
a-service” model proposed by Sood et al. [13]: The underground producers build
the crimewares and sell them to underground buyers who are the ones launching
cyber-attacks.

4.5 Types of Modifications Seen on Phishing Attacks

In this section, we study the type of modifications that are found on our Evolution
Paths, in order to find out if the modifications are geared toward specific attacks
or if we see common trends across attacks. In the following, the analysis is done
on the set of Evolution Paths, not on the whole SCL graphs. The Evolution
Paths define a total of 1,624 edges. We will use the following two concepts:

1. The Modified Tags (MT ) is the set of tags used anywhere on an edge of
the set of the Evolution Paths. These are the tags that have been added or
removed to modify attacks.

2. The Modification Tags Subsets (MTS) are all the subsets of the set of tags
used on at least one edge of the set of the Evolution Paths. We exclude
singletons from MTS, so we only consider subsets of at least two tags.

For example, if a SCL graph has only two edges, one labeled with {div:+1,
a:+6} and the other one labeled with {input:+3, a:+5, h2:+1}, the set MT
is {<div>, <a>, <input>, <h2>} and we have five subsets in MTS, namely
{<div>, <a>}, {<input>, <a>, <h2>}, {<input>, <a>}, {<input>, <h2>},
and {<a>, <h2>}.

First, we analyzed the common modification among clusters. The top 10 most
common MT s, and the number of clusters in which they appear, are <script>
(57), <div> (53), <img> (52), <a> (51), <input> (50), <br> (48), <link>
(47), <span> (47), <p> (41), and <style> (40). The top 10 most common
MTS among the selected 62 clusters are shown in Table 5. We found that beside
the tags <span>, <div> and <br> that are used for spacing or containers,
and the functional tags <script>, and <link> that are used for adding scripts
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Table 5. The top 10 most common MTS in our database.

MTS # of clusters % # of edges %

{a, div} 45 72.58% 403 24.82%

{div, img} 44 70.97% 286 17.61%

{div, script} 44 70.97% 403 24.82%

{div, span} 40 64.52% 264 16.26%

{br, div} 39 62.90% 215 13.24%

{img, script} 39 62.90% 199 12.25%

{a, img} 37 59.68% 235 14.47%

{link, script} 37 59.68% 215 13.24%

{script, span} 35 56.45% 174 10.71%

{input, span} 35 56.45% 161 9.91%

and resources, phishers only use three tags in the top 10 MTS: <a>, <img>
and <input>. Figure 5 shows two examples of substantial (visual) modifications
were only one tag is actually updated. In Fig. 5(a), one <img> tag was added to
change the target. In Fig. 5(b), an email credential phishing attack was converted
into a tax return phishing page by changing the background images and adding
31 <input> tags.

We also note that despite the very small number of tags used to perform these
modifications, none of the top MTS are used by more that 25% of the edges.
In order to better understand how common or uncommon each combination of
MTS is, we computed the Jaccard Index : for each pair of clusters, we computed
the number of top 10 MTS (resp. top 10 MT ) common to both clusters, divided
by the number of top 10 MTS (resp. top 10 MT ) included in either clusters.
Figure 6 shows the distribution of the values thus obtained.

As shown in Fig. 6, the distribution of Jaccard Indexes for the pairs of top 10
MT covers a relatively wide range, from 0.1 to 0.7. This indicates that different
clusters do use the same tags to create the variations, for example <div> or
<input>. The distribution of Jaccard Indexes for the pairs of MTS on the
other hand is very different: most indexes are less than 0.3 and the vast majority
(almost 80%) are less than 0.1.

These results show that even through very few tags are actually used when
the attacks are modified, the combination of tags used tends to be unique to the
attack. In other words, attacks are evolving independently from one another,
and the modifications are made for reasons that are specific to each attacks, and
not as some sort of global update made across a range of attacks.
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5 Related Work

5.1 Phishing Detection

The bulk of academic literature on phishing understandably focuses on the auto-
matic detection of phishing sites. There are three main approaches that have
been suggested.

The first one is to identify a phishing attack by comparing it with its target
site to find similarities between the two. Rosiello et al. [14] propose a browser
extension based on the comparison of the DOM tree, which records the mapping
between sensitive information and the related information of legitimate sites
(Table 6).

Several papers explore visual similarity comparison. Chen et al. [15] applied
the Gestalt Theory to perform a comparison of visual similarity by using nor-
malized compression distance (NCD) as the similarity metric. Sites logo [16]
and favicon [17] comparison have also been suggested. Liu et al. [18] proposed a
refined comparison method by using block level, layout and overall style similar-
ity. A recent overview of these methods can be found in [19]. The drawback of
these methods is that they require some initial knowledge of the targeted legit-
imate sites. Some authors have suggested to use search engines to acquire this
knowledge automatically, for example Cantina [20] which attempts to find the
current page on Google and warns if it is not found. Similarly, Huh et al. [21]
suggested to search the site’s URL in different search engines and use the number
of returned pages as an indicator of phishing.

The second approach is to look for intrinsic characteristics of phishing
attacks. Cantina+ [22] proposes a system using Bayesian Network mixing 15
features. Gowtham et al. [23] proposed a detection system using a Support Vec-
tor Machines (SVM) classifier and similar features to Cantina+. Their system
achieved 99.65% true positive and 0.42% false positive. Daisuke et al. [24] con-
ducted an evaluation of nine machine learning-based methods; in their study,
AdaBoost provided the best performance. Some research also applies machine
learning techniques for detecting phishing emails instead of the phishing site [29–
31]. Danesh et al. [32] analyzed more than 380,000 phishing emails over a 15
months period. They found that some attacks keep similar messages over a long
period of time, while the other attacks use different messages over time to avoid
being detected by email filters.

Finally, some new approaches have been proposed recently, in which a phish-
ing attack is compared to known ones. Our previous paper [1] found that most
phishing attacks are duplicates or variations of previously reported attacks.
Thus, new attack instances can be detected using these similarities. Corona
et al. [25] proposed a method to detect attacks hosted on compromised servers,
which compares the page of the attack with the homepage that hosts it and the
pages linked by it.
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Table 6. A summary of related work for phishing detection and phishing kits

Category Work Brief description

Comparison to
target

Roiello et al. [14] Compare the layout similarity to
identify phishing attacks

Chen et al. [15] Applies Gestalt Theory to perform
visual similarity comparison

Chang et al. [16] and
Geng et al. [17]

Identify phishing sites by comparing
logos and favicons used on target sites

Liu et al. [18] A refined visual similarity comparison
including block level, page layout and
style

Jain et al. [19] An overview of phishing detection
methods based on visual similarity
comparison

Use of search
engines

Cantina [20] Query search engines with the
keyword extracted from suspicious
sites

Huh et al. [21] Feed search engines with suspicious
URL, and then use the number of
returned pages as the indicator of
phishing

Machine learning
based methods

Cantina+ [22] Detect phishing sites using a Bayesian
Network

Gowtham et al. [23] A SVM classifier is used to identify
phishing attacks by using features
similar to Cantina+

Daisuke et al. [24] An evaluation of nine machine
learning methods

Similarity
comparison to
known attacks

Cui et al. [1] Identify phishing attacks by
comparing the similarity with known
attacks

Similarity
comparison with
homepage

Corona et al. [25] Compute the similarity score between
suspicious pages and the homepage of
the same site to detect inconsistencies

Analysis of
phishing kits

Cova et al. [26] and
Mccalley et al. [27]

Analysis of phishing kits and their
obfuscation techniques

Han et al. [28] Analysis of phishing attacks and
phishing kits collected using a
honeypot

5.2 Phishing Kits

Some of the literature looks at the server side of phishing. Cova et al. [26] col-
lected 584 “phishing kits”. They analyzed the structure of the source code as
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(a) One <img> tag was added between the left and the right attack

(b) Between the left and the right, 31 <img> tags are added, and the
background image is changed

Fig. 5. Modification of attacks by changing one tag

Fig. 6. Histogram of Jaccard index for top 10 MT and MTS.
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well as the obfuscation techniques used. Mccalley et al. [27] did a similar and
more detailed analysis of these obfuscation technique. Han et al. [28] collected
phishing kits using a honeypot on which 643 unique phishing kits were uploaded.
They analyzed the kits’ lifespans, victims’ behaviors and attackers’ behaviors.

To the best of our knowledge, the only work comparable to ours is the research
conducted in [32] regarding the evolution of phishing emails. This paper is the
first one that gives a good picture of the evolution of phishing sites. Our study
provides a detailed analysis of how attackers modify and improve their attacks,
and what can motivate these modifications.

6 Conclusion and Future Work

In this paper, we have proposed a new cluster model, the Semi-Complete Linkage
graph (SCL), to analyze similar phishing attack instances. This model gives us
an opportunity to track the evolution of these attacks over time. We discovered
that the two main reasons for attackers to update their attacks are aiming at
new target and adding new features, e.g. collecting additional information or
improving the interface.

Our analysis shows that most attack instances are derived from a small set
of “master” attacks, with only a couple of successive versions being deployed.
This shows that attackers do not tend to update and improve a baseline of their
attacks, and instead keep reworking from the same base version. This suggests
that the phishing ecosystem follows a producers-buyers economic model: the
producers build and adapt crimewares and sell them to buyers who launch cyber-
attacks but barely update them.

Finally, we have also shown that each attack tends to be modified on its
own, independently from other attacks; each cluster of attacks uses its own page
template and is improved without a general plan across attacks. This could
be because a different attacker is beyond each attack, or more likely because
attackers follow poor software engineering standards.

Our database comes from Phishtank and X-force, and it has some bias
towards some brands [33] and some part of the world (in particular, it lacks
data from China and Russia). Therefore, we plan to redo the experiment using
a more comprehensive database in the future.
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