
Javier Lopez · Jianying Zhou
Miguel Soriano (Eds.)

 123

LN
CS

 1
10

98

23rd European Symposium
on Research in Computer Security, ESORICS 2018
Barcelona, Spain, September 3–7, 2018, Proceedings, Part I

Computer Security

Lecture Notes in Computer Science 11098

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Javier Lopez • Jianying Zhou
Miguel Soriano (Eds.)

Computer Security
23rd European Symposium
on Research in Computer Security, ESORICS 2018
Barcelona, Spain, September 3–7, 2018
Proceedings, Part I

123

Editors
Javier Lopez
Department of Computer Science
University of Malaga
Málaga, Málaga
Spain

Jianying Zhou
Singapore University of Technology
and Design

Singapore
Singapore

Miguel Soriano
Universitat Politècnica de Catalunya
Barcelona
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99072-9 ISBN 978-3-319-99073-6 (eBook)
https://doi.org/10.1007/978-3-319-99073-6

Library of Congress Control Number: 2018951097

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book contains the papers that were selected for presentation and publication at the
23rd European Symposium on Research in Computer Security — ESORICS 2018 –

which was held in Barcelona, Spain, September 3–7, 2018. The aim of ESORICS is to
further the progress of research in computer, information, and cyber security and in
privacy, by establishing a European forum for bringing together researchers in these
areas, by promoting the exchange of ideas with system developers, and by encouraging
links with researchers in related fields.

In response to the call for papers, 283 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Each paper was reviewed by at least three members of the Program Committee.
The Program Committee meeting was held electronically, with intensive discussion
over a period of two weeks. Finally, 56 papers were selected for presentation at the
conference, giving an acceptance rate of 20%.

ESORICS 2018 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the general chair, Miguel
Soriano, the organization chair, Josep Pegueroles, the workshop chair, Joaquin
Garcia-Alfaro, and all workshop co-chairs, the publicity chairs, Giovanni Livraga and
Rodrigo Roman, and the ESORICS Steering Committee and its chair, Sokratis
Katsikas.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

We hope that you will find the program stimulating and a source of inspiration for
future research.

June 2018 Javier Lopez
Jianying Zhou

ESORICS 2018

23rd European Symposium on Research in Computer Security
Barcelona, Spain

September 3–7, 2018

Organized by Universitat Politecnica de Catalunya - BarcelonaTech, Spain

General Chair

Miguel Soriano Universitat Politecnica de Catalunya, Spain

Program Chairs

Javier Lopez University of Malaga, Spain
Jianying Zhou SUTD, Singapore

Workshop Chair

Joaquin Garcia-Alfaro Telecom SudParis, France

Organizing Chair

Josep Pegueroles Universitat Politecnica de Catalunya, Spain

Publicity Chairs

Giovanni Livraga Università degli studi di Milano, Italy
Rodrigo Roman University of Malaga, Spain

Program Committee

Gail-Joon Ahn Arizona State University, USA
Cristina Alcaraz University of Malaga, Spain
Elli Androulaki IBM Research - Zurich, Switzerland
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Carlo Blundo Università degli Studi di Salerno, Italy
Levente Buttyan BME, Hungary
Jan Camenisch IBM Research - Zurich, Switzerland
Alvaro Cardenas University of Texas at Dallas, USA
Aldar C-F. Chan University of Hong Kong, SAR China
Liqun Chen University of Surrey, UK

Sherman S. M. Chow Chinese University of Hong Kong, SAR China
Mauro Conti University of Padua, Italy
Jorge Cuellar Siemens AG, Germany
Frédéric Cuppens TELECOM Bretagne, France
Nora Cuppens-Boulahia TELECOM Bretagne, France
Marc Dacier EURECOM, France
Sabrina De Capitani di

Vimercati
Università degli studi di Milano, Italy

Hervé Debar Télécom SudParis, France
Roberto Di-Pietro HBKU, Qatar
Josep Domingo-Ferrer University Rovira-Virgili, Spain
Haixin Duan Tsinghua University, China
José M. Fernandez Polytechnique Montreal, Canada
Jose-Luis Ferrer-Gomila University of the Balearic Islands, Spain
Simone Fischer-Hübner Karlstad University, Sweden
Simon Foley IMT Atlantique, France
Sara Foresti Università degli studi di Milano, Italy
David Galindo University of Birmingham, UK
Debin Gao Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Dimitris Gritzalis Athens University of Economics and Business, Greece
Stefanos Gritzalis University of the Aegean, Greece
Guofei Gu Texas A&M University, USA
Juan Hernández Universitat Politècnica de Catalunya, Spain
Amir Herzberg Bar-Ilan University, Israel
Xinyi Huang Fujian Normal University, China
Sushil Jajodia George Mason University, USA
Vasilios Katos Bournemouth University, UK
Sokratis Katsikas NTNU, Norway
Kwangjo Kim KAIST, Korea
Steve Kremer Inria, France
Marina Krotofil FireEye, USA
Costas Lambrinoudakis University of Piraeus, Greece
Loukas Lazos University of Arizona, USA
Ninghui Li Purdue University, USA
Yingjiu Li Singapore Management University, Singapore
Hoon-Wei Lim SingTel, Singapore
Joseph Liu Monash University, Australia
Peng Liu Pennsylvania State University, USA
Xiapu Luo Hong Kong Polytechnic University, SAR China
Mark Manulis University of Surrey, UK
Konstantinos

Markantonakis
RHUL, UK

Olivier Markowitch Université Libre de Bruxelles, Belgium
Fabio Martinelli IIT-CNR, Italy
Gregorio Martinez Perez University of Murcia, Spain

VIII ESORICS 2018

Ivan Martinovic University of Oxford, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Catherine Meadows Naval Research Laboratory, USA
Weizhi Meng Technical University of Denmark, Denmark
Chris Mitchell RHUL, UK
Haralambos Mouratidis University of Brighton, UK
David Naccache Ecole Normale Superieure, France
Martín Ochoa Universidad del Rosario, Colombia
Eiji Okamoto University of Tsukuba, Japan
Rolf Oppliger eSECURITY Technologies, Switzerland
Günther Pernul Universität Regensburg, Germany
Joachim Posegga University of Passau, Germany
Christina Pöpper NYU Abu Dhabi, UAE
Indrajit Ray Colorado State University, USA
Giovanni Russello University of Auckland, New Zealand
Mark Ryan University of Birmingham, UK
Peter Y. A. Ryan University of Luxembourg, Luxembourg
Rei Safavi-Naini University of Calgary, Canada
Pierangela Samarati Universitá degli studi di Milano, Italy
Damien Sauveron XLIM, France
Steve Schneider University of Surrey, UK
Einar Snekkenes Gjovik University College, Norway
Willy Susilo University of Wollongong, Australia
Pawel Szalachowski SUTD, Singapore
Qiang Tang LIST, Luxembourg
Juan Tapiador University Carlos III, Spain
Nils Ole Tippenhauer SUTD, Singapore
Aggeliki Tsohou Ionian University, Greece
Jaideep Vaidya Rutgers University, USA
Serge Vaudenay EPFL, Switzerland
Luca Viganò King’s College London, UK
Michael Waidner Fraunhofer SIT, Germany
Cong Wang City University of Hong Kong, SAR China
Lingyu Wang Concordia University, Canada
Edgar Weippl SBA Research, Austria
Christos Xenakis University of Piraeus, Greece
Kehuan Zhang Chinese University of Hong Kong, SAR China
Sencun Zhu Pennsylvania State University, USA

Organizing Committee

Oscar Esparza
Marcel Fernandez
Juan Hernandez
Olga Leon

Isabel Martin
Jose L. Munoz
Josep Pegueroles

ESORICS 2018 IX

Additional Reviewers

Akand, Mamun
Al Maqbali, Fatma
Albanese, Massimiliano
Amerini, Irene
Ammari, Nader
Avizheh, Sepideh
Balli, Fatih
Bamiloshin, Michael
Bana, Gergei
Banik, Subhadeep
Becerra, Jose
Belguith, Sana
Ben Adar-Bessos, Mai
Berners-Lee, Ela
Berthier, Paul
Bezawada, Bruhadeshwar
Biondo, Andrea
Blanco-Justicia, Alberto
Blazy, Olivier
Boschini, Cecilia
Brandt, Markus
Bursuc, Sergiu
Böhm, Fabian
Cao, Chen
Caprolu, Maurantonio
Catuogno, Luigi
Cetinkaya, Orhan
Chang, Bing
Charlie, Jacomme
Chau, Sze Yiu
Chen, Rongmao
Cheval, Vincent
Cho, Haehyun
Choi, Gwangbae
Chow, Yang-Wai
Ciampi, Michele
Costantino, Gianpiero
Dai, Tianxiang
Dashevskyi, Stanislav
Del Vasto, Luis
Diamantopoulou, Vasiliki
Dietz, Marietheres
Divakaran, Dinil

Dong, Shuaike
Dupressoir, François
Durak, Betül
Eckhart, Matthias
El Kassem, Nada
Elkhiyaoui, Kaoutar
Englbrecht, Ludwig
Epiphaniou, Gregory
Fernández-Gago, Carmen
Fojtik, Roman
Freeman, Kevin
Fritsch, Lothar
Fuchsbauer, Georg
Fuller, Ben
Gabriele, Lenzini
Gadyatskaya, Olga
Galdi, Clemente
Gassais, Robin
Genc, Ziya A.
Georgiopoulou, Zafeiroula
Groll, Sebastian
Groszschaedl, Johann
Guan, Le
Han, Jinguang
Hassan, Fadi
Hill, Allister
Hong, Kevin
Horváth, Máté
Hu, Hongxin
Huh, Jun Ho
Iakovakis, George
Iovino, Vincenzo
Jadla, Marwen
Jansen, Kai
Jonker, Hugo
Judmayer, Aljosha
Kalloniatis, Christos
Kambourakis, Georgios
Kannwischer, Matthias Julius
Kar, Diptendu
Karamchandani, Neeraj
Karati, Sabyasach
Karati, Sabyasachi

X ESORICS 2018

Karegar, Farzaneh
Karopoulos, Georgios
Karyda, Maria
Kasra, Shabnam
Kohls, Katharina
Kokolakis, Spyros
Kordy, Barbara
Krenn, Stephan
Kilinç, Handan
Labrèche, François
Lai, Jianchang
Lain, Daniele
Lee, Jehyun
Leontiadis, Iraklis
Lerman, Liran
León, Olga
Li, Shujun
Li, Yan
Liang, Kaitai
Lin, Yan
Liu, Shengli
Losiouk, Eleonora
Lykou, Georgia
Lyvas, Christos
Ma, Jack P. K.
Magkos, Emmanouil
Majumdar, Suryadipta
Malliaros, Stefanos
Manjón, Jesús A.
Marktscheffel, Tobias
Martinez, Sergio
Martucci, Leonardo
Mayer, Wilfried
Mcmahon-Stone, Christopher
Menges, Florian
Mentzeliotou, Despoina
Mercaldo, Francesco
Mohamady, Meisam
Mohanty, Manoranjan
Moreira, Jose
Mulamba, Dieudonne
Murmann, Patrick
Muñoz, Jose L.
Mykoniati, Maria
Mylonas, Alexios
Nabi, Mahmoodon

Nasim, Tariq
Neven, Gregory
Ngamboe, Mikaela
Nieto, Ana
Ntantogian, Christoforos
Nuñez, David
Oest, Adam
Ohtake, Go
Oqaily, Momen
Ordean, Mihai
P., Vinod
Panaousis, Emmanouil
Papaioannou, Thanos
Paraboschi, Stefano
Park, Jinbum
Parra Rodriguez, Juan D.
Parra-Arnau, Javier
Pasa, Luca
Paspatis, Ioannis
Perillo, Angelo Massimo
Pillai, Prashant
Pindado, Zaira
Pitropakis, Nikolaos
Poh, Geong Sen
Puchta, Alexander
Pöhls, Henrich C.
Radomirovic, Sasa
Ramírez-Cruz, Yunior
Raponi, Simone
Rial, Alfredo
Ribes-González, Jordi
Rios, Ruben
Roenne, Peter
Roman, Rodrigo
Rubio Medrano, Carlos
Rupprecht, David
Salazar, Luis
Saracino, Andrea
Schindler, Philipp
Schnitzler, Theodor
Scotti, Fabio
Sempreboni, Diego
Senf, Daniel
Sengupta, Binanda
Sentanoe, Stewart
Sheikhalishahi, Mina

ESORICS 2018 XI

Shirani, Paria
Shrishak, Kris
Siniscalchi, Luisa
Smith, Zach
Smyth, Ben
Soria-Comas, Jordi
Soumelidou, Katerina
Spooner, Nick
Stergiopoulos, George
Stifter, Nicholas
Stojkovski, Borce
Sun, Menghan
Sun, Zhibo
Syta, Ewa
Tai, Raymond K. H.
Tang, Xiaoxiao
Taubmann, Benjamin
Tian, Yangguang
Toffalini, Flavio
Tolomei, Gabriele
Towa, Patrick
Tsalis, Nikolaos
Tsiatsikas, Zisis
Tsoumas, Bill
Urdaneta, Marielba
Valente, Junia
Venkatesan, Sridhar
Veroni, Eleni
Vielberth, Manfred
Virvilis, Nick
Vizár, Damian

Vukolic, Marko
Wang, Daibin
Wang, Ding
Wang, Haining
Wang, Jiafan
Wang, Jianfeng
Wang, Juan
Wang, Jun
Wang, Tianhao
Wang, Xiaolei
Wang, Xiuhua
Whitefield, Jorden
Wong, Harry W. H.
Wu, Huangting
Xu, Jia
Xu, Jun
Xu, Lei
Yang, Guangliang
Yautsiukhin, Artsiom
Yu, Yong
Yuan, Lunpin
Zamyatin, Alexei
Zhang, Lei
Zhang, Liang Feng
Zhang, Yangyong
Zhang, Yuexin
Zhao, Liang
Zhao, Yongjun
Zhao, Ziming
Zuo, Cong

XII ESORICS 2018

Contents – Part I

Software Security

CASTSAN: Efficient Detection of Polymorphic C++ Object Type
Confusions with LLVM. 3

Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eckert

On Leveraging Coding Habits for Effective Binary Authorship Attribution. . . 26
Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi,
and Aiman Hanna

Synthesis of a Permissive Security Monitor . 48
Narges Khakpour and Charilaos Skandylas

MobileFindr: Function Similarity Identification for Reversing
Mobile Binaries . 66

Yibin Liao, Ruoyan Cai, Guodong Zhu, Yue Yin, and Kang Li

Blockchain and Machine Learning

Strain: A Secure Auction for Blockchains . 87
Erik-Oliver Blass and Florian Kerschbaum

Channels: Horizontal Scaling and Confidentiality
on Permissioned Blockchains . 111

Elli Androulaki, Christian Cachin, Angelo De Caro,
and Eleftherios Kokoris-Kogias

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews. 132
Mika Juuti, Bo Sun, Tatsuya Mori, and N. Asokan

Efficient Proof Composition for Verifiable Computation 152
Julien Keuffer, Refik Molva, and Hervé Chabanne

Hardware Security

Navigating the Samsung TrustZone and Cache-Attacks
on the Keymaster Trustlet . 175

Ben Lapid and Avishai Wool

Combination of Hardware and Software: An Efficient AES Implementation
Resistant to Side-Channel Attacks on All Programmable SoC. 197

Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, Zeyi Liu, and Jun Yuan

How Secure Is Green IT? The Case of Software-Based Energy
Side Channels. 218

Heiko Mantel, Johannes Schickel, Alexandra Weber,
and Friedrich Weber

Attacks

Phishing Attacks Modifications and Evolutions . 243
Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann,
Iosif-Viorel Onut, and Jason Flood

SILK-TV: Secret Information Leakage from Keystroke Timing Videos 263
Kiran S. Balagani, Mauro Conti, Paolo Gasti, Martin Georgiev,
Tristan Gurtler, Daniele Lain, Charissa Miller, Kendall Molas,
Nikita Samarin, Eugen Saraci, Gene Tsudik, and Lynn Wu

A Formal Approach to Analyzing Cyber-Forensics Evidence 281
Erisa Karafili, Matteo Cristani, and Luca Viganò

Malware and Vulnerabilities

Beneath the Bonnet: A Breakdown of Diagnostic Security 305
Jan Van den Herrewegen and Flavio D. Garcia

Extending Automated Protocol State Learning for the 802.11
4-Way Handshake . 325

Chris McMahon Stone, Tom Chothia, and Joeri de Ruiter

Automatic Detection of Various Malicious Traffic Using Side Channel
Features on TCP Packets . 346

George Stergiopoulos, Alexander Talavari, Evangelos Bitsikas,
and Dimitris Gritzalis

PwIN – Pwning Intel piN: Why DBI is Unsuitable
for Security Applications . 363

Julian Kirsch, Zhechko Zhechev, Bruno Bierbaumer,
and Thomas Kittel

Protocol Security

POR for Security Protocol Equivalences: Beyond Action-Determinism 385
David Baelde, Stéphanie Delaune, and Lucca Hirschi

Automated Identification of Desynchronisation Attacks on Shared Secrets . . . 406
Sjouke Mauw, Zach Smith, Jorge Toro-Pozo,
and Rolando Trujillo-Rasua

XIV Contents – Part I

Stateful Protocol Composition. 427
Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

Privacy (I)

Towards Understanding Privacy Implications of Adware and Potentially
Unwanted Programs . 449

Tobias Urban, Dennis Tatang, Thorsten Holz, and Norbert Pohlmann

Anonymous Single-Sign-On for n Designated Services with Traceability 470
Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne,
and Stephan Wesemeyer

Efficiently Deciding Equivalence for Standard Primitives and Phases. 491
Véronique Cortier, Antoine Dallon, and Stéphanie Delaune

DigesTor: Comparing Passive Traffic Analysis Attacks on Tor 512
Katharina Kohls and Christina Pöpper

CPS and IoT Security

Deriving a Cost-Effective Digital Twin of an ICS to Facilitate
Security Evaluation . 533

Ron Bitton, Tomer Gluck, Orly Stan, Masaki Inokuchi, Yoshinobu Ohta,
Yoshiyuki Yamada, Tomohiko Yagyu, Yuval Elovici, and Asaf Shabtai

Tracking Advanced Persistent Threats in Critical Infrastructures Through
Opinion Dynamics . 555

Juan E. Rubio, Rodrigo Roman, Cristina Alcaraz, and Yan Zhang

Hide Your Hackable Smart Home from Remote Attacks: The Multipath
Onion IoT Gateways . 575

Lei Yang, Chris Seasholtz, Bo Luo, and Fengjun Li

SCIoT: A Secure and sCalable End-to-End Management Framework
for IoT Devices . 595

Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
and Matthias Schunter

Author Index . 619

Contents – Part I XV

Contents – Part II

Mobile Security

Workflow-Aware Security of Integrated Mobility Services 3
Prabhakaran Kasinathan and Jorge Cuellar

Emulation-Instrumented Fuzz Testing of 4G/LTE Android Mobile Devices
Guided by Reinforcement Learning . 20

Kaiming Fang and Guanhua Yan

PIAnalyzer: A Precise Approach for PendingIntent Vulnerability Analysis . . . 41
Sascha Groß, Abhishek Tiwari, and Christian Hammer

Investigating Fingerprinters and Fingerprinting-Alike Behaviour
of Android Applications. 60

Christof Ferreira Torres and Hugo Jonker

Database and Web Security

Towards Efficient Verifiable Conjunctive Keyword Search for Large
Encrypted Database . 83

Jianfeng Wang, Xiaofeng Chen, Shi-Feng Sun, Joseph K. Liu,
Man Ho Au, and Zhi-Hui Zhan

Order-Revealing Encryption: File-Injection Attack and Forward Security 101
Xingchen Wang and Yunlei Zhao

SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. 122
Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen,
and Shuang Hao

Detecting and Characterizing Web Bot Traffic in a Large
E-commerce Marketplace . 143

Haitao Xu, Zhao Li, Chen Chu, Yuanmi Chen, Yifan Yang, Haifeng Lu,
Haining Wang, and Angelos Stavrou

Cloud Security

Dissemination of Authenticated Tree-Structured Data with Privacy
Protection and Fine-Grained Control in Outsourced Databases 167

Jianghua Liu, Jinhua Ma, Wanlei Zhou, Yang Xiang, and Xinyi Huang

Efficient and Secure Outsourcing of Differentially Private
Data Publication . 187

Jin Li, Heng Ye, Wei Wang, Wenjing Lou, Y. Thomas Hou, Jiqiang Liu,
and Rongxing Lu

Symmetric Searchable Encryption with Sharing and Unsharing 207
Sarvar Patel, Giuseppe Persiano, and Kevin Yeo

Dynamic Searchable Symmetric Encryption Schemes Supporting Range
Queries with Forward (and Backward) Security . 228

Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk

Applied Crypto (I)

Breaking Message Integrity of an End-to-End Encryption
Scheme of LINE. 249

Takanori Isobe and Kazuhiko Minematsu

Scalable Wildcarded Identity-Based Encryption. 269
Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh

Logarithmic-Size Ring Signatures with Tight Security
from the DDH Assumption . 288

Benoît Libert, Thomas Peters, and Chen Qian

RiffleScrambler – A Memory-Hard Password Storing Function 309
Karol Gotfryd, Paweł Lorek, and Filip Zagórski

Privacy (II)

Practical Strategy-Resistant Privacy-Preserving Elections 331
Sébastien Canard, David Pointcheval, Quentin Santos,
and Jacques Traoré

Formal Analysis of Vote Privacy Using Computationally Complete
Symbolic Attacker. 350

Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla

Location Proximity Attacks Against Mobile Targets: Analytical Bounds
and Attacker Strategies . 373

Xueou Wang, Xiaolu Hou, Ruben Rios, Per Hallgren,
Nils Ole Tippenhauer, and Martín Ochoa

XVIII Contents – Part II

Multi-party Computation

Constant-Round Client-Aided Secure Comparison Protocol 395
Hiraku Morita, Nuttapong Attrapadung, Tadanori Teruya,
Satsuya Ohata, Koji Nuida, and Goichiro Hanaoka

Towards Practical RAM Based Secure Computation 416
Niklas Buescher, Alina Weber, and Stefan Katzenbeisser

Improved Signature Schemes for Secure Multi-party Computation
with Certified Inputs . 438

Marina Blanton and Myoungin Jeong

SDN Security

Stealthy Probing-Based Verification (SPV): An Active Approach
to Defending Software Defined Networks Against Topology
Poisoning Attacks . 463

Amir Alimohammadifar, Suryadipta Majumdar, Taous Madi,
Yosr Jarraya, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi

Trust Anchors in Software Defined Networks . 485
Nicolae Paladi, Linus Karlsson, and Khalid Elbashir

Applied Crypto (II)

Concessive Online/Offline Attribute Based Encryption with Cryptographic
Reverse Firewalls—Secure and Efficient Fine-Grained Access Control
on Corrupted Machines . 507

Hui Ma, Rui Zhang, Guomin Yang, Zishuai Song, Shuzhou Sun,
and Yuting Xiao

Making Any Attribute-Based Encryption Accountable, Efficiently 527
Junzuo Lai and Qiang Tang

Decentralized Policy-Hiding ABE with Receiver Privacy 548
Yan Michalevsky and Marc Joye

Author Index . 569

Contents – Part II XIX

Software Security

CASTSAN: Efficient Detection
of Polymorphic C++ Object Type

Confusions with LLVM

Paul Muntean(B), Sebastian Wuerl, Jens Grossklags, and Claudia Eckert

Technical University of Munich, Munich, Germany
{paul.muntean,sebastian.wuerl,claudia.eckert}@sec.in.tum.de,

jens.grossklags@in.tum.de

Abstract. C++ object type confusion vulnerabilities as the result of ille-
gal object casting have been threatening systems’ security for decades.
While there exist several solutions to address this type of vulnerability,
none of them are sufficiently practical for adoption in production scenar-
ios. Most competitive and recent solutions require object type tracking
for checking polymorphic object casts, and all have prohibitively high
runtime overhead. The main source of overhead is the need to track the
object type during runtime for both polymorphic and non-polymorphic
object casts. In this paper, we present CastSan, a C++ object type
confusion detection tool for polymorphic objects only, which scales effi-
ciently to large and complex code bases as well as to many concurrent
threads. To considerably reduce the object type cast checking overhead,
we employ a new technique based on constructing the whole virtual table
hierarchy during program compile time. Since CastSan does not rely on
keeping track of the object type during runtime, the overhead is dras-
tically reduced. Our evaluation results show that complex applications
run insignificantly slower when our technique is deployed, thus making
CastSan a real-world usage candidate. Finally, we envisage that based
on our object type confusion detection technique, which relies on ordered
virtual tables (vtables), even non-polymorphic object casts could be pre-
cisely handled by constructing auxiliary non-polymorphic function table
hierarchies for static classes as well.

Keywords: Static cast · Type confusion · Bad casting · Type safety
Type casting

1 Introduction

Real-world security-critical applications (e.g., Google’s Chrome, Mozilla’s Fire-
fox, Apple’s Safari, etc.) rely on the C++ language as main implementation lan-
guage, due to the balance it offers between runtime efficiency, precise handling of
low-level memory, and the object-oriented abstractions it provides. Thus, among
the object-oriented concepts offered by C++, the ability to use object typecast-
ing in order to increase, or decrease, the object scope of accessible class fields
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 3–25, 2018.
https://doi.org/10.1007/978-3-319-99073-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_1&domain=pdf

4 P. Muntean et al.

inside the program class hierarchy is a great benefit for programmers. However,
as C++ is not a managed programing language, and does not offer object type or
memory safety, this can potentially lead to exploits.

C++ object type confusions are the result of misinterpreting the runtime type
of an object to be of a different type than the actual type due to unsafe type-
casting. This misinterpretation leads to inconsistent reinterpretation of memory
in different usage contexts. A typical scenario, where type confusion manifests
itself, occurs when an object of a parent class is cast into a descendant class type.
This is typically unsafe, if the parent class lacks fields expected by the descendant
type object. Thus, the program may interpret the non-existent field or function
in the descendant class constructor as data, or as a virtual function pointer in
another context. Object type confusion leads to undefined behavior according
to the C++ language draft [1]. Further, undefined behavior can lead to memory
corruption, which in turn leads to exploits such as code reuse attacks (CRAs) [6]
or even to advanced versions of CRAs including the COOP attack [30]. These
attacks violate the control flow integrity (CFI) [2,3] of the program, by bypass-
ing currently available OS-deployed security mechanisms such as DEP [26] and
ASLR [28]. In summary, the lack of object type safety and, more broadly, mem-
ory safety can lead to object type confusion vulnerabilities (i.e., CVE-2017-3106
[12]). The number of these vulnerabilities has increased considerably in the last
years, making exploit based attacks against a large number of deployed systems
an everyday possibility.

Table 1. High-level feature overview of existing C++ object
type confusion checkers.

Checker Year Poly Non-poly No blacklist Obj. Tracking Threads
UBSan [15] 2014 � �
CaVer [22] 2015 � � � � limited
Clang CFI [8] 2016 � � �
TypeSan [18] 2016 � � � � �
HexType [19] 2017 � � � � �
CASTSAN 2018 � future work � not required �

Table 1 depicts
the currently
available solutions,
which can be used
for C++ object
type confusion
detection during
runtime. The
tools come with
the following lim-
itations: (1) high
runtime overhead (mostly due to the usage of a compiler runtime library), (2)
limited type checking coverage, (3) lack of support for non-polymorphic classes,
(4) absence of threads support, and (5) high maintenance overhead, as some
tools require a manually maintained blacklist.

We consider runtime efficiency and coverage to be most impactful for the
usage of such tools. While coverage can be incrementally increased by support-
ing more object allocators (e.g., child *obj=dynamic cast<*child>(parent),
ClassA *obj=new (buffer) ClassA();, char *str=(char) malloc(sizeof
(S)); S *obj=reinterpret cast<*S>(str);, see TypeSan, HexType, for more
details) and instrumenting them for later object type runtime tracking, increas-
ing performance is more difficult to achieve due to the required runtime of
type tracking support on which most tools rely. Reducing runtime overhead

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 5

is regarded to be far more difficult to achieve, since object type data has to be
tracked at runtime and updating data structures at runtime (i.e., red-black trees,
etc.) has to be performed during a type check. As such, due to their perceived
high runtime overhead, most of the currently available tools do not qualify as
production-ready tools. Furthermore, the per-object metadata tracking mech-
anisms generally represent an overhead bottleneck in case the to-be hardened
program contains: (1) a high volume of object allocations, (2) a large number
of memory freeing operations, (3) frequent use of object casts, (4) exotic object
memory allocators (i.e., Chrom’s tcmalloc(), object pool allocators, etc.) for
which the detection tool implementation has to be constantly maintained.

Table 2. Object type confusion detection overhead for
SPEC CPU2006 benchmark.

Programs
Checker soplex (C++) xalancbmk (C++) astar (C++)
Clang-CFI [8] 5.03% 4.49% 0.9%
CASTSAN 2.07% 1.78% 0.3%
Speed-Up 2.42 times 2.52 times 3 times

We present CastSan,
a Clang/LLVM compiler-
based solution, usable as
an always-on sanitizer for
detecting all types of
polymorphic-only object
type confusions during run-
time, with comparable cov-
erage to Clang-CFI [8]. CastSan has significantly lower runtime performance
overhead than existing tools (see Table 2). Its technique is based on the observa-
tion, that virtual tables (vtables) of polymorphic classes can be used as a success-
ful replacement for costly metadata storage and update operations, which similar
tools heavily rely on. Our main insight is that: (1) program class hierarchies can
be used more effectively to store object type relationships than Clang-CFI’s bit-
sets, and (2) the Clang-CFI bitset checks can be successfully replaced with more
efficient virtual pointer based range checks. Based on these observations, the
metadata that has to be stored and checked for each object during object cast-
ing is reduced to zero. Next, the checks only require constant checking time due
to the fact that no additional data structures (i.e., TypeSan and HexType use
both red-black trees for storing relationships between object types) have to be
consulted during runtime. Finally, this facilitates efficient and scalable runtime
vptr-based range checks.

CastSan performs the following steps for preparing the required metadata
during compile time. First, the value of an object vptr is modified through inter-
nal compiler intrinsics such that it provides object type information at runtime.
Second, these modified values are used by CastSan to compute range checks
that can validate C++ object casts during runtime. Third, the computed range
checks are inserted into the compiled program. The main observation, which
makes the concept of vptr based range checks work, is that range checks are
based on the fact, that any sub-tree of a class inheritance tree is contained in
a continuous chunk of memory, which was previously re-ordered by a pre-order
program virtual table hierarchy traversal.

CastSan is implemented on top of the LLVM 3.7 compiler framework [24] and
relies on support from LLVM’s Gold Plug-in [23]. CastSan is intended to address
the problem of high runtime overhead of existing solutions by implementing an

6 P. Muntean et al.

explicit type checking mechanism based on LLVM’s compiler instrumentation.
CastSan’s goal is to enforce object type confusion checks during runtime in pre-
viously compiled programs. CastSan’s object type confusion detection mecha-
nism relies on collecting and storing type information used for performing object
type checking during compile time. CastSan achieves this without storing new
metadata in memory and by solely relying on virtual pointers (vptrs), that are
stored with each polymorphic object.

We evaluated CastSan with the Google Chrome [16] web browser, the open
source benchmark suite of TypeSan [18], the open source benchmark programs of
IVT [5], and all C++ programs contained in the SPEC CPU2006 [31] benchmark.
The evaluation results show that, in contrast to previous work, CastSan has
considerably lower runtime overhead while maintaining comparable feature cov-
erage (see Table 1 for more details). The evaluation results confirm that CastSan

is precise and can help a programmer find real object type confusions.
In summary, we make the following contributions:

– We develop a novel technique for detection of C++ object type confusions
during runtime, which is based on the linear projection of virtual table hier-
archies.

– We implement our technique in a prototype, called CastSan, which is based
on the Clang/LLVM compiler framework [24] and the Gold plug-in [23].

– We evaluate CastSan thoroughly and demonstrate that CastSan is more
efficient than other state-of-the-art tools.

2 Background

Before presenting the technical details of our approach, we review necessary
background information.

2.1 C++ Type Casting

Object type casting in C++ allows an object to be cast to another object, such
that the program can use different features of the class hierarchy. Seen from
a different angle, object typecasting is a C++ language feature, which aug-
ments object-oriented concepts such as inheritance and polymorphism. Inheri-
tance facilitates that one class contained inside the program class hierarchy inher-
its (gets access) to the functionality of another class that is located above in the
class hierarchy. Object casting is different, as it allows for objects to be used in
a more general way (i.e., using objects and their siblings, as if they were located
higher in the class hierarchy). C++ provides static, dynamic, reinterpret
and const casts. Note that reinterpret cast can lead to bad casting, when
misused and is unchecked “by design”, as it allows the programmer to freely
handle memory. In this paper, we focus on static cast and dynamic cast (see
N4618 [1] working draft), because the misuse of these can result in bad object
casting, which can further lead to undefined behavior. This can potentially be

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 7

exploited to perform, for example, local or remote code reuse attacks on the
software.

The terminology of this paper is aligned to the one used by colleagues [18],
in order to provide terminology traceability as follows. First, runtime type refers
to the type of the constructor used to create the object. Second, source type is
the type of the pointer that is converted. Finally, target type is the type of the
pointer after the type conversion.

An upcast is always permitted if the target type is an ancestor of the source
type. These types of casts can be statically verified as safe, as the object source
type is always known. Thus, if the source type is a descendant of the target type,
the runtime type also has to be a descendant and the cast is legal. On the other
hand, a downcast cannot be verified during compile time. This verification is
hard to achieve, since the compiler cannot know the runtime type of an object,
due to intricate data flows (for example, inter-procedural data flows). While it
can be assumed that the runtime type is a descendant of the source type, the
order of descendancy is not known. As only casts from a lower to a higher (or
same) order are allowed, a runtime check is required to check this.

2.2 C/C++ Legal and Illegal Object Type Casts

A type cast in C/C++ is legal only when the destination type is an ancestor of
the runtime type of the cast object. This is always true if the destination type
is an ancestor of the source type (upcast). In contrast, if the destination type is
a descendant of the source type (downcast), the cast could only be legal if the
object has been upcast beforehand.

Fig. 1. C++ based object type down-casting and up-casting examples.

Figure 1 depicts upcast and downcast in an example hierarchy. The graph
of Fig. 1(a) is a simple class hierarchy. The boxes are classes, and the arrows
depict inheritance. The code of Fig. 1(b) shows how upcast and downcast look
in C++. The upcast and downcast arrows besides the graph visualize the same
casts that are coded in C++ in Fig. 1(a). To verify the cast, the runtime type
of the object is needed. Unfortunately, the exact runtime type of an object is

8 P. Muntean et al.

not necessarily known to the compiler for each cast, as explained in the previous
section. While the source type is known to the compiler for each cast, it can only
be used to detect very specific cases of illegal casts (e.g., casts between types
that are not related in any way, which means they are not in a descendant-
ancestor relationship). All upcasts can be statically verified as safe because the
destination type is an ancestor of the runtime type. If the destination type is
not an ancestor of the runtime type, then the compiler should throw an error.

2.3 Ordered vs. Unordered Virtual Tables

In this section, we briefly describe the differences between in-memory ordered
and unordered vtables and how these can be used to detect object type confusions
during runtime.

Fig. 2. Illegal and legal object casts vs. ordered and unordered virtual tables. (Color
figure online)

Figure 2(a), (b), and (c) highlight the case in which an illegal object cast
would not be detected if the vtables are not ordered (see blue shaded code in
line number eight), while Fig. 2(d), (e), and (f) show how a legal (see green
shaded code in line number four) and an illegal (see red shaded code in line
number eight) object cast can be correctly identified by using the object vptr in
case the vtables are ordered in memory.

On the one hand, Fig. 2(c) shows the vptr value as it would be present in
the unordered case of Fig. 2(b) and (a). The object x, that is constructed at line
number seven with the constructor of Z (runtime type) has a vptr of value 0x18
in the unordered case. x is referenced by a pointer of type X (source type) and

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 9

at line number eight it is cast to Y (destination type). This is an illegal object
cast, as Z does not inherit from Y . The vptr of x is in the range of Y built from
the unordered vtable layout of Fig. 2(b). A range check would, therefore, falsely
conclude that the cast is legal.

On the other hand, Fig. 2(f) depicts the same objects as constructed after
ordering according to Fig. 2(e) and (d). At line number three, the object x is
instantiated having (runtime) type W . The object, therefore, has a vptr with
value 0x10 according to Fig. 2(d). The object is referenced by a pointer of type
X (source type) and at line number four, the object x is cast to Y (destination
type). This cast is a legal object cast, as the vptr 0x10 has a value between the
vtable address of Y 0x08 and the address value of the last member of the sub-list
of Y 0x10. Note that this memory range is depicted in Fig. 2(e). Further, at line
number seven, the object x is newly allocated with the constructor of Z. Next,
the object is cast to Y at line number eight. As x’s vptr is 0x18, which is the
vtable address of Z, it can be observed that the cast is illegal. The reason is that
the vptr value 0x18 is larger than the largest value of the sub-list of Y , which
is the vtable address of W , 0x10. Thus, in this way the object type confusion
located at line number eight can be correctly detected.

Finally, note that the range checks, which we will use in our implementation,
are precise, when the vtables of all program hierarchies are ordered with no gaps
in memory according to, for example, their pre-order traversal. In case this is
not guaranteed, then the range checks could generate false positives as well as
false negatives (see the blue shaded code in Fig. 2(c)).

3 Threat Model

The threat model used by CastSan resembles HexType’s threat model. Specif-
ically, we assume a skilled attacker who can exploit any type of object type
confusion vulnerability, but who does not have the capability to make arbitrary
memory writes. CastSan’s instrumentation is part of the executable program
code and thus assumed to be write-protected through data execution protection
(DEP) or another mechanism. Further, CastSan does not rely on information
hiding; as such the attacker is assumed to be able to perform arbitrary reads.
This is not a limitation, as CastSan does not rely on randomization or code
shuffling as other CFI schemes [10,33]. As CastSan focuses exclusively on C++
object down-cast type confusions, we assume that other types of memory corrup-
tions (i.e., buffer overflows, etc.) are combated with other types of protection
mechanisms and that CastSan can work along these complementary defense
mechanisms. Finally, we assume that for any large existing source code base,
which is affected by object type confusions (e.g., [11]), this cannot currently be
fixed solely by inspecting the source code statically or manually and that the
attacker has access to the source code of this vulnerable application.

10 P. Muntean et al.

4 Design and Implementation

In Sect. 4.1, we present the architecture of CastSan, and in Sect. 4.2, we explain
how virtual table inheritance tree projections are used by CastSan, while in
Sect. 4.3, we describe our object type confusion detection checks. Finally, in
Sect. 4.4, we outline CastSan’s implementation.

4.1 Architecture Overview

CASTSAN’s Main Analysis Steps. CastSan instruments object casts as fol-
lows: (1) source code files are fed into the Clang compiler, which adds several
intrinsics needed to mark all possible cast locations in the code, (2) CastSan

uses the vtable metadata and the virtual table hierarchies, which were embed-
ded in each object file in the Clang front-end, (3) placeholder intrinsic-based
instructions are used for recuperating the vptr and the mangled name of the
object type which will be later cast, and (4) placeholder intrinsic-based instruc-
tions for the final pre-cast checks are inserted, containing the per object cast
range. The intrinsics will be removed before runtime and will be converted to
concrete instruction sequences used to perform the object type cast check. The
placeholder intrinsics are used by CastSan since part of the information needed
for the checking of illegal casts is not available during compile time (the vptr
value is computed during runtime). Finally, during link time optimization (LTO)
[25], the following operations are performed: (1) the virtual table hierarchy is
constructed and decomposed into primitive vtable trees, and (2) the placeholder
intrinsics used to check for down-cast violations are inserted based on the anal-
ysis of the previous primitive vtable trees.

Figure 3 depicts the placement of CastSan’s components within the
Clang/LLVM compiler framework and the analysis flow indicated by circled
numbers.

Building Virtual Pointer Based Range Checks. First, the LValue (LLVM
data type) ❶ and RValue (LLVM data type) ❷ casts are instrumented inside the
Clang compiler with additional C++ code. Second, only the polymorphic casts
are selected from these casts ❸. Third, the polymorphic casts are flagged for
instrumentation using an LLVM intrinsic ❹ during LTO. Fourth, the intrinsics
inserted by CastSan with the help of Clang are detected ❺ for later usage during
LTO. Fifth, the metadata of the intrinsics is read out ❻ to acquire all necessary
information about an object cast-site. Sixth, the ranges necessary for checking
object type confusions are built in ❼. Note that an object range is computed by
using the virtual address of the object destination type and the count of all nodes
(vtables) inheriting from the destination type. Finally, the object cast-sites are
instrumented with a range check ❽.

4.2 Virtual Table Inheritance Tree Projection

CastSan computes virtual table inheritance trees for each class hierarchy con-
tained in the analyzed program. Next, CastSan uses these vtable inheritance

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 11

Fig. 3. CastSan system architecture.

trees to determine if the ancestor-descendant relation between the types of the
cast objects holds. The ancestor-descendant relations between object types rely
on several properties of these ordered vtable inheritance trees, which we will
explain next. The root of such a virtual table inheritance tree is a polymorphic
class that does not inherit from other polymorphic classes (root type). Note that
a class has only one vtable associated to it. Further, each such vtable is broken
into multiple primitive vtables. Also note that these vtables can occupy different
places in this ordering. The children of any node in the vtable tree are all types
that directly inherit from the ancestor class and are located underneath this class
in the program class hierarchy. If a class inherits from multiple vtables, it has
a node in any tree that the ancestor types are a part of. The leaves of a vtable
tree are vtables, which have no descendants. CastSan will put the vtables that
are in any type of a descendant-ancestor relation to each other in a single virtual
inheritance tree. Next, we show how a virtual table projection list is computed.

Figure 4(a) depicts the memory layout of the vtables of the class represented
by the primitive hierarchy in Fig. 4(b). The vtables contain their addresses as
these are laid out in memory (i.e., consider address 0x08) along with the pointers
to the virtual functions (i.e., Y::x()). Note that in the unordered table located
on the left side of Fig. 4(a), there is no relationship between the addresses of
the vtables and the class hierarchy. For simplicity reasons, we opted in Fig. 4(a)
to depict each box of the vtable hierarchy to contain a single entry. In general,
when there are multiple entries in each vtable contained in the vtable hierarchy,
the vtables will be interleaved to ensure that their base pointers are consecutive
addresses in memory. After ordering the values of the addresses of the vtables

12 P. Muntean et al.

Fig. 4. Unordered and ordered (a) vtables of the tree rooted in X. The tree (b) contains
the vptr of each type after ordering. (c) depicts the projected list corresponding to (b).

(right table in Fig. 4(a)) the addresses are in ascending order (e.g., W inherits from
Y directly, thus it comes directly after Y in the vtable). Further, after interleaving
the addresses of the vtables, their values are in ascending order corresponding
to the depth-first traversal, as shown in the projected list depicted in Fig. 4(c).
Next, CastSan uses a pre-order traversal of each vtable inheritance tree in order
to construct a list of vtables, which represents a projection of a tree hierarchy
onto a list. For example, if the type of a vtable (first row in a box, see Fig. 4(b))
is the descendant of another type, it is inserted after the other type in the list.
Further, any sub-tree of each tree is represented as a continuous sub-list of virtual
tables by CastSan. This means that the types that inherit from the root type
of the sub-tree will be inserted into the list in direct succession to the sub-tree
root. Finally, the projected list will be used to compute object cast ranges which
will subsequently be used to determine legal and illegal relations between the
object types during a cast operation.

4.3 Object Type Confusion Detection

Virtual Pointer Usage as Runtime Object Type Identifier. CastSan

uses the virtual pointer (vptr) of an object to identify its type at runtime. Note
that any polymorphic type contains a set of virtual methods that are reachable
from any object using its vptr. The vptr of a type is saved in any polymorphic
object that is created using the type’s constructor. By type constructor, we
mean the function which is called when an object of a certain type is allocated.
Furthermore, note that each legally cast instance of a polymorphic object can
be uniquely identified by its vptr since the vptr of an object is always the first
field of that object. CastSan therefore reads the vptr of any object at runtime
to uniquely identify its runtime type. CastSan does this by loading the first
64-bit of the object into a register using an intermediate representation (IR)
load instruction. This load instruction is inserted by CastSan during LTO for
runtime usage.

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 13

Determine Object Type Inheritance at Runtime. As previously men-
tioned, CastSan checks object casts by using the projected virtual table hier-
archy list (see Fig. 4(c) for more details). A projected class hierarchy consists
of ordered vtable addresses. The runtime type of an object must inherit from
the destination type of the cast in order for the cast to be legal. This happens
if the vtable of the runtime type is a child in the sub-tree of the vtable of the
destination type. Further, if this is the case, the runtime type comes after the
destination type in the depth-first list of the tree. Since all nodes of a sub-tree
are placed successively in the projected list, this means that these nodes are
located before the last element of the sub-tree in the list. Therefore, CastSan

does not need to traverse the whole sub-list representing the sub-tree of the
destination type to check if the runtime type is part of it. It is enough to check
whether it is anywhere between the first and the last element in the list. This
holds because the type of the object holding the vptr has to have a vtable in the
sub-tree of the destination type, which means it inherits from the destination
type. Otherwise, if the vptr is not in the range, it has no vtable inheriting from
the vtable of the destination type and therefore its type does not inherit from the
destination type. Therefore, the object cast is illegal in this situation. CastSan

implements this mechanism at runtime using range checks on the vtable pointer
of an object and additionally by using the values of the vtable addresses of the
destination type sub-tree. CastSan checks during runtime if the value of the
vptr is larger than the vtable address of the destination type and smaller than
the address value of the last vtable entry located in the sub-list corresponding
to the destination type. If this holds, then the runtime type must inherit from
the destination type; therefore, the cast is legal. Otherwise, if the vptr value is
not contained between the above mentioned boundaries, then the runtime type
does not inherit from the destination type, thus the object cast is not legal.

Virtual Table Based Range Checks. CastSan uses vtable based range
checks in order to check if the vptr of an object resides between two allowed
values. CastSan’s range check is based on the observation that the addresses
of the ordered vtables are re-arranged by interleaving them through a pre-order
traversal of the inheritance trees in which these vtables are contained. There-
fore, the addresses of any sub-tree lay continuously and gapless in memory. By
continuously and gapless we mean that there is no starting address of another
vtable not belonging to the sub-tree in between the addresses of a sub-tree, and
the starting addresses of the vtable lie consecutively in memory, respectively.
Further, if the vptr points to any address between the first and the last address
of the sub-tree, then it has to be in the list of all addresses located in the sub-tree
and therefore the cast is legal. In this way, CastSan can simplify the type check
to a range check. CastSan builds a range check by using the vtable address V of
the destination type X and the count c of all classes that inherit from X. V and
c can be statically determined at compile time for each object cast performed
in the program. To perform the check at runtime, the vptr value P is extracted
from the object before the cast. Next, the following expression is evaluated by

14 P. Muntean et al.

CastSan during runtime. If V + c ≥ P ≥ V holds, then the cast is legal, oth-
erwise the cast is illegal and program execution will be terminated or an error
log output can be produced depending on the employed CastSan usage mode
flag. Note that CastSan offers the possibility to include in the else-branch of
the inserted cast check the option to log back-trace information instead of ter-
minating the program which is obviously not always desired (see Fig. 5 for more
details).

The generated object cast range check has the following advantages com-
pared to other state-of-the-art techniques. First, in terms of memory overhead,
CastSan does not require any additional metadata at runtime to be recorded,
deleted or updated in order to determine class hierarchy relationships. Second,
the range check needed for the sub-typing check has O(1) runtime cost com-
pared to O(n) runtime cost of other tools due to traversals of additional data
structures (e.g., red-black tree).

Instrumenting a C++ Object Cast. CastSan replaces the cast check intrin-
sics inserted into the code within the Clang compiler with a range based cast
check (see ❽ depicted in Fig. 3 for more details) during LTO. The check is sub-
stituted with an equality check if the count of vtables in the range is one. The
equality check matches the vtable address of the range with the vptr of the
object. If the addresses are equal, then the cast is legal, otherwise it is illegal. In
case the range has more elements than one, then a range check will be inserted.
The steps for building and inserting the final range check are as follows. First,
the value of the start address of the range is subtracted from the vptr value by
CastSan. Further, if the pointer value was lower than the start address of the
vtable, then the result is negative and the cast is illegal. Second, the result of
the subtraction is next rotated by three bits to the right to remove the empty
bits that define the pointer length. If the result of the subtraction was negative,
this rotation shifts the sign of the result to the right, making it the most sig-
nificant bit. Therefore, if the cast is illegal, then the result of the bit rotation
is a large number. More specifically, the number is then larger than any result
of a valid cast. This holds because the most significant bit, where the sign was
shifted due to the rotation, would have been shifted to the right. This would
make the number smaller than the illegal case. The result is either the distance
of the destination type from the runtime type within the vtable hierarchy or an
invalid large number. Finally, the value is compared to the number of vtables in
the range. If the value is less than or equal to the count, then the cast is legal
and program execution can continue, otherwise an illegal cast is reported. By
using these instructions, the range check can ensure three preconditions for a
legal cast using only one branch. If any of the following preconditions do not
hold, CastSan will report an illegal cast. This is the case if the value of the vptr
is: (1) higher than the last address in the range (i.e., the type of the object is
not directly related to the destination type), (2) lower than the first value of
the vtable address range (i.e., the runtime type of the object is an ancestor of
the destination type), resulting in the negative bit being shifted to a significant

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 15

bit of the subtraction result, or (3) not aligned to the pointer length (i.e., the
pointer is corrupted). Note that in (3) the unaligned bit is rotated to one of
the significant bits or to the signing bit. Since the comparison is unsigned, the
number would then again be larger than the last address in the vtable range.

Further, note that the vptr of an object can always be used to perform the
check in the primary inheritance tree of the object source type. Finally, the
primary inheritance tree, represents the tree which contains the virtual table of
the object types as primary parent.

Fig. 5. Instrumented polymorphic C++ object type cast.

Figure 5 depicts a C++ object type cast at line number two in Fig. 5(a), the
un-instrumented assembly code in Fig. 5(b), and the assembly code instrumen-
tation added by CastSan in Fig. 5(c) (the range check is highlighted in gray
shaded color). In Fig. 5(a), without line number three the compiler generates
does not generate code since the Clang/LLVM compiler is designed to not gen-
erate specific code for object casts. Only for the object dispatch (see line number
three), assembly code is generated. The assembly code in Fig. 5(b) corresponds
to the object dispatch depicted in Fig. 5(a) at line number 3. Finally, we assume
that the OS provides an W ⊕ X protection mechanism (e.g., data execution
prevention (DEP)) and thus the assembly code depicted in Fig. 5(c) cannot be
modified (rewritten) by an attacker.

Next, we present the operations performed by the instructions contained in
the range check (gray shaded code in Fig. 5) in order to better understand how
the check operates. First, the vtable address of type X (corresponding to line
number one in Fig. 5(a)) 0x401080 is loaded. In line number two, in Fig. 5(c),
the fixed value of the address is moved to the register %rcx. This is done in
order to load the first value of the range. Second, the vptr of the object x is
moved to register %rdx depicted in line number three. This is done in order to
provide the second value of the subtraction of the range check. Note that the
object pointer itself was already loaded in register %rax. This is not depicted in
Fig. 5 for reasons of brevity. Third, the sub instruction performs the subtraction
of the vtable address (stored in %rcx) from the vptr (stored in %rdx). At line
number five, depicted in Fig. 5(c), the pointer alignment is removed from the
result by using a rotation (i.e., rol) instruction. This is done to obtain the
distance of the vptr from the vtable address of the destination type located in
the vtable hierarchy. Note that if the number of all types inheriting from the
destination type is higher or equal to the distance, the cast is legal. Finally,

16 P. Muntean et al.

the result is compared to the constant $0x2, which is the number of all types
inheriting from the destination type Y , specifically these are Y and W . Then, the
program execution either jumps to the address of the instruction ud2 located at
line number one in Fig. 5(c) (address 0x400fc0), which terminates the program;
otherwise, the object dispatch (line number three in Fig. 5(c)) will be performed
similar as in Fig. 5(b) and the program continues its execution.

4.4 Implementation

Components. CastSan is implemented as two module passes for the Clang/L-
LVM compiler [24] infrastructure by extending LLVM (v.3.7) and relies on the
Gold plug-in [23]. CastSan is based on the virtual table interleaving algorithm
presented by Bounov et al. [5] from which it reuses its interleaved vtable meta-
data, by transporting it from the Clang compiler front-end to the LTO phase via
new metadata nodes inserted into LLVM’s IR code. More specifically, CastSan’s
implementation is split between the Clang compiler front-end, and a new link-
time pass used for analysis and generating the final intrinsic based compiler cast
checks. CastSan’s transformations operate on LLVM’s intermediate represen-
tation (IR), which retains sufficient programming language semantic information
at link time to perform whole program analysis and identify all possible types
of polymorphic C++ casts in order to instrument them.

Usage Modes. CastSan’s implementation provides three operation modes
with corresponding compiler flags. First, attack prevention mode can be used
in shipped program binaries to customers. This mode can be used, if desired,
to terminate program execution when an illegal cast is detected, thus provid-
ing an effective mechanism for avoiding undefined behavior which may lead to
vulnerability based CRAs. Second, software testing mode can be used during
program testing in order to detect type confusion errors and to help fix them
before the software is shipped by subjecting the analyzed program to a test suite
with different possible goals (i.e., program path coverage, etc.). Finally, relaxed
mode can be used to detect and log illegal casts detected during development or
deployment. This last mode is mainly intended as a replacement for the situa-
tion that it is not safe to stop program execution which is mainly the case for
real-world programs.

5 Evaluation

We evaluated CastSan by instrumenting various open source programs and con-
ducting a thorough analysis with the goal to show its effectiveness and practical-
ity. The experiments were performed using the open source benchmarks Type-
San [18], IVT [5], Google’s Chrome (v.33.0.1750.112) web browser, and SPEC
CPU2006 benchmark (only for the C++ based programs), which were also used
by HexType [19]. If not otherwise stated, we used the Clang -O2 compiler flag
for all our experiments. In our evaluation, we addressed the following research
questions (RQs).

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 17

RQ1: What is the runtime overhead of CastSan (Sect. 5.1)
RQ2: How precise is CastSan? (Sect. 5.2)
RQ3: How effective is CastSan? (Sect. 5.3)
RQ4: How can CastSan assist a programmer during a bug bounty? (Sect. 5.4)

Comparison Method. In addition to the runtime overhead and binary blow-
up, the coverage and precision of HexType is compared to that of CastSan.
For benchmarking SPEC CPU2006, the benchmark script of TypeSan, and the
micro-benchmark of ShrinkWrap [17] was used.

Preliminaries. The script of TypeSan (approx. 606 Bash LOC) sets up a full
environment consisting of: Binutils, Bash, Coreutils, CMake, Pearl. These are
used for instrumenting the SPEC CPU2006, and UBench (consisting of 10 intri-
cate C++ testcases). After the benchmark is set up, the script compiles the pro-
grams and checks each program by starting it and checking it to see if it executed
successfully.

The script of IVT (approx. 200 Python LOC) is used to compile up to 50
C++ programs. Some of the programs contain object type confusions. After each
instrumented program execution, the script checks if the program executed suc-
cessfully or not.

Experimental Setup. We evaluated CastSan on an AMD Ryzen R7 1800x
CPU using 8 cores with 16 GB of RAM running the Debian 8 Jessie OS. All
benchmarks were executed 10 times to obtain reliable mean values.

Table 3. Benchmark results of running various C++ programs contained in the SPEC
CPU2006 benchmark with CastSan enabled and disabled (vanilla). The values repre-
sent the mean time needed to finish running the benchmark program over 10 runs.

Benchmark Vanilla CastSan Overhead
soplex 207.14 211.43 2.07%
povray 123.34 125.28 1.57%
omnetpp 269.14 270.06 0.34%
astar 334.96 335.96 0.30%
dealII 186.71 188.47 0.94%
xalanckbmk 413.67 421.03 1.78%
namd 266.42 266.43 0.00%
average 1.0%
geomean 0.92%

5.1 Performance Overhead (RQ1)

Table 3 depicts the overall runtime overhead on only the relevant C++ programs
contained in the SPEC CPU2006 benchmark. The geomean value of the overhead

18 P. Muntean et al.

in these benchmarks is under 1% (0.92%). As an outlier, soplex showed an
overhead of 2.07%. For most benchmarks, the overhead is lower than 1.0%. Some
SPEC CPU2006 benchmarks like astar do not contain static casts and thus no
check is performed. These results show that the overhead is within the margin
of error. This is to be expected as CastSan does not need to execute additional
code on execution when no checkable casts are present in the code.

Table 4. Runtime overhead on Chrome with CastSan enabled and disabled (vanilla).

Benchmark High/Low Vanilla CastSan Overhead
gc-sunspider [32] < 123.4 124.1 0.57%
gc-octane [27] > 29885 29889 -0.01%
gc-drom-js [14] > 1987.21 1991.58 -2.18%
gc-balls [4] > 216 215 0.47%
gc-kraken [21] < 933.1 941.2 0.87%
gc-jetstream [20] < 184.06 184.44 0.21%
average -0.01%
geomean 0.31%

Table 4 depicts the average and geomean runtime overheads of CastSan in
seven of the most popular JavaScript benchmarks. The greater/less symbols (in
High/Low) next to the name describe if higher (>) or lower (<) values are
better in the benchmark. More precisely, higher is better for jetstream, octane,
balls and dromaeo benchmarks; lower is better in sunspider and kraken. The
numbers in columns Vanilla and CastSan represent aggregate benchmark scores
and have no particular intrinsic meaning. The average value of the overhead of
CastSan in these benchmarks is −0.01%, which is in the margin of error. The
low overhead obtained when running JavaScript benchmarks in the instrumented
Chrome demonstrates that CastSan can efficiently scale to large code bases with
complex class hierarchies.

namd
xalan

cbmk dealI
I
sople

x
povra

y
omne

tpp astaravera
ge
geom

ean
0

2

4

0.4

4.49

0.47

5.03

2.34

0.68
0.9

2.04

1.29

0

1.78

0.94

2.07
1.57

0.34 0.3

1 0.92

%
R
un

tim
e
O
ve
rh
ea
d

Clang-CFI CASTSAN

Fig. 6. Clang-CFI (gray) vs. CastSan (black) SPEC CPU2006 benchmark overhead.

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 19

Figure 6 depicts the average and geomean runtime overheads of CastSan

in comparison with the Clang-CFI cast checker when ran on several C++ pro-
grams contained in the SPEC CPU2006 benchmark with the following com-
piler flags: -fsanitize=cfi-cast-strict, -fsanitize=cfi-derived-cast,
and -fsanitize=cfi-unrela-ted-cast. Note that the Clang-CFI cast checker
instruments the same set of static object casts as CastSan. We compared the
Clang-CFI and CastSan runtime overhead w.r.t. the baseline LLVM 3.7 compi-
lations. Note that for the baseline compilation no additional compiler flags and
no LTO support (we compiled without the Clang’s -flto compiler flag) was
used. Finally, it can be observed that the overhead of CastSan is about two
times lower on average than the overhead of Clang-CFI when running on the
SPEC CPU2006 programs.

jetstr
eam
sunsp

ider
drom

aeo-j
s balls octan

e
krake

n
avera

ge
geom

ean

0

5

10

−1.1 −1.17

12.2

0.47

7.1
8.6

4.35
2.77

0.21 0.57

−2.18

0.47

−0.01

0.87

−0.01

0.31

%
R
un

tim
e
O
ve
rh
ea
d Clang-CFI CASTSAN

Fig. 7. Clang-CFI (gray) vs. CastSan (black) Chrome runtime overhead.

Figure 7 depicts the runtime overhead of Chrome when ran on sev-
eral JavaScript benchmarks. First, we compiled with Clang-CFI, and sec-
ond, with CastSan enabled and with the following compiler flags enabled:
-fsanitize=cfi-cast-strict, and -fsanitize=cfi-derived-cast. We did
not use the -fsanitize=cfi-unrelated-cast compiler flag, since Chrome was
not able to start (crashed during start) after applying this flag. In total, the same
amount of object casts where instrumented by each of the tools. However, we
can observe that compared to Clang-CFI, the geomean and average overheads of
CastSan are better on large code bases such as the Chrome browser. The low-
est runtime overhead value, −2.18%, was obtained with CastSan when running
the Dromaeo-js benchmark, while the lowest overhead, −1.17%, was obtained
by Clang-CFI when running the Sunspider JavaScript benchmark. Overall, we
observed a 54 times speed-up on average and 8.9 times speed-up in geomean for
CastSan when compared to Clang-CFI cast checker.

5.2 Precision (RQ2)

We evaluated the precision of CastSan by using complex class hierarchies of
programs contained in the open-source micro-benchmark of TypeSan [18] and
the benchmark programs (in total more than 50 programs) provided by the IVT

20 P. Muntean et al.

tool. This benchmark includes: (1) casts to secondary parents, (2) casts within
a diamond inheritance, and (3) casts from unrelated trees.

The results indicate that each cast that is covered by CastSan can be pre-
cisely checked and the implementation leaves no room for unmitigated cor-
ner cases. Moreover, CastSan did not show the imprecisions described in the
ShrinkWrap paper. There, the authors show specific cases of class inheritances
(e.g., diamond inheritance) where vtable based function call sanitizers allow
calls to illegitimate functions of sibling classes. Finally, CastSan was able to
cope with all complex class hierarchies contained in these benchmarks and no
false negatives or false positives were reported. Thus, we conclude that CastSan

is precise and leaves no space for untreated corner cases.

5.3 Effectiveness (RQ3)

We evaluated the effectiveness of CastSan by selecting the last ten type con-
fusions reported in Google Chrome which had common weakness enumeration
(CVE) reports associated. All these type confusions have been reported and par-
tially fixed in the current Chrome browser version. The goal of this experiment
is to show that CastSan can find object type confusions in real-world software.

We recompiled the Chrome web browser with the CastSan checks in place
and ran all JavaScript benchmarks, which we also used to check the performance
of Chrome (see Fig. 7 for more details). In total, out of the ten object type
confusions, CastSan was able to report three type confusions at the correct
location. We further investigated the other undetected type confusions and found
out that these were not detected since the used JS benchmarks do not interact
with the code of Chrome which contains these bugs. As such, this is an issue
which can be addressed with more extensive test suites which reach the other
bugs not previously detected. Finally, we conclude that CastSan is effective in
detecting real-world type confusions.

5.4 Programmer Assistance (RQ4)

Fig. 8. Type confusion back-trace for the xalancbmk program.

We evaluated how
useful CastSan is in
helping a program-
mer to find and fix a
type confusion bug.
For this reason, we
used a well-known
type confusion bug
and depict the error
log in order to show
how the programmer
is guided when fix-
ing a type confu-
sion bug. The goal of
this experiment is to

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 21

show that CastSan can effectively help a programmer to pinpoint the exact
bug location. Figure 8 depicts the backtrace that CastSan prints out when run-
ning the xalancbmk program contained in the SPEC CPU2006 benchmark. The
SPEC CPU2006 xalancbmk has a known type confusion vulnerability, as men-
tioned in [5], which CastSan is able to detect. Thus, on execution, it prints the
back-trace leading to the illegal cast. Line numbers 1 to 27 are the verbose output
of CastSan, notifying the user that an illegal cast happened during execution. In
lines 25, 26 and 27 the mangled name of the exact function containing the illegal
object cast is printed. Using the offset printed in the square brackets at the end
of the line, a developer can find the line in the code where the illegal object
cast was defined. The error log depicted in Fig. 8 demonstrates that CastSan is
able to detect real type confusion bugs in applications by running a program in
backtrace-mode. Finally, we conclude that CastSan can help developers during
bug bounties [34], and can protect against exploitable type confusions.

6 Discussion

In this section, we present CastSan’s limitations and discuss how to address
these.

Non-polymorphic Classes. CastSan provides type safety for objects stem-
ming from polymorphic classes and low runtime overhead. Further, CastSan

cannot check casts between non-polymorphic objects. This is because only poly-
morphic objects have a virtual pointer (vptr). The vptr is an integral requirement
for checking object type casts using CastSan. This means CastSan cannot miti-
gate all types of object type confusion vulnerabilities. A possible way to address
this limitation is to construct for static classes an artificial virtual-table-like
metadata on which CastSan’s technique can be based such that our technique
becomes usable for non-polymorphic object type casts.

Reinterpret-Cast. In C++, not only static cast can lead to object type
confusion. The misusage of reinterpret cast can also pose threats. HexType
addresses this threat by extending its type cast checking to reinterpret cast
in addition to static cast. While this can effectively hinder a type confusion
vulnerability from occurring, it is debatable if checking reinterpret cast is
viable. This question arises, as reinterpret cast can be used as a legitimate
way of breaking class hierarchy boundaries, if the memory layout of the cast
types match. In this case, a type cast check based on class hierarchy information
cannot be made. Therefore, if reinterpret cast is checked for type safety, its
purpose can potentially be circumvented. Similarly, as other object type confu-
sion detection tools handle reinterpret cast, we could use compiler runtime
checking support for checking for this type of confusions.

Increasing Tool Coverage. The incremental research work between TypeSan
and HexType shows that the main path for increasing object type confusion
detection coverage is to support more types of memory allocators (i.e., jmalloc,

22 P. Muntean et al.

tcmalloc, etc.) or other more exotic ones. Further, the coverage of CastSan can
be increased by supporting all types of C++ program locations (i.e., statement
types) where such vulnerabilities could manifest. Thus, CastSan’s coverage can
be consistently increased by instrumenting all these source code locations with
the needed checks in place in order to check during runtime for object type
confusions.

Finding New Vulnerabilities. Finding new object type confusion vulnerabil-
ities is directly linked to increasing the tool coverage and is mainly driven by
three lines of research. These are: (1) check new program locations which were
previously not possible to be instrumented, (2) support new memory allocators
(e.g., object pool allocators, etc.), and (3) reduce the runtime overhead of an
object type detection technique such that the technique becomes applicable in
real-world deployment. Thus, in future work we want to increase the coverage
of CastSan by addressing the above mentioned points.

7 Related Work

Virtual Table Pointer-Based Tools. Clang-CFI [7,9] (cast checker) is similar
to CastSan in that it uses no runtime library and all cast check detection meta-
data is computed during compile time. However, there are no publicly available
evaluation results of Clang-CFI, and therefore we evaluated Clang-CFI in Sect. 5
independently. Clang-CFI relies on bitsets in order to model the class hierarchy
of a program. Clang-CFI uses these bitsets to encode the valid virtual table start
addresses for each class. Compared to CastSan, Clang-CFI has a higher runtime
overhead, as the bit-set checking technique on which it relies apparently is less
efficient than our virtual table based technique.

C++ Object Type Runtime Tracking. All currently available polymorphic
and non-polymorphic object type confusion detection tools (except Clang-CFI)
rely on dynamic checks (i.e., LLVM’s Compiler-RT is mostly used) for several
key reasons, as follows. First, the object type has to be tracked during runtime.
Second, this is due to the limited precision of static analysis techniques, which
cannot recuperate the object type or a set of possible types before program
runtime, Third, the object type confusions manifest only during runtime. Finally,
object type confusions are hard to replicate statically (i.e., compile time or
through symbolic execution, without running the program).

However, the most significant reason is the fact that the types of casted
objects, referenced by pointers, may be program input dependent and thus only
precisely obtainable during runtime. On the one hand, in the best case the
allocation of the object being cast can be tracked during compile time (e.g., if
the runtime path from allocation to cast is linear). On the other hand, in the
worst case the object type cannot be approximated (e.g., the object was given
via a void-pointer from an external function previously).

Compiler-Based Tools. UBsan [15], CaVer [22], TypeSan [18], and Hex-
Type [19] are compiler based tools that perform object type confusion detection

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 23

at runtime for C++ based programs. Since HexType is the successor of TypeSan,
the tools are very similar to each other from a technical perspective. These two
tools and CaVer rely on a runtime metadata service and can reach a high cover-
age while imposing a considerable performance overhead. CastSan, on the other
hand, uses metadata that is statically created at compile-time and can therefore
apply very performant checks at runtime. CastSan can protect against poly-
morphic casts by using vtable hierarchy based ranges and without using a black
list. Compared to TypeSan, CastSan partially shares the instrumentation layer,
which is unavoidable, but it uses completely different metadata without stor-
ing data at runtime. More precisely, CastSan uses the vtables of polymorphic
classes. These tables, that need to be in memory at runtime anyways, already
provide a view on the class hierarchy. That is enough for CastSan to perform
runtime checks without relying on further metadata as maintained by HexType.
HexType, on the other hand, reaches a higher coverage, as it can check non-
polymorphic objects as well. CastSan is more runtime-efficient than CaVer and
HexType, which both require a red-black tree to be traversed (only for the slow
path) during each check.

Binary-Based Tools. Dewey et al. [13] were able to recuperate vtables from
program binaries and detect object type confusions indirectly by checking the
bounds of a virtual function call. This was achieved by enforcing a policy to check
if the vptr lies inside some legitimate bounds. As suggested by the authors, their
analysis is imprecise because for example—as also demonstrated by Prakash
et al. [29]—determining the end of a vtable in binaries without RTTI information
is not trivial. Thus, false positives and false negatives are raised, and as such
this type of tool is in the best case usable before system deployment.

8 Conclusion and Future Work

C++ object type casting confusions have an important role in modern exploits as
demonstrated by recent attacks against Mozilla’s Firefox and Google’s Chrome
web browsers.

In this paper, we presented CastSan, a new polymorphic only object type
confusion detection tool. CastSan’s novel technique is based on an efficient and
time constant virtual pointer range check which is possible by extracting virtual
table inheritance trees out of a previously constructed virtual table inheritance
hierarchy. CastSan constructs linear projections out of virtual table inheritance
trees, which are subsequently used do build runtime object cast checks. Our
evaluation results show that CastSan is more efficient than state-of-the-art tools
(i.e., Clang-CFI cast checker), and has comparable checking coverage with other
state-of-the-art tools, which—in contrast—rely on runtime intensive type track-
ing for checking type confusions for both polymorphic and non-polymorphic
objects.

In future work, we want to use our static meta-data based technique to
extended existing purely runtime based object type confusion detection tools

24 P. Muntean et al.

such as TypeSan and HexType. These tools use for both polymorphic and non-
polymorphic object type checking a runtime library which adds considerable
runtime overhead due to updates, search, and deletion of object type meta-
data. We think that our approach can be used to avoid the tracking of meta-
data for polymorphic objects. Further, a complementary artificial virtual table
like meta-data class hierarchy can be built for non-polymorphic objects as well.
Finally, in this way our technique becomes usable also in this context, thus avoid-
ing or considerable reducing the overhead introduced by the runtime compiler
checking support.

Acknowledgements. We thank Mathias Payer from EPFL, CH; for insights which
helped to improve paper quality. We thank Dimitar Bounov from the University of
California, San Diego, USA; and Benjamin Johnson from the Technical University of
Munich, Germany for reviewing an early version of this paper. Jens Grossklags’ research
is supported by the German Institute for Trust and Safety on the Internet (DIVSI).
Further, we thank the anonymous reviewers for their rich feedback.

References

1. 2016 Working Draft, Standard for Programming Language C++ N4618. https://
goo.gl/PPJ5QC

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control flow integrity. In: CCS
(2005)

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control flow integrity principles,
implementations, and applications. In: TISSEC (2009)

4. Balls Browser Benchmark (2017). http://bubblemark.com/
5. Bounov, D., Kici, R.G., Lerner, S.: Protecting C++ dynamic dispatch through

VTable interleaving. In: NDSS (2016)
6. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go

bad: generalizing return-oriented programming to RISC. In: CCS (2008)
7. Clang. Clang 3.9 Documentation - Control Flow Integrity. https://goo.gl/gnmoHU
8. Clang. Clang 5 Documentation - Control Flow Integrity (2017). https://goo.gl/

bW4DyS
9. Clang-CFI Cast Checker Metadata. https://goo.gl/JkGDjL

10. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-
reuse attacks. In: CCS (2015)

11. CVE-2016-1612: Bug Description and reward (2016). https://goo.gl/9SxjEA
12. CVE-2017-3106: Object Type Confusion in Adobe F. Player v. 26.0.0.137 (2017).

https://goo.gl/gakD25
13. Dewey, D., Giffin, J.: Static detection of C++ VTable escape vulnerabilities in

binary code. In: NDSS (2012)
14. Dromaeo Browser Benchmark (2017). http://dromaeo.com/?v8
15. Google. Undefined Behavior Sanitizer (2017). https://goo.gl/ELrNKj
16. Google. The Chromium Projects, Chromium (2017). https://goo.gl/uE486n
17. Haller, I., Goktas, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap:

VTable protection without loose ends. In: ACSAC (2015)
18. Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C.: TypeSan: practical type

confusion detection. In: CCS (2016)

https://goo.gl/PPJ5QC
https://goo.gl/PPJ5QC
http://bubblemark.com/
https://goo.gl/gnmoHU
https://goo.gl/bW4DyS
https://goo.gl/bW4DyS
https://goo.gl/JkGDjL
https://goo.gl/9SxjEA
https://goo.gl/gakD25
http://dromaeo.com/?v8
https://goo.gl/ELrNKj
https://goo.gl/uE486n

CastSan: Efficient Detection of Polymorphic C++ Object Type Confusions 25

19. Jeon, Y., Biswas, P., Carr, S., Lee, B., Payer, M.: HexType: efficient detection of
type confusion errors for C++. In: CCS (2017)

20. JetStream Browser Benchmark (2017). http://browserbench.org/JetStream/
21. Kraken JavaScript Benchmark (2017). https://krakenbenchmark.mozilla.org/
22. Lee, B., Song, C., Kim, T., Lee, W.: Type casting verification: stopping an emerging

attack vector. In: USENIX Security (2015)
23. LLVM. The LLVM Gold Plugin (2017). https://goo.gl/UjFxih
24. LLVM. LLVM Team, The LLVM compiler infrastructure project. http://llvm.org/
25. LLVM. LLVM link time optimization: design and implementation. https://goo.gl/

r3RH2U
26. Microsoft. Changes to Functionality in Microsoft Windows XP SP 2. https://goo.

gl/928ihY
27. Octane Browser Benchmark (2017). https://chromium.github.io/octane/
28. PaX Team: Address Space Layout Randomization (2001). https://goo.gl/Sab9YE
29. Prakash, A., Hu, X., Yin, H.: Strict protection for virtual function calls in COTS

C++ binaries. In: NDSS (2015)
30. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-

terfeit object-oriented programming. In: S&P (2015)
31. Standard Performance Evaluation Corporation. SPEC CPU 2006 (2017). https://

goo.gl/NtmYy8
32. SunSpider 1.0.2 JavaScript Benchmark (2017). https://goo.gl/qk9uqg
33. Zhang, C., et al.: Practical control flow integrity & randomization for binary exe-

cutables. In: S&P (2013)
34. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery

ecosystems. In: CCS (2015)

http://browserbench.org/JetStream/
https://krakenbenchmark.mozilla.org/
https://goo.gl/UjFxih
http://llvm.org/
https://goo.gl/r3RH2U
https://goo.gl/r3RH2U
https://goo.gl/928ihY
https://goo.gl/928ihY
https://chromium.github.io/octane/
https://goo.gl/Sab9YE
https://goo.gl/NtmYy8
https://goo.gl/NtmYy8
https://goo.gl/qk9uqg

On Leveraging Coding Habits
for Effective Binary Authorship

Attribution

Saed Alrabaee(B), Paria Shirani, Lingyu Wang, Mourad Debbabi,
and Aiman Hanna

Security Research Center, Concordia University, Montreal, Canada
s alraba@encs.concordia.ca

Abstract. We propose BinAuthor, a novel and the first compiler-
agnostic method for identifying the authors of program binaries. Hav-
ing filtered out unrelated functions (compiler and library) to detect
user-related functions, it converts user-related functions into a canon-
ical form to eliminate compiler/compilation effects. Then, it leverages a
set of features based on collections of authors’ choices made during cod-
ing. These features capture an author’s coding habits. Our evaluation
demonstrated that BinAuthor outperforms existing methods in several
respects. First, when tested on large datasets extracted from selected
open-source C/C++ projects in GitHub, Google Code Jam events, and
Planet Source Code contests, it successfully attributed a larger num-
ber of authors with a significantly higher accuracy: around 90% when
the number of authors is 1000. Second, when the code was subjected to
refactoring techniques, code transformation, or processing using different
compilers or compilation settings, there was no significant drop in accu-
racy, indicating that BinAuthor is more robust than previous methods.

1 Introduction

Binary authorship attribution refers to the process of discovering information
related to the author(s) of anonymous binary code on the basis of stylomet-
ric characteristics extracted from the code. It is especially relevant to security
applications, such as digital forensic analysis of malicious code [30] and copyright
infringement detection [33] because the source code is seldom available in these
cases. However, in practice, authorship attribution for binary code still requires
considerable manual and error-prone reverse engineering analysis, which can be
a daunting task given the sheer volume and complexity of today’s malware.
Although significant efforts have been made to develop automated approaches
for authorship attribution for source code [19,25,37], such techniques typically
rely on features that will likely be lost in the binary code after the compilation
process, for example, variable and function naming, original control and data

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 26–47, 2018.
https://doi.org/10.1007/978-3-319-99073-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_2&domain=pdf

On Leveraging Coding Habits for Effective Binary Authorship Attribution 27

flow structures, comments, and space layout. Nonetheless, at the recent Black-
Hat conference, the feasibility of authorship attribution for malware binaries was
confirmed [5], though the process still requires considerable human intervention.

Most existing approaches to binary authorship attribution employ machine
learning methods to extract unique features for each author and subsequently
match the features of a given binary to identify the authors [15,19,32]. These
approaches were studied and analyzed in our previous work [16], and we uncov-
ered several issues that affect them all. Notably, a considerable percentage of the
extracted features are related to compiler functions rather than to author styles,
which causes a high false positive rate. Moreover, the extracted features are not
resilient to code transformation methods, refactoring techniques, changes in the
compilation settings, and the use of different compilers. We implemented a sys-
tem that improved the accuracy obtained by Caliskan et al. [19] in attributing
600 authors from 83% to 90%, and then we scaled the results to 86% accuracy
for 1500 authors.

Key Idea: We present BinAuthor, a system designed to recognize author cod-
ing habits by extracting author’s choices from binary code. BinAuthor1 per-
forms a series of steps in order to capture coding habits. First, it filters unre-
lated functions such as compiler-related functions by proposing a method that is
discussed in Sect. 2.1. Second, it labels library-related functions and free open-
source related functions using our previous works, BinShape [35], SIGMA [17],
and FOSSIL [18], respectively. The results of filtering process would be a set of
user-related functions. Third, to eliminate the effects of changes in the compiler
or the compilation settings, code transformation, and refactoring tools, BinAu-
thor converts the code into a canonical form that is robust against heavy obfus-
cation [38]. However, conversion is extremely slow, so we apply it only to the set
of user-related functions remaining after filtering. Then we collect a set of author
choices frequently made during coding (e.g., preferring to use either memcopy or
bcopy). To capture the choices, we examined a large collection of source code
and the corresponding assembly instructions to determine which coding habits
may be preserved in the binary. Next, we designed features based on these habits
and integrated them into BinAuthor. To verify that the features capture coding
habits, we investigated the ground truth source code in a controlled experiment
(using debug information) to determine if the choices are based on functionality
or habit.

Contributions: The main contributions of this study are described below.

1. To the best of our knowledge, BinAuthor is the first effort that leverages
author coding habits extracted from binary code for effective binary author-
ship attribution. This enables BinAuthor to work on programs with different
functionalities.

2. BinAuthor achieves higher accuracy and survives refactoring techniques and
code transformation techniques. This shows its potential for use as a practical
tool that can assist reverse engineers in many security-related tasks.

1 The code is available at https://github.com/g4hsean/BinAuthor.

https://github.com/g4hsean/BinAuthor

28 S. Alrabaee et al.

3. BinAuthor is among the first approaches that performs automated author-
ship attribution on real-world malware binaries. When we applied it to Zeus-
Citadel, Stuxnet-Flame, and Bunny-Babar malware binaries, it automati-
cally generated evidence of coding habits shared by each malware pair, match-
ing the findings of antivirus vendors [3,12] and reverse engineering teams [5].

2 BinAuthor

We propose a system encompassing different components, each of which is meant
to achieve a particular purpose, as illustrated in Fig. 1. The first component
(Filtration), isolates user functions from compiler functions, library functions,
and open-source software packages. For this purpose, we employ BinShape, and
FOSSIL tools developed by our team beside our proposed method to identify
compiler functions. Hence, additional outcome of this component could be con-
sidered as a choice (e.g., the preference in using specific compiler or open-source
software packages). The second component (Canonicalization), adapts the exist-
ing framework angr [36] for lifting function into LLVM-IR, then optimizes the
lifted LLVM-IR, and finally converts the optimized IR into a canonical form. The
third component (Choices), analyzes user-related functions to extract possible
features that represent stylistic choices and then converts the extracted choices
into vectors. The vector of choices are used by the attribution probability func-
tion in the last component (Classification). The aforementioned components are
explained in depth in the remainder of this section.

Fig. 1. BinAuthor architecture

2.1 Filtration Process

An important initial step in most reverse engineering tasks is to distinguish
between user functions and library/compiler functions. This step saves consid-
erable time and helps shift the focus to more relevant functions. The filtration
process consists of three steps. First, Binshape [35] is used to label library func-
tions. Second, FOSSIL [18] is leveraged to label the functions that are related to
specific FOSS libraries, such as libpng, zlib, and openssl. The last step filters
compiler-related functions, which the details are given below.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 29

The idea is based on the hypothesis that compiler/helper functions can be
identified through a collection of static signatures that are created in the training
phase (e.g. opcode frequencies). We analyze a number of programs with different
functionalities, ranging from a simple “Hello World!” program to programs ful-
filling complex tasks. Through the intersection of these functions combined with
manual analysis, we collect about 240 functions as compiler/helper functions
related to two GCC and VS compilers. The opcode frequencies are extracted
from these functions, after which the mean and variance of each opcode are
calculated.

In other words, each disassembled program P, after passing IDA Pro, consists
of n functions {f1, · · ·, fn}. Each function fk is represented as m pairs of opcodes
oi, where m is the number of distinct opcodes in function fk. Each opcode oi ∈ O
has a pair of values (μi, νi), which represents the mean and variance values of
that specific opcode. Each opcode in the target function is measured against the
same opcode of all compiler functions in the training set. If the measured distance
Di,j (i.e., i represents the training function and j represents the target function)
is less than a predefined threshold value α = 0.005, the opcode is considered as
a match. A function is labeled as compiler-related if the matched opcodes ratio
is greater than a predefined threshold value learned from experiments to be
γ = 0.75; otherwise, the target function is labeled as user-related. Dissimilarity
measurements are performed based on distance calculations as per the following
equation [39]:

Di,j =
(μj − μj)

2

(
ν2
i + ν2

i

)

where (μj , νj) represents the opcode mean and variance of the target function,
respectively. This dissimilarity metric detects functions, which are closer to each
other in terms of types of opcodes. For instance, logical opcodes are not available
in compiler-related functions. Finally, a score is given to every distance that is
below a predefined threshold α.

2.2 Canonicalization

We use a strategy similar to that applied in the recent work by [21] when lifting
the resulting user-related functions.

Lifting Binaries to Intermediate Representation (IR): We adopt the
existing framework angr [36] for lifting function into LLVM-IR. We first convert
the disassembled binary to the VEX-IR [29] using angr, and then implement a
translator to convert the VEX-IR to LLVM-IR.

Optimizing Intermediate Representation to Optimized IR: To achieve
this goal, we employ the extended version of Peggy tool [38] to optimize LLVM-
IR. It performs the following tasks: dead code elimination, global value number-
ing, partial redundancy elimination, sparse conditional constant propagation,

30 S. Alrabaee et al.

loop-invariant code motion, loop deletion, loop unswitching, dead store elimina-
tion, constant propagation, and basic block placement. In this way, we prevent
such changes from affecting our extracted choices. For more details, we refer the
reader to [38].

Canonical Form: Canonicalization offers several benefits [21]. Lifting the
instructions according to LLVM may impose changes such as redundant loads,
but these changes will now be reverted. Moreover, in the case of writing depen-
dencies, canonicalization of the expression makes it possible to perform the addi-
tion with the constant first, and the result is put in the register before the
subtraction is performed. Furthermore, with canonicalization, the comparison
becomes simple addition with a positive constant, instead of subtraction with
a negative. Note that this last step serves to reoptimize code which might not
have been previously optimized [21].

2.3 Choices Categorization

Determining a set of characteristics that remain constant for a significant por-
tion of a program written by a particular author is analogous to discovering
human characteristics that can later be used to identify an individual. Accord-
ingly, our aim is to automate the identification of program characteristics, but
with a reasonable computational cost. To capture coding habits at different lev-
els of abstraction, we consider a spectrum of habits, assuming that an author’s
habits can be reflected in a preference for choosing certain keywords or compil-
ers, a reliance on the main function, or the use of an object-oriented program-
ming paradigm. The manner in which the code is organized may also reflect the
author’s habits. All possible choices are stored as a template in this step. We
provide a detailed description of each category of author choices in the following
subsections.

2.3.1 General Choices
General choices are designed to capture an author’s general programming pref-
erences, for example, preferences in organizing the code, terminating a function,
the use of particular keywords, or the use of specific resources.

(1) Code organization: We capture the way code is organized by measuring
the reliance on the main function using statistical features, since it is consid-
ered a starting part for managing user functions. We define a set of ratios,
shown in Table 1, that measures the actions used in the main function. We
thus capture the percentage usage of keywords, local variables, API calls,
and calling user functions, as well as the ratio of the number of basic blocks
in the main function to the number of basic blocks in other user functions.
These percentages are computed relative to the length of the main function,
where the length signifies the number of instructions in the function. The
results are represented as a vector of ratios, which is used by the detection
component.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 31

Table 1. Features extracted from the main function

Ratio equation Description

#push/l Ratio of accessing the stack to length

#push/#lea Ratio of accessing the stack to local variables

#lea/l Ratio of local variables to length

#calls/l Ratio of function calls to length

#callees/l Ratio of the calls to main function to length

#indirect calls/l Ratio of API calls to length

#BBs/total # all BBs Ratio of the number of basic blocks of the main function
to that of other user functions

#calls/#user functions Ratio of function calls to the number of user functions

length(l) represents number of instructions in the main function

(2) Function termination: BinAuthor captures the way in which an author
terminates a function. This could help identify an author since programmers
may favor specific ways of terminating a function. BinAuthor considers not
just the last statement of a function as the terminating instruction; rather,
it identifies the last basic block of the function with its predecessor as the
terminating part. This is a realistic approach since various actions may be
required before a function terminates. With this in mind, BinAuthor not
only considers the usual terminating instructions, such as return and exit,
but also captures related actions that are taken prior to termination. For
instance, a function may be terminated with a display of messages, a call
to another function, the release of some resources, or communication over
networks. Table 2 shows examples of what is captured in relation to the
termination of a function. Such features could be captured by extracting
the strings and opcodes. Each feature is set to 1 if it is used to terminate a
function; otherwise, it is set to 0. The output of this component is a binary
vector that is used by the detection component.

Table 2. Examples of actions taken in terminating a function

Features

Printing results to memory Printing results to file

Using system (“pause”) User action such as cin

Calling user functions Calling API functions

Closing files Closing resources

Freeing memory Flushing buffer

Using network communication Printing clock time

Releasing semaphores or locks Printing errors

(3) Keyword and resource preferences: BinAuthor captures an author’s
preferences in the use of keywords or resources. We consider only groups of

32 S. Alrabaee et al.

preferences with equivalent or similar functionality to avoid functionality-
dependent features. These include keyword type preferences for inputs (e.g.,
using cin, scanf), preferences for particular resources or a specific compiler
(we identify the compiler by using PEiD2), operation system (e.g., Linux),
CPU architecture (e.g., ARM), and the manner in which certain keywords
are used, which can serve as further indications of an author’s habits. Some
of these features are identified through binary string matching, which tracks
the strings annotated to call and mov instructions. For instance, excessive
use of fflush will cause the string ‘‘fflush’’ to appear frequently in the
resulting binary.

2.3.2 Quality-Related Choices
We investigate code quality in terms of compliance with C/C++ coding stan-
dards and security concerns. The literature has established that code quality
can be measured using different indicators, such as testability, flexibility, and
adaptability [31]. BinAuthor defines rules for capturing code that exhibits either
relatively low or high quality. For any code that cannot be matched using such
rules, the code is labelled as having regular quality, which indicates that the code
quality feature is not applicable. Such rules are extracted by defining a set of
signatures (sequence of instructions) for each choice. An example is introduced
in AppendixA.

Examples of low-quality coding styles are reopening already opened files, leav-
ing files open when they are no longer in use, attempting to modify constants
through pointers, using float variables as loop counters, and declaring variables
inside a switch statement. Such declarations, which can be captured through
the structure matching of code, could be considered a structural choice, possibly
resulting in unexpected/undefined behavior due to jumped-over instructions. It
is for this reason that we put them in the low-quality category. Examples of
high-quality coding styles are handling errors generated by library calls (i.e.,
examining the value returned by fclose()); avoiding reliance on side effects
(e.g., the ++ operator) within calls such as sizeof or Alignof; avoiding par-
ticular calls to some environments or using them with protective measures (since
invoking the system() in Linux may lead to shell command injection or privilege
escalation, using execve() instead is indicative of high-quality coding); and the
implementation of locks and semaphores around critical sections.

2.3.3 Embedded Choices
We define embedded choices as actions that are related to coding habits present
in the source code, which are not easily captured at the binary level by tradi-
tional features such as strings or graphs. Examples are initializing member vari-
ables in constructors and dynamically deleting allocated resources in destructors.
Since it is not feasible to list all possible features, BinAuthor relies on the fact
that opcodes reveal actions, expertise, habits, knowledge, and other author’s

2 https://www.aldeid.com/wiki/PEiD.

https://www.aldeid.com/wiki/PEiD

On Leveraging Coding Habits for Effective Binary Authorship Attribution 33

characteristics, and then analyzes the distribution of opcode frequencies. Our
experiments showed that this distribution can effectively capture the manner
in which an author manages code. Since every action in source code can affect
the frequency of opcodes, BinAuthor targets embedded choices by capturing the
distribution of opcode frequencies.

2.3.4 Structural Choices
Programmers usually develop their own structural design habits. They may pre-
fer to use a fully object-oriented design, or they may be more accustomed to
procedural programming. Structural choices can serve as features for author
identification. To avoid functionality, we consider the common subgraphs for
each user function and then intersect them among different user functions to
identify those subgraphs that are unique and those that are common. These
types of subgraphs are defined as k-graphs, where k is the number of nodes. The
common k-graphs form author’s signatures since they always appear, regardless
of the program functionality. In addition, we consider the longest path in each
user function because it reflects the way in which an author tends to use deep or
nested loops. An author may organize classes either ad hoc or hierarchically by
designing a driver class to contain several manager classes, where each manager
is responsible for different processes (collections of threads running in paral-
lel). Both ad hoc and hierarchical systems of organization can create a common
structure in an author’s programs.

2.4 Feature Vectors

General Choice Computation: To consider the reliance on the main func-
tion, a vector vg1, representing related features, is constructed according to the
equations shown in Table 1. These equations indicate the author’s reliance on the
main function as well as the actions performed by the author. Function termina-
tion is represented as a binary vector, (vg2), which is determined by the absence
or existence of a set of features for function termination. Keyword and resource
preferences are identified through binary string matching. We extract a collec-
tion of strings from all user functions of a particular author, then intersect these
strings in order to derive a persistent vector (vg3) for that author. Consequently,
for each author, a set of vectors representing the author’s signature is stored in
our repository. Given a target binary, BinAuthor constructs the vectors from the
target and measures the distance/similarity between these vectors and those in
our repository. The vg1 vector is compared using Euclidean distance, whereas
vg2 vector is compared using the Jaccard similarity. For vg3, the similarity is
computed through string matching. Finally, the three derived similarity values
are averaged in order to obtain λg, which is later used in Sect. 4.6 for author
classification.

Quality-Related Choice Computation: We build a set of idiom templates
to describe high or low quality habits. Idioms are sequences of instructions with
wild-card possibility [24]. We employ the idioms templates in [24] according to

34 S. Alrabaee et al.

our qualitative-related choice. In addition, such templates carry a meaningful
connection to the quality-related choices. Our experiments demonstrate that
such idiom templates may effectively capture quality-related habits. BinAuthor
uses the Levenshtein distance [40] for this computation due to it’s efficiency. The
similarity is represented by λq as follow:

λq = 1 − L(Ci, Cj)
max(|Ci|, |Cj |)

where L(Ci, Cj) is the Levenshtein distance between the qualitative-related
choices Ci (sequence of instructions) and Cj , max(|Ci|, |Cj |) returns the maxi-
mum length between two choices Ci and Cj in terms of characters.

Embedded Choice Computation: The Mahalanobis distance [26] is used to
measure the dissimilarity of opcode distributions among different user functions,
which is represented by λe. The Mahalanobis distance is chosen because it can
capture the correlation between opcode frequency distributions.

Structural Choice Computation: BinAuthor uses subgraphs of size k in
order to capture structural choices (k = 4, 5, and 6 through our experiments).
Given a k -graph, the graph is transformed into strings using Bliss open-source
toolkit [23]. Then, a similarity measurement is performed over these strings
using the normalized compression distance (NCD) [20]. The reason of our choice
for NCD is threefold: (i) it enhances the search performance; (ii) it allows to
concatenate all the common subgraphs that appear in author’s programs; and
(iii) it allows to perform inexact matching between the target subgraphs and the
training subgraphs. BinAuthor forms a signature based on these strings. The
similarity obtained from this choice is represented by λs.

2.5 Classification

As previously described, BinAuthor extracts different types of choices to char-
acterize different aspects of author coding habits. Such choices do not equally
contribute to the attribution process, since the significance of these indicators
are not identical. Consequently, a weight is assigned to each choice by applying
logistic regression to them in order to predict class probabilities (e.g., the proba-
bility of identifying an author). For this purpose, we use the introduced dataset
in Sect. 3.2; to prevent the overfitting, we test each dataset separately and then
compute the average of weights. The weights are calculated as follows:

wi = rnd
(
(pi/ps)/

4∑
i=1

(pi/ps)
)

where ps is the smallest probability value (e.g. 0.39 in Table 3), pi is the prob-
ability outcome from logistic regression of each choice, and the rnd function
rounds the final value. The probability outcomes of logistic regression prediction
is illustrated in Table 3.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 35

Table 3. Logistic regression weights for choices

Choice Probability (Pi) Pi/(Ps = 0.39) Weight wi =

rnd
(
(pi/ps)/

∑4
i=1(pi/ps)

)

General 0.83 2.128205 0.35

Qualitative 0.63 1.615385 0.27

Structural 0.52 1.333333 0.22

Embedded 0.39 1 0.16∑4
i=1(pi/ps) =

6.076923

After extracting features, we define a probability value P based on obtained
weights. The attribution probability is defined as follows:

P (A) =
4∑

i=1

wi ∗ λi

where wi represents the weight assigned to each choice, as shown in Table 3, and
λi is the distance metric value obtained from each choice (λg, λq, λe, and λs) as
described in Sect. 2.4. We normalize the probabilities of all authors, and if P≥ ζ,
where ζ represents predefined threshold values, then the author is labeled as a
matched author. Through our experiments, we find that the best value of ζ is
0.87. If more than one author has probability larger than the threshold value,
then BinAuthor returns the set of those authors.

3 Evaluation

3.1 Implementation Setup

The described stylistic choices are implemented using separate Python scripts
for modularity purposes, which altogether form our analytical system. A subset
of the python scripts in the BinAuthor system is used in tandem with IDA
Pro disassembler. The final set of the framework scripts perform the bulk of the
choice analysis functions that compute and display critical information about an
author’s coding style. With the analysis framework completed, a graph database
is utilized to perform complex graph operations such as k -graph extraction. The
graph database chosen for this task is Neo4j. Gephi [8] is employed for all graph
analysis functions, which are not provided by Neo4j. MongoDB database is used
to store our features for efficiency and scalability purposes.

3.2 Dataset

Our dataset is consisted of several C/C++ applications from different sources,
as described below: (i) GitHub [2]; (ii) Google Code Jam [1], an international

36 S. Alrabaee et al.

programming competition; (iii) Planet Source Code [9]; (iv) Graduate Student
Projects at our institution. Statistics about the dataset are provided in Table 4.
In total, we test 800 authors from different sets in which each author has two
to five software applications, resulting in a total of 3150 programs. To compile
these datasets, we use GNU Compiler Collection (version 4.8.5) with different
optimization levels, as well as Microsoft Visual Studio (VS) 2010.

3.3 Experimental Setup

In our experimental setup, we split the collected program binaries into ten sets,
reserving one as a testing set and using the remaining nine sets as the training set.
We repeat this process 100 times. In order to evaluate BinAuthor and to compare
it with existing methods, the precision (P) and recall (R) metrics are applied as
Precision = TP

TP+FP , Recall = TP
TP+FN , where the true positive (TP) indicates

number of relevant authors that are correctly retrieved; true negative (TN)
returns the number of irrelevant authors that are not detected; false positive
(FP) indicates the number of irrelevant authors that are incorrectly detected;
and false negative (FN) presents the number of relevant authors that are not
detected.

3.4 Accuracy

The main purpose of this experiment is to evaluate the accuracy of author identi-
fication in binaries. The evaluation of BinAuthor is conducted using the datasets
described in Sect. 3.2.

Results Comparison. We compare BinAuthor with the existing authorship
attribution methods [15,19,32]. The source code and dataset of our previous
work, OBA2 [15], is available which performs authorship attribution on a small
scale of 5 authors with 10 programs for each. The source code of the two other
approaches presented by Caliskan-Islam et al. [19] and Rosenblum et al. [32] are
available at [7] and [4], respectively. Both Caliskan-Islam et al. and Rosenblum
et al. present a largest-scale evaluation of binary authorship attribution, which
contains 600 authors with 8 training programs per author, and 190 authors
with at least 8 training programs, respectively. However, since the corresponding

Table 4. Statistics about the dataset used in the evaluation of BinAuthor

Source # of authors # of programs # of functions

GitHub 150 600 110000

Google Code Jam 500 2000 23650

Planet Source Code 100 300 12080

Graduate Student Projects 50 250 9823

On Leveraging Coding Habits for Effective Binary Authorship Attribution 37

50 100 150
Number of Authors

0.2

0.4

0.6

0.8

1
Pr

ec
is

io
n

BinAuthor
Caliskan
Rosenblum
OBA2

100 200 300 400 500
Number of Authors

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

20 40 60 80 100
Number of Authors

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

10 20 30 40 50
Number of Authors

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

200 400 600 800
Number of Authors

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

BinAuthor
Caliskan
Rosenblum
OBA2

(a) (b) (c) (d)

(e)

Fig. 2. Precision results of authorship attribution obtained by BinAuthor, Caliskan-
Islam et al., Rosenblum et al., and OBA2, on (a) Github, (b) Google Code Jam, (c)
Planet Source Code, (d) Graduate Student Projects, and (e) All datasets

datasets are not available, we compare BinAuthor with these methods by using
the datasets mentioned in Table 4.

Figure 2 details the results of comparing the precision between BinAuthor
and the aforementioned methods. It shows the relationship between the pre-
cision and the number of authors present in all datasets, where the precision
decreases as the size of author population increases. The results show that Bin-
Author achieves better precision in determining the author of binaries. Taking
all four approaches into consideration, the highest precision of authorship attri-
bution is close to 99% on the Google Code Jam with less than 150 authors, while
the lowest precision is 17% when 800 authors are involved on all dataset together.
We believe the reason behind Caliskan-Islam et al. approach that achieves high
precision on Google Jam Code is that this dataset is simple and can be eas-
ily decompiled to source code. BinAuthor also identifies the authors of Github
dataset with an average precision of 92%. The main reason for this is due to
the fact that the authors of projects in Github have no restrictions when devel-
oping projects. In addition, the advanced programmers of such projects usually
design their own class or template to be used in the projects. The lowest pre-
cision obtained by BinAuthor is approximately 86% on all datasets together.
We have observed that BinAuthor achieves lower precision when it is applied on
Graduate student projects. When the number of authors is 400 on the mixed
dataset, the precision of Rosenblum et al. and OBA2 approaches drop rapidly to
40% on all datasets, whereas our system’s precision remains greater than 86%
while Caliskan-Islam et al. approach remains greater than 73%. This provides
evidence for the stability of using coding habits in identifying authors. In total,

38 S. Alrabaee et al.

the different categories of choices achieve an average precision of 98% for ten
distinct authors and 86% when discriminating among 800 authors. These results
show that author habits may survive the compilation process.

Observations. Through our experiments, we have noticed the following obser-
vations:

(1) Feature Pre-processing.We have encountered that in the existing methods, the
top-ranked features are related to the compiler (e.g., stack frame setup opera-
tion). It is thus necessary to filter irrelevant functions (e.g., compiler functions)
in order to better identify author-related portions of code. To this end, we uti-
lize a more elaborate method for filtration to eliminate the compiler effects and
to label library, compiler, and open-source software related functions. Success-
ful distinction between these functions leads to considerable time savings and
helps shift the focus of analysis to more relevant functions.

(2) Source of Features. Existing methods use disassembler and decompilers to
extract features from binaries. Caliskan-Islam et al. use a decompiler to
translate the program into C-like pseudo code via Hex-Ray [6]. They pass the
code to a fuzzy parser for C, thus obtain an abstract syntax tree from which
features can be extracted. In addition to Hex-Ray limitations [6], the C-like
pseudo code is different from the original code to the extent that the vari-
ables, branches, and keywords are different. For instance, we find that a func-
tion in the source code consists of the following keywords: (1-do, 1-switch,
3-case, 3-break, 2-while, 1-if) and the number of variables is 2. Once
we check the same function after decompiling its binary, we find that the
function consists of the following keywords: (1-do, 1-else/if, 2-goto,
2-while, 4-if) and the number of variables is 4. This will evidently lead
to misleading features, thus increasing the rate of false positives.

3.5 Scalability

Security analysts or reverse engineers may be interested in performing large-scale
author identification, and in the case of malware, an analyst may deal with an
extremely large number of new samples on a daily basis. With this in mind, we
evaluate how well BinAuthor scales. To prepare the large dataset required for
large-scale authorship attribution, we obtain programs from three sources: Google

Fig. 3. Large-scale author attribution precision

On Leveraging Coding Habits for Effective Binary Authorship Attribution 39

Code Jam, GitHub, and Planet Source Code. We eliminate from the experiment
programs that could not be compiled because they contain bugs and those writ-
ten by authors who contributed only one or two programs. The resulting dataset
comprised 103,800 programs by 23,000 authors: 60% from Google Code Jam, 25%
from Planet source code, and 15% from GitHub. We modified the script3 used
in [19] to download all the code submitted to the Google Code Jam competition.
The programs from the other two sources were downloaded manually. All the pro-
grams were compiled with the Visual Studio and GCC compilers, using the same
settings as those in our previous investigations (Sect. 3). The experiment evaluate
how well the top-weighted choices represent author habits.

The large-scale author identification results are shown in Fig. 3. Figure 3
shows the precision with which BinAuthor identifies the author, and its scal-
ing behavior as the number of authors increases is satisfactory. Among almost
4000 authors, an author is identified with 72% precision. When the number of
authors is doubled to 8000, the precision is close to 65%, and it remains nearly
constant (49%) after the number of authors reaches 19,000. Additionally, we test
BinAuthor on the programs obtained from each of the sources. The precision was
high for samples from the GitHub dataset (88%) and also for samples from the
Planet dataset (82%), however it was low for samples from Google Code Jam
(51%). The results suggest that it is easier to perform attribution for authors
who wrote code for difficult tasks than for those addressing easier tasks.

We have also investigated the impact of false positives (AppendixB), and
impact of code transformation techniques (AppendixC).

3.6 Applying BinAuthor to Real Malware Binaries

The malware binary authorship attribution is very challenging due to the follow-
ing main reason: the lack of ground truth concerning the attribution of author-
ship due to the nature of malware. Such limitation explains the fact that few
research efforts have been seen on manual malware authorship attribution. In
fact, to the best of our knowledge, BinAuthor is the first attempt to apply auto-
mated authorship attribution to real malware. We describe the application of
BinAuthor to some well-known malware binaries. Details of malware dataset are
shown in Table 5. Given a set of functions, BinAuthor clusters them based on
the number of common choices.

A. Applying BinAuthor to Bunny and Babar: We apply BinAuthor to Bunny
and Babar malware samples and cluster the functions based on the choices. Bin-
Author is able to find the following coding habits automatically: the preference
for using Visual Studio 2008 and the use of a common approach to managing
functions (general choices); the use of one variable over a long chain (struc-
tural choice); the choice of methods for accessing freed memory, dynamically
deallocating allocated resources, and reopening resources more than once in the
same function (quality choices). As shown in Table 6, BinAuthor found func-
tions common to Bunny and Babar that share the aforementioned coding habits:
3 https://github.com/calaylin/CodeStylometry/tree/master.

https://github.com/calaylin/CodeStylometry/tree/master

40 S. Alrabaee et al.

Table 5. Characteristics of malware dataset

Malware Packed Obfuscated Source
code

Binary
code

Type #
binary
function

Source of
sample

Zeus ✗ ✗ ✓ ✓ PE 557 Our security
lab

Citadel ✗ ✗ ✓ ✓ PE 794 Our security
lab

Flame ✗ ✓ ✗ ✓ ELF 1434 Contagio [13]

Stuxnet ✗ ✓ ✗ ✓ ELF 2154 Contagio [13]

Bunny ✓ ✗ ✗ ✓ PE 854 VirusSign [14]

Babar ✓ ✗ ✗ ✓ PE 1025 VirusSign [14]

494 functions share qualitative choices; 450 functions share embedded choices;
372 functions share general choices; and 127 functions share structural choices.
Among these, BinAuthor found 340 functions that share 4 choices, 478 functions
that share 3 choices, 150 functions that share 2 choices, and 290 functions that
share 1 choice. Considering the 854 and 1025 functions in Bunny and Babar,
respectively, BinAuthor found that 44% ((340 + 478)/(854 + 1025)) are likely to
have been written by a single author (same common choices), and 23% are likely
to have been written by multiple authors (contradictive different choices inside
the same function). No common choices were identified in the remaining 33%,
likely because different segments or code lines within the same function were
written by different authors, a common practice in writing complex software.

Table 6. Statistics of applying BinAuthor to malware binaries

Malware Number of functions with common choices Number of common functions with

General Qualitative Structural Embedded 1 choice 2 choices 3 choices 4 choices

Bunny and Babar 372 494 127 450 290 150 478 340

Stuxnet and Flame 725 528 189 300 689 515 294 180

Zeus and Citadel 655 452 289 370 600 588 194 258

B. Applying BinAuthor to Stuxnet and Flame: BinAuthor found the fol-
lowing coding habits automatically: the use of global variables, Lua scripting
language, a specific open-source package SQLite, and heap sort rather than
other sorting methods (general choices); the choice of opening and terminating
processes (qualitative choices); the presence of recursion patterns and the use
of POSIX socket API rather than BSD socket API (structural choices); and the
use of functions that are close in terms of the Mahalanobis distance, with dis-
tance close to 0.1. As shown in Table 6, BinAuthor identified functions common
to Stuxnet and Flame that share the aforementioned coding habits. BinAuthor
clustered the functions and found that 13% ((180 + 294)/(1434 + 2154)) were

On Leveraging Coding Habits for Effective Binary Authorship Attribution 41

written by one author, while 34% ((515 + 689)/(1434 + 2154)) were written by
multiple authors. No common choices were found in the remaining 53% of the
functions. The fact that these malware packages follow the same rules and set the
same targets suggests that Stuxnet and Flame are written by an organization.

C. Applying BinAuthor to Zeus and Citadel: BinAuthor identified the
following coding habits: the use of network resources rather than file resources,
creating configurations using mostly config files, the use of specific packages
such as webph and ultraVNC (general choices); the use of switch statements
rather than if statements (structural choices); the use of semaphores and locks
(qualitative choices); and the presence of functions that are close in terms of the
Mahalanobis distance, with distance = 0.0004 (embedded choices). As listed in
Table 6, BinAuthor found functions common to Zeus and Citadel that share
the aforementioned coding habits. After BinAuthor clustered the functions, it
appears that 33% were written by a single author, while 53% were written by the
same team of multiple authors. No common choices were found for the remaining
14% of the functions. Our findings clearly support the common belief that Zeus
and Citadel were written by the same team of authors.

D. Comparison with Technical Reports: We compare BinAuthor ’s findings
with those made by human experts in technical reports.

– For Bunny and Babar, our results match the technical report published by the
Citizen Lab [5], which demonstrates that both malware packages were writ-
ten by a set of authors according to common implementation traits (general
and qualitative choices) and infrastructure usage (general choices). The corre-
spondence between the BinAuthor findings and those in the technical report
is the following: 60% of the choices matched those mentioned in the report,
and 40% did not; 10% of the choices found in the technical report were not
flagged by BinAuthor as they require dynamic extraction of features, while
BinAuthor uses a static process.

– For Stuxnet and Flame, our results corroborate the technical report pub-
lished by Kaspersky [12], which shows that both malware packages use similar
infrastructure (e.g., Lua) and are associated with an organization. In addition,
BinAuthor ’s findings suggest that both malware packages originated from the
same organization. The frequent use of particular qualitative choices, such as
the way the code is secured, indicates the use of certain programming stan-
dards and strict adherence to the same rules. Moreover, BinAuthor ’s findings
provide much more information concerning the authorship of these malware
packages. The correspondence between BinAuthor ’s findings and those in the
technical report is as follows: all the choices found in the report [12] were found
by BinAuthor, but they represent only 10% of our findings. The remaining
90% of BinAuthor ’s findings were not flagged by the report.

– For Zeus and Citadel, our results match the findings of the technical report
published by McAfee [3], indicating that Zeus and Citadel were written
by the same team of authors. The correspondence between the findings of
BinAuthor and those of McAfee are as follows: 45% of the choices matched

42 S. Alrabaee et al.

those in the report, while 55% did not, and 8% of the technical report findings
were not flagged by BinAuthor.

4 Related Work

Binary Authorship Attribution: Binary code has drawn significantly less
attention with respect to authorship attribution. This is mainly due to the fact
that many salient features that may identify an author’s style are lost during
the compilation process. In [15,19,32], the authors show that certain stylistic
features can indeed survive the compilation process and remain intact in binary
code, thus showing that authorship attribution for binary code should be feasi-
ble. The methodology developed by Rosenblum et al. [32] is the first attempt to
automatically identify authors of software binaries. The main concept employed
by this method is to extract syntax-based features using predefined templates
such as idioms, n-grams, and graphlets. A subsequent approach (OBA2) to auto-
matically identify the authorship of software binaries is proposed by Alrabaee
et al. [15]. The main concept employed by this method is to extract a sequence
of instructions with specific semantics and to construct a graph based on register
manipulation. A more recent approach to automatically identify the authorship
of software binaries is proposed by Caliskan-Islam et al. [19]. The authors extract
syntactical features present in source code from decompiled executable binaries.
Most recently, Meng et al. [27] introduce new fine-grained techniques to address
the problem of identifying the multiple authors of binary code by determining the
author of each basic block. The authors extract syntactic and semantic features
at a basic level, such as constant values in instructions, backward slices of vari-
ables, and width and depth of a function control flow graph (CFG). Table 7 com-
pares our approach with the aforesaid approaches. Please note that the results of
code transformation (CT) section are based on conducted experiment. When we
found the accuracy is dropped by 1–3%, we considered as “Not affected”, while
4–14% gives “Partially affected”, and finally if it was above 15%, we considered
as “Affected”.

Malware Authorship Attribution: Most existing work on malware author-
ship attribution relies on manual analysis. In 2013, a technical report published
by FireEye [28] discovered that malware binaries share the same digital infras-
tructure and code, such as the use of certificates, executable resources, and
development tools. More recently, the team at Citizen Lab attributed malware
authors according to the manual analysis exploit type found in binaries and the
manner by which actions are performed, such as connecting to a command and
control server. The authors in [5] presented a novel approach to creating cred-
ible links between binaries originating from the same group of authors. Their
goal aimed to add transparency in attribution and to supply analysts with a
tool that emphasizes or denies vendor statements. The technique is based on
features derived from different domains, such as implementation details, applied
evasion techniques, classical malware traits, or infrastructure attributes, which
are leveraged to compare the handwriting among binaries.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 43

Table 7. Comparing different existing solutions with BinAuthor.

Effort Features Compiler CT Binaries

Syntax Semantic Structural Statistical VS GCC Clang ICC DCI IR IRO RT ELF PE

OBA2 ✗ � ✗ ✗ � ✗ ✗ ✗ �� �� � � ✗ �
Caliskan ✗ � � � ✗ � ✗ ✗ � � � � � ✗

Rosenblum � � � ✗ ✗ � ✗ ✗ � � � � � ✗

Meng ✗ � � � ✗ ✓ ✗ ✗ �� �� �� � � �
BinAuthor � � � � � � � � � � � � � �
Note: The (�) symbol indicates that the proposal solution offers the correspond-
ing feature. (CT) stands for code transformation. (DCI) stands for dead code inser-
tion. (IR) stands for instruction replacement. (IRO) stands for instruction reordering.
(RT) stands for refactoring techniques. (�): Not affected by the code transformation
method. (�): Affected by the code transformation method. (��): Partially affected by
the code transformation method.

5 Limitations

Our work has a few important limitations.

Advanced Obfuscation: Our tool fails to handle most of the advanced obfus-
cation techniques, such as virtualization and jitting, since our system does not
deal with bytecode.

IR: Through our experiments, we notice that optimizing IR would remove some
author styles, e.g., loop deletion. We left this issue for future work by leveraging
some existing work [34].

Functionality: There are some choices appear when an author implements a
specific functionality. For instance, if the functionality does not have a multiple-
branch logic, there is no choice between if and switch.

6 Conclusion

To conclude, we have presented the first known effort on decoupling coding habits
from functionality. Previous research has applied machine learning techniques to
extract stylometry styles and can distinguish between 5–50 authors, whereas we
can handle up to 150 authors. In addition, existing works have only employed
artificial datasets, whereas we included more realistic datasets. Our findings indi-
cated that the precision of these techniques drops dramatically to approximately
45% at a scale of more than 50 authors. We also applied our system to known
malware samples (e.g., Zeus and Citadel) as a case study. We realized that
authors with advanced expertise are easier to attribute than authors who have
less expertise. Authors of realistic datasets are easier to attribute than authors
of artificial datasets. Specifically, in the GitHub dataset, the authors of a sam-
ple can be identified with greater than 90% precision. In summary, our system
demonstrates superior results on more realistic datasets.

44 S. Alrabaee et al.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. We also appreciate the help we received from Perry Jones in implementing
BinAuthor. This research is the result of a fruitful collaboration between the Security
Research Center (SRC) of Concordia University, Defence Research and Development
Canada (DRDC) and Google under a National Defence/NSERC Research Program.

Appendix

A Example of Qualitative Choices

Consider a template of dynamic memory allocation presented in Listing 1.1. As
shown in, we have a call to malloc, followed by checking whether or not it is
Null.

Listing 1.1. A fragment of assembly instruction that captures a bad habit of dynamic
memory allocation

...

call ds:malloc

...

or eax , 0FFFFFFFF // -1 if text_buffer is Null

...

xor eax , eax // 0 if text_buffer is not Null

The Listing 1.2 shows how the bad habit in Listing 1.1 could be considered
as a good habit at the assembly level.

Listing 1.2. A fragment of assembly instruction that captures a good habit of dynamic
memory allocation

...

call ds:malloc

...

or eax , 0FFFFFFFF // -1 if text_buffer is Null

...

push eax // memory address of text_buffer

call ds:free

...

xor eax , eax // 0 if text_buffer is not Null

B False Positives

We investigate the false positives in order to understand the situations where
BinAuthor is likely to make incorrect attribution decisions. For this experiment,
we consider 5 programs for each author. For instance, when we have 500 authors
(5 ∗ 500 = 2500 programs), BinAuthor misclassifies 49 programs. Also, when
the number of authors is 2000 (2000 ∗ 4 = 8000 programs), the number of false
positives is 336. We have 2000 authors from dataset used in Sect. 3.2. After

On Leveraging Coding Habits for Effective Binary Authorship Attribution 45

investigation, we have found that the false positives rate for student dataset is
the highest rate and we believe the reason behind this is that the students should
follow the standard coding instructions which restrict them to have their own
habits.

C Impact of Code Transformation Techniques

Refactoring Techniques. We consider a random set of 50 files from our dataset
which we use for the C++ refactoring process [10,11]. We ignore the variable
renaming since it will have no effect in binary code, we consider the following
techniques of, (i) moving a method from a superclass to its subclasses, and (ii)
extracting a few statements and placing them into a new method. We obtain
a Precision of 91.5% in correctly classifying authors, which is only a mild drop
in comparison to the 95% precision observed without applying refactoring tech-
niques.

Impact of Obfuscation. We are interested in determining how BinAuthor
handles simple binary obfuscation techniques intended for evading detection, as
implemented by tools such as Obfuscator-LLVM [22]. These obfuscators replace
instructions by other semantically equivalent instructions, introduce spurious
control flow, and can even completely flatten control flow graphs. Obfuscation
techniques implemented by Obfuscator-LLVM are applied to the samples prior to
classifying the authors. We proceed to extract features from obfuscated samples.
We obtain a precision of 92.9% in correctly classifying authors, which is only a
slight drop in comparison to the 95% precision observed without obfuscation.

Impact of Compilers and Compilation Settings. We are further interested
to study the impact of different compilers and compilation settings on the pre-
cision of our proposed system. We perform the following tasks: (i) testing the
ability of BinAuthor when identifying the author from binaries compiled with
the same compiler, but different compiler optimization levels. Specifically, we
use binaries that were compiled with GCC/VS on x86 architecture using opti-
mization levels O2 and O3. In this test, the precision remains same (95%). (ii)
We use a different configuration to identify the author of program compiled with
both a different compiler and different compiler optimization levels. Specifically,
we use programs compiled for x86 with VS -O2 and GCC -O3. In this test, the
precision slightly drops to 93.9%. We also redo the test for the same binaries
compiled with ICC and Clang compilers. The precision remains almost the same
93.8%. This stability in the accuracy is due to the canonicalization process.

References

1. The Google Code Jam (2008–2015). http://code.google.com/codejam/
2. GitHub-Build software better (2011). https://github.com/trending?l=cpp
3. Technical report: McAfee (2011). www.mcafee.com/ca/resources/wp-citadel-

trojan-summary.pdf

http://code.google.com/codejam/
https://github.com/trending?l=cpp
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf

46 S. Alrabaee et al.

4. The materials supplement for the paper. Who Wrote This Code? Identifying
the Authors of Program Binaries (2011). http://pages.cs.wisc.edu/∼nater/esorics-
supp/

5. Big Game Hunting: Nation-state malware research, BlackHat (2015). https://www.
blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The
-Peculiarities-Of-Nation-State-Malware-Research.pdf

6. Hex-Ray decompiler (2015). https://www.hex-rays.com/products/decompiler/
7. Programmer De-anonymization from Binary Executables (2015). https://github.

com/calaylin/bda
8. The Gephi plugin for neo4j (2015). https://marketplace.gephi.org/plugin/neo4j-

graph-database-support/
9. The planet source code (2015). http://www.planet-source-code.com/vb/default.

asp?lngWId=3#ContentWinners
10. C++ refactoring tools for visual studio (2016). http://www.wholetomato.com/
11. Refactoring tool (2016). https://www.devexpress.com/Products/CodeRush/
12. Technical report, Resource 207: Kaspersky Lab Research proves that Stuxnet and

Flame developers are connected, May 2012. http://www.kaspersky.com/about/
news/virus/2012/

13. Contagio: malware dump, May 2016. http://contagiodump.blogspot.ca
14. VirusSign: Malware Research & Data Center, Virus Free, May 2016. http://www.

virussign.com/
15. Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M.: OBA2: an onion app-

roach to binary code authorship attribution. Digit. Investig. 11, S94–S103 (2014)
16. Alrabaee, S., Shirani, P., Debbabi, M., Wang, L.: On the feasibility of malware

authorship attribution. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi,
N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 256–272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-51966-1 17

17. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: SIGMA: a semantic integrated
graph matching approach for identifying reused functions in binary code. Digit.
Investig. 12, S61–S71 (2015)

18. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: FOSSIL: a resilient and efficient
system for identifying FOSS functions in malware binaries. ACM Trans. Priv.
Secur. (TOPS) 21(2), 8 (2018)

19. Caliskan-Islam, A., et al.: When coding style survives compilation: de-anonymizing
programmers from executable binaries. Netw. Distrib. Syst. Secur. Symp. (NDSS)
(2018)

20. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory
51(4), 1523–1545 (2005)

21. David, Y., Partush, N., Yahav, E.: Similarity of binaries through re-optimization.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 79–94. ACM (2017)

22. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM: software pro-
tection for the masses. In: Proceedings of the 1st International Workshop on Soft-
ware Protection, pp. 3–9. IEEE Press (2015)

23. Junttila, T.A., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In: ALENEX, vol. 7, pp. 135–149. SIAM (2007)

24. Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12),
735–736 (1964)

25. Krsul, I., Spafford, E.H.: Authorship analysis: identifying the author of a program.
Comput. Secur. 16(3), 233–257 (1997)

http://pages.cs.wisc.edu/~nater/esorics-supp/
http://pages.cs.wisc.edu/~nater/esorics-supp/
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.hex-rays.com/products/decompiler/
https://github.com/calaylin/bda
https://github.com/calaylin/bda
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.wholetomato.com/
https://www.devexpress.com/Products/CodeRush/
http://www.kaspersky.com/about/news/virus/2012/
http://www.kaspersky.com/about/news/virus/2012/
http://contagiodump.blogspot.ca
http://www.virussign.com/
http://www.virussign.com/
https://doi.org/10.1007/978-3-319-51966-1_17

On Leveraging Coding Habits for Effective Binary Authorship Attribution 47

26. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci.
(Calcutta) 2, 49–55 (1936)

27. Meng, X., Miller, B.P., Jun, K.-S.: Identifying multiple authors in a binary pro-
gram. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10493, pp. 286–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66399-9 16

28. Moran, N., Bennett, J.: Supply Chain Analysis: From Quartermaster to Sunshop,
vol. 11. FireEye Labs, Milpitas (2013)

29. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN Notices, vol. 42, pp. 89–100. ACM (2007)

30. Palmer, G., et al.: A road map for digital forensic research. In: First Digital Forensic
Research Workshop, Utica, New York, pp. 27–30 (2001)

31. Rajlich, V.: Software evolution and maintenance. In: Proceedings of the Future of
Software Engineering, pp. 133–144. ACM (2014)

32. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? Identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 172–189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 10

33. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85. ACM (2003)

34. Shirani, P., et al.: BINARM: scalable and efficient detection of vulnerabilities
in firmware images of intelligent electronic devices. In: Giuffrida, C., Bardin, S.,
Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 114–138. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93411-2 6

35. Shirani, P., Wang, L., Debbabi, M.: BinShape: scalable and robust binary library
function identification using function shape. In: Polychronakis, M., Meier, M. (eds.)
DIMVA 2017. LNCS, vol. 10327, pp. 301–324. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60876-1 14

36. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy, SP, pp. 138–
157. IEEE (2016)

37. Spafford, E.H., Weeber, S.A.: Software forensics: can we track code to its authors?
Comput. Secur. 12(6), 585–595 (1993)

38. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. ACM SIGPLAN Not. 46(6), 295–305 (2011)

39. Wang, J.T.-L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting fea-
tures from protein sequences. IBM Syst. J. 40(2), 426–441 (2001)

40. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern
Anal. Mach. Intell. 29(6), 1091–1095 (2007)

https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-319-93411-2_6
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14

Synthesis of a Permissive Security
Monitor

Narges Khakpour(B) and Charilaos Skandylas

Linnaeus University, Växjö, Sweden
narges.khakpour@lnu.se

Abstract. In this paper, we propose a new sound method to synthesize
a permissive monitor using boolean supervisory controller synthesis that
observes a Java program at certain checkpoints, predicts information flow
violations and applies suitable countermeasures to prevent violations. To
improve the permissiveness, we train the monitor and remove false pos-
itives by executing the program along with its executable model. If a
security violation is detected, the user can define sound countermeasures,
including declassification to apply in the checkpoints. We implement a
tool that automates the whole process and generates a monitor. We eval-
uate our method by applying it on the Droidbench benchmark and one
real-life Android application.

1 Introduction

Confidentiality of secret information manipulated by a program is usually formal-
ized as a noninterference baseline policy [13], which demands that low-sensitive
outputs should not be influenced by high-sensitive inputs. Several methods and
tools (e.g., JFlow JIF [19], Caml-based FlowCaml [25]) have been developed in
the last decades to analyze or enforce confidentiality. Information flow monitors
are a technique to enforce noninterference dynamically [4,7,11,14,15,22]. The
idea is to monitor the executions of a program at runtime and control its com-
pliance to security policies. As dynamic monitors only decide about the current
execution, for which more information is available at runtime, they enable us to
do a more precise analysis, and are usually more permissive compared to static
methods [18], e.g. [21] proved that dynamic monitors are more permissive in
the flow-insensitive case, where variables are assigned the security levels at the
beginning of the execution and the security levels don’t change during the execu-
tion. Hybrid monitors [14,20,24] are a class of dynamic monitors that combine
static and dynamic analysis.

Consider the following program where h is secret and the rest of variables
and objects are public:

obj1.x=h;

if(a>0)

while(b>0){obj1.x=0;b=b-1;}

else obj1.x=1;

f(l); l=obj1.x; obj2.att=l; print(obj2);

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 48–65, 2018.
https://doi.org/10.1007/978-3-319-99073-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_3&domain=pdf

Synthesis of a Permissive Security Monitor 49

If a > 0 ∧ b ≤ 0 holds, then the value of h will flow to l through obj1.x and
the program is insecure, otherwise the program is secure. Security type systems,
one of the main techniques for static analysis, reject this program completely,
while dynamic monitors allow the secure executions, i.e., if a > 0 ∧ b ≤ 0 does
not hold, the program is secure and executes normally, otherwise, the program
is permitted to run and a certain strategy is designed to protect the system.
The existing strategies either (a) manipulate the attacker’s observation as soon
as a violation is detected, i.e. at the observation point (e.g. print(obj2) in the
above example) [14,20], (b) run several instances of the program simultaneously
with various inputs to ensure that the program does not reach an insecure state
[5,11], or (c) control assignment of low sensitive data in high contexts (i.e. a
branch on high sensitive data) [4,26]. The approaches in category (b) are expen-
sive and have a huge overhead, due to running several instances of the program
simultaneously [12]. The methods in the categories (a) and (c) detect security
violations one-step before their occurrence [20], and as a result, it becomes com-
plicated and expensive, if possible at all, to apply a proper countermeasure to
avoid information leakage.

In the above example, if executing f(l) results in modifying the database
or sending data over a network and we detect the violation immediately before
print(obj2), then a suitable countermeasure to fix the violation might require us
to recover the system to a state where a proper countermeasure can be applied,
which is difficult, if possible at all. On the other hand if we know that the
condition a > 0 ∧ b ≤ 0 leads to a violation before executing the program, then
we are able to apply a countermeasure before f(l).

Although, dynamic monitors are usually more permissive than static meth-
ods, they still can produce false positives and are not always the most permissive
monitor. Hence, it is crucial to construct sound dynamic and hybrid monitors
that allow as many paths as possible. In addition, to the best of our knowledge,
there is no dynamic monitor that can predict confidentiality violations at runtime
before the violation points and allows applying user-defined countermeasures, in
particular declassification, to avoid security violations.

To tackle the above challenges, we propose a new approach based on boolean
supervisory controller synthesis [6] to synthesize a hybrid monitor that monitors
a program written in a subset of Java at certain checkpoints, predicts security
violations and applies suitable countermeasures in checkpoints to avoid future
leakages. Given a program, a set of checkpoints from where the program can
be observed by the monitor, a set of observation points where the attacker can
observe the application in (See Fig. 2), we use the controller synthesis method
proposed in [6] to synthesize a set of security guards for the checkpoints that
guarantee no information leakage in future, up to the next checkpoint.

To improve the permissiveness of the monitor, we construct an executable
model of the monitored program that contains only observation points and check-
points. In the training phase, we run the program along with its executable model
to train the monitor and improve its permissiveness; if a violation is predicted
at runtime in a checkpoint, we execute the program model to check whether the

50 N. Khakpour and C. Skandylas

security guard of the current checkpoint is restrictive or not. If it is restrictive,
we learn and relax the security guard to allow the current (symbolic) execution
path in future. After the monitor training, we construct a more lightweight mon-
itor that controls and predicts information flow using the learnt security guards
in the checkpoints to protect the program.

Furthermore, we design a set of secure countermeasures to be applied in the
checkpoints in case of security violations that prevent the program from reaching
an insecure state. A user-defined countermeasure can be applied at runtime,
provided that it satisfies certain conditions. One of the main countermeasures
that can be applied is to declassify information, i.e. degrade the security level
of variables. In [16], we proved that the method is sound and enforces localized
delimited release [2]. If the monitor does not perform any declassification, it
enforces termination-insensitive noninterference. Furthermore, we implement a
tool-set to support our method and conduct some experiments to evaluate the
method. Our contributions are the following:

– Permissive Sound Monitor. We propose a new approach using boolean con-
troller synthesis to efficiently construct a hybrid flow-sensitive security moni-
tor that predicts future information flow at a few predefined checkpoints in a
Java program. To improve the monitor permissiveness, we train the monitor
in a testing environment and eliminate false positives as far as possible.

– Supporting User-Defined Countermeasures. In contrast to the existing
dynamic monitors that apply a few fixed countermeasures, detecting a vio-
lation multiple steps ahead of its occurrence enables the user to design and
apply various countermeasures in the checkpoints, provided that they intro-
duce no information leakage. Our method is the first method that allows
dynamic correct-by-construction information disclosure, even though the
declassification policies are simple. While existing approaches enforce a vari-
ation of noninterference, our method guarantees localized delimited release,
and enforces termination-insensitive noninterference in case of no information
release.

– Tool Support. Our method is supported by a tool-set to control information
flow in programs written in a sub-language of Java. We also conducted exper-
iments to evaluate the effectiveness of the method.

This paper is organized as follows. We briefly introduce the controller synthe-
sis problem in Sect. 2, and give an overview of the approach in Sect. 3. Section 4
presents the program syntax, the security control flow model and the program
executable model. We introduce our monitor construction approach in Sect. 5. In
Sect. 6, we present the toolset and evaluate the approach. In Sect. 7, we discuss
related work and Sect. 8 concludes the paper.

2 Preliminaries

In this section, we briefly review the symbolic supervisory controller synthesis
method proposed in [6], the goal of which is to construct a controller to control a

Synthesis of a Permissive Security Monitor 51

system behavior, so that the bad states are avoided. In this method, the system
behavior is represented by a symbolic control flow graph. Let V = 〈v1, . . . , vn〉
be a tuple of variables, Dvi

be the (infinite) domain of a variable vi, and DV =∏
i∈[1,n] Dvi

. A valuation ν of V is a tuple 〈ν1, . . . ,νn〉 ∈ DV , and we show the
value of vi in ν by ν(vi), 1 ≤ i ≤ n. A predicate P over a tuple V is defined as a
subset P ⊆ DV (a state set for which the predicate holds). We show the union
of two vectors V1 and V2 by V1 � V2.

Definition 1 (Symbolic Control Flow Graphs). A symbolic control flow
graph (SCFG) is a tuple G = 〈L, V, I, lo, v0,Δ〉 where L is a finite non-empty
set of locations, V = 〈v1, . . . , vn〉 is a tuple of variables, I is a vector of inputs,
l0 is the initial location, v0 ∈ DV shows the initial valuation of the variables,
and Δ is a finite set of symbolic transitions δ = 〈Gδ, Aδ〉 where Gδ ⊆ DV �I is
a predicate on V � I, which guards the transition, and Aδ : DV 	→ DV �I is the
update function of δ, defined as a set of assignments.

Initially, G is in its initial state. A transition can only be fired if its guard
is satisfied and when fired, the variables are updated according to its update

function. Let l and l′ be two locations. We use the notation l
〈Gδ,Aδ〉−−−−−→ l′ to

represent a symbolic transition 〈Gδ, Aδ〉 with the source l and target l′. The
semantics of a SCFG G is defined in terms of a deterministic finite state machine.

In this method, the inputs are partitioned into two sets of controllable and
uncontrollable inputs: an input is uncontrollable if it can not be prevented from
occurring in a system, while controllable inputs are issued by the controller to
control the system behaviour. Let ψ : L → DV be the invariants defined for
the locations (i.e. an invariant ψ(l) is a condition on the valuation of variables
that must always hold when the system enters the location l), and Ic ⊆ I be
the set of controllable inputs. Given an invariant ψ and a SCFG G, a controller
C : L → DV �Ic

is synthesized to observe the system and allow or prohibit the
controllable inputs, so that the system G avoids entering a bad state, i.e. a state
that does not satisfy its invariant.

3 The Method Overview

Figure 1 shows an overview of our method. The Java program is annotated with
checkpoints, observations points (can be avoided), initial security labels and
entry points (See Fig. 2 and Sect. 4). A checkpoint is essentially a method call
in which we monitor the program, and can apply a countermeasure if needed.
The checkpoints are not permitted to exist under branch statements. An obser-
vation point is a point that leads to an observation by the attacker, that is
either a method call or the exit point of a branch of a conditional/loop whose
other branch contains a method call observation point. We construct a boolean
symbolic control flow graph that describes the program control flow enriched
with security typing information (See Sect. 4) which is fed to the Reax controller
synthesis tool [6]. For each checkpoint, the tool generates the abstract security
guards in terms of program paths and security types that in principle show the

52 N. Khakpour and C. Skandylas

Fig. 1. The method overview

paths that do not lead to insecure states (See Sect. 5). We also express the (secu-
rity) semantics of the program in terms of a symbolic control flow graph that
includes both the program behaviour and the security typing information. Given
the security semantics, we construct a model called program model that includes
only observation points in addition to checkpoints (See Sect. 4). We propose a
framework to construct a secure monitor in Sect. 5 that applies the countermea-
sures either in the checkpoints and/or in the observation points, depending on
the user preferences.

The program is observed by the monitor in the checkpoints (e.g. the run
method in Fig. 2) at runtime. The monitor checks the security guards of the cur-
rent checkpoint to determine whether the program will reach an insecure state
(e.g. in the println method in Fig. 2) or not. If not, the program will continue
its execution. Otherwise, if the learning feature is enabled (e.g. in the training
phase), the monitor executes its program model using a model execution engine
to ensure that the generated security guard is not restrictive. If the generated
security guard of the current checkpoint is restrictive, it is relaxed to allow this
secure path henceforth, i.e. the security guards are learned and improved over
time. Afterwards, the program continues its execution by applying a countermea-
sure. This monitor will be the most permissive monitor, if we train it sufficiently,
as it will never block a secure path.

4 Security Control Flow Model

We consider a sub-language of Java whose simplified syntax of statements is
shown in Fig. 3, that includes loop statements, conditional statements, assign-
ments, a return command, constructors and method calls. In this figure, v is
a variable of primitive type, e is an expression, stm is a statement, o is an

Synthesis of a Permissive Security Monitor 53

Fig. 2. Java code snippet

object, stms is a sequence of statements, o.m(
→
e) is a method call with arguments

→
e = e1 . . . em, and

√
shows an empty sequence of statements. The statements

in a bracket are optional and ε shows no argument.
We follow a type-based flow-sensitive method and assign a security type to

each variable, i.e. the security type of a variable may change during the program
execution. A variable is either a primitive variable or an instance variable of a
user-defined type. We consider a two-level security lattice 〈L,�,〉 where L =
{H,L} is the set of security types, � is a partial order defined over L and is an
operator that gives the least upper bound of two elements in L (i.e. disjunction).
The function var(e) returns the variables that appear in the expression e, and if
e is an object, it returns the object itself along with all its accessible attributes
(i.e. its own attributes, the attributes of its attributes, etc). The notation ē
represents the security type of an expression e, defined as

v∈var(e)
v̄, i.e. the

security type of an instance variable is defined based on the security types of all
its attributes.

We define an abstract security semantics for our language in terms of boolean
symbolic control flow graphs partially shown in Fig. 4. We abstract away the
program variables in this semantics and only consider the program control flow
in addition to the variables’ security types. We assign a unique abstract boolean
variable called a branch variable to each branch that denotes if that branch is
enabled or not. A loop body might change the loop guard, and subsequently, the
value of its branch variable might change in each iteration. Since, we don’t model
the program variables and consequently the loop body behaviour, we consider an
uncontrollable boolean input called uncontrollable loop guard for each loop and
each of its internal branches that non-deterministically takes a boolean value in
each state and is assigned to the corresponding branch variable after execution
of the loop body.

Let G = 〈L, V, I, lo, v0,Δ〉 represent a SCFG that shows the security seman-
tics of a program where Δ is defined using the rules in Fig. 4. The locations L are
the set of configurations where a configuration is defined as a stack σ0 : . . . : σn

of currently active contexts. A context σk, 0 ≤ k ≤ n shows the statements of
a method body that remain to be executed or a block of instructions (e.g. loop
body), and pcσk

shows the security type of the context σk. The state variables V
include the branch variables, the security types assigned to the program variables

54 N. Khakpour and C. Skandylas

c ::= o | new m(
→
e) | o.m(

→
e)

stm ::= v = e | o = c | o.m(
→
e) | if (e) stms [else stms] | while (e) stms | return [e] | √

stms ::= stm; stms | stm;

Fig. 3. The statements syntax

and the set of variables representing whether two instance variables point to the
same object or not. The uncontrollable inputs of I include the uncontrollable
loop guards and τ that is a boolean variable associated with the non-checkpoint
transitions, and its controllable inputs are boolean inputs associated with each
checkpoint transition.

The rule assignL defines the semantics of a variable of primitive type where
e is a method call free expression. The security type of v is modified to the
upper bound of e’s security level (ē) and the security level of current context
pcσn

. To handle object aliasing in our pure boolean SCFG, for each two arbitrary
object instance variables of the same type, we consider a boolean variable called
points-to variable to indicate whether they point to the same object or not. The
function alias returns a boolean variable to show if two instance variables are
in aliasing relation or not, where for all o, o′, alias(o, o′) = alias(o′, o). When an
instance variable is updated, the points-to variables in addition to the security
types of the associated instance variables are updated. The rule assignO defines
the semantics of an assignment where the assignee is not an attribute instance
variable. This rule relates the assignee to the assigner and all the instance vari-
ables related to the assigner (i.e. UpdatePointsToVars sets their corresponding
points-to variables), and changes the type of assignee to the upper bound of the
assigner’s type and pcσn

. It will update the security types of the attributes of
instance variables newly related to the assigner (UpdateAttributesLabels) (more
details in [16]).

The rule cond defines the semantics of conditional statements, and the rule
while1 defines the semantics of loops. In these rules, the function mc(stms)
shows the variables that might be modified by stms and basically returns all
left-hand side variables of the assignments in stms, and [stms] indicates that the
code stms is executing under a branch. When the program enters a branch, a new
context σn+1 is created whose security type is defined as the upper bound of the
current context security label (pcσn

) and the security label of e. In addition, the
security labels of all variables of the unexecuted branch in the new context are
updated in order to detect indirect implicit flows. The function χ(σ0 : . . . : σn)
returns two unique branch variables, assigned to each branch from a configu-
ration σ0 : . . . : σn. When a program exits a branch or finishes the execution
of the loop body, the latest context is removed (the rule exit and the rule
while2). In addition, the branch variables of a loop body (bv(c)) are updated
to their corresponding uncontrollable loop guard variables (LoopGuard the rule
while2).

Synthesis of a Permissive Security Monitor 55

assignL
U = {v̄ = ē � pcσn

}
〈σ0 : . . . : σn = {v = e; }〉 �,U−−−→ 〈σ0 : . . . : σn = {√}〉

assignO

¬Attribute(o),
U = {ō = ō′ � pcσn

, alias(o, o′) = �} ∪ UpdatePointsToVars(o, o′) ∪ UpdateAttributesLabels(o, o′)

〈σ0 : . . . : σn = {o = o′; }〉 �,U−−−→ 〈σ0 : . . . : σn = {√}〉

cond

U1 := {pc{[c1]} = ē � pcσn
} ∪ ⋃

x∈mc(c2)
x̄ = x̄ � pcσn

,

U2 := {pc{[c2]} = ē � pcσn
} ∪ ⋃

x∈mc(c1)
x̄ = x̄ � pcσn

, (φ1, φ2) = χ(σ0 : . . . : σn)

〈σ0 : . . . : σn = {if (e) c1 else c2}〉 φ1,U1−−−−→ 〈σ0 : . . . : {√} : {[c1]}〉
〈σ0 : . . . : σn = {if (e) c1 else c2}〉 φ2,U2−−−−→ 〈σ0 : . . . : {√} : {[c2]}〉

while1

U1 := {pcσn+1
= ē � pcσn

} , U2 :=
⋃

x∈mc(c)
x̄ = x̄ � pcσn

, (φ1, φ2) = χ(σ0 : . . . : σn)

〈σ0 : . . . : σn = {while (e) c; }〉 φ1,U1−−−−→ 〈σ0 : . . . : {√} : σn+1 = {[c;while (e) c]}〉
〈σ0 : . . . : σn = {while (e) c; }〉 φ2,U2−−−−→ 〈σ0 : . . . : {√}〉

while2

U :=
⋃

φi∈bv(c)
φi = LoopGuard(φi)

〈σ0 : . . . : {stms} : {[while (e) c]}〉 �,∅−−→ 〈σ0 : . . . : {while (e) c; }〉

exit
〈σ0 : . . . : {stms} : {[√]}〉 �,U−−−→ 〈σ0 : . . . : {stms}〉

callNT
NonThirdParty(m), U := {pcσn+1

= pcσn
} ,

〈σ0 : . . . : σn = {v = o.m(
→
e)}〉 �,U−−−→ 〈σ0 : . . . : {return v} : σn+1 = {body [→e /pr(m)]}〉

return
〈σ0 : . . . : {return v; } : {return x; }〉 �,∅−−→ 〈σ0 : . . . {v = x; }〉

callT

ThirdParty(m) , l = ē1 � . . . � ēm � ō � pcσn
, U1 = {v̄ = l} ∪ ⋃

0≤i≤m

ēi = l

〈σ0 : . . . : σn = {v = o.m(
→
e)}〉

→̄
e ,U1−−−→ 〈σ0 : . . . : σn = {√}〉

〈σ0 : . . . : σn = {v = o.m(
→
e)}〉 ¬→̄

e ,∅−−−→ 〈σ0 : . . . : σn = {√}〉

Fig. 4. The security control flow semantics

The rule callNT describes the security semantics of a non-third party pub-
lic method invocation defined for a class of type t that creates a new context
with the statements body [

→
e /pr(m)] that is obtained by substituting the method

parameters pr(m) in the method body with the arguments
→
e . The return state-

ment pops the context and populates the variable v with the return value x
(the rule return) where x is a variable. For third-party methods, we set the
security labels of all pass-by-reference arguments and the caller to high, if the
method is invoked with a high-sensitive argument or the caller is high-sensitive
(rule callT). We assume that the caller has no static attribute.

Example 1. Figure 5(a) shows the simplified security control flow model of the
while loop in Fig. 2 generated by our tool. In this figure, the conditions WA41 and
NA41 are branch variables and EWA41 and ENA41 are uncontrollable loop guards.

56 N. Khakpour and C. Skandylas

ti
<NA41 and not woracle41, U5>

<WA41 and woracle41,LPC1=LPC;
LPC=false or L_pack_Class2_run_w5 or LPC;>

41

<true, U2>43

47

<true, U3>44

<true, U1>

42

<true, U4>
45

<true, LPC=LPC1;WA41=EWA41;
woracle41=EWA41;NA41=ENA41;>

46

<true,U0>

40

Insecure
States B

Extended Insecure
States

Application
State Space

Program
Model

Transitions

Checkpoints

Controllable
transition

Observation
points

Uncontrollable
transition

(a) (b)

Fig. 5. (a) Security control flow model example; (b) Insecure state avoidance

Program Model. From the program semantics that is obtained by adding pro-
gram variables to the security control flow semantics, we construct a program
model that contains only the checkpoints and the observation points by merging
the transitions (See Fig. 5(b)). We remove an unmonitorable transition t (i.e.
its source is not a checkpoint or an observation point) by first propagating the
transitions’ guard and updates backwards to its incoming transitions, and then
eliminating it. If there is no other transition from the source location of t, we
remove the source location as well. The propagation continues until there is no
further unmonitorable transition to process. We proved the soundness of the
propagation algorithm [16].

5 Monitor Synthesis

The monitor synthesis process consists of two steps discussed in this section.

Step 1 - Generating Checkpoint Security Guards

A program is in an insecure state if it is in an observation point whose security
policies have been violated, i.e. leaks information. An observation point is either a
third-party method call, or the exit point of the unexecuted branch of a branch
statement where the executed branch contains an observation point that is a
method call. We consider the latter to be able to detect indirect information
flows. For example, consider the following program where print is an observation
point:

if(h>0) print(l0) else h=1;

If h>0, then the attacker observes l0 in output and will know that h was
greater than 0. If the else branch executes, since nothing is printed out, the
attacker will know that h<=0 holds. It is obvious that executing either of the
branches causes information leakage. To prevent any leakage, we consider two

Synthesis of a Permissive Security Monitor 57

points in this program that must be avoided: print(l) that should always be
called with low-sensitive data, and the outgoing transition of the else branch
that should be in a low-sensitive context. Insecure states are formally specified
as boolean expressions defined over security labels for the locations, e.g. ¬ l0 in
the configuration print(l0) in the above example.

Given the (boolean) security control flow semantics described in Sect. 4 and
the specification of insecure states, we use the boolean controller synthesis
method described in Sect. 2 to obtain the abstract security guards (See Fig. 5(b)).
An abstract security guard describes the execution paths and security types that
lead to an insecure state. The guard of a checkpoint’s transition is restricted to
allow only execution paths that do not cause a security violation, and the insecure
paths are controlled by applying countermeasures to avoid a violation. Observe
that in the security control flow model, all the transitions from the checkpoints
are considered controllable and the rest of the transitions are uncontrollable
(Fig. 5(b)).

To obtain the security guards in terms of program variables, we propagate
each branch guard along its path to its controlling checkpoint. For instance, in
our example, the simplified generated guard for the checkpoint run is ¬ ad ∧
¬WA41. To be able to evaluate this condition in the checkpoint, we propagate
WA41 to the checkpoint run that results in 0<(d+3).

If there is a conditional statement after the loop in our example, we cannot
propagate its conditions to the checkpoint run, as we need to propagate the
conditions through the loop which is not always possible. To solve this problem,
we assume a dummy checkpoint after the loop body, called loop checkpoint that
is used to propagate the conditions to, instead of the controlling checkpoint (e.g.
the transition from 46 to 41 in Fig. 5(a)).

Step 2 - Monitor Construction

In the second step, we design a monitor to observe a program in the checkpoints
and control the information flow. In the checkpoints, if the security guard of
the current checkpoint, produced in the first step, allows the execution, the
program will continue its execution and the monitor state will also be updated
and evolved to the next checkpoint. Otherwise, a countermeasure will be applied
to protect the program. One of the main countermeasures that the user can apply
is to declassify the high-sensitive information to prevent reaching insecure states.
Declassifying a variable leads to downgrading its security label.

We represent a program state by 〈c,ν〉 where c is the configuration and ν
indicates the program variables valuation. A monitor state is represented by
〈ρ,mode, I,pc, Γ 〉 where ρ is the current checkpoint of the monitor, mode is a
variable that shows the monitoring mode (will be discussed later), I is the set of
variables declassified so far, pc is the stack of security contexts, and the function
Γ shows the valuation of security type variables. We represent the state of the
monitored program by 〈c,ν〉 ‖ 〈ρ,mode, I,pc, Γ 〉.

Let C be the set of checkpoint configurations, L be the set of observation
point configurations, P be the set of security policies and ρ

G,A−−→ ρ′ represent

58 N. Khakpour and C. Skandylas

ncp-sec
〈c, ν〉 −→ 〈c′, ν′〉 , c 	∈ C , c 	∈ L

〈c, ν〉 ‖ 〈ρ,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ,mode, I, pc, Γ 〉

cp-insec1

〈c, ν〉 〈→− c′, ν′〉, c
G,A−−−→ ρ , ν |= G , (ν, Γ) �|= Guard(c) , ¬Restrictive(c, ν, Γ,C, P) ,

cmeasure(ν, I) = 〈ν′′, I′〉 , Γ ′ = Γ ↓ (I′\I) , secure(cmeasure)

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〈→−〉 c, ν′′〉 ‖ 〈c,mode, I ′, pc, Γ ′〉

cp-insec2
〈c, ν〉 〈→− c′, ν′〉, c

G,A−−−→ ρ , ν |= G , (ν, Γ) �|= Guard(c) , ¬Restrictive(c, ν, Γ,C, P) , pc′ = A(pc) , Γ ′ = A(Γ)

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ, �, I, pc′, Γ ′〉

cp-insec3
〈c, ν〉 〈→− c′, ν′〉, c

G,A−−−→ ρ , ν |= G , (ν, Γ) �|= Guard(c) , Restrictive(c, ν, Γ,C, P) , pc′ = A(pc) , Γ ′ = A(Γ)

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〈→−〉 c′, ν′〉 ‖ 〈ρ,mode, I′, pc′, Γ ′〉
Guard(c) = Guard(c) ∧ ¬path(c, ρ, ν)

op-linsec
〈c, ν〉 〈→− c′, ν〉 , pc = pc1 : . . . : pcσn

, pcσn
= L , c 	= ρ , c 	∈ C , c ∈ L

〈c, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉 −→ 〈c′′, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉

op-hinsec
pc = pc1 : . . . : pcσn

, pcσn
= H , c 	= ρ , c 	∈ C , c ∈ L

〈c, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉 −→ 〈√, ν〉 ‖ 〈ρ, �, I, pc, Γ 〉
cp-sec

〈c, ν〉 〈→− c′, ν′〉 , c
G,A−−−→ ρ′ , ν |= G , (ν, Γ) |= Guard(c) , pc′ = A(pc) , Γ ′ = A(Γ)

〈c, ν〉 ‖ 〈c,mode, I, pc, Γ 〉 −→ 〈c′, ν′〉 ‖ 〈ρ′, ⊥, I, pc′, Γ ′〉

Fig. 6. The behaviour of a monitored program

a symbolic transition from a checkpoint ρ to ρ′ of the program model. The
behavior of the monitored program is described by the rules in Fig. 6. The first
rule states that if c is neither a checkpoint nor an observation point, then the
program continues its normal execution. When a security violation is predicted
in a checkpoint, we propose three general strategies for protection and the system
administrator should apply the proper one to react to a security violation. We
say a security violation is predicted in a checkpoint c in a state, if the propagated
security guard generated for that checkpoint (Guard(c)) is not satisfied in that
state.

The guards generated in the first step can sometimes be restrictive. To check
if a violation prediction is restrictive or not, we execute the program model up to
the next checkpoint and check if the security policies have been violated along
the path or not. If there is a violated security policy along the path, it means
that the prediction is correct, otherwise, the security guard is restrictive for this
specific path and must be relaxed. The predicate Restrictive(c,ν, Γ,C,P) states
that no security policy of P is violated in the states along the path from the
program state 〈c,ν〉 to the next checkpoint.

When a violation is predicted, the monitor can apply a user-defined counter-
measure cmeasure provided that this countermeasure is secure and the prediction
is not restrictive (the rule cp-insec1 in Fig. 6). Let Γ ↓ V be a typing environment
that degrades the security level of the variables of V in Γ . The countermeasure
cmeasure should not change the value of the low-variables. In addition, it can
only declassify variables that have not been modified by the program so far, i.e.
I ′\I ∩ν(mv) = ∅ where I ′\I is the set of declassified variables and mv is the set
of variables modified so far. For instance, consider the following program:

Synthesis of a Permissive Security Monitor 59

h1=h2; f(); if (l1<10) {l2=h1;} else l2=l1; print(l2);

where l1 and l2 are low-sensitive, and h1 and h2 are high-sensitive. Let f()
be the checkpoint and initially Γ (h1) = Γ (h2) = H. If we declassify h1 in the
checkpoint, it also reveals h2. The reason is that the value of h1 is set to h2
before the checkpoint and if the if branch executes, h1 (and h2) will be copied
to l2 that will be printed and revealed. Hence, we only allow declassification of
variables that have not been modified. In addition, the variables declassified by
applying a countermeasure shouldn’t depend on the program state except for
the program location. For instance, consider the following program

if(h3) { h1=5;} else h2=l1; f(); l=h1; print(l1);

If h3 is true, h1 becomes modified and we cannot declassify it. If h3 is false, even
though h1 does not change, we do not allow it to be declassified, as it leads to
the disclosure of h3 as well. Furthermore, the countermeasure should not lead
the program into an insecure state again. Consider the program

f(); if(l1<10) {l2=h;} else l2=l1; print(l2);

If l1<10 ∧ Γ (h) = H holds in the checkpoint, the program is insecure, oth-
erwise it’s secure. As mentioned above, cmeasure cannot change any low-
sensitive variable such as l1. Hence, a countermeasure that prevents the program
from reaching an insecure state should include declassification of h, otherwise,
l1<10 ∧ Γ (h) = H holds infinitely and this leads to a live lock situation where
the program makes no progress and keeps constantly applying the same coun-
termeasure. To avoid this situation, applying a countermeasure should lead to
triggering a permissible transition, i.e. after applying the countermeasure, there
should be a transition in the monitor that can be triggered.

Based on the above issues, a countermeasure cmeasure is secure, if for all ν
that cmeasure(ν, I) = 〈ν ′, I ′〉, (i) applying cmeasure does not lead the program
into an insecure state, i.e. a transition from the location c in the monitor with
a guard G′ exists such that ν′ |= G′, (ii) the condition ν =Γ ν′ ∧ I ′ ∩
ν′(mv) = ∅ holds, and (iii) for all ν1 and ν2, if cmeasure(ν1, I) = 〈ν ′

1, I
′
1〉

and cmeasure(ν2, I) = 〈ν ′
2, I

′
2〉, then I ′

1 = I ′
2. We say two memories ν and ν′

are low-equal w.r.t. Γ , denoted by ν =Γ ν′, if their low variables according to
the security typing function Γ are identical, i.e. ν(v) = ν′(v) where Γ (v) = L,
∀v ∈ V and V is the set of program variables.

If a prediction about a violation is incorrect in a checkpoint c, the program
will be allowed to execute and the security guard of the checkpoint (Guard(c))
will be weakened (the rule cp-insec3). The function path(c, ρ,ν) returns the
conditions in the state ν that enable the path from c to ρ.

If the violation is predicted correctly but there is no countermeasure to apply
in that checkpoint and all the future observation points up to the next check-
points are side-effect free (i.e. return void), the execution mode is changed to
secure (mode = �) and a countermeasure is applied in the observation points,
as done in [20] (the rule cp-insec2). The rule cp-sec states that if the program is

60 N. Khakpour and C. Skandylas

in a checkpoint, and the monitor allows its transition (ν |= G), then the monitor
and the program evolve into their new states, and the monitoring mode changes
to normal (⊥). In the secure mode execution, if the context is low and execut-
ing a statement in an observation point leads to a security policy violation, a
default side-effect-free action c′′ is performed, e.g. sending default data (the rule
op-linsec), otherwise nothing happens (the rule op-hinsec). We assume that the
observation points are side-effect free so that the countermeasures do not change
the program semantics. The rules for the case that the learning feature is inactive
are defined similarly.

In [16], we proved that a monitored program satisfies localized delimited
release property [2], which states that, for any initial memory states s and s′

whose secret parts may only differ, if the value of all declassified variables is the
same in both s and s′, then the observation sequence of the program running in
state s and s′ will be the same, or one is a prefix of the other. The reason for
the latter case is that our method guarantees a termination-insensitive property.
This notion disallows data release before it is declassified but allows release after
declassification. In the case of no information release, it satisfies termination-
insensitive non-interference.

6 Implementation and Evaluation

The Tool Set. We have implemented a tool to demonstrate the proposed method
targeting Java applications. The tool consists of two main components: the static
analysis component and the model execution engine. The static analysis requires
the annotated Java application as input and (i) generates security guards for
the checkpoints by employing the Reax [6] synthesis tool, (ii) automatically
constructs the program model, and (iii) instruments the code for the monitoring
purpose. The model execution engine executes symbolic control flow graphs and
is used to run the program models.

Two versions of the monitor have been implemented. In the first version, we
use the aforementioned engine to run the program model and train the monitor
to eliminate false positives. In the entry point, the monitor initiates its state and
loads the required information for it to function. On each of the checkpoints, the
engine executes the program model until the next checkpoint, and checks if
a violation has been predicted correctly. If the security guards of the current
checkpoint are restrictive, it then relaxes the security guards.

In the second version, called model-execution free monitor, the program
model is not executed and subsequently the monitor cannot learn new security
guards. In this monitor, the security guards are checked at the checkpoints and
the proper follow-up is executed if needed. If there is no violation, the security
labels are updated to their values in the next checkpoint.

To assess the permissiveness of our method and the performance of tool, we
applied it to a real world android application as well as multiple test cases of the
Droidbench test suite. The application used is pedometer [1] with 1483 lines of
code. The static experiments were performed on a Intel i7-6700 at 3.4 GHz and

Synthesis of a Permissive Security Monitor 61

32 GB of DDR4 Ram running a 64bit version of Ubuntu Linux. The dynamic
experiments were performed on a Galaxy Tab S3 running android version 7.0.

We used 70 test cases from the Droidbench benchmark to evaluate the permis-
siveness of our method. We have achieved a precision of 100% and had 4(5%) false
positives. The static analysis performance depends on the size of code, number
of variables, the number of checkpoints and the average distance between them.
The more checkpoints the program contains, the shorter the distance between
the checkpoints and the more performant the static analysis usually should be.
Figure 7(a) shows the performance results for static analysis of pedometer. That
is mainly due to the guards being propagated along shorter paths when con-
structing the program model. The analysis of test cases in the Droidbench
benchmark takes a fraction of second, as they are very small programs. Due to
the small size of test cases in the Droidbench benchmark, it was not possible to
have more than one checkpoint in a test case to evaluate the affect of number
of checkpoints on the performance. In general, since we use boolean controller
synthesis and state space partitioning to tackle complexity, we believe that static
analysis should not be expensive, as confirmed by our current experiments so
far.

The performance of the runtime monitor with learning feature is dependent
on the number of the lines of code of the original program (See Fig. 7(b) for
pedometer). For each instruction in the original program the monitor has to
execute that instruction and update the security labels. Additionally the check-
point guards have to be checked. As a result, we expect the runtime monitor
to incur a significant performance overhead compared to the program with no
monitor.

The monitor-execution free instance only checks the guards at each check-
point and usually outperforms the runtime monitor. Its performance depends on
the number of checkpoints; it sounds that the more the checkpoints the program
has, the fewer checks have to be run at each one which improves performance.
Note that the guards are propagated and simplified statically. An outside factor
that seems to impact the monitor’s performance is the JVM’s optimization; when
the checkpoints run many times, we noticed that the performance increases by
at least an order of magnitude, e.g. from a 30% monitor running time to <1%.

Discussion. We believe that the results of static analysis are promising, mainly
because the method uses boolean analysis and state partitioning. However, the
performance overhead of dynamic monitor for our current test cases is scat-
tered in quite a wide interval, e.g. from less than 1% to 40% for the model-
execution free monitoring. We believe that we need to conduct many more
experiments on different programs with various sizes, number of checkpoints,
number of branches, number of variables etc, to be able to make a valid con-
clusion about the performance of the dynamic monitor. To this end, we should
extend the method and tool to support exceptions, to be able to apply it on more
real-life case studies. Furthermore, we are working on a new solution to run the
monitor concurrently with the original program that is expected to improve the
performance.

62 N. Khakpour and C. Skandylas

60 90 150 200
0.4

1

2.2
·104

Average Distance Between Checkpoints

T
im

e
(m

s)
Static Analysis Performance

Pedometer

1 2 5 11

0.2

0.4

0.8

1

Number of checkpoints

P
er
ce
nt
ag

e
of

ti
m
e
us
ed

by
th
e
m
on

it
or

Dynamic Analysis Performance

No Execution
Execution

(a) (b)

Fig. 7. Performance results

7 Related Work

There is a large body of work on verification and enforcement of noninterference
as a policy to enforce confidentiality [13]. We have compared our approach with
the related work in [16]. In this section, we discuss some related work.

The authors in [8] present a taxonomy of existing dynamic and hybrid
monitors: no-sensitive-upgrade (NSU), permissive-upgrade (PU), hybrid monitor
(HM), secure multi-execution (SME), and multiple facets (MF). The NSU [3,26]
approach generates a purely dynamic monitor, that controls only one execution
and disallows any upgrade of a low sensitive variable in a high context. This app-
roach is improved in [4] by using a less-restrictive strategy in upgrading low vari-
ables in a high context, called permissive upgrade. In SME [11,17] and MF [5],
multiple versions of a program are executed simultaneously, one for each secu-
rity level, and the variable updates are controlled in a way that there will be no
information leakage. These two categories of approaches introduce no information
flow, however, they suffer from high performance overhead at runtime [5,12] that
increases with the number of used security levels. Moreover, some repairable exe-
cutions get blocked and the only applicable countermeasure is replacing the value
of violating variables with some low-secure and safe constants.

In [9,14], the authors apply a flow-sensitive type system to instrument seman-
tics of a program and consider unexecuted paths to detect indirect flows. Then,
they statically construct a monitoring automaton that is traversed at runtime
to detect security violations and apply countermeasures. In [20], the authors
proposed a framework for hybrid monitors that is proven to be sound and guar-
antees termination insensitive noninterference for a simple language with output.
It uses the countermeasures stop, suppress, or rewrite to react to a violation in
output points. We extended their flow-sensitive type system with objects and
method calls to instrument the program semantics. We predict violations at cer-
tain checkpoints which allows us to enforce a wider range of countermeasures
at runtime to handle and resolve a security violation. Our “monitor mode” is

Synthesis of a Permissive Security Monitor 63

inspired from this work as well. Taint checking is another dynamic mechanism
to control information flow, by tracking data dependencies as data is propa-
gated in the system, that is well-surveyed in [23]. However, as it only tracks
explicit flows [10] and ignores implicit flows, it enforces a weaker property than
noninterference.

In contrast to the existing hybrid and dynamic monitors (e.g. [3,9,11,12,14,
14,17,20,24,26]), (i) our framework provides a learning feature that enables us
to train the monitor and improve its permissiveness, (ii) it supports declassifica-
tion and enforces localized delimited declassification while the existing monitors
usually enforce a noninterference property, and (iii) we detect a violation in the
checkpoints, in several steps before its occurrence, that allows us to enforce a
wider range of countermeasures at runtime to protect against leakages. The main
drawback of our method is its performance overhead that we are currently trying
to improve by providing concurrent versions and optimizing the security guards.

8 Concluding Remarks

In this paper, we proposed an approach and its supporting tool for generating
a hybrid security monitor for a subset of Java programs. This method syn-
thesizes a sound symbolic monitor to predict undesired information flows and
apply secure (user-defined) countermeasures to prevent information leakage and
enforce localized delimited declassification. Given an annotated Java program,
we implemented a tool-set to automatically generate a monitor. We also carried
out some preliminary experiments to assess the method.

The results of our static analysis technique are promising in terms of both
performance and the number of false positives. Hence, it can be used by the users
to re-design their programs to fix information leakage problems at design time. In
general, dynamic and hybrid monitors suffer from performance overhead [5,12],
and so does our method. To improve its performance overhead, we are working
on extending the method to support concurrent execution of monitors with the
program, as well as simplifying the generated guards. We will also extend the
supported sub-language of Java and conduct more experiments to evaluate the
effectiveness of the tool properly.

References

1. Pedometer. https://f-droid.org/packages/name.bagi.levente.pedometer/
2. Askarov, A., Sabelfeld, A.: Localized delimited release: combining the what and

where dimensions of information release. In: Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS 2007, San Diego,
California, USA, 14 June 2007, pp. 53–60 (2007)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages
and Analysis for Security, PLAS 2009, New York, NY, USA, pp. 113–124 (2009)

https://f-droid.org/packages/name.bagi.levente.pedometer/

64 N. Khakpour and C. Skandylas

4. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS 2010, New York, NY, USA, pp. 3:1–3:12. ACM, New
York (2010)

5. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, New York, NY, USA, pp. 165–178. ACM,
New York (2012)

6. Berthier, N., Marchand, H.: Discrete controller synthesis for infinite state systems
with ReaX. In: 12th International Workshop on Discrete Event Systems, WODES
2014, Cachan, France, 14–16 May 2014, pp. 46–53 (2014)

7. Besson, F., Bielova, N., Jensen, T.P.: Hybrid information flow monitoring against
web tracking. In: 2013 IEEE 26th Computer Security Foundations Symposium,
New Orleans, LA, USA, 26–28 June 2013, pp. 240–254 (2013)

8. Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46–67. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49635-0 3

9. Dam, M., Le Guernic, G., Lundblad, A.: TreeDroid: a tree automaton based app-
roach to enforcing data processing policies. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS 2012, New York, NY,
USA, pp. 894–905. ACM, New York (2012)

10. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

11. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: 31st
IEEE Symposium on Security and Privacy, S&P 2010, Berleley/Oakland, Califor-
nia, USA, 16–19 May 2010, pp. 109–124 (2010)

12. Desharnais, J., Kozyri, E., Tawbi, N.: Block-safe information flow control. Techni-
cal report, Cornell University (2016)

13. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

14. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 75–89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
77505-8 7

15. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:
25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, 25–27 June 2012, pp. 3–18 (2012)

16. Khakpour, N., Skandylas, C.: Symbolic synthesis of a permissive security monitor:
the extended version. Technical report, Linnaeus University (2018)

17. Kwon, Y., et al.: LDX: causality inference by lightweight dual execution. In: Pro-
ceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2016, New York,
NY, USA, pp. 503–515. ACM, New York (2016)

18. Le Guernic, G.: Confidentiality enforcement using dynamic information flow anal-
yses. Ph.D. thesis, Manhattan, KS, USA (2007)

19. Pullicino, K.: Jif: language-based information-flow security in Java. CoRR,
abs/1412.8639 (2014)

20. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, 17–19 July 2010, pp. 186–199 (2010)

https://doi.org/10.1007/978-3-662-49635-0_3
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7

Synthesis of a Permissive Security Monitor 65

21. Sabelfeld, A., Russo, A.: From dynamic to static and back: riding the roller coaster
of information-flow control research. In: Pnueli, A., Virbitskaite, I., Voronkov,
A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11486-1 30

22. Santos, J.F., Rezk, T.: An information flow monitor-inlining compiler for securing
a core of JavaScript. In: Proceedings of the ICT Systems Security and Privacy
Protection - 29th IFIP TC 11 International Conference, SEC 2014, Marrakech,
Morocco, 2–4 June 2014, pp. 278–292 (2014)

23. Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: a policy for
taint tracking. In: IEEE European Symposium on Security and Privacy, Euro S&P
2016, Saarbrücken, Germany, 21–24 March 2016, pp. 15–30 (2016)

24. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: 20th IEEE Computer Security Foundations Symposium (CSF
2007), Venice, Italy, 6–8 July 2007, pp. 203–217, July 2007

25. Simonet, V.: The flow caml system. Software release, vol. 116, pp. 119–156 (2003).
http://cristal.inria.fr/∼simonet/soft/flowcaml

26. Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Ithaca, NY, USA (2002)

https://doi.org/10.1007/978-3-642-11486-1_30
http://cristal.inria.fr/~simonet/soft/flowcaml

MobileFindr: Function Similarity
Identification for Reversing Mobile

Binaries

Yibin Liao(B), Ruoyan Cai(B), Guodong Zhu(B), Yue Yin(B), and Kang Li(B)

University of Georgia, Athens, GA, USA
{liao,ruoyan,guodong,yin,kangli}@cs.uga.edu

Abstract. Identifying binary code at function level has been applied
to a broad range of software security applications and reverse engineer-
ing tasks, including patch analysis, vulnerability assessment, code pla-
giarism detection, malware analysis, etc. However, various anti-reverse
engineering techniques (e.g., obfuscation, anti-emulator, etc.) employed
by the mobile apps make existing approaches ineffective when perform-
ing function identification. In this paper, we propose MobileFindr, an
on-device trace-based function similarity identification framework on the
mobile platform. MobileFindr runs on real mobile devices and mitigates
many prevalent anti-reversing techniques by extracting function execu-
tion behaviors via dynamic instrumentation, then characterizing func-
tions with collected behaviors and performing function matching via dis-
tance calculation. We have evaluated MobileFindr using real-world top-
ranked mobile frameworks and applications. The experimental results
showed that MobileFindr outperforms existing state-of-the-art tools in
terms of better obfuscation resilience and accuracy.

Keywords: Reverse engineering · Similarity identification
Dynamic instrumentation

1 Introduction

With the general availability of closed-source applications, there is a need to
identify function similarity among binary executables. For instance, in the auto-
matic patch-based exploit generation, detecting the function similarity/differ-
ence between a pre-patch binary and post-patch binary reveals the patched
vulnerability [22–24,41], and such information can be explored automatically
within a few minutes [19], and generate 1-day exploits [39]. Performing func-
tion similarity measurement between intellectual property protected software
binaries and suspicious binaries indicate potential cases of software plagia-
rism [26,32,34,43,44]. Detecting similar malicious functionality between different
binary malware samples is another appealing application emerged in malware
analysis, since the majority of malware samples are not brand new program but
rather repacks or evolutions of previous known malicious function code [31,35].
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 66–83, 2018.
https://doi.org/10.1007/978-3-319-99073-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_4&domain=pdf

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 67

An inherent challenge shared by the above applications is the absence of
source code. Binary executable becomes the only available resource to be ana-
lyzed. A number of semantics-aware binary differencing or function similarity
detecting methods have been proposed. One category is to use static analysis,
which is usually based on control-flow graph (CFG) comparison [22–24,46]. At
a high level, the CFG based approach extracts various robust features for a
node in the control flow graph [22,24], or learns higher-level numeric feature
representations from the control flow graph [23], or converts the control flow
graph into embeddings [46], then perform similarity searching for the target
functions. Although these studies have demonstrated that CFG based methods
can be effective and scalable, all of these methods exclude obfuscated binaries,
which appeared in a large number of mobile apps. Basic block semantics model-
ing is another approach for similarity measurement [25,34,41]. It represents the
input-output relations of a basic block as a set of formulas, and then use the-
orem prover to perform the equivalence checking. However, the theorem prover
is computationally expensive and impractical for large code bases of many real
world mobile apps [22].

Another category relies on dynamic analysis, which is usually based on
runtime execution behavior comparison. For example, previous work by Ming
et al. achieves this by collecting system or API calls to slice out corresponding
code segments and then check their equivalence with symbolic execution and
constraint solving [35]. However, their trace logging component is an emulator
based system, which cannot handle the environment-sensitive mobile apps that
can detect sandbox environment. Egele et al. built a system called BLEX to
capture the side effects of functions during execution [21]. Xu et al. built a tool
called CryptoHunt to capture the specific features of cryptography functions
with boolean formula [45]. All of their implementation are based on Intel’s Pin
framework [33], which is not work on mobile platforms generally with ARM
instruction set architecture.

In this paper, we aim at improving the state of the art by proposing trace-
based function similarity mapping, a hybrid method to efficiently search for sim-
ilar functions in mobile binaries. Regardless of the optimization and obfuscation
difference, similar code must still have semantically similar execution behavior,
whereas different code must behave differently [21]. Our key idea is to capture
the dynamic behavior features during the execution of a function along a run-
time trace. More precisely, we propose to record a variety of dynamic runtime
information as dynamic behavior features via dynamic instrumentation, and use
stack backtrace information to locate corresponding functions that can be rep-
resented with these features. Then we calculate the similarity distance based
on such features and return a list of similar functions ranked by the score of
distance.

We have designed and implemented a system called MobileFindr, and eval-
uated it with a set of mobile examples under different obfuscation scheme com-
binations. Our experimental results show that our system can successfully iden-
tify fine-grained function similarities between mobile binaries, and outperform

68 Y. Liao et al.

existing state-of-the-art approaches in terms of better obfuscation resilience and
accuracy. Our evaluation with top-ranked real-world mobile apps also demon-
strated the effectiveness of our system.

Correspondingly, our contributions in this paper are:

– We have proposed a novel approach, trace-based function similarity mapping,
to perform function similarity measurement on mobile platforms. Our key
solution is to capture observable dynamic behaviors along an execution trace
via dynamic instrumentation, and characterize functions with such behaviors.
Our approach exhibits stronger resilience to various anti-reverse engineering
techniques for mobile apps. To best of our knowledge, this is the first work
having such ability on mobile platforms.

– We have proposed a variety of dynamic features to record during the function
execution, which allow us to approximate the semantics of a function without
relying on the source code access.

– We have implemented a system called MobileFindr and source code is publicly
available at GitHub: https://github.com/tigerlyb/MobileFindr.

– We have demonstrated the viability of our approach for top-ranked real-world
mobile frameworks and apps.

The rest of this paper is organized as following. Section 2 introduces back-
ground and challenges. Section 3 presents the details of our system design and
implementation. Section 4 presents our evaluation and results. Discussion and
limitations are presented in Sect. 5. Then we present related work in Sect. 6, and
conclude the paper in Sect. 7.

2 Background

This section introduces the background of reverse engineering, presents the pop-
ular tools that help for reverse engineering mobile apps, including various debug-
gers, disassemblers, decompilers, etc. Then we demonstrate motivating examples
and describe possible reverse engineering challenges that can affect the state of
the art function identification methods.

2.1 Reverse Engineering Mobile Apps

Reverse engineering is the process of taking a program’s binary code and recre-
ating it so as to trace it back to the original source code. It is being widely used
in computer software security to enhance product features without knowing the
source: find security flaws, test code compatibility, add new features or redesign
the product, understand the design of malicious code, etc. In this section, we
present popular reverse engineering tools for mobile apps as follows:

– Debugger: helps developer to understand how the program behaves at run-
time without modifying the code, and allows the user to view and change the
running state of a program. With the release of Xcode 5, the LLDB debug-
ger [12], which is part of the LLVM compiler development suite, becomes

https://github.com/tigerlyb/MobileFindr

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 69

the foundation for the debugging experience on Apple platforms. LLDB is
fully integrated with Xcode and provides deep capabilities in a user-friendly
environment. For Android platform, both LLDB and JDB (Java debugger)
are integrated in the Android Studio debugger [1]. By default, Android Stu-
dio automatically choose the best option for the code you are debugging.
For example, if you have any C or C++ code in the project, Android studio
debugger select LLDB to debug your code. Otherwise, Android Studio uses
the Java debug type.

– Disassembler: a software tool which transforms binary code into a human
readable mnemonic representation called assembly language. Many disassem-
blers are available on the market, both free and commercial. Apktools [2]
and baksmali [15] are free tools that can disassemble the dex format used by
Dalvik, Android’s Java VM implementation. The most powerful commercial
disassembler is IDA Pro [9], published by Hex-Rays. It can handle binary
code for a huge number of processors and has open architecture that allows
developers to write add-on analytic modules.

– Decompiler: a software tool used to revert the process of compilation.
Decompilers are different from disassemblers in one very important aspect.
While both generate human readable text, decompilers generate much higher
level text, which is more concise and much easier to read. For example,
Android developer can use Dex2jar [5] to convert dex file to class file, and
then open it in JD-GUI [10] to display Java source code. Hex-Rays Decompiler
[8] is a IDA Pro extension that converts native processor code into human
readable C-like pseudocode text.

2.2 Challenges

The software security community relies on such reverse engineering tools to ana-
lyze and validate programs. However, various anti-reverse engineering techniques
employed by the latest mobile apps make existing reverse engineering tools inef-
fective. For instance, the anti-debugging and anti-emulator techniques employed
by mobile apps limit the usage of many dynamic analysis tools [28,30,40]. Code
obfuscation scheme provide strong protection against automated static reverse
engineering tools. Moreover, different mobile apps tend to use different obfusca-
tion techniques and even same app changes obfuscation options when updating
its version. In this paper, we focus on analyzing iOS apps. Nowadays iOS develop-
ers heavily rely on code obfuscation to evade detection since iOS is a close-source
platform. Therefore, in this section, we introduce different code obfuscation fea-
tures as well as motivating examples for understanding each features.

Code Obfuscation. Obfuscation aims at creating obfuscated code that is diffi-
cult for humans to understand. Obfuscation techniques include modifying names
of classes, fields, and methods, reordering control flow graphs, encrypting con-
stant strings, inserting junk code, etc. To obfuscate mobile apps, we rely on a
state-of-the-art open-source obfuscation tool, Obfuscator-LLVM 4.0 [29], which
supports popular obfuscation transformations as follows.

70 Y. Liao et al.

– Control Flow Flattening: The purpose of this pass is to completely flatten
the control flow graph of a program. The flag option -split activates basic
block splitting, which improve the flattening when applied together.

– Instructions Substitution: The goal of this obfuscation technique sim-
ply consists in replacing standard binary operators (like addition, subtrac-
tion or boolean operators) by functionally equivalent, but more complicated
sequences of instructions.

– Bogus Control Flow: This method modifies a function call graph by adding
a basic block before the current basic block. This new basic block contains
an opaque predicate and then makes a conditional jump to the original basic
block. The original basic block is also cloned and filled up with junk instruc-
tions chosen at random.

Fig. 1. A motivating example: Code

Obfuscation Example. We use the example in Fig. 2 to illustrate code obfus-
cation on iOS platform. Figure 1 shows the Objective-C source code of a function
called encrypt1. It takes a string message as input and xor the message with a
key, then return the encrypted message. Figure 2a shows the original control flow
graph without any obfuscation, which only contains 4 basic blocks. While Fig. 2b
is the obfuscated version (combined all three obfuscation options above) of that
function. As mentioned in Sect. 1, existing static approaches that rely on control
flow graph similarity and basic block level comparison will likely not be able to
make a meaningful distinction in this scenario. Alternative approaches, such as
dynamic approaches, either rely on Pin tool or emulator-based system to capture
execution behavior. Pin tool is not able to work on analyzing most mobile apps,
since ARM processors dominate mobile platforms. The anti-emulator techniques

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 71

(a) (b)

Fig. 2. A motivating example: CFG

employed by mobile apps also limit the usage of such emulator-based analysis
system. To address the above mentioned challenges in the scope of matching
function for mobile binaries, we design a novel on-device dynamic instrumenta-
tion system.

3 Design and Implementation

In this section, we first illustrate the design of our approach, and then detail the
implementation of our system.

3.1 Overview

We present trace-based function similarity mapping, a hybrid method to effi-
ciently search for similar functions in mobile binaries. More precisely, we pro-
pose to record a variety of dynamic behavior features during the execution of a
function along an execution trace. We define the concept of “dynamic behavior
features” broadly to include any information that can be derived from observa-
tions made during execution. Our approach works as the following: given two
mobile apps A, B and a function of interest F from A. Both F and any exe-
cuted functions from B are characterized with dynamic behavior features. Then
we compute similarity scores between F and each function f from B, to identify
which functions in B are similar to F. The novelty of our approach lies in the
follows.

72 Y. Liao et al.

Fig. 3. Schematic overview of trace-based function similarity mapping system

– What features are useful for semantic similarity comparisons?
– How these features are captured on mobile platforms?
– How to characterize a function with such features?

Figure 3 illustrates the architecture of our system, which comprises four stages:
preprocessing, on-device dynamic analysis, feature extraction and similarity
searching. The preprocessing stage, as shown in the left side of Fig. 3, involves
two parts: binary extraction and address extraction. It dumps the mobiles bina-
ries from the app and extract addresses for all functions and imported libraries
and frameworks. All the extracted addresses are passed to the on-device dynamic
analysis stage for instrumentation and trace logging usage. The recorded traces
will be analyzed by the feature extraction stage. Then we perform the similarity
searching based on the function features obtained from feature extraction stage.
Next, we will present each step of our system in the following sections.

3.2 Preprocessing

Binary Extraction. When you download an iOS app from the App Store,
Apple injects a special 4196 byte long header into the signed binary encrypted
with the public key associated with your iTunes account. For this step we choose
Clutch [4], to decrypt and dump app binary. Then we disable the ASLR (Address
Space Layout Randomization) to get the correct function addresses. ASLR makes
the remote exploitation of memory corruption vulnerabilities significantly more
difficult by randomizing the application objects location in the memory. By
default iOS apps are compiled with -pie flag (Generate Position-Dependent
Code). This flag is automatically checked in the latest version of Xcode in order
to use ASLR. We leverage the tool removePIE [6] to disable the ASLR by flip-
ping the PIE flag. After that, we put the binary back to the app and re-sign it
with ldid [11].

Address Extraction. We utilize IDA Pro [9] to disassemble the binary
obtained from previous step, extract function addresses as well as imported
library addresses and framework addresses through IDAPython API. This com-
ponent is implemented with 155 lines of Python code. Listing 1.1 shows an

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 73

example of a function address table extracted from the iOS app binary. Each
line consists of starting address (e.g., 0x11834), ending address (e.g., 0x11980)
and function name (e.g., prepareToRecord from the class MovieRecorder). List-
ing 1.2 shows an example of library addresses, which only consist the starting
addresses and library names.

Listing 1.1. Function addresses

...

0xb7ea ,0xb964 ,-[VideoSnakeViewController

toggleRecording :]

0xe2cc ,0xe51c ,-[VideoSnakeSessionManager

startRecording]

0x111d8 ,0x1128c ,-[MovieRecorder initWithURL :]

0x1161c ,0x116a8 ,-[MovieRecorder delegate]

0x11834 ,0x11980 ,-[MovieRecorder prepareToRecord]

0x11d48 ,0x11ebc ,-[MovieRecorder finishRecording]

...

Listing 1.2. Library addresses

...

0x1606c ,__Block_copy

0x1607c ,__Block_object_assign

0x1608c ,__Block_object_dispose

0x1609c ,__Unwind_SjLj_Register

0x160ac ,__Unwind_SjLj_Resume

0x160bc ,__Unwind_SjLj_Unregister

...

3.3 On-Device Dynamic Analysis

The on-device dynamic analysis stage performs dynamic instrumentation and
trace logging in order to record the needed information.

Dynamic Instrumentation. We utilize Frida [7], a dynamic instrumentation
toolkit, to inject scripts in app process that monitor the dynamic behavior during
execution. Frida lets you inject snippets of JavaScript or your own library into
native apps. Frida’s core is written in C and injects Google’s V8 engine into the
target processes, where the JavaScript gets executed with full access to memory,
hooking functions and even calling native functions inside the process.

Trace Logging. In our implementation we chose features that capture a variety
of system level information (e.g., system calls), as well as higher level attributes,
such as libc calls, objc calls, framework API invocations as follows.

74 Y. Liao et al.

– System Calls: e.g., read, write, open, etc. defined in libsystem kernel.dylib
– Library Calls: e.g., memset, memcpy, free, etc. defined in libSystem.B.dylib,

objc getClass, objc getProtocol, etc. defined in libobjc.A.dylib
– Framework APIs: e.g., OpenGLES, CoreMedia, UIKit, etc.

We leverage the Frida API to inject JavaScript at the library addresses and
framework addresses to record the invocations of such features above, and gen-
erate a backtrace for the current thread, returned as an array of native pointer
addresses for the subsequent steps.

3.4 Feature Extraction

Listing 1.3 illustrates the logged trace data, which consists of arrays of addresses.
Each line indicates an invocation of library call or framework API call, fol-
lowed by its stack backtrace information. First, we transform the addresses to
function names according to the address table obtained from the preprocessing
stage. For instance, 0x1609c is the starting address of Unwind SjLj Register,
0x11892 is in the range of 0x11834 and 0x11980, which indicate the library
Unwind SjLj Register is called by function prepareToRecord. The rest can be

done in the same manner. Listing 1.4 illustrates a full translated results from
Listing 1.3.

Listing 1.3. Stack backtrace: address

...

0x1609c ,0x11892 ,0xe498 ,0xb92e ,0 xb15a

0x1621c ,0x118c0 ,0xe498 ,0xb92e ,0 xb15a

0x1620c ,0x118fc ,0xe498 ,0 xb15a

...

Listing 1.4. Stack backtrace: name

...

__Unwind_SjLj_Register ,-[MovieRecorder

prepareToRecord],-[VideoSnakeSessionManager

startRecording],-[VideoSnakeViewController

toggleRecording :],sub_B120

_dispatch_get_global_queue ,-[MovieRecorder

prepareToRecord],-[VideoSnakeSessionManager

startRecording],-[VideoSnakeViewController

toggleRecording :],sub_B120

_dispatch_async ,-[MovieRecorder prepareToRecord],-[

VideoSnakeSessionManager startRecording],-[

VideoSnakeViewController toggleRecording :],

sub_B120

...

Next, we match these library calls or framework API calls to its corresponding
caller functions as features. Listing 1.5 represents features of function prepare-

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 75

ToRecord, in JSON format. The feature extraction component is implemented
with 280 lines of Python code.

3.5 Similarity Searching

The function feature representation is a length-N feature list. We chose Jaccard
index to measure the similarity between lists. We define sim(f, g) to be the
similarity score between function f and g. We perform similarity searching as the
following: starting with a known reference function in a trace, we are searching
for mobile binaries containing similar functions by calculating similarity score
and listing top K similar function candidates.

Listing 1.5. Function features

{

"name" : "-[MovieRecorder prepareToRecord]",

"features" : [

[

"__Unwind_SjLj_Register",

"_dispatch_get_global_queue",

"_dispatch_async",

"__Block_object_assign",

"__Unwind_SjLj_Unregister "

]

]

}

Fig. 4. Function mapping between obfuscated version and non-obfuscated version

76 Y. Liao et al.

4 Evaluation

In this section, we evaluate our system from several objectives. Particularly, we
conduct our experiments to evaluate whether our system outperforms existing
binary similarity detection tools in terms of better obfuscation resilience and
accuracy. We designed two controlled datasets so that we have a ground truth
to assess comparison results accurately. We also evaluate the effectiveness of our
system in analyzing real world top-ranked iOS apps from Apple App Store.

4.1 Experiment Setup

Our on-device dynamic analysis is performed on a 32 GB Apple Jailbroken iPad
(4th Generation) running iOS 8.3. The configuration of our testbed machine for
feature extraction and similarity searching is shown as follows.

– CPU: Intel Core i7-6700K Processor (Eight-core with 4.00 GHz)
– Memory: 64 GB
– OS: Ubuntu Linux 14.04 LTS
– Python Version: 2.7.12
– IDA Pro Version: 6.6.

4.2 Ground Truth Dataset

Data 1. First, we collect 8 sample codes with different functionalities from
official Apple developer website. For each sample we build both non-obfuscated
version and obfuscated version. The obfuscated version combines all three set-
tings in Table 1.

Data 2. Then we test our system with third-party frameworks or libraries that
are commonly used by popular mobile apps. In practice, programmers usually
take advantage of existing frameworks or libraries to speed up their develop-
ments. In our evaluation, we choose AFNetworking and SDWebImage, top-two
ranked open source frameworks [16] as the reference implementation. Our pur-
pose is to detect such frameworks or libraries that commonly used in different
mobile apps. To this end, we collect 8 open source projects from GitHub, and
reuse the provided APIs from two libraries above. We built sample apps with
non-obfuscated version and 7 different combinations of the obfuscation settings,
which results in 64 apps in 8 different types. We kept the debug symbols as they
provide a ground truth and enable us to verify the correctness of matching using
the functions symbolic names.

Table 1. Different obfuscation types and flag settings

Type Flag setting

1 Control flow flattening -fla, -split, -split num=3

2 Instruction substitution -sub, -sub loop=3

3 Bogus control flow -bcf, -bcf loop=3, -bcf prob=40

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 77

4.3 Obfuscation Options

As mentioned in Sect. 2, we use Obfuscator-LLVM to obfuscate our ground truth
mobile samples. Table 1 lists specific obfuscation settings that we use to build
our ground truth iOS samples. We integrate Obfuscator-LLVM into Xcode, and
enable the three obfuscation features described in Sect. 2, and apply different
settings as shown in Table 1.

4.4 Peer Tools

We compare our tools with other state-of-the-art similarity detection or diffing
tools that open to public: BinDiff, BinGrap, Genies. BinDiff [17] is a compari-
son tool for binary files, that assists vulnerability researchers and engineers to
quickly find differences and similarities in disassembled code. BinGrap [3] is also
a static analysis tool that perform function similarity searching, but it can out-
put a list of functions in order of similarity. Genius is a bug search engine that
performs function similarity detection based on mapping raw features of a func-
tion into a higher-level numeric vector where each dimension of the vector is the
similarity distance to a categorization in the codebook. However, only partial
code is available, including raw feature extraction and search. Therefore, we re-
implement Genius’ two core steps, codebook generation and feature encoding in
python. We utilized Hungarian algorithm for calculating bipartite graph match-
ing cost and normalized spectral clustering [38] for ACFGs (Attributed Control
Flow Graph) clustering. In evaluation phrase, we adopt Nearpy [14] for LSH
(Locality Sensitive Hashing) [18] and search. We used SQLite to store function
information and encoded vectors. As mentioned in Sect. 1, BLEX [21], BinSim
[35] and CryptoHunt [45] are not able to work on iOS platforms. To the best
of our knowledge, we are the first to propose a dynamic strategy for comparing
mobile binary code. This is the reason why we did not compare our evaluation
to these dynamic approaches.

4.5 Evaluation Results

The first evaluation for data 1 is shown in Fig. 4. For each sample, We ran-
domly select functions from non-obfuscated version as reference functions, then
perform our trace-based function similarity mapping to see if we can locate the
same function in obfuscated version. The second evaluation for data 2 is shown
in Fig. 5. We randomly select one app from each type of apps as reference known
app, and select commonly used APIs in AFNetworking and SDWebImage from
that app as query functions. Then we perform trace-based function similarity
mapping for searching the given functions in the rest apps, and list top K candi-
dates for each app based on the similarity score. We only compare with Genius
and BinGrep since BinDiff is a one-to-one mapping tool, which cannot list more
than 1 candidate.

78 Y. Liao et al.

Fig. 5. Function mapping evaluation for popular third-party frameworks

Fig. 6. Function mapping evaluation in real-world apps

Our evaluation results show that MobileFindr can achieve more than 80%
accuracy in average from top 3 to top 15 similar functions, which outperforms
other tools in terms of much more better accuracy and obfuscation resilience.

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 79

4.6 Real-World App Case Study

We tested MobileFindr using real-world apps to evaluate its efficiency. We eval-
uated 6 top-ranked iOS apps in different types, such as search engine, social net-
working, etc. For instance, Baidu is the world’s largest Chinese search engine.
We downloaded two different versions of Baidu app, version 930 and version
935. We chose version 930 as reference app and performed a simple web search-
ing with key words: “security” for trace logging. We collected 430 functions in
this trace, and then perform trace-based function similarity mapping to search
similarity functions in the new version 935, and listed top 10 similar function
candidates. MobileFindr achieve 81.13% accuracy with less than 10 min. While
matching the same 430 functions in Genius, it only achieved 59.7% accuracy,
but spent around 2 h in training, more than 40 h when handling function graph
embeddings. Figure 6 shows the function mapping results for the 6 real-world
apps.

5 Discussion

In this section, we discuss the limitations of our system and potential solutions
to be investigated in future work.

First, a challenge that we already touched upon in Sect. 4 is the fact that
our approach needs manual verification efforts for real world iOS apps, since
we don’t have access to their source code. The candidate similarity ranking
produced by our system gives an ordered list of matched functions that have to be
manually inspected by an analyst to verify if those functions are actually similar.
Some of the existing dynamic approaches [35,45] rely on symbolic execution to
generate a set of symbolic formula, and then use theorem prover to perform the
equivalence checking. However, the theorem prover is computationally expensive
and impractical for large code bases of many real world mobile apps. Such an
automatic verification would be ideal, but surely is a research topic in itself and
is outside the scope of this work.

Second, the incomplete path coverage is a concern for all dynamic analy-
sis system, including ours. The possible solutions are to explore more paths by
automatic input generation [27,36]. To trigger as many dynamic behaviors as
possible for trace logging, we can leverage the idea of Malton [47], which pro-
posed an efficient path exploration technique that employs in-memory concolic
execution with an offloading mechanism and direct execution engine. We leave
it as future work.

Third, the functions considered by us need to have a certain amount of com-
plexity for the approach to work effectively. Otherwise, the relatively low com-
bination number of library calls leads to a high probability for collision. Hence,
we only considered functions with at lease five basic blocks, as noted in Sect. 4.
For instance, the potential for bugs in small functions, however, is significantly
lower than in large functions, as shown in [13]. Hence, in a real-world scenario
this should be no factual limitation.

80 Y. Liao et al.

6 Related Work

There has been a substantial research on detecting binary code similarity. Exist-
ing semantics aware binary matching techniques can be classified into two cate-
gories. One is based on static information including numeric features and struc-
tural features [20,22,23,34]. Many numeric features (e.g. the number of basic
blocks, the number of edges, logic instructions,local variables, etc.) and control
flow graph has been demonstrated to be robust across compilers and different
compile options in previous work [24,25]. The other one executes target code and
collect runtime behavior [21,35,42,45]. Common execution behaviors includes
stack and heap memory access, system call sequences and library calls, registers
values, execution path, etc.

The combination of collected features represent as a signature of target code
for matching step. It is vital to identify robust features and correctly character-
ize target code with the features. Bindiff [17] as an efficient binary diffing tool
using a graph theoretic approach to find similarities and differences. The graph
isomorphism detection on pairs of function works well when two semantically
equivalent binaries have similar control flow. But CFG changes across archi-
tectures and compilers. In [23], Genius maps raw features of a function into a
higher-level numeric vector where each dimension of the vector is the similarity
distance to a categorization in the codebook. However, one common limitation
of static approaches is incapable of handling obfuscated code. BLEX [21] collects
execution side effects during function execution and uses a multidimensional vec-
tor as function signature for similarity assessment. It relies on Pin framework
and can not apply to mobile binaries.

The techniques of binary matching have been driven towards to solve security
problems. One common case in vulnerability assessment is that secure analysts
would want to use a sample of vulnerable binary without source code to search
for the similar bug across all the softwares installed in the company devices
[22,37]. It is challenging for vulnerability assessment in a large code base for the
following reasons: first, most commercial software projects are closed-source and
only available in the binary form without debug information. Second, different
versions of software may be compiled on different optimization levels and differ-
ent compile tool-chain, which would radically changes both the number of nodes
and structure of edges in both the control flow graph and the call graph. Third,
pervasive code protection schemes, such as class and method rename, encryp-
tion of strings, control flow obfuscation and virtualization of code, render code
analysis time consuming. Our evaluation have considered above situations and
demonstrate that our approach can handle it.

With rapid development of open-source projects, the similarity between an
licensed protected binary and a suspicious binary indicates a potential case of
software plagiarism [34,43]. Existing code similarity measurement methods have
been proved to be useful but remain far from perfect. Some software plagiarism
detection approaches based on dynamic system call sequences have also been
proposed [32,43], but they incur false negatives when the number of system
calls are insufficient or when system call replacement is applied. Most of the

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 81

existing methods are not effective in the presence of obfuscation techniques.
Another obfuscation resilient method [34] based on symbolic execution and the-
orem proving bears high computational overhead.

7 Conclusion

We proposed MobileFindr, an on-device trace-based function similarity mapping
system for reverse engineering mobile apps. It records a variety of dynamic run-
time information as dynamic behavior features via dynamic instrumentation,
and use stack backtrace information to locate corresponding functions that can
be represented with these features. We evaluated it with a set of examples under
different obfuscation scheme combinations. Our experimental results show that
our system can successfully identify fine-grained function similarities between
mobile binaries, and outperform existing state-of-the-art approaches in terms of
better obfuscation resilience and accuracy. Our evaluation with top-ranked real-
world frameworks and apps also demonstrated the effectiveness of our system.
To the best of our knowledge, we are the first to propose a dynamic strategy
for function similarity identification on the mobile platform, which is capable of
mitigating many anti-reverse engineering techniques.

References

1. Android studio - debug your app. https://developer.android.com/studio/debug/
index.html. Accessed 30 Jan 2018

2. Apktool - a tool for reverse engineering android apk files. https://ibotpeaches.
github.io/Apktool/. Accessed 30 Jan 2018

3. Bingrep. https://github.com/hada2/bingrep. Accessed 30 Jan 2018
4. Clutch 2.0.4. https://github.com/KJCracks/Clutch/releases/tag/2.0.4. Accessed

30 Jan 2018
5. dex2jar. https://github.com/pxb1988/dex2jar. Accessed 30 Jan 2018
6. Disable aslr on ios applications. http://www.securitylearn.net/2013/05/23/

disable-aslr-on-ios-applications/. Accessed 30 Jan 2018
7. Frida. https://www.frida.re/. Accessed 30 Jan 2018
8. Hex-rays decompiler. https://www.hex-rays.com/products/decompiler/index.

shtml. Accessed 30 Jan 2018
9. Ida. https://www.hex-rays.com/products/ida/index.shtml. Accessed 30 Jan 2018

10. Jd-gui. http://jd.benow.ca/. Accessed 30 Jan 2018
11. ldid. http://iphonedevwiki.net/index.php/Ldid. Accessed 30 Jan 2018
12. The lldb debugger. https://lldb.llvm.org/. Accessed 30 Jan 2018
13. More complex = less secure: Miss a test path and you could get hacked. http://

www.mccabe.com/pdf/MoreComplexEqualsLessSecure-McCabe.pdf. Accessed 30
Jan 2018

14. Nearpy. https://github.com/pixelogik/NearPy. Accessed 30 Jan 2018
15. smali/baksmali wiki. https://github.com/JesusFreke/smali/wiki. Accessed 30 Jan

2018
16. Top 10 libraries for ios developers. https://www.raywenderlich.com/177482/top-

10-ios-developer-libraries. Accessed 30 Jan 2018

https://developer.android.com/studio/debug/index.html
https://developer.android.com/studio/debug/index.html
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/hada2/bingrep
https://github.com/KJCracks/Clutch/releases/tag/2.0.4
https://github.com/pxb1988/dex2jar
http://www.securitylearn.net/2013/05/23/disable-aslr-on-ios-applications/
http://www.securitylearn.net/2013/05/23/disable-aslr-on-ios-applications/
https://www.frida.re/
https://www.hex-rays.com/products/decompiler/index.shtml
https://www.hex-rays.com/products/decompiler/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
http://jd.benow.ca/
http://iphonedevwiki.net/index.php/Ldid
https://lldb.llvm.org/
http://www.mccabe.com/pdf/MoreComplexEqualsLessSecure-McCabe.pdf
http://www.mccabe.com/pdf/MoreComplexEqualsLessSecure-McCabe.pdf
https://github.com/pixelogik/NearPy
https://github.com/JesusFreke/smali/wiki
https://www.raywenderlich.com/177482/top-10-ios-developer-libraries
https://www.raywenderlich.com/177482/top-10-ios-developer-libraries

82 Y. Liao et al.

17. Zynamics bindiff. https://www.zynamics.com/bindiff.html. Accessed 30 Jan 2018
18. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations
of Computer Science, 2006. FOCS 2006, pp. 459–468. IEEE (2006)

19. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: IEEE Symposium on Secu-
rity and Privacy 2008. SP 2008, pp. 143–157. IEEE (2008)

20. David, Y., Partush, N., Yahav, E.: Similarity of binaries through re-optimization.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 79–94. ACM (2017)

21. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. USENIX (2014)

22. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS (2016)

23. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 480–491. ACM (2016)

24. Flake, H.: Structural comparison of executable objects. In: Proceedings of the
International GI Workshop on Detection of Intrusions and Malware & Vulnerability
Assessment, number P-46 in Lecture Notes in Informatics, pp. 161–174. Citeseer
(2004)

25. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

26. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: examining
the landscape and impact of android application plagiarism. In: Proceeding of
the 11th Annual International Conference on Mobile Systems, Applications, and
Services, pp. 431–444. ACM (2013)

27. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: NDSS, vol. 8, pp. 151–166 (2008)

28. Herremans, D.: MorpheuS: automatic music generation with recurrent pattern con-
straints and tension profiles (2016)

29. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: Wyseur, B. (ed.) Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO 2015, Firenze, Italy, 19th
May 2015, pp. 3–9. IEEE (2015). https://doi.org/10.1109/SPRO.2015.10

30. Kirat, D., Vigna, G.: Malgene: automatic extraction of malware analysis evasion
signature. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 769–780. ACM (2015)

31. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines of
malicious code: insights into the malicious software industry. In: Proceedings of
the 28th Annual Computer Security Applications Conference, pp. 349–358. ACM
(2012)

32. Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by
program dependence graph analysis. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 872–881.
ACM (2006)

33. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: ACM SIGPLAN notices, vol. 40, pp. 190–200. ACM (2005)

https://www.zynamics.com/bindiff.html
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1109/SPRO.2015.10

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 83

34. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 389–400. ACM (2014)

35. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: Proceedings of the 26th
USENIX Security Symposium, pp. 253–270. USENIX Association (2017)

36. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy 2007. SP 2007, pp. 231–245.
IEEE (2007)

37. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detec-
tion. In: Twenty-Third Annual Computer Security Applications Conference 2007.
ACSAC 2007, pp. 421–430. IEEE (2007)

38. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

39. Oh, J.: Fight against 1-day exploits: diffing binaries vs anti-diffing binaries. Black
Hat (2009)

40. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the Seventh European Workshop on System Security, p. 5. ACM
(2014)

41. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug
search in binary executables. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 709–724. IEEE (2015)

42. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence check-
ing. In: ACM SIGPLAN Notices, vol. 48, pp. 391–406. ACM (2013)

43. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Behavior based software theft detection.
In: Proceedings of the 16th ACM Conference on Computer and Communications
Security, pp. 280–290. ACM (2009)

44. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Detecting software theft via system call based
birthmarks. In: Annual Computer Security Applications Conference 2009. ACSAC
2009, pp. 149–158. IEEE (2009)

45. Xu, D., Ming, J., Wu, D.: Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 921–937. IEEE (2017)

46. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376. ACM (2017)

47. Xue, L., Zhou, Y., Chen, T., Luo, X., Gu, G.: Malton: towards on-device non-
invasive mobile malware analysis for art. In: 26th USENIX Security Symposium
(USENIX Security 17). ACM (2017)

Blockchain and Machine Learning

Strain: A Secure Auction for Blockchains

Erik-Oliver Blass1(B) and Florian Kerschbaum2

1 Airbus, Munich, Germany
erik-oliver.blass@airbus.com

2 University of Waterloo, Waterloo, Canada
florian.kerschbaum@uwaterloo.ca

Abstract. We present Strain, a new auction protocol running on top of
blockchains and guaranteeing bid confidentiality against fully-malicious
parties. As our goal is efficiency and low blockchain latency, we abstain
from using traditional, highly interactive MPC primitives such as secret
shares. We focus on a slightly weaker adversary model than MPC which
allows Strain to achieve constant latency in both the number of parties
and the bid length. The main idea behind Strain is a new maliciously-
secure two-party comparison mechanism executed between any pair of
bids in parallel. Using zero-knowledge proofs, Strain broadcasts the out-
come of comparisons on the blockchain in a way that all parties can verify
each outcome. Strain’s latency is not only asymptotically optimal, but
also efficient in practice, requiring a total of just 4 blocks of the under-
lying blockchain. Strain provides typical auction security requirements
such as non-retractable bids against fully-malicious adversaries.

1 Introduction

Today’s blockchains offer transparency and integrity features which could make
them ideal for hosting auctions. Once a bid has been submitted to a smart
contract managing the auction on the blockchain, the bid cannot be retracted
anymore. After a deadline has passed, everybody can verify the winning bid.
Due to its attractive features, blockchain auctions are already considered in the
real-world. As a prominent example to fight nepotism and corruption, Ukraine
will host blockchain auctions to sell previously seized goods [33].

However, today’s blockchain transparency features disqualify them in scenar-
ios where input data must remain confidential. For example, in a procurement
auction, another prime application example for blockchains [1], an auctioneer
requests offers for some good (“Need 1M grade V2X steel screws”) as part of
a smart contract. A set of suppliers submits bids for the good, and the lowest
bid wins the procurement auction. Realizing a decentralized auction as a smart
contract has the above transparency features, mitigates corruption, and avoids
a possibly corrupt, centralized auctioneer. Yet, bids are confidential. Suppliers
have mutual distrust, and leaking the value of a bid to a competitor must be
avoided. In some situations, one supplier should not even learn whether or not
another supplier is participating in an auction. To make matters worse, multiple

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 87–110, 2018.
https://doi.org/10.1007/978-3-319-99073-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_5&domain=pdf

88 E.-O. Blass and F. Kerschbaum

suppliers might collude, be fully-malicious, behave randomly (not rationally),
and abort participation in the auction to disturb its outcome. Still, the auction
should run as expected.

Kosba et al. [26] already mention that one could revert to implementing the
auction with Secure Multi-Party Computation (MPC) on the blockchain. While
there has been a flurry of research on MPC, and generic frameworks are readily
available [38], a main MPC drawback is its high interactivity. Yet, interactiv-
ity is extremely expensive on a blockchain in terms of latency. Broadcasting a
message, changing the state of a smart contract (code execution), and any kind
of party interactivity requires a valid transaction. As transactions are attached
to blocks, any interactivity requires (at least) one block interval for completion.
Block interval times are large, e.g., roughly 15 s for Ethereum [19]. Thus, high
interactivity, a large number of MPC rounds, automatically rules out short-term,
short living auctions.

This Paper. We present Strain (“Secure aucTions foR blockchAINs”), a new
protocol for secure auctions on blockchains. At the heart, we improve Fis-
chlin [21]’s comparison protocol in several key aspects tailored for adoption in
blockchains. First, Strain features a distributed key generation for Goldwasser-
Micali encryption based on a new mechanism to verifiably share each supplier’s
private key. Suppliers initially commit to their bids by encrypting them with
their public key. A honest majority of suppliers can then open a commitment in
case a supplier aborts the protocol.

Strain’s second main feature is an efficient zero-knowledge (ZK) proof that
two Goldwasser-Micali ciphertexts, encrypted under different keys, contain the
same plaintext. For this proof, we require existence of a semi-honest judge party
which must not collude with either of the comparing parties. In the context
of auctions, the judge can be implemented by, e.g., the auctioneer. Using ZK
proofs, the judge verifies (and publishes on the blockchain) whether both parties
use previously committed values as input to the comparison. Again using a ZK
proof, the comparing party then publishes the outcome of the comparison on the
blockchain. Together, the two ZK proofs allow everybody to verify correctness
of the comparison’s result in only 3 blocks (totaling 4 blocks for the entire Strain
protocol). We achieve such low latency by providing slightly weaker security
guarantees than MPC would have. Specifically, the semi-honest judge would not
be required in MPC. Strain also leaks the order of bids, but not their value.

Strain optionally supports anonymous auctions by using a combination
of Dining Cryptographer networks and blind signatures. Suppliers can be
anonymized, such that no supplier knows which other suppliers are participat-
ing in an auction. Note that we specifically avoid payment channels [37], and
all communication will run through the blockchain. The advantage is no or only
little data stored at parties, crucial information stored at the central ledger, and
no direct network connectivity required between parties.

Strain: A Secure Auction for Blockchains 89

We benchmarked main cryptographic operations, and our analysis shows
that Strain supports auctions of up to dozens of concurrent suppliers within
3 Ethereum blocks.

In summary, the technical highlights of this paper are:
– A new blockchain auction protocol, Strain, protecting confidentiality of bids.

Strain provides provable security against fully-malicious suppliers and semi-
honest auctioneers. It is efficient and completes an auction in a constant
(four) number of interactions, i.e., blockchain blocks. Its round complexity
is independent from the bit length of the bids (multiplicative depth of a
comparison circuit) and the number of suppliers.

– After bidding, no supplier can retract or modify a bid. However, in case of
dispute, commitments can be opened by an honest majority. Strain will com-
plete, even if malicious parties fail to respond and abort the auction without
any supplier being able to change their bid. Computation of the winning
bid is performed solely by the suppliers and entirely on the blockchain. The
contribution of the auctioneer to the auction is only to verify correctness of
computations in zero-knowledge.

We stress that the lack of smart contract data confidentiality is independent
from privacy-preserving coin transactions, see, e.g., ZeroCash [3] for an overview.
To reach consensus, blockchain miners generally require access to all contract
input data. Also, permissioned blockchains such as Hyperledger (Fabric) lack
confidentiality, even if contract execution can be restricted to only those parties
participating in a contract.

2 Background

Let S = {S1, . . . , Ss} be the set of s suppliers in the system with public-private
key pairs (pki, ski). The procurement auction is run by auctioneer A having
public-private key pair (pkA, skA). Assume that all suppliers and A know each
other’s public keys, so A can run an auction accepting bids from valid suppliers
only.

2.1 Preliminaries

Let λ be the security parameter. For an integer n, let QRn be the set of quadratic
residues of group Zn, and QNRn is the set of quadratic non-residues of Zn.
Function Jn(x) computes the Jacobi symbol

(
x
n

)
, and we define set Jn = {x ∈

Zn|Jn(x) = 1}. Finally, QNR1
n = {x ∈ QNRn|Jn(x) = 1} (set of “pseudo-

squares”).

Quadratic Residues Modulo Blum Integers. An integer n is a Blum integer, if
n = p · q for two distinct primes p, q and p = q = 3 mod 4. If n is a Blum integer,
testing whether some x ∈ Zn with Jn(x) = 1 is in QRn can be implemented
by checking whether x

(p−1)·(q−1)
4 = 1 mod n [25]. Moreover, observe that the

DDH assumption holds in group (Jn, ·). For r
$← Z

∗
n, g = −r2 mod n is a

generator of group (Jn, ·), see Sect. A.1 of Couteau et al. [13]. In particular
z = −1 = −(12) mod n is a generator of Jn.

90 E.-O. Blass and F. Kerschbaum

GM Encryption. A Goldwasser-Micali (GM) [23] key pair comprises private key
skGM and public key pkGM. For p and q being distinct, strong random primes of
length λ, the private key is skGM = (p−1)·(q−1)

4 . We require p = q = 3 mod 4,
and therefore n = p · q is a Blum integer. We set z = n − 1 = −1 mod n. The
public key is pkGM = (n, z). With n being a Blum integer, z ∈ QNR1

n.

With randomly chosen ri
$← Z

∗
n, GM encryption of bit string M ∈ {0, 1}η

is C = EncGM
pkGM(M1 . . . Mη) = (r21 · zM1 mod n, . . . , r2η · zMη mod n). All parties

automatically dismiss a ciphertext C if C �∈ Jn.
Decryption of ciphertext C simply checks whether each component of C =

(c1, . . . , cη) is in QRn. As n is a Blum integer, raising ci to secret key skGM is
sufficient, i.e., you compute M = DecGM

skGM(c1, . . . , cη) = (1−cskGM

1 mod n, . . . , 1−
cskGM

η mod n).
Recall GM’s homomorphic properties for encryptions of two bits b1, b2 (when

obvious, we omit public-/private keys in this paper for better readability):

– DecGM(EncGM(b1) · EncGM(b2)) = b1 ⊕ b2 (plaintext XOR)
– DecGM(EncGM(b1) · z) = 1 − b1 (flip plaintext bit b1)
– For a GM ciphertext c, re-encryption is ReEncGM(c) ← c · EncGM(0).

AND-Homomorphic GM Encryption. GM encryption can be modified to support
AND-homomorphism [21,34]. Specifically, let λ′ be the soundness parameter of
the Sander et al. [34] technique that works as follows.

A single bit b = 1 is encrypted to λ′-many random quadratic residues
modn, i.e., λ′ separate GM encryptions of 0. A bit b = 0 is encrypted
to a sequence of random elements x with Jn(x) = 1, i.e., λ′ encryp-
tions of randomly chosen bits a1, . . . , aλ′ . More formally, EncAND(1) =
(EncGM(0), . . . , EncGM(0)) and EncAND(0) = (EncGM(a1), . . . , EncGM(aλ′)).

Decryption of a sequence of a λ′-element ciphertext checks whether all ele-
ments are in QRn. That is, DecAND(c1, . . . , cλ′) = 1, if ∀ci : ci ∈ QRn, and 0
otherwise.

As an AND-encryption of 0 can result in λ′ elements of QRn, decryption is
correct with probability 1 − 2−λ′

.
EncAND is homomorphic with respect to Boolean AND. For two ciphertexts

EncAND(b) = (c1, . . . , cλ′) and EncAND(b′) = (c′
1, . . . , c

′
λ′), DecAND(c1 · c′

1, . . . , cλ′ ·
c′
λ′) = b∧ b′. If the ci and c′

i are all in QRn, so is their product. If one is in QRn

and the other in QNR1
n, their product is in QNR1

n. Yet, if both ci and c′
i are

in QNR1
n, their product is in QRn. For example, if all ci and c′

i are in QNR1
n,

b = b′ = 0, but DecAND after their homomorphic combination will output 1. So,
DecAND is correct with probability 1 − 2−λ′

. Re-encryption for AND-encryption
is simply defined as ReEncAND(c1, . . . , cλ′) ← (ReEncGM(c1), . . . ,ReEncGM(cλ′)).

Finally, we can embed an existing GM ciphertext γ = EncGM(b) of bit b
into an a ciphertext EncAND(b) = (c1, . . . , cλ′) without decryption. First, we
choose λ′ random bits a1, . . . , aλ′ . Now, if ai = 1, then set ci = EncGM(0).
Otherwise, set ci = EncGM(0) · γ · z mod n. In the first case, ci is a quadratic
residue independently of b (ci = EncGM(0)). In the second case, we flip bit b

Strain: A Secure Auction for Blockchains 91

by multiplying with z (and re-encrypt the result). So, a quadratic residue ci

becomes a non-residue and the other way around. If b = 1, all λ′ elements ci

will be quadratic residues. If b = 0, all λ′ elements ci will be quadratic residues
only with probability 2−λ′

, such that the embedding is correct with probability
1 − 2−λ′

.

2.2 Blockchain

There exist several detailed introductions to blockchain and smart contract tech-
nology such as Ethereum [18]. Here, we only briefly and informally summarize
properties relevant for Strain.

A blockchain is a distributed network implementing a ledger functionality.
Parties can append transactions to the ledger, if the network validates transac-
tions in a distributed fashion. Surprisingly, such a ledger is sufficient to realize
distributed execution of programs called smart contracts. Using transactions,
one party uploads code and state into the blockchain, and other parties modify
state by stipulating code execution. For a procurement auction, auctioneer A
would upload a new smart contract and allow other parties to bid. That is, the
smart contract could just implement a simple, initially empty mailbox as state,
and suppliers could only append data (bids and anything else) to that mailbox
by transactions. All blockchain transactions are automatically signed by their
generating party, and so would be the data they carry. Such a simple mailbox
smart contract provides the following properties that we will need.

First, the blockchain guarantees reliable broadcast. Each signed transaction
appending a message to the mailbox is public. Based on the blockchain’s consen-
sus, everybody in the network observes the same message appended (if valid).
Being the blockchain’s core feature, reliable broadcast takes one block latency.
Along the same lines, we can introduce personal messages between parties over
the blockchain. A broadcast to supplier Si encrypted with Si’s public key realizes
a secure, reliable channel to Si.

Moreover, a blockchain automatically allows for deadlines. Parties participat-
ing in the blockchain receive new blocks and therefore have (weakly) synchro-
nized clocks. Based on the current block, an auction smart contract can specify
a deadline as a function of the number of future blocks.

Note that with, e.g., Ethereum, there is essentially no limit for the number of
transactions per block. Miners have an incentive to include as many transactions
as possible in their block to receive transaction fees. Thus, large messages can
therefore be split into multiple transactions and still sent as “one message”.
Consequently in this paper, we silently assume that the blockchain accepts any
number of messages of arbitrary length per block. In practice with Ethereum,
the GasLimit upper bounds transactions and their size, but one could imagine
that a long messages m is stored in a Public Bulletin Board (PBB) system, and
the blockchain only stores hash of m.

To ease exposition, we also assume the blockchain consensus to be fork-free.
As today’s Proof-of-Work-based blockchains accept longer forks at any time, they
cannot be fork-free. However in practice, a honest majority of miners guarantees

92 E.-O. Blass and F. Kerschbaum

1 forall Si do
2 if Pseudonymity then Si → TTP : FPseu(vi); else Si → TTP : FAuth(vi);

3 for i = 1 to s do
4 forall j �= i do
5 TTP : Let cmpi,j = 1, if vi > vj and cmpi,j = 0 otherwise;

6 TTP → {A, S1, . . . , Ss}: FBC({cmpi,j |∀i, j ∈ {1, . . . , s}});
7 TTP → A: {vw|vw = min(v1, . . . , vs)};

Algorithm 1. Ideal functionality FBid of the bidding algorithm

probability p of a future fork of length k = O(λ) to become exponentially small,
i.e., p = e−Ω(λ) [22]. Parameter k is small in practice, e.g., k = 6 in Bitcoin and
k = 30 in Ethereum. Blockchains based on Byzantine fault tolerance typically
have consensus finality (and are fork-free) [39].

3 Security Definition

We define security following the standard ideal vs. real world paradigm. First,
we specify an ideal functionality FBid of our bidding protocol, see Algorithm1.

Ideal Functionality. Our protocol emulates a trusted third party TTP that,
first, receives all bids from all suppliers. If supplier pseudonymity is required,
all participating suppliers Si send their bids vi via a pseudonymous channel,
or else they send it via an authenticated channel. The trusted third party then
computes result cmpi,j of the comparison between each bid. Finally, the trusted
third party announces (broadcasts) the results of all comparisons to auctioneer
A, each Supplier Si, and all other participants of the blockchain. Similar to order
preserving encryption, this reveals the total order of bids and hence the winner
of the auction, but does not reveal the bids themselves.

Adversary Model. We consider two adversaries A1 and A2. These adversaries
have different capabilities, are non-colluding, and control different parties. The
following Theorem 1 summarizes our main contribution, and we will prove it
later in the paper.

Theorem 1. If adversary A1 is a static, active adversary which may control
up to a threshold1 τ of suppliers Si, and if Adversary A2 is a passive adversary
which may control auctioneer A, and if A1 and A2 do not collude, then protocol
Strain implements functionality FBid.

The order of bids is revealed to the adversary, and the auctioneer, but not
the suppliers, must be only semi-honest. While this results in slightly weaker
security than offered by MPC, it allows for optimally low latency. Moreover,
we conjecture that this adversary model is practical in a variety of real-world
scenarios.
1 Threshold τ will later be used to open commitments using Shamir’s secret sharing

of the key, cf. Sect. 5.1.

Strain: A Secure Auction for Blockchains 93

4 Maliciously-Secure Comparisons

The first ingredient to our main contribution of secure auctions is a generic
comparison construction. It allows two parties Si and Sj (the suppliers in our
application) with inputs vi and vj to obliviously evaluate whether or not vi > vj

without disclosing anything else to the other party. In contrast to related work,
the novelty of our construction is its efficiency in the face of fully malicious
adversaries. We do not rely on general MPC primitives and have asymptotically
optimal complexity (3 blocks and O(η) computation and communication cost per
comparison). This allows us to easily integrate our comparison into the auction
framework of Sect. 5 and, e.g., tolerate parties aborting the auction without
restarting comparisons.

To realize maliciously-secure comparisons, we rely on the existence of a judge
A (the auctioneer in our application). Si and Sj can be fully malicious, but A
must be semi-honest and moreover not collude with Si, Sj , see Sect. 3. As long
as A does not collude with Si, Sj , neither A nor a malicious supplier learn bids
of honest suppliers. An important property of our solution is that knowledge
of Si’s, Sj ’s, and A’s public keys is sufficient to verify whether vi > vj , again
without learning anything else about vi and vj .

4.1 Secure Comparisons Against Semi-honest Adversaries

We begin by presenting Fischlin [21]’s technique for comparisons, secure against
semi-honest adversaries. Subsequently, we extend comparisons to be secure
against fully malicious adversaries.

Given bit representations vi = vi,1 . . . vi,η and vj = vj,1 . . . vj,η, we can com-
pute vi > vj by evaluating Boolean circuit F =

∨η
�=1(vi,� ∧¬vj,� ∧∧η

u=�+1(vi,u =
vj,u)). We have F = 1 iff vi > vj . Observe that the main

∨η
t=1 is actually an

XOR: if vi > vj , exactly one term will be 1, and all other terms are 0. If vi ≤ vj ,
all terms will be 0. Moreover, (vi,u = vj,u) equals ¬(vi,u ⊕ vj,u). That can be
exploited to homomorphically evaluate F using GM encryption.

1. Si sends its GM public key pkGM
i = (zi, ni) and encrypted value Ci =

EncGM
pkGM

i
(vi), a sequence of GM ciphertexts, to Sj .

2. Sj encrypts its own value vj with Si’s public key, Ci,j = EncGM
pkGM

i
(vj). Sj then

homomorphically computes all ¬(vi,u ⊕ vj,u) and ¬vj,� from F .
3. Sj embeds Ci and its own sequence of ciphertexts Ci,j into AND-

homomorphic GM ciphertexts as described in Sect. 2.1. Using AND-
homomorphism, Sj computes a sequence � = {1, . . . , η} of ciphertexts c� =
(vi,� ∧ ¬vj,� ∧ ∧η

u=�+1(vi,u = vju
)).

Finally, Sj randomly shuffles the order of ciphertexts c� and sends resulting
permutation resi,j = π(c1, . . . , cη) back to Si.

4. Si can decrypt the c� in resi,j and learns whether vi ≤ vj , if all c� decrypt to
0, or vi > vj , if exactly one ciphertext decrypts to 1 and all other to 0.

94 E.-O. Blass and F. Kerschbaum

The purpose of Sj shuffling ciphertexts is to hide the position of the potential 1
decryption, thereby not leaking the position of the lowest bit differing between
vi and vj .

Steps 2 and 3 implement a functionality which we call Eval(Ci, vj) from
now on.

4.2 Secure Comparisons Between Two Malicious Adversaries

Fischlin’s protocol is only secure against semi-honest adversaries. However, one
or even both parties may have behaved maliciously during comparison. Both sup-
pliers Si and Sj may submit different bids to distinct comparisons and supplier
Sj could just encrypt any result of their choice using Si’s public key. That is,
Fischlin’s protocol does not ensure that resi,j has been computed according to
the protocol specification and the fixed inputs of the suppliers.

We tackle this problem by, first, requiring both Si and Sj to commit to their
own input, simply by publishing GM encryptions Ci, Cj of vi, vj with their
public key including a proof of knowledge of the plaintext. During comparison,
Sj will prove to a judge A in zero-knowledge that Sj used the same value vj in Ci,j

as in commitment Cj , and that Sj has performed homomorphic computation of
resi,j according to Fischlin’s algorithm. Therewith, Si is sure that resi,j contains
the result of comparing inputs behind ciphertexts Ci and Cj .

In the following description, we allow parties to either publish data or to send
data from one to another. In reality, one could use the blockchain’s broadcast
feature to efficiently and reliably publish data to all parties or to just send a
private (automatically signed) message, see Sect. 2.2.

Details. First, party Si commits to vi by publishing {pkGM
i , Ci = EncGM

pkGM
i

(vi)},

and party Sj commits to vj by publishing {pkGM
j , Cj = EncGM

pkGM
j

(vj)}. Then,
Si and Sj compare their vi, vj following Fischlin [21]’s homomorphic circuit
evaluation above. After Sj has computed resi,j , Sj additionally computes a ZK
proof P eval

i,j as follows.

1. Sj adds Ci,j and random coins for both the shuffle of resi,j and the AND-
homomorphic embeddings to initially empty proof P eval

i,j .
Let vj,� be the �th bit of vj . Let (Cj)� be the �th ciphertext of GM commit-
ment Cj , i.e., the encryption of vj,� (the �th bit of vj). Let (Ci,j)� be the �th

ciphertext of Ci,j .
2. Let λ′′ be the soundness parameter of our ZK proof. Sj flips η · λ′′ coins

δ�,m, 1 ≤ � ≤ η, 1 ≤ m ≤ λ′′.
3. Sj computes η · λ′′ encryptions γ�,m ← EncGM

pkGM
j

(δ�,m) and γ′
�,m ←

EncGM
pkGM

i
(δ�,m) and appends them to proof P eval

i,j .
4. Sj also computes η · λ′′ products Γ�,m = (Cj)� · γ�,m mod nj and Γ ′

�,m =
(Ci,j)� · γ′

�,m mod ni and appends them to proof P eval
i,j . A product Γ�,m is

an encryption of δ�,m ⊕ vj,� under key pkGM
j , and Γ ′

�,m is an encryption of
δ�,m ⊕ vj,� under key pkGM

i .

Strain: A Secure Auction for Blockchains 95

5. Sj sends P eval
i,j to judge A.

6. Our ZK proof can either be interactive or non-interactive. We first consider
the interactive version of our proof. Here, A sends back the challenge h, a
sequence of η · λ′′ bits b�,m, to Sj .

7. If b�,m = 0, Sj sends plaintext and random coins of γ�,m and γ′
�,m to A. If

b�,m = 1, Sj sends plaintext and random coins of Γ�,m and Γ ′
�,m to A.

The non-interactive version of our proof is a standard application of Fiat-
Shamir’s heuristic [20] to Σ-protocols and imposes slight changes to steps 5 to 7.
So, let h = H((γ1,1, γ

′
1,1, Γ1,1Γ

′
1,1), . . . , (γη,λ′′ , γ′

η,λ′′ , Γη,λ′′ , Γ ′
η,λ′′), Ci, Cj , Ci,j) for

random oracle H : {0, 1}∗ → {0, 1}η·λ′′
. Instead of sending P eval

i,j to A, receiving
the challenge, and replying to the challenge, Sj parses h as a series of η · λ′′

bits b�,m. Sj does not send plaintexts and random coins of either (γ�,m, γ′
�,m) or

(Γ�,m, Γ ′
�,m) as above to A, but simply appends them to P eval

i,j and then sends
P eval

i,j to A. In practice, we implement H by a cryptographic hash function.
So in conclusion, Sj sends proof P eval

i,j to judge A who has to verify it. Note
that P eval

i,j contains ciphertext Ci,j of Sj ’s input vj under Si’s public key. The
proof is zero-knowledge for judge A and very efficient, but must not be shared
with party Si. A’s verification steps are as follows:

8. Judge A verifies that homomorphic computations for resi,j have been com-
puted correctly, according to Ci,j , Cj , and random coins of resi,j ’s shuffle,
simply by re-performing the computation.

9. For � = {1, . . . , η} and m = {1, . . . , }, A verifies that homomorphic relations
between (Ci)�, γ�,m, Γ�,m as well as for (Ci,j)�, γ

′
�,m, Γ ′

�,m hold.
10. For each triple of plaintext, random coins, and ciphertexts of either γ�,m and

γ′
�,m or Γ�,m and Γ ′

�,m, A checks that ciphertext results from the plaintext
and random coins and that the plaintexts are the same.

11. If all checks pass, the judge A outputs
, else ⊥.

If A outputs
, Si decrypts resi,j and learns the outcome of the comparison,
i.e., whether vi > vj .

Steps 1 to 7 implement a functionality that we call ProofEval(Ci, Cj , Ci,j ,
resi,j , vj) from now on. ProofEval is executed by Sj and uses commitments Ci

and Cj and Sj ’s input vj and outputs {Ci,j , resi,j} of Eval(Ci, vj). Similarly,
steps 8 to 11 realize functionality VerifyEval(P eval

i,j , resi,j , Ci, Cj). Executed by
judge A, it outputs either
 or ⊥.

Lemma 1. The above scheme of computing and verifying proof P eval
i,j with

ProofEval and VerifyEval is a ZK proof of knowledge of vj, such that Cj =
EncGM

PKj
(vj), {Ci,j , resi,j} = Eval(Ci, vj), and if it is performed in λ′′ rounds,

the probability that Sj has cheated, but A outputs
, is 2−λ′′
.

Proof. As completeness follows directly from our description, we focus on sound-
ness (extractability) and zero-knowledge.

96 E.-O. Blass and F. Kerschbaum

(1) Knowledge Soundness. Judge A can extract vj from Sj with rewinding
access. Let tr1(Ci,j , resi,j , γ�,m, γ′

�,m, Γ�,m, Γ ′
�,m, b�,m, . . .) be the trace of the

first execution of P eval
i,j . Then judge A rewinds Sj to Step 5 and continues

the protocol. Let tr2(Ci,j , resi,j , γ�,m, γ′
�,m, Γ�,m, Γ ′

�,m, b�,m, . . .) be the trace
of the second execution of P eval

i,j . If tr1(b�,m) = 0 and tr2(b�,m) = 1, then
A learns tr1(δ�,m) and tr2(δ�,m ⊕ vj,�). Therewith, A computes vj,�. As vj,�

can be extracted, our Σ-protocol achieves special soundness. With challenge
length λ′′ for each bit of vj , it is moreover a proof of knowledge with knowledge
error 2−λ′′

[14].
(2) Zero-Knowledge. Intuitively, the auctioneer learns nothing from the open-
ing of either γ�,m and γ′

�,m or Γ�,m and Γ ′
�,m, since the plaintext value

is always chosen uniformly random due to the uniform distribution of
δ�,m. More formally, in the interactive case, we can construct a simulator
Sim

A({Ci,Cj})
P eval

i,j

(resi,j) with rewinding access to judge A({Ci, Cj}) following a

standard simulation paradigm [27]. This ensures that we can construct a sim-
ulation of the ZK proof in the malicious model of secure computation even if
bid vj does not correspond to ciphertext Ci,j and commitments Ci, Cj , since
the simulator generates an accepting, indistinguishable output even if vj is
unknown. In the non-interactive case with Fiat-Shamir’s heuristic, our ZK
proof is secure in the random oracle model. �

Note: Our proof here shows something stronger than required by the general
auction protocol. We show our ZK proof to be secure even against malicious
verifiers. However, auctioneer A, serving as the judge in the main protocol, is
supposed to be semi-honest.

5 Blockchain Auction Protocol

After having presented our core technique for secure comparisons, we now turn
to our main auction protocol Strain. Imagine that, at some point, A announces a
new auction and uploads a smart contract to the blockchain. The smart contract
is very simple and allows parties to comfortably exchange messages as mentioned
before. The contract is signed by skA, so everybody understands that this is a
valid procurement auction.

Overview. With the smart contract posted, the actual auction starts. In Strain,
each supplier must first publicly commit to their bid. For this, we use a new ver-
ifiable commitment scheme which allows a majority of honest suppliers to open
other suppliers’ commitments. Therewith, we can at any time open commitments
of malicious suppliers blocking or aborting the auction’s progress.

After suppliers have committed to their bids (or after a deadline has passed),
the protocol to determine the winning bid starts. Strain uses the new comparison
technique from Sect. 4.2 to compare bids of any two parties. Auctioneer A serves
as the judge. However, using our new comparison in the auctions turns out to

Strain: A Secure Auction for Blockchains 97

be a challenge. Recall that, when Si and Sj compare their bids, only Si knows
the outcome of the comparison, but nobody else. We therefore augment our
comparison such that Si can publish the outcome of the comparison, together
with a (zero knowledge) proof of correctness.

To improve readability, we present Strain without optional pseudonymity
and postpone pseudonymity to Sect. 5.4. For now, assume that a subset S ′ ⊂
S, |S ′| = s′ ≤ s participates in the auction. Either a pseudonymous subset or all
suppliers participate.

5.1 Verifiable Key Distribution for Commitments

To be able to commit to their bids, suppliers in Strain initially distribute their
keying material. In the following, we devise a new key distribution technique
for our specific setting. It permits supplier Si to publish a GM public key and
verifiably secret share the corresponding secret key. The crucial property of our
key distribution is that a majority of honest suppliers can decrypt ciphertexts
encrypted with Si’s public key. To then later commit to a value vi, Si encrypts
vi with their public key. For ease of exposition, we describe our key distribution
with s-out-of-s threshold secret sharing. However, we stress that many different
schemes exist for s′-out-of-s sharing modulo an RSA integer. For example, one
could adopt and employ the schemes by Frankel [16] or Katz and Yung [25]. See
also Shoup [35] for an overview.

Key Distribution. Each supplier Si generates a GM key pair (pkGM
i = (ni =

pi · qi, zi = ni − 1), skGM
i = (pi−1)·(qi−1)

4). To allow other suppliers Sj to
open commitments from supplier Si, Si first computes a non-interactive ZK
proof PBlum

i that ni is a Blum integer, see Blum [5] for details. Moreover,
Si computes secret shares of (pi−1)·(qi−1)

4 for all suppliers as follows: Si com-

putes s′ − 1 random shares ri,1, . . . , ri,s′−1
$← {0, (pi − 1) · (qi − 1)} such that

∑s′−1
j=1 ri,j = (pi−1)·(qi−1)

4 mod (pi − 1) · (qi − 1). This can easily be converted
into a threshold scheme using Shamir’s secret shares where τ is the threshold for
reconstructing a secret. Supplier Si computes signature sigski

(ri,j) and encrypts
share ri,j and signature sigski

(ri,j) for supplier Sj using Sj ’s public key pkj .
Finally, Si broadcasts resulting s′ −1 ciphertexts of share and signature pairs as
well as pkGM

i and PBlum
i on the blockchain.

All suppliers can send their broadcasts in parallel, requiring only one block
latency.

Key Verification. All s′ participating suppliers start a sub-protocol to verify
all s′ public keys pkGM

i . For each pkGM
i :

1. All suppliers check proof PBlum
i . If supplier Sj fails to verify the proof, Sj

publishes (i, ⊥) on the blockchain.

98 E.-O. Blass and F. Kerschbaum

2. Each supplier Sj selects a random ρi,j
$← Z

∗
ni

and employs a traditional
commitment scheme commit to commit to ρi,j . That is, each supplier Sj

publishes commit(ρi,j) on the blockchain.
3. After a deadline has passed, all suppliers open their commitments, by pub-

lishing ρi,j and the random nonce used for the commitment.
All suppliers compute xi =

∑
j �=i ρi,j mod ni and yi = x2

i .

4. Each supplier Sj raises yi to their share ri,j of (pi−1)·(qi−1)
4 and publishes

γi,j = y
ri,j

i on the blockchain. Sj also raises zi to their ri,j , i.e., ζi,j = z
ri,j

i .
Sj then prepares a non-interactive ZK proof PDLOG

i,j of statement logyi
γi,j =

logzi
ζi,j , see Appendix A for details. Supplier Sj publishes {γi,j , ζi,j , P

DLOG
i,j }

on the blockchain.
5. Finally, all s′ − 1 suppliers verify soundness of pkGM

i . Each supplier Sj

computes bi =
∏

j �=i γi,j = y
∑s′−1

j=1 ri,j

i = y
(pi−1)·(qi−1)

4
i modni and b′

i =
∏

j �=i ζi = z
∑s′−1

j=1 ri,j

i = z
(pi−1)·(qi−1)

4
i mod ni. If Sj detects that bi �= 1 or

b′
i �= − 1 mod ni, Sj publishes (i,⊥) on the blockchain. Supplier Sj also

checks s′ − 1 proofs PDLOG
i,k . If one of the κ rounds outputs ⊥ during verifica-

tion, Sj publishes (k,⊥) on the blockchain.

Lemma 2. Let ni be a Blum integer and α the sum of shares distributed by Si.
If no honest supplier publishes (i,⊥), then Pr[α �= (pi−1)·(qi−1)

4] ∈ O(2−λ).

Proof. Let yi have no roots in Zni
dividing (pi−1)(qi−1)

4 . For uniformly chosen yi,
this happens with overwhelming probability ∈ O(1 − 2−λ). As yi ∈ QRni

, it has
order (pi−1)(qi−1)

4 . So, bi = 1 implies (I) α mod (pi−1)(qi−1)
4 = 0; further, since

zi = −1 mod ni, we have z
(pi−1)(qi−1)

4
i ∈ {−1, 1}, and so (II) z

(pi−1)(qi−1)
2

i = 1.
Hence b′

i = −1 implies α mod (pi−1)(qi−1)
2 �= 0. From (I) and (II), we conclude

(α mod (pi−1)(qi−1)
4) mod 2 = 1. However, all those values will serve as private

keys in GM encryption. �
In conclusion, supplier Si can verify whether their shares for supplier Sj ’s

secret key skGM
j matches public key pkGM

j . Therewith, an honest majority of
suppliers will later be able to open commitments of malicious suppliers trying
to block the smart contract or cheat.

Excluding Malicious Suppliers. Strain’s key verification easily allows detec-
tion and exclusion of malicious suppliers. First, as all suppliers can verify proofs
PBlum

i and PDLOG
i,j of a supplier Si, honest suppliers can exclude Si or Sj from

further participating in the protocol in case of a bad proof.
Moreover, following our assumption of up to τ malicious suppliers, Strain

allows to systematically detect and exclude malicious suppliers. Supplier Sj will
reconstruct bi = 1 and b′

i = −1 from the set of secret shares (γi,j , ζi,j). If
no subset reconstructs the correct plaintexts, Sj deduces that distributor Si is
malicious and excludes Si. Otherwise, Sj checks that each supplier Sk’s share

Strain: A Secure Auction for Blockchains 99

1 for i = 1 to s′ do
2 Si : publish {Ci ← EncGM

PKi
(vi), P

enc
i ← ProofEnc(Ci, vi)} on blockchain;

3 for i = 1 to s′ do
4 forall j �= i do
5 Sj : {Ci,j , resi,j} ← Eval(Ci, vj);

6 Sj : P eval
i,j ← ProofEval(Cj , Ci, Ci,j , resi,j , vj);

7 Sj : publish {EncpkA(P eval
i,j), resi,j} on blockchain;

8 A : publish VerifyEval(P eval
i,j , resi,j , Ci, Cj) on blockchain;

9 Si : bitseti,j = DecAND
pkGM

j
(resi,j);

10 Si : shufflei,j ← Shuffle(resi,j);

11 Si : P shuffle
i,j ← ProofShuffle(shufflei,j , resi,j);

12 Si : let γ�,m ← EncGM
PKi

(β�,m) ∈ shufflei,j be the shuffled ciphertexts

13 with their random coins r�,m. Publish {P shuffle
i,j , shufflei,j , β�,m, r�,m};

Algorithm 2. Blockchain auction protocol ΠStrain

reconstructs the correct plaintext. If any does not, Sj asks Sk publicly on the
blockchain to reveal their exponent ri,k and signature sigski

(ri,k). If at least τ +1
suppliers ask Sk to reveal, Sk will reveal, and honest suppliers can detect whether
Sk should be excluded (signature does not verify or exponent does not match
secret shares) or Si (signature verifies and exponent matches secret shares).

5.2 Determining the Winning Bid

Strain’s main protocol ΠStrain to determine the winning bid is depicted in Algo-
rithm2. Within Algorithm 2, we use three ZK proofs as sub-protocols.

– ProofEnc(Ci, vi) proves in zero-knowledge the knowledge of vi, such that Ci =
EncGM

PKi
(vi). For an exemplary implementation we refer to Katz [24].

– ProofEval(Cj , Ci, Ci,j , resi,j , vj) has been introduced in Sect. 4.2.
– ProofShuffle(shufflei,j , resi,j) proves in zero-knowledge the knowledge of a

permutation Shuffle with shufflei,j = Shuffle(resi,j). There exist a large
number of implementations of shuffle proofs. For one that is straightforward
to adapt to GM encryption, see Ogata et al. [31]. Using this technique, one
can even create shuffles with a restricted structure [32]. That is, the shuffle is
only chosen from a pre-defined subset of all possible shuffles. In our case this
is necessary, since we do not randomly shuffle all GM ciphertexts, but only
AND-homomorphic blocks of GM ciphertexts.

ZK proofs ProofEnc and ProofShuffle are verified by all suppliers active in
the auction, and, hence, verification is not explicitly shown. ZK proof ProofEval,
however, is verified only by the semi-honest judge and auctioneer A.

Let η � λ be a public system parameter determining the bit length of each
bid. That is, any bid vi = vi,1 . . . vi,η can take values from {0, . . . , 2η − 1}.

ΠStrain starts with each supplier Si committing to their bid vi by publishing
GM-encryption Ci = (EncGM

pkGM
i

(vi,1), . . . ,EncGM
pkGM

i
(vi,η)) on the blockchain. Recall

that all messages on the blockchain are automatically signed by their generating
party.

100 E.-O. Blass and F. Kerschbaum

After a deadline has passed, suppliers determine index w of winning bid vw

by running our maliciously-secure comparison mechanism of Sect. 4.2. Any pair
(Si, Sj) of suppliers computes the comparison and publishes the result on the
blockchain.

Specifically, after judge/auctioneer A has published whether Sj ’s computa-
tion of Ci,j corresponds to Sj ’s commitment Cj , supplier Si can decrypt resi,j

and learn whether vi > vj . To publish whether vi > vj , Si shuffles resi,j to
shufflei,j , publishes a ZK proof of shuffle, and publicly decrypts shufflei,j .
Therewith, everybody can verify vi > vj . If A has output
, if the proof of
shuffle is correct, and if shufflei,j contains exactly a single 1, then vi > vj . If
A has output
, the shuffle proof is correct, and if shufflei,j contains only 0s,
then vi > vj .

A supplier Si is the winner of the auction, if all their shuffles prove that
their bid is the lowest among all suppliers. Si can prove this by opening the
plaintext and random coins of shufflei,j . If vi ≤ vj , at least one plaintext in
each consecutive sequence of λ′ plaintexts is 0. If vi > vj , a consecutive sequence
of λ′ plaintexts is 1. Strain concludes with auction winner Sw revealing bid vw

and a plaintext equality ZK proof that commitment Cw is for vw to auctioneer A.

5.3 Latency Evaluation

The performance of any interactive protocol or application running on top of
a blockchain is dominated by block interval times. With today’s block interval
times in the order of several seconds, protocols requiring a lot of party interaction
significantly increase the protocol’s total latency, i.e., its total run time. A secure
auction protocol with high latency is useless in many scenarios with automated,
short-living auctions.

As a crucial performance metric, we therefore investigate Strain’s latency. As
key distribution is a setup-like initial process, necessary only once, and indepen-
dent of actual auctions, we focus on ΠStrain’s latency.

Asymptotic Analysis. In Algorithm 2, ΠStrain starts in Line 2 by all suppliers
sending a commitment to their bid together with P enc. There is no interactivity
between by suppliers, so all suppliers can send in parallel, requiring one block
latency. After that first block has been mined, all suppliers send their P eval for
each other supplier to A, lines 5 to 7. Each supplier can send all P eval for all
other suppliers at once (s′ · (s′ − 1) hash values of the PBB). Again, there is
no interactivity between suppliers, so all suppliers send in parallel in one block.
Then, auctioneer A sends all VerifyEval for all comparisons at once (1 hash), Line
8, in another block. In a final block, all suppliers disclose in parallel (s′ hashes)
their shuffles, random coins, and corresponding P shuffle (Line 13).

In conclusion, one run of ΠStrain requires a total of 4 blocks latency: 1 block
for suppliers to commit, and then 3 blocks for core comparisons and computation
of the winning bid. This number is constant in both bit length η of each bid and
the number of suppliers s. In contrast, practical MPC protocols require at least

Strain: A Secure Auction for Blockchains 101

Ω(η) rounds. Although Fischlin’s protocol only evaluates a circuit of constant
multiplicative depth, it is capable of evaluating a comparison due to the shuffle
of the ciphertexts before decryption.

Table 1. Execution time for Strain’s main cryptographic operations

Prototypical Implementation. To indicate its real-world practicality, we
have prototypically implemented and benchmarked ΠStrain’s core cryptographic
operations in Python. The source code is available for download [36].

In our measurements, we have set bid length η to 32 bit, allowing for either
large bids or very fine-grained bids. For good security, we set the bit length of
primes for Blum integers n to |p| = |q| = 768 bit. To achieve a small probability
for soundness errors of 2−40, we choose λ′ = λ′′ = κ = 40. We have imple-
mented the non-interactive versions of our ZK proofs and used SHA256 as hash
function. All experiments were performed on a mostly idle Linux laptop with
Intel i7-6560U CPU, clocked at 2.20 GHz. Our prototypical implementation uses
only one core of the CPU’s four virtual cores available, but we emphasize that
our cryptographic operations can run independently in parallel, e.g., for each
supplier. They scale linearly in the number of (virtual) cores.

Table 1 summarizes timings for cryptographic operations. All values are the
average of ten runs. Relative standard deviation for each average was low with
less than 9%.

Eval. Inside the main for-loop in ΠStrain, operation Eval and computation of
ZK proof ProofEval for A take roughly 0.5 s. Taking Ethereum’s 15 s blockchain
interval, a supplier could compute proofs for up to 30 other suppliers using a
single core. Again, with the availability of x many cores, this number multiplies
by x.

Auctioneer A executes VerifyEval for which we have implemented verification
of homomorphic relations between Cs, γs, and Γ s and (expensive) verification
of encryptions for given random coins. Yet, verification is just (re-)computing
GM encryptions with fixed coins which are included in P Eval. As you can see,
VerifyEval is very fast (15 ms), allowing roughly thousand comparisons in one
Ethereum block interval.

ProofShuffle. As a supplier needs to compute ProofShuffle, we have modified
Ogata et al. [31]’s standard shuffle to our setting. Very briefly, the idea of prov-
ing shuffle to be a re-encrypted shuffle of res in zero-knowledge is to gener-
ate κ re-encrypted intermediate shuffles shuffle′

i of res. For each intermediate

102 E.-O. Blass and F. Kerschbaum

shuffle shuffle′
i, the verifier ask either to show the permutation between res

and shuffle′
i and all random coins used during re-encryption or to show the

permutation between shuffle′
i and shuffle and random coins used during re-

encryption. Recall that re-encryption in our setting is simply multiplication with
a random quadratic residue. Computing ProofShuffle is an expensive operation,
taking 600 ms. Thus, in our non-optimized implementation, a supplier could pre-
pare ≈25 proofs of shuffle per CPU core in one block interval. We stress that our
modification to Ogata et al. [31]’s shuffle is straightforward and leave the design
of more performance optimized shuffles for future work.

Note that EncpkA
is not GM encryption, but a regular hybrid encryption for

auctioneer A, e.g., AES-ECC. As hybrid encryption is extremely fast compared
to computation of our ZK proofs, we ignore it in our latency analysis.

ProofEnc. For the initial commitment of each supplier, we have adopted Katz
[24]’s standard technique for proving plaintext knowledge to GM encryption.
Again, we only summarize the main idea of our (straightforward) adoption. To
prove knowledge of a single plaintext bit m, encrypted to GM ciphertext C =
r2 · zm, prover and verifier engage in a κ-round Σ-protocol. In each round i, the
prover randomly chooses ri and sends Ai = r4i to the verifier. The verifier replies
by sending random bit qi, and the prover concludes the proof by sending Ri = rqi ·
ri. The verifier accepts the round, if R4

i = Ai ·C2·qi . For our evaluation, we have
implemented a non-interactive version of this Σ-protocol. Both, computation
of the ZK proof (VerifyEnc) as well as its verification (VerifyEnc) are extremely
fast, taking only 10 ms for all rounds and all encrypted bits together. Note that
computation of this proof is independent of the number of suppliers and has to
be performed only once per auction.

ProofDLOG. Albeit part of only the initial key distribution phase, we also
include computation times for computation and verification of proof PDLOG.
In Table 1, ProofDLOG denotes the algorithm computing proof PDLOG, and
VerifyDLOG is the algorithm verifying PDLOG, see Appendix A for details. These
computations are efficient: within one block interval, a supplier can generate
≈100 shares for other suppliers and verify ≈45.

Having in mind that our Python implementation is prototypical and not
optimized for speed, we conclude that ΠStrain’s cryptographic operations are very
efficient, allowing Strain’s deployment in many short-term auction scenarios with
dozens of suppliers.

5.4 Optional: Preparation of Pseudonyms

To pseudonymously place a bid in Strain, suppliers must decouple their
blockchain transactions from their regular key pair (pki, ski). Ideally for each
auction, supplier Si generates a fresh random key pair (rpki, rski) for bidding.
In practice, e.g., with Ethereum, this turns out to be a challenge. To interact
with a smart contract, Si must send a transaction. Yet, to mitigate DoS attacks
in Ethereum, transactions cost money of the blockchain’s virtual currency. If a

Strain: A Secure Auction for Blockchains 103

fresh key pair wants to send a transaction, someone must send funds to it. Si

cannot send funds to their fresh key, as this would create a visible link between
Si and (rpki, rski).

Our idea is that A sends funds to keys that have previously been registered.
To do so, Si will register their fresh key pair (rpki, rski) using a blind RSA
signature. As a result, Si has received a valid signature sig′

i of its random key
rpki. Besides s, the adversary learns nothing about the rpkis.

All suppliers send their blinded rpki in parallel, and A then replies with blind
signatures in parallel, too. Communication latency is constant in the number of
suppliers s. Note that all suppliers must request a blind signature for a random
rpki, regardless of whether a supplier is interested in an auction or not. If a
supplier does not request a blind signature, the adversary knows that they will
not participate in the auction.

After a supplier has recovered their key pair (rpki, rski), they broadcast it
to the blockchain. All suppliers run a Dining Cryptographer network in parallel,
see Appendix C. A supplier Si interested in participating in the auction will
broadcast (rpki, sig

′
i), and a supplier not interested will broadcast 0s.

As a result of the DC network, everybody knows fresh, random public keys of
a list of suppliers participating in the auction. Due to A’s signature, everybody
knows that these suppliers are valid suppliers, but nobody can link a key rpki

to supplier Si. Starting from now, only suppliers interested in the auction will
continue by submitting a bid and determining the winning bid. Running a DC
network is communication efficient. That is, all suppliers submit their s powers
of rpki in parallel in O(1) blocks.

Finally, A transfers money to each public key rpki, just enough such that
suppliers can use their (rpki, rski) keys to interact with the smart contract.
Supplier Si will use their new key pair (rpki, rski) to pseudonymously participate
in the rest of the protocol.

Security Analysis. For space reasons, we move the security analysis to
AppendixB.

6 Related Work

MPC. Current maliciously-secure protocols of practical performance for more
than two parties are based on secret shares [2]. They require at least as many
rounds of interaction as the multiplicative depth of the circuit evaluated [28]. For
comparisons this is the bit length η of the bids. Even for tiny auctions this will
exceed Strain’s total of four blocks. Constant-round MPC protocols, e.g. [28,29],
exceed four blocks already in their pre-computation phase before any comparison
has taken place. Benhamouda et al. [4] present an MPC auction protocol running
on Hyperledger Fabric. The underlying primitive is Yao’s MPC requiring Ω(η)
rounds of interactivity, and it does not provide security against malicious bidders
(Strain does).

104 E.-O. Blass and F. Kerschbaum

Dedicated Auction Protocols. There exists a large number of specialized
secure auctions protocols; for a survey see Brandt [9]. Among them, the one
that compares closely to Strain is Brandt’s very own auction protocol [8]. There,
suppliers compute the winner of the auction, as with Strain, and the proto-
col requires a constant number of party interactions – as does Strain. However,
Brandt encodes bids in unary notation making the protocol impractical for all
but the simplest auctions. Instead, Strain encodes bids in binary notation, thus
enabling efficient auctions for realistic bid values. Brandt cannot guarantee out-
put delivery which Strain does and which we consider crucially important in
practice. Brandt claims full privacy in the malicious model, but formal verifica-
tion has shown that this does not necessarily hold, cf. Dreier et al. [17].

Fischlin [21] also presents a variant of his main protocol which is secure
against a malicious adversary. However, that variant requires an oblivious third
party A providing a public/private key pair. All homomorphic computations in
Fischlin’s protocol are then performed under A’s public key. Simulating A on
the blockchain requires distributing the private key over multiple parties. As a
result, one would need a secure, distributed computation of a Goldwasser-Micali
key pair. Even for the case of RSA, this is complex and requires many rounds
of interactions [6], rendering it impractical on a blockchain. Instead in Strain,
each party creates its own key pair and only proves correct key sharing. Fur-
thermore, even in case A’s key has been set up, Fischlin’s protocol still requires
six rounds for each core comparison, whereas Strain requires only three (plus
one for commitments) – a noticeable difference on the blockchain. We also stress
that Fischlin’s protocol targets a setup with 2 parties and cannot trivially be
extended to multiple parties: 2 colluding malicious parties can convince oblivious
party A of any outcome of the comparison they desire. In a multi-party setting,
this allows an adversary to undermine the result of an auction, even after bids
have been placed. Instead in this paper, we prove that Strain is secure against a
collusion of up to τ suppliers.

Cachin [10] presents a protocol for secure auctions based on the Φ-hiding
assumption. A variant secure against one malicious party (Sect. 3.3 in [10])
requires at least 7 blocks per comparison. Instead, Strain compares in only three
blocks and supports both parties to be malicious during comparisons. Moreover
similar to Fischlin [21]’s protocol, it is not trivial to extend [10] to support more
than one fully malicious party. The auction protocol by Naor et al. [30] requires
another trusted party (the auction issuer), is based on garbled circuits, therefore
communication and computation inefficient, and secure only in the semi-honest
model. Damg̊ard et al. [15]’s auction considers the very different scenario of com-
paring a secret value m with a public integer m. The fully malicious version of
their auction (Sect. 5.3 in [15]) only copes with up to one fully malicious party.
Another version (Sect. 5.1 in [15]) addresses comparing secret inputs m and x,
but only with semi-honest security.

Strain: A Secure Auction for Blockchains 105

7 Conclusion

Strain is a new protocol for secure auctions on blockchains. Strain allows, for the
first time, to execute a sealed bid auction on a blockchain, secure against mali-
cious bidders, with optional bidder anonymity, and guaranteed output delivery.
Strain is efficient, and its main auction part runs in a constant number of blocks.
Such low latency is crucial for practical adoption and a basis for a new imple-
mentation of sealed-bid auctions over blockchains where auction results can be
observed by all participants.

A Proofs of DLOG Equivalence

As the DDH assumption holds in group (Jn, ·) for Blum integers n [13], we adopt
standard ZK proofs of DLOG equivalence to our setting.

Let y, z ∈ Jn and z be a generator of group (Jn, ·). A prover knows an integer
σ such that yσ = γ mod n and zσ = ζ mod n. For public values {y, z, γ, ζ},
the prover wants to compute the statement logy γ = logz ζ to a verifier in zero-
knowledge, i.e., without revealing any additional information about σ. This boils
down to Chaum and Pedersen’s ZK proof that (y, z, Y = yσ, Z = zσ) is a DDH
tuple [12]. The protocol runs in κ rounds.

In each round, (1) The prover computes r
$← Jn and sends (t1 = yr, t2 = zr)

to the verifier. (2) The verifier sends challenge c
$← Jn to the prover. (3) The

prover sends s = r+c ·σ to the verifier. (4) The verifier checks ys ?= t1 ·Y c ∧zs ?=
t2 · Zc. If the check fails, the verifier outputs ⊥.

We target non-interactive ZK proofs, so challenge c can be replaced in round
i ≤ κ by a random oracle call c = H(y, z, Y, Z, t1, t2, i) [20]. Let PDLOG be an
initially empty proof. For each round, the prover would add t1, t2, and s to
PDLOG, and then send PDLOG to the verifier. Note that, if z = −1 mod n, as in
our main protocol, then z = −(12) is indeed a generator of Jn. This ZK proof is
secure in the random oracle model.

B Security Analysis

We now prove Theorem 1. Our proof is a simulation-based proof in the hybrid
model [27]. In the hybrid model, simulator S generates messages of honest parties
interacting with malicious parties and the trusted third party TTP. Since the
simulator does not use inputs of honest parties (except for forwarding to the TTP
which does not leak any information), it is ensured that the protocol does not
reveal any information except the result, i.e., the output of the TTP. Messages
generated by the simulator must be indistinguishable from messages in the real
execution of the protocol.

Proof. Let S be the set of all suppliers and S be the suppliers controlled by adver-
sary A1. We prove IDEALFBid,S,S(v1, . . . , vs) ≡ REALΠStrain,A,S(v1, . . . , vs).

We either establish pseudonymous (broadcast) channels over the blockchain
using the protocol of Sect. 5.4 or use regular authenticated channels.

106 E.-O. Blass and F. Kerschbaum

(I) In the first step of the protocol, honest suppliers S\S commit to random
bids ri and publish corresponding ZK proofs P enc

i on the blockchain. The
simulator reads P enc

i
of the malicious parties S from the blockchain. Using

the extractor for the zero-knowledge argument, the simulator extracts vi.
The simulator sends all vi (including those of the honest parties) to the TTP.
The simulator receives from the TTP results cmpi,j of all comparisons and
winning bid vw for auctioneer A.
(II) For each honest party Si ∈ S\S, the simulator prepares a message of ran-
dom AND-homomorphic encryptions resj,i following Fischlin’s circuit output
and the result of the comparison cmpj,i. The simulator also invokes the sim-
ulator Sim

A({Ci,Cj})
P eval

j,i

(resj,i) which is guaranteed to exist. Then, the simulator

sends the messages to the blockchain. For each malicious party Si ∈ S that is
still active, the simulator reads P eval

j,i
and resj,i from the blockchain. If judge

A determines that VerifyEval(P eval
j,i

, resj,i, Cj , Ci) does not check, it publishes
⊥ on the blockchain, and supplier Si is dropped from the auction. We describe
later how we deal with suppliers aborting the protocol.
(III) For each honest party Si ∈ S\S, the simulator prepares a message of
random AND-homomorphic encryptions shufflei,j following Fischlin’s cir-
cuit output and the result of the comparison cmpi,j . The simulator also
invokes simulator SimP shuffle(shufflei,j) for the shuffle ZK proof. It also opens
the corresponding ciphertexts γ�,m ∈ shufflei,j . Then the simulator sends
the messages to the blockchain. For each malicious party Si ∈ S, the sim-
ulator reads P shuffle

i,j
, shufflei,j , β�,m, and r�,m from the blockchain. In

case VerifyShuffle(P shuffle
i,j

, shufflei,j , resi,j) does not check, the supplier Si

is dropped from the auction. If encrypting plaintexts β�,m and random coins
r�,m do not result in shufflei,j , supplier Si is dropped from the auction.
(IV) If the winner Sw of the auction is honest, i.e., Sw ∈ S\S, then the
simulator invokes the simulator for the ZK proof and sends it and vw (received
from the TTP) to auctioneer A. In case the ZK proof does not check, Sw is
removed from the auction. If the winner Sw of the auction is malicious, i.e.,
Sw ∈ S, then the simulator receives the winning bid value vw and the ZK
proof that it corresponds to commitment Cw. If the ZK proof does not check,
Sw is removed from the auction.

It remains to show that there exists is a simulator for the view of A2 (the
semi-honest auctioneer/judge A): in the first step of the protocol, A2 receives
IND-CPA secure ciphertexts and zero-knowledge proofs P enc. In the second step
A2 receives further IND-CPA secure ciphertexts and zero-knowledge proofs P eval.
We have shown in Sect. 4.2 that P eval is zero-knowledge for the auctioneer. In
the third step A2 receives IND-CPA secure ciphertexts, ZK proofs P shuffle and
the opened plaintext and randomness of some ciphertexts. The plaintexts are
either all 1 or all 0 depending on cmpi,j , and the randomness can be chosen
consistently for each ciphertext. Finally, A2 receives vw and the ZK proof of
plaintext equality to Cw. Hence the view of A2 is simulatable from the TTP’s
output, i.e., the set of results of comparisons {cmpi,j} and winning bid vw. �

Strain: A Secure Auction for Blockchains 107

Dealing with Early Aborts. Strain is particularly suitable for the blockchain, as
it can handle any early abort after bids have been committed. Assume supplier
Si has aborted the protocol or has been caught cheating. Then, all others sup-
pliers Si can recover its bid vi using the shares of its private key skGM

i
from

commitment Ci = EncGM
PKi

(vi). We emphasize that our bid opening is secure
against malicious suppliers due to ZK-proof PDLOG. Suppliers publish vi on the
blockchain, and, after the bidding protocol, winning supplier Sw reveals bid vw

to semi-honest auctioneer A (proving plaintext equality to commitment Cw in
zero-knowledge). The auctioneer compares vw to all opened bids vi and, in case,
chooses a different winner w′. Hence, after commitments have been sent to the
blockchain, no supplier can abort the auction. Even worse, aborting the auction
reveals one’s bid to all other suppliers.

C Dining Cryptographer Networks

A standard technique we use as an ingredient in Strain is a Dining Cryptographer
(DC) network [11]. If out of a set of s parties (suppliers) {S1, . . . , Ss} exactly
one party Si wants to broadcast their message mi to all other parties, a DC
network guarantees delivery of mi to all other parties without revealing i, i.e.,
who has sent mi.

Assume that all parties have exchanged pairwise secret keys ki,j with each
other. In one round of a DC network, parties communicate in a daisy chain
where party Si sends a sum sumi to party Si+1. Upon receipt, Si+1 superposes
sumi with their own data and sends sumi+1 to Si+2. Again, Si+2 superposes
sumi+1 with their own data and sends sumi+2 to S3 and so on. Superposing
is simple: each party Si XORs all pairwise keys ki,j of all other parties Sj to
whatever previous party Si−1 has broadcast. Only one party S∗ that wants to
publish message m∗ additionally XORs m∗ to the previous sum. The last XOR
of all data sent cancels out keys ki,j and m∗ remains. So, a one round DC
network allows one party dissemination of one message, protected by the DC
network. Message m∗ is public, but the sender’s identity is protected. Thus, one
supplier anonymously disseminates their public key, and everybody knows that
this is a new valid key from one of the suppliers. Daisy chain communication can
trivially be replaced by per party broadcasts, e.g., publishing to the blockchain.
The advantage of the blockchain is efficiency: all parties broadcast their sums at
the same time.

Multiple Messages. To disseminate multiple parties’ messages, several different
strategies exist to resolve collisions in DC networks [11]. In Strain, we employ the
approach by Bos and den Boer [7]. Assume that each party Si has exchanged s−1
different pairwise keys ki,j,u, 1 ≤ u ≤ s−1 with each other party Sj . Now, party
Si broadcasts all s powers < m1

i , . . . ,m
n
i > of their message mi protected by the

DC network. Instead of XORing messages broadcast with keys for protection,
we now operate over GF (2q), q ≥ |m|, and use the following trick to cancel out
keys. To protect the uth power mu

i of mi, Si adds all keys ki,j,u for j > i to

108 E.-O. Blass and F. Kerschbaum

Ki,u and subtracts keys ki,j,u for j < i from Ki,u. Si broadcasts mu
i + Ki,u. All

parties compute power sums pu(m1, . . . ,ms) =
∑s

i=1 mu
i , 1 ≤ u ≤ s. Each party

uses Newton identities to compute mi from power sums. All parties publish their
output at the same time in parallel which is very efficient on a blockchain.

For space reasons, we do not discuss standard approaches realizing fully-
malicious security for DC networks. These approaches use “traps” to identify
and blame other parties, see, e.g., [7,40,41] for an overview.

References

1. Accenture: How blockchain can bring greater value to procure-to-pay processes
(2017). https://www.accenture.com

2. Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and performance
of programmable secure computation. IEEE Secur. Priv. 14(5), 48–56 (2016)

3. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: Symposium on Security and Privacy, Berkeley, CA, USA, pp. 459–474 (2014)

4. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on Hyperledger
Fabric with secure multiparty computation. In: International Conference on Cloud
Engineering, pp. 357–363 (2018)

5. Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: A Report on
CRYPTO 1981, Santa Barbara, California, USA, 24–26 August, pp. 11–15 (1981)

6. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys (extended
abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052253

7. Bos, J., den Boer, B.: Detection of disrupters in the DC protocol. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 320–327.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 33

8. Brandt, F.: Fully private auctions in a constant number of rounds. In: Wright,
R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 223–238. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45126-6 16

9. Brandt, F.: Auctions. In: Rosenberg, B. (ed.) Handbook of Financial Cryptography
and Security, pp. 49–58. Chapman and Hall/CRC (2010)

10. Cachin, C.: Efficient private bidding and auctions with an oblivious third party. In:
Conference on Computer and Communications Security, Singapore, pp. 120–127
(1999)

11. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

13. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Cryptol-
ogy ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org/2015/990

14. Damg̊ard, I.: On Σ-protocols (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
15. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-

line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

https://www.accenture.com
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/3-540-46885-4_33
https://doi.org/10.1007/978-3-540-45126-6_16
https://doi.org/10.1007/3-540-48071-4_7
http://eprint.iacr.org/2015/990
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30

Strain: A Secure Auction for Blockchains 109

16. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures
(extended abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
457–469. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 37

17. Dreier, J., Dumas, J.-G., Lafourcade, P.: Brandt’s fully private auction protocol
revisited. J. Comput. Secur. 23(5), 587–610 (2015)

18. Ethereum. White Paper (2017). https://github.com/ethereum/wiki/wiki/
19. Etherscan. The Ethereum Block Explorer (2017). https://etherscan.io/
20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 33

22. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

23. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOCS, pp. 365–377 (1982)

24. Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applica-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 13

25. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. Cryptology ePrint
Archive, Report 2001/093 (2001). http://eprint.iacr.org/2001/093

26. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy, San Jose, USA, pp. 839–858 (2016)

27. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique.
Cryptology ePrint Archive, Report 2016/046 (2016). http://eprint.iacr.org/2016/
046

28. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

29. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

30. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)

31. Ogata, W., Kurosawa, K., Sako, K., Takatani, K.: Fault tolerant anonymous chan-
nel. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp.
440–444. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028500

32. Reiter, M.K., Wang, X.: Fragile mixing. In: Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security, CCS 2004, pp. 227–235 (2004)

33. Reuters. Ukrainian ministry carries out first blockchain transactions (2017).
https://www.reuters.com

34. Sander, T., Young, A.L., Yung, M.: Non-interactive CryptoComputing For NC1.
In: FOCS, pp. 554–567 (1999)

https://doi.org/10.1007/3-540-46766-1_37
https://github.com/ethereum/wiki/wiki/
https://etherscan.io/
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-45353-9_33
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/3-540-39200-9_13
http://eprint.iacr.org/2001/093
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/BFb0028500
https://www.reuters.com

110 E.-O. Blass and F. Kerschbaum

35. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

36. Strain. Source Code (2017). https://github.com/strainprotocol/
37. Tual, S.: What are State Channels? (2017). https://www.stephantual.com
38. University of Bristol. Multiparty computation with SPDZ online phase and MAS-

COT offline phase (2017). https://github.com/bristolcrypto/SPDZ-2
39. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-

cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

40. Waidner, M.: Unconditional sender and recipient untraceability in spite of active
attacks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 302–319. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
46885-4 32

41. Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: unconditional
sender and recipient untraceability with computationally secure serviceability. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, p.
690. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 69

https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://github.com/strainprotocol/
https://www.stephantual.com
https://github.com/bristolcrypto/SPDZ-2
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/3-540-46885-4_32
https://doi.org/10.1007/3-540-46885-4_32
https://doi.org/10.1007/3-540-46885-4_69

Channels: Horizontal Scaling and
Confidentiality on Permissioned

Blockchains

Elli Androulaki1, Christian Cachin1, Angelo De Caro1,
and Eleftherios Kokoris-Kogias2(B)

1 IBM Research - Zurich, Rüschlikon, Switzerland
{lli,cca,adc}@zurich.ibm.com
2 EPFL, Lausanne, Switzerland

eleftherios.kokoriskogias@epfl.ch

Abstract. Sharding, or partitioning the system’s state so that different
subsets of participants handle it, is a proven approach to building dis-
tributed systems whose total capacity scales horizontally with the num-
ber of participants. Many distributed ledgers have adopted this approach
to increase their performance, however, they focus on the permissionless
setting that assumes the existence of a strong adversary. In this paper,
we deploy channels for permissioned blockchains. Our first contribution
is to adapt sharding on asset-management applications for the permis-
sioned setting, while preserving liveness and safety even on transactions
spanning across-channels. Our second contribution is to leverage chan-
nels as a confidentiality boundary, enabling different organizations and
consortia to preserve their privacy within their channels and still be part
of a bigger collaborative ecosystem. To make our system concrete we
map it on top of Hyperledger Fabric.

1 Introduction

Blockchain technology is making headlines due to its promise of a transparent,
verifiable, and tamper-resistant history of transactions that is resilient to faults
or influences of any single party [3]. Many organizations [2,4,15,22] either explore
the potential of distributed-ledger technology or already embrace it. This, how-
ever, is a young technology facing multiple challenges [3,6]. In this paper we look
into the challenges of enabling horizontal scaling and providing privacy in the
permissioned setting.

First, the scalability of distributed ledgers hinders their mainstream adop-
tion. One class of solutions proposed is sharding [6]. Sharding [20] has been used
in order to build scale-out systems whose capacity scales horizontally with the
number of participants by using the key idea of partitioning the state. Each
such state partition can handle transactions parallel to other shards. Recently,
several blockchain systems [7,12] proposed sharding mostly in the context of

E. Kokoris-Kogias—Work done at IBM Research - Zurich.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 111–131, 2018.
https://doi.org/10.1007/978-3-319-99073-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_6&domain=pdf

112 E. Androulaki et al.

permissionless blockchains, where some fraction of participating parties might
be Byzantine.

A second challenge for distributed ledgers is privacy. A distributed ledger is
(by design) a transparent log visible to all the participants. This, however, is
a disadvantage when it comes to deploying distributed ledgers among private
companies, as they want to keep their data confidential and only selectively
disclose them to vetted collaborators. One solution to privacy is to hide the
state from all participants by using zero-knowledge proofs [10,13,16]. However,
this can pose a problem in a permissioned setting both in terms of performance
(especially if the system supports smart contracts) and in terms of business logic
(e.g., banks need to see the transactions to balance their books).

In this paper, we look into enabling sharding in the permissioned setting,
where the adversarial power can be relaxed. First we deploy channels for hor-
izontal scaling drawing inspiration from the state of the art [7,12], but at the
same time navigating the functionality and trust spectrum to create simplified
protocols with less complexity and need for coordination. Then, we introduce
the idea that, in a permissioned setting, we can leverage the state partition that
a channels introduces as a confidentiality boundary. In the second part of the
paper, we show how we enable confidential channels while preserving the ability
for cross-shard transactions.

Our main contributions are (a) the support for horizontal scaling on per-
missioned blockchains whith cross-channel transaction semantics, (b) the use
of channels as a confidentiality boundary and (c) the formalization of an asset
management application on top of blockchain systems.

2 Preliminaries

Blockchain Definitions. In the context of this work, a blockchain is an
append-only tamper-evident log maintained by a distributed group of collec-
tively trusted nodes. When these nodes are part of a defined set [1], we call the
blockchain permissioned. Inside every block there are transactions that may mod-
ify the state of the blockchain (they might be invalid [1]). A distributed ledger [23]
is a generalization of a blockchain as it can include multiple blockchains that
interact with each other, given that sufficient trust between blockchains exists.

We define the following roles for nodes in a blockchain:

1. Peers execute and validate transactions. Peers store the blockchain and need
to agree on the state.

2. Orderers collectively form the ordering service. The ordering service estab-
lishes the total order of transactions. Orderers are unaware of the application
state, and do not participate in the execution or validation of transactions.
Orderers reach consensus [1,5,11,17] on the blocks in order to provide a deter-
ministic input for the blockchain peers to validate transactions.

3. Oracles are special nodes that provide information about a specific
blockchain to nodes not being peers of that blockchain. Oracles come with

Channels: Horizontal Scaling and Confidentiality 113

a validation policy of the blockchain defining when the announcement of an
oracle is trustworthy1.

4. (Light) Clients submit transactions that either read or write the state of
a distributed ledger. Clients do not directly subscribe to state updates, but
trust some oracles to provide the necessary proofs that a request is valid.

Nodes can implement multiple roles or collapse roles (e.g., miners in Bitcoin [17]
are concurrently peers and orderers). In a distributed ledger that supports mul-
tiple blockchains that interoperate the peers of one blockchain necessarily imple-
ment a client for every other blockchain and trust the oracles to provide proofs
of validity for cross-channel transaction. A specific oracle instantiation can be
for example that a quorum (e.g., 2

3) of the peers need to sign any announcement
for it to be valid.

Channels: In this paper we extend channels (first introduced in Hyperledger
Fabric [1]), an abstraction similar to shards. In prior work [1], a channel is defined
as an autonomous blockchain agnostic to the rest of the state of the system. In
this work, we redefine a channel as a state partition of the full system that (a) is
autonomously managed by a (logically) separate set of peers (but is still aware
of the bigger system it belongs) and (b) optionally hides the internal state from
the rest of the system.

A channel might communicate with multiple other channels; and there needs
to be some level of trust for two channels to transact. Hence, we permit each
channel to decide on what comprises an authoritative proof of its own state. This
is what we call validation policy: clients need to verify this policy in order to
believe that something happened in a channel they are transacting with. When
channel A wants to transact with channel B, then the peers of A effectively
implement a client of channel B (as they do not know the state of B directly).
Thus, the peers of A verify that the validation policy of B is satisfied when
receiving authoritative statements from channel B.

For channels to interact, they need to be aware of each other and to be
able to communicate. Oracles are responsible for this functionality, as they can
gossip authoritative statements (statements supported by the validation policy)
to the oracles of the other channels. This functionality needs a bootstrap step
where channels and validation policies are discovered, which we do not address
in this paper. A global consortium of organizations could publicly announce such
information; or consortia represented by channels could communicate off-band.
Once a channel is established further evolution can be done without a centralized
intermediary, by using skipchains [18].

Threat Model: The peers that have the right to access one channel’s state are
trusted for confidentiality, meaning that they will not leak the state of the chan-
nel on purpose. We relax this assumption later providing forward and backward
1 e.g., in Bitcoin the oracles will give proofs that have 6 Proofs-of-Work build on top

of them.

114 E. Androulaki et al.

secrecy in case of compromise. We assume that the ordering service is secure, pro-
duces a unique blockchain without forks and the blocks produced are available
to the peers of the channels. We further assume that the adversary is compu-
tationally bounded and that cryptographic primitives (e.g., hash functions and
digital signatures) are secure.

System Goals: We have the following primary goals.

1. Secure transactions. Transactions are committed atomically or eventually
aborted, both within and across channels.

2. Scale-out. The system supports state partitions that can work in parallel, if
no dependencies exist.

3. Confidentiality. The state of a channel remains internal to the channel
peers. The only (if any) state revealed for cross-channel transactions should
be necessary to verify that a transaction is valid (e.g. does not create new
assets).

3 Asset Management in a Single Channel

3.1 Unspent Transaction-Output Model

In this section, we describe a simple asset-management system on top of the
Unspent Transaction-Output model (henceforth referred to as UTXO) that uti-
lizes a single, non- confidential channel. In particular, we focus on the UTXO-
based data model [17], as it is the most adopted data model in cryptocurrencies,
for its simplicity and parallelizability.

Assets in Transactions. In a UTXO system, transactions are the means
through which one or more virtual assets are managed. More specifically, mint
transactions signify the introduction of new assets in the system and spend trans-
actions signify the change of ownership of an asset that already exists in the
system. If an asset is divisible, i.e., can be split into two or more assets of mea-
surable value, then a spend transaction can signify such a split, indicating the
owners of each resulting component of the original asset.

Assets are represented in the transactions by transaction inputs and outputs.
More specifically, in the typical UTXO model, an input represents the asset that
is to be spent and an output represents the new asset that is created in response of
the input assets’ consumption. We can think of inputs and outputs representing
different phases of the state of the same asset, where state includes its ownership
(shares). Clearly, an input can be used only once, as after being spent, the
original asset is substituted by the output assets, and stops being considered in
the system. To ensure the single-spending of any given input, transactions are
equipped with information authenticating the transaction creators as the owners
of the (parts of the) assets that are referenced by the transaction inputs.

Channels: Horizontal Scaling and Confidentiality 115

In more technical terms in the standard UTXO model, input fields implic-
itly or explicitly reference output fields of other transactions that have not yet
been spent. At validation time, verifiers would need to ensure that the out-
puts referenced by the inputs of the transaction have not been spent; and upon
transaction-commitment deem them as spent. To efficiently look up the status of
each output at validation time UTXO model is equipped with a pool of unspent
transaction outputs (UTXO pool).

UTXO Pool. The UTXO pool is the list of transaction outputs that have not
yet been spent. We say that an output is spent if a transaction that references
it in its inputs is included in the list of ledger’s valid transactions.

To validate a transaction, peers check if (1) the transaction inputs refer to
outputs that appear in the UTXO pool as well as (2) that the transaction’s
creators own these outputs. Other checks take place during the transaction vali-
dation, i.e., input-output consistency checks. After these checks are successfully
completed, the peers mark the outputs matching the transaction’s inputs as
spent and add to the pool the freshly created outputs. Hence, the pool consis-
tently includes “unspent” outputs.

Asset or Output Definition. An asset is a logical entity that sits behind
transaction outputs, implicitly referenced by transaction outputs. As such the
terms output and asset can be used interchangeably. An output (the correspond-
ing asset) is described by the following fields:

– namespace, the namespace the output belongs to (e.g., a channel);
– owner, the owner of the output
– value, the value of the asset the output represents (if divisible);
– type, the type of the asset the output represents (if multiple types exist).

Depending on the privacy requirements and properties of the ledger they reside,
outputs provide this information in the clear (e.g., Bitcoin [17] outputs) or in a
concealed form (e.g., ZeroCoin [16], ZeroCash [21]). Privacy-preserving outputs
are required to be cryptographically bound to the value of each of the fields
describing them, whereas its plaintext information should be available to the
owner of the output.

UTXO Operations. We elaborate on the UTXO system functions where we
adopt the following notation. For a sequence of values x1, . . . , xi, we use the
notation [xi] = (x1, . . . , xi). By slight abuse of notation, we write x1 = [x1]. We
denote algorithms by sans-serif fonts. Executing an algorithm algo on input y is
denoted as y ← algo(x), where y can take on the special value ⊥ to indicate an
error.
A UTXO system exposes the following functions:

– 〈U , pool〉 ← Setup(κ) that enables each user to issue one or more identities
by using security parameter κ. Henceforth, we denote by secuser the secret

116 E. Androulaki et al.

information associated to a user with identity user . Setup also generates priv-
ileged identities, i.e., identities allowed to mint assets to the system, denoted
as adm. Finally Setup initialises the pool pool to ∅ and returns the set of
users in the system U and pool .

– 〈out , secout 〉 ← ComputeOutput(nspace, owner , value, type), to obtain an out-
put representing the asset state as reflected in the function’s parameters. That
is, the algorithm would produce an output that is bound to namespace nspace,
owned by owner , and represents an asset of type type, and value value. As
mentioned before, depending on the nature of the system the result of the
function could output two output components, one that is to be posted on
the ledger as part of a transaction (out) and a private part to be maintained
at its owner side (secout).

– ain ← ComputeInput(out , secout , pool), where, on input an asset pool pool , an
output out , and its respective secrets, the algorithm returns a representation
of the asset that can be used as transaction input ain. In Bitcoin, an input of
an output is a direct reference to the latter, i.e., it is constructed to be the hash
of the transaction where the output appeared in the ledger, together with the
index of the output. In ZeroCash, an input is constructed as a combination
of a serial number and a zero-knowledge proof that the serial corresponds to
an unspent output of the ledger.

– tx ← CreateTx([secowneri], [aini], [outj]), that creates a transaction tx to
request the consummation of inputs {aink}i

k=1 into outputs {outk}j
k=1. The

function takes also as input the secrets of the owners of the outputs referenced
by the inputs and returns tx . Notice that the same function can be used to
construct mint transactions, where the input gives its place to the freshly
introduced assets description.

– pool ′ ← ValidateTx(nspace, tx , pool), that validates transaction inputs w.r.t.
pool pool , and their consistency with transaction outputs and namespace
nspace. It subsequently updates the pool with the new outputs and spent
inputs and returns its new version pool ′. Input owner of mint transactions is
the admin adm.

Properties: Regardless of its implementation, an asset management system
should satisfy the properties defined below:

– Validity. Let tx be a transaction generated from a valid input ain accord-
ing to some pool pool , i.e., generated via a successful call to tx ←
CreateTx(secowner , ain, out ′), where ain ← ComputeInput(out , secout , pool),
owner is the owner of out ′, and out ′ /∈ pool . Validity requires that a call
to pool ′ ← ValidateTx(tx , pool) succeeds, i.e. pool ′ �= ⊥, and that pool ′ =
(pool \ {out}) ∪ {out ′}.

– Termination. Any call to the functions exposed by the system eventually
return the expected return value or ⊥.

– Unforgeability. Let an output out ∈ pool with corresponding secret secout
and owner secret secowner that is part of the UTXO pool pool ; unforgeability
requires that it is computationally hard for an attacker without secout and

Channels: Horizontal Scaling and Confidentiality 117

secowner to create a transaction tx such that ValidateTx(nspace, tx , pool) will
not return ⊥, and that would mark out as spent.

– Namespace consistency. Let an output corresponding to a namespace nspace
of a user owner . Namespace consistency requires that the adversary can-
not compute any transaction tx referencing this output, and succeed in
ValidateTx(nspace ′, tx , pool), where nspace ′ �= nspace.

– Balance. Let a user owner owning a set of unspent outputs [out i] ∈ pool . Let
the collected value of these outputs for each asset type τ be valueτ . Balance
property requires that owner cannot spend outputs of value more than valueτ

for any asset type τ , assuming that it is not the recipient of outputs in the
meantime, or colludes with other users owning more outputs. Essentially,
it cannot construct a set of transactions [tx i] that are all accepted when
sequentially2 invoking ValidateTx(tx , pool) with the most recent versions of
the pool pool , such that owner does not appear as the recipient of assets after
the acquisition of [out i], and the overall spent value of its after that point
exceeds for some asset type τ valueτ .

3.2 Protocol

We defined an asset output as, out = 〈nm, o, t, v〉, where nm is a namespace of
the asset, o is the identity of its owner, t the type of the asset, and v its value.
In its simplest implementation the UTXO pool would be implemented as the
list of available outputs, and inputs would directly reference the outputs in the
pool, e.g., using its hash3. Clearly a valid transaction for out ’s spending would
require a signature with seco.

Asset Management in a Single Channel. We assume two users Alice and
Bob, with respective identities〈A, secA〉 and 〈B, secB〉. There is only one channel
ch in the system with a namespace nsch associated with ch, where both users
have permission to access. We also assume that there are system administra-
tors with secrets secadm allowed to mint assets in the system, and that these
administrators are known to everyone.

Asset Management Initialization. This requires the setup of the identities of
the system administrators4. For simplicity, we assume there is one asset manage-
ment administrator, 〈adm, secadm〉. The pool is initialized to include no assets,
i.e., poolch ← ∅.

Asset Import. The administrator creates a transaction tximp, as:

tximp ← 〈∅, [outn], σ〉,
2 This is a reasonable assumption, given we are referring to transactions appearing on

a ledger.
3 Different approaches would need to be adopted in cases where unlinkabiltiy between

outputs and respective inputs is required.
4 Can be a list of identities, or policies, or mapping between either of the two and

types of assets.

118 E. Androulaki et al.

where outk ← ComputeOutput(nsch, uk , tk, vk), (ti, vi) the type and value of the
output asset outk, uk its owner and σ a signature on transaction data using
skadm. Validation of tximp would result into poolch ← {poolch ∪ {[outn]}}.

Transfer of Asset Ownership. Let outA ∈ poolch be an output owned by
Alice, corresponding a description 〈nsch, A, t, v〉. For Alice to move ownership of
this asset to Bob, it would create a transaction

txmove ← CreateTx(secA; ainA, outB),

where ainA is a reference of outA in poolch, and outB ← ComputeOutput
(nsch, B, t, v), the updated version of the asset, owned by Bob. txmove has the
form of 〈ainA, outB , σA〉 is a signature matching A. At validation of txmove,
poolch is updated to no longer consider outA as unspent, and include the freshly
created output outB :

poolch ← (poolch \ {outA}) ∪ {outB} .

Discussion: The protocol introduced above does provide a “secure” (under
the security properties described above) asset management application within
a single channel. More specifically, the Validity property follows directly from
correctness of the application where a transaction generated by using a valid
input representation will be successfully validated by the peers after it is included
in an ordered block. The Unforgeability is guaranteed from the requirement of a
valid signature corresponding to the owner of the consumed input when calling
the ValidateTx function, and Namespace consistency is guaranteed as there
is only one namespace in this setting. Termination follows from the liveness
guarantees of the validating peers and the consensus run by orderers. Finally,
Balance also follows from the serial execution of transactions that will spend the
out the first time and return ⊥ for all subsequent calls (there is no out in the
pool).

The protocol can be extended to naively scale-out. We can create more than
one channel (each with its own namespace), where each one has a separate set of
peers and each channel is unaware of the existence of other channels. Although
each channel can have its own ordering service, it has been shown in l [1], that
the ordering service does not constitute a bottleneck. Hence, we assume that
channels share the ordering service.

The naive approach has two shortcomings. First, assets cannot be transferred
between channels, meaning that value is “locked” within a channel and is not
free to flow wherever its owner wants. Second, the state of each channel is public
as all transactions are communicated in plaintext to the orderers who act as a
global passive adversary.

We deal with these problems by introducing (i) a step-wise approach on
enabling cross-channel transactions depending on the functionality required and
the underlying trust model (See, Sect. 4), and (ii) the notion of confidential

Channels: Horizontal Scaling and Confidentiality 119

channels (see Sect. 5). Further, for confidential channels to work we adapt our
algorithms to provide confidentiality while multiple confidential channels trans-
act atomically.

4 Atomic Cross-Channel Transactions

In this section, we describe how we implement cross-channel transactions in
permissioned blockchains (that enable the scale-out property as shown in prior
work [12]). We introduce multiple protocols based on the functionality required
and on the trust assumptions (that can be relaxed in a permissioned setting).
First, in Sect. 4.1, we introduce a narrow functionality of 1-input-1-output trans-
actions where Alice simply transfers an asset to Bob. Second, in Sect. 4.2, we
extend this functionality to arbitrary transactions but assume the existence of a
trusted channel among the participants. Finally, in Sect. 4.3, we lift this assump-
tion and describe a protocol inspired by two-phase commit [24]. These protocols
do not make timing assumptions but assume the correctness of the channels to
guarantee fairness, unlike work in atomic cross-chain swaps [8].

Preliminaries. We assume two users Alice (ua), and Bob (ub). We further
assume that each channel has a validation policy and a set of oracles (as defined
in Sect. 2). We assume that each channel is aware of the policies and the oracles
that are authoritative over the asset-management systems in each of the rest of
the channels.

Communication of Pools Content Across Channels. On a regular basis,
each channel advertises its pool content to the rest of the channels. More specifi-
cally, the oracles of the asset management system in each channel are responsible
to regularly advertise a commitment of the content of the channel’s pool to the
rest of the channels. Such commitments can be the full list of assets in the pool
or, for efficiency reasons, the Merkle root of deterministically ordered list of asset
outputs created on that channel.

For the purpose of this simplistic example, we assume that for each channel
chi, a commitment (e.g., Merkle root) of its pool content is advertised to all the
other channels. That is, each channel chi maintains a table with the following
type of entries: 〈chj , cmtj〉, j �= i, where cmtj the commitment corresponding to
the pool of channel with identifier chj . We will refer to this pool by poolj .

4.1 Asset Transfer Across Channels

Let outA be an output included in the unspent output pool of ch1, pool1, corre-
sponding to

outA ← ComputeOutput(ch1, ua, t, v)

i.e., an asset owned by Alice, active on ch1. For Alice to move ownership of this
asset to Bob and in channel with identifier ch2, she would first create a new asset
for Bob in ch2 as

outB ← ComputeOutput(ch2, ub, t, v)

120 E. Androulaki et al.

she would then create a transaction

txmove ← CreateTx(secA; ainA, outB),

where ainA is a reference of outA in pool1. Finally, secA is a signature matching
pkA, and ownership transfer data.

At validation of txmove, it is first ensured that outA ∈ pool1, and that
outA.namespace = ch1. outA is then removed from pool1 and outB is added
to it, i.e.,

pool1 ← (pool1 \ {outA}) ∪ {outB} .

Bob waits till the commitment of the current content of pool1 is announced.
Let us call the latter view1. Then Bob can generate a transaction “virtually”
spending the asset from pool1 and generating an asset in pool2. The full transac-
tion will happen in ch2 as the spend asset’s namespace is ch2. More specifically,
Bob creates an input representation

{ainB} ← ComputeInput(outB ; secB , πB)

of the asset outB that Alice generated for him. Notice that instead of the pool,
Bob needs to provide πB , we explain below why this is needed to guarantee the
balance property. Finally, Bob generates a transaction using ainB .

To be ensured that the outB is a valid asset, Bob needs to be provided with
a proof, say πB, that an output matching its public key and ch2 has entered
pool1, matching view1. For example, if view1 is the root of the Merkle tree of
outputs in pool1, πB could be the sibling path of outB in that tree with outB.
This proof can be communicated from the oracles of ch1 to the oracles of ch2 or
be directly pulled by Bob and introduced to ch2. Finally, in order to prevent Bob
from using the same proof twice (i.e., perform a replay attack) pool2 need to
be enhanced with a set of spent cross-transaction outputs (ScTXOs) that keep
track of all the output representations outX that have been already redeemed
in another txcross. The outB is extracted from πB .

Validity property holds by extending the asset-management protocol of every
channel to only accept transactions that spend assets that are part of channel’s
name-space. Unforgeability holds as before, due to the requirement for Alice
and Bob to sign their respective transactions. Namespace Consistency holds
as before, as validators of each channel only validate consistent transactions;
and Termination holds because of the liveness guarantees of ch1 and ch2 and
the assumption that the gossiped commitments will eventually arrive at all the
channels. Finally, the Balance property holds as Alice can only spent her asset
once in ch1, which will generate a new asset not controlled by Alice anymore.
Similarly, Bob can only use his proof once as outB will be added in the ScTXO
list of pool2 afterwards.

4.2 Cross-Channel Trade with a Trusted Channel

The approach described above works for cases where Alice is altruistic and
wants to transfer an asset to Bob. However, more complicated protocols (e.g

Channels: Horizontal Scaling and Confidentiality 121

fair exchange) are not supported, as they need atomicity and abort procedures
in place. For example, if Alice and Bob want to exchange an asset, Alice should
be able to abort the protocol if Bob decides to not cooperate. With the current
protocol this is not possible as Alice assumes that Bob wants the protocol to
finish and has nothing to win by misbehaving.

A simple approach to circumvent this problem is to assume a commonly
trusted channel cht from all actors. This channel can either be an agreed upon
“fair” channel or any of the channels of the participants, as long as all partic-
ipants are able to access the channel and create/spend assets on/from it. The
protocol uses the functionality of the asset transfer protocol described above
(Sect. 4.1) to implement the Deposit and Withdraw subprotocols. In total, it
exposes three functions and enables a cross-channel transaction with multiple
inputs and outputs:

1. Deposit: All parties that contribute inputs transfer the assets to cht but
maintain control over them by assigning the new asset in cht on their respec-
tive public keys.

2. Transact: When all input assets are created in cht, a txcross is generated
and signed by all ain owners. This txcross has the full logic of the trade. For
example, in the fair exchange it will have two inputs and two outputs. This
txcross is validated as an atomic state update in cht.

3. Withdraw: Once the transaction is validated, each party that manages an
output transfers their newly minted assets from cht to their respective chan-
nels choi

.

Any input party can decide to abort the protocol by transferring back the input
asset to their channel, as they always remain in control of the asset.

The protocol builds on top of the asset-transfer protocol and inherits its
security properties to the extent of the Deposit and Withdraw sub-protocols.
Furthermore, the trusted channel is only trusted to provide the necessary liveness
for assets to be moved across channels, but it cannot double-spent any asset as
they still remain under the control of their rightful owners (bound to the owner’s
public key). As a result, the asset-trade protocol satisfies the asset-management
security requirements because it can be implemented by combining the protocol
of Sect. 4.1 for the “Transact” function inside cht and the asset-transfer protocol
of Sect. 4.2 for “Withdraw” and“Deposit” (Fig. 1).

4.3 Cross-Channel Trade Without a Trusted Channel

A mutually trusted channel (as assumed above), where every party is permitted
to generate and spend assets, might not always exist; in this section, we describe
a protocol that lifts this assumption. The protocol is inspired by the Atomix
protocol [12], but addresses implementation details that are ignored in Atomix,
such as how to represent and communicate proofs, and it is more specialized to
our asset management model.

122 E. Androulaki et al.

Fig. 1. Cross-channel transaction architecture overview with (4.2) and without (4.3) a
trusted channel

1. Initialize. The transacting parties create a txcross whose inputs spend assets
of some input channels (ICs) and whose outputs create new assets in some
output channels (OCs). More concretely.
If Alice wants to exchange outA from ch1 with Bob’s outB from ch2. Alice
and Bob work together to generate the txcross as

txcross ← CreateTx([secA, secB]; [ainA, ainB]; [outA, outB])

where ainA, ainB are the input representations that show the assets to exist
in the respective pools.

2. Lock. All input channels internally spend the assets they manage and gen-
erate a new asset bound to the transaction (we call it the “locked” asset), by
using a collision resistant Hash function to derive the name-space of the new
asset, as H(txcross)5. The locked asset’s value is either equal to the sum of
the assets previously spent for that channel or 0, depending on whether the
txcross is valid according to the current state. In both cases there is a new
asset added in pooli. Or in our example:
Alice submits txcross to ch2, which generates the “locked” asset for txcross.
Alice then receives πB , which shows that outB is locked for txcross and is
represented by outB′ , which is the locked asset that is generated specifically
for txcross and is locked for Alice but not spendable by Alice. Specifically,

asset2′ = 〈H(txcross), t, v〉,
where v is either equal to the value of asset2 or 0, depending on whether
asset2 was already spent. Same process happens for Bob. Notice that the
namespace of the asset change to H(txcross) indicates that this asset can
only be used as proof of existence and not spent again in ch2.

3. Unlock. Depending on the outcome of the lock phase, the clients are able to
either commit or abort their transaction.

5 The transaction’s hash is an identifier for a virtual channel created only for this
transaction.

Channels: Horizontal Scaling and Confidentiality 123

(a) Unlock to Commit. If all ICs accepted the transaction (generated
locked assets with non-zero values), then the respective transaction can
be committed.
Each holder of an output creates an unlock-to-commit transaction for his
channel; it consists of the lock transaction and an oracle-generated proof
for each input asset (e.g. against the gossiped MTR). Or in our example:
Alice (and Bob respectively) collects πA′ and πB′ which correspond to
the proofs of existence of outA′ , outB′ and submits in ch1 an unlock-to-
commit transaction:

txuc ← CreateTx([πA′ , πB′]; [ain1′ , ain2′]; [outA′′];)

The transaction is validated in ch1 creating a new asset (outA′′), similar
to the one Bob spent at ch2, as indicated by txcross.

(b) Unlock to Abort. If, however, at least one IC rejects the transaction
(due to a double-spent), then the transaction cannot be committed and
has to abort. In order to reclaim the funds locked in the previous phase,
the client must request the involved ICs that already spent their inputs,
to re-issue these inputs. Alice can initiate this procedure by providing the
proof that the transaction has failed in ch2. Or in our case if Bob’s asset
validation failed, then there is an asset outB′ with zero value and Alice
received from ch2 the respective proof π′

B′ . Alice will then generate an
unlock-to-abort transaction:

txua ← CreateTx([πB′], [ain2′]; [outA′′])

which will generate a new asset outA′′ that is identical to outA and
remains under the control of Alice.

Security Arguments: Under our assumptions, channels are collectively honest
and do not fail hence propagate correct commitments of their pool (commitments
valid against the validation policy).

Validity and Namespace Consistency hold because every channel manages
its own namespace and faithfully executes transactions. Unforgeability holds as
before, due to the requirement for Alice and Bob to sign their respective trans-
actions and the txcross.

Termination holds if every txcross eventually commits or aborts, meaning
that either a transaction will be fully committed or the locked funds can be
reclaimed. Based on the fact that all channels always process all transactions,
each IC eventually generates either a commit-asset or an abort-asset. Conse-
quently, if a client has the required number of proofs (one per input), then the
client either holds all commit-assets (allowing the transaction to be committed)
or at least one abort-asset (forcing the transaction to abort), but as channels do
not fail, the client will eventually hold enough proof. Termination is bound to
the assumption that some client will be willing to initiate the unlock step, oth-
erwise his assets will remain unspendable. We argue that failure to do such only

124 E. Androulaki et al.

results in harm of the asset-holder and does not interfere with the correctness
of the asset-management application.

Finally, Balance holds as cross-channel transactions are atomic and are
assigned to specific channels who are solely responsible for the assets they control
(as described by validity) and generate exactly one asset. Specifically, if all input
channels issue an asset with value, then every output channel unlocks to commit;
if even one input channel issues an asset with zero value, then all input channels
unlock to abort; and if even one input shard issues an asset with zero value, then
no output channel unlocks to commit. As a result, the assigned channels do not
process a transaction twice and no channel attempts to unlock without a valid
proof.

5 Using Channels for Confidentiality

So far we have focused on enabling transactions between channels that guaran-
tee fairness among participants. This means that no honest participant will be
worse off by participating in one of the protocols. Here, we focus on providing
confidentiality among the peers of a channel, assuming that the orderers upon
which the channel relies for maintaining the blockchain are not fully trusted
hence might leak data.

Strawman Solution. We start with a simple solution that can be implemented
with vanilla channels [1]. We define a random key k and a symmetric encryp-
tion algorithm that is sent in a private message to every participating peer. All
transactions and endorsements are encrypted under k then sent for ordering,
hence the confidentiality of the channel is protected by the unpredictability of
the symmetric encryption algorithm.

This strawman protocol provides the confidentiality we expect from a chan-
nel, but its security is static. Even though peers are trusted for confidentiality,
all it takes for an adversary to compromise the full past and future confidential
transactions of the system is to compromise a single peer and recover k. After-
wards the adversary can collude with a Byzantine order to use the channels
blockchain as a log of the past and decrypt every transactions, as well as keep
receiving future transactions from the colluding orderer.

5.1 Deploying Group Key Agreement

To work around the attack, we first need to minimize the attack surface. To
achieve this we need to think of the peers of a channel, as participants of a
confidential communication channel and provide similar guarantees. Specifically,
we guarantee the following properties.

1. Forward Secrecy: A passive adversary that knows one or more old encryp-
tion keys ki, cannot discover any future encryption key kj where i < j

2. Backward Secrecy: A passive adversary that knows one or more encryption
keys ki, cannot discover any previous encryption key kj where j < i

Channels: Horizontal Scaling and Confidentiality 125

Fig. 2. Privacy preserving cross-channel transaction structure

3. Group Key Secrecy: It is computationally infeasible for an adversary to
guess any group key ki

4. Key Agreement: For an epoch i all group members agree on the epoch key
ki.

There are two types of group key agreement we look into:

Centralized Group-Key Distribution: In these systems, there is a dedicated
server that sends the symmetric key to all the participants. The centralized
nature of the key creation is scalable, but might not be acceptable even in a
permissioned setting where different organizations participating in a channel are
mutually suspicious.

Contributory Group-Key Management: In these systems, each group mem-
ber contributes a share to the common group key, which is then computed by
each member autonomously. These protocols are a natural fit to decentralized
systems such as distributed ledgers, but they scale poorly.

We use the existence of the validation policy as an indication of the trusted
entities of the channel (i.e., the oracles) and create a more suitable proto-
col to the permissioned setting. Another approach could be to introduce a
key-management policy that defines the key-generation and update rules but,
for simplicity, we merge it with the validation policy that the peers trust
anyway. We start with a scalable contributory group-key agreement protocol
[9], namely the Tree-Based Group Diffie-Hellman system. However, instead of
deploying it among the peers as contributors (which would require running view-
synchronization protocols among them), we deploy it among the smaller set of
oracles of the channel. The oracles generate symmetric keys in a decentralized
way, and the peers simply contact their favorite oracle to receive the latest key.
If an oracle replies to a peer with an invalid key, the peer can detect it because
he can no longer decrypt the data, hence he can (a) provably blame the oracle
and (b) request the key from another oracle.

More specifically we only deploy the group-join and group-leave protocols of
[9], because we do not want to allow for splitting of the network, which might
cause forks on the blockchain. We also deploy a group-key refresh protocol that
is similar to group-leave, but no oracle is actually leaving.

126 E. Androulaki et al.

5.2 Enabling Cross-Shard Transactions Among Confidential
Channels

In the protocols we mentioned in Sect. 4, every party has full visibility on the
inputs and outputs and is able to link the transfer of coins. However, this might
not be desirable. In this section, we describe a way to preserve privacy during
cross-channel transactions within each asset’s channel.

For example, we can assume the existence of two banks, each with its
own channel. It would be desirable to not expose intra-channel transactions or
account information when two banks perform an interbank asset-transfer. More
concretely, we assume that Alice and Bob want to perform a fair exchange. They
have already exchanged the type of assets and the values they expect to receive.
The protocol can be extended to store any kind of ZK-Proofs the underlying
system supports, as long as the transaction can be publicly verified based on the
proofs.

To provide the obfuscation functionality, we use Merkle trees. More specifi-
cally, we represent a cross-shard transaction as a Merkle tree (see Fig. 2), where
the left branch has all the inputs lexicographically ordered and the right branch
has all the outputs. Each input/output is represented as a tree node with two
leaves: a private leaf with all the information available for the channel and a
public leaf with the necessary information for third party verification of the
transaction’s validity.

The protocol for Alice works as follows:

Transaction Generation:

1. Input Merkle-Node Generation: Alice generates an input as before and a
separate Merkle leaf that only has the type of the asset and the value. These
two leaves are then hashed together to generate their input Merkle node.

2. Output Merkle-Node Generation: Similarly, Alice generates an Output Merkle
node, that consists of the actual output (including the output address) on the
private leaf and only the type and value of the asset expected to be credited
on the public.

3. Transaction Generation: Alice and Bob exchange their public Input and Out-
put Merkle-tree nodes and autonomously generate the full Merkle tree of the
transaction.

Transaction Validation:

1. Signature Creation: Alice signs the MTR of the txcross, together with a
bitmap of which leaves she has seen and accepts. Then she receives a similar
signature from Bob and verifies it. Then Alice hashes both signatures and
attaches them to the full transaction. This is the txcross that she submits
in her channel for validation. Furthermore, she provides her full signature,
which is logged in the channel’s confidential chain but does not appear in the
pool; in the pool the generated asset is H(txcross).

2. Validation: Each channel validates the signed transaction (from all inputs
inside the channel’s state) making sure that the transaction is semantically

Channels: Horizontal Scaling and Confidentiality 127

correct (e.g., does not create new assets). They also check that the publicly
exposed leaf of every input is well generated (e.g. value and type much). Then
they generate the new asset (H(txcross) as before) that is used to provide
proof-of-commitment/abortion. The rest of the protocol (e.g. Unlock phase)
is the same as Sect. 4.3.

Security and Privacy Arguments. The atomicity of the protocol is already
detailed above. Privacy is achieved, because the source and destination addresses
(accounts) are never exposed outside the shard and the signatures that authen-
ticate the inputs inside the channel are only exposed within the channel. We also
describe the security of the system outside the atomic commit protocol. More
specifically,

1. Every txcross is publicly verifiable to make sure that the net-flow is zero,
either by exposing the input and output values or by correctly generating
ZK-proofs.

2. The correspondence of the public and private leaf of a transaction is fully
validated by the input and/or output channel, making sure that its state
remains correct.

3. The hash of the txcross is added in the pool to represent the asset. Given the
collision resistance of a hash function, this signals to all other channels that
the private leaves correspond to the transaction have been seen, validated
and accepted.

The scheme can be further enhanced to hide the values using Pedersen com-
mitments [19] and range-proofs similar to confidential transactions [14]. In such
an implementation the Pedersen commitments should also be opened on the
private leaf for the consistency checks to be correctly done.

6 Case Study: Cross-Shard Transactions on Hyperledger
Fabric

In order to implement the cross-channel support on Fabric v1.1, we start with the
current implementation of FabCoin [1] that implements an asset-management
protocol similar to the one introduced in Sect. 3.2.

Channel-Based Implementation. As described by Androulaki et al. [1], a
Fabric network can support multiple blockchains connected to the same ordering
service. Each such blockchain is called a channel. Each channel has its own
configuration that includes all the functioning metadata, such as defining the
membership service providers that authenticate the peers, how to reach the
ordering service, and the rules to update the configuration itself. The genesis
block of a channel contains the initial configuration. The configuration can be
updated by submitting a reconfiguration transaction. If this transaction is valid
with the respect to the rules described by the current configuration, then it gets
committed in a block containing only the reconfiguration transaction, and the
chances are applied.

128 E. Androulaki et al.

In this work, we extend the channel configuration to include the metadata
to support cross-channel transactions. Specifically, the configuration lists the
channels with which interaction is allowed; we call them friend channels. Each
entry also has a state-update validation policy, to validate the channel’s state-
updates, the identities of the oracles of that channel, that will advertise state-
update transactions, and the current commitment to the state of that channel.
The configuration block is also used as a lock-step that signals the view-synchrony
needed for the oracles to produce the symmetric-key of the channel. If an oracle
misbehaves, then a new configuration block will be issued to ban it.

Finally, we introduce a new entity called timestamper (inspired by recent
work in software updates [18]) to defend against freeze attacks where the adver-
sary presents a stale configuration block that has an obsolete validation policy,
making the network accepting an incorrect state update. The last valid configu-
ration is signed by the timestampers every’interval, defined in the configuration,
and (assuming loosely synchronised clocks) guarantees the freshness of state
updates6.

Extending FabCoin to Scale-out. In FabCoin [1] each asset is represented by
its current output state that is a tuple of the form (txid.j, (value, owner, type)).
This representation denotes the asset created as the j-th output of a transaction
with identifier txid that has value units of asset type. The output is owned by
the public key denoted as owner.

To support cross-channel transactions, we extend FabCoin transactions by
adding one more field, called namespace, that defines the channel that manages
the asset (i.e., (txid.j, (namespace, value, owner, type)).

Periodically, every channel generates a state commitment to its state, this
can be done by one or more channel’s oracles. This state commitment consists
of two components: (i) the root of the Merkle tree built on top of the UTXO
pool, (ii) the hash of the current configuration block with the latest timestamp,
which is necessary to avoid freeze attacks.

Table 1. Atomic commit protocol on fabric channels

Protocol Atomicity Trust
assumption

Generality of
transactions

Privacy

Asset transfer (Sect. 4.1) Yes Nothing extra 1-input-1-ouptut No

Trusted channel
(Sect. 4.2)

Yes Trusted
intermediary
channel

N-input-M-output No

Atomic commit
(Sect. 4.3)

Yes Nothing extra N-input-M-output No

Obfuscated transaction
AC (Sect. 5.2)

Yes Nothing extra N-input-M-output Yes

6 unless both the timestamp role and the validation policy are compromised.

Channels: Horizontal Scaling and Confidentiality 129

Then, the oracles of that channel announce the new state commitment to the
friend channels by submitting specific transactions targeting each of these friend
channels. The transaction is committed if (i) the hashed configuration block
is equal to the last seen configuration block, (ii) the timestamp is not “too”
stale (for some time value that is defined per channel) and (iii) the transaction
verifies against the state-updates validation policy. If those conditions hold, then
the channel’s configuration is updated with the new state commitment. If the
first condition does not hold, then the channel is stale regarding the external
channel it transacts with and needs to update its view.

Using the above state update mechanism, Alice and Bob can now produce
verifiable proofs that certain outputs belong to the UTXO pool of a certain chan-
nel; these proofs are communicated to the interested parties differently, depend-
ing on the protocol. On the simple asset-transfer case (Sect. 4.1), we assume
that Alice is altruistic (as she donates an asset to Bob) and request the proofs
from her channel that is then communicated off-band to Bob. On the asset trade
with trusted channels (Sect. 4.2) Alice and Bob can independently produce the
proofs from their channels or the trusted channel as they have visibility and
access rights. Finally on the asset trade of Sect. 4.3, Alice and Bob use the
signed cross-channel transaction as proof-of-access right to the channels of the
input assets in order to obtain the proofs. This is permitted because the txcross

is signed by some party that has access rights to the channel and the channels
peers can directly retrieve the proofs as the asset’s ID is derived from H(txcross).

7 Conclusion

In this paper, we have redefined channels, provided an implementation guide-
line on Fabric [1] and formalized an asset management system. A channel is
the same as a shard that has been already defined in previous work [7,12]. Our
first contribution is to explore the design space of sharding on permissioned
blockchains where different trust assumptions can be made. We have introduced
three different protocols that achieve different properties as described in Table 1.
Afterwards we have introduced the idea that a channel in a permissioned dis-
tributed ledger can be used as a confidentiality boundary and describe how to
achieve this. Finally, we have merged the contributions to achieve a confidential-
ity preserving, scale-out asset management system, by introducing obfuscated
transaction trees.

Acknowledgments. We thank Marko Vukolić and Björn Tackmann for their valu-
able suggestions and discussions on earlier versions of this work. This work has been
supported in part by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 780477 PRIViLEDGE.

130 E. Androulaki et al.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth European conference on
Computer systems, EuroSys 2018. ACM, New York (2018). https://arxiv.org/abs/
1801.10228

2. Bishop, G.: Illinois begins pilot project to put birth certificates on digital ledger
technology, September 2017. https://www.ilnews.org/news/statewide/illinois-
begins-pilot-project-to-put-birth-certificates-on-digital/article 1005eca0-98c7-11e
7-b466-170ecac25737.html

3. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy (SP), pp. 104–121. IEEE (2015). http://
ieeexplore.ieee.org/abstract/document/7163021/

4. Browne, R.: IBM partners with nestle, unilever and other food giants to trace food
contamination with blockchain, September 2017. https://www.cnbc.com/2017/08/
22/ibm-nestle-unilever-walmart-blockchain-food-contamination.html

5. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild. CoRR,
abs/1707.01873 (2017). https://arxiv.org/abs/1707.01873

6. Croman, K., et al.: On scaling decentralized blockchains (a position paper).
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff,
K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 8. http://fc16.ifca.ai/bitcoin/
papers/CDE+16.pdf

7. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: 23rd Annual
Network and Distributed System Security Symposium (NDSS), February 2016.
https://eprint.iacr.org/2015/502.pdf

8. Herlihy, M.: Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515 (2018)
9. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf.

Syst. Secur. (TISSEC) 7(1), 60–96 (2004)
10. Kokoris-Kogias, E., et al.: Hidden in plain sight: storing and managing secrets on a

public ledger. Cryptology ePrint Archive, Report 2018/209 (2018). https://eprint.
iacr.org/2018/209

11. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collective
signing. In: Proceedings of the 25th USENIX Conference on Security Symposium
(2016). http://arxiv.org/abs/1602.06997

12. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 19–34. IEEE (2018)

13. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. Technical report,
Cryptology ePrint Archive, Report 2015/675 (2015). http://eprint.iacr.org

14. Maxwell, G.: Confidential transactions (2015). http://people.xiph.org/∼greg/
confidentialvalues.txt

15. Melendez, S.: Fast, Secure Blockchain Tech from an Unexpected Source Microsoft,
September 2017. https://www.fastcompany.com/40461634/

16. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 34th IEEE Symposium on Security and Privacy (S&P),
May 2013

https://arxiv.org/abs/1801.10228
https://arxiv.org/abs/1801.10228
https://www.ilnews.org/news/statewide/illinois-begins-pilot-project-to-put-birth-certificates-on-digital/article_1005eca0-98c7-11e7-b466-170ecac25737.html
https://www.ilnews.org/news/statewide/illinois-begins-pilot-project-to-put-birth-certificates-on-digital/article_1005eca0-98c7-11e7-b466-170ecac25737.html
https://www.ilnews.org/news/statewide/illinois-begins-pilot-project-to-put-birth-certificates-on-digital/article_1005eca0-98c7-11e7-b466-170ecac25737.html
http://ieeexplore.ieee.org/abstract/document/7163021/
http://ieeexplore.ieee.org/abstract/document/7163021/
https://www.cnbc.com/2017/08/22/ibm-nestle-unilever-walmart-blockchain-food-contamination.html
https://www.cnbc.com/2017/08/22/ibm-nestle-unilever-walmart-blockchain-food-contamination.html
https://arxiv.org/abs/1707.01873
https://doi.org/10.1007/978-3-662-53357-4_8
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
https://eprint.iacr.org/2015/502.pdf
http://arxiv.org/abs/1801.09515
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209
http://arxiv.org/abs/1602.06997
http://eprint.iacr.org
http://people.xiph.org/~greg/confidentialvalues.txt
http://people.xiph.org/~greg/confidentialvalues.txt
https://www.fastcompany.com/40461634/

Channels: Horizontal Scaling and Confidentiality 131

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

18. Nikitin, K., et al.: CHAINIAC: proactive software-update transparency via collec-
tively signed skipchains and verified builds. In: 26th USENIX Security Symposium
(USENIX Security 17), pp. 1271–1287 (2017)

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

20. Roy, R.: Shard âĂŞ a database design, July 2008. http://technoroy.blogspot.ch/
2008/07/shard-database-design.html

21. Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)

22. Simonsen, S.: 5 Reasons the UN is jumping on the blockchain bandwagon,
September 2017. https://singularityhub.com/2017/09/03/the-united-nations-and-
the-ethereum-blockchain/

23. Swanson, T.: Consensus-as-a-service: a brief report on the emergence of permis-
sioned, distributed ledger systems. Report, April 2015

24. Wikipedia: Atomic commit, February 2018. https://en.wikipedia.org/wiki/
Atomic commit

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-46766-1_9
http://technoroy.blogspot.ch/2008/07/shard-database-design.html
http://technoroy.blogspot.ch/2008/07/shard-database-design.html
https://singularityhub.com/2017/09/03/the-united-nations-and-the-ethereum-blockchain/
https://singularityhub.com/2017/09/03/the-united-nations-and-the-ethereum-blockchain/
https://en.wikipedia.org/wiki/Atomic_commit
https://en.wikipedia.org/wiki/Atomic_commit

Stay On-Topic: Generating
Context-Specific Fake Restaurant

Reviews

Mika Juuti1(B), Bo Sun2,3, Tatsuya Mori3,4, and N. Asokan1

1 Aalto University, Espoo, Finland
mika.juuti@aalto.fi, asokan@acm.org

2 Cybersecurity Research Institute, National Institute of Information
and Communications Technology, Tokyo, Japan

bo sun@nict.go.jp
3 Department of Computer Science and Communication Engineering,

Waseda University, Tokyo, Japan
mori@nsl.cs.waseda.ac.jp

4 Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Abstract. Automatically generated fake restaurant reviews are a threat
to online review systems. Recent research has shown that users have dif-
ficulties in detecting machine-generated fake reviews hiding among real
restaurant reviews. The method used in this work (char-LSTM) has
one drawback: it has difficulties staying in context, i.e. when it gener-
ates a review for specific target entity, the resulting review may contain
phrases that are unrelated to the target, thus increasing its detectabil-
ity. In this work, we present and evaluate a more sophisticated tech-
nique based on neural machine translation (NMT) with which we can
generate reviews that stay on-topic. We test multiple variants of our
technique using native English speakers on Amazon Mechanical Turk.
We demonstrate that reviews generated by the best variant have almost
optimal undetectability (class-averaged F-score 47%). We conduct a user
study with experienced users and show that our method evades detection
more frequently compared to the state-of-the-art (average evasion 3.2/4
vs 1.5/4) with statistical significance, at level α = 1% (Sect. 4.3). We
develop very effective detection tools and reach average F-score of 97%
in classifying these. Although fake reviews are very effective in fooling
people, effective automatic detection is still feasible.

1 Introduction

Automatically generated fake reviews have only recently become natural enough
to fool human readers. Yao et al. [1] use a deep neural network (a so-called 2-
layer LSTM [2]) to generate fake reviews, and concluded that these fake reviews
look sufficiently genuine to fool native English speakers. They train their model

B. Sun—Partially completed during his Ph.D. course at Waseda University.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 132–151, 2018.
https://doi.org/10.1007/978-3-319-99073-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_7&domain=pdf

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 133

using real restaurant reviews from yelp.com [3]. Once trained, the model is used
to generate reviews character-by-character. Due to the generation methodology,
it cannot be easily targeted for a specific context (meaningful side information).
Consequently, the review generation process may stray off-topic. For instance,
when generating a review for a Japanese restaurant in Las Vegas, the review gen-
eration process may include references to an Italian restaurant in Baltimore. The
authors of [1] apply a post-processing step (customization), which replaces food-
related words with more suitable ones (sampled from the targeted restaurant).
The word replacement strategy has drawbacks: it can miss certain words and
replace others independent of their surrounding words, which may alert savvy
readers. As an example: when we applied the customization technique described
in [1] to a review for a Japanese restaurant it changed the snippet garlic knots
for breakfast with garlic knots for sushi).

We propose a methodology based on neural machine translation (NMT) that
improves the generation process by defining a context for the each generated
fake review. Our context is a clear-text sequence of: the review rating, restau-
rant name, city, state and food tags (e.g. Japanese, Italian). We show that our
technique generates review that stay on topic. We can instantiate our basic tech-
nique into several variants. We vet them on Amazon Mechanical Turk and find
that native English speakers are very poor at recognizing our fake generated
reviews. For one variant, the participants’ performance is close to random: the
class-averaged F-score of detection is 47% (whereas random would be 42% given
the 1:6 imbalance in the test). Via a user study with experienced, highly edu-
cated participants, we compare this variant (which we will henceforth refer to as
NMT-Fake* reviews) with fake reviews generated using the char-LSTM-based
technique from [1].

We demonstrate that NMT-Fake* reviews constitute a new category of fake
reviews that cannot be detected by classifiers trained only using previously known
categories of fake reviews [1,4,5]. Therefore, NMT-Fake* reviews may go unde-
tected in existing online review sites. To meet this challenge, we develop an
effective classifier that detects NMT-Fake* reviews effectively (97% F-score).
Our main contributions are:

– We present a novel method for creating machine-generated fake user reviews
that generates content based on specific context: venue name, user
rating, city etc. (Sects. 3.2 to 3.3). We demonstrate that our model can be
trained faster (90% reduction in training time compared to [1], Sect. 3.3)
and resulting NMT-Fake* reviews are highly effective in fooling native
English speakers (class-averaged F-score 47%, Sect. 3.4).

– We reproduce a previously proposed fake review generation method
[1] (Sect. 4.1) and show that NMT-Fake* reviews are statistically different
from previous fake reviews, and that classifiers trained on previous fake review
types do not detect NMT-Fake* reviews (Sect. 4.2).

– We compare NMT-Fake* reviews with char-LSTM reviews in a user study.
We show that our reviews are significantly better at evading detection
with statistical significance (α = 1%) (Sect. 4.3).

https://www.yelp.com/

134 M. Juuti et al.

– We develop highly efficient statistical detection tools to recognize NMT-
Fake* reviews with 97% F-score (Sect. 5). We plan to share the implementa-
tion of our detector and generative model with other researchers to facilitate
transparency and reproducibility.

2 Background

Fake Reviews. User-generated content [6] is an integral part of the contempo-
rary user experience on the web. Sites like tripadvisor.com, yelp.com and Google
Play use user-written reviews to provide rich information that helps other users
choose where to spend money and time. User reviews are used for rating services
or products, and for providing qualitative opinions. User reviews and ratings may
be used to rank services in recommendations. Ratings have an affect on the out-
wards appearance. Already 8 years ago, researchers estimated that a one-star
rating increase affects the business revenue by 5–9% on yelp.com [7].

Due to monetary impact of user-generated content, some businesses have
relied on so-called crowd-turfing agents [8] that promise to deliver positive rat-
ings written by workers to a customer in exchange for a monetary compensa-
tion. Crowd-turfing ethics are complicated. For example, Amazon community
guidelines prohibit buying content relating to promotions, but the act of writing
fabricated content is not considered illegal, nor is matching workers to customers
[9]. Year 2015, approximately 20% of online reviews on yelp.com were suspected
of being fake [10].

Nowadays, user-generated review sites like yelp.com use filters and fraudulent
review detection techniques. These factors have resulted in an increase in the
requirements of crowd-turfed reviews provided to review sites, which in turn has
led to an increase in the cost of high-quality review. Due to the cost increase,
researchers hypothesize the existence of neural network-generated fake reviews.
These neural-network-based fake reviews are statistically different from human-
written fake reviews, and are not caught by classifiers trained on these [1].

Detecting fake reviews can either be done on an individual level or as a
system-wide detection tool (i.e. regulation). Detecting fake online content on
a personal level requires knowledge and skills in critical reading. In 2017, the
National Literacy Trust assessed that young people in the UK do not have
the skillset to differentiate fake news from real news [11]. For example, 20% of
children that use online news sites in age group 12–15 believe that all information
on news sites are true.

Neural Networks. Neural networks are function compositions that map input
data through k subsequent layers:

F (x) = fk ◦ fk−1 ◦ · · · ◦ f2 ◦ f1 ◦ x, (1)

where the functions fk are typically non-linear and chosen by experts partly for
known good performance on datasets and partly for simplicity of computational

https://www.tripadvisor.com/
https://www.yelp.com/
https://www.yelp.com/
https://www.yelp.com/
https://www.yelp.com/

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 135

evaluation. Language models (LMs) [12] are generative probability distributions
that assign probabilities to sequences of tokens (ti):

p(tk|t<k) = p(tk|tk−1, tk−2, . . . , t2, t1), (2)

such that the language model can be used to predict how likely a specific token
at time step k is, based on the k − 1 previous tokens. Tokens are typically either
words or characters.

For decades, deep neural networks were thought to be computationally too
difficult to train. However, advances in optimization, hardware and the availabil-
ity of frameworks have shown otherwise [2,13]. Neural language models (NLMs)
have been one of the promising application areas. NLMs are typically various
forms of recurrent neural networks (RNNs), which pass through the data sequen-
tially and maintain a memory representation of the past tokens with a hidden
context vector. There are many RNN architectures that focus on different ways
of updating and maintaining context vectors: Long Short-Term Memory units
(LSTM) and Gated Recurrent Units (GRUs) are perhaps most popular. Neural
LMs have been used for free-form text generation. In certain application areas,
the quality has been high enough to sometimes fool human readers [1].

Encoder-decoder (seq2seq) models [14] are architectures of stacked RNNs,
which have the ability to generate output sequences based on input sequences.
The encoder network reads in a sequence of tokens, and passes it to a decoder
network (a LM). In contrast to simpler NLMs, encoder-decoder networks have
the ability to use additional context for generating text, which enables more accu-
rate generation of text. Encoder-decoder models are integral in Neural Machine
Translation (NMT) [15], where the task is to translate a source text from one
language to another language. NMT models additionally use beam search strate-
gies to heuristically search the set of possible translations. Training datasets are
parallel corpora; large sets of paired sentences in the source and target lan-
guages. The application of NMT techniques for online machine translation has
significantly improved the quality of translations, bringing it closer to human
performance [16].

Neural machine translation models are efficient at mapping one expression to
another (one-to-one mapping). Researchers have evaluated these models for con-
versation generation [17], with mixed results. Some researchers attribute poor
performance to the use of the negative log likelihood cost function during train-
ing, which emphasizes generation of high-confidence phrases rather than diverse
phrases [18]. The results are often generic text, which lacks variation. Li et al.
have suggested various augmentations to this, among others suppressing typical
responses in the decoder language model to promote response diversity [18].

3 System Model

We discuss the attack model, our generative machine learning method and con-
trolling the generative process in this section.

136 M. Juuti et al.

3.1 Attack Model

Wang et al. [8] described a model of crowd-turfing attacks consisting of three
entities: customers who desire to have fake reviews for a particular target (e.g.
their restaurant) on a particular platform (e.g. Yelp), agents who offer fake
review services to customers, and workers who are orchestrated by the agent
to compose and post fake reviews.

Automated crowd-turfing attacks (ACA) replace workers by a generative
model. This has several benefits including better economy and scalability
(human workers are more expensive and slower) and reduced detectability (agent
can better control the rate at which fake reviews are generated and posted).

We assume that the agent has access to public reviews on the review platform,
by which it can train its generative model. We also assume that it is easy for
the agent to create a large number of accounts on the review platform so that
account-based detection or rate-limiting techniques are ineffective against fake
reviews.

The quality of the generative model plays a crucial role in the attack. Yao
et al. [1] propose the use of a character-based LSTM as base for generative
model. LSTMs are not conditioned to generate reviews for a specific target [2],
and may mix-up concepts from different contexts during free-form generation.
Mixing contextually separate words is one of the key criteria that humans use to
identify fake reviews. These may result in violations of known indicators for fake
content [19]. For example, the review content may not match prior expectations
nor the information need that the reader has. We improve the attack model by
considering a more capable generative model that produces more appropriate
reviews: a neural machine translation (NMT) model.

3.2 Generative Model

Architecture. We propose the use of NMT models for fake review generation.
The method has several benefits: (1) the ability to learn how to associate context
(keywords) to reviews, (2) fast training time, and (3) a high-degree of customiza-
tion during production time, e.g. introduction of specific waiter or food items
names into reviews.

NMT models are constructions of stacked recurrent neural networks (RNNs).
They include an encoder network and a decoder network, which are jointly opti-
mized to produce a translation of one sequence to another. The encoder rolls over
the input data in sequence and produces one n-dimensional context vector rep-
resentation for the sentence. The decoder then generates output sequences based
on the embedding vector and an attention module, which is taught to associate
output words with certain input words. The generation typically continues until
a specific EOS (end of sentence) token is encountered. The review length can be
controlled in many ways, e.g. by setting the probability of generating the EOS
token to zero until the required length is reached.

NMT models often also include a beam search [15], which generates several
hypotheses and chooses the best ones amongst them. In our work, we use the

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 137

greedy beam search technique. We forgo the use of additional beam searches as
we found that the quality of the output was already adequate and the translation
phase time consumption increases linearly for each beam used.

Dataset. We use the Yelp Challenge dataset [3] for our fake review generation.
The dataset (Aug 2017) contains 2.9 million 1–5 star restaurant reviews. We treat
all reviews as genuine human-written reviews for the purpose of this work, since
wide-scale deployment of machine-generated review attacks are not yet reported
(Sep 2017) [20]. As preprocessing, we remove non-printable (non-ASCII) charac-
ters and excessive white-space. We separate punctuation from words. We reserve
15,000 reviews for validation and 3,000 for testing, and the rest we use for train-
ing. NMT models require a parallel corpus of source and target sentences, i.e. a
large set of (source, target)-pairs. We set up a parallel corpus by constructing
(context, review)-pairs from the dataset. Next, we describe how we created our
input context.

Context. The Yelp Challenge dataset includes metadata about restaurants,
including their names, food tags, cities and states these restaurants are located
in. For each restaurant review, we fetch this metadata and use it as our input
context in the NMT model. The corresponding restaurant review is similarly
set as the target sentence. This method produced 2.9 million pairs of sentences
in our parallel corpus. We show one example of the parallel training corpus in
Example 1 below:

Example 1.
5 Public House Las Vegas NV Gastropubs Restaurants > Excellent
food and service . Pricey , but well worth it . I would recommend
the bone marrow and sampler platter for appetizers .

The order [rating name city state tags] is kept constant. Training the model
conditions it to associate certain sequences of words in the input sentence with
others in the output.

Training Settings. We train our NMT model on a commodity PC with a i7-
4790k CPU (4.00 GHz), with 32 GB RAM and one NVidia GeForce GTX 980
GPU. Our system can process approximately 1,300–1,500 source tokens/s and
approximately 5,730–5,830 output tokens/s. Training one epoch takes in average
72 min. The model is trained for 8 epochs, i.e. over night. We call fake review
generated by this model NMT-Fake reviews. We only need to train one model to
produce reviews of different ratings. We use the training settings: adam optimizer
[13] with the suggested learning rate 0.001 [15]. For most parts, parameters are at
their default values. Notably, the maximum sentence length of input and output
is 50 tokens by default. We leverage the framework openNMT-py [15] to teach
the our NMT model. We list used openNMT-py commands in Appendix Table 4.

138 M. Juuti et al.

Example 2. Greedy NMT
Great food, great service, great beer selection. I had the Gastropubs burger and it
was delicious. The beer selection was also great.

Example 3. NMT-Fake*
I love this restaurant. Great food, great service. It’s a little pricy but worth
it for the quality of the beer and atmosphere you can see in Vegas

Fig. 1. Näıve text generation with NMT vs. generation using our NTM model. Repet-
itive patterns are underlined. Contextual words are italicized. Both examples here are
generated based on the context given in Example 1.

3.3 Controlling Generation of Fake Reviews

Greedy NMT beam searches are practical in many NMT cases. However, the
results are simply repetitive, when naively applied to fake review generation
(See Example 2 in Fig. 1). The NMT model produces many high-confidence word
predictions, which are repetitive and obviously fake. We calculated that in fact,
43% of the generated sentences started with the phrase “Great food”. The lack
of diversity in greedy use of NMTs for text generation is clear.

In this work, we describe how we succeeded in creating more diverse and less
repetitive generated reviews, such as Example 3 in Fig. 1. We outline pseudocode
for our methodology of generating fake reviews in Algorithm 1. There are several
parameters in our algorithm. The details of the algorithm will be shown later.
We modify the openNMT-py translation phase by changing log-probabilities
before passing them to the beam search. We notice that reviews generated with
openNMT-py contain almost no language errors. As an optional post-processing
step, we obfuscate reviews by introducing natural typos/misspellings randomly.
In the next sections, we describe how we succeeded in generating more natural

Algorithm 1. Generation of NMT-Fake* reviews.
Data: Desired review context Cinput (given as cleartext), NMT model
Result: Generated review out for input context Cinput

set b = 0.3, λ = −5, α = 2
3
, ptypo, pspell

log p ← NMT.decode(NMT.encode(Cinput))
out ← []
i ← 0
log p ← Augment(log p, b, λ, 1, [], 0) — random penalty
while i = 0 or oi not EOS do

log p̃ ← Augment(log p, b, λ, α, oi, i) — start & memory penalty
oi ← NMT.beam(log p̃, out)
out.append(oi)
i ← i + 1

end
return Obfuscate(out, ptypo, pspell)

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 139

sentences from our NMT model, i.e. generating reviews like Example 3 instead
of reviews like Example 2.

Variation in Word Content. Example 2 in Fig. 1 repeats commonly occurring
words given for a specific context (e.g. great, food, service, beer, selection, burger
for Example 1). Generic review generation can be avoided by decreasing prob-
abilities (log-likelihoods [2]) of the generators LM, the decoder. We constrain
the generation of sentences by randomly imposing penalties to words. We tried
several forms of added randomness, and found that adding constant penalties
to a random subset of the target words resulted in the most natural sentence
flow. We call these penalties Bernoulli penalties, since the random variables are
chosen as either 1 or 0 (on or off).

Bernoulli Penalties to Language Model. To avoid generic sentences components,
we augment the default language model p(·) of the decoder by

log p̃(tk) = log p(tk|ti, . . . , t1) + λq, (3)

where q ∈ RV is a vector of Bernoulli-distributed random values that obtain
values 1 with probability b and value 0 with probability 1 − bi, and λ < 0.
Parameter b controls how much of the vocabulary is forgotten and λ is a soft
penalty of including “forgotten” words in a review. λqk emphasizes sentence
forming with non-penalized words. The randomness is reset at the start of gen-
erating a new review. Using Bernoulli penalties in the language model, we can
“forget” a certain proportion of words and essentially “force” the creation of less
typical sentences. We will test the effect of these two parameters, the Bernoulli
probability b and log-likelihood penalty of including “forgotten” words λ, with
a user study in Sect. 3.4.

Start Penalty. We introduce start penalties to avoid generic sentence starts (e.g.
“Great food, great service”). Inspired by [18], we add a random start penalty
λsi, to our language model, which decreases monotonically for each generated
token. We set α ← 0.66 as it’s effect decreases by 90% every 5 words generated.

Penalty for Reusing Words. Bernoulli penalties do not prevent excessive use of
certain words in a sentence (such as great in Example 2). To avoid excessive
reuse of words, we included a memory penalty for previously used words in
each translation. Concretely, we add the penalty λ to each word that has been
generated by the greedy search.

Improving Sentence Coherence. We visually analyzed reviews after apply-
ing these penalties to our NMT model. While the models were clearly diverse,
they were incoherent : the introduction of random penalties had degraded the
grammaticality of the sentences. Amongst others, the use of punctuation was
erratic, and pronouns were used semantically wrongly (e.g. he, she might be

140 M. Juuti et al.

Algorithm 2. Pseudocode for augmenting language model.
Data: Initial log LM log p, Bernoulli probability b, soft-penalty λ, monotonic factor α,

last generated token oi, grammar rules set G
Result: Augmented log LM log p̃
1: procedure Augment(log p, b, λ, α, oi, i)
2: generate P1:N ← Bernoulli(b) — One value ∈ {0, 1} per token
3: I ← P > 0 — Select positive indices
4: log p̃ ← Discount(log p, I, λ · αi,G) — start penalty
5: log p̃ ← Discount(log p̃, [oi], λ,G) — memory penalty
6: return log p̃
7: end procedure
8:
9: procedure Discount(log p, I, λ, G)

10: for i ∈ I do
if oi ∈ G then

log pi ← log pi + λ/2
else

log pi ← log pi + λ
end

end
return log p

11: end procedure

replaced, as could “and”/“but”). To improve the authenticity of our reviews, we
added several grammar-based rules.

English language has several classes of words which are important for the
natural flow of sentences. We built a list of common pronouns (e.g. I, them,
our), conjunctions (e.g. and, thus, if), punctuation (e.g.,/.,..), and apply only
half memory penalties for these words. We found that this change made the
reviews more coherent. The pseudocode for this and the previous step is shown in
Algorithm 2. The combined effect of grammar-based rules and LM augmentation
is visible in Example 3, Fig. 1.

Human-Like Errors. We notice that our NMT model produces reviews with-
out grammar mistakes. This is unlike real human writers, whose sentences con-
tain two types of language mistakes (1) typos that are caused by mistakes in the
human motoric input, and (2) common spelling mistakes. We scraped a list of
common English language spelling mistakes from Oxford dictionary1 and cre-
ated 80 rules for randomly re-introducing spelling mistakes. Similarly, typos are
randomly reintroduced based on the weighted edit distance2, such that typos
resulting in real English words with small perturbations are emphasized. We
use autocorrection tools3 for finding these words. We call these augmentations

1 https://en.oxforddictionaries.com/spelling/common-misspellings.
2 https://pypi.python.org/pypi/weighted-levenshtein/0.1.
3 https://pypi.python.org/pypi/autocorrect/0.1.0.

https://en.oxforddictionaries.com/spelling/common-misspellings
https://pypi.python.org/pypi/weighted-levenshtein/0.1
https://pypi.python.org/pypi/autocorrect/0.1.0

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 141

obfuscations, since they aim to confound the reader to think a human has written
them. We omit the pseudocode description for brevity.

3.4 Experiment: Varying Generation Parameters in Our NMT
Model

Parameters b and λ control different aspects in fake reviews. We show six different
examples of generated fake reviews in Table 1. Here, the largest differences occur
with increasing values of b: visibly, the restaurant reviews become more extreme.
This occurs because a large portion of vocabulary is “forgotten”. Reviews with
b ≥ 0.7 contain more rare word combinations, e.g. “!!!!!” as punctuation, and
they occasionally break grammaticality (“experience was awesome”). Reviews
with lower b are more generic: they contain safe word combinations like “Great
place, good service” that occur in many reviews. Parameter λ’s is more subtle:
it affects how random review starts are and to a degree, the discontinuation
between statements within the review. We conducted an Amazon Mechanical
Turk (MTurk) survey in order to determine what kind of NMT-Fake reviews are
convincing to native English speakers. We describe the survey and results in the
next section.

MTurk Study. We created 20 jobs, each with 100 questions, and requested
master workers in MTurk to complete the jobs. We randomly generated each
survey for the participants. Each review had a 50% chance to be real or fake. The
fake ones further were chosen among six (6) categories of fake reviews (Table 1).
The restaurant and the city was given as contextual information to the partici-
pants. Our aim was to use this survey to understand how well English-speakers
react to different parametrizations of NMT-Fake reviews. Table 3 in Appendix

Table 1. Six different parametrizations of our NMT reviews and one example for each.
The context is “5 P . F . Chang’s Scottsdale AZ” in all examples.

(b, λ) Example review for context

(0.3,−3) I love this location! Great service, great food and the best drinks in Scottsdale.
The staff is very friendly and always remembers u when we come in

(0.3,−5) Love love the food here! I always go for lunch. They have a great menu and
they make it fresh to order. Great place, good service and nice staff

(0.5,−4) I love their chicken lettuce wraps and fried rice!! The service is good, they are
always so polite. They have great happy hour specials and they have a lot
of options

(0.7,−3) Great place to go with friends! They always make sure your dining
experience was awesome

(0.7,−5) Still haven’t ordered an entree before but today we tried them once..
both of us love this restaurant...

(0.9,−4) AMAZING!!!!! Food was awesome with excellent service. Loved the lettuce
wraps. Great drinks and wine! Can’t wait to go back so soon!!

142 M. Juuti et al.

Table 2. Effectiveness of mechanical Turkers in distinguishing human-written reviews
from fake reviews generated by our NMT model (all variants).

Classification report

Review type Precision Recall F-score Support

Human 55% 63% 59% 994

NMT-Fake 57% 50% 53% 1006

summarizes the statistics for respondents in the survey. All participants were
native English speakers from America. The base rate (50%) was revealed to the
participants prior to the study.

We first investigated overall detection of any NMT-Fake reviews (1,006 fake
reviews and 994 real reviews). We found that the participants had big difficulties
in detecting our fake reviews. In average, the reviews were detected with class-
averaged F-score of only 56%, with 53% F-score for fake review detection and
59% F-score for real review detection. The results are very close to random
detection, where precision, recall and F-score would each be 50%. Results are
recorded in Table 2. Overall, the fake review generation is very successful, since
human detection rate across categories is close to random.

We noticed some variation in the detection of different fake review cate-
gories. The respondents in our MTurk survey had most difficulties recognizing
reviews of category (b = 0.3, λ = −5), where true positive rate was 40.4%,
while the true negative rate of the real class was 62.7%. The precision were
16% and 86%, respectively. The class-averaged F-score is 47.6%, which is close
to random. Detailed classification reports are shown in Table 5 in Appendix.
Our MTurk-study shows that our NMT-Fake reviews pose a significant threat
to review systems, since ordinary native English-speakers have very big difficul-
ties in separating real reviews from fake reviews. We use the review category
(b = 0.3, λ = −5) for future user tests in this paper, since MTurk participants
had most difficulties detecting these reviews. We refer to this category as NMT-
Fake* in this paper.

4 Evaluation

We evaluate our fake reviews by first comparing them statistically to previously
proposed types of fake reviews, and proceed with a user study with experienced
participants. We demonstrate the statistical difference to existing fake review
types [1,4,5] by training classifiers to detect previous types and investigate clas-
sification performance.

4.1 Replication of State-of-the-Art Model: LSTM

Yao et al. [1] presented the current state-of-the-art generative model for fake
reviews. The model is trained over the Yelp Challenge dataset using a two-layer

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 143

character-based LSTM model. We requested the authors of [1] for access to their
LSTM model or a fake review dataset generated by their model. Unfortunately
they were not able to share either of these with us. We therefore replicated their
model as closely as we could, based on their paper and e-mail correspondence4.

We used the same graphics card (GeForce GTX) and trained using the same
framework (torch-RNN in lua). We downloaded the reviews from Yelp Challenge
and preprocessed the data to only contain printable ASCII characters, and fil-
tered out non-restaurant reviews. We trained the model for approximately 72 h.
We post-processed the reviews using the customization methodology described
in [1] and email correspondence. We call fake reviews generated by this model
LSTM-Fake reviews.

4.2 Similarity to Existing Fake Reviews

We now want to understand how NMT-Fake* reviews compare to (a) LSTM
fake reviews and (b) human-generated fake reviews. We do this by comparing
the statistical similarity between these classes.

For ‘a’ (Fig. 2a), we use the Yelp Challenge dataset. We trained a classifier
using 5,000 random reviews from the Yelp Challenge dataset (“human”) and
5,000 fake reviews generated by LSTM-Fake. Yao et al. [1] found that character
features are essential in identifying LSTM-Fake reviews. Consequently, we use
character features (n-grams up to 3).

For ‘b’ (Fig. 2b), we the “Yelp Shills” dataset (combination of YelpZip [4],
YelpNYC [4], YelpChi [5]). This dataset labels entries that are identified as
fraudulent by Yelp’s filtering mechanism (“shill reviews”)5. The rest are treated
as genuine reviews from human users (“genuine”). We use 100,000 reviews from
each category to train a classifier. We use features from the commercial psycho-
metric tool LIWC2015 [21] to generated features.

In both cases, we use AdaBoost (with 200 shallow decision trees) for training.
For testing each classifier, we use a held out test set of 1,000 reviews from both
classes in each case. In addition, we test 1,000 NMT-Fake* reviews. Figures 2a
and b show the results. The classification threshold of 50% is marked with a
dashed line.

We can see that our new generated reviews do not share strong attributes
with previous known categories of fake reviews. If anything, our fake reviews are
more similar to genuine reviews than previous fake reviews. We thus conjecture
that our NMT-Fake* fake reviews present a category of fake reviews that may
go undetected on online review sites.

4.3 Comparative User Study

We wanted to evaluate the effectiveness of fake reviews againsttech-savvy users
who understand and know to expect machine-generated fake reviews. We con-
4 We are committed to sharing our code with bonafide researchers for the sake of

reproducibility.
5 Note that shill reviews are probably generated by human shills [20].

144 M. Juuti et al.

(a) Human–LSTM reviews. (b) Genuine–Shill reviews.

Fig. 2. Histogram comparison of NMT-Fake* reviews with LSTM-Fake reviews and
human-generated (genuine and shill) reviews. (a) Shows that a classifier trained to dis-
tinguish “human” vs. LSTM-Fake cannot distinguish “human” vs NMT-Fake* reviews.
(b) Shows NMT-Fake* reviews are more similar to genuine reviews than shill reviews.

ducted a user study with 20 participants, all with computer science education
and at least one university degree. Participant demographics are shown in Table 3
in the Appendix. Each participant first attended a training session where they
were asked to label reviews (fake and genuine) and could later compare them
to the correct answers – we call these participants experienced participants. No
personal data was collected during the user study.

Each person was given two randomly selected sets of 30 of reviews (a total
of 60 reviews per person) with reviews containing 10–50 words each. Each set
contained 26 (87%) real reviews from Yelp and 4 (13%) machine-generated
reviews, numbers chosen based on suspicious review prevalence on Yelp [4,5].
One set contained machine-generated reviews from one of the two models (NMT
(b = 0.3, λ = −5) or LSTM), and the other set reviews from the other in ran-
domized order. The number of fake reviews was revealed to each participant in
the study description. Each participant was requested to mark four (4) reviews
as fake.

Each review targeted a real restaurant. A screenshot of that restaurant’s
Yelp page was shown to each participant prior to the study. Each participant
evaluated reviews for one specific, randomly selected, restaurant. An example of
the first page of the user study is shown in Fig. 5 in Appendix.

Figure 3 shows the distribution of detected reviews of both types. A hypo-
thetical random detector is shown for comparison. NMT-Fake* reviews are sig-
nificantly more difficult to detect for our experienced participants. In average,
detection rate (recall) is 20% for NMT-Fake* reviews, compared to 61% for
LSTM-based reviews. The precision (and F-score) is the same as the recall in
our study, since participants labeled 4 fakes in each set of 30 reviews [2]. The dis-
tribution of the detection across participants is shown in Fig. 3. The difference is
statistically significant with confidence level 99% (Welch’s t-test). We compared

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 145

Fig. 3. Violin plots of detection rate in comparative study. Mean and standard devi-
ations for number of detected fakes are 0.8 ± 0.7 for NMT-Fake* and 2.5 ± 1.0 for
LSTM-Fake n = 20. A sample of random detection is shown as comparison.

the detection rate of NMT-Fake* reviews to a random detector, and find that
our participants detection rate of NMT-Fake* reviews is not statistically different
from random predictions with 95% confidence level (Welch’s t-test).

5 Defenses

We developed an AdaBoost-based classifier to detect our new fake reviews, con-
sisting of 200 shallow decision trees (depth 2). The features we used are recorded
in Table 6 (Appendix). We used word-level features based on spaCy-tokenization
[22] and constructed n-gram representation of POS-tags and dependency tree
tags. We added readability features from NLTK [23].

Figure 4 shows our AdaBoost classifier’s class-averaged F-score at detecting
different kind of fake reviews. The classifier is very effective in detecting reviews
that humans have difficulties detecting. For example, the fake reviews MTurk
users had most difficulty detecting (b = 0.3, λ = −5) are detected with an excel-
lent 97% F-score. The most important features for the classification were counts
for frequently occurring words in fake reviews (such as punctuation, pronouns,
articles) as well as the readability feature “Automated Readability Index”. We
thus conclude that while NMT-Fake reviews are difficult to detect for humans,
they can be well detected with the right tools.

6 Related Work

Kumar and Shah [24] survey and categorize false information research. Auto-
matically generated fake reviews are a form of opinion-based false information,

146 M. Juuti et al.

Fig. 4. Adaboost-based classification of NMT-Fake and human-written reviews. Effect
of varying b and λ in fake review generation. The variant native speakers had most
difficulties detecting is well detectable by AdaBoost (97%).

where the creator of the review may influence reader’s opinions or decisions.
Yao et al. [1] presented their study on machine-generated fake reviews. Contrary
to us, they investigated character-level language models, without specifying a
specific context before generation. We leverage existing NMT tools to encode
a specific context to the restaurant before generating reviews. Supporting our
study, Everett et al. [25] found that security researchers were less likely to be
fooled by Markov chain-generated Reddit comments compared to ordinary Inter-
net users.

Diversification of NMT model outputs has been studied in [18]. The authors
proposed the use of a penalty to commonly occurring sentences (n-grams) in
order to emphasize maximum mutual information-based generation. The authors
investigated the use of NMT models in chatbot systems. We found that unigram
penalties to random tokens (Algorithm 2) was easy to implement and produced
sufficiently diverse responses.

7 Discussion and Future Work

What makes NMT-Fake* reviews difficult to detect? First, NMT models allow
the encoding of a relevant context for each review, which narrows down the
possible choices of words that the model has to choose from. Our NMT model
had a perplexity of approximately 25, while the model of [1] had a perplexity
of approximately 906. Second, the beam search in NMT models narrows down
choices to natural-looking sentences. Third, we observed that the NMT model
produced better structure in the generated sentences (i.e. a more coherent story).
6 Personal communication with the authors.

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 147

Cost of Generating Reviews. With our setup, generating one review took less
than one second. The cost of generation stems mainly from the overnight train-
ing. Assuming an electricity cost of 16 cents/kWh (California) and 8 h of training,
training the NMT model requires approximately 1.30 USD. This is a 90% reduc-
tion in time compared to the state-of-the-art [1]. Furthermore, it is possible to
generate both positive and negative reviews with the same model.

Ease of Customization. We experimented with inserting specific words into the
text by increasing their log likelihoods in the beam search. We noticed that
the success depended on the prevalence of the word in the training set. For
example, adding a +5 to Mike in the log-likelihood resulted in approximately
10% prevalence of this word in the reviews. An attacker can therefore easily
insert specific keywords to reviews, which can increase evasion probability.

Ease of Testing. Our diversification scheme is applicable during generation
phase, and does not affect the training setup of the network in any way. Once
the NMT model is obtained, it is easy to obtain several different variants of
NMT-Fake reviews by varying parameters b and λ.

Languages. The generation methodology is not per-se language-dependent. The
requirement for successful generation is that sufficiently much data exists in
the targeted language. However, our language model modifications require some
knowledge of that target language’s grammar to produce high-quality reviews.

Generalizability of Detection Techniques. Currently, fake reviews are not uni-
versally detectable. Our results highlight that it is difficult to claim detection
performance on unseen types of fake reviews (Sect. 4.2). We see this an open
problem that deserves more attention in fake reviews research.

Generalizability to Other Types of Datasets. Our technique can be applied to
any dataset, as long as there is sufficient training data for the NMT model. We
used approximately 2.9 million reviews for this work.

8 Conclusion

In this paper, we showed that neural machine translation models can be used to
generate fake reviews that are very effective in deceiving even experienced, tech-
savvy users. This supports anecdotal evidence [11]. Our technique is more effec-
tive than state-of-the-art [1]. We conclude that machine-aided fake review detec-
tion is necessary since human users are ineffective in identifying fake reviews. We
also showed that detectors trained using one type of fake reviews are not effec-
tive in identifying other types of fake reviews. Robust detection of fake reviews
is thus still an open problem.

148 M. Juuti et al.

Appendix

We present basic demographics of our MTurk study and the comparative study
with experienced users in Table 3.

Table 3. User study statistics.

Quality Mechanical turk users Experienced users

Native English speaker Yes (20) Yes (1) No (19)

Fluent in English Yes (20) Yes (20)

Age 21–40 (17) 41–60 (3) 21–25 (8) 26–30 (7) 31–35 (4) 41–45 (1)

Gender Male (14) Female (6) Male (17) Female (3)

Highest education High School (10) Bachelor (10) Bachelor (9) Master (6) Ph.D. (5)

Table 4 shows a listing of the openNMT-py commands we used to create our
NMT model and to generate fake reviews.

Table 5 shows the classification performance of Amazon Mechanical Turkers,
separated across different categories of NMT-Fake reviews. The category with
best performance (b = 0.3, λ = −5) is denoted as NMT-Fake*.

Figure 5 shows screenshots of the first two pages of our user study with
experienced participants.

Table 6 shows the features used to detect NMT-Fake reviews using the
AdaBoost classifier.

Table 4. Listing of used openNMT-py commands.

Phase Bash command

Preprocessing

python prep roce s s . py −t r a i n s r c context−t r a i n . txt
−t r a i n t g t reviews−t r a i n . txt −v a l i d s r c context−va l . txt
−v a l i d t g t reviews−va l . txt −save data model
−lower −tg t words min f requency 10

Training
python t r a i n . py −data model −save model model −epochs 8
−gpuid 0 − l e a r n i n g r a t e d e c ay 0 .5 −optim adam
− l e a r n i n g r a t e 0 .001 −s t a r t d e c ay a t 3

Generation
python t r a n s l a t e . py −model model acc 35 .54 pp l 25 .68 e8 . pt
−s r c context−t s t . txt −output pred−e8 . txt −r ep lace unk
−verbose −max length 50 −gpu 0

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 149

Table 5. MTurk study subclass classification reports. Classes are imbalanced in ratio
1:6. Random predictions are phuman = 86% and pmachine = 14%, with rhuman =
rmachine = 50%. Class-averaged F-scores for random predictions are 42%.

Precision Recall F-score Support

(b = 0.3, λ = −3)

Human 89% 63% 73% 994

NMT-Fake 15% 45% 22% 146

(b = 0.3, λ = −5)

Human 86% 63% 73% 994

NMT-Fake* 16% 40% 23% 171

(b = 0.5, λ = −4)

Human 88% 63% 73% 994

NMT-Fake 21% 55% 30% 181

(b = 0.7, λ = −3)

Human 88% 63% 73% 994

NMT-Fake 19% 50% 27% 170

(b = 0.7, λ = −5)

Human 89% 63% 74% 994

NMT-Fake 21% 57% 31% 174

(b = 0.9, λ = −4)

Human 88% 63% 73% 994

NMT-Fake 18% 50% 27% 164

Fig. 5. Screenshots of the first two pages in the user study. Example 1 is a NMT-Fake*
review, the rest are human-written.

150 M. Juuti et al.

Table 6. Features used in NMT-Fake review detector.

Feature type Number
of features

Readability features 13

Unique POS tags 20

Word unigrams 22,831

1/2/3/4-grams of simple part-of-speech tags 54,240

1/2/3-grams of detailed part-of-speech tags 112,944

1/2/3-grams of syntactic dependency tags 93,195

References

1. Yao, Y., Viswanath, B., Cryan, J., Zheng, H., Zhao, B.Y.: Automated crowdturfing
attacks and defenses in online review systems. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM (2017)

2. Murphy, K.: Machine Learning: A Probabilistic Approach. Massachusetts Institute
of Technology, Cambridge (2012)

3. Yelp: Yelp Challenge Dataset (2013)
4. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: What yelp fake review filter

might be doing? In: Seventh International AAAI Conference on Weblogs and Social
Media (ICWSM) (2013)

5. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review net-
works and metadata. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015)

6. O’Connor, P.: User-generated content and travel: a case study on Tripadvisor.com.
In: O’Connor, P., Höpken, W., Gretzel, U. (eds.) Information and Communication
Technologies in Tourism 2008, pp. 47–58. Springer, Vienna (2008). https://doi.
org/10.1007/978-3-211-77280-5 5

7. Luca, M.: Reviews, Reputation, and Revenue: The Case of Yelp.com. Harvard
Business School, Boston (2010)

8. Wang, G., et al.: Serf and turf: crowdturfing for fun and profit. In: Proceedings of
the 21st International Conference on World Wide Web (WWW). ACM (2012)

9. Rinta-Kahila, T., Soliman, W.: Understanding crowdturfing: the different ethical
logics behind the clandestine industry of deception. In: ECIS 2017: Proceedings of
the 25th European Conference on Information Systems (2017)

10. Luca, M., Zervas, G.: Fake it till you make it: reputation, competition, and yelp
review fraud. Manage. Sci. 62, 3412–3427 (2016)

11. National Literacy Trust: Commission on fake news and the teaching of critical liter-
acy skills in schools. https://literacytrust.org.uk/policy-and-campaigns/all-party-
parliamentary-group-literacy/fakenews/

12. Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson Lon-
don, London (2014)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (2014)

https://doi.org/10.1007/978-3-211-77280-5_5
https://doi.org/10.1007/978-3-211-77280-5_5
https://literacytrust.org.uk/policy-and-campaigns/all-party-parliamentary-group-literacy/fakenews/
https://literacytrust.org.uk/policy-and-campaigns/all-party-parliamentary-group-literacy/fakenews/
http://arxiv.org/abs/1412.6980

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews 151

15. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source
toolkit for neural machine translation. In: Proceedings of ACL, System Demon-
strations (2017)

16. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

17. Mei, H., Bansal, M., Walter, M.R.: Coherent dialogue with attention-based lan-
guage models. In: AAAI, pp. 3252–3258 (2017)

18. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective
function for neural conversation models. In: Proceedings of NAACL-HLT (2016)

19. Rubin, V.L., Liddy, E.D.: Assessing credibility of weblogs. In: AAAI Spring Sym-
posium: Computational Approaches to Analyzing Weblogs (2006)

20. news.com.au: The potential of AI generated ‘crowdturfing’ could undermine
online reviews and dramatically erode public trust. http://www.news.com.au/
technology/online/security/the-potential-of-ai-generated-crowdturfing-could-
undermine-online-reviews-and-dramatically-erode-public-trust/news-story/
e1c84ad909b586f8a08238d5f80b6982

21. Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The development and
psychometric properties of LIWC2015. Technical report (2015)

22. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for
dependency parsing. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). ACM (2015)

23. Bird, S., Loper, E.: NLTK: the natural language toolkit. In: Proceedings of the ACL
2004 on Interactive Poster and Demonstration Sessions. Association for Computa-
tional Linguistics (2004)

24. Kumar, S., Shah, N.: False information on web and social media: a survey. arXiv
preprint arXiv:1804.08559 (2018)

25. Everett, R.M., Nurse, J.R.C., Erola, A.: The anatomy of online deception: what
makes automated text convincing? In: Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, SAC 2016. ACM (2016)

http://arxiv.org/abs/1609.08144
http://www.news.com.au/technology/online/security/the-potential-of-ai-generated-crowdturfing-could-undermine-online-reviews-and-dramatically-erode-public-trust/news-story/e1c84ad909b586f8a08238d5f80b6982
http://www.news.com.au/technology/online/security/the-potential-of-ai-generated-crowdturfing-could-undermine-online-reviews-and-dramatically-erode-public-trust/news-story/e1c84ad909b586f8a08238d5f80b6982
http://www.news.com.au/technology/online/security/the-potential-of-ai-generated-crowdturfing-could-undermine-online-reviews-and-dramatically-erode-public-trust/news-story/e1c84ad909b586f8a08238d5f80b6982
http://www.news.com.au/technology/online/security/the-potential-of-ai-generated-crowdturfing-could-undermine-online-reviews-and-dramatically-erode-public-trust/news-story/e1c84ad909b586f8a08238d5f80b6982
http://arxiv.org/abs/1804.08559

Efficient Proof Composition for Verifiable
Computation

Julien Keuffer1,2(B), Refik Molva2, and Hervé Chabanne1,3

1 Idemia, Issy-les-Moulineaux, France
{julien.keuffer,herve.chabanne}@idemia.com

2 Eurecom, Biot, France
refik.molva@eurecom.fr

3 Telecom ParisTech, Paris, France

Abstract. Outsourcing machine learning algorithms helps users to deal
with large amounts of data without the need to develop the expertise
required by these algorithms. Outsourcing however raises severe security
issues due to potentially untrusted service providers. Verifiable comput-
ing (VC) tackles some of these issues by assuring computational integrity
for an outsourced computation. In this paper, we design a VC pro-
tocol tailored to verify a sequence of operations for which no existing
VC scheme is suitable to achieve realistic performance objective for the
entire sequence. We thus suggest a technique to compose several spe-
cialized and efficient VC schemes with a general purpose VC protocol,
like Parno et al.’s Pinocchio, by integrating the verification of the proofs
generated by these specialized schemes as a function that is part of the
sequence of operations verified using the general purpose scheme. The
resulting scheme achieves the objectives of the general purpose scheme
with increased efficiency for the prover. The scheme relies on the underly-
ing cryptographic assumptions of the composed protocols for correctness
and soundness.

Keywords: Verifiable computation · Proof composition
Neural networks

1 Introduction

While achieving excellent results in diverse areas, machine learning algorithms
require expertise and a large training material to be fine-tuned. Therefore, cloud
providers such as Amazon or Microsoft have started offering Machine Learning
as a Service (MLaaS) to perform complex machine learning tasks on behalf of
users. Despite these advantages, outsourcing raises a new requirement: in the
face of potentially malicious service providers the users need additional guaran-
tees to gain confidence in the results of outsourced computations. As an answer
to this problem, verifiable computing (VC) provides proofs of computational
integrity without any assumptions on hardware or on potential failures. Exist-
ing VC systems can theoretically prove and verify all NP computations [8].
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 152–171, 2018.
https://doi.org/10.1007/978-3-319-99073-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_8&domain=pdf

Efficient Proof Composition for Verifiable Computation 153

Nevertheless, despite the variety of existing solutions, existing VC schemes have
to make trade-offs between expressiveness and functionality [20] and therefore
cannot efficiently handle the verifiability of a sequence of operations with a high
variance in nature and complexity, like the ones involved in machine learning
techniques. Even if expressive VC schemes such as Pinocchio [16] can ensure the
verifiability of a machine learning algorithm, the cryptographic work required
to produce the proof prevents from dealing with large but simple computations
such as matrix multiplications. On the other hand, some schemes like Cormode
et al.’s CMT [6] are very efficient and can deal with large computations, e.g.
large matrix multiplications, but cannot handle the variety of even very simple
operations such as number comparisons. Hence there is a need for a VC scheme
that achieves both efficiency by handling complex operations and expressiveness
through the variety of types of operations it can support. In this paper, we pro-
pose a scheme that combines a general purpose VC scheme like Pinocchio [16]
or Groth’s scheme [13] and various specialized VC schemes that achieve efficient
verification of complex operations like large matrix multiplications.
Thanks to our proof composition scheme, the resulting VC scheme:

1. efficiently addresses the verifiability of a sequence of operations,
2. inherits the properties of the outer scheme, notably a short and single proof

for a complex computation and privacy for inputs supplied by the prover.

In order to highlight the relevance of our proposal, we sketch the application
of the resulting scheme on a neural network, which is a popular machine learning
technique achieving state of the art performance in various classification tasks
such as handwritten digit recognition, object or face recognition. Furthermore
we propose a concrete instance of our scheme, using a Pinocchio-like scheme
[13] and the Sum-Check protocol [15]. Thanks to our composition techniques,
we are able to achieve unprecedented performance gains in the verifiability of
computations involving large matrix multiplication and non-linear operations.

1.1 Problem Statement

Most applications involve several sequences of function evaluations combined
through control structures. Assuring the verifiability of these applications has
to face the challenge that the functions evaluated as part of these applications
may feature computational characteristics that are too variant to be efficiently
addressed by a unique VC scheme. For instance, in the case of an application that
involves a combination of computationally intensive linear operations with simple
non-linear ones, none of the existing VC techniques would be suitable since
there is no single VC approach that can efficiently handle both. This question
is perfectly illustrated by the sample scenario described in the previous section,
namely dealing with the verifiability of Neural Network Algorithms, which can
be viewed as a repeated sequence of a matrix product and a non-linear activation
function. For instance, a two layer neural network, denoted by g, on an input x
can be written as:

g(x) = W2 · f(W1 · x) (1)

154 J. Keuffer et al.

Here W1 and W2 are matrices and f is a non-linear function like the frequently
chosen Rectified Linear Unit (ReLU) function: x �→ max(0, x). For efficiency,
the inputs are often batched and the linear operations involved in the Neural
Network are matrix products instead of products between a vector and a matrix.
Denoting X a batch of inputs to classify, the batched version of (1) therefore is:

g(X) = W2 · f(W1 · X) (2)

In an attempt to assure the verifiability of this neural network, two alternative
VC schemes seem potentially suited: the CMT protocol [6] based on interactive
proofs and schemes deriving from Pinocchio [16]. CMT can efficiently deal with
the matrix products but problems arise when it comes to the non-linear part of
the operations since, using CMT, each function to be verified has to be repre-
sented as a layered arithmetic circuit (i.e. as an acyclic graph of computation
over a finite field with an addition or a multiplication at each node, and where
the circuit can be decomposed into layers, each gate of one layer being only con-
nected to an adjacent layer). Nevertheless the second component of the neural
network algorithm, that is, the ReLU activation function, does not lend itself
to a simple representation as a layered circuit. [6,11] have proposed solutions
to deal with non-layered circuits at the cost of very complex pre-processing,
resulting in a substantial increase in the prover’s work and the overall circuit
size. Conversely, Pinocchio-like schemes eliminate the latter problem by allowing
for efficient verification of a non-linear ReLU activation function while suffering
from excessive complexity in the generation of proofs for the products of large
matrices (benchmarks on matrix multiplication proofs can be found in [20]).

This sample scenario points to the basic limitation of existing VC schemes
in efficiently addressing the requirements of common scenarios involving several
components with divergent characteristics such as the mix of linear and non-
linear operations as part of the same application. The objective of our work
therefore is to come up with a new VC scheme that can efficiently handle these
divergent characteristics in the sub-components as part of a single VC protocol.

1.2 Idea of the Solution: Embedded Proofs

Our solution is based on a method that enables the composition of a general
purpose VC scheme suited to handle sequences of functions with one or several
specialized VC schemes that can achieve efficiency in case of a component func-
tion with excessive requirements like very large linear operations. We apply this
generic method to a pair of VC schemes, assuming that one is a general purpose
VC scheme, called GVC, like Pinocchio [16], which can efficiently assure the verifi-
ability of an application consisting of a sequence of functions, whereas the other
VC scheme, which we call EVC, assures the verifiability of a single function in a
very efficient way, like, for instance, a VC scheme that can handle large matrix
products efficiently. The main idea underlying the VC composition method is
that the verifiability of the complex operation (for which the GVC is not efficient)
is outsourced to the EVC whereas the remaining non-complex functions are all

Efficient Proof Composition for Verifiable Computation 155

t1 = f(x)
+ proof π1

t2 = g(t1)

y = h(t2)
+ proof π2

Proof that:⎧⎪⎨
⎪⎩
Verify(π1, t1, x) = 1
t2 = g(t1)
Verify(π2, y, t2) = 1

t1 , π1

t2

t3, π3

P1 (EVC1)

P2 (EVC2)

P (GVC)

Fig. 1. High level view of the embedded proofs

handled by the GVC. In order to get the verifiability of the entire application by
the GVC, instead of including the complex operation as part of the sequence of
functions handled by the GVC, this operation is separately handled by the EVC
that generates a standalone verifiability proof for that operation and the verifica-
tion of that proof is viewed as an additional function embedded in the sequence
of functions handled by the GVC. Even though the verifiability of the complex
operation by the GVC is not feasible due to its complexity, the verifiability of the
proof on this operation is feasible by the basic principle of VC, that is, because
the proof is much less complex than the operation itself.

We illustrate the VC composition method using as a running example the
Neural Network defined with formula (2) in Sect. 1.1. Here, the application con-
sists of the sequential execution of three functions f , g and h (see Fig. 1), where
f and h are not suitable to be efficiently proved using GVC while g is. Note that
we consider that g cannot be proved correct by any EVC systems or at least
not as efficiently as with the GVC system. The ultimate goal therefore is to ver-
ify y = h(g(f(x))). In our example, f : X �→ W1 · X, h : X �→ W2 · X and
g : X �→ max(0,X), where X, W1 and W2 are matrices and g applies the max
function element-wise to the input matrix X.

In order to cope with the increased complexity of f and h, we have recourse
to EVC1 and EVC2 that are specialized schemes yielding efficient proofs with such
functions. πEVC1 denotes the proof generated by EVC1 on f , πEVC2 denotes the
proof generated by EVC2 on h and ΠGVC denotes the proof generated by GVC.
For the sequential execution of functions f , g and h, denoting t1 = f(x) and
t2 = g(t1), the final proof then is:

ΠGVC

((
VerifEVC1(πEVC1 , x, t1)

?= 1
) ∧ (

g(t1)
?= t2

) ∧ (
VerifEVC2(πEVC2 , t2, y) ?= 1

))
.

(3)
Here the GVC system verifies the computation of g and the verification algo-

rithms of the EVC1 and EVC2 systems, which output 1 if the proof is accepted
and 0 otherwise. We note that this method can easily be extended to applica-
tions involving more than three functions, Sect. 3 describes the embedded proof
protocol for an arbitrary number of functions. Interestingly, various specialized
VC techniques can be selected as EVC based on their suitability to the special
functions requirements provided that:

156 J. Keuffer et al.

1. The verification algorithm of each EVC proof is compatible with the GVC
scheme.

2. The verification algorithm of each EVC proof should have much lower com-
plexity than the outsourced computations (by the basic VC advantage).

3. The EVC schemes should not be VC’s with a designated verifier but instead
publicly verifiable [8]. Indeed, since the prover of the whole computation is
the verifier of the EVC, no secret value should be shared between the prover of
the EVC and the prover of the GVC. Otherwise, a malicious prover can easily
forge a proof for EVC and break the security of the scheme.

In the sequel of this paper we present a concrete instance of our VC com-
position method using any Pinocchio-like scheme as the GVC and an efficient
interactive proof protocol, namely the Sum-Check protocol [15] as the EVC. We
further develop this instance with a Neural Network verification example.

1.3 Related Work

Verifying computation made by an untrusted party has been studied for a long
time, but protocols leading to practical implementations are recent, see [20]
and the references therein for details. Most of these proof systems build on
quadratic arithmetic programs [8] and we focus on zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs) schemes [3]. Proof composi-
tion for SNARKs have been proposed by Bitansky et al. [5] and the implemen-
tation of SNARKs recursive composition has later been proposed by Ben-Sasson
et al. in [4]. The high level idea of the latter proof system is to prove or verify
the satisfiability of an arithmetic circuit that checks the validity of the previous
proofs. Thus, the verifier should be implemented as an arithmetic circuit and
used as a sub-circuit of the next prover. However, SNARKs verifiers perform
the verification checks using an elliptic curve pairing and it is mathematically
impossible for the base field to have the same size as the elliptic curve group
order. Ben-Sasson et al. therefore propose a cycle of elliptic curves to enable
proof composition. When two such elliptic curves form a cycle, the finite field
defined by the prime divisor in the group order of the first curve is equal to the
base field (or field of definition) of the second curve and vice versa. Although
proofs can theoretically be composed as many times as desired, this method has
severe overhead. Our method has a more limited spectrum than Ben-Sasson et
al.’s but our resulting system is still general purpose and enjoys the property of
the GVC system, such as succinctness or efficiency for the prover. Furthermore,
our proposal improves the prover time, replacing a part of a computation by
sub-circuit verifying the sub-computation that can then be executed outside the
prover.

In SafetyNets [9], Ghodsi et al. build an interactive proof protocol to verify
the execution of a deep neural network on an untrusted cloud. This approach,
albeit efficient, has several disadvantages over ours. The first is that expressiv-
ity of the interactive proof protocol used in SafetyNets prevents using state of
the art activation functions such as ReLU. Indeed, Ghodsi et al. replace ReLU

Efficient Proof Composition for Verifiable Computation 157

functions by a quadratic activation function, namely x �→ x2, which squares the
input values element-wise. This solution unfortunately causes instability dur-
ing the training phase of the network compared to ReLU functions. A second
disadvantage is the impossibility for the prover to prove a non-deterministic
computation, i.e. to prove the correctness of a computation while hiding some
inputs. As a consequence, the verifier and the prover of SafetyNets have to share
the model of the neural network, namely the values of the matrices (e.g. W1 and
W2 in formula (1)). This situation is quite unusual in machine learning: since
the training of neural networks is expensive and requires a large amount of data,
powerful hardware and technical skills to obtain a classifier with good accuracy,
it is unlikely that cloud providers share their models with users. In contrast, with
our proposed method the prover could keep the model private and nonetheless
be able to produce a proof of correct execution.

1.4 Paper Organization

The rest of the paper is organized as follows: we first introduce the building
blocks required to instantiate our method in Sect. 2. Following our embedded
proof protocol, we first describe a VC scheme involving composition in Sect. 3
and then present a specialized instance of the GVC and EVC schemes to fit the
Neural Network use-case in Sect. 4. We report experimental results on the imple-
mentation of the latter scheme in Sect. 5 and conclude in Sect. 6. A security proof
of our scheme is given in Appendix A and prover’s input privacy are considered
in Appendix B.

2 Building Blocks

2.1 GVC: Verifiable Computation Based on QAPs

Quadratic Arithmetic Programs. In [8], Gennaro et al. defined Quadratic
Arithmetic Programs (QAP) as an efficient object for circuit satisfiability. The
computation to verify has first to be represented as an arithmetic circuit, from
which a QAP is computed. Using the representation based on QAPs, the cor-
rectness of the computation can be tested by a divisibility check between poly-
nomials. A cryptographic protocol enables to check the divisibility in only one
point of the polynomial and to prevent a cheating prover to build a proof of a
false statement that will be accepted.

Definition 1 (from [16]). A QAP Q over field F contains three sets of m + 1
polynomials V = {(vk(x))}, W = {(wk(x))}, Y = {(yk(x))} for k ∈ {0, . . . , m}
and a target polynomial t(x). Let F be a function that takes as input n elements
of F and outputs n′ elements and let us define N as the sum of n and n′. A
N-tuple (c1, . . . , cN) ∈ F

N is a valid assignment for function F if and only if
there exists coefficients (cN+1, . . . , cm) such that t(x) divides p(x), as follows:

p(x)=

(
v0(x)+

m∑
k=1

ck · vk(x)

)
·
(
w0(x)+

m∑
k=1

ck ·wk(x)

)
−

(
y0(x)+

m∑
k=1

ck ·yk(x)

)
.

(4)

158 J. Keuffer et al.

A QAP Q that satisfies this definition computes F . It has size m and its degree
is the degree of t(x).

In the above definition, t(x) =
∏

g∈G(x − rg), where G is the set of multiplica-
tive gates of the arithmetic circuit and each rg is an arbitrary value labeling a
multiplicative gate of the circuit. The polynomials in V, W and Y encode the
left inputs, the right inputs and the outputs for each gate respectively. By defi-
nition, if the polynomial p(x) vanishes at a value rg, p(rg) expresses the relation
between the inputs and outputs of the corresponding multiplicative gate g. An
example of a QAP construction from an arithmetic circuit is given in [16]. It is
important to note that the size of the QAP is the number of multiplicative gates
in the arithmetic circuit to verify, which also is the metric used to evaluate the
efficiency of the VC protocol.

VC Protocol. Once a QAP has been built from an arithmetic circuit, a cryp-
tographic protocol embeds it in an elliptic curve. In the verification phase, the
divisibility check along with checks to ensure the QAP has been computed with
the same coefficients ck for the V, W and Y polynomials during p’s computation
are performed with a pairing. This results in a publicly verifiable computation
scheme, as defined below.

Definition 2. Let F be a function, expressed as an arithmetic circuit over a
finite field F and λ be a security parameter.

– (EKF , V KF) ← KeyGen(1λ, F): the randomized algorithm KeyGen takes as
input a security parameter and an arithmetic circuit and produces two public
keys, an evaluation key EKF and a verification key V KF .

– (y, π) ← Prove(EKF , x): the deterministic Prove algorithm, takes as inputs
x and the evaluation key EKF and computes y = F (x) and a proof π that y
has been correctly computed.

– {0, 1} ← Verify(V KF , x, y, π): the deterministic algorithm Verify takes the
input/output (x, y) of the computation F , the proof π and the verification key
V KF and outputs 1 if y = F (x) and 0 otherwise.

Security. The desired security properties for a publicly verifiable VC scheme,
namely correctness, soundness and efficiency have been formally defined in [8].
Costs. In QAP-based protocols, the proof consists of few elliptic curve elements,
e.g. 8 group elements in Pinocchio [16] or 3 group elements in Groth’s state of
the art VC system [13]. It has constant size no matter the computation to be
verified, thus the verification is fast. In the set-up phase, the KeyGen algorithm
outputs evaluation and verification keys that depend on the function F , but
not on its inputs. The resulting model is often called pre-processing verifiable
computation. This setup phase has to be run once, the keys are reusable for
later inputs and the cost of the pre-processing is amortized over all further
computations. The bottleneck of the scheme is the prover computations: for an
arithmetic circuit of N multiplication gates, the prover has to compute O(N)
cryptographic operations and O(N log2 N) non-cryptographic operations.

Efficient Proof Composition for Verifiable Computation 159

Zero-Knowledge. QAPs also achieve the zero-knowledge property with little
overhead: the prover can randomize the proof by adding multiples of the tar-
get polynomial t(x) to hide inputs he supplied in the computation. The proof
obtained using Parno et al.’s protocol [16] or Groth’s scheme [13] is thus a zero-
knowledge Succinct Non-Interactive Argument (zk-SNARK). In the zk-SNARKs
setting, results are meaningful even if the efficiency requirement is not satisfied
since the computation could not have been performed by the verifier. Indeed,
some of the inputs are supplied by the prover and remain private, making the
computation impossible to perform by the sole verifier.

2.2 EVC: Sum-Check Protocol

The Sum-Check protocol [15] enables to prove the correctness of the sum of a
multilinear polynomial over a subcube, the protocol is a public coin interactive
proof with n rounds of interaction. Suppose that P is a polynomial with n vari-
ables defined over F

n. Using the Sum-Check protocol, a prover P can convince
a verifier V that he knows the evaluation of P over {0, 1}n, namely:

H =
∑

t1∈{0,1}

∑
t2∈{0,1}

. . .
∑

tn∈{0,1}
P (t1, . . . , tn) (5)

While a direct computation performed by the verifier would require at least
2n evaluations, the Sum-Check protocol only requires O(n) evaluations for the
verifier. P first computes P1(x) =

∑
t2∈{0,1} . . .

∑
tn∈{0,1} P (x, t2, . . . , tn) and

sends it to V, who checks if H = P1(0) + P1(1). If so, P’s claim on P1 holds,
otherwise V rejects and the protocol stops. V picks a random value r1 ∈ F and
sends it to P, who computes P2 =

∑
t3∈{0,1} . . .

∑
tn∈{0,1} P (r1, x, t3, . . . , tn).

Upon receiving P2, V checks if: P1(r1) = P2(0) + P2(1). The protocol goes on
until the nth round where V receives the value Pn(x) = P (r1, r2, . . . , rn−1, x). V
can now pick a last random field value rn and check that: Pn(rn) = P (r1, . . . , rn).
If so, V is convinced that H has been evaluated as in (5), otherwise V rejects H.
The Sum-Check protocol has the following properties:

1. The protocol is correct : if P’s claim about H is true, then V accepts with
probability 1.

2. The protocol is sound : if the claim on H is false, the probability that P can
make V accept H is bounded by nd/|F|, where n is the number of variables
and d the degree of the polynomial P .

Note that the soundness is here information theoretic: no assumption is made on
the prover power. To be able to implement the Sum-Check protocol verification
algorithm into an arithmetic circuit we need a non-interactive version of the
protocol. Indeed, QAP-based VC schemes require the complete specification of
each computation as input to the QAP generation process (see Sect. 2.1). Due to
the interactive nature of the Sum-Check protocol, the proof cannot be generated
before the actual execution of the protocol. We therefore use the Fiat-Shamir
transformation [7] to obtain a non-interactive version of the Sum-Check protocol

160 J. Keuffer et al.

that can be used as an input to GVC. In the Fiat-Shamir transformation, the
prover replaces the uniformly random challenges sent by the verifier by challenges
he computes applying a public hash function to the transcript of the protocol so
far. The prover then sends the whole protocol transcript, which can be verified
recomputing the challenges with the same hash function. This method has been
proved secure in the random oracle model [17].

2.3 Multilinear Extensions

Multilinear extensions allow to apply the Sum-Check protocol to polynomials
defined over some finite set included in the finite field where all the operations
of the protocol are performed. Thaler [18] showed how multilinear extensions
and the Sum-Check protocol can be combined to give a time-optimal proof for
matrix multiplication.

Let F be a finite field, a multilinear extension (MLE) of a function f :
{0, 1}d → F is a polynomial that agrees with f on {0, 1}d and has degree at
most 1 in each variable. Any function f : {0, 1}d → F has a unique multilinear
extension over F, which we will denote hereafter by f̃ . Using Lagrange interpo-
lation, an explicit expression of MLE can be obtained:

Lemma 1. Let f : {0, 1}d → {0, 1}. Then f̃ has the following expression:

∀(x1, . . . , xd) ∈ F
d, f̃(x1, . . . , xd) =

∑
w∈{0,1}d

f(w)χw(x1, . . . , xd) (6)

where : w = (w1, . . . , wd) and χw(x1, . . . , xd) =
d∏

i=1

(
xiwi+(1−xi)(1−wi)

)
(7)

2.4 Ajtai Hash Function

As mentioned in Sect. 1.1, our goal is to compute a proof of an expensive sub-
computation with the Sum-Check protocol and to verify that proof using the
Pinocchio protocol. The non-interactive nature of Pinocchio prevents from prov-
ing the sub-computation with an interactive protocol. As explained in Sect. 2.2,
we turn the Sum-Check protocol into a non-interactive argument using the Fiat-
Shamir transform [7]. This transformation needs a hash function to simulate the
challenges that would have been provided by the verifier. The choice of the hash
function to compute challenges in the Fiat-Shamir transformation here is crucial
because we want to verify the proof transcript inside the GVC system, which will
be instantiated with the Pinocchio protocol. This means that the computations
of the hash function have to be verified by the GVC system and that the verifi-
cation should not be more complex than the execution of the original algorithm
inside the GVC system. For instance the costs using a standard hash function such
as SHA256 would be too high: [2] reports about 27,000 multiplicative gates to

Efficient Proof Composition for Verifiable Computation 161

implement the compression function of SHA256. Instead, we choose a function
better suited for arithmetic circuits, namely the Ajtai hash function [1] that is
based on the subset sum problem as defined below:

Definition 3. Let m,n be positive integers and q a prime number. For a ran-
domly picked matrix A ∈ Z

n×m
q , the Ajtai hash Hn,m,q : {0, 1}m → Z

n
q is

defined as:
∀x ∈ {0, 1}m, Hn,m,q = A × x mod q (8)

As proved by Goldreich et al. [10], the collision resistance of the hash function
relies on the hardness of the Short Integer Solution (SIS) problem. The function
is also regular : it maps an uniform input to an uniform output. Ben-Sasson et al.
[4] noticed that the translation in arithmetic circuit is better if the parameters are
chosen to fit with the underlying field of the computations. A concrete hardness
evaluation is studied by Kosba et al. in [14]. Choosing Fp, with p ≈ 2254 to be
the field where the computations of the arithmetic circuit take place leads to the
following parameters for approximately 100 bit of security: n = 3,m = 1524, q =
p ≈ 2254. Few gates are needed to implement an arithmetic circuit for this hash
function since it involves multiplications by constants (the matrix A is public):
to hash m bits, m multiplicative gates are needed to ensure that the input vector
is binary and 3 more gates are needed to ensure that the output is the linear
combination of the input and the matrix. With the parameters selected in [14],
this means that 1527 gates are needed to hash 1524 bits.

3 Embedded Proofs

3.1 High Level Description of the Generic Protocol

Let us consider two sets of functions (fi)1≤i≤n and (gi)1≤i≤n such that the fi do
not lend themselves to an efficient verification with the GVC system whereas the
gi can be handled by the GVC system efficiently. For an input x, we denote by
y the evaluation of x by the function gn ◦ fn ◦ . . . g1 ◦ f1. In our embedded proof
protocol, each function fi is handled by a sub-prover Pi while the gi functions
are handled by the prover P. The sub-prover Pi is in charge of the efficient VC
algorithm EVCi and the prover P runs the GVC algorithm. The steps of the proof
generation are depicted in Fig. 2. Basically, each sub-prover Pi will evaluate the
function fi on a given input, produce a proof of correct evaluation using the
EVCi system and pass the output of fi and the related proof πi to P, who will
compute the next gi evaluation and pass the result to the next sub-prover Pi+1.

In the Setup phase, the verifier and the prover agree on an arithmetic circuit
which describes the computation of the functions gi along with the verification
algorithms of the proof that the functions fi were correctly computed. The pre-
processing phase of the GVC system takes the resulting circuit and outputs the
corresponding evaluation and verification keys.

In the query phase, the verifier sends the prover an input x for the com-
putation along with a random value that will be an input for the efficient sub-
provers Pi.

162 J. Keuffer et al.

Verifier

r
$←− F

VerifyGVC(πGVC, y, x, r) ?= 1

Prover
t0 := x
For i = 1, . . . , n :⎧⎪⎨
⎪⎩

t2i−1 = fi(t2i−2)
compute proof πi for t2i−1

t2i = gi(t2i−1)
t2n := y

EVCi

Compute proof πGVC that:

For i = 1, . . . , n :{
Verify(πi, t2i−1, t2i−2) = 1
t2i = gi(t2i−1)

GVC

t0, . . . , t2n
π1, . . . , πn

x, r

y, πGVC

Fig. 2. Embedded proof protocol

In the proving phase, P1 first computes t1 = f(x) and produces a proof π1

of the correctness of the computation, using the efficient proving algorithm EVC1.
The prover P then computes the value t2 = g1(t1) and passes the value t2 to P2,
who computes t3 = f2(t2) along with the proof of correctness π2, using the EVC2
proving system. The protocol proceeds until y = t2n is computed. Finally, P
provides the inputs/outputs of the computations and the intermediate proofs πi

to the GVC system and, using the evaluation key computed in the setup phase,
builds a proof πGVC that for i = 1, . . . , n:

1. the proof πi computed with the EVCi system is correct,
2. the computation t2i = gi(t2i−1) is correct.

In the verification phase, the verifier checks that y was correctly computed
using the GVC’s verification algorithm, the couple (y, πGVC) received from the
prover, and (x, r).

Recall that our goal is to gain efficiency compared with the proof generation
of the whole computation inside the GVC system. Therefore, we need proof
algorithms with a verification algorithm that can be implemented efficiently as
an arithmetic circuit and for which the running time of the verification algorithm
is lower than the one of the computation. Since the Sum-Check protocol involves
algebraic computations over a finite field, it can easily be implemented as an
arithmetic circuit and fits into our scheme.

3.2 A Protocol Instance

In this section, we specify the embedded proofs protocol in the case where fi are
matrix products fi : X �→ Wi×X and where the functions gi cannot be efficiently
verified by a VC system except by GVC. We use the Sum-Check protocol to prove
correctness of the matrix multiplications, as in [18] and any QAP-based VC
scheme as the global proof mechanism. We assume that the matrices involved in
the fi functions do not have the same sizes so there will be several instances of

Efficient Proof Composition for Verifiable Computation 163

the Sum-Check protocol. It thus makes sense to define different efficient proving
algorithms EVCi since the GVC scheme requires that the verification algorithms are
expressed as arithmetic circuits in order to generate evaluation and verification
keys for the system. As the parameters of the verification algorithms are different,
the Sum-Check verification protocols are distinct as arithmetic circuits. For the
sake of simplicity, the Wi matrices are assumed to be square matrices of size ni.
We denote di = log ni and assume that ni ≥ ni+1. We denote by H the Ajtai
hash function (see Sect. 2). The protocol between the verifier V and the prover
P, which has n sub-provers Pi is the following:

Setup:
– V and P agree on an arithmetic circuit C description for the computation.

C implements both the evaluations of the functions gi and the verification
algorithms of the Sum-Check protocols for the n matrix multiplications.

– (EKC , V KC) ← KeyGen(1λ, C)
Query

– V generates a random challenge (rL, rR) such that: (rL, rR) ∈ F
d1 × F

d1

– V sends P the tuple (X, rL, rR), where X is the input matrix.
Proof: for i = 1, . . . , n, on input (T2i−2, rL, rR),

Sub-prover Pi:
– computes the product T2i−1 = Wi × T2i−2, (denoting T0 := X)
– computes rLi

and rRi
(the di first component of rL and rR),

– computes the multilinear extension evaluation T̃2i−1(rLi
, rRi

)
– computes with serialized Sum-Check, the proof πi of Pi evaluation:

Pi(x) = W̃i(rLi
, x) · T̃2i−2(x, rRi

) where x = (x1, . . . , xdi
) ∈ F

di . (9)

– sends the tuple (T2i−2, T2i−1,Wi, πi, rLi
, rRi

) to prover P.
Prover P:

– computes T2i = gi(T2i−1) and sends (T2i, rL, rR) to sub-prover Pi+1

– receiving the inputs {(T2i−2, T2i−1,Wi, πi, rLi
, rRi

)}i=1,...,n from sub-
provers:

• Computes T̃2i−1(rLi
, rRi

).
• Parses πi as (Pi,1, ri,1, Pi,2, ri,2, . . . , Pi,d1 , ri,di

), where the proof con-
tains the coefficient of the degree two polynomials Pi,j that we denote
by (ai,j , bi,j , ci,j) if: Pi,j(x) = ai,jx

2 + bi,jx + ci,j

• Verifies πi:

∗ Checks: Pi,1(0) + Pi,1(1) ?= T̃2i−1(rLi
, rRi

)

∗ Computes: ri,1 =
(∑

j rLi
[j]

)
·
(∑

j rRi
[j]

)
∗ For j = 2, . . . , di:

· Check: Pi,j(0) + Pi,j(1) ?= Pi,j−1(ri,j−1)
· Computes: ri,j as the product of components of the Ajtai hash

function output, i.e. ri,j =
∏3

k=1 H(ai,j , bi,j , ci,j , ri,j)[k]
∗ From T2i−2 and Wi, computes the evaluated multilinear exten-

sions W̃i(rLi
, ri,1, . . . , ri,d1) and T̃2i−2(ri,1, . . . , ri,d1 , rRi

)

164 J. Keuffer et al.

∗ Checks that Pdi
(ri,di

) is the product of the multilinear extensions
W̃i(rLi

, ri,1,. . . , ri,di
) and T̃2i−2(ri,1,. . . , ri,di

, rRi
).

• Aborts if one of the previous checks fails. Otherwise, accepts T2i−1 as
the product of Wi and T2i−2.

• Repeat the above instructions until the proof πn has been verified.
• Using the GVC scheme, computes the final proof πGVC that all the EVCi

proofs πi have been verified and all the T2i values have been correctly
computed from T2i−1.

• Sends (Y, πGVC) to the Verifier.
Verification

– V computes Verify(X, rR, rL, Y, πGVC)
– If Verify fails, verifier rejects the value Y . Otherwise the value Y is

accepted as the result of: Y = gn(. . . (g2(W2(g1(W1 · X)))) . . .)

4 Embedded Proofs for Neural Networks

4.1 Motivation

In order to show the relevance of the proposed embedded proof scheme, we
apply the resulting scheme to Neural Networks (NN), which are machine learning
techniques achieving state of the art performance in various classification tasks
such as handwritten digit recognition, object or face recognition. As stated in
Sect. 1.1, a NN can be viewed as a sequence of operations, the main ones being
linear operations followed by so-called activation functions. The linear opera-
tions are modeled as matrix multiplications while the activation functions are
non-linear functions. A common activation function choice is the ReLU func-
tion defined by: x �→ max(0, x). Due to the sequential nature of NNs, a simple
solution to obtain a verifiable NN would consist of computing proofs for each
part of the NN sequence. However, this solution would degrade the verifier’s
performance, increase the communication costs and force the prover to send all
the intermediate results, revealing sensitive data such as the parameters of the
prover’s NN. On the other hand, even if it is feasible in principle to implement
the NN inside a GVC system like Pinocchio, the size of the matrices involved
in the linear operations would be an obstacle. The upper bound for the total
number of multiplications QAP-based VC schemes can support as part of one
application is estimated at 107 [19]. This threshold would be reached with a sin-
gle multiplication between two 220 × 220 matrices. In contrast, our embedded
proof protocol enables to reach much larger matrix sizes or, for a given matrix
size, to perform faster verifications of matrix multiplications.

4.2 A Verifiable Neural Network Architecture

We here describe how our proposal can provide benefits in the verification of a
neural network (NN) [12]: in the sequel, we compare the execution of a GVC
protocol on a two-layer NN with the execution of the embedded proof protocol on

Efficient Proof Composition for Verifiable Computation 165

the same NN. Since NN involve several matrix multiplications, embedded proofs
enable substantial gains, see Sect. 5.2 for implementation report. We stress that
we consider neural networks in the classification phase, which means we consider
that all the values have been set during the training phase, using an appropriate
set of labeled inputs.

The NN we verify starts with a fully connected layer combined with a ReLU
activation layer. We then apply a max pooling layer to decrease the dimensions
and finally apply another fully connected layer. The execution of the NN can be
described as: input → fc → relu → max pooling → fc .

The fully connected layer takes as input a value and performs a dot product
between this value and a parameter that can be learned. Gathering all the fully
connected layer parameters in a matrix, the operation performed on the whole
inputs is a matrix multiplication. The ReLU layer takes as input a matrix and
performs the operation x �→ max(0, x) element-wise. The max pooling layer takes
as input a matrix and return a matrix with smaller dimensions. This layer applies
a max function on sub-matrices of the input matrix, which can be considered
as sliding a window over the input matrix and taking the max of all the values
belonging to the window. The size of the window and the number of inputs
skipped between two mapping of the max function are parameters of the layer
but do not change during the training phase nor on the classification phase.
Usually a 2 × 2 window slides over the input matrix, with no overlapping over
the inputs. Therefore, the MaxPool function takes as input a matrix and outputs
a matrix which row and column size have been divided by 2. Denoting by W1

and W2 the matrices holding the parameters of the fully connected layers, X the
input matrix, and Y the output of the NN computation, the whole computation
can be described as a sequence of operations:

X → T1 = W1 ·X → T2 = ReLU(T1) → T3 = MaxPool(T2) → Y = W2 ·T3 (10)

5 Implementation and Performance Evaluation

We ran two sets of experiments to compare the cost of execution between our
embedded proof scheme and a baseline scheme using the GVC scheme. The first
set focuses only on the cost of a matrix multiplication since these are a relevant
representative of complex operations whereby the embedded proof scheme is
likely to achieve major performance gains. The second set takes into account an
entire application involving several operations including matrix multiplications,
namely a small neural network architecture.

5.1 Matrix Multiplication Benchmark

We implemented our embedded proof protocol on a 8-core machine running at
2.9 GHz with 16 GB of RAM. The GVC system is Groth’s state of the art zk-
SNARK [13] and is implemented using the libsnark library1 while the EVC
1 Libsnark, a C++ library for zkSNARK proofs, available at https://github.com/

scipr-lab/libsnark.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

166 J. Keuffer et al.

Table 1. Matrix multiplication benchmark

(a) Matrix multiplication proving time

n 16 32 64 128 256 512
Baseline (GVC only) 0.23 s 1.34 s 9.15 s 71.10 s 697.72 −
Embedded proofs 0.281 s 0.924 s 3.138 s 11.718 s 43.014 s 168.347 s
Time division 0.28|0.001 0.92|0.004 3.12|0.018 11.65|0.068 42.71|0.304 166.88|1.467

(b) Matrix multiplication key generation time

n 16 32 64 128 256 512
Baseline (GVC only) 0.28 s 1.56 s 10.50 s 76.62 s 585.21 s −
Embedded proofs 0.37 s 1.03 s 3.54 s 12.95 s 47.52 s 176.41 s

(c) Matrix multiplication key generation size

n 16 32 64 128 256 512
Baseline (GVC only) PK 508 KB 5.60 MB 26.9 MB 208 MB 1.63 GB −
Embedded proofs PK 757 kB 2.24 MB 7.87 MB 30.1 MB 118.7 MB 472 MB

Baseline (GVC only) VK 31 kB 123 kB 490 kB 1.96 MB 7.84 MB −
Embedded proofs VK 32 KB 123 KB 491 KB 1.96 MB 7.84 MB 31.36 MB

system is our own implementation of Thaler’s special purpose matrix multipli-
cation verification protocol [18] using the NTL library2.

The proving time reported in Table 1a measures the time to produce the proof
using the EVC system and to verify the result inside the GVC system. The last
row of the table breaks down the proving time into the sumcheck proof time
and the embedded proof time. We note that the sumcheck proving time brings
a very small contribution to the final proving time. For the value n = 512, the
proof using the GVC is not feasible whereas the embedded proof approach still
achieves realistic performance. Table 1b compares the key generation time using
the embedded proof system with the one using the GVC. Table 1c states the sizes
of the proving key (PK) and the verification key (VK) used in the previous sce-
narios. The embedded proof protocol provides substantial benefits: the protocol
improves the proving time as soon as the matrix has a size greater than 32× 32,
giving a proving time 7 times better for 128 × 128 matrix multiplication and
16 times better for a 256 × 256 matrix multiplication. Embedded proofs also
enable to reach higher value for matrix multiplications: we were able to perform
a multiplication proof for 512 × 512 matrices whereas the computation was not
able to terminate due to lack of RAM for the baseline system.

2 V. Shoup, NTL – A Library for Doing Number Theory, available at http://www.
shoup.net.

http://www.shoup.net
http://www.shoup.net

Efficient Proof Composition for Verifiable Computation 167

Table 2. Experiments on 2-layer networks

(a) NN-64-32

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 59 s 148 MB 490 kB 25.48 s 0.011 s
Embedded proofs 44 s 123 MB 778 kB 16.80 s 0.016 s

(b) NN-128-64

KeyGen PK size VK size Prove Verify
Baseline (GVC only) 261.9 s 701.5 MB 1.96 MB 149.5 s 0.046 s
Embedded proofs 162.7 s 490 MB 3.1 MB 66.96 s 0.067 s

5.2 Two-Layer Verifiable Neural Network Experimentations

We implemented the verification of an example of 2-layer neural network, which
can be seen as one matrix multiplication followed by the application of two non-
linear functions, namely a ReLU and a max pooling function as described in
Sect. 4. For our experiments, the max pooling layers have filters of size 2×2 and
no data overlap. Thus, setting for instance the first weight matrix to 64 × 64,
the second weight matrix size is 32 × 32; we denote by NN-64-32 such a neural
network. Table 2a reports experiments on a 2-layer neural network with a first
64 × 64 matrix product, followed by a ReLU and a max-pooling function, and
ending with a second 32×32 matrix product. Experimental times for a NN-128-
64 network (with the same architecture as above) are reported in Table 2b.

Experiments show a proving time twice better than using the baseline proving
system. The overall gain is lower than for the matrix product benchmark because
the other operations (ReLU and max pooling) are implemented the same way
for the two systems. It should be noted that the goal of the implementation
was to achieve a proof of concept for our scheme on a complete composition sce-
nario involving several functions rather than putting in evidence the performance
advantages of the scheme over the baseline, hence the particularly low size of the
matrices used in the 2-layer NN and an advantage as low as the one in Table 2a
and b. The gap between the embedded proof scheme and the baseline using a
realistic scenario with larger NN would definitely be much more significant due
to the impact of larger matrices as shown in the matrix product benchmark.

6 Conclusion

We designed an efficient verifiable computing scheme that builds on the notion of
proof composition and leverages an efficient VC scheme, namely the Sum-Check
protocol to improve the performance of a general purpose QAP-based VC proto-
col, in proving matrix multiplications. As an application, our scheme can prove
the correctness of a neural network algorithm. We implement our scheme and

168 J. Keuffer et al.

provide an evaluation of its efficiency. The security is evaluated in Appendix A.
We stress that the composition technique described in the article can be extended
using other efficient VC schemes and an arbitrary number of sequential function
evaluations, provided that they respect the requirements defined in Sect. 1.2.
Our proposal could be integrated as a sub-module in existing verifiable comput-
ing systems in order to improve their performance when verifying computations
including high complexity operations such as matrix multiplications.

Acknowledgment. The authors would like to thank Gäıd Revaud for her precious
programming assistance. This work was partly supported by the TREDISEC project
(G.A. no 644412), funded by the European Union (EU) under the Information and
Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and
innovation programme.

A Appendix: Embedded Proofs Security

Our embedded proof system has to satisfy the correctness and soundness require-
ments. Suppose that we have a GVC and n EVC systems to prove the correct com-
putation of y = gn ◦ fn ◦ . . . ◦ g1 ◦ f1(x). We will denote by EVCi, i = 1, . . . , n the
EVC systems. We also keep notations defined in Sect. 3: the value ti, i = 0, . . . , 2n
represents intermediate computation results, t2i−1 being the output of the fi

function, t2i being the output of the gi function, t0 := x and t2n = y. The
EVCi and GVC systems already satisfy the correctness and soundness require-
ments. Let denote by εGVC the soundness error of the GVC system and εEVCi the
soundness error of the EVCi system. Note that while the EVCi systems prove that
t2i−1 = fi(t2i−2) have been correctly computed, the GVC system proves the cor-
rectness of 2n computations, namely that the verification of the EVCi proofs has
passed and that the computations t2i = gi(t2i−1) are correct. Furthermore, the
GVC system proves the correct execution of the function F that takes as input
the tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n) and outputs 1 if for all i = 1, . . . , n,
VerifyEVCi(πi, t2i−1, t2i−2) = 1 and t2i = gi(t2i−1). F outputs 0 otherwise. For
convenience, we denote by compn the function gn ◦ fn ◦ . . . ◦ g1 ◦ f1.

A.1 Correctness

Theorem 1. If the EVCi and the GVC systems are correct then our embedded
proof system is correct.

Proof. Assume that the value y = compn(x) has been correctly computed. This
means that for i = 1, . . . , n, the values t2i−1 = fi(t2i−2) and t2i = gi(t2i−1) have
been correctly computed. Since the GVC system is correct, it ensures that the
function F will pass the GVC verification with probability 1, provided that its
result is correct. Now, since the EVCi systems are correct, with probability 1 we
have that: VerifyEVCi(t2i−1, t2i−2, πi) = 1.

Therefore, if y = compn(x) has been correctly computed, then the function
F will also be correctly computed and the verification of the embedded proof
system will pass with probability 1.

Efficient Proof Composition for Verifiable Computation 169

A.2 Soundness

Theorem 2. If the EVCi and the GVC systems are sound with soundness error
respectively equal to εEVCi and εGVC, then our embedded proof system is sound with
soundness error at most ε :=

∑
εEVCi + εGVC.

Proof. Assume that a p.p.t. adversary Aemb returns a cheating proof π for
a result y′ on input x, i.e. y′ �= comp(x) and π is accepted by the verifier
Vemb with probability higher than ε. We then construct an adversary B that
breaks the soundness property of either the GVC or of one of the EVC systems.
We build B as follows: Aemb interacts with the verifier Vemb of the embed-
ded system until a cheating proof is accepted. Aemb then forwards the cheating
tuple (x, y, r, (ti)i=1,...,2n, (πi)i=1,...,n) for which the proof π has been accepted.
Since y′ �= comp(x), there exists an index i ∈ {1, . . . , n} such that either
t2i−1 �= fi(t2i−2) or t2i �= gi(t2i−1). B can thus submit a cheating proof to
the GVC system or to one of the EVCi system, depending on the value of i.
Case t2i−1 �= fi(t2i−2):
By definition of the proof π, this means that the proof πi has been accepted by
the verification algorithm of EVCi implemented inside the GVC system. Aemb can
then forward to the adversary B the tuple (t2i−1, t2i−2, πi). Now if B presents
the tuple (t2i−1, t2i−2, πi) to the EVCi system, it succeeds with probability 1.
Therefore, the probability that the verifier Vemb of the embedded proof system
accepts is superior to εEVCi , which breaks the soundness property of EVCi.

Pr[Vemb accepts π] =Pr[VEVCi accepts πi | Vemb accepts π]×Pr[Vemb accepts π]
= 1 × ε � εEVCi

Case t2i �= gi(t2i−1):
This means that the proof π computed by the GVC system is accepted by Vemb

even if t2i �= gi(t2i−1) has not been correctly computed. We proceed as in the
previous case: Aemb forwards B the cheating tuple and the cheating proof π. The
tuple and the proof thus break the soundness of the GVC scheme because:

Pr[Vemb accepts π] = ε ≥ εGVC

B Appendix: Prover’s Input Privacy

B.1 Prover’s Input Privacy

The combination of the proof of knowledge and zero knowledge properties in zk-
SNARK proofs enables the prover to provide some inputs for the computation
to be proved for which no information will leak. Gennaro et al. proved in [8] that
their QAP-based protocol (see Sect. 2.1) is zero-knowledge for input provided by
the prover: there exists a simulator that could have generated a proof without
knowledge of the witness (here the input privately provided by the prover). Sub-
sequent works on QAP-based VC schemes achieve the same goal, with differences
on the cryptographic assumptions and on the flavor of zero-knowledge achieved:

170 J. Keuffer et al.

for instance Groth’s scheme [13] achieves perfect zero-knowledge at the expense
of a proof in the generic group model while Gennaro et al.’s scheme achieves
statistical zero-knowledge with a knowledge of exponent assumption.

We now sketch how the zero-knowledge property is achieved for our embed-
ded proof protocol. We first have to assume that the QAP-based VC scheme
we consider for GVC can support auxiliary inputs (as in NP statements), which
is achieved for Pinocchio [16] or Groth’s scheme [13]. Leveraging the zero-
knowledge property, the GVC prover can hide from the verifier the intermediate
results of the computation provided by the sub-provers EVCi while still allowing
the verifier to check the correctness of the final result. Therefore, the overall VC
system obtained by composing the EVC systems inside the GVC achieves zero-
knowledge: the simulator defined for the GVC system is still a valid one. Note
that even if the simulator gains knowledge of the intermediate computations
performed by sub-provers EVCi, the goal is to protect the leakage of information
from outside, namely from the verifier. In detail, keeping the notations of Fig. 2,
the verifier only knows t0, i.e. x and t2n, i.e. y, which are the inputs and outputs
of the global computation. Intermediate inputs, such as ti, i = 1, . . . , 2n − 1,
are hidden from the verifier even though they are taken into account during the
verification of the intermediate proofs by the GVC prover. Therefore, thanks to
the zk-SNARKs, the intermediate results are verified but not disclosed to the
verifier.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 99–108 (1996)

2. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy SP 2014, Berkeley, CA, USA,
18–21 May 2014, pp. 459–474 (2014)

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Symposium on Theory of Com-
puting Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 111–120
(2013). http://doi.acm.org/10.1145/2488608.2488623

6. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, 8–10 January 2012, pp. 90–112 (2012)

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
http://doi.acm.org/10.1145/2488608.2488623
https://doi.org/10.1007/3-540-47721-7_12

Efficient Proof Composition for Verifiable Computation 171

8. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

9. Ghodsi, Z., Gu, T., Garg, S.: Safetynets: verifiable execution of deep neural net-
works on an untrusted cloud. CoRR abs/1706.10268 (2017). http://arxiv.org/abs/
1706.10268

10. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Electron. Colloq. Comput. Complex. (ECCC) 3(42) (1996). http://eccc.hpi-
web.de/eccc-reports/1996/TR96-042/index.html

11. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 113–122
(2008)

12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

13. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

14. Kosba, A., et al.: C∅c∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015). http://eprint.iacr.
org/2015/1093

15. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, 22–24 October 1990, vol. I, pp. 2–10 (1990)

16. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 238–252 (2013)

17. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

18. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

19. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, 8–11 February 2015 (2015)

20. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015). http://doi.acm.org/10.1145/2641562

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
http://arxiv.org/abs/1706.10268
http://arxiv.org/abs/1706.10268
http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html
http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-662-49896-5_11
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-642-40084-1_5
http://doi.acm.org/10.1145/2641562

Hardware Security

Navigating the Samsung TrustZone and
Cache-Attacks on the Keymaster Trustlet

Ben Lapid and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
ben.lapid@gmail.com, yash@eng.tau.ac.il

Abstract. The ARM TrustZone is a security extension helping to move
the “root of trust” further away from the attacker, which is used in
recent Samsung flagship smartphones. These devices use the TrustZone
to create a Trusted Execution Environment (TEE) called a Secure World,
which runs secure processes called Trustlets. The Samsung TEE is based
on the Kinibi OS and includes cryptographic key storage and functions
inside the Keymaster trustlet.

Using static and dynamic reverse engineering techniques, we present
a critical review of Samsung’s proprietary TrustZone architecture. We
describe the major components and their interconnections, focusing on
their security aspects. During this review we identified some design
weaknesses, including one actual vulnerability. Next, we identify that
the ARM32 assembly-language AES implementation used by the Key-
master trustlet is vulnerable to cache side-channel attacks. Finally, we
demonstrate realistic cache attack artifacts on the Keymaster crypto-
graphic functions, despite the recently discovered Autolock feature on
ARM CPUs.

1 Introduction

1.1 Motivation

The ARM TrustZone [3] is a security extension helping to move the “root of
trust” further away from the attacker. TrustZone is a separate environment that
can run security dedicated functionality, parallel to the OS and separated from
it by a hardware barrier.

Recent Samsung flagship smartphones rely on Samsung’s Exynos SoC archi-
tecture cf. [28]. This architecture incorporates an ARM CPU, as well as a GPU,
memory and peripherals. The ARM cores in Exynos support the TrustZone
security extension to create Trusted Execution Environments (TEEs). On their
Exynos-based platforms, Samsung uses Trustonic’s Kinibi OS as the Secure
World kernel.

These TEEs are often used in scenarios which require a higher level of security
or privacy guarantees, such as application of cryptographic functions, secure
payments and more. Therefore, these environments present a high value target

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 175–196, 2018.
https://doi.org/10.1007/978-3-319-99073-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_9&domain=pdf

176 B. Lapid and A. Wool

for attackers. However, the security practices in these environments were not
thoroughly studied by the research community yet.

In order to support cryptographic modules, the Android OS includes a mech-
anism for handling cryptographic keys and functions called the Keystore [11].
Keystore is used for several privacy related features such as full disk encryption
and password storage. The Keystore depends on a hardware abstraction layer
module to implement the underlying key handling and cryptographic functions;
and many OEMs, including Samsung, choose to implement this module using
the TrustZone.

1.2 Related Work

Lipp et al. [16] implemented cache attack techniques to recover secret keys from
Java implementation of AES-128 on ARM processors, and exfiltrate additional
execution information. In addition they were able to monitor cache activity in
the TrustZone.

Zhang et al. [38] demonstrated a successful cache attack on a T-Table imple-
mentation of AES-128 that runs inside the TrustZone—however, their target
was a development board lacking a real Secure World OS rather than a stan-
dard device. Ryan et al. [18] demonstrated reliable cache side-channel techniques
that require loading a kernel module into the Normal World—which is disabled
or restricted to OEM-verified modules on modern devices. To our knowledge
no previous cache attacks on ARM TrustZone have been published on standard
devices using publicly available vulnerabilities.

Recently, Green et al. [14] presented AutoLock, an undocumented feature in
certain ARM CPUs which prevent eviction of cross-core cache sets. This feature
severely reduces the effectiveness of cache side-channel attacks. The authors
listed multiple CPUs that include AutoLock, and among them are the A53 and
A57 used in the device we used (Samsung Galaxy S6).

Cache side-channel attacks on AES were first demonstrated by Bernstein [5]
with the target being a remote encryption server with an x86 CPU. Osvik
et al. [25] demonstrated the Prime+Probe technique to attack a T-Table imple-
mentation of AES which resides in the Linux kernel on an x86 CPU. Xinjie
et al. [37] and Neve et al. [19] presented techniques which improve the effective-
ness of cache side-channel attacks. Spreitzer et al. [31] demonstrated a special-
ization of these attacks on misaligned T-Table implementations. Neve et al. [20]
discussed the effectiveness of these attacks on AES-256 and demonstrated a suc-
cessful specialized attack for AES-256.

Little is publicly known about the design and implementation of the propri-
etary closed-source Kinibi OS [32] used as a Secure World by Samsung.

1.3 Contributions

Our first contribution is a critical review of Samsung’s TrustZone architecture
on the Exynos SoC platform, including the Kinibi OS. Through a combination of

Navigating the Samsung TrustZone and Cache-Attacks 177

firmware disassembly, open-source code review and dynamic instrumentation of
system processes, we are able for the first time to provide a description of all the
major subsystems, with their interconnections and communication paths, of this
complex proprietary system. Our review focuses on the security aspects of the
architecture, and in particular on the Keymaster trustlet, which is responsible
for many critical cryptographic functions. During this review we identified some
design weaknesses, including one actual vulnerability.

Our next contribution is identifying that the ARM32 assembly-language AES
implementation used by the Keymaster trustlet is vulnerable to cache side-
channel attacks. We also identify that the Keymaster uses AES-256 in GCM
mode. In a separate paper [15] we show successful cache attacks against the
implementation.

Our final contribution is demonstrating realistic cache attack artifacts on
the Keymaster cryptographic functions embedded in the Secure World and pro-
tected by the ARM TrustZone architecture. Contrary to prior assumptions, we
found that the cache is not flushed upon entry to the Secure World. On the
other hand, the recently discovered “AutoLock” ARM feature is a serious limi-
tation. Nonetheless, we are able to successfully demonstrate cache side-channel
effects on “World Shared Memory” buffers, and we show compelling evidence
that full-blown cache attacks against the AES implementation inside the Key-
master trustlet are plausible.

Organization: In the next section we introduce some background about the
ARM TrustZone and its use in Android. Section 3 describes our discoveries about
the Exynos secure boot and the Kinibi secure OS. Section 4 describes the Nor-
mal World components interfacing with the secure OS. Section 5 describes our
achievements in mounting cache attacks against the Keymaster trustlet, and we
conclude with Sect. 6.

2 Preliminaries

2.1 ARM TrustZone Overview

ARM TrustZone security extensions [4] enable a processor to run in two states,
called Normal World and Secure World. This architecture extends the concept
of “privilege rings” and adds another dimension to it. In the ARMv8 ISA, these
rings are called “Exception Levels” (ELs). The most privileged mode is the
“Secure Monitor” which runs in EL3 and sits “above” the Secure and Normal
Worlds. In the Secure World, the Secure OS kernel runs in EL1 and the Secure
userspace runs in EL0. In the Normal World, an optional hypervisor may be
run in EL2, the Normal OS kernel runs in EL1 and the Normal userspace runs
in EL0. On the Galaxy S6 there is no hypervisor, and the Normal World OS is
Android.

The separation of Secure and Normal World means that certain RAM ranges
and bus peripherals may be indicated as “secure” and only be accessed by the
Secure World. This means that compromised Normal World code (in userspace,

178 B. Lapid and A. Wool

kernel or hypervisor) will not be able to access these memory ranges or devices
and thus pose a threat to them as well.

To allow a controlled method of passing information between the worlds, a
mechanism called “World Shared Memory” allows memory pages to be accessible
by both worlds. These physical memory pages reside in the Normal World, and
the Secure World maps them into its processes’ virtual memory as needed.

Additionally, communication may be initiated between worlds by means of
SMC calls. SMC calls are basically “system calls” made by a kernel in EL1 or
EL2 (either Secure or Normal) to the EL3 “Secure Monitor”. These SMCs, use
the “Secure Monitor” to pass information between the worlds. In particular, a
common SMC is used by one world to notify the other of pending work; such
SMC is implemented in the “Secure Monitor” by triggering a software interrupt
in the other world. Note that ARM CPUs also have SVC calls: regular system
calls from EL0 to EL1 within the same world.

It is important to note that the world separation is completely “virtual”.
The same cores are used to run both Secure and Normal Worlds and they use
the same RAM. Therefore, they use the same cache used by the core to improve
memory access times; as we shall see in Sect. 5.3, this design decision may be
used to mount cache side-channel attacks.

2.2 TrustZone Usage in Android

In the Samsung/Android ecosystem, there are two major players in field of Trust-
Zone implementations. One is Qualcomm, with the QSEE operating system [27]
which is compatible with the Snapdragon SoC architecture used on many Sam-
sung devices. The other is Trustonic, with the Kinibi operating system [32] which
is used by Samsung in their popular Exynos SoC architecture as a part of the
KNOX security system [29].

These Trusted Execution Environments (TEEs) are used for various activi-
ties within the smart device: Secure boot (see Sect. 3), Keymaster implementa-
tion (see Sect. 4.4), secure UI, kernel protections, secure payments, digital rights
management (DRM) and more. Because their usage is often linked to security
of privacy-critical applications, they are a high-value target. In our research we
focused on the Trusted Execution Environment present in Samsung’s Exynos
SoC (in particular in Samsung’s Galaxy S6): Secure Boot, Trustonic’s Kinibi
OS, Trusted Drivers and Trustlets.

2.3 Attack Model

The fundamental reason for the existence of the TrustZone is to provide a
hardware-based root of trust for a trusted execution environment (TEE)—that
is designed to resist even a compromised Normal World kernel.

Since the Normal World kernel, and all the kernel modules on Samsung’s
smartphones are signed by Samsung and verified before being loaded, injecting
code into the kernel is challenging for the attacker. Our goal in this work is

Navigating the Samsung TrustZone and Cache-Attacks 179

to demonstrate that weaker attacks, that do not require a compromised kernel,
are sufficient to exfiltrate Secure World information—in particular secret key
material.

In our attack mode we assume an attacker is able to execute code on a
Samsung Galaxy S6 device, under root privileges and relevant SELinux per-
missions. Note that these privileges are significantly less than kernel privileges,
since the attack code runs in EL0.

Root privileges are needed to access the /proc/self/pagemap to identify cache
sets, as described by Lipp et al. [16]. Our attack can theoretically be mounted
without access to this file, but it will be substantially more difficult. SELinux
permissions are needed to connect to the mcDriverDaemon process (see Sect. 4.2)
through the Unix domain socket, and to access the /dev/mobicore device (see
Sect. 4.1), as Samsung’s Keymaster HAL module uses these interfaces to load
and communicate with the trustlet (see Sect. 4.4).

To achieve root privileges and the necessary SELinux permissions in our
investigation we used the publicly known vulnerability called dirtycow. The root-
ing process is based on Trident [6], which uses dirtycow.

3 The Exynos Secure World Components

In our research we explored the inner workings of the trusted execution envi-
ronment implemented in Samsung’s Exynos SoC platform [28]. This platform is
present in many of its flagship phones; of which we focused on the Galaxy S6.
Several security researchers have previously presented different pieces of infor-
mation about the TEE in this environment, but to our knowledge there is no
publication which covers the TEE in a systematic manner. This section describes
our findings regarding the platform’s Secure Boot mechanism (which includes a
series of bootloaders, the trusted OS and several trustlets). In Sect. 4 we describe
how the Normal World OS (Android Linux) communicates with the secure OS.

Secure Boot (sboot). We started our exploration by reverse-engineering
firmware images for the Galaxy S6 smartphone. We observed that these images
contain several distinct files, including the Android Linux image, the system
partition, the Secure Boot partition and more. Samsung does not provide much
information about the Secure Boot apart from one short page [29]. According
to that page, the boot process consists of a chain of bootloaders, starting with
a primary bootloader which resides in read only memory, and each link of the
chain verifies the next bootloader. Hence the remainder of this section is based
on our own discoveries.

The Secure Boot partition lies within the sboot.bin file, of size 1.6 MB. Open-
ing the file with a disassembler reveals several distinct parts. All of the parts
seem to include a code segment and data segment, some are in ARM64 and some
are in ARM Thumb mode. In our research we identified them as follows:

180 B. Lapid and A. Wool

– EL3 bootloader and Monitor Code (SMC handler) (ARM64).
– Normal World bootloader (ARM64).
– The Kinibi Secure World operating system (ARM Thumb), which contains:

the OS itself, Trustlet and Driver API library and what appears to be an
init-like first user-land process.

– Three Secure World Drivers: SecDrv, Crypto Driver and STH Driver (ARM
Thumb).

The EL3 Monitor. The first part in sboot.bin contains instructions which
are reserved for EL3 execution only, such as setting the interrupt vector base
and several other ARM special registers. While reverse-engineering this part,
we found many similarities with ARM’s reference implementation of TrustZone
boot sequence. This lead us to conclude that the responsibilities of this part are:
Architectural initialization, Platform initialization, Runtime services initializa-
tion and Normal World bootloader execution (See the ARM reference documents
[1]).

Based on [21], we found that the registered runtime services (rt svc desc t
array [2]) gives us insight into what functionality is made available by the monitor
code which runs in EL3.

It is important to note that the EL3 monitor binary is verified by an earlier
bootloader and is responsible for verifying the binaries of the parts it loads: the
Normal World bootloader and the secure OS.

The Normal World Bootloader. The second part we found in sboot.bin
is the Normal World bootloader. This part runs in Normal World EL1 and
has several responsibilities: booting the Android Linux kernel (after verifying
its binary), requesting secure OS initialization from the monitor code, handling
firmware flash requests (“Download mode”), handling “Recovery mode” requests
and presenting relevant user interfaces for these modes. This part executes only
on device start-up and therefore was less interesting to us. Others [8,21] have
presented their research on this part.

The Kinibi Secure Operating System. The third part we found in sboot.bin
is the Kinibi secure operating system which includes the OS, a user-space API
library and an init-like user-space process. For the Exynos platform, Samsung
has chosen to use Trustonic’s Kinibi [32] as the base of their trusted execu-
tion environment. Note that Kinibi was previously called t-base or MobiCore;
much of the internal naming still uses the “mobicore” name: e.g., the device
/dev/mobicore etc. Hence when we discuss the Kinibi internals we often use the
name mobicore.

Surprisingly, we found that the binary code for the operating system runs
in Thumb (32bit) mode even though the platform has a 64bit processor. Fur-
thermore, we found that while the Kinibi OS is protected by the TrustZone
architecture, internally it does not protect itself very well. Lacking were defenses

Navigating the Samsung TrustZone and Cache-Attacks 181

such as Address Space Randomization (ASLR), non-executable (NX) stack, or
stack canaries, which are all present in stock Android since version 4.0. Our
observations about the Kinibi OS are as follows:

– Privileges are separated to: OS code—which runs in Secure World EL1;
Trusted Applications (or Trustlets)—which run in Secure World EL0 as pro-
cesses and have access to a limited set of system calls; and Drivers—which
run in Secure World EL0 and have access to a broader set of system calls.

– Kinibi supports processes and virtual memory isolation. In addition, Drivers
may spawn additional threads.

– Kinibi uses a priority based scheduler. Time quanta are made available by
having the Normal World issue specific SMCs which are transfered to the
Secure World OS. Without them, the secure OS would not run at all. Two
methods of entry are available after initialization: SIQ - which signals the
Kinibi OS that an interrupt (or an asynchronous notification) was issued by
the Normal World and needs to be handled; and Yield - which means the
secure OS may continue any work it chooses.

– Processes may request memory allocation. Furthermore, Drivers may request
memory mapping to physical memory for integration with platform devices.

– Kinibi supports World Shared Memory for communication between Normal
World and the Secure World—recall Sect. 2.1. In particular, Kinibi uses World
Shared Memory to define the TCI (Trustlet Connector Interface) memory,
which plays an important part of our research, see Sect. 5.3.

– Kinibi supports inter (secure)-process RPC-like communication. Trustlets
may send requests to Drivers and receive responses via a message queue.
Requests and responses are routed by an IPCH (covered below) which receives
the requests from Trustlets and routes them to Drivers and vice versa.
Furthermore, a notification system is supported which allows Drivers and
Trustlets to wait until the Normal World has issued them a notification.

– Kinibi supports a circular buffer logging mechanism which can be read by the
Normal World.

It is important to note that Kinibi OS is bound to a specific CPU core (which
can be changed at runtime), and discards interrupts issued on other cores: On
our device, Kinibi boots on core 0 and is later switched by default to core 1.

Analyzing the Kinibi OS reveals several distinct segments: (i) the interrupt
vector base, interrupt handlers and the OS kernel initialization code; (ii) a user-
space code which appears to be a shared library that is injected into Trustlets
and Drivers and presents an interface to the OS. (iii) the rest of the OS kernel
code; and (iv) an init-like secure-world user-land process which is spawned at
OS kernel initialization. We omit the details.

Kinibi Drivers. The fourth part of sboot.bin consists of three Secure World
Drivers: SecDrv, Crypto Driver and STH Driver. We note that the crypto driver
implements various cryptographic functions over an IPC mechanism—however
the Keymaster trustlet we discuss in Sect. 4.4 includes its own cryptographic
implementations. We omit the details.

182 B. Lapid and A. Wool

Fig. 1. Secure World/Normal World layering around the Keymaster trustlet. TCI
stands for Trustlet Connector Interface, SIQ for Software Interrupt Queue. The num-
bers in parenthesis mark the actions illustrated in Appendix A.

4 The Exynos Normal World Components

In this section we explore the way the Normal World communicates with the
Secure World and what APIs are made available to Android applications. We
start by describing the MobiCore kernel module which implements the inter-
face between the Secure World and Normal World users (other kernel modules
and user-land processes). We then present our findings on the user-land pro-
cess mcDriverDaemon and Samsung’s implementation of the Keymaster HAL
interface (see Fig. 1 as reference). In Appendix A we present an example of com-
munication between the Normal World and the Secure World and trace the
execution path between them.

4.1 The MobiCore Kernel Module

The MobiCore kernel module is statically linked into the Android Linux kernel
image and is initialized on kernel startup. The module is licensed under “GPL
V2” and therefore is open-source (source code can be found under many Android
Kernel tree publications such as [9]). By reading the source code one can see that
the module’s responsibilities are:

– Register device files (/dev/mobicore and /dev/mobicore-user) which allow
user-space programs to interact with the driver (through ioctl, read and mmap
syscalls). The mobicore-user device is used by user-land processes that wish
to interact with the kernel module, and exposes a limited set of APIs (only
mapping and registration of World Shared Memory). The mobicore device
is used only by the mcDriverDaemon, is considered the admin device and
allows for broader functionality such as: Initializing the MCI shared memory

Navigating the Samsung TrustZone and Cache-Attacks 183

(discussed in Sect. 4.2), issuing Yield or SIQ SMC calls, locking shared mem-
ory mappings and receiving notifications of interrupts from the Secure World
OS. It is important to note that only one process may open the mobicore
device at any point in time: if another process tries to open it, an error will
be returned. Usually, the mcDriverDaemon opens this device first; however,
if the mcDriverDaemon process dies for any reason, the next process to open
the mobicore device will receive admin status as far as the kernel module
is concerned. This means that an attacker within our attack model (recall
Sect. 2.3) can hijack the mobicore device and act as the admin.

– Register an interrupt handler which receives completion notifications from the
Secure World OS. These notifications are forwarded to the active daemon.

– In order to trigger interrupts to the right core (so that Kinibi OS will not
discard them), the kernel module starts a dedicated thread which is bound
to the core on which the Kinibi OS is running. This thread issues SMC calls
requested by other processes.

– Perform additional tasks such as initializing and periodically reading log
messages from the Secure World (via a work queue and a dedicated kernel
thread), migrating the Secure OS to different CPU cores if needed, manag-
ing the World Shared Memory buffers that were registered by the Normal
World, handling power management notifications, and suspending/resuming
the Secure OS as needed.

4.2 The mcDriverDaemon Process

The mcDriverDaemon binary is located within the system partition of the
device’s firmware under /system/bin/mcDriverDaemon. A version of the dae-
mon source code is available online [36], however we noticed some discrepancies
between the online version and the binary on our device (the device probably
has a newer version). The binary is executed by init at system startup; it imme-
diately opens the /dev/mobicore device and receives admin status. We analyzed
this daemon by conducting both static analysis (reading the source code) and
dynamic analysis: We killed the original daemon and quickly executed it from
a root shell with a LD PRELOAD directive. This directive injected our library
(which is based on ldpreloadhook [26]) into the process and allowed us to hook
libc functions which the daemon is using. These hooks gave us execution traces
and raw parameters used by the running daemon, and helped us understand its
inner workings. By this method, we identified the following responsibilities:

– Initialize the MobiCore Communication Interface (MCI) through the Mobi-
Core kernel module. This maps a virtual address range in the daemon’s mem-
ory to a World Shared Memory which is accessible to the Secure OS (in
particular to the secure init-like process). As mentioned above, this allows
the daemon to access the Secure OS API: Opening/Closing Trustlets, Map
and Unmap World Shared Memory, Suspend and Resume the Secure OS and
more.

– Periodically allow the Secure OS time quanta by calling the Yield or SIQ ioctl
which the kernel module implements as SMC calls.

184 B. Lapid and A. Wool

– Create and listen on netlink and abstract unix domain (“#mcdaemon”) sock-
ets as servers which act as an interface for other user-land processes. This
interface has a defined protocol [34] for serializing requests and responses
and implements the following API: General information requests, Open/Close
TrustZone device, Open/Close Trustlets (via UUID or sent data), send a
Notification to trustlets and register World Shared Memory with Trustlets.
A client library is available [33] for other processes to easily use.

– The mcDriverDaemon creates an instance of the File System Daemon [35]
(we omit the details).

In particular, when handling openSession commands from Normal World clients
the command receives the Trustlet UUID as an argument. The mcDriverDaemon
then looks for the correct Trustlet to load in the Normal World file system. The
daemon has two locations it looks in: /system/app/mcRegistry (which is a read-
only partition and verified at boot by dm-verity) and /data/app/mcRegistry
(which is a read-write partition). This request is then passed to the Secure
OS which (as mentioned in Sect. 3) verifies the Trustlet’s binary structure and
signature before loading it into the Secure World.

The ability to load files from the read-write partition was previously exploited
[7] to load old versions of trustlets which had vulnerabilities in them; thereby
“bringing the attack surface to the device”.

4.3 Keystore and Keymaster Hardware Abstraction Layer (HAL)

The Android Keystore system [11], which was introduced in Android 4.3, allows
applications to create, store and use cryptographic keys while attempting to
make the keys themselves hard to extract from the device. The documentation
advertises the following security features:

– Extraction Prevention: The keys themselves are never present in the applica-
tion’s memory space. The applications only know of key-blobs which cannot
be used by themselves. The key-blobs are usually the keys packed with extra
meta-data and encrypted with a secret key by the Keymaster HAL. In the
Samsung implementation we explored, the keys are bound to the secure hard-
ware controlled by the Kinibi OS, which makes them even harder to extract:
the keys themselves never leave the secure hardware unencrypted.

– Key Use Authorizations: The Keystore system allows the application to place
restrictions on the generated keys to mitigate the possibility of unauthorized
use. Restrictions include the choice of algorithms, padding schemes, and block
modes, the temporal validity of the key, or requiring the user to be authenti-
cated for the key to be used.

The Keystore system is implemented in the keystored daemon [12], which exposes
a binder interface that consists of many key management and cryptographic
functions. Under the hood, the keystored holds the following responsibilities:

– Expose the binder interface, listen and respond to requests made by applica-
tions.

Navigating the Samsung TrustZone and Cache-Attacks 185

– Manage the application keys. The daemon creates a directory on the filesys-
tem for each application; the key-blobs are stored in files in the application’s
directory. Each key-blob file is encrypted with a key-blob encryption key (dif-
ferent per application) which is saved as the masterkey in the application’s
directory. The masterkey file itself is encrypted when the device is locked,
and the encryption employs the user’s password and a randomly generated
salt to derive the masterkey encryption key.

– Relay cryptographic function calls to the Keymaster HAL device (covered
below).

The Keymaster hardware abstraction layer (HAL) [10] is an interface between
Android’s keystored and the OEM implementation of a secure-hardware-backed
cryptographic module. It requires the OEM to implement several cryptographic
functions such as: key generation, init/update/final methods for various cryp-
tographic primitives (public key encryption, symmetric key encryption, and
HMAC), key import, public key export and general information requests. The
implementation is a library that exports these functions and is implemented by
relaying the request to the secure hardware runtime. The secure runtime usually
encrypts generated keys with some key-encryption key (which is usually derived
by a hardware-backed mechanism). Therefore, the non-secure runtime does not
know the actual key that is used, but may still save it in the filesystem and
subsequently use it through the Keymaster to invoke cryptographic functions
with the key. In practice - this is exactly how the keystored daemon uses the
Keymaster HAL (with the aforementioned addition of an additional encryption
of the key blobs).

An example of the usage of the Keymaster HAL is the Android Full Disk
Encryption feature, implemented by the userspace daemon vold [13], which uses
the Keymaster HAL as part of the key derivation.

4.4 Samsung’s Keymaster HAL and Trustlet

Samsung’s Keymaster HAL library exposes the aforementioned Keymas-
ter interface and implements its functions by making calls to the Key-
master trustlet (through mcDriverDaemon). The trustlet itself has UUID:
ffffffff00000000000000000000003e, and is located in the system partition (/sys-
tem/app/mcRegistry/<UUID>.tlbin). The Trustlet code handles the following
tasks:

– Listen to various requests that are sent over the World Shared Memory and
handle them.

– Key generation of RSA/EC, AES and HMAC keys. Keys are generated
using random bytes from the OpenSSL FIPS DRBG module, which seeds its
entropy either from keymaster add rng entropy calls from the Normal World
or from a secure PRNG made available by the Secure World Crypto Driver.
Key generation requests receive a list of key characteristics (as defined by
the Keymaster HAL), which describe the algorithm, padding, block mode

186 B. Lapid and A. Wool

and other restrictions on the key. The generated keys (concatenated with
their characteristics) are encrypted by a key-encryption key (KEK) which is
unique to the Keymaster trustlet. The trustlet receives this key by making
an IPC request along with a constant salt to a driver which uses a hardware-
based cryptographic function to drive the key. The encryption used for key
encryption is AES256-GCM128. The GCM IV and authentication tag are
concatenated to the encrypted key before being returned to the user as a key
blob. Therefore, an attacker that is able to obtain this KEK is able to decrypt
all the key blobs stored in the file system—i.e., the KEK can be viewed as
the “key to the kingdom”, and is our target in the attacks in Sect. 5.

– Execution of cryptographic functions. The trustlet can handle begin/update/
final requests for given keys created by the trustlet. It first decrypts the key-
blobs and verifies the authentication tag, then verifies that the key (and the
trustlet) supports the requested operation, and then executes it. The crypto-
graphic functions are implemented using the OpenSSL FIPS Object Module
[24]. In particular, we discovered that the AES code is a pure ARMv4 assem-
bly implementation that uses a single 1KB T-Table. In general, AES imple-
mentations based on T-Tables are vulnerable to cache attacks [25]. However,
as we shall see in Sect. 5, mounting the attack in practice is not trivial.

– The trustlet handles requests for key characteristics and requests for informa-
tion on supported algorithms, block modes, padding schemes, digest modes
and import/export formats.

Leaking the KEK Through Vulnerabilities in Other Trustlets. One of
the many trustlets created by Samsung to provide secure computations to devices
is the OTP trustlet. This trustlet implements a mechanism which creates One
Time Passwords on the device. Exploiting a vulnerability in the OTP trustlet
discovered by Beniamini [7], we were able to recover the Keymaster KEK. The
OTP vulnerability gives us the ability to read and write 4-byte words into arbi-
trary OTP trustlet memory and branch execution to arbitrary OTP trustlet
code. We used these primitives to imitate the way the Keymaster trustlet makes
a request to derive the KEK: use the write primitive to fill the request struct and
the fixed Keymaster salt (which we discovered via disassembly) into the OTP
trustlet memory, then used the branch primitive to call a specific trustlet API
function which is available on both the OTP and Keymaster code, and finally
we used the read primitive to read the result—the KEK.

We argue that another trustlet’s ability to imitate the Keymaster request
and receive its KEK is a vulnerability in the API design and, in particular, in
the driver that implements this request. Due to the lack of even basic mitigation
techniques (ASLR, stack canaries, etc.) in the Kinibi OS and userspace, we
believe more vulnerabilities may well be discovered in trustlets in the future.
Therefore, critical keys, such as the Keymaster KEK, should be more protected.
We propose a simple countermeasure: Have the handler of the key derivation
IPC request concatenate the client UUID to the salt; this will prevent different

Navigating the Samsung TrustZone and Cache-Attacks 187

trustlets from deriving the same keys, and then a compromised trustlet will not
immediately compromise the Keymaster KEK.

This vulnerability was reported to Samsung (CVE-2018-8774, SVE-2018-
11792) on February 2018 and was labeled by Samsung as a “critical vulnera-
bility.” It was patched in Samsung’s Android security update [30] in June 2018.
In Sect. 5 we discuss an attack which aims at recovering the Keymaster key via
a cache side-channel without relying on other trustlets being compromised.

5 Attacking the Keymaster Trustlet

Since Secure World computations (such as the AES implementation in the Key-
master trustlet) use the same cache as the Normal World, it is theoretically
possible to mount cache attacks against the Secure World. Lipp et al. [16] sug-
gested that the Samsung Galaxy S6 (which is built on the Exynos platform)
flushes the cache when entering the TrustZone, thereby making the attack much
more difficult. In contrast, we did not see any cache flushing operations when
entering the TrustZone: none were present in the sources we reviewed or binaries
we disassembled. Moreover, as we shall see, we were able to reliably infer execu-
tion information of Trustlets through cache side-channel artifacts. However, we
encountered other hurdles. In this section we will discuss our proposed attack
model, method and results.

5.1 The Target of the Attack

In our research we focused on recovery of the Keymaster KEK. Recovering
this key would lead to compromise of all past, present and future Keystore
keys and data encrypted by these keys on the device on which the attack was
mounted on. The trustlet uses this key in several request handlers, which include:
key generation, begin operation on keys and get key characterstics. Of these
three, get key characterstics does the least amount work that’s not related to
key encryption; therefore we focused on this request. The request receives a
buffer which should hold a key blob that consists of the encrypted key bytes and
key characteristics followed by an IV and GCM authentication tag; the trustlet
returns the key characteristics serialized in a buffer. Valid key blobs often include
over 100 bytes of encrypted data (e.g., 32 key bytes of a stored AES-256 plus
many required key characteristics), therefore the request uses the AES-256 block
function at least 9 times (2 for initialization and at least 7 subsequent blocks).
If we measure cache access effects only after the trustlet completes its work, the
9 block function invocations will induce too much noise and render our attacks
infeasible. Therefore, instead we send invalid requests: having the key blob hold
just one byte, a random IV, and zeros for the authentication tag. Such requests
induce the two block function calls for initialization, and a single additional call
to decrypt the single byte. The request then fails, therefore we do not have access
to any ciphertext; but possibly, side-channel information may leak.

188 B. Lapid and A. Wool

5.2 Challenges in Mounting the Attack

In our attempts at mounting the attack we encountered three major difficulties:
(i) finding the cache sets which correspond to the trustlet’s T-Table memory,
(ii) Keymaster request execution times, (iii) facing AutoLock [14] behavior.

Searching for the T-Table. Before a cache attack can be mounted, the cache
sets which correspond to the T-Table need to be identified. Our research suggests
that the secure OS usually resides in either core 0 or 1 - both of them in the
A53 CPU. The A53 CPU in the Galaxy S6 has a 256 KB L2 cache, with 64 byte
cache lines and 16-way associativity; this means it has 256 different cache sets
(8 bits used in set addressing). The index of a cache set is determined by the
physical address of the memory which is being accessed. Because the cache lines
are 64 bytes long, the 6 least significant bits are not used in the index calculation.
Therefore the index calculation uses bits 6 through 13 of the address.

The T-Table used in the AES implementation inside the Keymaster trustlet
is 256 4-byte entries long. We also know (through analysis of the trustlet binary)
that the T-Table resides at virtual address 0x364c8, so it is misaligned by 8
bytes, which means the T-Table spans 17 cache sets. We learn two things from
this information: (a) the entire T-Table resides in a single page of memory and
(b) that it starts at an offset of 0x4c8 inside the page. Knowing that the entire
table resides in a single page ensures that its cache set indexes are contiguous
(if it had spanned two pages, those pages could have been mapped to different
physical pages, resulting in a potential discontinuity).

These points allow us to narrow down the possible cache set containing the
beginning of the T-Table down to 4 options: Recall that the cache set index
calculations use bits 6 through 13 of the physical address. The in-page offset
(bits 0 through 11) of the physical address are equal to those in the virtual
address, which we have. Therefore, only bits 12 and 13 remain unknown and the
only candidates for the cache set index are: {19, 83, 147, 211}. Because we know
the T-Table cache sets are contiguous, knowing the beginning cache set should
give us complete information about the indexes of all the other sets.

A Synchronous Attack. Our initial attempts at discovering the T-Table loca-
tion in the cache followed the synchronous attack model described by Osvik
et al. [25]: prime the cache set candidates, call the AES encryption operation
and then probe these cache sets and take measurements of the time it took
to access them. Unfortunately, these measurements were too noisy. We noticed
that the time it takes for the requests to complete is very long: 5–10 ms; this is
enough time for many other processes to cause cache activity which taints our
measurements.

An Asynchronous Attack. We then attempted to implement an asynchronous
attack model. This technique primes and probes the cache sets in a loop on a

Navigating the Samsung TrustZone and Cache-Attacks 189

different core than the one which runs the secure OS. However, these measure-
ments were not helpful either: the 17 contiguous cache sets following the result
of the measurements did not present activity as expected of a T-Table. We
believe the AutoLock feature described by Green et al. [14], is preventing us
from making correct measurements with this approach since it blocks evictions
that are induced by cache activity on a different core. Therefore, both attacks
we described in this section failed to detect cache access effects that reveal the
true cache set index of the T-Table.

5.3 Tracing Trustlet Execution Using Flush+Reload

Lipp et al. [16] also suggested using a Flush+Reload attack on ARM CPUs [16],
which allows cache side-channel leakage of accesses of other processes to shared
memory. While this attack is less relevant to leak information on the trustlet’s
T-Table, it is relevant to the “TCI memory”. TCI memory is World Shared
Memory which is accessible by both the Secure World and the Normal World. It
is, in fact, a physical memory range which is mapped to virtual addresses in both
the Normal World and the Secure World. Because the same underlying physical
memory is shared, the Flush+Reload attack is relevant in leaking information
about accesses to this memory by the Secure World.

Our disassembly of the Keymaster trustlet binary code points to three dis-
tinct World Shared Memory regions which are used by the trustlet. The first
is the TCI memory itself, which contains the request identifier and pointers to
two additional World Shared Memory buffers; the other two are the input buffer
(filled by the Normal World) and the output buffer (filled by the Secure World).
Upon receiving notifications of a pending request, the trustlet accesses the TCI
memory, copies the relevant information from the input buffer to private memory,
executes the request, if the request was successful it fills the output buffer, and
finally fills the return code in the TCI memory. Therefore, by monitoring these
three addresses with the Flush+Reload technique, we expect to see the follow-
ing hit pattern: TCI → Input → Output(if successful) → TCI. Note that this
pattern leaks fairly precise timing information about when the cryptographic
operations take place within the 5–10 ms the request takes to complete: AES
invocations occur after the input buffer is accessed and before the output buffer
is accessed (or before the second TCI access on error).

Indeed, using this method we were able to recover timestamps of these events.
Figure 2 shows multiple sets of timestamps recovered through this method. In the
scenario illustrated by the figure we sent malformed requests and detected three
events: 1st TCI access, Input access and finally a 2nd TCI access. Figure 2 shows
the 1st TCI accesses (blue asterisks) happen around 2.5 ms into the measurement.
This is followed by the Input access (red dots) about 1.5 ms later—we believe
the delay is caused by the IPC requests the trustlet makes before handling the
incoming request. Finally, about 30µs after the Input access, we see the 2nd TCI
access (black crosses). During this 30µs period the encryption, along with the
rest of the handler logic, takes place.

190 B. Lapid and A. Wool

Fig. 2. Keymaster trustlet world shared memory (WSM) access timings (Color figure
online)

These results strengthen our belief that leaking information from the Secure
World is indeed possible through cache side-channel attacks.

5.4 Designing an Improved Attack

Moghimi et al. [17] demonstrated CacheZoom, an attack on Intel’s secure exe-
cution environment - SGX. They use kernel mode privileges to trigger multiple
clock interrupts while a secured computation is executed; these interrupts pause
the secure execution and pass control to their kernel code which performs cache
measurements with high temporal resolution - resulting in overall high resolution
for the attack.

A similar attack is theoretically possible on ARM CPUs, since it would not be
susceptible to AutoLock restrictions if it runs on the same core as the secure code.
However, the attack as described requires running kernel code, which is outside
our attack model (Sect. 2.3). As stated before, running kernel code is extremely
difficult on modern devices since loading kernel modules is either disabled or
requires OEM signatures. Therefore, we attempted to create an attack that tries
to imitate CacheZoom without running kernel code.

We began by binding a single thread to the core which runs the Kinibi OS
and let the thread run in a loop that measures time differences between itera-
tions. As long as there is no work pending for the TrustZone, the Kinibi OS does
not receive many execution time slices, and so our thread measures small time
differences between iterations (under a microsecond). However, when requests
are made to the secure OS, we notice considerably higher measurements. Usu-
ally these measurements are single gaps of hundreds of microseconds to several

Navigating the Samsung TrustZone and Cache-Attacks 191

Fig. 3. Kinibi interrupted - measurements from the Normal World. Top: histogram of
time difference between successive loop iterations where the difference exceeds 50µs.
Bottom: histogram of number of fragments per TrustZone call.

milliseconds—see Fig. 3 (top). This means that our thread is interrupted and
the Secure World is scheduled.

Interestingly, on some occasions we observed more than one “gap fragment”
per request; we believe this means that while the Secure World was running, a
Normal World interrupt switched to the Linux kernel for handling that interrupt.
After handling that interrupt, regular Linux scheduling took place, which first
gave our iterating thread a time slice. Some time later, our thread was preempted
by the kernel and execution was passed to the kernel thread which is responsible
for translating Yield or SIQ requests from the mcDriverDaemon (which are
periodically queued) to SMC calls. This kernel thread runs on the same core
that the secure OS runs on (the secure OS rejects running interrupt handlers
on other cores) and therefore our looping thread only resumes after the Secure
World work was done or another interrupt is triggered on our core.

192 B. Lapid and A. Wool

In Fig. 3 (bottom) we present the results mentioned above. The figure shows a
histogram of the number of “gap fragments” we measured during a single call to
the Keymaster. Most of the calls resulted in a single fragment, which means the
Secure World was not interrupted; however, about 25% of calls resulted in two
or more fragments, which implies that the Secure World was indeed interrupted.
We grouped the measurements by those fragments and calculated their sum,
as shown in the top graph. We see a clear peak around 10 ms—the total time
it takes for the TrustZone to complete a request—even if the execution was
interrupted and fragmented into two sessions or more. Crucially, we see that our
looping thread gets control while the Keymaster work is paused, on the same
core.

This evidence leads us to believe that this phenomenon can be leveraged to
mount an attack on TrustZone. Our proposed attack consists of 4 Normal World
user-land (EL0) threads:

1. A thread which makes Keymaster requests in a loop from one of the cores
that the Kinibi OS is not bound to.

2. A looping thread running on the same core as the Secure World, which primes
the cache sets and measures time differences between iterations. When a
significant time difference is measured, it probes the cache sets and saves this
measurement.

3. A thread running the Flush+Reload attack on the TCI memory, as described
in Sect. 5.3 to trace the execution of the Keymaster trustlet as it handles
the requests of thread #1. This allows us to select relevant measurements
made by thread #2 by discarding Prime+Probe measurements made before
the input buffer was accessed or after the output buffer (or the second TCI
memory) was accessed. Thread #3 must run on a different core than thread
#2.

4. A thread responsible for creating as many Normal World interrupts as pos-
sible, to increase the likelihood of interrupting the secure execution. Possible
methods of doing this include creating network requests, in hope that the
network card interrupts will be handled on our target core, or playing a video
sequence causing graphic or sound card interrupts.

6 Conclusions

In this paper we provided, for the first time, a critical review of Samsung’s
proprietary TrustZone architecture. We described the major components and
their interconnections, focusing on their security aspects. We discovered that
the binary code for the Kinibi operating system runs in ARM32/Thumb mode
even though the platform has a 64bit processor, and common OS defenses such
as Address Space Randomization (ASLR), non-executable (NX) stack, or stack
canaries are lacking. During this review we identified some design weaknesses,
including one actual vulnerability.

We also found that the ARM32 assembly-language AES implementation
used by the Keymaster trustlet is vulnerable to cache side-channel attacks. In

Navigating the Samsung TrustZone and Cache-Attacks 193

a separate paper we demonstrated successful cache attacks on a real device,
against AES-256, on the Keymaster implementation, and presented a technique
for mounting side-channel attacks against AES-256 in GCM mode.

Finally, we demonstrated realistic cache attack artifacts on the Keymaster
cryptographic functions, despite the recently discovered “AutoLock” ARM fea-
ture. We successfully demonstrated cache side-channel effects on “World Shared
Memory” buffers, and showed compelling evidence that full-blown cache attacks
against the AES implementation inside the Keymaster trustlet are plausible.

We conclude that despite the architectural protections offered by the Trust-
Zone, cache side-channel effects are a serious threat to the current AES imple-
mentation. However, side-channel-resistant implementations, that do not use
memory accesses for round calculations, do exist for the ARM platform, such
as a bit-sliced implementation [23] or one using ARMv8 cryptographic exten-
sions [22]. Using such an implementation would render most cache attacks,
including ours, ineffective.

A End-to-End Keymaster Communication Example

In the following section we describe an example of end-to-end communication
between the normal and Secure World, that demonstrates how the entities men-
tioned above are chained together. In this section, numbers in parenthesis refer
to their respective markers in Fig. 1:

1. In the Normal World user-space (NWd EL0), an application issues an encryp-
tion request to keystored through the binder interface (1). The kernel binder
subsystem relays this request to keystored, which receives the request, loads
the requested key file (and decrypts it with the relevant masterkey, recall
Sect. 4.3) and calls the relevant function in the Keymaster HAL interface.
Samsung’s Keymaster HAL module writes a Keymaster trustlet request to
TCI memory (2) and requests a trustlet notification from the mcDriverDae-
mon through the unix domain socket subsystem (3). The mcDriverDaemon
calls the SIQ ioctl on the mobicore device (4).

2. In the Normal World kernel (NWd EL1), the Mobicore Kernel Module handles
the ioctl by issuing a SIQ SMC (5).

3. Monitor code (EL3) is triggered to handle the SMC, it is deferred to the
Mobicore SMC handler which issues an interrupt to the Kinibi OS and passes
execution to it (6).

4. In the Secure World kernel (SWd EL1), the Kinibi OS interrupt handler
schedules the init-like process and informs it of the interrupt (7).

5. In the Secure World userspace (SWd EL0), the init-like process handles the
interrupt by sending an IPC message to the Keymaster trustlet (8). The
Keymaster trustlet receives the IPC message, reads the TCI memory (9),
parses and executes the request (e.g., encryption of data) (10). It then writes
the output of the request to the TCI memory (11) and issues an IPC request
to the init-like process to notify the Normal World (12). The init-like process
then calls the SIQ SVC system call (13).

194 B. Lapid and A. Wool

6. The Kinibi OS (SWd EL1) handles the SVC call by issuing a Normal World
interrupt SMC call (14).

7. Monitor code (EL3) is triggered to handle the SMC, it is deferred to the
Mobicore SMC handler which issues an interrupt to the Android Linux kernel
and passes execution to it (15).

8. The Android Linux kernel (NWd EL1) interrupt handler is triggered, it calls
the interrupt handler that the Mobicore kernel module registered. The Mobi-
core handler wakes up the mcDriverDaemon due to the interrupt (16).

9. Back in the Normal World userspace (NWd EL0), the mcDriverDaemon noti-
fies its client of the interrupt through the unix domain socket subsystem
(17). The Samsung’s Keymaster HAL module receives the interrupt notifica-
tion, reads and parses the response from TCI memory (18) and resumes the
keystored function. keystored sends a response to the requesting application
through the binder (19). Finally, the application execution resumes with the
result.

References

1. ARM. ARM trusted firmware - firmware design documentation. https://github.
com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#
aarch64-bl31

2. ARM. ARM trusted firmware - runtime SVC code. https://github.com/ARM-
software/arm-trusted-firmware/blob/v1.4/include/common/runtime svc.h#L60

3. ARM. Building a secure System using TrustZone Technology. http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C
trustzone security whitepaper.pdf

4. ARM. ARM trustzone (2018). https://www.arm.com/products/security-on-arm/
trustzone

5. Bernstein, D.J.: Cache-timing attacks on AES (2005). https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

6. freddierice. Trident - temporary root for the Galaxy S7 active. https://github.com/
freddierice/trident

7. Beniamini, G.: Trust issues: exploiting TrustZone TEEs (2017). https://
googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.
html

8. Ge0n0sis. How to lock the Samsung download mode using an undocumented fea-
ture of aboot (2016). https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-
samsung-download-mode-using-an-undocumented-feature-of-aboot/

9. Giesecke & Devrient. Android kernel tree - mobicore kernel module.
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-
marshmallow-mr2/drivers/gud/MobiCoreDriver/

10. Google. Android keymaster HAL. https://source.android.com/security/keystore/
implementer-ref

11. Google. Android keystore. https://developer.android.com/training/articles/
keystore.html

12. Google. Android keystore - source code. http://androidxref.com/6.0.0 r1/xref/
system/security/keystore/keystore.cpp

https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/docs/firmware-design.rst#aarch64-bl31
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/include/common/runtime_svc.h#L60
https://github.com/ARM-software/arm-trusted-firmware/blob/v1.4/include/common/runtime_svc.h#L60
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://github.com/freddierice/trident
https://github.com/freddierice/trident
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.co.il/2017/07/trust-issues-exploiting-trustzone-tees.html
https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-samsung-download-mode-using-an-undocumented-feature-of-aboot/
https://ge0n0sis.github.io/posts/2016/05/how-to-lock-the-samsung-download-mode-using-an-undocumented-feature-of-aboot/
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-marshmallow-mr2/drivers/gud/MobiCoreDriver/
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-marshmallow-mr2/drivers/gud/MobiCoreDriver/
https://source.android.com/security/keystore/implementer-ref
https://source.android.com/security/keystore/implementer-ref
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
http://androidxref.com/6.0.0_r1/xref/system/security/keystore/keystore.cpp
http://androidxref.com/6.0.0_r1/xref/system/security/keystore/keystore.cpp

Navigating the Samsung TrustZone and Cache-Attacks 195

13. Google. Android vold cryptfs. http://androidxref.com/6.0.0 r1/xref/system/vold/
cryptfs.c

14. Green, M., Rodrigues-Lima, L., Zankl, A., Irazoqui, G., Heyszl, J., Eisenbarth, T:
Autolock: why cache attacks on ARM are harder than you think. In: 26th USENIX
Security Symposium (2017)

15. Lapid, B., Wool, A.: Cache-attacks on the ARM TrustZone implementations of
AES-256 and AES-256-GCM via GPU-based analysis. Cryptology ePrint Archive,
Report 2018/621 (2018). http://eprint.iacr.org/2018/621

16. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Conference (2016). https://www.
usenix.org/system/files/conference/usenixsecurity16/sec16 paper lipp.pdf

17. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 4

18. nccgroup. Cachegrab. https://github.com/nccgroup/cachegrab
19. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:

Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 11

20. Neve, M., Tiri, K.: On the complexity of side-channel attacks on AES-256 - method-
ology and quantitative results on cache attacks. Technical report (2007). https://
eprint.iacr.org/2007/318

21. Artenstein, N., Goldman, G.: Exploiting android s-boot: getting arbitrary code
exec in the Samsung bootloader (2017). http://hexdetective.blogspot.co.il/2017/
02/exploiting-android-s-boot-getting.html

22. OpenSSL. ARM AES implementation using cryptographic extensions. https://
github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl

23. OpenSSL. ARMv7 AES bit sliced implementation. https://github.com/openssl/
openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl

24. OpenSSL. OpenSSL FIPS. https://www.openssl.org/docs/fips.html
25. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

26. Oliva, P.: ldpreloadhook. https://github.com/poliva/ldpreloadhook
27. Qualcomm. Snapdragon security (2018). https://www.qualcomm.com/solutions/

mobile-computing/features/security
28. Samsung. Mobile processor: Exynos 7 Octa (7420) (2018). http://www.samsung.

com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-
7420/

29. Samsung. Platform security (2018). http://developer.samsung.com/tech-insights/
knox/platform-security

30. Samsung. Android security updates, June 2018. https://security.samsungmobile.
com/securityUpdate.smsb

31. Spreitzer, R., Plos, T.: Cache-access pattern attack on disaligned AES T-tables. In:
Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 200–214. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40026-1 13

32. Trustonic. Trustonic Kinibi technology. https://developer.trustonic.com/discover/
technology

33. Trustonic. Trustonic mobicore driver daemon - client library. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib

http://androidxref.com/6.0.0_r1/xref/system/vold/cryptfs.c
http://androidxref.com/6.0.0_r1/xref/system/vold/cryptfs.c
http://eprint.iacr.org/2018/621
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://github.com/nccgroup/cachegrab
https://doi.org/10.1007/978-3-540-74462-7_11
https://eprint.iacr.org/2007/318
https://eprint.iacr.org/2007/318
http://hexdetective.blogspot.co.il/2017/02/exploiting-android-s-boot-getting.html
http://hexdetective.blogspot.co.il/2017/02/exploiting-android-s-boot-getting.html
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-armx.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl
https://github.com/openssl/openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl
https://www.openssl.org/docs/fips.html
https://doi.org/10.1007/11605805_1
https://github.com/poliva/ldpreloadhook
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/solutions/mobile-computing/features/security
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://developer.samsung.com/tech-insights/knox/platform-security
http://developer.samsung.com/tech-insights/knox/platform-security
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://doi.org/10.1007/978-3-642-40026-1_13
https://developer.trustonic.com/discover/technology
https://developer.trustonic.com/discover/technology
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/ClientLib

196 B. Lapid and A. Wool

34. Trustonic. Trustonic mobicore driver daemon - command header. https://github.
com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/
Daemon/public/MobiCoreDriverCmd.h

35. Trustonic. Trustonic mobicore driver daemon - FSD. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/
FSD

36. Trustonic. Trustonic mobicore driver daemon - source code. https://github.com/
Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon

37. Xinjie, Z., Tao, W., Dong, M., Yuanyuan, Z., Zhaoyang, L.: Robust first two rounds
access driven cache timing attack on AES. In: 2008 International Conference on
Computer Science and Software Engineering, vol. 3, pp. 785–788. IEEE (2008)

38. Zhang, N., Sun, K., Shands, D., Lou, W., Thomas Hou, Y.: TruSpy: cache side-
channel information leakage from the secure world on ARM devices. IACR Cryp-
tology ePrint Archive, 2016(980) (2016)

https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/blob/master/MobiCoreDriverLib/Daemon/public/MobiCoreDriverCmd.h
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon/FSD
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon
https://github.com/Trustonic/trustonic-tee-user-space/tree/master/MobiCoreDriverLib/Daemon

Combination of Hardware and Software:
An Efficient AES Implementation

Resistant to Side-Channel Attacks on All
Programmable SoC

Jingquan Ge1,2,3, Neng Gao2,3, Chenyang Tu2,3(B), Ji Xiang2,3, Zeyi Liu2,3,
and Jun Yuan1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{gejingquan,gaoneng,tuchenyang,xiangji,liuzeyi,yuanjun}@iie.ac.cn
3 DACAS, CAS, Beijing, China

Abstract. With the rapid development of IoT devices in the direction
of multifunction and personalization, All Programmable SoC has been
used more and more frequently because of its unrivaled levels of sys-
tem performance, flexibility, and scalability. On the other hand, this
type of SoC faces a growing range of security threats. Among these
threats, cache timing attacks and power/elctromagnetic analysis attacks
are two considerable ones which have been widely studied. Although
many countermeasures have been proposed to resist these two types of
attacks, most of them can only withstand a single type but are often
incapable when facing multi-type attacks. In this paper, we utilize the
special architecture of All Programmable SoC to implement a secure
AES encryption scheme which can efficiently resist both cache timing
and power/electromagnetic analysis attacks. The AES implementation
has a beginning software stage, a middle hardware stage and a final soft-
ware stage. Operations in software and start/end round of hardware are
all randomized, which allow our implementation to withstand two types
of attacks. To illustrate the security of the implementation, we conduct
the three types of attacks on unprotected software/hardware AES, shuf-
fled software AES and our scheme. Furthermore, we use Test Vector
Leakage Assessment (TVLA) to test their security on encryption times
and power/electromagnetic traces. The final result indicates that our
encryption implementation achieves a high secure level with almost 0.86
times data throughput of the shuffled software AES implementation.

Keywords: All Programmable SoC · Side channel attack
AES implementation · Combination of hardware and software · TVLA

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 197–217, 2018.
https://doi.org/10.1007/978-3-319-99073-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_10&domain=pdf

198 J. Ge et al.

1 Introduction

In recent years, with the rapid development of Internet of Things (IoT), all kinds
of IoT devices flood the market, which has greatly changed people’s life style.
Meanwhile, as market demand changes, the functions of IoT system are becom-
ing more and more powerful, complex and personalized. All Programmable SoC,
which combines ARM with FPGA, creates new possibilities for IoT systems,
giving system architects and ARM developers a flexible platform to satisfy cus-
tomer personal demands [1]. The proliferation of IoT devices brings comfort and
convenience to humans, but it also allows more sensitive data to be stored on
IoT devices or transmitted through the Internet. Therefore, the security of the
sensitive data usage and transmission in IoT raise concerns.

Cryptography is one of the most common methods to solve security problems,
and IoT devices are no exception. Modern cryptographic algorithms are consid-
ered secure from a mathematical theoretical view point. Nevertheless, weaknesses
of these algorithms become easy to be exploited when they are implemented in
real-world devices. These attacks, which get far more private information from
the real-world implementation of cryptography, earn their well-known name as
“Side Channel Attacks (SCA)”. Attackers utilize characteristics such as running
time [2,3], cache behavior [4], power consumption [5] and electromagnetic radi-
ation [6] to extract secret keys from the physical executions of encryption algo-
rithms. Among these attacks, cache timing attacks and power/electromagnetic
analysis attacks are two well-developed types of attacks which have been widely
studied by researchers.

Cache timing attacks utilize the difference in access times between cache
and main memory to crack secret keys from the encryption time data. Kocher
first proposed the concept of cache timing attacks [2]. Subsequently, Bern-
stein et al. performed a successful cache timing attack on the AES T-table
implementation running on the PC [7]. In recent years, with the popular-
ity of smart devices, many researchers conducted cache timing attack exper-
iments on ARM [8–10]. Power/electromagnetic analysis attacks exploit power
consumption/electromagnetic radiation to extract secret keys. In the past 20
years, a large number of researchers have devoted themselves to the research of
power/electromagnetic analysis attacks. There are plenty of published results of
power/electromagnetic analysis attacks on 8-bit microprocessor, FPGA, ARM,
Intel/AMD processor and so on [5,6,11–14].

To thwart SCA, plenty of countermeasures have been proposed, e.g. masking
[15–18], relying on the addition of random delays [19], shuffling the execution
order of independent operations [20–23] and so on. Among these countermea-
sures, masking is the most common one. However, both the software and hard-
ware overheads of masking are very costly. Moreover, due to the presence of
glitches, the hardware masking’s defense ability may be greatly reduced. Another
countermeasure is adding random delays, which will increase the huge time over-
head. What’s more, it is easy to remove the noise of random delays with a simple
preprocessing program. The third countermeasure is shuffling the execution order
of independent operations. It is an appropriate countermeasure which can greatly

AES Implementation with Combination of Hardware and Software 199

increase power/electromagnetic noise by adding acceptable time overhead. More
importantly, most of the countermeasures can only withstand a single type of
side channel attacks. When facing multi-type attacks, they are usually powerless.

In addition to the above mentioned, most countermeasures use chips of widely
used architectures as implementation platforms, such as 8-bit microprocessor,
FPGA, ARM, Intel/AMD processor and so on. It is still a blank research field
to implement schemes on the special architecture of All Programable SoC, which
combines software (ARM) with hardware (FPGA). How to use it to create a more
efficient and safe encryption implementation is an interesting and promising
research topic.

In this paper, we introduce an AES implementation with combination of
software and hardware which executed on an All Programmable SoC (Zynq-
7000) and improves both the security and performance. Our main contributions
are as follows:

– We propose a new encryption solution with combination of hardware and
software that breaks the regularity and alignment pattern of time data and
power/electromagnetic traces. By randomizing the start and end round of
hardware and software stage, our scheme destroys the statistical regular-
ity of encryption time data due to the use of cache. Meanwhile, shuffling
the software execution order and randomizing hardware start round destroys
the trace alignment that power/electromagnetic analysis attacks depend on.
Therefore, our implementation can resist both cache timing attacks and
power/electromagnetic analysis attacks. It can be used not only in AES
encryption implementation, but also in many other encryption algorithms.
It presents a new way to improve resistance of modern cryptographic algo-
rithm against side channel attacks.

– To improve the data throughput of our implementation, we test the perfor-
mance of the AXI-GP, AXI-HP and AXI-ACP interfaces separately on the
All Programmable SoC. Finally, we choose the fastest AXI-GP interface as
the data transmission channel between software and hardware for real-time
and small-batch data encryption. The experimental results show that our
AES implementation achieves 0.86 times data throughput of shuffled soft-
ware AES implementation. The performance loss of our scheme is acceptable,
especially when considering that shuffled AES implementation can only resist
power/electromagnetic attacks and our scheme is equally effective against
both cache timing and power/electromagnetic attacks.

– We utilize the Test Vector Leakage Assessment (TVLA) methodology to eval-
uate the side channel leakage of the encryption time data of three implemen-
tations. To the best of our knowledge, it is the first work to evaluate the
encryption time data by the TVLA methodology. We get a clear TVLA com-
parison of three implementations with only 10000 samples of encryption time
data each. It proves that TVLA method is very fast and effective to evaluate
encryption time data.

This paper is organized as follows. Section 2 presents an overview of Zynq-
7000 SoC, side channel attacks, countermeasures and TVLA. Section 3 describes
our AES implementation with combination of hardware and software. Section 4

200 J. Ge et al.

shows the results of cache timing and power/electromagnetic attacks and the
TVLA leakages of encryption time data and power/electromagnetic traces. This
paper ends with conclusions and discussion in Sect. 5.

2 Background and Related Work

In this section, we first elaborate the required preliminaries of Xilinx All Pro-
grammable SoC and AES, then discuss the related work of side channel attacks,
countermeasures against side channel attacks and TVLA assessment method.

2.1 All Programmable SoC (Zynq-7000)

The Zynq-7000 family utilizes the Xilinx All Programmable SoC (AP SoC) archi-
tecture, which is a very creative and attractive framework. A feature-rich dual or
single-core ARM Cortex-A9 MPCore based processing system (PS) and Xilinx
programmable logic (PL) are grouped together into a single device. The heart of
the PS is the ARM Cortex-A9 MPCore CPUs. Beyond that, PS also includes on-
chip memory, external memory interfaces, and a rich set of I/O peripherals [24].
The Zynq-7000 family provide not only the performance, power, and usability of
ASIC and ASSPs (Application Specific Standard Products), but also the flexibil-
ity and scalability of an FPGA. As a result, the devices of the Zynq-7000 family
can be designed more freely to meet diversified and personalized applications in
IoT systems.

2.2 Software and Hardware Implementations of AES

In 2001, Rijndael, which designed by J. Daemen and V. Rijmen, was specified as
the Advanced Encryption Standard (AES) by the National Institute of Standards
and Technology (NIST) [25]. Nowadays, it has become one of the most popular
encryption algorithms and widely adopted for a variety of encryption needs. The
AES algorithm is a symmetric block cipher, and several rounds of processing
convert each 128-bit block. There are three different key sizes: 128 bits, 192 bits,
or 256 bits, which correspond to 10 rounds, 12 rounds, or 14 rounds, respectively.
For simplicity and without loss of generality, we discuss the AES implementation
with a key length of 128 bits and hence 10 rounds in this paper.

AES is an iterated algorithm: Each round i takes an intermediate value
series of 16 bytes Si = {si0, ..., s

i
15} and a round key series of 16 bytes

RKi = {rki
0, ..., rk

i
15} as inputs, and outputs a 16-byte intermediate value

series Si+1 = {si+1
0 , ..., si+1

15 }. There are four algebraic operations in one round,
which are called SubBytes, ShiftRows, MixColumns, and AddRoundKey. Before
the first round, The input block are computed as s1j = pj ⊕ rk0

j where
j ∈ {0, · · · , 15}, with pj representing the jth plaintext byte and rk0

j the jth
initial round key byte. And the last round omits the algebraic operation of Mix-
Columns. Except the last round, all rounds have the same four steps, and each
round i uses a different round key RKi.

AES Implementation with Combination of Hardware and Software 201

Software implementations of the AES usually utilize look-up tables to reduce
the computational overhead. All the three operations (SubBytes, ShiftRows and
MixColumns) are combined into the four look-up tables T0, T1, T2, T3, each of
which consists of 256 4-byte elements and maps one byte of input to four bytes
of output. The encryption round of AES software implementation using look-up
tables is carried out as:

(si+1
0 , si+1

1 , si+1
2 , si+1

3) = T0[s
i
0] ⊕ T1[s

i
5] ⊕ T2[s

i
10] ⊕ T3[s

i
15] ⊕ {rki

0, rk
i
1, rk

i
2, rk

i
3},

(si+1
4 , si+1

5 , si+1
6 , si+1

7) = T0[s
i
4] ⊕ T1[s

i
9] ⊕ T2[s

i
14] ⊕ T3[s

i
3] ⊕ {rki

4, rk
i
5, rk

i
6, rk

i
7},

(si+1
8 , si+1

9 , si+1
10 , si+1

11) = T0[s
i
8] ⊕ T1[s

i
13] ⊕ T2[s

i
2] ⊕ T3[s

i
7] ⊕ {rki

8, rk
i
9, rk

i
10, rk

i
11},

(si+1
12 , si+1

13 , si+1
14 , si+1

15) = T0[s
i
12] ⊕ T1[s

i
1] ⊕ T2[s

i
6] ⊕ T3[s

i
11] ⊕ {rki

12, rk
i
13, rk

i
14, rk

i
15}.

(1)
Using the method of table lookups and 16 bytes XOR, the round calculation
running in software can be very fast and easy to implement. However, the large
look-up tables makes the AES highly vulnerable to cache attacks, such as cache
timing attack.

For hardware implementations of AES, there are three major types of schemes
to meet different needs. The first type of AES designs focuses on higher data
throughput with limited number of architectural optimizations, which resulted
in poor resource utilization. Another part of researchers pursues better utiliza-
tion of FPGA resources with suitable encryption speeds to support most of the
embedded applications. The third kind of designers try their best to reduce the
power consumption of AES circuits. Like AES software implementations, hard-
ware implementations also leak side channel information, thus are vulnerable to
side channel attacks.

2.3 Side Channel Attacks

Cache Timing Attacks. Between the CPU and main memory, there is a small,
fast storage area which is called “cache”. In order to reduce the latency of main
memory accesses, CPUs employ caches to store the most frequently accessed
memory locations. When CPU looks up values in main memory, CPU will store
the values in the cache, where old values will be evicted from the cache. After
that, lookups to the same memory address can get the data faster from the
cache than main memory, which has a well-known name called “cache hit”. The
secret key can be recovered through the exploitation of the execution time of a
cryptographic algorithm due to different access times in the memory hierarchy.

Kocher demonstrated timing attacks against a variety of software public-key
systems in 1996 [2], who also proposed the concept of cache-behaviour analysis
in that paper. Kelsey et al. [26] later suggested the exploitation of information
leaked through cache-memory access times as a potential attack against crypto-
graphic implementations that employ large S-boxes. With the rapid development
of AES implementations, researchers pay more attention on the cache attacks
against this symmetric cipher. Bernstein [7] exploited the total execution time of
AES T-table implementations and showed that such an attack can be mounted
remotely.

202 J. Ge et al.

Researches mentioned above were launched successfully on Intel or AMD
CPUs. On the other hand, in recent years, due to the wide-spread usage of
ARM, the investigation on this type of CPU has increased. Bogdanov et al.
proposed a type of cache-collision timing attacks on software implementations
of AES running on an ARM9 board in 2010 [8]. Two years later, Weiß et al.
demonstrated their cache timing attack on an ARM Cortex-A8 processor, who
extracted sensitive keying material from an isolated trusted execution domain
[9]. In 2013, Spreitzer investigated the applicability of Bernstein’s timing attack
and the cache-collision attack by Bogdanov et al. on three mobile devices, all of
which employed the ARM Cortex-A CPU [10].

Power and Electromagnetic Analysis Attacks. Power analysis attacks
exploit information leaked through power consumption to recover secret keys
from implementations of different cryptographic algorithms. Kocher et al. exam-
ined Simple Power Analysis (SPA) and Differential Power Analysis (DPA) to find
secret keys from cryptographic devices in 1999 [5]. Since then, power analysis
attack has become a well-known and thoroughly studied threat for cryptographic
implementations. In 2004, Brier et al. first proposed Correlation Power Analysis
(CPA) attack which was more efficient than traditional DPA attack [12]. Not
long after, Mangard et al. showed that the unmasked and masked AES hardware
implementations leaked side channel information due to glitches at the output
of logic gates [13].

As the name suggests, electromagnetic (EM) analysis attacks extract the
secret key by exploiting data dependent EM radiations. Gandolfi et al. describes
their electromagnetic experiments conducted on three different CMOS chips,
executing three different cryptographic algorithms [6]. Agrawal et al. presented
a systematic investigation of electromagnetic (EM) leakage from CMOS devices
[11]. In 2015, Longo investigated the electromagnetic-based leakage of a complex
ARM-Core SoC [14].

2.4 Countermeasures Against Side Channel Attacks

To thwart side channel attacks, researchers proposed many different countermea-
sures such as masking, the use of random delays and shuffling. Among the exist-
ing countermeasures, the most widely deployed one is masking [15–18]. Mask-
ing conceals all sensitive intermediate values of a computation with at least
one random value. However, the cost of implementing masking increases signifi-
cantly either in hardware or in software. What’s more, because of the presence of
glitches, masked hardware implementations can still be vulnerable to first-order
DPA [13,27]. Another countermeasure is the use of random delays. Tunstall et
al. proposed a manner of generating random delays, which reduced the time lost,
while maintaining the increased desynchronization [19].

Shuffling the execution order of independent operations is a lightweight coun-
termeasure which can amplify the power/EM noise. Herbst et al. described an
efficient AES software implementation resistant against side channel attacks,

AES Implementation with Combination of Hardware and Software 203

which masked the intermediate results and shuffled the operation order at the
beginning and the end of the AES execution [20]. Rivain et al. designed a new
scalable scheme which combined high-order masking with shuffling [21]. Veyrat-
Charvillon et al. showed a careful information theoretic and security analysis of
different shuffling variants [22]. Patranabis et al. proposed a two-round version
of the shuffling countermeasure, and tested its security using TVLA [23].

2.5 Test Vector Leakage Assessment (TVLA)

The huge threat of side channel attacks promoted NIST to organize the “Non-
Invasive Attack Testing Workshop” in 2011 to establish a testing methodol-
ogy which can reliably assess the physical security vulnerabilities of encryption
devices. Existing assessment methods require the evaluation labs to actually
check the feasibility of the state-of-the-art attacks conducted on the device under
test (DUT) [28]. However, these assessment methods are very time-consuming,
and the technical threshold is very high.

Goodwill et al. proposed a method (at the workshop mentioned above) that
is more widely applicable and easier to implement, known as the Test Vector
Leakage Assessment (TVLA) [29]. In 2015, Schneider and Moradi provided a
further detail of the TVLA method [28]. TVLA uses a t-test to assess whether
there is a significant difference in distribution between the groups of collected
data. This method provides a robust test that can be applied to multiple types
of data and intermediate values. TVLA has been first utilized to determine if
the power consumption of a device relates to the data it is manipulating [29].
In fact, this method is also very effective in the assessment of the leakage of
encryption time data, which will be shown in Sect. 4 of this paper.

3 AES Implementation with Combination of Hardware
and Software

This section explores our AES implementation with combination of hard-
ware and software on an Xilinx Zynq-7000 All Programmable SoC. This AES
countermeasure aims to be robust against both cache timing attacks and
power/electromagnetic analysis attacks, while keep performances and complex-
ity close to unprotected AES design. We first describe the entire encryption data
flow of our AES design in Sect. 3.1. In Sect. 3.2, we show the detailed descrip-
tion of software and hardware stages. Finally, we introduce the communication
between software and hardware in Sect. 3.3.

3.1 Encryption Data Flow

The AES implementation use two random numbers R1 and R2 to divide the AES
encryption process into three stages. Figure 1 shows the entire encryption data
flow of our AES implementation with combination of hardware and software. The
first and last stage run in software of PS (ARM) and the middle stage runs in

204 J. Ge et al.

Fig. 1. Entire encryption data flow of AES implementation with combination of hard-
ware and software.

hardware of PL (FPGA). In each round of the two software stages, the execution
order of independent operations is shuffled by the two random numbers R1 and
R2. Furthermore, the middle hardware stage has a random beginning (Round
R1 + 1) and a random end (Round R2). The entire encryption process can be
completed in a random time controlled by the two random numbers R1 and R2.
All the 44 bytes round keys are pre-computed and given to the software and
hardware.

3.2 Software and Hardware Stages

In each round of the beginning and final software stages, a set of sensitive opera-
tions are shuffled in terms of their execution order to amplify the noise of device
power/electromagnetic leakage. As described in Eq. 1, we can divide the software
AES encryption round (using look-up tables) into 4 independent operations. And
which operation run first doesn’t make any difference to the final result. In our
AES implementation, we utilize the two random numbers R1 and R2 to shuffle
the execution order of the 4 independent operations.

We use sij,k,u,w denotes the values of sij , sik, siu and siw. The number R1%4
decides which 4-byte intermediate value will be calculated first. If R1%4 == 0,
the implementation first calculate the 4-byte values of si0,1,2,3. When R1%4 ==
1, si4,5,6,7 will be computed first. Another number R2%3 controls the second
operation and (R2−R1)%2 corresponds to the third. For example, if R1%4 == 2,
si8,9,10,11 are computed first. Three 4-byte values of si0,1,2,3, si4,5,6,7 and si12,13,14,15
are left. Then the implementation check the value of R2%3. If R2%3 == 1, the
values of si4,5,6,7 will be computed. Meanwhile si0,1,2,3 and si12,13,14,15 are left.
Then the implementation check the value of (R2−R1)%2. If (R2−R1)%2 == 0,
si0,1,2,3 will be computed. Otherwise the implementation will calculate si12,13,14,15
before si0,1,2,3. The rest may be deduced by analogy. The algorithm running in
the beginning software stage is described in Algorithm 1.

AES Implementation with Combination of Hardware and Software 205

Algorithm 1. The beginning software stage
Input: 16-byte plaintext: P = {p0, · · · , p15};

11*16-byte round key: RKi = {rki
0, . . . , rk

i
15}, where i ∈ {0, · · · , 10};

2 random numbers: R1 and R2;

Output: 16-byte round R1 output value: SoutR1 = {soutR1
0 , · · · , soutR1

15 };

1 /* Si = {si0, · · · , si15} is 16-bytes round i intermediate value.

2 sij,k,u,w denotes values of sij , s
i
k, s

i
u and siw. */;

3 S1 = P ⊕ RK0;
4 for i = 1 to R1 do
5 if R1%4 == 0 then
6 compute the values of si+1

0,1,2,3;

7 if R2%3 == 0 then
8 compute the values of si+1

4,5,6,7;

9 if (R2 − R1)%2 == 0 then
10 compute the values of si+1

8,9,10,11;

11 compute the values of si+1
12,13,14,15;

12 end
13 else
14 compute the values of si+1

12,13,14,15;

15 compute the values of si+1
8,9,10,11;

16 end

17 end
18 else if R2%3 == 1 then
19 compute the values of si+1

8,9,10,11;

20 operations depending on (R2 − R1)%2;

21 end
22 else
23 compute the values of si+1

12,13,14,15;

24 operations depending on (R2 − R1)%2;

25 end

26 end
27 else if R1%4 == 1 then
28 compute the values of si+1

4,5,6,7;

29 operations depending on R2%3 and (R2 − R1)%2;

30 end
31 else if R1%4 == 2 then
32 compute the values of si+1

8,9,10,11;

33 operations depending on R2%3 and (R2 − R1)%2;

34 end
35 else
36 compute the values of si+1

12,13,14,15;

37 operations depending on R2%3 and (R2 − R1)%2;

38 end

39 end

40 SoutR1 = SR1 ;

206 J. Ge et al.

Algorithm 2. The middle hardware stage
Input: 16-byte round R1 intermediate value: SR1 = {sR1

0 , · · · , sR1
15 };

11*16-byte round key: RKi = {rki
0, . . . , rk

i
15}, where i ∈ {0, · · · , 10};

2 random numbers: R1 and R2;

Output: 16-byte round R2 output value: SoutR2 = {soutR2
0 , · · · , soutR2

15 };

1 /* Si = {si0, · · · , si15} is 16-bytes round i intermediate value. */;
2 for i = (R1 + 1) to (R2 − 1) do
3 Si+1=MixColumns(ShiftRows(SubBytes(Si))) ⊕ RKi;
4 end
5 /* dummy rounds */
6 for i = R2 to (R1 + 10) do
7 Si+1 = Si;
8 end

9 SoutR2 = SR2 ;

Algorithm 3. The final software stage
Input: 16-bytes round R2 intermediate value: SR2 = {sR2

0 , · · · , sR2
15 };

11*16-bytes round key: RKi = {rki
0, . . . , rk

i
15}, where i ∈ {0, · · · , 10};

2 random numbers: R1 and R2;
Output: 16-bytes Ciphertext: C = {c0, · · · , c15};

1 /* Si = {si0, · · · , si15} is 16-bytes round i intermediate value. */;
2 for i = R2 to 10 do

/* Here are the same operations as Algorithm 1. */;

operations depending on R1%4, R2%3 and (R2 − R1)%2;

3 end
4 C = S10;

After the beginning software stage, 16-byte round R1 intermediate value
SR1 will be transferred to the middle hardware stage. As Algorithm 2 shows,
the middle hardware stage starts at round R1 + 1 and ends at round R1 + 10.
It should be noted that the output value SoutR2 has been calculated at round
R2−1. We add round R2 to round R1+10 as dummy rounds. The dummy rounds
are applied to make sure that attackers can’t predict the number of encryption
rounds in the middle hardware stage by power/electromagnetic traces. When the
middle hardware stage is complete, 16-byte round R2 intermediate value SR2 will
be sent to the final software stage as input. The 4 independent operations of each
round are shuffled the same as the beginning software stage, see Algorithm 3.

3.3 Communication Between Software and Hardware

On the Zynq-7000 SoC, there are three types of interfaces between PS (ARM)
and PL (FPGA), which are AXI-ACP, AXI-GP and AXI-HP. AXI-GP inter-
faces are connected directly to the ports of the master interconnect and the

AES Implementation with Combination of Hardware and Software 207

slave interconnect without any additional FIFO buffering. AXI-HP interfaces
provide PL bus masters with high bandwidth datapaths to the DDR and OCM
memories. AXI-ACP interface provides low-latency access to programmable logic
masters, with optional coherency with L1 and L2 cache [24]. In order to choose
the fastest interface under conditions of real-time data encryption, we tested the
performance of the three types of interfaces separately.

From the perspective of the data transmission rate between hardware and
software, AXI-HP and AXI-ACP are faster than AXI-GP interfaces. Therefore
we first tested the AXI-HP and AXI-ACP interfaces. We apply the AXI-DMA IP
core to utilize the AXI-HP and AXI-ACP interfaces. To speed up the encryption
process, we enable the cache of the ARM cores. However, it will bring up two
problems. First, calculated data may not be immediately sent to DDR memory,
but temporarily stored in cache. Second, ARM cores can’t be notified immedi-
ately that the data in DDR memory has been changed by AXI-DMA IP core.
To solve this two problems, we apply the function Xil DCacheF lushRange to
flush the Dcache before AXI-DMA transferring data from software to hardware.
Furthermore we run the function Xil DCacheInvalidateRange to invalidate the
Dcache after AXI-DMA moving data from hardware to software.

We then tested the performance of AXI-GP interface and got an unexpected
result. Since the structure and timing of AXI-GP interface are simple, it is
possible to increase the transmission rate by increasing the clock frequency.
Moreover, because the data of software is directly from cache of ARM cores,
it can save a lot of time to operate the cache (Xil DCacheF lushRange and
Xil DCacheInvalidateRange).

In the experiment, we found that for non-real-time bulk data encryption,
using AXI-HP and AXI-ACP interfaces to transfer data is much faster than
AXI-GP interface. However, for real-time and small-batch data encryption (128
bits at a time), AXI-GP is faster than AXI-HP and AXI-ACP. Table 1 shows
the experimental results of the three interfaces for real-time and small-batch
data encryption. Considering that our AES encryption implementation is mainly

Table 1. Performance of three interfaces for real-time and small-batch data encryption

AES implementation PL clock
frequency (MHz)

Average encryption
time (clock)

AES implementation with
combination of hardware and
software (AXI-GP)

175 1653

AES implementation with
combination of hardware and
software (AXI-HP)

125 1853

AES implementation with
combination of hardware and
software (AXI-ACP)

125 1865

208 J. Ge et al.

applied to real-time and small-batch data encryption scenarios, we choose the
AXI-GP interface to transfer data between hardware and software.

4 Experimental Evaluation

To validate the security of our proposed AES countermeasure, we have imple-
mented our AES design on the ZedBoard and applied cache timing and
power/electromagnetic analysis attacks on it. Furthermore, the Test Vector
Leakage Assessment (TVLA) tests [28] have been executed on encryption times
and power/electromagnetic traces.

4.1 Cache Timing Attacks

In general, there are three types of cache attacks: trace driven, access driven
and time driven attacks. Attacks presented in this paper belong to the class of
the time driven attacks, so called cache timing attacks. An enormous amount
of encryption samples are needed compared to the other two types of cache
attacks. However, because time driven attack is the easiest option to launch,
it is a huge threat to numerous real-world applications, especially to embedded
and IoT systems.

In our cache timing attack experiments, we first obtain the total encryp-
tion time data of each 128-bits plaintext which is influenced by cache hits and
cache misses. Then we apply two statistical methodologies (first round and final
round) to extract key-related information. Finally, we give the TVLA result on
encryption time data.

First Round Attacks. Modern CPUs do not store individual bytes in cache
but groups of bytes from consecutive “lines” of main memory. Different CPUs
have different cache line sizes. The target of our attacks is the ARM Cortex-A9
MPCore of Zynq-7000 AP SoC, which have a fixed cache line length of 32 bytes
[30]. The element size of AES tables (T0, T1, T2, and T3) is 4 bytes. We use δ to
denote the number of table elements in one cache line. So groups of δ (32/4 = 8)
table elements share a line in the cache on a ARM Cortex-A9 MPCore.

For any bytes s and s′ which are equal ignoring the lower log2 δ bits, looking
up address s will take both address s and s′ into cache. We represent this as
〈s〉 = 〈s′〉. When two separate lookups s and s′ satisfy 〈s〉 = 〈s′〉, a “cache
collision” occurs. On the contrary, if 〈s〉 �= 〈s′〉, the access to s′ may result in a
cache miss. On the average, the second situation will take more time because it
will require a second cache lookup.

The first round attack utilized cache collisions evoked in the first round of
encryption. As can be seen in Eq. 1, table T0 uses the bytes s10, s14, s18, s112 in
the first round. They make up a 4-bytes “family” which are used to access the
same table. Three other families of 4-bytes share the tables T1, T2, and T3 in
round one. Two bytes s1k, s1j in the same family will cause a cache collision if

AES Implementation with Combination of Hardware and Software 209

〈
s1k

〉
=

〈
s1j

〉
. So we can get the equation 〈pk〉 ⊕ 〈

rk0
k

〉
= 〈pj〉 ⊕ 〈

rk0
j

〉
, or after

rearranging, 〈pk〉 ⊕ 〈pj〉 =
〈
rk0

k

〉 ⊕ 〈
rk0

j

〉
.

Due to the cache collision, plaintexts satisfying 〈pk〉 ⊕ 〈pj〉 =
〈
rk0

k

〉 ⊕ 〈
rk0

j

〉

should have a lower average encryption time. We use the pair of bytes p7 and p15
in T3 family to carry out attacks. Figure 2 shows the three results of first round
attacks against three different AES implementations using 1 million encryption
time data. We apply the unprotected software AES implementation of OpenSSL
and show the result of first round attack in Fig. 2a. From Fig. 2a we can see that 8
red lines denoting right p7⊕p15 produce an obvious time drop compared to other
gray lines. Figure 2b shows the second successful attacks against shuffled soft-
ware AES implementation which randomize the execution order of each round
the same as in Algorithm 1. The third picture Fig. 2c is the result of our AES
implementation with combination of hardware and software. It shows that the
first round attack against our implementation fails.

The four sets of equations in Eq. 1 for key bytes in the same family are
the only information we can get by first round attack. We can’t gain exact
key information without considering other rounds. Furthermore, the lower log2 δ
bits of each key byte can’t be learned with the given information. Therefore, the
attacker must still guess a total of 4 ∗ (8 + 3 ∗ log2 δ) = 68 bits (for δ = 8) key
value to recover the full key.

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

Av
er

ag
e

tim
e

50 100 150 200 250
Index of p7 xor p15

(a) The unprotected soft-
ware AES implementation

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

Av
er

ag
e

tim
e

50 100 150 200 250
Index of p7 xor p15

(b) The shuffled software
AES implementation

4500

4520

4540

4560

4580

4600

4620

4640

4660

4680

4700

Av
er

ag
e

tim
e

50 100 150 200 250
Index of p7 xor p15

(c) The AES implementa-
tion with combination of
hardware and software

Fig. 2. Results of first round attacks against three different AES implementations using
1 million encryption time data. X label denotes the index of p7 ⊕ p15, while Y label
presents the average encryption time. Red lines are the right indices of

〈
rk0

7
〉⊕ 〈

rk0
15

〉
.

Gray lines correspond to the wrong indices of
〈
rk0

7
〉 ⊕ 〈

rk0
15

〉
. (Color figure online)

Final Round Attacks. We make final round attacks which are faster than first
round attacks and can recover the full key. As mentioned in Sect. 2.2, the final
encryption round of AES software implementation omits the algebraic opera-
tion of MixColumns. The final round using look-up tables in OpenSSL0.9.7a is
carried out as:

210 J. Ge et al.

(c0, c1, c2, c3) = T4[s100] ⊕ T4[s105] ⊕ T4[s1010] ⊕ T4[s1015] ⊕ {rk10
0 , rk10

1 , rk10
2 , rk10

3 },

(c4, c5, c6, c7) = T4[s104] ⊕ T4[s109] ⊕ T4[s1014] ⊕ T4[s103] ⊕ {rk10
4 , rk10

5 , rk10
6 , rk10

7 },

(c8, c9, c10, c11) = T4[s108] ⊕ T4[s1013] ⊕ T4[s102] ⊕ T4[s107] ⊕ {rk10
8 , rk10

9 , rk10
10 , rk

10
11},

(c12, c13, c14, c15) = T4[s1012]⊕T4[s101] ⊕ T4[s106]⊕T4[s1011] ⊕ {rk10
12 , rk

10
13 , rk

10
14 , rk

10
15}.
(2)

Moreover, the last encryption round in OpenSSL1.1.0f is executed as:

(c0, c1, c2, c3) = T2[s100] ⊕ T3[s105] ⊕ T0[s1010] ⊕ T1[s1015] ⊕ {rk10
0 , rk10

1 , rk10
2 , rk10

3 },

(c4, c5, c6, c7) = T2[s104] ⊕ T3[s109] ⊕ T0[s1014] ⊕ T1[s103] ⊕ {rk10
4 , rk10

5 , rk10
6 , rk10

7 },

(c8, c9, c10, c11) = T2[s108] ⊕ T3[s1013] ⊕ T0[s102] ⊕ T1[s107] ⊕ {rk10
8 , rk10

9 , rk10
10 , rk

10
11},

(c12, c13, c14, c15) = T2[s1012]⊕T3[s101] ⊕ T0[s106]⊕T1[s1011] ⊕ {rk10
12 , rk

10
13 , rk

10
14 , rk

10
15}.
(3)

Equation 3 utilizes the T-tables T0, · · · , T3 in a slightly adapted way while Eq. 2
use a separate T-table T4. That’s the only difference between the two implemen-
tations. Because the T-tables are typically the same, both the two implementa-
tions can’t resist the final round attack. Next we take Eq. 2 as an example to
describe the details of the final round attack.

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

Av
er

ag
e

tim
e

50 100 150 200 250
Index of c1 xor c5

(a) The unprotected soft-
ware AES implementation

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

Av
er

ag
e

tim
e

50 100 150 200 250
Index of c1 xor c5

(b) The shuffled software
AES implementation

4500

4520

4540

4560

4580

4600

4620

4640

4660

4680

4700
Av

er
ag

e
tim

e

50 100 150 200 250
Index of c1 xor c5

(c) The AES implementa-
tion with combination of
hardware and software

Fig. 3. Results of final round attacks against three different AES implementations
using 0.3 million encryption time data. X label denotes the index of c1 ⊕ c5, while Y
label presents the average encryption time. Red line is the right index of c1 ⊕ c5. Gray
lines correspond to the wrong indices of c1 ⊕ c5. (Color figure online)

For any two ciphertext bytes ck, cj , it holds that ck = rk10
k ⊕ T4[s10u] for

some u and cj = rk10
j ⊕ T4[s10w] for some w. A cache collision occurs on T4

when s10u = s10w . In this given condition we can get the result T4[s10u] = T4[s10w].
After variable substitution, we get the equation ck ⊕ rk10

k = cj ⊕ rk10
j , or after

rearranging, ck ⊕cj = rk10
k ⊕rk10

j . Therefore, a cache collision occurs in T4 when
ck⊕cj = rk10

k ⊕rk10
j . Otherwise, we can’t ensure that s10u and s10w are in the same

cache line to cause a cache collision. Because of the cache collision, ciphertexts
satisfying ck ⊕ cj = rk10

k ⊕ rk10
j should be the lowest encryption time.

We use the pair of bytes c1 and c5 to make the final round attacks. Figure 3
shows the three results of final round attacks against three different AES imple-
mentations using 0.3 million encryption time data. From Fig. 3a we can see

AES Implementation with Combination of Hardware and Software 211

that 1 red line denoting right c1 ⊕ c5 is the lowest one compared to other gray
lines. Figure 3b shows the second successful attack against shuffled software AES
implementation. The third picture Fig. 3c is the result of our AES implementa-
tion with combination of hardware and software. It shows that the final round
attack against our implementation still fails.

Timing TVLA. In order to compare the encryption time data security of our
countermeasure with the unprotected and shuffled software AES implementation
of OpenSSL, we use the Test Vector Leakage Assessment (TVLA) [28] method-
ology. We performed non-specific TVLA test with two sets of encryption time
data. One is the set of randomly chosen plaintexts while the other is a fixed
plaintext.

0 10 20 30 40 50 60 70 80 90 100
Number of Encryption Time Data/100

0

20

40

60

80

100

120

TV
LA

 L
ea

ka
ge

Unprotected software
Shuffled software
Combination of hardware and software
Safe TVLA value

Fig. 4. Comparison of TVLA leakage from 10000 samples of encryption time data.

Figure 4 presents three comparative TVLA leakages from the three different
implementations of AES, namely unprotected software AES implementation,
shuffled software AES implementation and our proposed countermeasure with
combination of hardware and software. Each set comprises of 10000 samples of
encryption time data for both fixed and random plaintexts. It is quite clear that
our countermeasure with combination of hardware and software has significantly
lower side channel leakage compared to unprotected and shuffled software AES
for the same number of encryption data. In power/electromagnetic side channel
literature, if a TVLA leakage is less than ±4.5, it will be very difficult to break
the implementation using side channel attacks. However, according to what we
have learnt, there is no work to utilize TVLA methodology on encryption time
data. Although the TVLA leakage of our scheme is greater than 4.5 with more
than 1500 samples, we have reason to believe that it is very effective to resist
cache timing attacks.

212 J. Ge et al.

4.2 Power/Electromagnetic Analysis Attacks

Power/electromagnetic analysis attack exploits the basic concept that the side
channel leakages are correlated to operations and data. At the beginning of
our power/electromagnetic analysis attack experiments, we focused on both
software and hardware stages as the attack target. We first tried to crack
key from software stages using Longo’s method [14]. However, because of our
rough attack tools and poor preprocessor capability, we couldn’t make our
power/electromagnetic attacks successfully. In Longo’s research, 46 kB data was
needed to successfully attack AES decryption implementation on ARM core
with GPIO-based trigger. We have reasons to believe that far more data will be
needed to successfully attack our shuffled software stage.

In our following experiments, we compare power/EM traces of hardware stage
with estimated power consumptions/EM radiations. An appropriate model will
be required to estimate the leakages. To relate the leakages of switching activity
in CMOS devices, the Hamming distance (HD) model is usually utilized. HD
model assumes that the leakages are proportional to the number of both 0 → 1
and 1 → 0 transitions which produce the same amount of leakages. The jth byte
HD model estimation leakage of round i wi

j for two intermediate values sij and
si+1
j using the same register is given below:

wi
j = HD(sij , s

i+1
j) = HW (sij ⊕ si+1

j), j ∈ {1, · · · , 15}. (4)

In Eq. 4, HD() denotes the function of calculating the Hamming distance and
HW () represents computing the Hamming weight. W i

j denotes the set of all
wi

j derived using Eq. 4 for all plaintexts. We assume that l(t) is the t point
of one power/electromagnetic trace and L(t) represents the set of l(t) for all
power/EM traces. The correlation coefficient (Pearsons correlation coefficient)
Ci

j(t) between the estimation leakage set W i
j and the t point set of all power/EM

traces L(t) is calculated using the equation given as:

Ci
j(t) =

E(W i
jL(t)) − E(W i

j)E(L(t))
√

V ar(W i
j)V ar(L(t))

. (5)

In Eq. 5, E() denotes the average function, while V ar() represents the variance
function. When rki

j is not the correct round key, the corresponding W i
j and

L(t) will have less correlation. Then the small correlation factor Ci
j(t) will be

obtained. On the contrary, if rki
j is the correct round key, the Ci

j(t) corresponding
W i

j and L(t) will be the highest point.

Power Analysis Attacks. Figure 5 shows the results of correlation power anal-
ysis attacks on the HD(s43, s

5
3) byte of two different AES implementation using

10000 power traces and the TVLA results using 5000 samples of power trace. The
first implementation runs on the programmable logic (PL) of Zynq-7000 with
no protection measure. The second implementation is our countermeasure with
combination of hardware and software. Both the two AES implementations give

AES Implementation with Combination of Hardware and Software 213

0 100 200 300 400 500 600 700 800 900 1000
Time in samples

-0.3

-0.2

-0.1

0

0.1

0.2
C

or
re

la
tio

n

(a) Power attack on the
HD(s43, s

5
3) byte of unpro-

tected hardware AES im-
plementation

0 100 200 300 400 500 600 700 800 900 1000
Time in samples

-0.3

-0.2

-0.1

0

0.1

0.2

C
or

re
la

tio
n

(b) Power attack on the
HD(s43, s

5
3) byte of AES

implementation with com-
bination of hardware and
software

0 5 10 15 20 25 30 35 40 45 50
Number of Power Traces /100

0

1

2

3

4

5

6

7

8

9

TV
LA

 L
ea

ka
ge

Unprotected hardware

Combination of hardware and software

Safe TVLA value

(c) Comparison of TVLA
Leakage from 5000 sam-
ples of power traces.

Fig. 5. Power analysis attacks on the HD(s43, s
5
3) byte of two different AES imple-

mentation using 10000 power traces and TVLA result using 5000 samples. In (a) and
(b), the red curve denotes the correlation coefficient of the correct round key while
gray curves represents the correlation coefficient of the wrong round key. (Color figure
online)

the trigger signals when hardware stage starts. For the power analysis attack on
our countermeasure, we suppose the two unpredictable random numbers R1 = 1
and R2 = 9.

As we can see from Fig. 5a, the 532th time point has the highest correlation
coefficient. It is clear that the power attack was successful on unprotect hard-
ware AES implementation. Figure 5b shows the result of the power attack on our
countermeasure. This attack failed because there are no significant higher cor-

0 100 200 300 400 500 600 700 800 900 1000
Time in samples

-0.3

-0.2

-0.1

0

0.1

0.2

C
or

re
la

tio
n

(a) Electromagnetic attack
on the HD(s43, s

5
3) byte of

unprotected hardware AES
implementation

0 100 200 300 400 500 600 700 800 900 1000
Time in samples

-0.3

-0.2

-0.1

0

0.1

0.2

C
or

re
la

tio
n

(b) Electromagnetic attack
on the HD(s43, s

5
3) byte of

AES implementation with
combination of hardware
and software

0 5 10 15 20 25 30 35 40 45 50
Number of Electromagnetic Traces /100

0

2

4

6

8

10

12

14

TV
LA

 L
ea

ka
ge

Unprotected hardware
Combination of hardware and software
Safe TVLA value

(c) Comparison of TVLA
Leakage from 5000 sam-
ples of electromagnetic
traces.

Fig. 6. Electromagnetic analysis attacks on the HD(s43, s
5
3) byte of two different AES

implementation using 10000 electromagnetic traces and TVLA result using 5000 sam-
ples. In (a) and (b), the red curve denotes the correlation coefficient of the correct
round key while gray curves represents the correlation coefficient of the wrong round
key. (Color figure online)

214 J. Ge et al.

relation coefficient at all time samples. We performed non-specific TVLA tests,
which is described in Sect. 4.1, on the 532th time point of two AES implemen-
tations. Figure 5c shows that the power TVLA leakage of our countermeasure is
much lower than the unprotected hardware AES implementation.

Electromagnetic Analysis Attacks. Figure 6 shows the results of correlation
electromagnetic analysis attacks on the HD(s43, s

5
3) byte of two different AES

implementation using 10000 power traces and the TVLA results using 5000
samples of power trace. The two implementations are the same as in the power
attack experiments. Meanwhile we still suppose the two unpredictable random
numbers R1 = 1 and R2 = 9 to attack our countermeasure.

From Fig. 6a we know that the electromagnetic attack on the unprotected
hardware AES implementation succeed at the 523th time point. On the contrary,
the attack on our countermeasure fails, as shown in Fig. 6b. Figure 6c shows that
the electromagnetic TVLA leakage of our countermeasure is much lower than
the unprotected hardware AES implementation at the 523th time point.

4.3 Data Throughput and FPGA Resource Requirements

We use 0.1 million encryption time data to calculate the average encryption
times and data throughput of three different AES implementations. As we can
see from Table 2, the AES implementation with combination of hardware and
software needs average 1653 clock cycles to complete the 128-bit encryption.
While unprotected and shuffled software AES implementations need 1050 and
1415 clock cycles respectively. We normalized the data throughput based on the
shuffled software AES implementation because the two software stages of our
countermeasure are shuffled. The data throughput of our AES implementation
with combination of hardware and software is degradated by 14% compared to
the shuffled software AES implementation.

Table 2. Data throughput of three different implementations

AES implementation Average encryption
time (clock)

Data throughput
(normalized)

Unprotected software AES
implementation

1050 1.35

Shuffled software AES
implementation

1415 1

AES implementation with
combination of hardware and
software (AXI-GP)

1653 0.86

Table 3 shows the FPGA resource requirement of four different implementa-
tions. From Table 3 we know that the FPGA resource consumption of our AES

AES Implementation with Combination of Hardware and Software 215

implementation is similar to unprotected hardware AES implementation when
using the AXI-GP interface for data transfer. The main reason is that we use
two random numbers as the start and end signal of hardware encryption stage,
which only changes few registers. Compared to the two AES implementations
mentioned above, implementations using the AXI-HP and AXI-ACP interfaces
take far more FPGA resource requirements due to the use of AXI-DMA IP core.

Table 3. FPGA resource requirement of four different implementations

AES implementation Slices LUTs Registers

Unprotected hardware AES
implementation (AXI-GP)

661(%4.97) 2052(%3.86) 1184(%1.11)

AES implementation with
combination of hardware and
software (AXI-GP)

634(%4.77) 2179(%4.10) 1272(%1.20)

AES implementation with
combination of hardware and
software (AXI-HP)

2174(%16.35) 4999(%9.40) 5618(%5.28)

AES implementation with
combination of hardware and
software (AXI-ACP)

2293(%17.24) 5036(%9.47) 5622(%5.28)

5 Conclusion

This paper presented a new AES implementation with combination of hard-
ware and software based on All Programmable SoC. Compared with most of
the existing countermeasures resistant to a single type of attacks, our proposed
countermeasure can resist both cache timing and power/electromagnetic attacks.
Our experiments illustrate that both the time and power/electromagnetic leak-
ages from our countermeasure are significantly lower than other implementations
with acceptable performance loss. The new idea “combination of hardware and
software” presents a new way to improve the security of modern cryptographic
implementation against side channel attacks.

Acknowledgment. This work was partially supported by National Key R&D Plan
No. 2016QY03D0502, and Introducing Outstanding Young Talents Project of IIE, CAS.

References

1. Xilinx: Expanding the All Programmable SoC Portfolio. https://www.xilinx.com/
products/silicon-devices/soc.html

2. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://doi.org/10.1007/3-540-68697-5_9

216 J. Ge et al.

3. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th USENIX Security Symposium (2003)

4. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

5. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

7. Bernstein, D.: Cache-timing attacks on AES (2005). http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

8. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision
timing attacks on AES with applications to embedded CPUs. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 235–251. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 17

9. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 23

10. Spreitzer, R., Plos, T.: On the applicability of time-driven cache attacks on mobile
devices. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp.
656–662. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38631-
2 53

11. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

12. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

13. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 12

14. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC It to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 31

15. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

16. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

17. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

18. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast coun-
termeasure for AES, secure against first- and second-order zero-offset SCAs. In:
DATE, Dresden, Germany, pp. 1173–1178. IEEE Computer Society (2012)

https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44709-1_21
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-3-642-11925-5_17
https://doi.org/10.1007/978-3-642-11925-5_17
https://doi.org/10.1007/978-3-642-32946-3_23
https://doi.org/10.1007/978-3-642-38631-2_53
https://doi.org/10.1007/978-3-642-38631-2_53
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/11545262_12
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38

AES Implementation with Combination of Hardware and Software 217

19. Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software. In:
Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007.
LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72354-7 3

20. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767480 16

21. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

22. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

23. Patranabis, S., Roy, D.B., Vadnala, P.K., Mukhopadhyay, D., Ghosh, S.: Shuffling
across rounds: a lightweight strategy to counter side-channel attacks. In: 2016 IEEE
34th International Conference on Computer Design (ICCD), pp. 440–443. IEEE
Computer Society (2016)

24. Xilinx: Zynq-7000 All Programmable SoC Technical Reference Manual (2017).
https://china.xilinx.com/support/documentation/user guides/ug585-Zynq-7000-
TRM.pdf

25. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (2001). http://www.itl.nist.gov/fipspubs/

26. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0055858

27. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 9

28. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

29. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for
side channel resistance validation. In: NIST Non-Invasive Attack Testing
Workshop (2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-
workshop/papers/08 Goodwill.pdf

30. Arm Limited: ARM Cortex-A9 Technical Reference Manual (Revision r4p1)
(2016). https://static.docs.arm.com/100511/0401/arm cortexa9 trm 100511
0401 10 en.pdf

https://doi.org/10.1007/978-3-540-72354-7_3
https://doi.org/10.1007/978-3-540-72354-7_3
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-34961-4_44
https://china.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://china.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.itl.nist.gov/fipspubs/
https://doi.org/10.1007/BFb0055858
https://doi.org/10.1007/BFb0055858
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-3-662-48324-4_25
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
https://static.docs.arm.com/100511/0401/arm_cortexa9_trm_100511_0401_10_en.pdf
https://static.docs.arm.com/100511/0401/arm_cortexa9_trm_100511_0401_10_en.pdf

How Secure Is Green IT? The Case
of Software-Based Energy Side Channels

Heiko Mantel(B), Johannes Schickel, Alexandra Weber(B),
and Friedrich Weber

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{mantel,schickel,weber,fweber}@mais.informatik.tu-darmstadt.de

Abstract. Software-based energy measurement features in contempo-
rary CPUs allow one to track and to limit energy consumption, e.g., for
realizing green IT. The security implications of software-based energy
measurement, however, are not well understood. In this article, we study
such security implications of green IT. More concretely, we show that
side-channel attacks can be established using software-based energy mea-
surement at the example of a popular RSA implementation. Using dis-
tinguishing experiments, we identify a side-channel vulnerability that
enables attackers to distinguish RSA keys by measuring energy con-
sumption. We demonstrate that a surprisingly low number of sample
measurements suffices to succeed in an attack with high probability. In
contrast to traditional power side-channel attacks, no physical access to
hardware is needed. This makes the vulnerabilities particularly serious.

1 Introduction

Controlling and limiting energy consumption is crucial for datacenters, both, eco-
logically and economically. Minimizing energy consumption is key to achieving
both, green IT and higher datacenter density [17]. To support the achievement
of energy-consumption goals, software-based energy measurement features have
been introduced to CPUs by various vendors, e.g., by Intel [21, Chap. 14.9].

While the potential benefits of software-based energy measurement are clear
[17], its security implications are not yet well-understood. To clarify such implica-
tions is our goal. More concretely, we focus on side channels that attackers might
establish using software-based energy measurement. In a side-channel attack, an
attacker extracts secrets, like cryptographic keys, from execution characteristics
of a program, like running time [4,11,22], cache behavior [8,32,52], or power con-
sumption [23,24,37]. Prior work on power-consumption side channels required
specialized hardware or required the device under attack to use a battery.

In this article, we investigate the danger of side channels introduced by
software-based energy measurement. We also evaluate the effectiveness of two
candidate countermeasures against such side channels. To make things concrete,
we focus on Intel RAPL, an energy measurement feature in Intel CPUs [21].

We perform our experiments on an Intel i5-4590 desktop CPU. In our exper-
iments, we measure the energy consumption of a victim program purely in
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 218–239, 2018.
https://doi.org/10.1007/978-3-319-99073-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_11&domain=pdf

How Secure is Green IT? The Case of Software-Based Energy Side Channels 219

software, using Intel RAPL. Based on our measurements, we evaluate qualita-
tively whether an attacker can learn secret information and then quantify this
threat using statistical methods on a concrete decision procedure. Subsequently,
we evaluate the effectiveness of countermeasures based on information theory.

Our main finding is that an attacker can distinguish between RSA secret
keys purely by using software-based energy measurement. More concretely, the
attacker can distinguish which secret key is used in the RSA implementation from
the popular cryptographic library Bouncy Castle. We show that 7 observations
suffice to guess the key correctly with a probability above 99%. This number of
required observations is surprisingly low and the detected weakness in Bouncy
Castle RSA is, hence, a serious concern. While it is clear that CPU features for
increasing performance are common sources of side channels (see, e.g., caches [43]
or branch prediction [1]), CPU features for controlling energy were not in the
focus of research on side channels so far. Our results show that CPU features for
controlling energy do introduce side channels and that these side channels are
severe. That clarifies the security implications of green IT in this domain.

We investigate two candidate countermeasures against software-based energy
side channels, namely the program transformations cross-copying [2] and condi-
tional assignment [40]. We evaluate their effectiveness by the reduction in side-
channel capacity that they achieve in our experiments. While cross-copying only
reduces capacity by 8%, conditional assignment reduces capacity by 99%. Thus,
conditional assignment could be a suitable basis for hardening security-critical
implementations against software-based energy side channels.

In summary, our main contributions are (1) a qualitative and a quantitative
analysis of software-based energy side channels at the example of Bouncy Castle
RSA and Intel RAPL, and (2) a quantitative evaluation of the effectiveness of
two candidate countermeasures against energy side channels.

2 Preliminaries

Side Channels. In 1996, Kocher showed that a naive square-and-multiply
implementation of modular exponentiation is vulnerable to timing-side-channel
attacks [22]. Modular exponentiation is, for example, used in RSA decryption to
compute p = cd (mod n), for ciphertext c and secret key d [45].

Fig. 1. Square&Multiply

A square-and-multiply implementa-
tion of modular exponentiation is given
in Fig. 1. Line 5 is only executed when
the condition in Line 4 evaluates to true.
Execution of Line 5 takes additional
time. Since the condition depends on bits
from the exponent, the execution time
of the program encodes the Hamming
weight of the exponent. An attacker
can exploit this variation in execution
times to extract the secret exponent
d [22].

220 H. Mantel et al.

In the style of Millen [39], a side channel can be modeled as an information-
theoretic channel [15] with random variables X and Y as the input alphabet and
output alphabet. The input alphabet are all secrets a program can process, and
the output alphabet are all possible side-channel observations. The worst-case
side-channel leakage can be measured by the channel capacity C(X;Y) [15].

Software-Based Energy Measurement. Energy E (measured in J for joule) is
the aggregation of instantaneous power consumption values p(t) (measured in
W for watt) over time, i.e., E =

∫ t1
t0

p(t)dt [19]. Similar to [41], we define the
energy consumption of a program as the energy consumed by the CPU and main
memory during program execution (e.g., for arithmetics and accesses to data).

Running Average Power Limit (Intel RAPL) is a set of energy sensors on CPUs
introduced with Intel’s Sandy Bridge processor architecture [20]. While Intel
RAPL’s primary purpose is to enforce power consumption limits [21, Chap. 14],
it also exposes the energy consumption of the CPU through the model-specific
register (MSR) MSR PKG ENERGY STATUS, which is updated every millisec-
ond. The measurements provided are accurate [20]. Linux exposes Intel RAPL to
userspace through the msr kernel module [31] and through the Power Capping
framework (powercap) [30]. Both, msr and powercap, provide energy measure-
ments in pseudo-files. The former can be accessed with root privileges, e.g., under
/dev/cpu/0/msr for the first CPU. The latter can be accessed by non-privileged
users under /sys/class/powercap/intel-rapl/intel-rapl:0/energy uj. From powercap,
energy measurements in the unit µJ = 10−6J can be obtained.

Distinguishing Experiments. In a distinguishing experiment, two distinct secret
inputs are passed to a program and a side channel output is repeatedly measured
for each input. For instance, Mantel and Starostin use distinguishing experiments
to show that a program exhibits a timing-side-channel vulnerability [36].

Based on the empirical data from a distinguishing experiment, statistical
tools can be used to quantify the side-channel leakage of the program under test.
For a given attacker strategy, the success probability can be computed based on
hypothesis testing. Independent of an attacker strategy, the side-channel capacity
C(X;Y) of the program can be estimated with a statistical procedure (e.g., [12]).

A test of hypothesis is a tool to investigate conformance of a hypothesis H0

with experimental data [48, p. 64]. We denote the alternative hypothesis by H1.
A test has two error cases: (a) the test wrongly accepts H0 (a false positive), or
(b) the test wrongly refutes H0 (a false negative). The probabilities for a false
positive and a false negative are denoted by P (H0|H1) and P (H1|H0).

The binomial distribution (or Bernoulli distribution) is the probability distri-
bution for the number of successes in n independent experiments [48, p. 112]. The
probability that in n experiments, each featuring success probability p, r suc-
cesses are observed is Pn,p(r) =

(
r
n

)
prpn−r, where

(
r
n

)
= n!

r!(n−r)! is the binomial

coefficient. We write Pn,p(r ≤ X) =
∑X

i=0 Pn,p(i) for the probability that at most
X out of n experiments exhibit a success. Conversely, the probability that more
than X out of n experiments exhibit a success is Pn,p(r > X) = 1−Pn,p(r ≤ X).

How Secure is Green IT? The Case of Software-Based Energy Side Channels 221

Chothia and Smirnov show in [13] how tests of hypothesis can be used to
attack e-passports. Based on a simple selection criterion, their distinguishing
attack tests the hypothesis that the passport under attack belongs to the vic-
tim. Using P (H0|H1) and P (H1|H0), they calculate the number of observations
needed to distinguish passports with error rates below 1%.

Program Transformations Against Side Channels. Multiple source-to-source pro-
gram transformations were proposed for mitigating timing side channels, includ-
ing cross-copying [2], conditional assignment [40], transactional branching [6],
and unification [26]. The technique cross-copying pads branches by adding copies
of the statements in one branch to the respective other branch. In the copies,
dummy statements are used, which do not affect the program’s state, but require
the same execution time as the respective original statements. The technique con-
ditional assignment removes secret-dependent branching completely and replaces
assignments from the respective branches by assignments that are masked by the
branching condition. Both, cross copying and conditional assignment were evalu-
ated analytically and experimentally [2,36,40]. For instance, they were effective
against the timing side channel in an implementation of Fig. 1 [36].

RSA in Bouncy Castle. Bouncy Castle is a cryptographic library for Java [29]. A
provider class allows the use of Bouncy Castle through the Java Cryptography
Extension (JCE). In the form of Spongy Castle [50], Bouncy Castle is widely
used on Android, e.g., in the WhatsApp messenger [32]. Side channels in Bouncy
Castle are, hence, a serious security threat. Recently, it was shown that Bouncy
Castle 1.5’s AES implementation is vulnerable to cache side-channel attacks [32].

Bouncy Castle contains implementations of various variants of the RSA asym-
metric encryption scheme. The RSA encryption and decryption functionality is
implemented in the Java class RSAEngine. RSAEngine can be used either directly
or as backend in cipher modes, such as OAEP [7] and PKCS1 [46]. An RSA key
can be generated using the class RSAKeyPairGenerator.

3 Our Approach

In a side-channel attack, an attacker collects sample execution characteristics of
a victim program. Based on these samples, the attacker distinguishes between
the candidate secrets (e.g., valid crypto keys). The core of many side-channel
attacks is to distinguish between candidate secrets from a restricted set (e.g.,
varying only in one bit [22] or byte [3,8]). For instance, AlFardan and Paterson [3]
distinguish between two secret plaintexts based on the time that an implemen-
tation of TLS takes to decrypt them. Using distinguishing experiments [36], one
can detect weaknesses in implementations that allow one to distinguish between
secret inputs, e.g., as a basic step in a side-channel attack.

We define a general procedure for such experiments and use it to assess the
implementation of RSA in Bouncy Castle with respect to two attacker models.

3.1 Procedure for Distinguishing Experiments

An implementation imp is assessed with respect to a particular security con-
cern, namely the leakage of a secret input s to an attacker under an attacker

222 H. Mantel et al.

Fig. 2. Procedure for a distinguishing experiment

model a. For instance, imp could be an RSA implementation and s could be the
secret RSA key. The assessment consists of four steps, visualized in Fig. 2: input
generation, sample collection, result computation, and result evaluation.

In the first step, input generation, two input vectors to the implementation
imp are generated, such that all inputs are within the spectrum of valid input
data. The input vectors differ only in the secret input s. For instance, to assess the
leakage of a secret RSA key, two valid secret RSA keys are generated randomly.

In the sample collection step, the implementation imp is run on the two input
vectors that were generated in the previous step. For both runs, the observation
made under the attacker model a is recorded. This step is repeated multiple
times to obtain a collection of observations for each input vector.

In the result computation step, the arithmetic means of the two collections of
observations are computed. For each collection, the frequency with which each
observation occurs in the collection is computed and visualized in a histogram.

The last step is the result evaluation. Based on the computed results, one can
detect weaknesses in implementations (if the means are clearly distinguishable
and the histograms have little overlap). In addition to such qualitative results,
quantitative results can be obtained through a statistical test (see Sect. 5).

3.2 Attacker Models

The sample-collection step in a distinguishing experiment depends on the
attacker model. We implement this phase for two attacker models that we call
sequential and concurrent . In both models, the attacker can execute an attack
procedure with standard capabilities on the machine running the victim pro-
gram. On Linux, attackers under both models can access powercap’s pseudo-files
on file system /sys. The model sequential captures active attackers who can trig-
ger runs of the victim program. The model concurrent captures passive attackers
who observe existing runs of the victim program. On Linux, unprivileged attack-
ers can access information about running processes through file system /proc.

Implementation for Sequential. We implemented the measurement procedure for
sequential in Python. Figure 3 shows corresponding pseudocode.

Firstly (Line 2), the attacker reads the energy-consumption counter through
powercap by calling the function readCounter. Secondly, the attacker waits
busily for the first change to the energy-consumption counter (Lines 3–5). Once
the counter has been refreshed, the attacker invokes an execution of the victim
program (Line 6) using the invocation command supplied as input to the attack
procedure. After executing the victim program, the attacker queries the energy-
consumption counter again (Line 7). The difference between the values of the

How Secure is Green IT? The Case of Software-Based Energy Side Channels 223

Fig. 3. Measurement procedure under sequential

Fig. 4. Measurement procedure under concurrent

224 H. Mantel et al.

counter before and after the victim’s execution is the attacker’s sample. If the
sample is negative, that is, if there was a wraparound of the counter, the sample
is discarded (Lines 8–9). Otherwise, the sample is returned (Lines 10–11).

Implementation for Concurrent. Since an attacker under concurrent cannot trig-
ger the victim program himself, he needs to identify runs of the victim program
on the system. We use Python to implement the measurement procedure under
concurrent . Pseudocode for the procedure is shown in Fig. 4.

The attacker waits until the victim program is executed (Lines 2–17). He
detects the invocation of a program by monitoring the /proc filesystem. He rec-
ognizes the victim program by the command that was used to invoke it (Line 11).
Once the victim program is executed, the attacker measures the energy consump-
tion as the difference in the energy-consumption counter (Lines 19–27).

4 Qualitative Results on Bouncy Castle RSA

We investigate the consequences of software-based energy measurement on soft-
ware security at the example of Intel RAPL and Bouncy Castle RSA. Using a
distinguishing experiment, we identify that running Bouncy Castle RSA on a
system with Intel RAPL gives rise to a weakness. The energy consumption of
the decryption operation allows to distinguish between secret RSA keys. In the
following, we describe the setup and results of our experiment in detail.

4.1 Experimental Setup

Assessed Implementation. To assess the vulnerability of Bouncy Castle RSA, we
implement a Java program, called RSA, that decrypts an RSA ciphertext using
Bouncy Castle 1.53. It takes a secret key and a ciphertext as input. It decrypts

Fig. 5. RSA decryption

the ciphertext, using the secret key, and
returns the resulting plaintext.

Figure 5 lists the pseudo-code of the
program. Line 4 decrypts ciphertext ct
using secret key (d,n). processBlock is
a method from Bouncy Castle’s RSAEngine
class, which implements the RSA decryp-
tion.

Machine Configuration. We conduct our experiments on a Lenovo ThinkCentre
M93p featuring one RAPL-capable Intel i5-4590 CPU @ 3.30GHz with 4GB of
RAM. The machine runs Ubuntu 14.10 with a Linux kernel version 3.16.0-44-
generic from Ubuntu’s repository. The programs are executed using an Open-
JDK 7 64-bit server Java Virtual Machine version 7u79-2.5.5-0ubuntu0.14.10.2
from Ubuntu’s repository. To simulate a server machine that is shared between
attacker and victim, we disable the X-server.

Parameters and Sampling. We generate two RSA keys k1 and k2 to supply as
input to our RSA decryption program during our distinguishing experiment.

How Secure is Green IT? The Case of Software-Based Energy Side Channels 225

First, we randomly select two 1536 bit primes p and q to calculate the 3072 bit
modulus n = p ∗ q shared by our keys. To select private exponents for the two
keys k1 and k2, we exploit that d ∗ e ≡ 1 (mod (p − 1) ∗ (q − 1)) must hold
for valid RSA keys [45]. For k1, we randomly generate a public exponent ek1
and calculate the corresponding private exponent dk1. For k2, we fix the public
exponent to ek2 = 65537 and calculate the corresponding private exponent dk2.
The secret exponents that we obtain for k1 and k2 have Hamming weight 1460
and 1514, respectively. In addition to the keys, we randomly select a ciphertext
c < n to decrypt with both keys.

In our distinguishing experiments, we utilize our measurement procedures to
collect 100000 samples per secret key under the attacker models sequential and
concurrent . For the attacker model concurrent , under which an attacker cannot
trigger executions of the victim program himself, we invoke the victim program
after random delays between 100 ms and 1000 ms.

We reject outliers that lie further than six median absolute deviations from
the median. For k1, we reject 1.24% of the samples under sequential , and 10.78%
of the samples under concurrent . For k2, we reject 1.11% of the samples under
sequential , and 11.01% of the samples under concurrent . We plot the collected
samples for each key and attacker model as histograms.

4.2 Results for Sequential

The samples collected in our distinguishing experiment under sequential are
depicted in Fig. 6. One histogram of energy-consumption samples is given per
input. The histograms are colored based on the input: The blue (left) histogram
corresponds to the samples for k1 with Hamming weight 1460, and the red (right)
histogram corresponds to the samples for k2 with Hamming weight 1514.

The estimated mean energy consumption for k1 is 5.07J , and for k2 the
estimated mean energy consumption is 5.14J . The peaks of the histograms and
the mean energy consumptions for the inputs are clearly distinct.

Fig. 6. Results for sequential Fig. 7. Results for concurrent

226 H. Mantel et al.

Based on the histograms, an attacker under the model sequential can distin-
guish between the two secret RSA keys. Hence, there is a weakness in Bouncy
Castle RSA in the presence of the Intel RAPL feature.

4.3 Results for Concurrent

Figure 7 shows the histograms of the samples per key under concurrent . Again,
the blue (left) histogram corresponds to k1 (Hamming weight 1460) and the red
(right) histogram corresponds to k2 (Hamming weight 1514).

The mean energy consumptions are 7.20J and 7.32J for the keys with Ham-
ming weights 1460 and 1514, respectively. The peaks of the two histograms are
clearly distinct. Interestingly, the overlap of the histograms is even a bit smaller
compared to the overlap of the histograms under sequential . We will get back to
this peculiarity in Sect. 5.

The mean energy consumptions and the histograms for the two RSA keys
are clearly distinct. This means that the weakness we detected in Bouncy Castle
RSA is even exposed to the weaker attacker model concurrent , under which an
attacker only passively observes an RSA decryption.

Remark 1. Note that, the energy consumption measured under concurrent
increased significantly by 2.13J and 2.18J , respectively, compared the observa-
tions under sequential . This increase is due to the attacker actively monitoring
the /proc filesystem to identify termination of the RSA process.

Overall, we identify a weakness in Bouncy Castle RSA that is exposed to
attackers under, both, sequential and concurrent . For both attacker models, the
mean energy consumption of the decryption differs significantly across the two
RSA keys. Based on the histograms from our distinguishing experiments, an
attacker is able to clearly distinguish between the two secret keys if he collects
enough samples. In the following section, we quantify exactly how many samples
an attacker needs in order to be successful.

5 Quantification of the Weakness

The results of our distinguishing experiments show that it is intuitively possible
that an attacker can distinguish RSA keys by exploiting a weakness in Bouncy
Castle RSA via Intel RAPL. We further investigate the likelihood of an attacker to
distinguish keys. To this end, we devise a test procedure that allows an attacker
to guess which of the two RSA key is used during decryption. Based on the false
positive and false negative rates of the test procedure, we compute how many
measurements an attacker requires to correctly guess the key in 99% of all cases.

5.1 A Distinguishing Test

Side-channel attacks, e.g., [8,13], can be mounted in two phases. In the first
phase, the attacker collects a set of offline observations through the side channel

How Secure is Green IT? The Case of Software-Based Energy Side Channels 227

as reference point, possibly on a different machine with the same software and
hardware setup as the machine he shares with the victim. During the second
phase, the attacker collects a set of online observations on the machine he shares
with the victim. By relating his online side-channel observations with the offline
observations, the attacker deduces information about the secret being processed.

For our distinguishing experiment setting, the offline observations are the
collected energy-consumption characteristics of the RSA decryption operation
for both, k1 and k2. The online observations would be side-channel observations
collected to identify which key is used during a system run. To guess which
key the system is using, the attacker compares how likely the learned energy-
consumption characteristics allow him to explain the online observations. We
model the guess by a statistical test to distinguish between the keys.

Fig. 8. Example of a distinguishing test

The attacker’s distinguishing test
works as follows: Given two keys, k1
and k2, with mean energy consump-
tions of mk1 and mk2, where mk1 <
mk2, the attacker determines a distin-
guishing point dp = mk1+mk2

2 . If the
attacker observes an energy consump-
tion less than dp, he guesses k1. Other-
wise, he guesses k2. A false positive is:
k2 was used but the attacker guesses k1.
A false negative is: k1 was used but the
attacker guesses k2.

A visualization of an example for the test is given in Fig. 8. In the exam-
ple, the distributions of energy consumptions for k1 and k2 follow the normal
distributions N (4.5J, 0.81) and N (5.5J, 0.49). Thus, the decision point is at 5J .
The area under the curve k2 to the left of dp corresponds to the false positive
probability P (k1|k2) = 23.75%. Conversely, the area under the curve k1 to the
right of dp corresponds to the false negative probability P (k2|k1) = 28.93%.

The attacker can use majority voting to increase his chances of guessing the
correct key. For this, he observes multiple decryption operations and uses his test
on each observation. Based on the individual guesses, he chooses the key on which
the majority of guesses agreed. Let n be the number of observations the attacker
makes. Then the false positive probability is pnP (k1|k2) = Pn,P (k1|k2)(r > �n

2 �)
and the false negative probability is pnP (k2|k1) = Pn,P (k2|k1)(r > �n

2 �). Based
on P (k1|k2) and P (k2|k1), one can determine the number n of observations
needed for the attacker to distinguish k1 and k2 with 99% success rate, i.e., with
pnP (k1|k2) < 1% and pnP (k2|k1) < 1%. In the example from Fig. 8, P (k1|k2) =
23.75%, so that 17 observations lead to a false positive rate p17P (k1|k2) = 0.87% <

1%. Conversely, P (k2|k1) = 28.93%, so that 29 observations lead to a false
negative rate below 1%, namely p29P (k2|k1) = 0.81%. We conclude that the attacker
requires 29 observations to distinguish k1 and k2 successfully in 99% of all cases.

228 H. Mantel et al.

5.2 Quantitative Results

For a quantitative evaluation of the weakness in Bouncy Castle RSA, we need to
know the false positive and false negative probabilities of the distinguishing test.
We estimate the probabilities based on the energy consumption characteristics
collected offline by the attacker on his reference system. To estimate P (k1|k2),
we count the number of offline observations below dp of decryption samples
with k2 and divide them by the total number of offline observations for k2.
Conversely, to estimate the false negative probability we count the number of
offline observations above dp of decryption samples of k1 and divide them by
the total number of offline observations for k1. Formally, the probabilities can be
estimated as follows. Let Ok1 be the set of all offline observations for decryption
operations with k1 and let Ok2 be the set of all offline observations for k2.

P (k1|k2) =
|{x|x ∈ Ok2 ∧ x < dp}|

|Ok2| P (k2|k1) = |{x|x∈Ok1∧x≥dp}|
|Ok1|

We evaluate the weakness for the attacker models sequential and concurrent ,
using our distinguishing test. For sequential , the distinguishing point is at dp =
5.10J , due to the means for k1 and k2 being 5.07J and 5.14J , respectively (see
Sect. 4.2). For concurrent , the distinguishing point is at dp = 7.26J , due to the
means for k1 and k2 being 7.20J and 7.32J , respectively (see Sect. 4.3).

The table in Fig. 9 lists the false positive and false negative probabilities
pnP (k1|k2) and pnP (k1|k2) that result from n online observations for a given n under
the two attacker models, respectively. Note that, the following equations hold:
P (k1|k2) = p1P (k1|k2) and P (k2|k1) = p1P (k2|k1). In addition to p1P (k1|k2) and
p1P (k2|k1), we only list the cases in which one of the probabilities falls below
1% for the first time. We highlight the first value below 1% for each of the
probabilities by printing it in bold face.

The false positives for 1 observation range from 13.69% for concurrent to
24.75% for sequential . The false negatives for 1 observation range from 13.39% for
concurrent to 19.77% for sequential . For 7 online observations, the false positive
and false negative probabilities fall below 1% for concurrent . For sequential , the
false negative probability falls below 1% at 13 observations and the false positive
probability falls below 1% at 19 observations.

The distinguishing tests show that, in the worst case, only 19 observations are
required to distinguish key k1 from key k2 in 99% of all cases. In this case of 19

Fig. 9. False-positive and false-negative rates for attackers

How Secure is Green IT? The Case of Software-Based Energy Side Channels 229

observations, concurrent ’s test exhibits false negative and false positive probabil-
ities below 0.01% each. This means that, given only 19 decryption observations,
concurrent can distinguish both keys in 99.99% of all cases. Moreover, to distin-
guish both keys in 99% of all cases, concurrent requires only 7 observations. The
finding that concurrent , our weakest attacker model, can distinguish both keys
with high likelihood at 7 observations and, even worse, with near certainty at 19
observations, gives us reason to classify the weakness we discovered as severe.

Remark 2. A comparison across the two attacker models yields the surprising
result that concurrent requires fewer observations than sequential to distinguish
both keys in 99% of the cases. The 7 observations required by an attacker under
concurrent are less than half of the 19 observations required by an attacker under
sequential . Intuitively, an attacker under sequential should be able to distinguish
the keys more easily than an attacker under concurrent , due to sequential ’s
ability to trigger victim executions and, hence, to measure more precisely.

After investigating the histograms from Sect. 4 again, our explanation is
as follows. For both attacker models, sequential and concurrent , the overlap
between both histograms seems to be roughly 0.25J wide. The estimated means
differ by 0.07J , and 0.12J , respectively. While the width of the overlap remains
similar with decreasing attacker capabilities, the means move further apart,
decreasing the likelihood to observe an energy consumption value that lies in
the overlap. Hence, the likelihood of an error in the distinguishing test decreases
from sequential to concurrent , which is also shown by our quantitative results.

6 A Security Evaluation of Candidate Countermeasures

As we have shown in the previous sections, software-based energy side channels
are a serious threat. Restricting access to software-based energy measurement
features like Intel RAPL would seriously limit green IT. In contrast, software-level
countermeasures would provide more flexibility, allowing energy measurement
while mitigating information leakage through energy side channels.

We investigate two candidate software-level countermeasures, namely cross-
copying [2] and conditional assignment [40]. Both are countermeasures against
timing side channels, which ensure that equal or equivalent statements are exe-
cuted across every pair of secret-dependent branches, independently of the guard.
Intuitively, equal or equivalent statements should consume equivalent amounts
of energy. Thus, we consider both techniques promising candidates for miti-
gating software-based energy side channels. In the following, we evaluate their
effectiveness, using experiments and information theory.

6.1 Case Study

To investigate whether cross-copying or conditional assignment can help to miti-
gate leakage through software-based energy side channels, we quantify their effec-
tiveness on a benchmark program. Motivated by the weakness that we detected

230 H. Mantel et al.

Fig. 10. Cross-copied version Fig. 11. Conditional-assignment version

in the Bouncy Castle RSA implementation, we use a benchmark that is relevant
for RSA. More concretely, we focus on an implementation of square-and-multiply
modular exponentiation (Fig. 1).

We first check that software-based energy-side-channel leakage is a concern
for this benchmark implementation. To this end, we approximate the channel
capacity for the implementation. In the next step, we check whether the candi-
date countermeasures mitigate this threat. To this end, we approximate the chan-
nel capacity of a cross-copied version of the implementation and of a conditional-
assignment version of the implementation. We evaluate the effectiveness of each
countermeasure by the reduction in channel capacity that it causes.

The cross-copied implementation, shown in Fig. 10, contains a dummy assign-
ment (Line 6) in the else-branch that is equivalent to the assignment in the then-
branch. The conditional-assignment version replaces the branching by assign-
ments masked by the branching condition (Fig. 11, Line 4 and 5).

6.2 Experimental Setup

For brevity, we call the unmitigated square-and-multiply implementation Base-
line, the cross-copied implementation CC, and the conditional-assignment ver-
sion CA. For experimental evaluation, we use [36]’s Java implementation of Base-
line, CC, and CA. We adapt the implementations to log the energy consumption
measured through powercap. We disable the network and all but the first CPU
core to reduce noise in the measurements. We disable the just-in-time (JIT) com-
piler of the Java VM to prevent optimizations from interfering with our results.
To avoid zero energy consumption results due to execution times below 1 ms,
we repeat the computation 1.31 × 105 times. This results in approximately 100
updates of the energy-consumption counter for a single execution of Baseline.
We estimate the channel capacity using an iterative Blahut-Arimoto algorithm
[5,10] based on the samples collected during a distinguishing experiment.

For the distinguishing experiment, we use two input vectors that share n =
4096 and c = 1234567890. One secret exponent with Hamming weight 5 (d =
2080374784) and one secret exponent with Hamming weight 25 (d = 33554431)

How Secure is Green IT? The Case of Software-Based Energy Side Channels 231

are used as the first and second value of the secret input, respectively. We follow
[36] and collect 10000 samples per input. We reject outliers that lie further
than six median absolute deviations from the median. This results in a rejection
between 1.07% and 2.73% of all samples for each implementation and each input.

6.3 Experimental Results and Interpretation

The table in Fig. 12 shows the results of our experiments. The mean energy
consumptions and channel capacities are given with 95% confidence intervals.

The mean energy consumption for the first input to Baseline is roughly
15373.73nJ . The mean energy consumption for the second input to Baseline
is roughly 18934.13nJ . These means are clearly distinguishable. Hence, there is
a clear security concern already in the benchmark.

To quantify the severity of the security threat, we determine the channel
capacity. Since we consider a scenario in which the attacker tries to distinguish
between two inputs, the secret is 1 bit, namely the choice of the input. For Base-
line, C(X;Y) is 0.9922 bits/symbol. That is, one attacker observation reveals
almost the entire secret under the worst-case prior distribution of inputs.

Next, we investigate the results for CC. Here, the mean energy consumptions
for the two inputs are roughly 20372.21nJ and 21040.05nJ , respectively. The
channel capacity is approximately 0.9171 bits/symbol.

Intuitively, the mean energy consumptions of CC are still clearly distin-
guishable. The quantification of the security concern by the channel capacity
of CC confirms that the concern is still substantial. CC can still leak 91% of the
secret under the worst-case prior input distribution. This shows that [36]’s cross-
copying implementation does not mitigate the energy side channel significantly.

We can only speculate why cross-copying is not effective against the energy
side channel in our experiments. The difference of data dependencies introduced
by the branches might be responsible. In the else branch (Fig. 10, Line 6), the
result is written to rdummy instead of r. This might cause a subtle difference in
energy consumption, for example, due to different patterns of pipeline stalling.

Next, we investigate the results for CA. The mean energy consumptions of
CA for the two inputs are roughly 32670.41nJ and 32630.73nJ , respectively.
The channel capacity is approximately 0.0075 bits/symbol.

The mean energy consumptions for the two inputs to CA are almost identical
and, hence, not easy to distinguish. The channel capacity is reduced almost to
zero. That is, in our example, conditional assignment effectively reduces the secu-
rity concern by 99%, almost eliminating the software-based energy side channel.

The successful reduction of channel capacity from Baseline to CA gives us
hope that an effective countermeasure against software-based energy side chan-
nels can be designed. In particular, conditional assignment is a promising starting
point in the design of such countermeasures.

232 H. Mantel et al.

Fig. 12. Statistical results for modular exponentiation

7 Related Work

7.1 Power-Consumption Side Channels

Power-consumption side channels are exploited, e.g., by the techniques Simple
Power Analysis (SPA) and Differential Power Analysis (DPA). These techniques
were introduced by Kocher, Jaffe, and Jun in attacks on smartcards imple-
menting the DES cryptosystem [23]. In both techniques, traces of the power
consumption of a circuit are measured and analyzed. SPA is a direct interpre-
tation of power traces and can yield information about a device’s secret key
during crypto computations [23,24]. DPA is a statistical method to identify cor-
relations between data processed and power consumption [23,24]. Variations of
power analysis have been used in attacks on implementations of cryptography,
e.g., of DES [23,28,47], of RSA [23,24,37,42], and of AES [24,34,44]. All these
attacks obtain traces of power consumption from measurements with dedicated
hardware.

Recently, power-consumption side channels were exploited without dedicated
hardware on mobile devices using batteries [38,51]. We briefly give an overview
on Michalevsky et al.’s work on tracking Android devices through power anal-
ysis [38]. They measure the power consumption of a device using its battery
monitoring unit. By their measurements, they can, e.g., track users in real-time.

Our work on software-based energy side channels differs from the previously
described work on power analysis in the two following aspects.

(a) We investigate a fundamentally weaker attacker model. Our attacker is
only able to measure the energy consumption, which is the aggregate of instan-
taneous power consumption. As a result, the observations required for an attack
through software-based energy side channels are more coarse-grained.

(b) On the technical side, we use software-based measurement techniques
available on machines without battery, e.g., on desktop and server machines.
Software-based techniques allow an attacker to conduct his attack without dedi-
cated hardware and without physical access to the device under attack. Thus, the
observations required to exploit software-based energy side channels are easier
to obtain than power traces and might be obtainable remotely in the cloud.

Overall, we think that software-based energy side channels are an interesting
target for future security research because they use more coarse-grained obser-
vations that are easier to obtain.

How Secure is Green IT? The Case of Software-Based Energy Side Channels 233

7.2 Quantitative Side-Channel Analysis

Side channels have been the focus of many research projects since their first
appearance in Kocher’s work in 1996 [22]. A multitude of work focuses on exploit-
ing side channels, e.g., [3,4,8,11,22,32,52]. In addition, analysis of side channels
using information-theoretic methods has become an area of focus. Köpf and
Basin propose a model to analyze adaptive side-channel attacks using infor-
mation theory [25]. More concretely, they quantify the attacker’s uncertainty
about a secret based on the number of side-channel measurements the attacker
obtained. CacheAudit [18] by Doychev, Köpf, Mauborgne, and Reineke is a tool
employing program analysis and information theory to give upper bounds on
information leakage through cache side channels in x86 binaries. Other work on
analysis of side channels using information theory includes [9,27,33,35,49].

The mentioned works are foremost of analytic nature. On the empirical anal-
ysis of side channels, we are aware of only few works, e.g., [14,16,36]. Mantel and
Starostin evaluate the practical effectiveness of program transformations to miti-
gate timing side channels [36]. For their evaluation, they consider the capacity of
the timing side channel in a program. They introduce the idea of distinguishing
experiments to obtain experimental results on the side-channel capacity.

We apply [36]’s concept of distinguishing experiments to show software-based
energy side channels exist. Following [36]’s approach, we use channel capacity
to evaluate the effectiveness of side-channel countermeasures. In summary, we
build on [36]’s techniques, but apply them to a novel type of side channel.

Our distinguishing test to quantitatively evaluate the weakness in Bouncy
Castle RSA is a variant of [13]’s test to distinguish e-passports. Distinguishing
e-passports is done through sending a random message and a replayed message
to a passport to obtain the difference in response times. Using a normal dis-
tribution as a model of response times and a manually selected distinguishing
point, Chothia and Smirnov calculate the number of observations needed to dis-
tinguish passports in 98% of all cases. We transfer the test to our setting. Unlike
Chothia and Smirnov, we estimate error probabilities based on offline samples
alone, because our observations do not follow a normal distribution.

Like the distinguishing attack in [3] and the distinguishing experiments in
[16,36] we focus on distinguishing between two secrets in our qualitative and
quantitative evaluation. We take care to use two representative secrets by fol-
lowing standard random key generation procedures (OpenSSL’s default public
exponent, criteria in [45]). A notable work that distinguishes between more than
two secrets is [13], which considers ten different e-passports.

8 Conclusion

Software-based energy measurement features facilitate the optimization of
energy consumption, which is crucial in datacenters. We showed, at the example
of Intel RAPL and Bouncy Castle RSA, that these important features also intro-
duce a security issue. Based on only 7 energy samples measured with Intel RAPL,

234 H. Mantel et al.

an attacker can distinguish between two RSA secret keys with 99% success prob-
ability. Overall, our results show that software-based energy side channels are a
serious security concern.

To protect against the security issues without excluding a large fraction of
programs from the optimization of energy consumption, fine-grained counter-
measures are needed. We have identified conditional assignment as a promising
starting point for designing such countermeasures. In our quantitative exper-
imental evaluation of candidate countermeasures, conditional assignment was
effective in the protection of our benchmark program.

Interesting directions for future work will be to derive key-recovery attacks
against Bouncy Castle RSA from our results and to investigate the effect of just-
in-time compilation. We hope that our approach using distinguishing experi-
ments will also be helpful for the timely detection of side-channel vulnerabilities
in other security-critical implementations.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
We thank Yuri Gil Dantas, Ximeng Li, and Artem Starostin for helpful suggestions at
different stages of our research project. This work has been funded by the DFG as part
of the project Secure Refinement of Cryptographic Algorithms (E3) within the CRC
1119 CROSSING.

A RSA Parameters

We list the ciphertext c, the modulus n, and, for each of k1 and k2, the private
exponent d. The table in Fig. 13 lists the bit length and Hamming weight of the
individual key parameters.

Fig. 13. RSA parameter information

c = 21 444 858 737 899 529 054 620 511 370 454 507 092 966 801 560 642 267 256
271 104 479 565 623 317 752

How Secure is Green IT? The Case of Software-Based Energy Side Channels 235

n = 2701 439 070 847 831 436 302 643 023 883 472 860 688 598 232 186 843 078 227
336 630 239 028 012 256 550 437 650 268 769 791 198 665 992 795 439 484 217
556 231 560 025 070 371 698 339 396 459 200 881 954 828 050 340 830 157 513
508 421 214 770 279 402 829 167 697 307 613 566 394 176 659 624 110 756 710
628 073 014 761 357 607 996 466 364 229 898 558 058 073 647 928 107 882 490
406 530 947 890 797 815 573 279 825 845 151 878 854 668 533 049 684 979 849
046 263 217 739 454 991 182 947 451 853 315 650 216 590 304 861 483 322 060
060 830 631 094 083 537 687 041 942 037 690 007 693 207 305 415 195 214 688
380 836 084 216 172 144 792 635 213 107 935 419 683 137 307 723 939 160 685
162 963 798 575 432 937 877 504 919 069 927 206 463 822 812 215 130 775 583
846 864 507 114 293 297 396 044 572 999 463 005 723 946 293 357 342 314 317
073 651 823 518 140 604 749 430 721 177 242 193 915 300 702 995 100 318 209
072 680 035 930 026 760 088 409 999 868 552 738 596 292 995 373 879 363 788
033 672 926 557 820 859 907 396 638 610 163 158 192 481 639 061 519 053 725
943 865 537 221 937 014 172 943 369 946 317 527 944 500 414 286 628 781 268
545 323 413 089 483 205 130 985 579 709 706 141 004 772 358 028 235 835 383
909 088 091 781

dk1 = 834 165 241 298 999 430 572 239 556 741 255 001 409 654 369 991 231 022 229
220 766 012 080 697 463 656 309 174 093 432 158 675 603 340 216 003 665 704
131 245 121 040 967 995 188 366 594 646 886 723 499 562 164 775 785 136 008
896 297 468 405 676 356 520 936 826 945 820 428 827 348 255 217 929 032 541
402 713 897 358 199 944 878 768 362 082 394 995 264 828 906 821 922 160 081
896 178 733 905 626 880 183 545 477 730 549 240 816 967 899 639 830 638 962
585 672 589 316 902 773 646 421 798 550 172 445 107 122 780 716 202 671 225
380 537 248 843 847 787 001 886 230 297 573 272 017 826 827 441 391 799 971
383 481 609 479 693 434 609 255 364 781 237 298 674 935 211 620 000 100 041
121 931 493 922 732 461 726 369 423 008 396 966 929 501 865 211 495 345 778
306 377 790 415 705 746 828 081 157 687 854 396 051 014 887 511 709 430 472
332 036 102 915 852 198 291 900 816 398 410 487 823 293 583 922 839 328 518
348 451 707 669 403 333 993 535 972 295 702 111 655 470 282 959 323 284 437
483 178 409 938 904 891 941 353 380 152 662 307 486 605 772 459 905 400 151
595 208 101 373 686 515 401 901 692 964 058 539 933 630 431 256 790 357 003
951 566 054 871

236 H. Mantel et al.

dk2 = 849 669 096 348 419 204 365 570 298 477 349 071 171 614 131 865 471 357 729
223 033 692 678 706 938 741 080 172 802 999 095 258 832 447 464 674 826 253
513 078 126 047 832 149 347 969 391 019 019 909 054 959 345 128 332 576 053
617 789 744 725 266 175 298 192 375 980 008 826 221 571 989 636 873 751 134
110 143 415 982 969 381 778 707 618 076 367 532 496 926 501 132 827 071 452
381 857 918 868 318 894 249 233 517 709 784 025 494 473 083 475 794 688 338
318 669 205 292 634 477 215 223 397 852 394 761 705 823 824 009 487 094 582
053 403 448 414 519 187 059 874 506 785 829 441 820 347 012 931 983 749 032
937 029 535 204 674 669 118 349 387 871 614 945 298 028 125 580 430 251 234
668 630 080 219 358 718 245 352 291 415 465 763 013 100 923 209 592 436 665
013 250 115 828 673 733 662 998 810 262 212 481 440 283 643 807 643 936 814
117 781 430 012 258 146 460 658 672 860 115 805 136 484 154 272 106 257 859
724 501 287 380 315 081 559 737 344 179 353 409 746 394 603 117 859 928 408
887 186 955 223 875 953 551 569 984 766 380 086 437 972 232 285 448 676 372
452 773 194 118 503 147 494 678 742 399 709 855 779 414 952 984 145 813 209
160 450 714 556 753 389 051 248 506 613 925 218 229 813 615 602 923 271 485
462 745 822 621

References

1. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 15

2. Agat, J.: Transforming out timing leaks. In: POPL, pp. 40–53 (2000)
3. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS

record protocols. In: S&P, pp. 526–540 (2013)
4. Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.:

On subnormal floating point and abnormal timing. In: S&P, pp. 623–639 (2015)
5. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-

oryless channels. IEEE Trans. Inf. Theory 18(1), 14–20 (1972)
6. Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional

branching instructions. Electr. Notes Theor. Comput. Sci. 153(2), 33–55 (2006)
7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)

EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

8. Bernstein, D.J.: Cache-Timing Attacks on AES (2005)
9. Bindel, N., Buchmann, J., Krämer, J., Mantel, H., Schickel, J., Weber, A.: Bound-

ing the cache-side-channel leakage of lattice-based signature schemes using program
semantics. In: Imine, A., Fernandez, J.M., Marion, J.-Y., Logrippo, L., Garcia-
Alfaro, J. (eds.) FPS 2017. LNCS, vol. 10723, pp. 225–241. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75650-9 15

10. Blahut, R.E.: Computation of channel capacity and rate-distortion functions. IEEE
Trans. Inf. Theory 18(4), 460–473 (1972)

https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-319-75650-9_15

How Secure is Green IT? The Case of Software-Based Energy Side Channels 237

11. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23822-2 20

12. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 33

13. Chothia, T., Smirnov, V.: A traceability attack against e-Passports. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 5

14. Cock, D., Ge, Q., Murray, T.C., Heiser, G.: The last mile: an empirical study of
timing channels on seL4. In: CCS, pp. 570–581 (2014)

15. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

16. Dantas, Y.G., Gay, R., Hamann, T., Mantel, H., Schickel, J.: An evaluation of
bucketing in systems with non-deterministic timing behavior. In: IFIP SEC (2018,
to appear)

17. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory
power estimation and capping. In: ISLPED, pp. 189–194 (2010)

18. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

19. Farkas, K.I., Flinn, J., Back, G., Grunwald, D., Anderson, J.M.: Quantifying the
energy consumption of a pocket computer and a Java virtual machine. In: SIG-
METRICS, pp. 252–263 (2000)

20. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012)

21. Intel: Intel-64 and IA-32 Architectures Software Developer’s Manual. Volume 3
(3A, 3B, & 3C): System Programming Guide (2017)

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

24. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011)

25. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: CCS, pp. 286–296 (2007)

26. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Sec. 6(2–3), 107–131 (2007)

27. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: CSF, pp. 44–56 (2010)

28. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28632-5 13

29. Legion of the Bouncy Castle Inc.: The Legion of the Bouncy Castle. https://www.
bouncycastle.org/. Accessed 12 Apr 2018

30. Linux Kernel Organization Inc: Power Capping Framework. https://www.kernel.
org/doc/Documentation/power/powercap/powercap.txt. Accessed 18 Apr 2018

https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-14577-3_5
https://doi.org/10.1007/978-3-642-14577-3_5
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_13
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt

238 H. Mantel et al.

31. Linux Programmer’s Manual: MSR - x86 CPU MSR access device (2009). http://
man7.org/linux/man-pages/man4/msr.4.html. Accessed 12 Apr 2018

32. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: cache
attacks on mobile devices. In: USENIX Security, pp. 549–564 (2016)

33. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74735-2 29

34. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES
key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
343–358. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4 24

35. Mantel, H., Weber, A., Köpf, B.: A systematic study of cache side channels across
AES implementations. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.) ESSoS
2017. LNCS, vol. 10379, pp. 213–230. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62105-0 14

36. Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 447–467.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 23

37. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48059-5 14

38. Michalevsky, Y., Schulman, A., Veerapandian, G.A., Boneh, D., Nakibly, G.: Pow-
erspy: location tracking using mobile device power analysis. In: USENIX Security,
pp. 785–800 (2015)

39. Millen, J.K.: Covert channel capacity. In: S&P, pp. 60–66 (1987)
40. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security

model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

41. Noureddine, A., Rouvoy, R., Seinturier, L.: Monitoring energy hotspots in software
- energy profiling of software code. Autom. Softw. Eng. 22(3), 291–332 (2015)

42. Novak, R.: SPA-based adaptive chosen-ciphertext attack on RSA implementation.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 252–262.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 18

43. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptology ePrint Archive, pp. 1–23 (2002)

44. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 8

45. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

46. RSA Laboratories: PKCS #1 v2.2: RSA Cryptography Standard (2012). https://
www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-stan
dard-wp.pdf. Accessed 12 Apr 2018

47. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5 16

48. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State Univer-
sity Press, Ames (1989)

http://man7.org/linux/man-pages/man4/msr.4.html
http://man7.org/linux/man-pages/man4/msr.4.html
https://doi.org/10.1007/978-3-540-74735-2_29
https://doi.org/10.1007/978-3-540-74735-2_29
https://doi.org/10.1007/3-540-36552-4_24
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-24174-6_23
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/3-540-45664-3_18
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://doi.org/10.1007/978-3-540-39887-5_16

How Secure is Green IT? The Case of Software-Based Energy Side Channels 239

49. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

50. Tyley, R.: Spongy Castle by rtyley. https://rtyley.github.io/spongycastle/.
Accessed 12 Apr 2018

51. Yan, L., Guo, Y., Chen, X., Mei, H.: A study on power side channels on mobile
devices. In: Internetware, pp. 30–38 (2015)

52. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security, pp. 719–732 (2014)

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://rtyley.github.io/spongycastle/

Attacks

Phishing Attacks Modifications
and Evolutions

Qian Cui1(B), Guy-Vincent Jourdan1, Gregor V. Bochmann1,
Iosif-Viorel Onut2, and Jason Flood3

1 Faculty of Engineering, University of Ottawa, Ottawa, Canada
{qcui,GuyVincent.Jourdan,Bochmann}@uottawa.ca
2 IBM Centre for Advanced Studies, Ottawa, Canada

vioonut@ca.ibm.com
3 IBM Security Data Matrices, Dublin, Ireland

FLOODJAS@ie.ibm.com

Abstract. So-called “phishing attacks” are attacks in which phishing
sites are disguised as legitimate websites in order to steal sensitive infor-
mation.

Our previous research [1] showed that phishing attacks tend to be
relaunched many times, after sometimes small modifications. In this
paper, we look into the details of these modifications and their evolu-
tion over time. We propose a model called the “Semi-Complete Linkage”
(SCL) graph to perform our evaluation, and we show that unlike usual
software, phishing attacks tend to be derived from a small set of mas-
ter versions, and even the most active attacks in our database only go
through a couple of iterations on average over their lifespan.

We also show that phishing attacks tend to evolve independently from
one another, without much cross-coordination.

Keywords: Phishing attacks · Attacks modifications
Evolution graph

1 Introduction

In 2016, the number of phishing attacks reached an all-time high, with at least
255,000 unique attack instances [2]. Unfortunately, the trend only worsened,
and there are already over 580,000 unique attack instances reported up to the
3rd Quarter of 2017 [3,4]. This growth occurred despite the public’s increasing
awareness and widespread tools that are used to combat these attacks. For exam-
ple, browsers such as Google Chrome, FireFox, Opera and Safari all use Google
Safe Browsing1 to provide to their users some level of built-in protection from
phishing attacks. Microsoft Internet Explorer and Edge browsers also include a
similar built-in defence mechanism, called SmartScreen2.
1 https://safebrowsing.google.com/.
2 https://support.microsoft.com/en-us/help/17443/windows-internet-explorer-

smartscreen-filter-faq.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 243–262, 2018.
https://doi.org/10.1007/978-3-319-99073-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_12&domain=pdf
https://safebrowsing.google.com/
https://support.microsoft.com/en-us/help/17443/windows-internet-explorer-smartscreen-filter-faq
https://support.microsoft.com/en-us/help/17443/windows-internet-explorer-smartscreen-filter-faq

244 Q. Cui et al.

The majority of the literature on phishing attacks focuses on detection, e.g.
by using machine learning to train a detection model, or by using the reputa-
tion of the domains hosting the attacks, or by performing visual comparisons
between the phishing site and its target. However, Phishing is still very active;
for instance, a FBI report estimates that there were over 25,000 victims in 2017
for a total loss of almost 30 millions US dollars in the USA alone [5]. Our inability
to stop the onslaught of attacks shows that we need to go beyond merely detect-
ing attacks. We need to better understand why phishing attacks are growing so
fast and how phishers achieve this.

In our previous research [1], we showed that most phishing attacks are not
created from scratch, and they are actually duplicates or small variations of
previous attacks. Our experiments showed that over 90% of the phishing attacks
in our database were close duplicates of other attacks in the same database. This
created clusters of similar attacks.

In this paper, we explore the variations that are seen in these phishing attack
clusters, when the attacks are not the exact replica of another attack, and some
small modifications were performed over time. We try to answer the following
questions: (1) What reasons push phishers to create variations instead of simply
reusing exact replicas? (2) How are the attack typically modified when variations
are created? (3) Can we see common trends behind these modifications across
seemingly unrelated phishing attacks, or are the modifications specific to each
attack cluster? Our ability to answer these questions will further enhance our
understanding of the phishing ecosystem and it will help with combating the
problem more effectively.

In order to answer these questions, we are using a database of over 54,000 veri-
fied phishing attack instances collected between January 2016 and October 2017.
This represents a small sampling of the total number of attacks (for instance, the
Anti-Phishing Working Group reports about 2 million attacks during that same
period3). Moreover, our dataset is mostly made of attacks occurring in North
America and Europe. However, the model and analysis we proposed could be
applied to a larger dataset. In order to explore the evolution of phishing attacks
modifications over time, we propose a new cluster structure based on what we
call a semi-complete linkage graph (SCL). We find that most attacks are derived
from a small set of master versions, with few consecutive updates and long shelf
life. Moreover, we find that new variations created from a given attack usually
uses patterns specific to that attack. All of the data used in this research is
publicly available at http://ssrg.site.uottawa.ca/phishing variation/.

The paper is organized as follows: In Sect. 2, we introduce various mathe-
matical concepts that we use in our analysis. Then in Sect. 3, we present the
basic results of our experiments. We discuss these results and provide a detailed
analysis in Sect. 4. We provide an overview of the literature in Sect. 5 before the
conclusion in Sect. 6.

3 https://www.antiphishing.org/resources/apwg-reports/.

http://ssrg.site.uottawa.ca/phishing_variation/
https://www.antiphishing.org/resources/apwg-reports/

Phishing Attacks Modifications and Evolutions 245

2 Phishing Attacks Clustering

In order to analyze phishing attack modifications over time, we must first
group together attacks that are related and share similar features. In this section,
we introduce and discuss the mathematical concepts and algorithms that we used
to cluster these phishing attacks.

2.1 DOM Similarity Between Phishing Attacks

The Document Object Model (DOM) is a tree structure in which each node
represents one HTML element of a web page. In previous research, a variety of
techniques have been used to compare the similarity of DOMs [6]. The Tree Edit
Distance (TED) is one of the most popular metrics for measuring the structural
similarity between two DOMs. It represents the minimal number of operations
(adding, removing and replacing) to convert one document into the other. How-
ever, the complexity of the best TED algorithm to date, AP-TED [7], is still
O(n3), where n is the number of nodes in the DOM. To reduce the complex-
ity of computing TED, some approaches based on fuzzy hash [8] or information
retrieval [9,10] have been proposed. These methods are however limited and can-
not be used to find out the specific differences between the trees. Therefore, they
cannot be used to perform an analysis of the modifications between the trees.
Our previous research [1] proposed a trade-off method, introducing tag vectors
to compare the similarity of the DOM of phishing attacks with complexity O(n).
A tag vector is based on an ordered list of 107 possible HTML tags. The tag
vector of a given DOM is a vector of size 107, and each element of the vector is
the number of occurrences of the corresponding HTML tag in the DOM. This
method does not capture the structure of the DOM, which may lead to the
grouping of DOMs that have different structures but have a similar number of
each type of HTML tags. However, we have looked at the trees of DOMs that
have the same tag vectors in our database. We found that only 521 of these
DOMs (or 0.95% of our phishing attack database) have the same tag vector but
a different DOM tree. It is thus safe to use tag vectors in our case.

To compare the distance between tag vectors, in [1] we proposed to use the
Proportional Distance (PD), which divides the Hamming Distance of the vectors
by the number of tags that appear in at least one of the two DOMs. Formally,
given two non-null tag vectors t1 and t2, the proportional distance between t1
and t2 is given as:

PD(t1, t2) =
∑n

i=1 D(t1[i], t2[i])∑n
i=1 L(t1[i], t2[i])

where D(x, y) =

{
1 if x �= y

0 otherwise
and L(x, y) =

{
1 if x �= 0 OR y �= 0
0 otherwise

The proportional distance PD as defined in [1] does not emphasize on the
“amount” of differences between each HTML tag, and simply focuses on whether

246 Q. Cui et al.

the number of tags is the same. For example, the vector t1 = {1, 2, 5, 6} and
t2 = {109, 2, 5, 6} both have the same distance to the vector t3 = {2, 2, 5, 6},
that is, PD(t1, t3) = PD(t2, t3). For our study, we would like to capture the
fact that t2 is more different from t3 than t1 is. Therefore, we define a new
distance, called the Weighted Proportional Distance (WPD)4 to compare the
similarity of phishing attack instances. Instead of using the Hamming Distance
as the numerator, we use the sum of the Weighted Differences (WD), defined
by the following formula:

WD(t1, t2) =
n∑

i=1

|t1[i] − t2[i]|
max(t1[i], t2[i])

whereas the value of D for a given tag was boolean (0 or 1), for tags that are
used in both vectors, WD will be in the range [0, 1). The larger the difference
between the number of tag, the larger WD.

We define S as follows:

S(t1, t2) =
n∑

i=1

EQU(t1[i], t2[i])

where EQU(t1[i], t2[i]) =

{
1 if t1[i] = t2[i] AND t1[i] �= 0
0 otherwise

Finally, the Weighted Proportional Distance (WPD) is defined as follows:

WPD(t1, t2) =
WD(t1, t2)

WD(t1, t2) + S(t1, t2)

In the rest of the paper, we use WPD as the distance between our tag vectors. It
should be noted that other distance metrics could be used with probably similar
results. We used WPD because it is fast to compute and works well for our goal.

2.2 Optimal Threshold

In order to create clusters of similar attacks, we need to find out a good threshold
for grouping vectors together. If the distance between two vectors is less than
this threshold, they are considered similar and grouped into the same cluster.
Otherwise, they are separated into different clusters. The optimal threshold is
one that yields clusters that are fairly compact inside while the distance between
clusters is large. Before computing this optimal threshold for our database, we
first must define how vectors are connected inside each cluster.

4 For consistency with the name PD, we call this value the “Weighted” PD. However,
it should be noted that WPD is not a distance in the mathematical sense of it.

Phishing Attacks Modifications and Evolutions 247

2.3 Intra-cluster Vectors Connections

There are at least two common models that are widely used when it comes to
intra-cluster connections: (1) Single-linkage, where each node inside the cluster
is connected to at most one parent, creating a minimal spanning tree over the
elements of the cluster, or (2) Complete-linkage, where a complete graph is
created between all the elements of the clusters. However, neither of these two
models can accurately capture what we are trying to do here, that is, capture the
evolution of the elements inside a cluster. A good model should keep a connection
between the elements of a series of modifications done to a given attack (and
some of these elements may end up being fairly far apart after a long series of
modifications), but it should also capture the fact that some elements are at a
very small distance from each other within the cluster. This idea is illustrated
on Fig. 1. Vectors a, b, c and d are close to one another, meaning that there is
little variation between these four vectors. On the other hand, Vector e, while
still part of the same cluster, is actually relatively “far” from these first four
vectors, and is only linked to them through a long series of small variations.

To capture these series of modifications done to the phishing attacks inside a
cluster, we proposed to use a Semi-Complete Linkage (SCL) model. Specifically,
for any pair of tag vectors ti and tj in the same cluster, where i �= j, we have
an edge E(ti, tj) ∈ SCL if and only if WPD(t1, t2) � OPT , where OPT is
the optimal threshold for tag vector clusters defined in Sect. 2.4. A simple way
to see this model is that inside a cluster, vectors that are “similar” are linked
together. This model is an intermediate model between the spanning tree and
the complete graph.

Fig. 1. An illustration of a Semi-Complete Linkage graph.

2.4 Quality of Clustering

We now explain how we define the quality of clustering and how we will com-
pute the optimal threshold. We define Min(Ci, Cj) to be the minimal distance
between two clusters, which is defined as the minimum distance that can be
found between two vectors, one in Ci and one in Cj . That is:

Min(Ci, Cj) = min({WPD(x, y)|∀x ∈ Ci,∀y ∈ Cj})

As discussed in Sect. 2.3, we use the SCL model to capture the connections
inside tag vector clusters. Thus, we define the quality of vector clusters with

248 Q. Cui et al.

the following formula, which computes the total distance inside the clusters, and
divides it by the distance between clusters. We will experimentally try different
threshold to find one that minimizes this formula. The formula, which only
includes the clusters that have more than one element, is as follows:

1
k

∑k
i=1

1
|Ei|

∑|Ei|
j=1{WPD(x, y)|Ej(x, y) ∈ SCLi}

min{Min(Ci, Cj)|i �= j, 1 � i, j � k}
where k is the number of clusters having more than one element, E(x, y) is the
edge between x and y in the SCL graph, Ci is the ith cluster with more than
one element, SCLi is the SCL for Ci and |Ei| is the number of edges in SCLi.

Fig. 2. Example of phishing attacks modifications graph

2.5 Phishing Attacks Modifications Graph

To analyze the evolution of phishing attacks, we computed the SCL model for
each tag vector cluster, as illustrated in Fig. 2. Each node represents a unique tag
vector, and the nodes label shows the number of phishing attack instances using
this vector. The directed edge E(x, y) captures an evolution from vector x to vec-
tor y, that is, a modification made to the corresponding attack, which transforms
the original attack (which has vector x) into a slightly different attack (which
has vector y). The text on the edge provides the details of the modifications.
For example, an edge with the label “div:+2, input:-3” should be interpreted as
meaning that two div tags where added to the attack and three input tags where
removed in the creation of the new variation of the attack. The direction of the
edge is determined by the reported date of the two connected vectors; the edge
flows from the earlier attack to the later attack. Since several attacks will have
the same vector, we consider that the “reported date” of a vector is the date at
which we learned of the first attack that produced this vector.

As a consequence of this definition, a source node of the graph, that is, a
node that has an in-degree of zero, is the earliest reported attack instance in

Phishing Attacks Modifications and Evolutions 249

our data source from this series of modifications. We color these nodes in green.
Node that are variations of previously reported attacks have a positive in-degree
and are shown in blue in our graph.

3 Experiments

3.1 Phishing Sites Database

We have compiled our phishing database by collecting the URLs of phishing-
attack instances from the community-driven portal PhishTank5 and the enter-
prise security analysis platform IBM X-Force6. A total of 54,575 “verified” phish-
ing sites were collected by fetching the daily archive from PhishTank between
January 1st, 2016 and October 31st, 2017 and from IBM X-Force between June
12th, 2017 and October 31st, 2017. For each phishing site, we fetched the DOM,
the first URL (the reported one), the final URL (which is different from the first
URL only when redirection has been used by the attacker), and a screenshot of
the final page. To compare the performance of our new model with the model
proposed in [1], we used a database of 24,800 legitimate sites found on Alexa7,
made of 9,737 URLs coming from the lists of “top 500” most popular sites by
countries [11] and another 15,063 URLs randomly selected from the Alexa’s top
100,000 to 460,697 web sites. The list of URL is available on http://ssrg.site.
uottawa.ca/phishingdata/.

3.2 Vectors and Clustering Results

To compute the set of tag vectors, as was done in [1], we used the complete
set of HTML elements provided by the World Wide Web Consortium [12], and
removed the common tags <body>, <head> and <html>. That gave us a corpus
of 107 unique tags. We then counted the number of occurrences of each tag in
each DOM and used these number to create integer vectors of 107 features. We
obtained 8,397 unique tag vectors out of the DOMs of our 54,575 phishing attack
instances.

In order to compare the performance of our model to the one proposed in [1],
we first trained both models with the same phishing database and computed
the phishing attacks clusters and related optimal threshold. We then used our
database of legitimate sites to see how many false positives each model yields.

As shown in Table 1, the SCL model has a smaller optimal threshold, but
captures many more attacks than our previous models (only 3,869 undetected
attacks, compared to 4,351 with the previous model). There was however a slight
increase in the false positive rate, which remains very low at 0.26%. This shows
that the model proposed here is more efficient than the one proposed in [1] if the
aim is to detect phishing attack replicas. Similar to [1], the false negative rate is
unknown since we don’t know how many of the 3,869 unflagged attacks have a
replica in our database.
5 https://www.phishtank.com/.
6 https://exchange.xforce.ibmcloud.com/.
7 https://www.alexa.com/.

http://ssrg.site.uottawa.ca/phishingdata/
http://ssrg.site.uottawa.ca/phishingdata/
https://www.phishtank.com/
https://exchange.xforce.ibmcloud.com/
https://www.alexa.com/

250 Q. Cui et al.

Table 1. Vector and clustering results for both models. “Flagged” cluster have more
than one element, and the corresponding attacks are detected.

SCL Model Model of [1]

Optimal threshold 0.24 0.33

of vectors 8,400 8,400

of multiple-element clusters (“flagged”) 941 908

of single-element clusters 3,869 4351

of phishing sites in flagged clusters 50,706 (92.9%) 50,224 (92.03%)

of “similar” legitimate sites (false positive) 65 (0.26%) 58 (0.23%)

4 Analysis of the Modifications Seen in Phishing Attacks

4.1 Who Made Modifications, Phishers or Hosts?

One possible explanation for the modifications we see on different instances of
the same attack is that the attack was not actually modified by the attacker,
but by the hosting server, which is automatically injecting some html into the
pages, e.g. some Google Analytics tracking links, some WordPress plugins or
some other Javascript libraries. Since a given attack will be hosted on a range
of servers, these modifications would be misinterpreted as modifications to the
attack itself.

To verify this, we compared the DOM of the phishing attacks to the DOM
of homepages of the server hosting these attacks. We removed all the “blanks”
(including \t \r \n \f \v) from both DOMs, and we then extracted the content
that was common between the two DOMs. This content could have been coming
from the hosting server, and not from the attack itself. We did this for all the
attack instances in our database for which the host homepage could be reached
and had a different tag vector from the attack8.

We were able to collect the DOMs of 14,584 such homepages9. Of these, 2,566
had some common content with the hosted attacks. A closer look at the tags
involved in these common contents showed that the tag <meta> was involved in
2,280 of these cases, which is not surprising since <meta> is used for information
such as encoding, page size etc., information usually set by the hosting server.
The tag <script> was a very distant second present in only 96 cases. This
shows that the tag <meta> is the only tag for which the hosting server can
really impact our results. Therefore, we decided to remove that tag altogether
from our tag vectors. Redoing the experiment of Sect. 3.2 without that tag,
we find the same optimal threshold (0.24), and end up with 8,290 tag vectors
distributed across 913 flagged clusters (cluster with at least 2 vectors) and 3,912
single-vector clusters. The false positive rate drops to 0.25%, as a couple of

8 This excludes attacks that are located right at the homepage of the hosting server.
9 Many hosting servers were not reachable anymore by the time we did this experiment.

Phishing Attacks Modifications and Evolutions 251

legitimate sites are now correctly flagged. Out of an abundance of caution, we
used that updated model in the analysis presented in the next sections.

4.2 Clusters Sample Selection

We applied the SCL model discussed in Sect. 2.3 to our 913 flagged clusters. We
observed that there are several clusters with very few edges in their SCL graph,
meaning that for these clusters, our database does not contain many variations
of the corresponding attacks. Table 2 shows a detailed distribution of sizes of the
SCL graphs. As already pointed out in [1], a small minority of the clusters cover
the vast majority of the attacks. In this case, only 46.88% of the clusters have
a SCL graph with two or more edges, but they contain more than 75% of the
phishing attack instances. For our study, we selected the clusters having a SCL
graph with 30 or more edges because they capture the majority of the phishing
attack instances (52%) and they contain enough variations of the attacks to
study their evolution over time.

Table 2. Number of edges and pages distribution among clusters

of edges in
the cluster

of clusters
(%-tage of total)

of pages covered
(%-tage of total)

of edges
covered

≥2 428 (46.88%) 41,229 (75.55%) 18,636

≥3 394 (43.15%) 40,579 (74.35%) 18,568

≥4 258 (28.26%) 38,059 (69.74%) 18,160

≥5 243 (26.62%) 37,321 (68.38%) 18,100

≥10 150 (16.43%) 34,539 (63.29%) 17,504

≥15 107 (11.72%) 31,638 (57.97%) 17,043

≥20 88 (9.64%) 30,797 (56.43%) 16,732

≥30 62 (6.79%) 28,801 (52.77%) 16,113

≥40 47 (5.15%) 26,298 (48.19%) 15,591

≥50 42 (4.60%) 25,306 (46.37%) 15,381

4.3 Analysis of Master Vectors

As explained in Sect. 2.5, the orientation of the edges in the SCL graphs is
determined by the reported date of the DOMs creating the tag vectors, from the
earlier one to the later one. We call a tag vector of in-degree zero in the SCL
graph a master vector. Master vector represents one of the initial versions of the
attack in our database. Of course, each cluster contains at least one master vector
(the earliest reported vector in that cluster), but they can have several ones when
the distance between the vectors is too large for them to be connected in the
SCL graph. Having several master vectors in a cluster means that some attacks
have been substantially modified at once, or that we are missing to intermediate

252 Q. Cui et al.

steps in our database. Each non-master vector can be reached from at least one
of the master vectors in the cluster. Those master vectors provide a view of the
initial attacks and the non-master vectors give a view of how they evolved over
time. Figure 3 shows the SCL graphs of the two largest clusters in our database
(master vectors in green, non-master vectors in blue). We can see that there are
far fewer master vectors than non-master ones, indicating that the majority of
attacks in these clusters evolved from the original vectors.

(a) SCL graph of cluster 0 (b) SCL graph of cluster 1

Fig. 3. Examples of SCL graphs

Table 3 provides an overview of the results for all 62 clusters: overall, there
are 190 (10.47%) master vectors, covering around 35% of the attack instances.
This shows that the master vectors are often reused to relaunch the attacks.
Moreover, 34 clusters (54.84%) have two or more master vectors, suggesting
several initial versions of the attack which were later merged through a series of
updates.

Table 3. Overview of master/non-master vectors in the 62 largest clusters.

of clusters 62

of vectors 1814

of attack instances 28,455

of master vectors 190 (10.47%)

of attack instances in master vectors 9,855 (34.22%)

of clusters with two or more master vectors 34 (54.84%)

of clusters with only one master vector 28 (45.16%)

By manually inspecting the DOMs of master vectors, we found that master
vectors can be grouped into three categories: (1) Different initial versions of
the attack by attackers, with enough changes to push the distance beyond the

Phishing Attacks Modifications and Evolutions 253

threshold. It could be the case that the target is modified or that several new
features are released at once. Figure 4(a) shows such an example. (2) Different
steps of the same attack. Some attacks go through several steps as they attempt
to gather additional information from the victim. For example, in Fig. 4(b), a
first step is used to capture login information, and if it is provided, a second
step follows in which credit card details are requested. These different steps are
recognized as belonging to the same attack, but the difference between them
is too large for the threshold and there is no directed path between them in
the SCL graph. (3) Copies of different versions of the target site. As shown
in Fig. 4(c), sometimes the master vectors are essentially copies of the target
sites taken at different times. The target site was modified, so the corresponding
attack instances do not initially match. It is also possible that in some cases

(a) Different versions developed by phishers

(b) Different steps of the same attacks

(c) Different versions copied from legitimate sites (Yahoo
login page, circa 2015 and 2016)

Fig. 4. Examples of master vectors

254 Q. Cui et al.

our database is missing an even earlier version of the attack that would yield an
initial, sole master vector.

4.4 Analysis of Variation History

In order to analyze the evolution of the attacks in our database, we first introduce
a few definitions. As explained before, every non-master vector v has at least
one directed path in SCL from a master vector to v.

We call the Evolution Path of v (EPv) the directed path from a master vector
to v for which the sum of Weighted Proportional Distances of the edges along
the path is minimal. In other words, EPv is the directed path from one of the
master vector to v for which the amount of transformation was the smallest.

For a non-master vector v and its evolution path EPv = [t0, t1, . . . , tk−1, tk =
v], we have the following definitions:

1. The Path Distance (PDv) is the sum of the weighted proportional distance
of the edges along the evolution path EPv. It represents an evaluation of the
“amount” of difference between v and its master vector.

PDv =
k−1∑

i=0

(WPD(ti, ti+1))

2. The Evolution Distance (EDv) is the average weighted proportional distance
of edges along the evolution path EPv. It represents the average “amount”
of difference in each modification. Formally, EDv = PDv/k.

3. The Variation Lifespan (V Lv) is the time difference between the reported
date of v and the reported date of its master vector. It represents the com-
plete length of time during which this attack has been actively modified. If
Treport(ti) is the reporting date of vector ti, we have

V Lv = Treport(tk) − Treport(t0)

4. The Update Interval (UIv), is the average of the time difference between
consecutive vectors along the evolution path EPv. It represents how often
modifications are being deployed. Formally, UIv = V Lv/k.

Table 4. Analysis of the evolution paths in our database.

of evolution paths 1,230

Average Path Distance 0.1719

Average Evolution Distance 0.111

Average Variation Lifespan 267 days

Average Update Interval 186 days

Phishing Attacks Modifications and Evolutions 255

Table 4 provides the average values of these attributes for all evolution paths
in the selected 62 clusters. To compute these values, we have not included Evo-
lution Paths that are included into other, longer evolution paths. The results
show that in general, the attacks are only modified once every six months (186
days) and that the modifications are usually not drastic (the average WPD
between these modifications is 0.111). We also see that average path distance
is low, only 0.1719. Consequently, the average length of the evolution paths is
only 0.1719/0.111 < 2, less than two edges. This indicates that attackers usu-
ally do not maintain long evolution paths to create lots of variations over time.
Instead, they tend to re-create new variations from the same master vectors over
and over. We also find that each variation tends to stay active for a long time,
around nine months (267 days).

In conclusion, we see that most phishing attack modifications are derived
from a small set of master versions. Each of these modifications tend to be reused
as is for an extended period of time. This behavior matches the “crimeware-as-
a-service” model proposed by Sood et al. [13]: The underground producers build
the crimewares and sell them to underground buyers who are the ones launching
cyber-attacks.

4.5 Types of Modifications Seen on Phishing Attacks

In this section, we study the type of modifications that are found on our Evolution
Paths, in order to find out if the modifications are geared toward specific attacks
or if we see common trends across attacks. In the following, the analysis is done
on the set of Evolution Paths, not on the whole SCL graphs. The Evolution
Paths define a total of 1,624 edges. We will use the following two concepts:

1. The Modified Tags (MT) is the set of tags used anywhere on an edge of
the set of the Evolution Paths. These are the tags that have been added or
removed to modify attacks.

2. The Modification Tags Subsets (MTS) are all the subsets of the set of tags
used on at least one edge of the set of the Evolution Paths. We exclude
singletons from MTS, so we only consider subsets of at least two tags.

For example, if a SCL graph has only two edges, one labeled with {div:+1,
a:+6} and the other one labeled with {input:+3, a:+5, h2:+1}, the set MT
is {<div>, <a>, <input>, <h2>} and we have five subsets in MTS, namely
{<div>, <a>}, {<input>, <a>, <h2>}, {<input>, <a>}, {<input>, <h2>},
and {<a>, <h2>}.

First, we analyzed the common modification among clusters. The top 10 most
common MT s, and the number of clusters in which they appear, are <script>
(57), <div> (53), (52), <a> (51), <input> (50),
 (48), <link>
(47), (47), <p> (41), and <style> (40). The top 10 most common
MTS among the selected 62 clusters are shown in Table 5. We found that beside
the tags , <div> and
 that are used for spacing or containers,
and the functional tags <script>, and <link> that are used for adding scripts

256 Q. Cui et al.

Table 5. The top 10 most common MTS in our database.

MTS # of clusters % # of edges %

{a, div} 45 72.58% 403 24.82%

{div, img} 44 70.97% 286 17.61%

{div, script} 44 70.97% 403 24.82%

{div, span} 40 64.52% 264 16.26%

{br, div} 39 62.90% 215 13.24%

{img, script} 39 62.90% 199 12.25%

{a, img} 37 59.68% 235 14.47%

{link, script} 37 59.68% 215 13.24%

{script, span} 35 56.45% 174 10.71%

{input, span} 35 56.45% 161 9.91%

and resources, phishers only use three tags in the top 10 MTS: <a>,
and <input>. Figure 5 shows two examples of substantial (visual) modifications
were only one tag is actually updated. In Fig. 5(a), one tag was added to
change the target. In Fig. 5(b), an email credential phishing attack was converted
into a tax return phishing page by changing the background images and adding
31 <input> tags.

We also note that despite the very small number of tags used to perform these
modifications, none of the top MTS are used by more that 25% of the edges.
In order to better understand how common or uncommon each combination of
MTS is, we computed the Jaccard Index : for each pair of clusters, we computed
the number of top 10 MTS (resp. top 10 MT) common to both clusters, divided
by the number of top 10 MTS (resp. top 10 MT) included in either clusters.
Figure 6 shows the distribution of the values thus obtained.

As shown in Fig. 6, the distribution of Jaccard Indexes for the pairs of top 10
MT covers a relatively wide range, from 0.1 to 0.7. This indicates that different
clusters do use the same tags to create the variations, for example <div> or
<input>. The distribution of Jaccard Indexes for the pairs of MTS on the
other hand is very different: most indexes are less than 0.3 and the vast majority
(almost 80%) are less than 0.1.

These results show that even through very few tags are actually used when
the attacks are modified, the combination of tags used tends to be unique to the
attack. In other words, attacks are evolving independently from one another,
and the modifications are made for reasons that are specific to each attacks, and
not as some sort of global update made across a range of attacks.

Phishing Attacks Modifications and Evolutions 257

5 Related Work

5.1 Phishing Detection

The bulk of academic literature on phishing understandably focuses on the auto-
matic detection of phishing sites. There are three main approaches that have
been suggested.

The first one is to identify a phishing attack by comparing it with its target
site to find similarities between the two. Rosiello et al. [14] propose a browser
extension based on the comparison of the DOM tree, which records the mapping
between sensitive information and the related information of legitimate sites
(Table 6).

Several papers explore visual similarity comparison. Chen et al. [15] applied
the Gestalt Theory to perform a comparison of visual similarity by using nor-
malized compression distance (NCD) as the similarity metric. Sites logo [16]
and favicon [17] comparison have also been suggested. Liu et al. [18] proposed a
refined comparison method by using block level, layout and overall style similar-
ity. A recent overview of these methods can be found in [19]. The drawback of
these methods is that they require some initial knowledge of the targeted legit-
imate sites. Some authors have suggested to use search engines to acquire this
knowledge automatically, for example Cantina [20] which attempts to find the
current page on Google and warns if it is not found. Similarly, Huh et al. [21]
suggested to search the site’s URL in different search engines and use the number
of returned pages as an indicator of phishing.

The second approach is to look for intrinsic characteristics of phishing
attacks. Cantina+ [22] proposes a system using Bayesian Network mixing 15
features. Gowtham et al. [23] proposed a detection system using a Support Vec-
tor Machines (SVM) classifier and similar features to Cantina+. Their system
achieved 99.65% true positive and 0.42% false positive. Daisuke et al. [24] con-
ducted an evaluation of nine machine learning-based methods; in their study,
AdaBoost provided the best performance. Some research also applies machine
learning techniques for detecting phishing emails instead of the phishing site [29–
31]. Danesh et al. [32] analyzed more than 380,000 phishing emails over a 15
months period. They found that some attacks keep similar messages over a long
period of time, while the other attacks use different messages over time to avoid
being detected by email filters.

Finally, some new approaches have been proposed recently, in which a phish-
ing attack is compared to known ones. Our previous paper [1] found that most
phishing attacks are duplicates or variations of previously reported attacks.
Thus, new attack instances can be detected using these similarities. Corona
et al. [25] proposed a method to detect attacks hosted on compromised servers,
which compares the page of the attack with the homepage that hosts it and the
pages linked by it.

258 Q. Cui et al.

Table 6. A summary of related work for phishing detection and phishing kits

Category Work Brief description

Comparison to
target

Roiello et al. [14] Compare the layout similarity to
identify phishing attacks

Chen et al. [15] Applies Gestalt Theory to perform
visual similarity comparison

Chang et al. [16] and
Geng et al. [17]

Identify phishing sites by comparing
logos and favicons used on target sites

Liu et al. [18] A refined visual similarity comparison
including block level, page layout and
style

Jain et al. [19] An overview of phishing detection
methods based on visual similarity
comparison

Use of search
engines

Cantina [20] Query search engines with the
keyword extracted from suspicious
sites

Huh et al. [21] Feed search engines with suspicious
URL, and then use the number of
returned pages as the indicator of
phishing

Machine learning
based methods

Cantina+ [22] Detect phishing sites using a Bayesian
Network

Gowtham et al. [23] A SVM classifier is used to identify
phishing attacks by using features
similar to Cantina+

Daisuke et al. [24] An evaluation of nine machine
learning methods

Similarity
comparison to
known attacks

Cui et al. [1] Identify phishing attacks by
comparing the similarity with known
attacks

Similarity
comparison with
homepage

Corona et al. [25] Compute the similarity score between
suspicious pages and the homepage of
the same site to detect inconsistencies

Analysis of
phishing kits

Cova et al. [26] and
Mccalley et al. [27]

Analysis of phishing kits and their
obfuscation techniques

Han et al. [28] Analysis of phishing attacks and
phishing kits collected using a
honeypot

5.2 Phishing Kits

Some of the literature looks at the server side of phishing. Cova et al. [26] col-
lected 584 “phishing kits”. They analyzed the structure of the source code as

Phishing Attacks Modifications and Evolutions 259

(a) One tag was added between the left and the right attack

(b) Between the left and the right, 31 tags are added, and the
background image is changed

Fig. 5. Modification of attacks by changing one tag

Fig. 6. Histogram of Jaccard index for top 10 MT and MTS.

260 Q. Cui et al.

well as the obfuscation techniques used. Mccalley et al. [27] did a similar and
more detailed analysis of these obfuscation technique. Han et al. [28] collected
phishing kits using a honeypot on which 643 unique phishing kits were uploaded.
They analyzed the kits’ lifespans, victims’ behaviors and attackers’ behaviors.

To the best of our knowledge, the only work comparable to ours is the research
conducted in [32] regarding the evolution of phishing emails. This paper is the
first one that gives a good picture of the evolution of phishing sites. Our study
provides a detailed analysis of how attackers modify and improve their attacks,
and what can motivate these modifications.

6 Conclusion and Future Work

In this paper, we have proposed a new cluster model, the Semi-Complete Linkage
graph (SCL), to analyze similar phishing attack instances. This model gives us
an opportunity to track the evolution of these attacks over time. We discovered
that the two main reasons for attackers to update their attacks are aiming at
new target and adding new features, e.g. collecting additional information or
improving the interface.

Our analysis shows that most attack instances are derived from a small set
of “master” attacks, with only a couple of successive versions being deployed.
This shows that attackers do not tend to update and improve a baseline of their
attacks, and instead keep reworking from the same base version. This suggests
that the phishing ecosystem follows a producers-buyers economic model: the
producers build and adapt crimewares and sell them to buyers who launch cyber-
attacks but barely update them.

Finally, we have also shown that each attack tends to be modified on its
own, independently from other attacks; each cluster of attacks uses its own page
template and is improved without a general plan across attacks. This could
be because a different attacker is beyond each attack, or more likely because
attackers follow poor software engineering standards.

Our database comes from Phishtank and X-force, and it has some bias
towards some brands [33] and some part of the world (in particular, it lacks
data from China and Russia). Therefore, we plan to redo the experiment using
a more comprehensive database in the future.

References

1. Cui, Q., Jourdan, G.V., Bochmann, G.V., Couturier, R., Onut, I.V.: Tracking
phishing attacks over time. In: Proceedings of the 26th International Conference on
World Wide Web, International World Wide Web Conferences Steering Committee,
pp. 667–676 (2017)

2. Anti-Phishing Working Group: Global Phishing Survey: Trends and Domain
Name Use in 2016 (2017). http://docs.apwg.org/reports/APWG Global Phishing
Report 2015-2016.pdf

http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf

Phishing Attacks Modifications and Evolutions 261

3. Anti-Phishing Working Group: Phishing Activity Trends Report 1st Half 2017
(2017). http://docs.apwg.org/reports/apwg trends report h1 2017.pdf

4. Anti-Phishing Working Group: Phishing Activity Trends Report 3rd Quarter 2017
(2017). http://docs.apwg.org/reports/apwg trends report q3 2017.pdf

5. FBI: 2017 Internet Crime Report. https://pdf.ic3.gov/2017 IC3Report.pdf
6. Tekli, J., Chbeir, R., Yetongnon, K.: An overview on XML similarity: background,

current trends and future directions. Comput. Sci. Rev. 3(3), 151–173 (2009)
7. Pawlik, M., Augsten, N.: Tree edit distance: robust and memory-efficient. Inf. Syst.

56, 157–173 (2016)
8. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling.

In: Proceedings of the 16th International Conference on World Wide Web, WWW
2007, New York, NY, USA, pp. 141–150 (2007)

9. Fuhr, N., Großjohann, K.: XIRQL: a query language for information retrieval in
XML documents. In: Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 172–180.
ACM (2001)

10. Grabs, T.: Generating vector spaces on-thefly for flexible xml retrieval. In: [1,
Citeseer] (2002)

11. Alexa: Top 500 Sites in Each Country. http://www.alexa.com/topsites/countries
12. WWW: HTML Tag Set. https://www.w3.org/TR/html-markup/elements.html
13. Sood, A.K., Enbody, R.J.: Crimeware-as-a-service-a survey of commoditized crime-

ware in the underground market. Int. J. Crit. Infrastruct. Prot. 6(1), 28–38 (2013)
14. Rosiello, A.P.E., Kirda, E., Kruegel, C., Ferrandi, F.: A layout-similarity-based

approach for detecting phishing pages. In: Proceedings of the 3rd International
Conference on Security and Privacy in Communication Networks, SecureComm,
Nice, pp. 454–463 (2007)

15. Chen, T.C., Dick, S., Miller, J.: Detecting visually similar web pages: application
to phishing detection. ACM Trans. Internet Technol. 10(2), 5:1–5:38 (2010)

16. Chang, E.H., Chiew, K.L., Sze, S.N., Tiong, W.K.: Phishing detection via identi-
fication of website identity. In: 2013 International Conference on IT Convergence
and Security, ICITCS 2013, pp. 1–4. IEEE (2013)

17. Geng, G.G., Lee, X.D., Wang, W., Tseng, S.S.: Favicon - a clue to phishing sites
detection. In: eCrime Researchers Summit (eCRS), pp. 1–10, September 2013

18. Liu, W., Huang, G., Xiaoyue, L., Min, Z., Deng, X.: Detection of phishing webpages
based on visual similarity. In: Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web - WWW 2005, pp. 1060–1061 (2005)

19. Jain, A.K., Gupta, B.B.: Phishing detection: analysis of visual similarity based
approaches. Secur. Commun. Netw. 2017, 20 (2017)

20. Zhang, Y., Hong, J., Lorrie, C.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, Banff, AB, pp. 639–648 (2007)

21. Huh, J.H., Kim, H.: Phishing detection with popular search engines: simple
and effective. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) FPS 2011. LNCS, vol.
6888, pp. 194–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27901-0 15

22. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
14(2), 21:1–21:28 (2011)

23. Gowtham, R., Krishnamurthi, I.: A comprehensive and efficacious architecture for
detecting phishing webpages. Comput. Secur. 40, 23–37 (2014)

http://docs.apwg.org/reports/apwg_trends_report_h1_2017.pdf
http://docs.apwg.org/reports/apwg_trends_report_q3_2017.pdf
https://pdf.ic3.gov/2017_IC3Report.pdf
http://www.alexa.com/topsites/countries
https://www.w3.org/TR/html-markup/elements.html
https://doi.org/10.1007/978-3-642-27901-0_15
https://doi.org/10.1007/978-3-642-27901-0_15

262 Q. Cui et al.

24. Miyamoto, D., Hazeyama, H., Kadobayashi, Y.: An evaluation of machine learning-
based methods for detection of phishing sites. In: Köppen, M., Kasabov, N.,
Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 539–546. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02490-0 66

25. Corona, I., et al.: DeltaPhish: detecting phishing webpages in compromised web-
sites. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10492, pp. 370–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6 22

26. Cova, M., Kruegel, C., Vigna, G.: There is no free phish: an analysis of “Free”
and Live phishing kits. In: 2nd Conference on USENIX Workshop on Offensive
Technologies (WOOT), San Jose, CA , vol. 8, pp. 1–8 (2008)

27. McCalley, H., Wardman, B., Warner, G.: Analysis of back-doored phishing kits. In:
Peterson, G., Shenoi, S. (eds.) DigitalForensics 2011. IAICT, vol. 361, pp. 155–168.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24212-0 12

28. Han, X., Kheir, N., Balzarotti, D.: Phisheye: live monitoring of sandboxed phishing
kits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1402–1413. ACM (2016)

29. Moradpoor, N., Clavie, B., Buchanan, B.: Employing machine learning techniques
for detection and classification of phishing emails. In: IEEE Computing Conference,
pp. 149–156 (2017)

30. Akinyelu, A.A., Adewumi, A.O.: Classification of phishing email using random
forest machine learning technique. J. Appl. Math. 2014, 6 p. (2014)

31. Smadi, S., Aslam, N., Zhang, L., Alasem, R., Hossain, M.: Detection of phishing
emails using data mining algorithms. In: 2015 9th International Conference on
Software, Knowledge, Information Management and Applications (SKIMA), pp.
1–8. IEEE (2015)

32. Irani, D., Webb, S., Giffin, J., Pu, C.: Evolutionary study of phishing. In: ECrime
Researchers Summit, pp. 1–10. IEEE (2008)

33. Clayton, R., Moore, T., Christin, N.: Concentrating correctly on cybercrime con-
centration. In: WEIS (2015)

https://doi.org/10.1007/978-3-642-02490-0_66
https://doi.org/10.1007/978-3-319-66402-6_22
https://doi.org/10.1007/978-3-319-66402-6_22
https://doi.org/10.1007/978-3-642-24212-0_12

SILK-TV : Secret Information Leakage
from Keystroke Timing Videos

Kiran S. Balagani1, Mauro Conti2, Paolo Gasti1, Martin Georgiev 3,4P,
Tristan Gurtler 1,5P, Daniele Lain2(B),6P, Charissa Miller 1,7P, Kendall Molas1,

Nikita Samarin 3,8P, Eugen Saraci2, Gene Tsudik3, and Lynn Wu 1,9P

1 New York Institute of Technology, New York, USA
2 University of Padua, Padua, Italy

daniele.lain@inf.ethz.ch
3 University of California, Irvine, USA
4 University of Oxford, Oxford, UK

5 University of Illinois at Urbana-Champaign, Champaign, USA
6 ETH Zurich, Zurich, Switzerland

7 Rochester Institute of Technology, Rochester, USA
8 University of California, Berkeley, USA
9 Bryn Mawr College, Philadelphia, USA

Abstract. Shoulder surfing attacks are an unfortunate consequence of
entering passwords or PINs into computers, smartphones, PoS termi-
nals, and ATMs. Such attacks generally involve observing the victim’s
input device. This paper studies leakage of user secrets (passwords and
PINs) based on observations of output devices (screens or projectors)
that provide “helpful” feedback to users in the form of masking char-
acters, each corresponding to a keystroke. To this end, we developed a
new attack called Secret Information Leakage from Keystroke Timing
Videos (SILK-TV). Our attack extracts inter-keystroke timing informa-
tion from videos of password masking characters displayed when users
type their password on a computer, or their PIN at an ATM or PoS. We
conducted several studies in various envisaged attack scenarios. Results
indicate that, while in some cases leakage is minor, it is quite substan-
tial in others. By leveraging inter-keystroke timings, SILK-TV recovers
8-character alphanumeric passwords in as little as 19 attempts. However,
when guessing PINs, SILK-TV yields no substantial speedup compared to
brute force. Our results strongly indicate that secure password masking
GUIs must consider the information leakage identified in this paper.

1 Introduction

Passwords and PINs are prevalent user authentication techniques primarily
because they are easy to implement, require no special hardware, and users
tend to understand them well [11]. However, one of their inherent disadvantages
is susceptibility to shoulder surfing attacks [23] of which there are two main

K. Balagani—Authors are listed in alphabetical order.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 263–280, 2018.
https://doi.org/10.1007/978-3-319-99073-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_13&domain=pdf

264 K. S. Balagani et al.

types: (1) input-based and (2) output-based. The former is more common; in it,
the adversary observes an input device (keyboard or keypad) as the user enters
a secret (password or PIN) and learns the key-presses. The latter involves the
adversary observing an output device (screen or projector) while the user enters
a secret which is displayed in cleartext. The principal distinction between the
two types is adversary’s proximity: observing input devices requires the adver-
sary to be closer to the victim than observing output devices, which tend to have
larger form factors, i.e., physical dimensions.

Completely disabling on-screen feedback during secret entry (as in, e.g., Unix
sudo command) mitigates output-based shoulder-surfing attacks. Unfortunately,
it also impacts usability: when deprived of visual feedback, users cannot deter-
mine whether a given key-press was registered and are thus more apt to make
mistakes. In order to balance security and usability, user interfaces typically
implement password masking by displaying a generic symbol (e.g., “•” or “∗”)
after each keystroke. This technique is commonly used on desktops, laptops and
smartphones as well as on public devices, such as Automated Teller Machines
(ATMs) or Point-of-Sale (PoS) terminals at shops or gas stations.

Despite the popularity of password masking, little has been done to quantify
how visual keystroke feedback impacts security. In particular, masking assumes
that showing generic symbols does not reveal any information about the corre-
sponding secret. This assumption seems reasonable, since visual representation
of a generic symbol is independent of the key-press. However, in this paper we
show that this assumption is incorrect. By leveraging precise inter-keystroke tim-
ing information leaked by the appearance of each masking symbol, we show that
the adversary can significantly narrow down the user secret’s search space. Put
another way, the number of attempts required to brute-force a secret decreases
appreciably when the adversary has access to inter-keystroke timing information.

There are many realistic settings where visual inter-keystroke timing infor-
mation (leaked via appearance of masking symbols) is readily available while
the input information is not, i.e., the input device is not easily observable. For
example, in a typical lecture or classroom scenario, the presenter’s keyboard is
usually out of sight, while the external projector display is wide-open for record-
ing. Similarly, in a multi-person office scenario, an adversarial co-worker can
surreptitiously record the victim’s screen. The same holds in public scenarios,
such as PoS terminals and ATMs, where displays (though smallish) tend to be
easier to observe and record than entry keypads.

In this paper we consider two representative scenarios: (1) a presenter enters
a password into a computer connected to an external projector; (2) a user enters
a PIN at an ATM in a public location. The adversary is assumed to record
keystroke feedback from the projector display or an ATM screen using a ded-
icated video camera or a smartphone. We note that a human adversary does
not need to be present during the attack: recording might be done via an exist-
ing camera either pre-installed or pre-compromised by the adversary, possibly
remotely, e.g., as in the infamous Mirai botnet [14].

Contributions. The main goal of this paper is to quantify the amount of infor-
mation leaked through video recordings of on-screen keystroke feedback. To

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 265

this end, we conducted extensive data collection experiments that involved 84
subjects1. Each subject was asked to type passwords or PINs while the screen
or projector was video-recorded using either a commodity video camera and a
smartphone camera. Based on this, we determined the key statistical proper-
ties of resulting data, and set up an attack, called SILK-TV : Secret Information
Leakage from Keystroke Timing Videos. It allows us to quantify reduction in
brute-force search space due to timing information. SILK-TV leverages multiple
publicly available typing datasets to extract population timings, and applies this
information to inter-keystroke timings extracted from videos.

Our results show that video recordings can be effective in extracting precise
inter-keystroke timing information. Experiments show that SILK-TV substan-
tially reduces the search space for each password, even when the adversary has
no access to user-specific keystroke templates. When run on passwords, SILK-
TV performed better than random guessing between 87% and 100% of the time,
depending on the password and the machine learning technique used to instanti-
ate the attack. The resulting average speedup is between 25% and 385% (depend-
ing on the password), compared to random dictionary-based guessing; some pass-
words were correctly guessed in as few as 68 attempts. A single password timing
disclosure is enough for SILK-TV to successfully achieve these results. However,
when the adversary observes the user entering the password three times, SILK-
TV can crack the password in as few as 19 attempts. Clearly, SILK-TV ’s ben-
efits depend in part on the strength of a specific password. With very common
passwords, benefits of SILK-TV are limited. Meanwhile, we show that SILK-TV
substantially outperforms random guessing with less common passwords. With
PINs, disclosure of timing poses only a minimal risk – SILK-TV reduced the
number of guessing attempts by a mere 3.8%, on average.

Paper Organization. Section 2 overviews state-of-the-art in password guessing
based on timing attacks. Section 3 presents SILK-TV and the adversary model.
Section 4 discusses our data collection and experiments. We then present the
results on password guessing using SILK-TV in Sect. 5, and on PIN guessing in
Sect. 6. The paper concludes with the summary and future work directions in
Sect. 7.

2 Related Work

There is a large body of prior work on timing attacks in the context of keyboard-
based password entry. Song et al. [21] demonstrated a weakness that allows the
adversary to extract information about passwords typed during SSH sessions.
The attack relies on the fact that, to minimize latency, SSH transmits each
keystroke immediately after entry, in a separate IP packet. By eavesdropping
on such packets, the adversary can collect accurate inter-keystroke timing infor-
mation. Authors in [21] showed that this information can be used to restrict

1 Where required, IRB approvals were duly obtained prior to the experiments.

266 K. S. Balagani et al.

the search space of passwords. The impact of this work is significant, because it
shows the power of timing attacks on cracking passwords.

There are several studies of keystroke inference from analysis of video record-
ings. Balzarotti et al. [4] addressed the typical shoulder-surfing scenario, where
a camera tracks hand and finger movements on the keyboard. Text was auto-
matically reconstructed from resulting videos. Similarly, Xu et al. [30] recorded
user’s finger movements on mobile devices to infer keystroke information. Unfor-
tunately, neither attack applies to our sample scenarios, where the keyboard is
invisible to the adversary.

Shukla et al. [20] showed that text can be inferred even from videos where the
keyboard/keypad is not visible. This attack involved analyzing video recordings
of the back of the user’s hand holding a smartphone in order to infer which
location on the screen is tapped. By observing the motion of the user’s hand,
the path of the finger across the screen can be reconstructed, which yields the
typed text. In a similar attack, Sun et al. [22] successfully reconstructed text
typed on tablets by recording and analyzing the tablet’s movements, rather
than movements of the user’s hands.

Another line of work aimed to quantify keystroke information inadvertently
leaked by motion sensors. Owusu et al. [16] studied this in the context of a
smartphone’s inertial sensors while the user types using the on-screen keyboard.
The application used to implement this attack does not require special privileges,
since modern smartphone operating systems do not require explicit authorization
to access inertial sensors data. Similarly, Wang et al. [27] explored keystroke
information leakage from inertial sensors on wearable devices, e.g., smartwatches
and fitness trackers. By estimating the motion of a wearable device placed on
the wrist of the user, movements of the user’s hand over a keyboard can be
inferred. This allows learning which keys were pressed during the hand’s path.
Compared to our work, both [16,27] require a substantially higher level of access
to the user’s device. To collect data from inertial sensors the adversary must have
previously succeeded in deceiving the user into installing a malicious application,
or otherwise compromised the user’s device. In contrast, SILK-TV is a fully
passive attack.

Acoustic emanations represent another effective side-channel for keystroke
inference. This class of attacks is based on the observation that different key-
board keys emit subtly different sounds when pressed. This information can be
captured (1) locally, using microphones placed near the keyboard [3,32], or (2)
remotely, via Voice-over-IP [8]. Also, acoustic emanations captured using mul-
tiple microphones can be used to extract locations of keys on a keyboard. As
shown by Zhou et al. [31], recordings from multiple microphones can be used
to accurately quantify time difference of arrival (TDoA), and thus triangulate
positions of pressed keys.

3 System and Adversary Model

We now present the system and adversary model used in the rest of the paper.

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 267

We model a user logging in (authenticating) to a computer system or an ATM
using a PIN or a password (secret) entered via keyboard or keypad (input device).
The user receives immediate feedback about each key-press from a screen, a
projector, or both (output device) in the form of dots or asterisks (masking
symbols). Shape and/or location of each masking symbol does not depend on
which key is pressed. The adversary can observe and record the output device(s),
though not the input device or the user’s hands. An example of this scenario is
shown in Fig. 1. The adversary’s goal is to learn the user’s secret.

The envisaged attack setting is representative of many real-world scenarios
that involve low-privilege adversaries, including: (1) a presenter in a lecture or
conference who types a password while the screen is displayed on a projector.
The entire audience can see the timing of appearance of masking symbols, and
the adversary can be anyone in the audience; (2) an ATM customer typing a PIN.
The adversary who stands in line behind the user might have an unobstructed
view of the screen, and the timing of appearance of masking symbols (see Fig. 2);
and (3) a customer enters her debit card PIN at a self-service gas-station pump.
In this case, the adversary can be anyone in the surroundings with a clear view
of the pump’s screen.

Although these scenarios seem to imply that adversary is located near the
user, proximity is not a requirement for our attack. For instance, the adversary
could watch a prior recording of the lecture in scenario (1); or, could be mon-
itoring the ATM machine using a CCTV camera in (2); or, remotely view the
screen in (3) through a compromised IoT camera.

Also, we assume that, in many cases, the attack involves multiple obser-
vations. For example, in scenario (1), the adversary can observe the presenter
during multiple talks, without the presenter changing passwords between talks.
Similarly, in scenario (2), customers often return to the same ATM.

Fig. 1. Example attack scenario.

(a) (b)

Fig. 2. Attack example – ATM setting.
(a) Adversary’s perspective. (b) Out-
sider’s perspective.

4 Overview and Data Collection

Recall that SILK-TV confines the information about the secret that the adver-
sary can capture to inter-keystroke timings leaked by the output device while the

268 K. S. Balagani et al.

user types a secret. The goal is to analyze differences between the distribution
of inter-keystroke timings and infer corresponding keypairs. This data is used
to identify the passwords that are most likely to be correct, thus restricting
the brute-force search space of the secret. To accurately extract inter-keystroke
timing information, we analyze video feeds of masking symbols, and identify the
frame where each masking symbol first appears. In this setting, accuracy and res-
olution of inter-keystroke timings depends on two key factors: refresh frequency
of the output device, and frame rate of the video camera. Inter-keystroke tim-
ings are then fed to a classifier, where classes of interest are keypairs. Since we
assume that the adversary has no access to user-specific keystroke information,
the classifier is trained on population data, rather than on user-specific timings.

In the rest of this section, we detail the data collection process. We collected
password data from two types of output devices: a VGA-based external projec-
tor, and LCD screens of several laptop computers. See Sect. 4.1 for details of
these devices and corresponding procedures. For PIN data, we video-recorded
the screen of a simulated ATM. Details can be found in Sect. 4.2.

4.1 Passwords

We collected data using an EPSON EMP-765 projector, and using the LCD
screens of the subjects’ laptops computers. In the projector setting, we asked
the subjects to connect their own laptops so they would be using a familiar
keyboard. The refresh rate of both laptop and projector screens were set to 60
Hz – the default setting for most systems. This setting introduces quantization
errors of up to about 1/60 s ≈ 16.7 ms. Thus, events happening within the
same refresh window of 16.7 ms are indistinguishable. We recorded videos of
the screen and the projector using the rear-facing camera of two smartphones:
Samsung Galaxy S5 and iPhone 7 Plus. With both phones, we recorded videos
at 120 frames per second, i.e., 1 frame every 8.3 ms. To ease data collection, we
placed the smartphones on a tripod. When recording the projector, the tripod
was placed on a table, filming from a height of about 165 cm, to be horizontally
aligned with respect to the projected image. When recording laptop screens, we
placed the smartphone above and to the side of the subject, in order to mimic
the adversary sitting behind the subject.

All experiments took place indoors, in labs and lecture halls at the authors’
institutions. We recruited a total of 62 subjects, primarily from the student
population of two large universities. Most participants were males in their 20 s,
with a technical background and good typing skills. We briefed each subject
on the nature of the experiment, and asked them to type four alphanumerical
passwords: “jillie02”, “william1”, “123brian”, and “lamondre”. We selected
these passwords uniformly at random from the RockYou dataset [1] in order to
simulate realistic passwords. The subjects typed each password three times, while
our data collection software recorded ground-truth keystroke timings of correctly
typed passwords with millisecond accuracy. Timings from passwords that were
typed incorrectly were discarded, and subjects were prompted to re-type the
password whenever a mistake was made. The typing procedure lasted between 1

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 269

and 2 min, depending on the subject’s typing skills. All subjects typed with the
“touch typing” technique, i.e., using fingers from both hands.

4.2 PINs

We recorded subjects entering 4-digit PINs on a simulated ATM, shown in Fig. 3.
Our dataset was based on experiments with 22 participants; 19 subjects com-
pleted three data collection sessions, while 4 subjects completed only one session,
resulting in a total of 61 sessions. At the beginning of each session, the subject
was given 45 s to get accustomed with the keypad of the ATM simulator. During
this time, they were free to type as they pleased. Next, a subject was shown a
PIN on the screen for ten seconds (Fig. 4a), and, once it disappeared from the
screen, asked to enter it four times (Fig. 4b). Subjects were advised not to read
the PINs out loud. This process was repeated for 15 consecutive PINs. During
each session, subjects were presented with the same 15-PIN sequence 3 times.
Subjects were given a 30-s break at the end of each sequence.

Fig. 3. Setup used in PIN inference
experiments.

(a) (b)

Fig. 4. ATM simulator during a data col-
lection session. (a) The simulator dis-
plays the next PIN. (b) A subject types
the PIN from memory.

Specific 4-digit PINs were selected to test whether: (1) inter-keypress time
is proportional to Euclidean Distance between keys on the keypad; and (2) the
direction of movement (up, down, left, or right) between consecutive keys in
a keypair impacts the corresponding inter-key time. We show an example of
these two situations on the ATM keypad in Fig. 5. We chose a set of PINs that
allowed collection of a significant number of key combinations appropriate for
testing both hypotheses. For instance, PIN 3179 tested horizontal and vertical
distance two, while 1112 tested distance 0 and horizontal distance 1.

Sessions were recorded using a Sony FDR-AX53 camera, with the pixel
resolution of 1,920× 1,080 pixels, and 120 frames per second. At the same

270 K. S. Balagani et al.

time, ATM simulation software collected millisecond-accurate inter-key distance
ground truth by logging each keypress. PIN feedback was shown on a DELL 17′′

LCD screen with a refresh rate of 60 Hz, which resulted to each frame being
shown for 16.7 ms.

4.3 Timing Extraction from Video

We developed software that analyzes video recordings to automatically detect
appearance of masking symbols and log corresponding timestamps. This soft-
ware uses OpenCV [17] to infer the number of symbols present in each image.
All frames are first converted to grayscale, and then processed through a bilat-
eral filter [25] to reduce noise due to the camera’s sensor. Resulting images are
analyzed using Canny Edge detection [9] to capture the edges of the masking
symbol. External contours are compared with the expected shape of the mask-
ing symbol. When a masking symbol is detected, software logs the corresponding
frame number.

Our experiments show that this technique leads to fairly accurate inter-
keystroke timing information. We observed average discrepancy of 8.7 ms (stdev
of 26.6 ms) between the inter-keystroke timings extracted from the video and
ground truth recorded by the ATM simulator. Furthermore, 75% of inter-
keystroke timings extracted by the software had errors under 10 ms, and 97%
had errors under 20 ms. Similar statistics hold for data recorded on keyboards
for the passwords setting. Figure 6 shows the distribution of error discrepancies.

5 Password Guessing Using SILK-TV

SILK-TV treats identifying digraphs from keystroke timings as a multi-class clas-
sification problem, where each class represents one digraph, and input to the
classifier is a set of inter-keystroke times. Without loss of generality, in this

(a) (b)

Fig. 5. ATM keypad in our experiments.
(a) To type keypairs 1–2 and 1–4, the
typing finger travels the same distance in
different directions. (b) Keypairs 1–2 and
1–3 require the typing finger to travel dif-
ferent distances in the same direction.

0 20 40 60 80
Inter-key timing extraction error (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq
ue
nc
y
of

oc
cu
rr
en
ce
s

ATM keypad data
Keyboard data

Fig. 6. CDF showing error distribution
of inter-keystroke timings extracted
from videos.

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 271

section, we assume that the user’s password is a sequence of lowercase alphanu-
meric characters typed on a keyboard with a standard layout.

To reconstruct passwords, we compared two classifiers: Random Forest
(RF) [13] and Neural Networks (NN) [19]. RF is a well-known classification
technique that performs well for authentication based on keystroke timings [6].
Input to RF is one inter-keystroke timing, and its output is a list of N digraphs
ranked based on the probability of corresponding to input timing. NN is a more
complex architecture designed to automatically determine and extract complex
features from the input distribution. In our experiments, the input to NN is a
list of inter-keystroke timings corresponding to a password. This enables NN to
extract features, such as arbitrary n-grams, or timings corresponding to non-
consecutive characters. NN’s output is a guess for the entire password.
We instantiated NN using the following parameters:

– number of units in the hidden layer – 128 (with ReLU activation functions);
– inclusion probability of the dropout layer – 0.2;
– number of input neurons – 25;
– number of output layers – 25 which represents one character in one-hot encod-

ing. Output layers use softmax activation function;
– training was performed using batch sizes of 40 and 100 epochs. We used the

Adam optimizer with a learning rate of 0.001.

Classifier Training. We trained SILK-TV on three public datasets [5,18,26]
that contain keystroke timing information collected from English free-text. Using
these datasets for training, we modeled an attack that relies exclusively on pop-
ulation data. Without loss of generality, we filtered the datasets to remove all
timings that do not correspond to digraphs composed of alphanumeric lowercase
characters. This is motivated by the datasets’ limited availability of digraph
samples that contain special characters. In practice, the adversary could collect
these timings using, for instance, crowdsourcing tools such as Amazon Mechan-
ical Turk. To take care of uneven frequencies of different digraphs, we under-
represented the most frequent digraphs in the dataset. Data in public datasets
was often gathered from free-text typing of volunteers. Therefore, more frequent
digraphs in English were represented more than rarer ones. For example, con-
sidering lamondre, digraph re appears 43,606 times in the population dataset,
while am – only 6,481. Similarly, in 123brian, digraph ri occurs 19,782 times,
while 3b – only 138. We therefore under-sampled each digraph appearing more
than 1,000 times to 1,000 randomly selected occurrences. Similarly, we excluded
infrequent digraphs that appeared under 100 times in the whole dataset.

Attack Process. To infer the user’s secret from inter-keystroke timings, SILK-
TV leverages a dictionary of passwords (e.g., a list of passwords leaked by online
services [1,2,10,24]), possibly expanded using techniques such as probabilistic
context-free grammars [29] and generative adversarial networks [12]. When eval-
uating SILK-TV , we assume that the user’s secret is in the dictionary. In practice,
this is often the case, as many users use the same weak passwords (e.g., only
36% of the password of RockYou is unique [15]), and reuse them across many
different services [11,28]. Given that the size of a reasonable password dictionary

272 K. S. Balagani et al.

is on the order of billions of entries2, the goal of SILK-TV is to narrow down
the possible passwords to a small(er) list, e.g., to perform online attacks. This
list is then ranked by the probability associated with each entry, computed from
inter-keystroke timing data.
Specifically:

1. Using RF, for each inter-key time extracted from video (corresponding to a
digraph), SILK-TV returns a list of N possible guesses, sorted by the clas-
sifier’s confidence. Next, SILK-TV ranks the passwords in the dictionary by
resulting probabilities as follows: for each password, SILK-TV identifies the
position in the ranked list of predictions for the first digraph of the password
being guessed, and assigns that position as a “penalty” to the password. By
performing these steps for each digraph, SILK-TV obtains a total penalty
score for each password, i.e., a score that indicates the probability of the
password given the output of the RF.
For example, to rank the password jillie02, SILK-TV first considers the
digraph ji, and the list of predictions of RF for the first digraph. It notes
that ji appears in such list as the X-th most probable; therefore, it assigns
X as the penalty for jillie02. Then, it considers il, which appears in Y -th
position in the list of predictions for the second digraph. Penalty for jillie02
is thus updated to X + Y . This operation is repeated for all the 7 digraphs,
thus obtaining the final penalty score.

2. Using NN, SILK-TV computes a list of N possible guesses, sorted by the
classifier’s confidence of each guess. In this case, the SILK-TV processes the
entire list of flight times at once, rather than refining its guess with each
digraph.

We considered the following attack settings: single-shot, and multiple recordings.
With the former, the adversary trains SILK-TV with inter-keystroke timings
from population data, i.e., from users other than the target, e.g., from publicly
available datasets, or by recruiting users and asking them to type passwords. In
this scenario, the adversary has access to the video recording of a single password
entry session. With multiple recordings, the adversary trains SILK-TV as before,
and additionally, has access to videos of multiple login instances by the same
user.

Training SILK-TV exclusively with population data leads to more realistic
attack scenarios than training it with user-specific data, because usually the
adversary has limited access to keystrokes samples from the target user. Further,
access to user-specific data will likely improve the success rate of SILK-TV .

5.1 Results

In this section, we report on SILK-TV efficacy in reducing search time on the
RockYou [1] password dataset compared to random choice, weighted by prob-
ability. We restricted experiments to the subset of 8-character passwords from
2 See for example the lists maintained by https://haveibeenpwned.com/.

https://haveibeenpwned.com/

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 273

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100

Pa
ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN

Fig. 7. CDF of the amount of passwords recovered by SILK-TV—Population Data
attack scenario.

RockYou, since the adversary can always determine password length by counting
the number of masking symbols shown on the screen. This resulted in 6,514,177
passwords, out of which 2,967,116 were unique.

Attack Baseline. To establish the attack baseline, we consider an adversary
that outputs password guesses from a leaked dataset in descending order of fre-
quency. (Ties are broken using random selection from the candidate passwords.)
Because password probabilities are far from uniform (e.g., in RockYou, top 200
8-character passwords account for over 10% of the entire dataset), this is the
best adversarial strategy given no additional information on the target user.

Passwords selected for our evaluation represent a mix of common and rare
passwords. Thus, they have widely varying frequencies of occurrence in Rock-
You and expected number of attempts needed to guess each password using the
baseline attack varies significantly. For example, expected number of attempts
for:

– 123brian (appears 6 times) – 93,874;
– jillie02, (appears only once) – 1,753,571;
– lamondre (appears twice) – 397,213;
– william1 (appears 1,164 times) – only 187.

Single-shot. Results in the single-shot setting are summarized in Table 1.
Cumulative Distribution Function (CDF) of successfully recovered passwords
is reflected in Fig. 7, and breakdown of results (by target password) is shown in
Fig. 8.

Results show that, for uncommon passwords (jillie02 and lamondre),
SILK-TV consistently outperforms random guessing. In particular, for jillie02
both RF and NN greatly exceed random guessing, since both their curves in
Fig. 8 are above random guess baseline. For lamondre, RF shows an advantage
over random guess in 76% of the instances, while NN never beats the baseline.

274 K. S. Balagani et al.

Table 1. SILK-TV—Single-shot setting. Avg : average number of attempts to guess a
password; Stdev : standard deviation; Rnd : number of guesses for the baseline adversary;
<Rnd : how often SILK-TV outperforms random guessing; Best : number of attempts
of the best guess; <n: how many passwords are successfully guessed within first
n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random forest

123brian 581,743 414,761 508,332 93,874 8.7% 5,535 1.1% 9.3%

jillie02 749,718 448,319 656,754 1,753,571 97.8% 28,962 0.0% 2.7%

lamondre 301,906 334,681 199,344 397,213 75.0% 145 13.0% 33.7%

william1 246,437 264,090 145,966 187 0.5% 68 10.9% 39.9%

Neural network

123brian 923,534 165,454 886,802 93,874 0.0% 577,739 0.0% 0.0%

jillie02 456,811 210,512 383,230 1,753,571 100.0% 164,754 0.0% 0.0%

lamondre 517,472 189,355 493,713 397,213 28.8% 148,403 0.0% 0.0%

william1 265,813 140,753 215,840 187 0.0% 45,176 0.0% 3.8%

For common passwords, sorted random guess wins over SILK-TV . In particu-
lar, 123brian is both popular (i.e., 93,874-th most popular password of the set,
corresponding to the top 3% of the RockYou dataset) and very hard to recover
with SILK-TV . This can be observed from Fig. 8, where the curves corresponding
to 123brian are least steep. Finally, william1, being the 187-th most popular
password, is always recovered early in our baseline attack, with the notable
exception of one instance by RF.

In general, SILK-TV wins over the sorted random guess on infrequent pass-
words, such as jillie02 and lamondre, that appear only once or twice, respec-
tively. Such infrequent passwords exhibit the same random guess baseline curve
and average, reported in Table 1 and shown in Fig. 8. Given the similar steepness
of CDF curves in Fig. 8, which hint that SILK-TV ’s performance might be sim-
ilar for many other passwords, SILK-TV can probably outperform the baseline
for uncommon passwords. We also note that uncommon passwords represent the
vast majority of user-chosen passwords: 90% of RockYou passwords appear at
most twice, and 80% exactly once. We expect that a realistic adversary would
first generate password guesses based on their frequency alone (as in our baseline
attack), and then switch to SILK-TV once these frequencies drop below some
threshold.

Finally, we highlight that random guess baseline is computed on the distribu-
tion of passwords in RockYou. Other datasets might have different distributions:
for example, in the 10 million password list dataset [7], jillie02, lamondre,
and 123brian appear only once, while william1 appears 176 times.

We believe that the discrepancy between performance of SILK-TV on various
passwords is due to how frequently the digraphs in each password appear in

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 275

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100
Pa

ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN
Baseline

(a) 123brian (183 auth. attempts).

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100

Pa
ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN
Baseline

(b) jillie02 (186 auth. attempts).

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100

Pa
ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN
Baseline

(c) lamondre (184 auth. attempts).

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100

Pa
ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN
Baseline

(d) william1 (183 auth. attempts).

Fig. 8. CDF for the number of passwords recovered by SILK-TV , for each target pass-
word. Plots also show the baseline attack for the corresponding password.

training data. Specifically, even with our under-representation, all digraphs in
william1, with the exception of m1, are far more frequent in the training data
than 12, 23, 3b, or 02.

Regarding specific classifiers, RF overtakes NN in most instances. For exam-
ple, when guessing 123brian (Fig. 8a), NN performs worse than random guessing
for first 800,000 attempts. Afterwards, NN outperforms both random guessing
and RF. Furthermore, while RF can guess a substantial percentage of passwords
within 20,000, 50,000 and 100,000 attempts, NN cannot achieve the same result.

In terms of minimum number of guesses per password, RF recovered
william1 in 68, lamondre in 145, 123brian in 5,535, and jillie02 in 28,962
attempts. NN required a consistently higher minimum number of attempts for
each password.

Multiple Recordings. Information from three login instances was used as fol-
lows. We averaged classifiers’ predictions over three login instances for a given
user, and ranked passwords accordingly.

276 K. S. Balagani et al.

Table 2. SILK-TV—Multiple recordings setting. Avg : average number of attempts to
guess a password; Stdev : standard deviation; Rnd : number of guesses for the baseline
adversary; <Rnd : how often SILK-TV outperforms random guessing; Best : number of
attempts of the best guess; <n: how many passwords are successfully guessed within
first n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random forest

123brian 552,574 468,539 402,166 93,874 14.1% 13,931 4.7% 14.1%

jillie02 713,895 410,225 606,403 1,753,571 100.0% 67,875 0.0% 1.6%

lamondre 398,186 425,811 236,905 397,213 65.6% 404 6.2% 25.0%

william1 370,933 602,654 148,405 187 1.6% 19 17.2% 42.2%

Neural network

123brian 922,655 129,927 889,406 93,874 0.0% 676,418 0.0% 0.0%

jillie02 439,414 155,385 402,332 1,753,571 100.0% 205,645 0.0% 0.0%

lamondre 503,248 137,276 504,493 397,213 21.3% 182,123 0.0% 0.0%

william1 248,769 103,240 216,630 187 0.0% 86,213 0.0% 1.6%

Results are summarized in Table 2, and Fig. 9. Although SILK-TV still con-
sistently outperforms random guessing, using data from multiple authentication
recordings leads to mostly identical results overall with both RF and NN. SILK-
TV ’s guessing success rate for 123brian and jillie02 is slightly improved
compared to the previous setting and minimum number of attempts to recover
each password diminished slightly. We recovered william1 in 19, lamondre in
404, 123brian in 13,931, and jillie02 in 67,875 attempts. Overall, results show
that there are no substantial benefits in using timing data from three recordings
from the same user.

6 PIN Guessing Using SILK-TV

We now discuss PIN-related results, specifically, relationships between: (1) inter-
keystroke timings and Euclidean Distance between consecutive keys, and (2)
inter-keystroke timings and direction of movement on the keypad.

We are not aware of any publicly-available PIN timing datasets that can be
used to train SILK-TV . To address this issue, we divided our dataset in two parts.
The first was used as training, and the second – as testing, data. To compute
the attack baseline, we considered all PINs to be equally likely.

Distance. Across all subjects, we observed that distributions of inter-keystroke
latencies were distinct in all cases (for p-value < 5 · 10−6), with the following
exceptions: (1) latencies for distance 2 (e.g., keypair 1–3) were close to latencies
for distance 3 (keypair 2–0); (2) latencies for distance 2 were close to laten-
cies for diagonal 1× 1 (e.g., keypair 4–8); latencies for distance 3 were close to

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 277

0 500000 1000000 1500000 2000000 2500000
Number of guesses

0

20

40

60

80

100

Pa
ss
w
or
ds

re
co
ve
re
d

SILK-TV - RF
SILK-TV - NN

Fig. 9. CDF showing number of passwords recovered by SILK-TV in the Multiple
recordings scenario.

Fig. 10. Inter-keystroke timings of all possible distances for ATM keypad typing.

latencies for 2× 1 diagonal (i.e. “2” to “9”, “1” to “6”, etc.), and diagonal 2× 2
(e.g., keypair 7–3), and diagonal 3× 2 (e.g., keypair 3–0). Figure 10a shows the
various probability distributions, while Fig. 10b models these different probabil-
ity distribution functions as gamma distributions. In Fig. 10a, dist zero indicates
keypairs composed of the same two digits. dist one, dist two, and dist three shows
timings distributions for keypairs with horizontal or vertical distance one (e.g.,
keypair 2–5), two (e.g., 2–8), and three (2–0), respectively. dist diagonal one and
dist diagonal two indicates keypairs with diagonal distance one (e.g., 2–4) and
distance two (e.g., 1–9), respectively. dist dogleg and dist long dogleg show timing
distributions of keypairs such as 1–8 and 0–3. In Fig. 10b, dist one horizontal and
dist one vertical indicate Euclidean Distance right in the left/right directions, and
up/down directions, respectively, while dist one up, dist one down, dist one left,
and dist one right indicate distances one in the up, down, left, and right
directions.

278 K. S. Balagani et al.

Direction. The relative orientation of key pairs characterized by the same
Euclidean distance (e.g., 2–3 vs. 2–5) has a negligible impact on the correspond-
ing inter-key latency. We observed that the distributions of keypress latencies
observed from each possible direction between keys were not significantly dif-
ferent (for p-value < 10−4). Figure 11 shows different probability distributions
relative to various directions for Euclidean distance 1.

Fig. 11. Frequency of inter-keystroke
timings for Euclidean Distance of one.
dist one indicates latency distribution for
distance one in any direction.

0 2000 4000 6000 8000 10000
Number of Guesses

0.0

0.2

0.4

0.6

0.8

1.0

PI
N
s
R
ec
ov
er
ed

SILK-TV
Random Guess

Fig. 12. CDF showing the number of
PINs recovered by SILK-TV , compared
to the baseline.

6.1 Pin Inference

Using the data we collected, we mapped the distribution of inter-keypress laten-
cies, and used the resulting probabilities to test the effectiveness of PINs predic-
tion from inter-key latencies.

To guess PINs from our inter-key latencies, we used data from 14 users to
model the inter-key latencies as gamma distributions. Then, we tested the data
from the remaining users. Figure 12 shows the effectiveness of these predictions
compared to brute-force guesses. Due to the lack of separation between the
distribution of most distances and directions, the improvement compared to
brute force is small (in the −1% to 4% range), leading to an average reduction
in guessing attempts of about 3.8%.

7 Conclusion

In this paper, we have shown that inter-key timing information disclosed by
showing password masking symbols can be effectively used to reduce the cost
of password guessing attacks. To determine the impact of this side channel, we
recorded videos from 84 subjects, typing several passwords and PINs under dif-
ferent conditions: in a lecture hall, while their laptop was collected to a projector;
in a classroom setting; and using a simulated ATM machine. Our results show

SILK-TV : Secret Information Leakage from Keystroke Timing Videos 279

that: (1) it is possible to infer very accurate timing information from videos of
LCD screens and projectors (the average error was 8.7ms, which is corresponds
with the duration of a frame when the refresh rate of a display is set to 60 Hz);
(2) inter-keystroke timings reduce the number of attempts to recover a pass-
word by 25% and 385%, with some passwords guessed within 19 attempts. We
consider this a substantial reduction in the cost of password guessing attacks,
to the point that we believe that masking symbols should not be publicly dis-
played when typing passwords; and (3) disclosing inter-keystroke timings have
a relatively small impact on PIN guessing attacks (the average reduction in the
number of attempts required to guess a 4-digit PIN was 3.8%).

Clearly, the benefits of SILK-TV compared to our baseline attack vary
depending on how common the user’s password is. For very common (and there-
fore very easy to guess) passwords, our results show that SILK-TV might not
be needed. On the other hand, the speedup offered by SILK-TV when guessing
rare passwords is substantial. Given the effectiveness of this attack on password
guessing, we think that future work should consider countermeasures that strike
the right balance between usability and security when displaying masking sym-
bols. For instance, GUIs may not display masking symbols on a secondary screen
(e.g., projectors), or may display new masking symbols at fixed intervals (say,
every 250ms). Clearly, both countermeasures have usability implications, and we
leave the quantification of this impact to future work.

Acknowledgements. Kiran Balagani and Paolo Gasti were supported but the
National Science Foundation under Grant No. CNS-1619023. Tristan Gurtler, Charissa
Miller, Kendall Molas, and Lynn Wu were supported by the National Science Founda-
tion under Grant No. CNS-1559652. This work is partially supported by the EU Tag-
ItSmart! Project (agreement H2020-ICT30-2015-688061), and the EU-India REACH
Project (agreement ICI+/2014/342-896).

References

1. Rockyou password leak (2010). http://downloads.skullsecurity.org/passwords/
rockyou.txt.bz2

2. Linkedin password leak (2016). https://hashes.org/leaks.php
3. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE S&P (2004)
4. Balzarotti, D., Cova, M., Vigna, G.: ClearShot: eavesdropping on keyboard input

from video. In: IEEE S&P (2008)
5. Banerjee, R., Feng, S., Kang, J.S., Choi, Y.: Keystroke patterns as prosody in dig-

ital writings: a case study with deceptive reviews and essays. In: EMNLP. Associ-
ation for Computational Linguistics (2014)

6. Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through
keystroke dynamics. In: IEEE ISSRE (2006)

7. Burnett, M.: Today I am releasing 10 million passwords (2015). https://xato.net/
today-i-am-releasing-ten-million-passwords-b6278bbe7495

8. Compagno, A., Conti, M., Lain, D., Tsudik, G.: Don’t skype & type!: Acoustic
eavesdropping in Voice-Over-IP. In: ACM ASIACCS (2017)

9. Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recogn. 34(3), 721–
725 (2001)

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://hashes.org/leaks.php
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495

280 K. S. Balagani et al.

10. Fiegerman, S.: Yahoo says 500 million accounts stolen (2017). http://money.cnn.
com/2016/09/22/technology/yahoo-data-breach/index.html

11. Florencio, D., Herley, C.: A large-scale study of web password habits. In: ACM
WWW (2007)

12. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. arXiv preprint arXiv:1709.00440 (2017)

13. Ho, T.K.: Random decision forests. In: IEEE Document Analysis and Recognition
(1995)

14. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

15. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
IEEE S&P (2014)

16. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference
using accelerometers on smartphones. In: ACM HotMobile (2012)

17. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision
with OpenCV. Commun. ACM 55(6), 61–69 (2012)

18. Roth, J., Liu, X., Metaxas, D.: On continuous user authentication via typing behav-
ior. IEEE Trans. Image Process. 23(10), 4611–4624 (2014)

19. Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill, New York (1997)
20. Shukla, D., Kumar, R., Serwadda, A., Phoha, V.V.: Beware, your hands reveal

your secrets! In: ACM CCS (2014)
21. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks

on SSH. In: USENIX Security Symposium (2001)
22. Sun, J., Jin, X., Chen, Y., Zhang, J., Zhang, Y., Zhang, R.: VISIBLE: video-assisted

keystroke inference from tablet backside motion. In: NDSS (2016)
23. Tari, F., Ozok, A., Holden, S.H.: A comparison of perceived and real shoulder-

surfing risks between alphanumeric and graphical passwords. In: ACM SOUPS
(2006)

24. The Password Project (2017). http://thepasswordproject.com/leaked password
lists and dictionaries

25. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE
Computer Vision (1998)

26. Vural, E., Huang, J., Hou, D., Schuckers, S.: Shared research dataset to support
development of keystroke authentication. In: IEEE IJCB (2014)

27. Wang, C., Guo, X., Wang, Y., Chen, Y., Liu, B.: Friend or foe? Your wearable
devices reveal your personal pin. In: ACM ASIACCS (2016)

28. Wang, C., Jan, S.T., Hu, H., Bossart, D., Wang, G.: The next domino to fall:
empirical analysis of user passwords across online services. In: ACM CODASPY
(2018)

29. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: IEEE S&P (2009)

30. Xu, Y., Heinly, J., White, A.M., Monrose, F., Frahm, J.M.: Seeing double: recon-
structing obscured typed input from repeated compromising reflections. In: ACM
CCS (2013)

31. Zhu, T., Ma, Q., Zhang, S., Liu, Y.: Context-free attacks using keyboard acoustic
emanations. In: ACM CCS (2014)

32. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM
TISSEC 13(1), 3 (2009)

http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
http://arxiv.org/abs/1709.00440
http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://thepasswordproject.com/leaked_password_lists_and_dictionaries

A Formal Approach to Analyzing
Cyber-Forensics Evidence

Erisa Karafili1(B), Matteo Cristani2, and Luca Viganò3

1 Department of Computing, Imperial College London, London, UK
e.karafili@imperial.ac.uk

2 Dipartimento di Informatica, Università di Verona, Verona, Italy
matteo.cristani@univr.it

3 Department of Informatics, King’s College London, London, UK
luca.vigano@kcl.ac.uk

Abstract. The frequency and harmfulness of cyber-attacks are increas-
ing every day, and with them also the amount of data that the cyber-
forensics analysts need to collect and analyze. In this paper, we pro-
pose a formal analysis process that allows an analyst to filter the enor-
mous amount of evidence collected and either identify crucial information
about the attack (e.g., when it occurred, its culprit, its target) or, at the
very least, perform a pre-analysis to reduce the complexity of the prob-
lem in order to then draw conclusions more swiftly and efficiently.

We introduce the Evidence Logic EL for representing simple and
derived pieces of evidence from different sources. We propose a proce-
dure, based on monotonic reasoning, that rewrites the pieces of evidence
with the use of tableau rules, based on relations of trust between sources
and the reasoning behind the derived evidence, and yields a consistent set
of pieces of evidence. As proof of concept, we apply our analysis process
to a concrete cyber-forensics case study.

1 Introduction

The frequency and harmfulness of cyber-attacks are increasing every day, and
with them also the amount of data that cyber-forensics analysts need to collect
and analyze. In fact, forensics investigations often produce an enormous amount
of evidence. The pieces of evidence are produced/collected by various sources,
which can be humans (e.g., another analyst) or forensic tools such as intrusion
detection system (IDS), traceback systems, malware analysis tools, and so on.

When a forensics analyst evaluates a cyber-attack, she first collects all the
relevant evidence containing information about the attack and then checks the
sources of the evidence in order to evaluate their reliability and to resolve possible
inconsistencies arising from them. Based on the collected information, which
might be different depending on the information sources and the trust relation
between the analyst and the sources, the analyst might reconstruct different,
possibly faulty, courses of events. State of the art approaches don’t really manage
to cope well with such situations.
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 281–301, 2018.
https://doi.org/10.1007/978-3-319-99073-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_14&domain=pdf

282 E. Karafili et al.

To reason about the collected evidence, we need to formalize the fact that the
analyst trusts more some sources than others for particular pieces of evidence,
e.g., a source S1 is more trusted than another source S2 for attack similarity as
tool S1 specializes in malware analysis whereas tool S2 specializes in deleted data.
We also need to distinguish between the evidence and its interpretation that an
analyst may consider in order to perform a correct analysis and attribution of
the cyber-attack.

Our main contribution in this paper is the introduction of the Evidence
Logic EL, which allows an analysts to represent the different pieces of evidence,
together with their sources and relations of trust, and reason about them by
eliminating the conflicting pieces of evidence during the analysis process.

As a concrete motivating example, consider the data breach of the Demo-
cratic National Committee (DNC) network, during the last US presidential cam-
paign, when Wikileaks and other websites published several private emails in
October and November 2016. DNC used the services of a cyber-security com-
pany, CrowdStrike, to mitigate the attacks and to conduct a forensics investiga-
tion. CrowdStrike stated that the main attack occurred between March and April
2016, and identified it as a spear phishing campaign that used Bitly accounts to
shorten malicious URLs. The phishing campaign was successful as different IDs
and passwords were collected.

However, TheForensicator, an anonymous analyst, stated that the attack
actually occurred on the 5th of July 2016, not in March/April, as the metadata
released by an alleged attacker were created on the 5th of July 2016, and the data-
leak occurred physically as the data were transferred at the speed of around 23
MB/s, and this speed is possible only during a physical access. Another cyber-
security company, FireEye, stated that it is possible to have a non-physical
data-transfer speed of 23 MB/s. What should an analyst conclude from these
discording statements and pieces of evidence? How can a decision be made?

EL is able to deal with this type of discordances, and based on relations
of trust on the sources and reasonings, to arrive at a certain conclusion. EL
is composed of three separate layers: the first layer ELE deals with pieces of
evidence, the second layer ELI focuses on the evidence interpretations, and the
third layer ELR focuses on the reasoning involved in the evidence. Reasoning
with EL amounts to applying a rewriting system that spans formulas in all
three levels to reach a conclusion, ruling out discordances and inconsistencies.
Applying the reasoning process of EL to the different pieces of evidence from
the various sources, the analyst can decide the type of the attack and when it
occurred. For instance, regarding the speed of transferability, if the analyst trusts
FireEye more than TheForensicator, then she does not take into consideration
the evidence that the data transfer was physical. Hence, she concludes that the
attack occurred during March/April 2016 and not in July 2016.

We proceed as follows. In Sects. 2 and 3, we give the syntax and semantics
of the Evidence Logic EL, respectively. In Sect. 4, we introduce the rules of the
rewriting system of EL and we give a concrete procedure that uses the rewriting
rules to prove the satisfiability of a given EL-theory (which is a finite and non-
empty set of formulas of the three layers of EL). We prove the rewriting system

A Formal Approach to Analyzing Cyber-Forensics Evidence 283

to be sound and the procedure to be correct (the proofs of the theorems are given
in the Appendix). Section 6 concludes the paper by discussing related work and
future work.

2 The Syntax of the Evidence Logic EL
The Evidence Logic EL that we propose enables a cyber-forensics analyst to
represent the various plausible pieces of evidence that she collected from different
sources and reason about them. To that end, the analyst should distinguish
between the evidence and its interpretation. In a nutshell:

– evidence represents information related to the attack, where a given (piece
of) evidence usually represents an event, its occurrence and the source of the
information of the occurrence of the event (which can be another analyst, a
cyber-forensics tool, etc.);

– evidence interpretation represents what the analyst thinks1 about the occur-
rence of an event e and about the occurrences of the events causing e.

EL contains two types of well-formed formulas: labeled formulas, to formalize
the pieces of evidence and interpretation, and relational formulas, to formalize
relations of trust between sources of evidence and their reasonings. EL also
contains a rewriting system (composed of a set of tableau rules) to build the
analyst’s interpretations from forensics evidence. For the sake of readability, we
omit to model explicitly the analyst who is reconstructing and attributing the
cyber-attack, but we simply silently assume her existence.

EL is composed of three separate layers: the first layer ELE shows how the
well-formed formulas for pieces of evidence are built, the second layer ELI focuses
on the evidence interpretations, and the third layer ELR focuses on the reasoning
involved in the evidence. In the following, we discuss each of the layers in detail.

2.1 ELE : Evidence

Definition 1. Given t, t1, . . . tn ∈ T, a, a1, . . . an ∈ Ag, r1, r2 ∈ R, p ∈ VarsS

and φ, φ1, . . . , φn ∈ Lit, the set ρ of formulas of ELE is

ρ:: = a : (t : φ)
∣
∣ a : (t : φ) [a1 : (t1 : φ1) | . . . | an : (tn : φn)]r

∣
∣ a1 �p a2

∣
∣ r1 ≺ r2

We introduce all these notions, and the four kinds of formulas, step by step.
A piece of evidence asserts what a source thinks about the temporal occurrence
of an event, i.e., whether an event occurred or not in a particular instance of
time. To formalize this, we use two finite2 and disjoint sets of labels,

1 We deliberately use the verb “thinking” to avoid suggesting any epistemic or doxastic
flavor, as in EL we do not consider the modalities of knowledge or belief.

2 In principle, there is nothing in our logic that prevents us from considering countable,
possibly infinite, sets of labels, but here we consider finite sets for simplicity.

284 E. Karafili et al.

– source labels Ag = {a1, a2, . . . , an} for forensic sources, which we call agents,
regardless of whether they are human or not, and

– temporal labels T = {t1, t2, . . . , tm} for instants of time,

along with

– a set of propositional variables Vars = {p1, p2, . . . , pn} that represent the
occurrences of forensics events (so that p represents the occurrence of an
event and ¬p represents that p does not occur),

– a set of reasoning rules (or simply reasonings) R = {r1, r2, . . . , rl} that rep-
resent the reasoning used by the agents to conclude further evidence.

The set of literals Lit = {p1,¬p1, . . . , pn,¬pn} consists of each propositional
variable and its negation. We write φ, possibly subscripted, to denote a literal.

Instants of time are labels associated to elements of a single given stream.
Thus, the labels that represent the instants of time cannot be processed for
consistency, and no assertions regarding relations between them is allowed.

Example 1. Consider again the motivating example that we discussed in the
Introduction. The set of agents is composed of the analyst (whose existence we
silently assume) and the sources CrowdStrike (CS), TheForensicator (TF) and
FireEye (FE); thus, Ag = {CS ,TF ,FE}. The sources make statements about
events occurring in two instants of time: “March/April 2016” and “5th of July
2016” represented respectively by t1 and t2. �

We formalize two different types of evidence: simple and derived one. The
simple evidence is a labeled formula of the form

a : (t : φ),

expressing that the agent represented by the source label a thinks that the literal
φ is true at the instant of time represented by the temporal label t. For short,
we will say that a thinks that φ is true at t.

Example 2. The simple evidence FE : (t2 : SpeedTr(23MB/s)) expresses that
FE states that the non-physical transferability speed, SpeedTr , can be 23MB/s
at t2. �

The derived evidence is a labeled formula of the form

a : (t : φ) [a1 : (t1 : φ1) | a2 : (t2 : φ2) | . . . | an : (tn : φn)]r,

expressing that agent a thinks that φ is true at instant of time t because of
reasoning r, where a1 thinks that φ1 is true at t1, . . . and an thinks that φn is
true at tn. In other words, based on r, a thinks that φ is caused3 by φ1, · · · , φn

3 We use the term “cause” to describe the events that an agent thinks were the precon-
ditions for a certain derived evidence. In this work, we will not focus on the causality
relationships between events.

A Formal Approach to Analyzing Cyber-Forensics Evidence 285

(with their respective time instants and agents). The reasoning r of the derived
evidence a : (t : φ) is composed of simple and/or derived pieces of evidence. We
include a constraint in our syntax that does not permit cycles between derived
pieces of evidence, so that if ai : (ti : φi) [· · · | aj : (tj : φj) | . . .] r, then we do
not accept in our language the formula aj : (tj : φj) [· · · | ai : (ti : φi) | . . .] r′ .

A reasoning r can be used by different agents to arrive at the same conclusion
(derived evidence), using the same pieces of evidence. An agent can use different
reasonings ri, · · · , rj to conclude the same derived evidence, where the pieces of
evidence used by the reasonings are different from one reasoning to the other.

Example 3. CS says that the Attack occurred at time t1, based on reasoning
r1 and CS ’s evidence about a spear phishing campaign SpPhish and its success
SucPhish at t1. The latter is based on r2 and CS ’s pieces of evidence that in t1:
the malicious link was clicked LinkCl , the malicious form was filled FFill , and
the data were stolen DStolen. We thus have:

CS : (t1 : Attack) [CS : (t1 : SpPhish) | CS : (t1 : SucPhish)]r1

CS : (t1 : SucPhish) [CS : (t1 : LinkCl) | CS : (t1 : FFill) | CS : (t1 : DStolen)]r2

Instead, TF says that based on r3 the Attack occurred at t2 because the meta-
data MetaC were created at t2 and the access was physical PhysA. The latter is
true because TF states that it is not true that SpeedTr is 23MB/s:

TF : (t2 : Attack) [TF : (t2 : MetaC) | TF : (t2 : PhysA)]r3

TF : (t2 : PhysA) [TF : (t2 : ¬SpeedTr(23MB/s))]r4 �

To allow an analyst to distinguish the events that can be expressed by a
simple or derived evidence, the set of propositional variables Vars is composed
by two disjoint subsets VarsS and VarsD that respectively represent the events
that can be part of simple and derived evidence, i.e., Vars = VarsS ∪ VarsD

with VarsS ∩ VarsD = ∅. By extension, we write φ ∈ LitS if φ is p or ¬p with
p ∈ VarsS , and φ ∈ LitD if φ is p or ¬p with p ∈ VarsD.

Hence, if φ ∈ LitS , then a : (t : φ) is a simple evidence, whereas if φ ∈ LitD

and φi ∈ Lit for i ∈ {1, . . . , n}, then a : (t : φ) [a1 : (t1 : φ1) | . . . | an :
(tn : φn)]r is a derived evidence. For simplicity, we will assume that a variable
that represents an event given by a simple evidence is part of VarsS and that a
variable that represents an event given by a derived evidence is part of VarsD.

Example 4. The variables of the events of our example are divided in the two
following disjoint subsets: VarsS = {SpPhish,LinkCl ,FFill ,DStolen,MetaC ,
SpeedTr(23MB/s)} and VarsD = {Attack ,SucPhish,PhysA}. �

The temporal labels can have temporal constraints such as t1 ≤ t or tn <
t. As we consider time to be linear and every instant of time is mapped to
only one element of the natural numbers, our syntax doesn’t need to include
a precedence relation, as it represents the classical precedence relation between
natural numbers.

286 E. Karafili et al.

In addition to ordering events with respect to time, the analyst can consider
the trust(worthiness) relations that she has with the sources with respect to their
assertions in the simple evidence, i.e., she might think that one source is more
reliable than another one with respect to a particular event (and its negation).
For instance, ai might be more trustworthy than aj with respect to an event p
(and thus also ¬p), where p ∈ VarsS . In general, if there exists a trust relation
between two agents ai, aj ∈ Ag for an event p ∈ VarsS , then we have that either
ai is more trustworthy than aj with respect to p, or aj is more trustworthy
than ai with respect to p. We formalize this by introducing the trust relation
� : Ag × Ag × VarsS . Then, the relational formula ai �p aj expresses that aj is
more trustworthy than ai with respect to p.

Example 5. We write TF �SpeedTr(23MB/s)FE to formalize that the analyst trusts
FE more than TF w.r.t. the simple evidence SpeedTr(23MB/s). �

The analyst can also consider the trust(worthiness) relations about the rea-
sonings she used. In particular, given two conflicting derived pieces of evidence
that use two different reasonings, the analyst can consider one reasoning to be
more trustworthy than the other one. We formalize this by introducing the trust
relation ≺: R×R. Then, the relational formula ri ≺ rj expresses that reasoning
rj is more trustworthy than reasoning ri.

2.2 ELI : Evidence Interpretation

An evidence interpretation (or simply interpretation) is what the cyber-forensics
analyst thinks that is plausibly true. To formalize this, the second level ELI of EL
employs a simplified variant of Linear Temporal Logic (LTL). ELI inherits from
ELE the temporal labels T , the reasonings R and the propositional variables
Vars (and thus also the literals Lit).

Definition 2. Given t, t1, . . . tn ∈ T, φ, φ1, . . . , φn ∈ Lit, r ∈ R and φ′ ∈ LitD,
the set ϕ of formulas of ELI , called interpretations, is

ϕ ::= t : φ | t1 : φ1 ∧ t2 : φ2 ∧ . . . ∧ tn : φn →r t : φ′

t : φ means that the analyst thinks that φ is true at t, whereas t1 : φ1 ∧ . . .∧ tn :
φn →r t : φ′ means that the analyst thinks that φ′ is true at the instant of time
t, based on reasoning r, if φi is true at ti for all i ∈ {1, . . . , n}. An interpretation
expresses a positive event (the occurrence of an event, e.g., t : p) or a negative
event (the non occurrence of an event, e.g., t : ¬p). The interpretations of the
temporalized logic ELI that express positive events represent the plausible pieces
of evidence and help the analyst to perform a correct analysis.

2.3 ELR : Evidence Reasoning

The third layer ELR of EL is the reasoning layer and deals with the reasoning
behind the derived evidence. Also ELR uses LTL and inherits from ELE the
temporal labels T , the reasonings R and the propositional variables Vars.

A Formal Approach to Analyzing Cyber-Forensics Evidence 287

Definition 3. Given t ∈ T, φ ∈ LitD and r, rk, . . . , rl ∈ R, the set ψ of formu-
las of ELR is

ψ ::= (t : φ)r | (t : φ)r,rk,...,rl
.

The reasoning involves only derived pieces of evidence, which we can divide
in two types. The first type of derived evidence, (t : φ)r, is composed of only
simple pieces of evidence; in this case, the only reasoning is the one made by the
agent that states the derived evidence a : (t : φ) [a1 : (t1 : φ1) | . . . | aj : (tj :
φj)]r, where φi ∈ LitS for i ∈ {1, . . . , j}. The second type of derived evidence,
(t : φ)r,rk,··· ,rl

, is composed of simple and derived pieces of evidence; in this
case, the reasoning involves the one of the agent stating the derived evidence,
a : (t : φ) [a1 : (t1 : φ1) | . . . | aj : (tj : φj)]r, as well as all the reasonings
involved in the derived pieces of evidence φi ∈ Lit for i ∈ {1, . . . , j} that are
part of reasoning r. The first type is clearly a special case of the second one, but
we keep both for the sake of understandability.

3 The Semantics of the Evidence Logic EL
Definition 4. The plausible pieces of evidence are a finite stream of temporal
instants in which at every instant of time we may associate a finite number of
occurrences or not occurrences of an event.

The agents are associated to a given finite set of values, and the trust rela-
tionship between agents is interpreted as a partial order on the agents. The same
applies to the reasonings: they are associated to a finite set of values and the trust
relationship between them is interpreted as a partial order on the reasonings.

Definition 5. A model of the evidence language EL is a tuple

M = {AgI,FI,POI, T RI,VarsI,RI,I}

where:

– I is the interpretation function, where we interpret time as natural numbers,
i.e., tI ∈ N for every t ∈ T;

– AgI = {a1
I, . . . an

I} = {a1, . . . an} = Ag is a set of agents;
– FI is a function that maps pairs of instants of time and formulas to True or

False (this mapping is used in the second layer of EL, where we have t : φ);
– POI = {�pi

I} is a set of trust relationships between agents, where for every
p ∈ VarsS, if �p

I ∈ POI, then �p
I = {(ai

I, aj
I) | ai �p aj}∗, where ∗ is the

transitive closure of �;
– T RI = {≺I} is a set of trust relationship between reasonings, where for

every r ∈ R, if ≺I ∈ T RI, then ≺I = {(ri
I, rj

I) | ri ≺ rj}∗, where ∗ is the
transitive closure of ≺;

– VarsI = Vars = {p1, · · · , pn} is a set of events;
– RI = R = {r1, r2, · · · , rn} is a set of reasoning rules.

288 E. Karafili et al.

Slightly abusing notation, we use AgI to denote also a set of functions, each
function ai

I : N × Lit → {True,False} associating to an instant of time t a
set of formulas that are true at t, where ai

I(t, p) = True when ai : (t : p)
is asserted, ai

I(t, p) = False when ai : (t : ¬p) is asserted, ai
I(t,¬p) = True

when ai : (t : ¬p) is asserted, ai
I(t,¬p) = False when ai : (t : p) is asserted.

The same applies to RI, each function ri
I : N × Lit → {True,False} such that

(t, p)ri
I = True when (t : p)ri

is asserted, (t, p)ri
I = False when (t : ¬p)ri

is
asserted, (t,¬p)ri

I = True when (t : ¬p)ri
is asserted, (t,¬p)ri

I = False when
(t : p)ri

is asserted. Thus, ai
I and FI both associate to every t a set of formulas

that are true at t; the difference is that we use the ai
I in the evidence layer ELE

and FI in the interpretation layer ELI .
In order to avoid having clear contradictions in the models, we constrain the

functions AgI and RI as follows:

(COND1): If aI(t, p) = True, then aI(t′, p) = False for all t′ �= t.
(COND2): If (t, p)rI = True, then (t′, p)rI = False for all t′ �= t.
(COND3): Every �p

I is an irreflexive and antisymmetric relation.
(COND4): Every ≺I is an irreflexive and antisymmetric relation.

A EL-theory is built by using EL to express a finite and non-empty set of formulas
of the three layers, including the trust relationships.

4 The Rewriting System of the Evidence Logic EL
In this section, we introduce the rewriting system of EL, which, as proved in
Theorem 1, is sound. Given pieces of evidence, the rewriting system yields a
consistent set of pieces of evidence by translating pieces of evidence into inter-
pretations and reasonings, and resolving their discordances. In particular, the
rewriting system uses the tableau rules in Table 1 and applies them via the pro-
cedure in Algorithm 1: given a EL-theory E , which is a non-empty set of formulas,
the rewriting system generates a new set of formulas Ê that replaces E , where
the single rewritings correspond to interpretations and reasonings of the theory.
More specifically, the rewriting system takes a EL-theory of the first level and
rewrites it into a EL-theory of the second and third level, until all the formulas
are interpreted, by adding formulas to the theory or eliminating formulas from
the theory, with the use of insertion or elimination rules.

The rules in Table 1 have as premises (above the line) a set of formulas and a
EL-theory E , although we don’t show E for readability, and as conclusion (below
the line) E ∪ {φ} or E \ {φ}, depending on whether the rule is an insertion
or elimination rule that respectively inserts or eliminates φ. The insertion rule
introduce formulas for resolving temporal discordances and interpreting pieces
of evidence. The elimination rules resolve discordances of event occurrences by
deleting formulas based on the trust relations among agents and reasonings. The
closure rules are part of the elimination rules, and discover discordances in E
that cannot be solved, eliminate all the formulas of the set E and give as result
the empty set ⊥.

A Formal Approach to Analyzing Cyber-Forensics Evidence 289

Table 1. Rules of the rewriting system of EL

a : (t : φ)
E ∪ {t : φ} L1

(t : φ)r,··· ,rn

E ∪ {t : φ} L′
1

a : (t : φ) [a1 : (t1 : φ1) | · · · | an : (tn : φn)]r
E ∪ {ai : (ti : φi)}∀i∈{1,··· ,n} φi∈LitS

∪ {t1 : φ1 ∧ · · · ∧ tn : φn →r t : φ} L2

t1 : φ1 ∧ · · · ∧ tn : φn →r t : φ t1 : φ1 · · · tn : φn

E ∪ {(t : φ)r} (→)

t1 : φ1 ∧ · · · ∧ tn : φn →r t : φ (t1 : φ1)r1/∅ · · · (tn : φn)rn/∅
E ∪ {(t : φ)r,r1/∅,··· ,rn/∅}

(→′)

a1 �p a2 a2 �p a3

E ∪ {a1 �p a3} Trans�
r1 ≺ r2 r2 ≺ r3

E ∪ {r1 ≺ r3} Trans ≺

a1 : (t1 : φ) a2 : (t2 : φ)
E ∪ {a1 : (t2 : ¬φ), a2 : (t1 : ¬φ)} D1[∗]

(t1 : φ)r1 (t2 : φ)r2
E ∪ {(t2 : ¬φ)r1 , (t1 : ¬φ)r2} D′

1[∗]

(t1 : φ)r1,ri,··· ,rj (t2 : φ)r2,rm,··· ,rn

E ∪ {(t2 : ¬φ)r1,ri,··· ,rj , (t1 : ¬φ)r2,rm,··· ,rn} D′′
1 [∗]

a2 �p a1 a1 : (t : φ) a2 : (t : ¬φ)
E \ {a2 : (t : ¬φ)} D2[◦]

r2 ≺ r1 (t : φ)r1 (t : ¬φ)r2
E \ {(t : ¬φ)r2} D′

2

r2 ≺ r1 (t : φ)r1,ri,··· ,rj (t : ¬φ)r2,rm,··· ,rn Δ

E \ {(t : ¬φ)r2,rm,··· ,rn , Δ} D′′
2 [�]

a : (t1 : φ) a : (t2 : φ)
⊥ CC [∗]

(t1 : φ)r,··· ,ri (t2 : φ)r,··· ,rj

⊥ C′
C [∗]

a �p a

⊥ CT
r ≺ r

⊥ C′
T

t : φ t : ¬φ

⊥ CP

where [∗] = [t1 �= t2], [◦] = [φ ∈ LitS , φ is p or ¬p], and [�] = [Δ =
⋃

(t′:ψ)�∈E s.t. r2∈�(t
′ : ψ)�]

4.1 Rewriting Rules

We now explain the rules in more detail, starting from the transformation rules
that transform the formulas into the various layer formulas.

Rule L1 transforms a simple evidence into a temporal formula of the inter-
pretation layer, whereas L′

1 transforms formulas of the reasoning layer into a
temporal formula of the interpretation layer.

Example 6. An application of L1 in our use example is:

FE : (t2 : SpeedTr(23MB/s))
E ∪ {t2 : SpeedTr(23MB/s)} L1

�

Rule L2 transforms a derived evidence into an interpretation formula and, if
possible, also introduces new pieces of evidence. Thus, given a derived evidence
a : (t : φ) [a1 : (t1 : φ1) | · · · | an : (tn : φn)]r, L2 inserts the temporal formula

290 E. Karafili et al.

t1 : φ1∧ . . .∧tn : φn →r t : φ and all ai : (ti : φi) for φi ∈ LitS and i ∈ {1, . . . , n}.
Note that rule L2 inserts in the theory only the simple pieces of evidence that
were part of the reasoning, and not the derived ones, as we expect the pieces of
evidence that are part of their reasonings to be part of the theory too.

Example 7. In our example, L2 is applied to all derived pieces of evidence given
by the sources. When it applies to CS ’s first evidence, it transforms only the sim-
ple evidence about the spear phishing campaign, but not the successful phishing
evidence as it is a derived one. The same occurs to TF ’s first evidence where
just MetaC is introduced:

CS : (t1 : Attack) [CS : (t1 : SPhish) | CS : (t1 : SucPhish)]r1
E ∪ {CS : (t1 : SPhish)} ∪ {t1 : SPhish ∧ t1 : SucPhis →r1 t1 : Attack} L2

TF : (t2 : Attack) [TF : (t2 : MetaC) | TF : (t2 : PhysA)]r3
E ∪ {TF : (t2 : MetaC)} ∪ {t2 : MetaC ∧ t2 : PhysA →r3 t2 : Attack} L2

TF : (t2 : PhysA) [TF : (t2 : ¬SpeedTr(23MB/s))]r4
E ∪ {TF : (t2 : ¬SpeedTr(23MB/s))} ∪ {t2 : ¬SpeedTr(23MB/s) →r4 t2 : PhysA} L2

Applying L2 to the second evidence of CS yields E ∪ {CS : (t1 : LinkCl), CS :
(t1 : FFill), CS : (t1 : DStolen)} and t1 : LinkCl ∧ t1 : FFill ∧ t1 : DStolen →r2

t1 : SucPhish. �

Rules (→) and (→′) transform the interpretation formulas introduced by L2

into reasoning formulas (derived evidence of the two types).

Example 8. Applying (→) to CS ’s derived pieces of evidence yields:

t1 : LinkCl ∧ t1 : FFill ∧ t1 : DStolen →r2 t1 : SucPhish t1 :LinkCl t1 :FFill t1 :DStolen

E ∪ {(t1 : SucPhish)r2} (→)

Applying (→′) to the second type of derived evidence for CS yields

t1 : SPhish ∧ t1 : SucPhish →r1 t1 : Attack t1 : SPhish (t1 : SucPhish)r2

E ∪ {(t1 : Attack)r1,r2}
(→′)

�

The � and ≺ relations are transitive ones. Trans� and Trans ≺ extend the
trust relations between agents and reasonings, e.g., if a1 is less trusted than a2

with respect to p, and a2 is less trusted than a3 with respect to p, then Trans�
inserts into the theory the conclusions that a1 is less trusted than a3 with respect
to p (the same applies to ≺ with Trans ≺).

The discordance resolution rules resolve temporal and factual discordances,
where events are instantaneous and not recurring. A temporal discordance about
an event occurs when two agents state that it occurred in two different instants
of time, e.g., Alice states that x occurred at t1 and Bob states that it occurred
at t2. A factual discordance about an event occurs when there are inconsistent

A Formal Approach to Analyzing Cyber-Forensics Evidence 291

statements about the occurrence of an event at an instant of time, e.g., Alice
states that at t occurred p and Bob states that at t did not occur p.

Rules D1, D′
1 and D′′

1 transform temporal discordances into factual ones,
where D1 works with simple pieces of evidence, D′

1 with derived pieces of evidence
of the first type, and D′′

1 with derived pieces of evidence of the second type (note
that D′

1 is a special case of D′′
1). Thus, if the EL-theory E contains the evidence

belonging to two different agents about the same event p, occurring at two
different instants, then the evidence of the occurrence or not of p with respect
to both agents and both instants of time are inserted in the theory.

Rule D2, D′
2 and D′′

2 solve the factual discordances based on the relations
of trust, where D2 eliminates from the theory the evidence of the less trusted
agent, whereas D′

2 and D′′
2 eliminate the evidence of the less trusted reasoning.

D′′
2 eliminates also every evidence that has inside its reasoning the removed

evidence, as captured by the side condition where Δ is the set of all derived pieces
of evidence that have r2 in their reasonings: Δ =

⋃

(t′:ψ)�∈E s.t. r2∈�(t
′ : ψ)�],

where � = {rk, · · · , rl}.

Example 9. D2 solves the discordance of the speed transfer:

TF �SpeedTr(23MB/s) FE FE : (t2 : SpeedTr(23MB/s)) TF : (t2 : ¬SpeedTr(23MB/s))

E \ {TF : (t2 : ¬SpeedTr(23MB/s))} D2

�

The rewriting system has five closure rules that correspond to five discor-
dances that cannot be solved resulting in the empty theory ⊥. CC applies when
an agent contradicts herself, C′

C when a reasoning contradicts itself. CT and C′
T

apply when an agent/reasoning is more trusted than herself/itself (we avoid these
types of conflicts in the semantics thanks to COND1 and COND2 , where � and
≺ are irreflexive). Finally, CP captures contradictions of the second layer, where
two temporal formulas state the occurrence and non occurrence of an event at
the same instant of time. This discordance occurs when we were not able to solve
it using the trust relations.

Theorem 1. The rewriting system of EL is sound.

The proof of the theorem is in the Appendix.

4.2 Rewriting Procedure

We give a procedure that uses the rewriting rules to prove the satisfiability of
a given EL-theory. This procedure defines an order of application of the rules
that rewrites the EL-theory as defined in Algorithm1. Theorem 2 tells us that
the procedure is correct (the theorem is proved in the Appendix).

Given a EL-theory, the procedure starts by generating all the trust relations,
applying (Trans�) and (Trans ≺). Any contradiction that exists between trust
relations is immediately captured by CT and C′

T . L2 is applied to transform any

292 E. Karafili et al.

Algorithm 1. Algorithm for the Rewriting Procedure
1: while We can apply Trans�, Trans ≺ rules do
2: Apply Trans� and Trans ≺ rules
3: end while
4: Apply CT and C′

T ; if we have ⊥, then We do not have a model. Exit! endif
5: while We can apply L2 rule do Apply L2 rule end while
6: while We can apply D1, D2 rules do Apply D1, D2 rules end while
7: Apply CC ; if we have ⊥, then We do not have a model. Exit! endif
8: while We can apply L1 rule do Apply L1 rule end while
9: while We can apply (→) rule do Apply (→) rule end while

10: while We can apply D′
1, D′

2 rules do Apply D′
1, D′

2 rules end while
11: while We can apply (→′) rule do Apply (→′) rule end while
12: while We can apply D′′

1 , D′′
2 rules do Apply D′′

1 , D′′
2 rules end while

13: Apply C′
C ; if we have ⊥, then We do not have a model. Exit! endif

14: while We can apply L′
1 rule do Apply L′

1 rule end while
15: Apply CP ; if we have ⊥, then We do not have a model. Exit! endif

derived evidence into its interpretations. If needed, D1 and D2 are applied. At
this point all possible simple pieces of evidence are generated. Any contradiction
between first layer formulas is captured by CC . Afterwards, L1 transforms any
simple evidence into second layer formulas that are used by (→) to obtain rea-
soning layer formulas. D′

1 and D′
2 are applied to solve discordances between rea-

soning layer formulas based on the reasonings’ trust relations. The result of the
previous rules is used by (→′) to generate reasoning layer formulas from derived
pieces of evidence of the second type. If any discordance arises, it is solved by D′′

1

and D′′
2 , where rule D′′

2 not only takes out the not preferred evidence, but also
any derived evidence that uses it as a precondition. If no contradiction between
reasoning rules is captured by C′

C , then L′
1 transforms all reasoning layer formu-

las into interpretation layer ones. If CP applies, then there is a contradiction and
we have ⊥, else no further transformation can be done, and the resulting set of
formulas is the model of EL-theory.

Example 10. By applying the procedure we find that (→) can be applied only
to CS ’s pieces of evidence as the derived ones of TF are missing their premises,
removed by D2. Applying L′

1 yields t1 : Attack and the analyst concludes that
the attack occurred during March/April 2016. �

Theorem 2. The order of the rules in Algorithm1 used by the rewriting proce-
dure is correct.

5 A Detailed Case Study: Attribution of a Cyber-Attack

The Evidence Logic EL can be used in diverse application areas where there is a
need to analyze and reason about conflicting data/knowledge. In this section, as
a concrete proof of concept to show how to apply EL during the investigations on

A Formal Approach to Analyzing Cyber-Forensics Evidence 293

A1 : t : Culprit(C, Attack)[S1 : t : sIP (Attack, IP) | S1 : t : Geoloc(IP, C) | S2 : t : Cap(C, Attack)]r1

E ∪ {S1 : t : sIP (Attack, IP), S1 : t : Geoloc(IP, C)}∪
{ t : sIP (Attack, IP) ∧ t : Geoloc(IP, C) ∧ t : Cap(C, Attack) →r1 t : Culprit(C, Attack)}

L2

(1)
A2 : t : Culprit(C, Attack)[S2 : t : Motive(C, Attack) | S2 : t : Cap(C, Attack)]r2

E ∪ { t : Motive(C, Attack) ∧ t : Cap(C, Attack) →r2 t : Culprit(C, Attack)}
L2

(2)

A3 : t : ¬Culprit(C, Attack)[S3 : t : ¬Cap(C, Attack) | S4 : t : ¬F in(C, Attack)]r3

E ∪ {S4 : t : ¬F in(C, Attack)}∪
{t : ¬Cap(C, Attack) ∧ t : ¬F in(C, Attack) →r3 t : ¬Culprit(C, Attack)}

L2
(3)

S2 : t : Cap(C, Attack)[S6 : t1 : Admit(C, Attack′) | S1 : t : Sim(Attack, Attack′)]r5
E ∪ {S6 : t1 : Admit(C, Attack′), S1 : t : Sim(Attack, Attack′)}∪

{ t1 : Admit(C, Attack′) ∧ t : Sim(Attack, Attack′) →r5 t : Cap(C, Attack)}

L2

(4)

S3 : t : ¬Cap(C, Attack)[S6 : t1 : Admit(C, Attack′) | S5 : t : ¬Sim(Attack, Attack′)]r6
E ∪ {S6 : t1 : Admit(C, Attack′), S5 : t : ¬Sim(Attack, Attack′)}∪

{ t1 : Admit(C, Attack′) ∧ t : ¬Sim(Attack, Attack′) →r6 t : ¬Cap(C, Attack)}

L2

(5)

A4 : t : ¬Culprit(C, Attack)[S1 : t : sIP (Attack, IP) | S1 : t : Geoloc(IP, C) | S7 : t : Spoofed(IP)]r4

E ∪ {S1 : t : sIP (Attack, IP), S1 : t : Geoloc(IP, C), S7 : t : Spoofed(IP)}∪
{ t : sIP (Attack, IP) ∧ t : Geoloc(IP, C) ∧ t : Spoofed(IP) →r4 t : ¬Culprit(C, Attack)}

L2

(6)
S2 : t : Motive(C, Attack)[S5 : t : EConf(C, V ictim)]r7

E ∪ {S5 : t : EConf(C, V ictim)} ∪ { t : EConf(C, V ictim) →r7 t : Motive(C, Attack)}
L2

(7)

S5 �Sim S1 S1 : t : Sim(Attack, Attack′) S5 : t : ¬Sim(Attack, Attack′)

E \ {S5 : t : ¬Sim(Attack, Attack′)}
D2

(8)

t1 : Admit(C, Attack′) t : Sim(Attack, Attack′)
t1 : Admit(C, Attack′) ∧ t : Sim(Attack, Attack′) →r5 Cap(C, Attack)

E ∪ {(t : Cap(C, Attack))r5}
(→)

(9)

t : sIP (Attack, IP) t : Geoloc(IP, C) t : Spoofed(IP)
t : sIP (Attack, IP) ∧ t : Geoloc(IP, C) ∧ t : Spoofed(IP) →r4 t : ¬Culprit(C, Attack)

E ∪ {(t : ¬Culprit(C, Attack))r4}
(→)

(10)

t : EConf(C, V ictim) →r7 t : Motive(C, Attack) t : EConf(C, V ictim)

E ∪ {(t : Motive(C, Attack))r7}
(→)

(11)

t : sIP (Attack, IP) t : Geoloc(IP, C) (t : Cap(C, Attack))r5
t : sIP (Attack, IP) ∧ t : Geoloc(IP, C) ∧ t : Cap(C, Attack) →r1 t : Culprit(C, Attack)

E ∪ {(t : Culprit(C, Attack))r1,r5} (→′)
(12)

(t : Motive(C, Attack))r7 (t : Cap(C, Attack))r5
t : Motive(C, Attack) ∧ t : Cap(C, Attack) →r2 t : Culprit(C, Attack)

E ∪ {(t : Culprit(C, Attack))r2,r7,r5} (→′)
(13)

r1 ≺ r4 (t : Culprit(C, Attack))r1,r5 (t : ¬Culprit(C, Attack))r4

E \ {(t : Culprit(C, Attack))r1,r5}
D′′

2 (14)

r4 ≺ r2 (t : Culprit(C, Attack))r2,r7,r5 (t : ¬Culprit(C, Attack))r4

E \ {(t : ¬Culprit(C, Attack))r4}
D′′

2 (15)

Fig. 1. Application of the rewriting procedure

a cyber-attack, we discuss a cyber-forensics case study in which the analyst needs
to collect various pieces of evidence and analyze them to decide who performed
the attack; this process is called attribution of the attack to a particular entity.

As we remarked above, forensics investigations typically produce an enor-
mous amount of evidence that need to be analyzed. The pieces of evidence are
produced/collected by various sources, which can be humans (e.g., another ana-
lyst) or forensic tools such as intrusion detection system (IDS), traceback sys-
tems, malware analysis tools, and so on. The analyst trusts more some sources
than others for particular pieces of evidence, e.g., source S1 is more trusted than

294 E. Karafili et al.

source S5 for attack similarity as tool S1 specializes in malware analysis whereas
tool S5 specializes in deleted data. The collected evidence can be conflicting
or bring to conflicting results. The EL Logic represents the evidence, together
with its sources and relations of trust, and reasons about it, by eliminating the
conflicting evidence and helping the analyst during the analysis process.

Suppose the analyst has collected (from analysts A1, . . . , A4 and sources S1,
S2, S3) and is analyzing, using EL, the following pieces of evidence, representing
events related to the attack that occurred (for the sake of space, we give a
simplified but realistic version of the evidence that can be easily extended).

A1 : t : Culprit(C,Attack)[S1 : t : sIP(Attack , IP) | S1 : t : Geoloc(IP ,C) | S2 : t :
Cap(C ,Attack)]r1

A2 : t : Culprit(C ,Attack)[S2 : t : Motive(C ,Attack) | S2 : t : Cap(C ,Attack)]r2
A3 : t : ¬Culprit(C ,Attack)[S3 : t : ¬Cap(C ,Attack) | S4 : t : ¬Fin(C ,Attack)]r3
A4 : t : ¬Culprit(C ,Attack)[S1 : t : sIP(Attack , IP) | S1 : t : Geoloc(IP ,C) | S7 : t :

Spoofed(IP)]r4
S1 : t : sIP(Attack , IP)
S1 : t : Geoloc(IP ,C)
S2 : t : Cap(C ,Attack)[S6 : t1 : Admit(C ,Attack ′) | S1 : t : Sim(Attack ,Attack ′)]r5
S3 : t : ¬Cap(C ,Attack)[S6 : t1 : Admit(C ,Attack ′) | S5 : t : ¬Sim(Attack ,Attack ′)]r6
S2 : t : Motive(C ,Attack)[S5 : t : EConf (C ,Victim)]r7

S5 �Sim S1 r1 ≺ r4 r4 ≺ r2 r2 ≺ r3

sIP(Attack , IP) means that the Attack came from IP ; Geoloc(IP ,C) that IP
has country C as geographical location; Cap(C ,Attack) that country C has the
capability of conducting the Attack . Analyst A1 states that (based on reasoning
r1), given country C is capable of performing the Attack (stated by S2) and it
came from IP located in C (stated by S1), then C performed (is the culprit of)
the attack, i.e., Culprit(C ,Attack). A2 states that C is the culprit (based on
r2), as it has the capability of and the motive Motive(C ,Attack) for performing
it (both stated by S2). A3 states that C is not the culprit (based on r3), as it
is not capable of and (as stated by S4) does not have the financial resources
Fin(C ,Attack) for commissioning the attack. A4 states that C is not the culprit
(based on r4), as the IP ’s are Spoofed (stated by S7), so their geolocation cannot
be used. Source S1 states that the IP from which the attack originated is located
in C. S2 states that C is capable (based on r5), as C admitted to be the culprit
of a previous attack, i.e., Admit(C ,Attack ′), at t1 (stated by S6), and the latter
is similar (Sim) to Attack (stated by S1). S3 states that C is not capable of
performing Attack (based on r6), as Attack ′ that C admitted to have performed,
is not similar to Attack (stated by S5). S2 states that C has motive for the attack
(based on r7), as C has an economical conflict EConf with the attack Victim
(stated by S5). Our analyst trusts more source S1 than S5 for the similarity
between attacks, and reasoning r3 more than r2, r2 more than r4 and r4 more
than r1.

The simple pieces of evidence of this use case are:

VarsS = {sIP(Attack , IP),Geoloc(IP ,C),Fin(C ,Attack),Admit(C ,Attack ′),
Sim(Attack ,Attack ′),Spoofed(IP),EConf (C ,Victim)}.

A Formal Approach to Analyzing Cyber-Forensics Evidence 295

Let us now apply EL’s rewriting procedure. We start with rules Trans� and
Trans ≺: the first cannot be applied, the second yields r1 ≺ r2, r1 ≺ r3 and
r4 ≺ r3. Neither CT nor C′

T can be applied. We show the application of L2 to
the pieces of evidence in (1)–(7) in Fig. 1. In (8) rule D2 eliminates S5 : t :
¬Sim(Attack ,Attack ′). No contradiction is captured by CC , and L1 transforms
all first layer formulas into second layer ones:

E∪ {t : sIP(Attack , IP), t : Geoloc(IP ,C), t : ¬Fin(C ,Attack), t : Spoofed(IP)
t1 : Admit(C ,Attack ′), t : Sim(Attack ,Attack ′), t : EConf (C ,Victim)}.

(9)–(11) show applications of (→) to any evidence that has its premises in the
theory. D′

1 and D′
2 cannot be applied as there is no temporal/factual discor-

dance between derived pieces of evidence of the first type. Applying (→′) pro-
duces derived pieces of evidence of the second type for A1 and A2 as shown in
(12)–(13). A3’s evidence is not derived as C is capable to perform the attack.
Rule D′′

1 cannot be applied. Rule D′′
2 is applied, as shown in (14)-(15), to the

conflicting pieces of evidence where the reasonings’ trust relations apply. Finally,
L′
1 transforms all third layer formulas into second layer ones:

E∪ {t : sIP (Attack, IP), t : Geoloc(IP,C), t : ¬Fin(C,Attack), t : Spoofed(IP)
t1 : Admit(C ,Attack ′), t : Sim(Attack ,Attack ′), t : Cap(C ,Attack),
t : EconfConflict(C ,Victim), t : Motive(C ,Attack), t : Culprit(C ,Attack)}.

The analyst, given the result of the procedure, concludes that the culprit of the
Attack is C.

The question of “who performed the attack” is, in general, not an easy one
to answer, but we believe that EL can be successfully used to analyze and filter
the large amount of cyber-forensics evidence that an analyst needs to deal with.
At the very least, EL allows an analyst to perform a first, formal filtering of the
evidence and obtain different plausible conclusions, which the analyst can then
further investigate.

6 Related Work and Concluding Remarks

When we introduced EL and discussed how it allows analysts to reason about
simple and derived evidence given by different sources, we deliberately did not
use the notion of “belief”. We chose to do so as the main scope of our work is
not to consider modalities of knowledge or belief, but to introduce a procedure
that analyzes and filters the potentially enormous amount of forensics evidence,
eliminate discordances and reach conclusions. The notion of evidence (both sim-
ple and derived evidence) can be represented quite naturally as agents’ beliefs
and, in fact, the reasoning process in EL could be considered a belief revision
process. However, our procedure, differently from the belief revision process, uses
a monotonic reasoning, does not distinguish between beliefs and knowledge, is
based on the notion of trust, and does not apply the principle of minimal change.

Belief revision is the process of integrating new information with existing
beliefs or knowledge [4,7,9,10,17]. It is performed based on the knowledge and

296 E. Karafili et al.

beliefs of the user and the beliefs of other agents announced, privately [1,6] or
publicly [5,14], and it uses non-monotonic reasoning. In our approach, we use
monotonic reasoning as we expect only the final set, that represents our theory,
to be consistent. Our procedure deals with conflicting pieces of evidence, which
are analyzed by expanding or contracting the evidence set. In case of unsolved
inconsistencies, our theory is empty. The procedure does not incorporate every
incoming information in the evidence set, but rather the new evidence is included
or not depending on the trust relations. This is different from the classical AGM
belief revision [2], where the principle of minimal belief change applies.

Our analysis can be seen as a revision procedure, where we do not distinguish
between beliefs and knowledge. Thus, all the pieces of evidence can be treated
as beliefs, and there is no space for personal or common belief/knowledge. Some
works have considered belief revision that uses relation of trust between agents
[3,8,12,13]. However, not much effort has been devoted to working with a relation
of trust relative to the reasoning used to arrive to certain conclusions. Our trust
relations do not have a grading system, like the one in [13], which is difficult
to define for cyber-forensics data, but use comparable trust between the sources
based on the evidence, similar to [12], where a notion of trust restricted to a
domain of expertise is used. As future work, we plan to use Bayesian belief
networks [8], and the Dempster-Shafer theory to quantify the level of trust for
the evidence, and to enrich our framework with trust reinforcement mechanisms.

To the best of our knowledge, the only attempt at using belief revision during
cyber-attacks’ investigations is [15,16], where a probabilistic structure argumen-
tation framework is used to analyze contradictory and uncertain data. Our pro-
cedure does not deal with probabilities, but with preferences between sources
and reasoning rules. We believe this to be a more accommodating approach,
especially for the main use case, investigations of cyber-attacks, where calculat-
ing and revising probabilities is resource consuming. The framework of [15,16]
allows attackers to use, during the deceptive attempts, the well-known specificity
criteria, i.e., the rule that uses more pieces of evidence is preferable. We avoid
this type of deceptive attempts as the trust relations are given by the analyst.

EL is based on LTL. Another approach is to use Temporal Defeasible Logic [4],
where knowledge is represented as norms with temporal scope [11]. For the sake
of simplicity, our stream of time is discrete and provided initially. As future work,
we plan to consider the flow of time as not provided and as non-discrete in order
to have temporal relations between labels that represent the instants of time.

Another distinctive feature of our approach with respect to the rest of the
literature that focuses on agents’ trust relations and their reputation systems
is the fact that we engage not only with the trust between agents, but also
with the reasoning behind the evidence. Hence, even when a particular agent
is not trusted, if the reasoning behind the evidence is sound, we might take
it into account. The notion of trust, also seen as preference, is subjective to
the analyst, and we assume that agents are sincere, and thus share all their
information. As future work, we plan to incorporate both a reputation revision
process, where the trustworthiness and reliability of the sources is analyzed and

A Formal Approach to Analyzing Cyber-Forensics Evidence 297

revised based on past experience, and private/public announcements. Finally,
on the theoretical side, we plan to investigate the completeness of the rewriting
system and algorithm, whereas on the practical side, we plan to fully automate
our analysis process and to perform an evaluation analysis on real evidence of
cyber-attacks.

Acknowledgments. Erisa Karafili was supported by the European Union’s H2020
research and innovation programme under the Marie Sk�lodowska-Curie grant agree-
ment No. 746667.

A Appendix: Soundness of the Rewriting System
and Correctness of the Algorithm

In this appendix, we prove the soundness of the rewriting system of EL and
the correctness of Algorithm 1. Given a theory E and EL’s rewriting system, the
application of at least one of its closure rules generates an empty set. In fact,
every theory that contains ⊥ is equivalent to the empty theory. When the input
theory is not empty and has no contradiction, then the theory rewritten by EL
should give as result a non empty theory.

As usual in tableau rewriting systems, we define three fundamental notions:
open, closed, and exhausted theories. A theory is closed when it contains a
contradiction and it is open when it does not. A theory is exhausted when it is
a fixpoint with respect to the rewriting process, i.e., by applying the rewriting
system to an exhausted theory E , we always obtain E . Under the grounded
semantics introduced in Sect. 3, we prove the soundness of the rewriting system
by showing that open theories have models under the semantics, and closed ones
have not. Thus, when we find an open and exhausted theory, we can prove the
existence of a model.

We show now that the rules that rewrite a theory E into Ê without introducing
⊥ constitute by themselves a sound system. The proofs of Lemmas 1 and 2 are
straightforward and are omitted for the sake of space.

Lemma 1. If a satisfiable EL-theory E is rewritten into an exhausted theory Ê,
without using the closure rules, then Ê entails consequence C only when C is a
consequence of E.

Lemma 2. If an unsatisfiable EL-theory E is rewritten into an exhausted theory
Ê, then Ê is empty.

Lemma 3. Given a satisfiable theory E, the rewriting system EL rewrites the
theory in an open and exhausted one.

Proof. This lemma is proved by contradiction. Assume that E is non empty and
satisfiable, and is rewritten by EL into an exhausted closed theory Ê . Starting
from a satisfiable theory E there are five cases of rewriting it in a contradictory
theory that gives as result ⊥. In the definition of model in Sect. 3, we introduced

298 E. Karafili et al.

four conditions that constrain the behavior of interpretations. Below we provide
the complete analysis only for the first case (that is provided as a consequence of
COND1). The other cases are a natural extension of this one and are omitted for
the sake of space. The first case occurs when applying the CC rule. We have that:
aI(t1, p) = True, and aI(t2, p) = True. COND1 implies that a propositional
variable referred to an agent a can be true in only one instant of time, thus, E
is not satisfiable. �

Lemma 3 introduces a result for EL-soundness as it guarantees that irregard-
less of the order in which we apply the rules, we catch a contradiction at a given
point. Thus, as a direct consequence of the grounded semantics, of Lemmas 2
and 3 we obtain Theorem 1.

When a sound rewriting system exists in a logical reasoning system we always
have a method to deliver satisfiability check of a theory. In this case, we apply
the rules to a theory until we reach a fixpoint. If we aim at developing an
effective method, however, we need to provide a proof of termination for such a
method. For the rewriting system of EL we can prove that a simple approach,
based on the execution of the rules in a given order, is sufficient to provide an
effective method for satisfiability checking. This is the result of correctness of
Algorithm 1. Firstly, in Lemma 4, we prove that the existence of ⊥ in a theory,
if not introduced by default, is the consequence of the application of the rules in
a specific order.

Lemma 4. If a satisfiable EL-theory E is rewritten into a contradictory Ê, then
we have:

1. rewritten the theory by using L1 before D1 and D2, or
2. rewritten the theory by using L′

1 before D′
1, D′′

1 , D′
2 and D′′

2 , or
3. rewritten the theory by using (→) before D1 and D2, or
4. rewritten the theory by using (→′) before D′

1 and D′
2, or

5. applied (Trans�) after D1 and D2, and
6. applied (Trans ≺) after D′

1, D′′
1 , D′

2 and D′′
2 .

Proof. There are two cases when Ê is empty: either (1) the theory E is empty
or (2) a closure rule was used. The first case is not possible by definition of the
theory, as we assume that E is not empty. The second case occurs if at least
one of the five closure rules applied. Suppose by contradiction that rule CT or
C′

T is used to compute the contradictory Ê . The application of this rule leads to
a contradiction as E is satisfiable, whilst CT or C′

T are applied when there is a
contradiction in the theory. The same applies for rules CC and C′

C .
Suppose, ad absurdum, that CP leads to a contradictory Ê . The premises of

CP are obtained using rules L1, L′
1, L2, (→) and (→′). The first case for having

a contradiction captured by CP is when L1 is applied before D1 and D2. This
happens because a contradiction is found that in fact was solved by D1 and
D2, as E is satisfiable. The second case for having a contradiction captured by
CP is when L′

1 is applied before D′
1, D′′

1 , D′
2 and D′′

2 . This happens because a
contradiction is found that in fact was solved by D′

1, D′′
1 , D′

2 and D′′
2 , as E is

A Formal Approach to Analyzing Cyber-Forensics Evidence 299

satisfiable. The third case for having a contradiction captured by CP is when
(→) is applied before D1 and D2. This happens because the formulas that were
introduced produce the contradictions that in fact were solved by D1 and D2,
as E is satisfiable. The fourth case is similar to the third and occurs when (→′)
is applied before D′

1 and D′
2. The fifth case for having a contradiction captured

by CP is when Trans� is applied after D1 and D2. This happens because the
contradictions found could be solved by D1 and D2 if the Trans� rule was
applied before, as E is satisfiable. The sixth case for having a contradiction
captured by CP is when Trans ≺ is applied after D′

1, D′′
1 , D′

2 and D′′
2 . This

happens because the contradictions found could be solved by D′
1, D′′

1 , D′
2 and

D′′
2 if the Trans ≺ rule was applied before, as E is satisfiable. �

We are now able to prove that the rewriting procedure introduced in Sect. 4.2
establishes satisfiability as defined in Definition 5. We prove that the provided
specific order of application of the rewriting rules determines the existence of a
model. Given Theorem 1, we prove that the rewriting given by Algorithm1 is
exhausted. Theorem 2 follows by applying Lemmas 3 and 4.

Proof (Theorem 2). Based on the semantics introduced in Sect. 3 and given that
Algorithm 1 applies the rules in the order specified in Lemma 4, we show that
every theory that is unsatisfiable is rewritten by Algorithm1 in a closed one,
and consequently, every open theory resulting by the rewriting procedure, is
also exhausted. We prove this by induction on the theory construction.

The base cases occur for a relational formula, a simple evidence, or a derived
one. For lack of space, we omit the proofs as they follow quite straightforwardly
by the definitions of relational formula, simple evidence, derived evidence, and
the � and ≺ relations.

For the inductive step, we assume that E is formed by either n relational
formulas, or a blend of n formulas, and that we know that the claim is true for
n − 1 formulas, and we show that the claim then holds also for n formulas.

Assume that E is formed by n different relational formulas. The only rules
that can be applied are Trans� and Trans ≺, and the algorithm applies them.
If E is unsatisfiable, then Ê is empty as rule CT or rule C′

T capture any existing
contradictions between relational formulas. If E is satisfiable, then Ê is open and
exhausted as the algorithm has applied all possible rules.

Assume that E is formed by n different simple pieces of evidence. The algo-
rithm first tries to apply D1. If E is unsatisfiable and there are discordances,
then Ê is empty, because the algorithm applies CC . If there are no discordances
in E , then the algorithm translates all the rules into second layer formulas, by
applying rule L1. Since E is unsatisfiable, the algorithm applies the closing rule
CP to capture the discordances between second layer formulas, and Ê is empty.
If E is satisfiable, then the algorithm applies L1, and Ê is open and exhausted
as the algorithm has applied all possible rules.

Assume that E is formed of n different derived pieces of evidence. The algo-
rithm tries to apply the rules in the following order: L2, D1, L1, (→), D′

1, (→′),
D′′

1 and L′
1. If E is unsatisfiable, then the algorithm applies one of the closing

300 E. Karafili et al.

rules CC , C′
C and CP to capture the discordances between formulas of the differ-

ent layers, and Ê is empty. If E is satisfiable, then the algorithm yields a Ê that
is open and exhausted as it has applied all possible rules.

Assume that E is formed of n different formulas (pieces of evidence and rela-
tional formulas). The algorithm tries to apply all of its rules. If E is unsatisfiable,
then the algorithm applies one of the closing rules to capture the discordances
between formulas of the different layers, and Ê is empty. We know that our
algorithm is able to capture all the contradictions, because the algorithm first
applies all the rules that can surface all the possible contradictions and then it
applies the appropriate closing rule. If E is satisfiable, then the algorithm yields
a Ê that is open and exhausted as it has applied all possible rules. �

References

1. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement
logic. J. Appl. Logic 8(1), 62–81 (2010)

2. Alchourròn, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbolic Logic 50, 510–530
(1985)

3. Alechina, N., Jago, M., Logan, B.: Preference-based belief revision for rule-based
agents. Synthese 165(2), 159–177 (2008)

4. Augusto, J.C., Simari, G.R.: Temporal defeasible reasoning. Knowl. Inf. Syst. 3(3),
287–318 (2001)

5. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: A tableau method for pub-
lic announcement logics. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI),
vol. 4548, pp. 43–59. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73099-6 6

6. Balbiani, P., Guiraud, N., Herzig, A., Lorini, E.: Agents that speak: modelling
communicative plans and information sources in a logic of announcements. In:
AAMAS 2011, vol. 1–3. pp. 1207–1208 (2011)

7. Baltag, A., Smets, S.: Conditional doxastic models: a qualitative approach to
dynamic belief revision. Electr. Notes Theor. Comput. Sci. 165, 5–21 (2006)

8. Barber, K.S., Kim, J.: Belief revision process based on trust: agents evaluating
reputation of information sources. In: AGENTS 2000, pp. 73–82 (2000)

9. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-class. Logics 17(2),
129–155 (2007)

10. Dix, J., Hansson, S.O., Kern-Isberner, G., Simari, G.R.: Belief change and argu-
mentation in multi-agent scenarios. Ann. Math. Artif. Intell. 78(3), 177–179 (2016)

11. Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun,
M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76928-6 49

12. Hunter, A., Booth, R.: Trust-sensitive belief revision. In: IJCAI 2015, pp. 3062–
3068 (2015)

13. Lorini, E., Jiang, G., Perrussel, L.: Trust-based belief change. In: ECAI 2014 -
Including PAIS 2014, pp. 549–554 (2014)

14. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)

https://doi.org/10.1007/978-3-540-73099-6_6
https://doi.org/10.1007/978-3-540-73099-6_6
https://doi.org/10.1007/978-3-540-76928-6_49

A Formal Approach to Analyzing Cyber-Forensics Evidence 301

15. Shakarian, P., Simari, G.I., Moores, G., Parsons, S.: Cyber attribution: an
argumentation-based approach. In: Cyber Warfare - Building the Scientific Foun-
dation, pp. 151–171 (2015)

16. Shakarian, P., et al.: Belief revision in structured probabilistic argumentation -
model and application to cyber security. Ann. Math. Artif. Intell. 78(3–4), 259–
301 (2016)

17. Van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol.
337. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4

https://doi.org/10.1007/978-1-4020-5839-4

Malware and Vulnerabilities

Beneath the Bonnet: A Breakdown
of Diagnostic Security

Jan Van den Herrewegen(B) and Flavio D. Garcia

University of Birmingham, Birmingham, UK
{jxv572,f.garcia}@cs.bham.ac.uk

Abstract. An Electronic Control Unit (ECU) is an automotive com-
puter essential to the operation of a modern car. Diagnostic protocols
running on these ECUs are often too powerful, giving an adversary full
access to the ECU if they can bypass the diagnostic authentication mech-
anism. Firstly, we present three ciphers used in the diagnostic access
control, which we reverse engineered from the ECU firmware of four
major automotive manufacturers. Next, we identify practical security
vulnerabilities in all three ciphers, which use proprietary cryptographic
primitives and a small internal state. Subsequently, we propose a generic
method to remotely execute code on an ECU over CAN exclusively
through diagnostic functions, which we have tested on units of three
major automotive manufacturers. Once authenticated, an adversary with
access to the CAN network can download binary code to the RAM of
the microcontroller and execute it, giving them full access to the ECU
and its peripherals, including the ability to read/write firmware at will.
Finally, we conclude with recommendations to improve the diagnostic
security of ECUs.

1 Introduction

The functionality of a modern road vehicle is determined by a few dozen Elec-
tronic Control Units (ECUs). These ECUs are interconnected via one or several
Controller Area Network (CAN) [10] buses. Powerful diagnostic protocols are put
in place by the manufacturer to update or patch the vehicle in case of malfunc-
tion. The most prevalent diagnostic standards are Unified Diagnostic Services
(UDS) [11] and its predecessor, Keyword Protocol 2000 (KWP2000) [12], which
provide manufacturers and service technicians with advanced diagnostic features
such as upload and download functionality. The main diagnostic access control
mechanism is the so called ‘seed-key protocol’, a challenge-response protocol used
to authenticate diagnostic devices. Even more sophisticated diagnostic protocols
such as the Universal Measurement and Calibration Protocol (XCP) [1] enable
service technicians to fully fine-tune ECUs. The functionality provided by XCP
goes beyond that of traditional diagnostic protocols found in ECUs, which a
knowledgeable attacker could abuse to take control of an ECU over CAN.

This work was partly funded by EPSRC Fellowship EP/R008000/1.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 305–324, 2018.
https://doi.org/10.1007/978-3-319-99073-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_15&domain=pdf

306 J. Van den Herrewegen and F. D. Garcia

In many cars, diagnostic communication occurs on the CAN bus available on
the OBD-II [13] port, which every vehicle commissioned in the European Union
since 2004 [5] must be equipped with. However, the automotive network was
never designed with an adversary in mind: the CAN bus is an unencrypted and
unauthenticated network. Thus, ECUs cannot distinguish diagnostic messages
originating from a diagnostic client from messages sent by an adversary. Previous
research has indicated that individual ECUs connected to the internal network
of a modern car can be compromised [17,18]. This becomes even more worrying
when combined with a remote exploit, as demonstrated in [24]. After having
gained access to the Telematics Unit, Valasek and Miller managed to remotely
control crucial functionality of the car. With advanced features such as in-vehicle
connectivity becoming the norm in modern cars, the automotive industry needs
to shift towards better diagnostic security in ECUs.

Our Contribution. The contribution of this paper is three-fold:

– Through reverse-engineering the ECU firmware of three different manufactur-
ers, we recovered the ciphers used in the diagnostic authentication protocol,
which we present here in full detail.

– We propose a practical cryptanalysis of each of these ciphers, showing that
the diagnostic authentication protocols can be easily bypassed with neglibible
computational complexity.

– We propose a generic method to remotely execute code on an ECU by exploit-
ing UDS and XCP features, giving us read/write access to the internal mem-
ory of the ECU and its peripherals.

Related Work. With its transformation towards more complex vehicular sys-
tems, the automotive industry is no stranger to cryptographic attacks against
several security mechanisms it has put in place. Bogdanov first attacked the
KeeLoq block cipher, which is used in various automotive anti-theft mechanisms,
in [2], while further attacks on this cipher appear in [2,9,14]. Furthermore, an
immobiliser system is in place to prevent an attacker from starting the car with-
out a valid key fob. Ciphers used in the immobiliser system in various cars
include the DST40 cipher, Megamos Crypto and the Hitag2 cipher, attacked
respectively by Bono et al. in [3], Verdult et al. in [26,28] and in [27].

Several papers in the literature assess diagnostic security in ECUs, beginning
with the work of Koscher et al. [17], which experimentally tests the security and
capabilities of ECUs. The authors tamper with several safety-critical ECUs by
sending diagnostic messages, while they reprogram the telematics unit to act as
a bridge between the high-speed and low-speed CAN bus in the vehicle. The
reprogramming of the unit consists of downloading code to its RAM memory
and executing it. No access control mechanism was implemented on the studied
ECU’s.

Additionally, Miller and Valasek reverse engineered the complete reprogram-
ming procedure on two Ford ECUs by analysing a diagnostic tool [18]. The tool

Beneath the Bonnet: A Breakdown of Diagnostic Security 307

reprograms the units by downloading a piece of code to the RAM memory of
the microcontroller, which subsequently handles the reflashing of the unit. The
authors abuse this mechanism to execute their own code on the ECU. After
authenticating to the ECU, the authors use several diagnostic primitives to
download the code to the unit. Once certain prerequisites have been met, a
different diagnostic service makes the ECU jump to the downloaded code and
thus execute it. No access restrictions are in place on the microcontroller, giving
the code full access to peripherals such as the CAN bus.

Finally, Khan [15] raises several issues on security in the UDS protocol, the
access control mechanism in particular. The paper states multiple security flaws
in the security access service provided by UDS, more specifically on challenge
generation and the complexity of the employed cipher. Furthermore, Khan notes
that an attacker can recover the cipher and secret keys from the firmware.

Overview. The rest of this paper is organised as follows. Section 2 gives an
overview of the most prevalent diagnostic protocols we have encountered in
ECUs. In Sect. 3 we follow up with a description of the ciphers used in the diag-
nostic access control mechanism in several ECUs and propose ways to bypass
these. In Sect. 4 we propose a method to remotely execute code on an ECU
when having access to the CAN bus, of which we demonstrate the capabilities
in Sect. 5. We discuss our findings in Sect. 7, while we suggest countermeasures
and mitigations in Sect. 6. Finally, we conclude in Sect. 8.

2 Background

This section summarizes the most prevalent diagnostic protocol in ECUs, namely
the Unified Diagnostic Services. We have encountered its predecessor, the Key-
word Protocol 2000 in older ECUs, but since both protocols are very similar,
we will only outline the main features of UDS. Note that we use the concepts
tester and client interchangeably, both denoting the diagnostic device querying
the ECU. Moreover, we briefly introduce diagnostic communication channels and
summarize the main features of the XCP protocol.

2.1 Unified Diagnostic Services

The UDS standard defines several diagnostic sessions: in the default session an
ECU executes its normal function in the internal vehicular network. A diagnostic
client can change the active session with the DiagnosticSessionControl service
to either a programming session or an extended diagnostic session, however the
available functionality in these sessions is left up to the manufacturer’s discretion.

The main access control mechanism is a challenge-response (also known as
seed-key in automotive terminology) protocol specified by the SecurityAccess
service, as depicted in Fig. 1. In order to authenticate to the ECU, a diagnostic
client must send a challenge request to the ECU, which subsequently replies with
a randomly generated challenge (also called the seed in automotive terminology).

308 J. Van den Herrewegen and F. D. Garcia

Both the client and ECU calculate a response (also called the key in automotive
terminology) from this challenge according to a manufacturer-specific cipher,
based on a shared secret. The client is authenticated if it supplies the ECU
with a valid response. Multiple security levels are defined in UDS, which the
manufacturer is free to use for different levels of access. UDS only specifies the
challenge-response protocol, leaving the choice of the cipher up to the manufac-
turer.

A tester can use the RoutineControl service to execute preprogrammed func-
tions in the ECU, with each routine uniquely defined by a two byte identifier.
The client can pass arguments in a routine control call if needed. The standard
specifies some routines and their respective identifiers, such as the EraseMem-
ory routine with identifier 0xFF00, while the identifier range 0x200-0xC000 is
reserved for manufacturer specific use.

Finally, the RequestDownload service provides a diagnostic client with func-
tionality to download data to the ECU. Before sending the data with the Trans-
ferData service, the tester must specify an address where the data will be down-
loaded to along with the size of the data. The tester should invoke the Request-
TransferExit service on completion of the transfer.

Challenge Request (27 01)

Challenge (67 01)

Response (27 02)

Success (67 02)

authenticate()

Fig. 1. The challenge-response protocol specified by UDS

2.2 Diagnostic Communication Channels

Neither UDS nor KWP 2000 specify the exact nature of the diagnostic com-
munication channel (namely on which CAN ID each ECU listens for diagnostic
messages). This is manufacturer specific, although there are some similarities
across manufacturers. Since CAN frames with a lower identifier have priority
over those with a higher identifier on the bus, diagnostic CAN identifiers are
usually within the range 0x700-0x7FF. Additionally, there is generally a clear
relation between the CAN ID on which an ECU receives diagnostic messages,
and on which ID it replies (e.g. IDsend = IDrecv + 8).

Beneath the Bonnet: A Breakdown of Diagnostic Security 309

2.3 Universal Measurement and Calibration Protocol

Both XCP and its predecessor, the CAN Calibration Protocol (CCP) [16] are
standardized by the Association for Standardization of Automation and Mea-
suring Systems (ASAM). XCP is an application protocol which defines advanced
features such as arbitrary read/write access to variables in ECU memory, syn-
chronous data acquisition and flash programming of ECUs for development pur-
poses. A diagnostic tool, also called the master in XCP, can analyse the con-
nected ECUs, or slaves, through various XCP commands specified in the stan-
dard. The master has access to variables in memory by way of an ECU descrip-
tion file exclusive to each ECU, and can even download a reflashing kernel to
the RAM for reprogramming purposes. Automotive software companies such as
Vector Informatik support XCP solutions for ECUs of over 30 major automotive
manufacturers [25], alluding to the extensive use of the XCP standard in the
automotive industry.

3 Cryptanalysis of Diagnostic Protocols

In this section we analyse the ciphers used in the diagnostic challenge-response
protocol, which we extracted from ECUs of three different automotive manufac-
turers. We recovered and analysed the firmware of 13 ECUs in total, comprising
8 different car models. We focused our efforts on ECUs with a security criti-
cal function, such as the Instrument Cluster and Body Control Module (which
handle immobiliser functionality and store its secret keys), a Gateway (which
separates the critical high speed CAN bus from other low speed buses), and a
Telematics Unit (which provides connectivity to the outside world). Next, we
revisit the cipher first described by Valasek and Miller in [18] and present new
vulnerabilities, making it easy to circumvent in practise. Using the IDA Pro
disassembler we have recovered challenge-response ciphers from the firmware of
Ford, Volvo, Fiat and Audi ECUs. We present these ciphers and analyse their
security.

3.1 Obtaining and Analysing ECU Firmware Images

On all ECUs we have studied, the firmware was located in the internal flash
memory of the microcontroller. We managed to extract the firmware from these
embedded devices through a debug interface, such as a Joint Test Action Group
(JTAG) or a Background Debug Mode (BDM) interface, which is often exposed
on a group of test points on the Printed Circuit Board (PCB). Next, we load
the firmware into the IDA Pro disassembler on the correct memory address,
which is specified in the datasheet of the microcontroller. For microcontrollers
that incorporate a paging mechanism, such as the MC9S12XE (used on certain
Ford Instrument Clusters and Body Control Modules), we first need to separate
the firmware into chunks equal to the page size of the microcontroller. Once
loaded, we can locate the cipher used in the diagnostic authentication protocol

310 J. Van den Herrewegen and F. D. Garcia

by searching for functions that contain constants used in UDS, more specifically
frequently used diagnostic error codes and/or service identifiers. Since the man-
ufacturer often reuses ECUs running the same or at least a very similar firmware
version across different cars and models, we only need to go through this process
once for every ECU type.

Notation and Variables. To avoid any ambiguity, we will use the following
notation in this section. C denotes the random challenge generated by the ECU,
whereas R denotes the corresponding response. vi denotes bit i of a variable v,
with v0 being the least significant (rightmost) bit, whereas v[i] denotes byte i of
v, with v[0] being the most significant (leftmost) byte. v ≪ i refers to a rotation
of v by i bits to the left. Finally, (v, w) denotes a concatenation of bytes v and
w, with w the least significant byte.

3.2 Analysis of the Ford Challenge-Response Cipher

In this section we perform a cryptanalysis of the Ford cipher, which we have
located in the firmware of several Ford ECUs but also in some Volvo units
through our reverse engineering efforts. We introduce the cipher and demonstrate
how an attacker can break it by means of an attack over CAN. We have found
this cipher in the ECUs shown in Table 1.

Table 1. ECUs on which we examined and identified the Ford cipher

Make Year Model ECU

Ford 2010 Focus MK2 Body control module

Instrument Cluster

2012, 2014, 2016 Focus MK3 Body control module

Instrument cluster

2008 Fiesta MK6 Instrument cluster

2013, 2014, 2015, 2017 Fiesta MK7 Instrument cluster

Body control module

Volvo 2015 V50 Telematics unit

Cipher Details. Both the challenge and response are three bytes in Ford ECUs.
The cipher uses a slightly modified version of the Galois Linear-Feedback Shift
Register (Galois LFSR) with an internal state of 24 bits, which is initialised
with a constant (0xC541A9) stored in the firmware of the ECU. The output bit
of the LFSR is XORed with a bit from a 64-bit input register R consisting of a
40-bit secret S and the 24-bit challenge C. Figure 2 depicts the structure of the
modified Galois LFSR, while Definition 1 details the input bit of the cipher in
round i. The cipher runs for 64 rounds: in the first 24 rounds, the challenge is

Beneath the Bonnet: A Breakdown of Diagnostic Security 311

shifted into the internal state, after which the cipher absorbs the 40-bit secret
into its internal state. In each round, the XOR of the output bit of the LFSR and
the input bit of the register is fed back into the tapped bits. The final response
is derived from the 24-bit LFSR-state by permuting the nibbles of the state, as
shown in Definition 2.

Ri

Fig. 2. Structure of the Ford LFSR

Definition 1. Given challenge C and secret S, input bit Ri in round i is defined
as follows.

Ri =

{
C i, if i < 24
S 24−i, if 24 ≤ i < 64

Definition 2. Let the nibble representation of the internal state Y be
n0, . . . , n5 = Y [0], . . . , Y [2]. Then the permutation P1(n0, . . . , n5) : F24

2 → F
24
2

is defined as follows.

P1(n0, . . . , n5) =
(
n0 n1 n2 n3 n4 n5

n3 n4 n2 n0 n5 n1

)

Weaknesses. The internal state of the Galois-LFSR used in the Ford algorithm
contains merely 24 bits of entropy. What is even worse, we have observed the
same start state and tapping sequence across all ECUs we have studied. With
no added entropy from a varying start state or tapping sequence, only the 40-bit
secret is unknown to an attacker. Through empirical tests we discovered that
only the first 24 secret bits shifted into the internal state add entropy. In the
subsequent 16 rounds we can set the input bit to zero, making the cipher a
standard Galois-LFSR. One valid challenge-response pair enables an attacker to
retrieve 24 bits of the secret, and thus recover the structure of the cipher. The
attacker can obtain a valid challenge-response pair by making a diagnostic device
authenticate to the ECU, which Valasek and Miller demonstrated in [18]. The
cipher, however, can be broken even without knowledge of a challenge-response
pair.

Attack over CAN. We demonstrate how an attacker can recover the secret
used in the Ford cipher for a particular ECU without knowledge of any successful
authentication pairs. Access to the diagnostic interface of the ECU is the only
prerequisite for this attack.

Delay Mechanism. Unified Diagnostic Services specify an error code which indi-
cates a delay timer is active on the ECU in case of too many failed security access
attempts. The specifics of this mechanism are left up to the manufacturer. Many

312 J. Van den Herrewegen and F. D. Garcia

ECUs implement this delay functionality and disable the security access service
temporarily after a certain amount of failed attempts. An attacker can bypass
this by requesting a soft reset using the ECUReset diagnostic service, which
resets all timers and variables. Following a reset the attacker must request a new
diagnostic session before they can request a new challenge.

Recovering Diagnostic Secrets on Ford and Volvo ECUs. We conducted our
attack both on a 2012 Ford Body Control Module (BCM) and a 2015 Volvo
Telematics Unit. These particular units do not implement the delay mechanism
after a failed security access attempt. Once we request a diagnostic program-
ming session, the units remains in programming mode until no further diag-
nostic messages are detected for a certain period (∼5 s). Each security access
attempt requires four CAN messages: a challenge request and reply followed by
a response and a final message indicating whether the response was valid or not.
All CAN frames are 8 bytes for the Ford diagnostic packages, making a physical
CAN frame on the bus 135 bits in the worst case, with stuffing bits taken into
account [20]. On the BCM, the diagnostic interface is available on the high speed
CAN network, which runs at 500 kbit/s. One security access attempt takes four
CAN frames or maximum 540 bits, so with a bitrate of 500 kbit/s that makes for
a minimum of 1.08 ms per attempt, calculation time or other delays not taken
into account. Since we reduced the complexity from 240 of a brute-force attack
to only 224 attempts, this results in a search time of approximately 5 h in the
best case scenario. Due to all other delays, the attack we implemented took
approximately 15 h. We would like to emphasise that, since all ECUs use the
same secret, an attacker only needs to do this once.

3.3 Analysis of the Fiat Challenge-Response Cipher

Through reverse engineering the firmwares of both a current Fiat Body System
Interface (BSI) and its predecessor, used in cars before 2012, we have extracted
the following cipher used for the security access service. We present the cipher
used in the older Fiat BSI for security level 1 and discuss flaws in the design and
key generation process.

Cipher Details. Both the challenge and response are 32-bit in the Fiat imple-
mentation of the security access service. The cipher uses two 16-bit LFSRs, both
with the structure depicted in Fig. 3. Both LFSRs absorb one input bit in each
round, as detailed in Definition 4. The cipher runs for 24 rounds: in the first 8
rounds different constants (S[0] and S[2]) are shifted into each state, whereas in
the remaining 16 rounds the cipher absorbs one bit of the preprocessed challenge
bytes into the state. Finally, the 32-bit response is derived from the LFSRs by
combining the 16-bit internal states.

Definition 3. For a given byte b, the permutation P2(b) : F8
2 → F

8
2 is defined

as follows.

P2(b) =
(
b7 b6 b5 b4 b3 b2 b1 b0
b3 b0 b6 b1 b7 b4 b2 b5

)

Beneath the Bonnet: A Breakdown of Diagnostic Security 313

Ri,j

Fig. 3. Structure of the Fiat LFSR

Definition 4. With given challenge C and secret bytes S[0], . . . , S[3], input bit
Ri,j in round i for LFSR j is defined as follows.

Ri,0 = (C[0] ⊕ S[1], C[2] ≫ 5, S[0])i
Ri,1 = (C[3] ⊕ S[3], P2(C[1]), S[2])i

Analysis of the Cipher. There are several issues in the design and secret
generation of the cipher. The cipher uses two 16-bit LFSRs instead of one 32-
bit LFSR, which reduces the entropy added by the tapped bits and start state
significantly. An exhaustive search over the secret space would take 248 tries,
since an attacker must guess the 16-bit start state, the 16-bit tapping sequence
and the 8-bit constants S[0] . . . S[3]. However, Table 2 depicts the constants found
in the firmware of two different Fiat ECUs. Only the tapped bits, S[0] and S[2]
differ. The nibbles of S[0] and S[2] are reversed in the firmware of the ECUs. Only
the tapped bits in the LFSR are significantly different across the two different
ECUs, which reduces the time of an exhaustive search to only 216 = 65536
attempts.

We have implemented this attack on a Fiat Grande Punto BSI. The diag-
nostic interface of this unit is available on the high-speed CAN bus, which runs
at 500 kbit/s. The ECU enables a delay timer after receiving two unsuccesfull
security access attempts, which lasts 10 s. However, to circumvent this delay
it suffices to establish a default session and immediately thereafter request a
new programming session, which resets the timers on the ECU. Thus, every two
security access attempts require 12 CAN frames: a programming mode request
and response, four frames for obtaining and validating a challenge-response pair
(which we do twice) and finally a default mode request and response. This makes
for an average of 6 frames per attempt, which comes to a maximum of 810 bits
(including stuffing bits) on the CAN bus. For the reduced search space of 65536
attempts this results in a minimum search time of 106 s. The attack we imple-
mented took just over an hour, which is mostly due to the delay incurred when
changing from and to a programming session. An attacker only needs to perform
this attack once, since diagnostic secrets are shared across similar types of ECUs.

Table 2. Secrets found in the firmware of two different Fiat ECUs

ECU S[0] S[1] S[2] S[3] Taps Start state

Fiat BSI 2012+ 0x12 0xDC 0x34 0x7A 0x8408 0xFFFF

Fiat BSI 2012− 0x21 0xDC 0x43 0x7A 0x3423 0xFFFF

314 J. Van den Herrewegen and F. D. Garcia

3.4 Analysis of the Volkswagen Group Cipher

Through analysing firmwares of both Volkswagen and Audi ECUs, we reverse
engineered the ciphers used in a 2009 Audi Gateway Control Unit and a 2010 VW
Passat Instrument Cluster. The implementation of the cipher in these Volkswa-
gen Group (VAG) ECUs goes as follows. Each ECU contains the same algorithm
which interprets a sequence of bytes stored in the firmware as commands on the
internal state. The cipher uses the randomly generated challenge as the initial
internal state. Subsequently, the algorithm reads the sequence of bytes, which
are parsed as opcodes for the cipher. Each opcode denotes an operation on the
internal 32-bit state, with the five basic operations being: rotate the state to the
left/right, add/subtract a constant to/from the state and XOR the state with
a constant. Based on this information we present the cipher we extracted from
the Audi Gateway Control Unit and assess its security.

Code listing 1. Audi gateway challenge-response algorithm
1: function challenge-response(C) � With C - 32-bit challenge
2: S = C
3: for i in {0 . . . 10} do
4: S = S ≪ 1
5: feedback = S ∧ 1
6: if i ∈ {0, 2, 6, 7} then
7: if feedback == 1 then � For rounds 0, 2, 6 and 7
8: S = S ∧ (∼ 1) � Clear the feedback bit
9: S = S ⊕ 0x04C11DB7 � XOR the tapped bits

10: end if
11: else
12: if feedback == 1 then
13: S = S ⊕ 0x04C11DB7

14: else
15: S = S | 1 � Set the feedback bit
16: end if
17: end if
18: end for
19: return S
20: end function

Cipher Details. Code Listing 1 details the cipher, which runs for 10 rounds.
In each round, the cipher rotates the state to the left. The cipher is a stan-
dard Galois LFSR: if the feedback bit is set, a constant (the tapped bits, i.e.
0x04C11DB7 in the code below) is XORed into the state. Depending on the round,
the feedback bit is either set or cleared.

Weaknesses. Since the internal state of the cipher is equal to the generated
challenge, only the 32-bit tapping sequence adds entropy to the cipher. An

Beneath the Bonnet: A Breakdown of Diagnostic Security 315

attacker with access to one challenge-response pair can recover this 32-bit con-
stant by performing an exhaustive search over the 32-bit secret space. It should
be noted that the flexible nature of the structure of the cipher makes it more dif-
ficult for an attacker to recover the secrets in different ECUs. Indeed, in several
VW Instrument Clusters we found that the cipher runs for a different number
of rounds and XORs the state with multiple constants, making the cipher more
secure.

Additionally, we identified a supplementary security issue in the firmware of
this particular unit: if the diagnostic client provides an invalid response, the ECU
performs an extra check, which compares the response to a hardcoded value (i.e.
0xCAFFE012). The diagnostic tool is authenticated if it provides this value as
the response. Regardless of existing vulnerabilities in the cipher, a hardcoded
backdoor on the ECU introduces extra security implications.

4 Remote Code Execution over CAN

The ciphers we studied in Sect. 3 are in place to protect the ECU from unautho-
rised access. Once a diagnostic device is authenticated, the ECU unlocks priv-
iliged diagnostic functionality, part of which allows executing more advanced
diagnostic protocols like XCP. Despite its widespread use in the automotive
industry, we failed to locate the XCP protocol in the firmware of the ECUs we
studied. Instead, we found that the Original Equipment Manufacturer (OEM)
enables a download of the XCP stack to the RAM of an ECU through vari-
ous diagnostic services. Piggybacking on this required functionality for the XCP
protocol, we have identified a generic approach to execute arbitrary code on an
ECU over the CAN bus. Through our own reverse engineering efforts we have
encountered this mechanism in ECUs made by several manufacturers. Provided
that an attacker can bypass the access control mechanism of the diagnostic pro-
tocol as we showed in Sect. 3, the only prerequisite is that they can send and
receive messages on the CAN bus. An attacker with access to the OBD-II port
or who has compromised an ECU on the network, such as the Telematics Unit,
can abuse this functionality to control or reprogram additional ECUs.

The outline of this section is as follows. After specifying the general method
to execute code on an ECU, we show how an adversary with access to the CAN
bus can abuse this mechanism to gain read/write access to the firmware of ECUs
of several manufacturers. From now on we will refer to the piece of binary code
that is sent to the ECU as the secondary bootloader.

Downloading Sequence. Figure 4 shows the sequence of diagnostic messages
required to execute the secondary bootloader on an ECU. Firstly, the diagnostic
client must request a programming session. Until the client authenticates itself to
the ECU, any necessary functionality remains unavailable. Once authenticated,
the client can carry out certain checks and assertions about the ECU. These
usually include reading out the software version and part number of the module
as the secondary bootloader is dependent on the microcontroller. The client can

316 J. Van den Herrewegen and F. D. Garcia

transfer the secondary bootloader to the ECU through the download services
provided by the running diagnostic protocol. Finally, the client requests a routine
control either before or after the download (dependent on the manufacturer) in
order to redirect the program flow to the secondary bootloader, which now resides
in RAM.

Request programming session

programming session()
Challenge Request

Challenge Reply

calc response(challenge) calc response(challenge)

Send Response

Authenticated

Request Download

Transfer Data

. . .

Request Transfer Exit

Routine Control

exec bootloader()

Fig. 4. Execution of the secondary bootloader

Memory Limitations. The ECU only provides a small area in RAM for the
secondary bootloader, which usually suffices if the downloaded code performs a
simple task (such as updating a variable in memory). Otherwise, the bootloader
can download additional code into the RAM of the unit over the CAN bus.

4.1 Use Case: Changing the Odometer on a Ford Instrument
Cluster

We have managed to change the odometer value on a 2016 Ford Focus Instru-
ment Cluster (IC) through the secondary bootloader. The download of the sec-
ondary bootloader goes as follows for all Ford and Volvo ECUs we have anal-
ysed. With the ECU in a programming session and our device authenticated, we

Beneath the Bonnet: A Breakdown of Diagnostic Security 317

send a requestDownload message. The request has two arguments: the download
address, which is located in RAM, and the size of the bootloader. If the micro-
controller uses a paging mechanism, the address consists either of a page number
and address within the page, or a physical address. Subsequently, we can transfer
the secondary bootloader using the transferData service, after which the ECU
expects a requestTransferExit message. Finally, to execute the downloaded code,
we must send a routineControl message. Arguments to this message are the rou-
tine identifier, which is 0x301, and the exact address where the microcontroller
should jump to. The mileage on this Instrument Cluster is stored on an exter-
nal Electrically Erasable Programmable Read-Only Memory (EEPROM) chip,
namely the M95320 manufactured by ST Microelectronics. The main microcon-
troller, a Renesas µPD70F3425, is connected to the EEPROM chip through a
Serial Peripheral Interface (SPI). Once we identified the pins used for the serial
communication with the EEPROM chip, we managed to arbitrarily reduce the
mileage by writing the desired value to the memory locations where the mileage
is stored. Multiple ECUs store the mileage in a modern car, meaning that an
attacker must repeat this process for all relevant ECUs if he wishes to success-
fully tamper with the mileage in a car.

It should be noted that Valasek and Miller first documented this bootloader
mechanism to reprogram a Ford Smart Junction Box in [18]. There are several
differences to the sequence denoted above compared to what Valasek and Miller
describe. Firstly, the address the authors specify in the download request to the
ECU is zero, which makes the ECU download the code to a predefined address
in RAM. Subsequently, the authors call a routine control with identifier 0x304,
making the ECU jump to the same predefined address as the download. Finally,
the code is only executed if the first four bytes of the secondary bootloader are
equal to a value stored in the firmware of the ECU. We have only encountered
this ‘security’ feature in one of the Ford ECUs we analysed.

4.2 Use Case: Reprogramming a Fiat Body System Interface

We have analysed the reprogramming process for both a current Delphi Fiat
Body System Interface (BSI) and its predecessor, which are deployed in a range
of Fiat vehicles. Execution of the secondary bootloader goes as follows for both
Fiat BSIs. The ECU must be in a programming session and ‘unlocked’ for secu-
rity level 1, following the steps from Sect. 3. In order to execute the downloaded
code after the download, we must first write the identifiers with ID’s 0xF184
and 0xF185 through the writeDataByIdentifier service. This sets a flag in mem-
ory necessary for the following routine control to complete successfully. Next,
we must execute the eraseMemory routine control with arguments the identifier
(0xFF00), the start address and end address of the memory area in RAM to
which we will download the code. In order to make the microcontroller jump
to the code, it is crucial that this range is equal to the size of the downloaded
data. Otherwise, the download will terminate normally but will not result in a
jump to RAM. If all prerequisites described above are met, the microcontroller
will jump to a predefined address in RAM after the last TransferData request.

318 J. Van den Herrewegen and F. D. Garcia

This address is set in the firmware and is dependent on the memory layout of
the microcontroller as the bootloader always resides in RAM. Hence, in order
to redirect the program flow to our code, this predefined address must be con-
tained within the download range of the bootloader. Trace 1 shows the required
diagnostic messages to execute the bootloader.

While the microcontroller runs on a 32-bit architecture, both addresses
required as arguments in the routine control preceding the download are only 3
bytes long. The ECU translates these by prepending them with 0xFF, resulting
in an address located in RAM. Before the ECU executes the downloaded code, it
activates the watchdog timer in reset mode, which generates an unmaskable reset
interrupt when the timer overflows, making the microcontroller reboot. The sec-
ondary bootloader can circumvent this mechanism by resetting the timer before
an overflow occurs, implying that the unit will only resume its normal function-
ality once the bootloader performs a manual reset, for instance by jumping to
the reset vector.

Trace 1. Executing the secondary bootloader on a Fiat BSI
0x18da40f1 2 10 2 Programming s e s s i o n
0x18daf140 6 50 2 0 32 1 f4 0
0x18da40f1 2 27 1 Secur i ty a c c e s s
0 x18daf140 6 67 1 81 6e e7 f8 0
0x18da40f1 6 27 2 ac eb 3e 3e
0x18daf140 2 67 2 78 0 0 0 0
0x18da40f1 10 10 2e f1 85 1 a8 bc Write data by ID
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 ad c f c f ce ce c9 ca
0x18da40f1 22 13 6 21
0x18daf140 3 6e f1 85 f f f f f f f f
0 x18da40f1 10 10 2e f1 84 1 a8 bc Write data by ID
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 ad c f c f ce ce c9 ca
0x18da40f1 22 13 6 21
0x18daf140 3 6e f1 84 f f f f f f f f
0 x18da40f1 10 a 31 1 f f 0 f f ca Routine con t r o l
0 x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 a0 f f c f 9 f
0 x18daf140 4 71 1 f f 0 0 0 0
0x18da40f1 10 b 34 0 44 0 f f ca Request download
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 a0 0 0 5 0
0x18daf140 4 74 20 4 2 f f f f f f
0 x18da40f1 10 22 36 1 e0 7 60 1 Trans fe r Data

. . .

5 Building a Firmware Modification and Extraction
Framework

We demonstrate the capabilities of the secondary bootloader by developing a
firmware modification and extraction framework. Using the procedure detailed
in Sect. 4, we can execute arbitrary code on any ECU that implements this mech-
anism. The code downloaded to the ECU is binary machine code, so at the very
least we must know the architecture of the ECU. Many microcontrollers used
in ECUs are automotive-grade microcontrollers and thus incorporate at least

Beneath the Bonnet: A Breakdown of Diagnostic Security 319

Table 3. ECUs on which we implemented the firmware extraction framework

Make Year Model ECU Microcontroller Architecture

Ford 2012 Focus MK3 Body control module MC9S12XEP768 HCS12X

2012, 2014,
2016

Focus MK3 Instrument cluster µPD70F3425 V850E

2008 Fiesta MK6 Instrument cluster MC9S12HZ256 HCS12

2013, 2014,

2015, 2017

Fiesta MK7 Instrument cluster MC9S12XEQ384 HCS12X

Volvo 2015 V50 Telematics unit SH7267 SH2Aa

Fiat >2012 500 Body system interface µPD70F3379 V850E1

<2012 Grande Punto Body system interface µPD70F3237 V850E1
a We failed to extract the firmware from this unit because we did not have access to

a CAN driver

one on-chip CAN interface. This framework aims to transmit the firmware over
CAN so the code must contain a minimal microcontroller-specific CAN driver
with transmitting capabilities. Table 3 lists the ECUs on which we implemented
this framework, along with the incorporated microcontroller and the architec-
ture on which it runs. We built a cross toolchain from the GNU GCC source to
compile our code for each architecture we encountered.

Downloading and Executing the Code. The ECU only accepts downloads
to a specific area in RAM which varies in different ECUs. Additionally, some
units only accept a RequestDownload message with a 4 byte address and a 4
byte size, while others are more flexible. UDS provides a set of common nega-
tive response codes. If the ECU receives a request with the incorrect format, it
replies with a negative response with code 0x13, which means incorrect message
length or invalid format. Contrarily, if the format of the request is correct but
the address or size is not within the correct range, the unit responds with error
code 0x31, indicating request out of range. The ECU does not limit the amount
of unsuccessful download requests, so we can find this address by covering the
complete address space of the microcontroller. Provided that we know the mem-
ory layout of the microcontroller, we can limit the range significantly since the
address is located in RAM. To further reduce the range, we can increment the
address by 0x10 each time while the size remains constant. With a common ECU
RAM size of 128 KiB, that makes for a maximum of 8192 attempts.

We can transmit the firmware of an ECU over CAN by dereferencing a pointer
and transmitting it until all valid addresses are covered. It suffices to jump to the
reset vector to resume normal operation of the ECU. Additionally, we can modify
certain crucial parts of the firmware from within the secondary bootloader.

Gaining Access to All Diagnostic Security Levels. In order to be able
to authenticate to the ECU on all security levels, an attacker must only recover
one secret, namely the secret required for downloading the secondary bootloader

320 J. Van den Herrewegen and F. D. Garcia

to the ECU. In the ECUs we have analysed this was always security level 1 in
programming mode. The bootloader can extract the firmware, which includes the
cipher secrets for additional levels of security. This renders the multiple levels of
security defined in diagnostic standards obsolete, provided that an attacker can
locate the secrets in the firmware of the ECU.

6 Mitigation

The only security measure preventing an attacker from downloading code to
the unit is the security access service. It is therefore crucial that the chal-
lenge-response protocol implemented by the manufacturer is cryptographically
sound. Khan [15] proposes the use of the Advanced Encryption Standard for
the challenge-response protocol. Given the keys are diversified per car and ECU
this would enhance the seed-key security significantly. However, since AES is
a symmetric key encryption scheme, the encryption key must be stored in the
firmware of the ECU. Unless special hardware is used to protect against reading
this encryption key, an attacker can recover the secret key and use it on other
ECUs which employ the same key.

A public-key based approach would mitigate the key diversification issues and
does not require additional hardware. When a diagnostic client is connected, no
time constraints are in place since the car is meant to be stationary during diag-
nostic maintenance. To mitigate the risk of replay attacks, the challenge is 128
bits long. The diagnostic client generates the response by signing the received
challenge with its private key. The ECU verifies the response under the public
key, which can be stored in the firmware of the unit. With the computational
limitations of ECUs in mind, often running on a 32-bit or even 16-bit architec-
ture, the Elliptic Curve Digital Signature Algorithm (ECDSA) with curve NIST
P-256 [21] would be a suitable candidate [8], resulting in a response length of
512 bits.

Moreover, to mitigate the risk of unauthorised code execution on the ECU,
the manufacturer can take a similar public-key based approach. If the ECU only
accepts downloaded code signed with authorised private keys, no attacker can
execute code through this mechanism without knowledge of a valid private key.
An attacker with access to the firmware could overwrite the public key with their
own public key, which allows them to download code to the unit signed with the
attacker’s private key. However, we argue that an attacker with the possibility to
overwrite the public key can equally overwrite any code in the ECU, making the
bootloader mechanism obsolete. Even with access to the firmware, an attacker
can’t recover any private keys necessary to execute code on other similar ECUs.

Finally, more secure CAN communication would mitigate the risk of an
attacker controlling the complete network from a previously compromised node.
Radu et al. proposed LeiA [22], a light-weight authentication protocol for ECUs
connected to the CAN bus. In order to transmit on a certain CAN ID, a node
must have the authentication key corresponding to that identifier. A node trans-
mits a Message Authentication Code (MAC) along with each message. Receiving

Beneath the Bonnet: A Breakdown of Diagnostic Security 321

nodes can check the validity of the sender simply by computing the same MAC.
In this scenario, a node would be secure against attacks from the internal network
if no other node has the authentication key for its diagnostic CAN ID.

7 Discussion

Security of Diagnostic Authentication Mechanisms. All the ciphers stud-
ied in Sect. 3 use some form of proprietary cryptography, with an insufficient
challenge and response size of 24 or 32 bits, and an equally small internal state
of the cipher. We have shown that if an attacker can obtain a challenge-response
pair they can then often recover secret keys of the cipher. No time constraints
exist when the ECU is connected to a testbench, as described in [19], making a
successfull attack over CAN possible.

Efficiently generating and diversifying cryptographic keys for each individ-
ual car and ECU remains a difficult issue to solve for manufacturers, as shown
in previous research [7,28]. Valasek and Miller raised the issue of diagnostic
key diversification when extracting a set of secrets from a diagnostic device.
They (re)used these secrets to authenticate to two ECUs under test. We have
encountered similar issues for diagnostic secrets. From our experiments, diagnos-
tic secrets are not diversified for ECUs in each car. An attacker who can recover
the secrets for one ECU often has access to other ECUs of the same type or
function, since manufacturers reuse these across different models.

Implications. There are several implications of the insecurity of the bootloader
mechanism. Firstly, by dumping the firmware of security sensitive ECUs (such as
the Passive Keyless Entry or immobilizer), an attacker can recover cryptographic
keys necessary to unlock or start the vehicle. An attentive reader might say
that an attacker with access to the internal network does not need to recover
cryptographic keys. However, Checkoway et al. present an analysis of remote
attack services in [4]. More remote vulnerabilities are covered in the literature [6,
23,24]. These are often generic to the model or even make of the car, implicating
that if an attacker gains access to a car through one of these generic remote
channels, they could read out cryptographic keys specific to that car.

Additionally, an attacker with access to the CAN bus through the OBD-
II port, a compromised ECU or maybe by simply pulling a camera or parking
sensor can reprogram or even disable connected ECUs. They can escalate an
existing vulnerability to take control over ECUs on the same CAN bus as the
compromised node, potentially magnifying the impact of a remote exploit. This
would make the notion of an automotive worm possible.

Responsible Disclosure. Following standard responsible disclosure practise,
we have informed the relevant car manufacturers of the vulnerabilities described
in this paper in April 2018, five months ahead of publication. It should be noted
that, even though the production of an ECU is outsourced to a third party (a
Tier 2 or 3 supplier), the OEMs specify the required diagnostic functionality in
their ECUs.

322 J. Van den Herrewegen and F. D. Garcia

8 Conclusion

In this paper we expose several vulnerabilities in diagnostic security. Firstly, we
demonstrate how an attacker can bypass the challenge-response security used in
diagnostic protocols. All the studied ciphers use some sort of proprietary cryp-
tography, namely a slighlty adapted version of the Galois-LFSR. 32- or 24-bit
challenges and responses and an equally small internal state further add to the
insecurity of the ciphers. We demonstrate this by conducting an attack over CAN
and recovering secrets through a limited amount of challenge-response pairs. Fur-
thermore, we document the secondary bootloader, a piece of machine code which
a CAN node can download to the RAM of a connected ECU through various
diagnostic functions. An attacker can abuse this mechanism to recover crypto-
graphic keys, adjust variables in memory or simply disable the ECU. Utilising
the functionality implemented for this secondary bootloader, we build a generic
firmware modification and extraction framework. To conclude, the challenge-
response protocol is the main (and often only) access control mechanism on
the ECUs we have studied. The proprietary ciphers used in this protocol are
substandard, making it possible for an attacker to bypass these and control all
peripherals of the microcontroller through the secondary bootloader, which they
can download to RAM. Well deployed public-key cryptographic primitives would
mitigate both of these issues.

References

1. The Universal Measurement and Calibration Protocol Family. Standard, Associa-
tion of Standardisation and Automation and Measuring Systems (2016)

2. Bogdanov, A.: Linear slide attacks on the KeeLoq block cipher. In: Pei, D., Yung,
M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 66–80. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79499-8 7

3. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M.: Secu-
rity analysis of a cryptographically-enabled RFID device. In: Proceedings of the
14th USENIX Security Symposium (USENIX Security 2005), pp. 1–16. USENIX
Association (2005)

4. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: 20th USENIX Security Symposium (USENIX Security 2011). USENIX
Association (2011)

5. European Directive: 98/69/EC of the European Parliament and of the Council of
13 October 1998 relating to measures to be taken against air pollution by emissions
from motor vehicles and amending Council Directive 70/220/EEC. Official J. Eur.
Communities L 350(28), 12 (1998)

6. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story
of telematic failures. In: Proceedings of the 9th USENIX Conference on Offensive
Technologies, WOOT 2015 (2015)

7. Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock it and still lose it-on
the (in) security of automotive remote keyless entry systems. In: 25th USENIX
Security Symposium (USENIX Security 2016), pp. 929–944. USENIX Association
(2016)

https://doi.org/10.1007/978-3-540-79499-8_7

Beneath the Bonnet: A Breakdown of Diagnostic Security 323

8. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28632-5 9

9. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 1

10. Road vehicles - controller area network (CAN) - part 1: data link layer and physical
signalling. Standard, International Organization for Standardization, Geneva, CH
(2015)

11. Road vehicles unified diagnostic services (UDS) specification and requirements.
Standard, International Organization for Standardization, Geneva, CH (2006)

12. Road vehicles diagnostic systems keyword protocol 2000 part 3: application layer.
Standard, International Organization for Standardization, Geneva, CH (1999)

13. Diagnostic Connector Equivalent to ISO/DIS 15031–3. Standard, SAE, Interna-
tional (2012)

14. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking KeeLoq in a flash: on
extracting keys at lightning speed. In: Preneel, B. (ed.) AFRICACRYPT 2009.
LNCS, vol. 5580, pp. 403–420. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02384-2 25

15. Khan, J.: ADvanced Encryption STAndard (ADESTA) for diagnostics over CAN.
SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 8(2), 296–305 (2015)

16. Kleinknecht, H.: Can calibration protocol version 2.1. Germany: ASAM eV, pp.
2–18 (1999)

17. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462. Institute of
Electrical and Electronics Engineers (2010)

18. Miller, C., Valasek, C.: Adventures in automotive networks and control units. Def.
Con. 21, 260–264 (2013)

19. Miller, C., Valasek, C.: Car hacking: for poories. Technical report, IOActive Report
(2015)

20. Nolte, T., Hansson, H., Norström, C., Punnekkat, S.: Using bit-stuffing distribu-
tions in can analysis. In: IEEE Real-Time Embedded Systems Workshop at the
Real-Time Systems Symposium (2001)

21. Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (2013)

22. Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authenticatiton protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 15

23. Rouf, I., et al.: Security and privacy vulnerabilities of in-car wireless networks: a
tire pressure monitoring system case study. In: 19th USENIX Security Symposium
(USENIX Security 2010). USENIX Association (2010)

24. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle.
Technical report, Illmatics (2015)

25. Vector Informatik: Product Catalog 5 (2010)
26. Verdult, R., Garcia, F.D.: Cryptanalysis of the megamos crypto automotive immo-

bilizer. USENIX; login, pp. 17–22 (2015)

https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-78967-3_1
https://doi.org/10.1007/978-3-642-02384-2_25
https://doi.org/10.1007/978-3-642-02384-2_25
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-45741-3_15

324 J. Van den Herrewegen and F. D. Garcia

27. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 s: hijacking with Hitag2. In: 21st
USENIX Security Symposium (USENIX Security 2012), pp. 237–252. USENIX
Association (2012)

28. Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lock-
picking a vehicle immobilizer. In: 22nd USENIX Security Symposium (USENIX
Security 2013), pp. 703–718. USENIX Association (2013)

Extending Automated Protocol State
Learning for the 802.11 4-Way Handshake

Chris McMahon Stone1(B), Tom Chothia1, and Joeri de Ruiter2

1 School of Computer Science, University of Birmingham, Birmingham, UK
c.mcmahon-stone@cs.bham.ac.uk

2 Radboud University, Nijmegen, The Netherlands

Abstract. We show how state machine learning can be extended to
handle time out behaviour and unreliable communication mediums. This
enables us to carry out the first fully automated analysis of 802.11 4-Way
Handshake implementations. We develop a tool that uses our learning
method and apply this to 7 widely used Wi-Fi routers, finding 3 new
security critical vulnerabilities: two distinct downgrade attacks and one
router that can be made to leak some encrypted data to an attacker
before authentication.

1 Introduction

Automated, systematic analysis of protocol implementations has proven to be
an effective tool for security analysis, approaches taken include fuzz testing [1,2],
model-based testing [3,4] and protocol state fuzzing (also known as state machine
inference) [5–7]. The latter of these methods works by learning the state machine
implemented by a particular device or application, in a black-box fashion, by
sending different sequences of messages and observing the corresponding out-
puts. Analysis of these state machines can then be carried out to spot any
unexpected logic flow. Such discoveries could be benign divergences from the
protocol specification, or result in security vulnerabilities.

In this paper we utilise state machine inference in order to carry out a black-
box analysis of implementations of the IEEE 802.11 4-Way Handshake proto-
col. This widely used protocol is the means by which authentication and ses-
sion key establishment is carried out on IEEE 802.11 (WPA or WPA2 certified
Wi-Fi) networks. In contrast to the manual, model-based testing of the 4-Way
Handshake by Vanhoef et al. [4], our method has the advantage of being fully
automatic. Manual analysis is a long and arduous task, and requires extensive
knowledge of the protocol specification to decide whether every possible test case
should fail or pass. Automated learning only requires the tester to specify a set
of the possible input messages, i.e., the generation of tests is fully automatic and
complete. Furthermore, state machine learning automatically adapts future and
successive test cases according to the results of previous ones. For example, if
one particular message sequence discovers some erroneous state or unexpected
output, it does not stop testing there. The algorithm will continue to explore the
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 325–345, 2018.
https://doi.org/10.1007/978-3-319-99073-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_16&domain=pdf

326 C. McMahon Stone et al.

state space beyond this and therefore cover more ground than is possible with
model-based testing.

A naive application of learning to the 4-Way Handshake protocol would fail to
handle the implementations time-based behaviour, e.g., message retransmissions
and timeouts, though, in general, time-based behaviour can be entirely arbitrary.
In protocol settings, past studies have needed to artificially suppress time-based
behaviour, as formal time learning algorithms are non-practical due to their
high complexity (see for example [8]). This has been done in various ways, for
instance, ignoring re-transmissions and manually setting timeouts for responses
to ensure time behaviour is not triggered [6,9], or mapping multiple outputs
within manually specified times to single state transitions [7,10]. The former
technique disables time learning altogether. In the latter, timeouts are manually
identified and multiple responses are merged into one, reducing the state space
but potentially missing important behaviour.

The quality of the transmission medium and query interfaces can also effect
the ability to learn a system. Sometimes a response might be missed and incor-
rectly marked as a timeout, or a query is not processed by the target and a
retransmission occurs, effectively making the system non-deterministic. This
poses an issue for naive model-based learning, which requires that the system
under test is completely deterministic.

In this paper we propose practical methods to efficiently learn protocol time
behaviour and overcome non-determinism. To learn time behaviour we reduce
the complexity by making reasonable assumptions about the operation of net-
work protocols. We separate time learning into a secondary learning step. This
enables us to first learn non-time based behaviour, without incurring the costly
time-complexity that timeouts induce. Throughout this process, we run an error
correction method that handles query-response inconsistencies, thereby ensur-
ing learning termination. We implement these methods and use our tool to learn
models of the 4-Way Handshake on 7 access points, without which would not
have been possible. Our results include the discovery of three vulnerabilities:
two distinct downgrade attacks and leakage of multicast data. To summarise,
our contributions are as follows:

– We adapt standard Mealy machine inference to learn common time based
behaviour in protocols. This is done efficiently and without the need for com-
plex timed automata modelling.

– We provide a practical method to overcome occasional non-deterministic
behaviour in protocols.

– We implement our solution and carry out protocol state fuzzing of a range of
4-Way Handshake implementations.

Our tool, along with model diagrams and other information related to this
work will be made available online1.

1 https://chrismcmstone.github.io/wifi-learner/.

https://chrismcmstone.github.io/wifi-learner/

Protocol State Learning of the 802.11 4-Way Handshake 327

2 Related Work

State Machine Learning methods, particularly those based on LearnLib
library [11,12], have been successfully applied to demystify legacy software [13]
and combined with fuzzing for software deobfuscation [14]. The technique has
also been used in security related use cases, such as TLS [7], SSH implementa-
tions [6], the biometric passport [15] and bank cards [5].

Not in a security setting, but still relevant due to their handling of timing and
retransmissions, Fiterău-Broştean et al. [9] carry out a combined model learning
and model checking of TCP implementations. Due to the lack of expressivity of
Mealy machines, they eliminated the timing based behaviour and retransmis-
sions. To achieve this, they make sure the learning queries were short enough to
not trigger any timed behaviour and ensured that the network adapter ignored
all retransmissions. Similarly, in a study involving the application of active learn-
ing to IoT communication, Tappler et al. [10] deal with timeouts by adopting
the technique used by [7], whereby a manually learned single timeout is set for
the receipt of all messages to all queries. All messages received within that time
are then mapped to an abstract output symbol. The problem with this approach
is that it does not allow queries that are interleaved between consecutive mes-
sage responses. It also assumes the timeouts are the same for all queries. Our
approach on the other hand only requires an upper-bound timeouts and learns
time related states such that querying is permitted providing the responses are
non-retransmissions. Jonsson et al. [16] have presented some preliminary work
on the theoretical side of learning Mealy machines with timers however this work
has not yet lead to a practical implementation.

IEEE 802.11, also commonly referred to as Wi-Fi, has been the subject of
a wide array of past research. The original Wi-Fi security mechanism, WEP,
is broken [17,18]. WEP was replaced by TKIP (based on the RC4 cipher) and
then CCMP (based on AES). While TKIP is insecure it is still supported by
most WPA2 access points (APs). The 4-Way Handshake, which is deployed to
authenticate clients and negotiate session keys, has undergone extensive for-
mal analysis [19–22]. Denial of Service vulnerabilities were discovered [19,20],
and fixes [21] integrated into the 802.11i specification. The design of the 4-Way
Handshake was analysed by Vanhoef et al. [23], who focused on the transmission
of the group-key, for which a downgrade attack was discovered that forces the
group key to be encrypted using the vulnerable RC4 cipher.

The security of Wi-Fi implementations has also been the subject of many
studies [2,24]. Vanhoef et al. apply manual, model-based testing techniques [4],
which resulted in the discovery of different DoS and downgrade attacks. More
recently, Vanhoef et al. discovered a series of vulnerabilities in how retrans-
missions of key exchange messages are handled, which lead to the reuse of
keystreams [25].

328 C. McMahon Stone et al.

3 Background

3.1 The 802.11 4-Way Handshake

The full 802.11 4-Way Handshake consists of a network discovery and a 802.11
authentication and association stage:

Network Discovery. This stage consists of the stations (clients) searching for
available networks and their capabilities. This is done passively, by observing
broadcasted Beacons, or actively, by sending and receiving probes. The stations
learn which cipher suites are supported (TKIP and/or CCMP) and which version
of WPA (1 or 2). Both the cipher suites and WPA version are encapsulated in
the Robust Security Network Element (RSNE).

Authentication and Association. Before the 4-Way Handshake, the client
must “authenticate” and associate with the AP. Here “authentication” is simply
an exchange of messages that any client can carry out. The real authentication
takes place in the 4-Way Handshake. In the association stage, the client chooses
an RSNE and the AP will subsequently accept or reject the connection based
on that choice. If accepted, the 4-Way Handshake will then begin.

The 4-Way Handshake provides mutual authentication for a client and
authenticator (usually an access point) based on a pre-shared key (PSK). The
PSK is used in combination with two nonces, a client nonce (SNonce) and
authenticator nonce (ANonce), as well as the MAC addresses of both parties, to
generate a session key: the Pairwise Transient Key (PTK).

The 4-Way Handshake, as shown in Fig. 1, is initiated by the AP, who com-
municates its nonce to the client. The client then generates its own nonce, and
sends it to the AP in Message 2, along with a Message Integrity Code (MIC) that
is calculated over the whole frame using the PTK. The AP can then verify the
client has derived the correct PTK by generating the PTK itself, and checking

Client Access Point

802.11 Authentication + Association(Chosen RSNE)

EAPOL-Key1 (Anonce)

EAPOL-Key3(Anonce, MIC, Enc{GTK + RSNE})

EAPOL-Key4 (MIC)

Beacon/Probing (Supported RSNEs)

EAPOL-Key2 (SNonce, MIC, Chosen RSNE)

Encrypted Data

Generate PTK

Generate PTK

Fig. 1. The 4-Way Handshake.

Protocol State Learning of the 802.11 4-Way Handshake 329

that the MIC is valid. It can also detect a downgrade attack by verifying that
the RSNE matches that in the earlier Association stage. If all is well, the AP
responds with Message 3, which contains the encrypted Group Key and RSNE.
The client can then verify the RSNE is consistent with previous messages, if so
acknowledge with Message 4 and if not, abort the connection.

Messages are encapsulated within EAPOL-Key frames. These include nonces,
version numbers, MICs, replay counters and so on. In our state machine learning
of the 4-Way Handshake we only consider the most crucial of these (with respect
to security). Our chosen fields are specified in Sect. 4.5. The reader can find
complete information on EAPOL-Key frame structure and contents by referring
to the 802.11 specification [26].

3.2 State Machine Learning

We use Mealy machines to formalise the state machines that are implemented
for the 4-Way Handshake.

Definition 1. A Mealy machine is a tuple (I,O,Q, q0, δ, λ), where I and O are
the sets of input and output symbols (also known as input and output alphabet
respectively), Q is the non-empty set of states, q0 ∈ Q is the initial state, δ is a
transition function Q × I → Q, and λ is an output function Q × I → O.

When a Mealy machine is in a state q ∈ Q and receives as input i ∈ I, it
transitions to the state δ(q, i) and produces an output λ(q, i).

In the context of learning protocol implementations, we consider Mealy
machines that are complete and deterministic. This means that for each state
q ∈ Q, and input i ∈ I, there is exactly one mapping specified by δ and λ.

A classical procedure for learning a state machine is using the L* algorithm by
Angluin [27]. This approach was adapted by Niese to learn Mealy machines [28]
and later optimized by Shabaz et al. [29]. The approach consists of two com-
ponents: An oracle (or teacher), that acts as an interface to the executing SUL
(System Under Learning), and a learner, that is only aware of the input and
output symbol sets I and O, and can additionally request the oracle to reset the
SUL to the start state q0.

The algorithm works by sending output queries that are strings from I+. The
oracle responds with the corresponding output strings from the machine. Each
output query is preceded by a reset query. Using the responses the learner builds
up a hypothesis of the state machine as implemented in the SUL.

The next stage of the algorithm is to send an equivalence query to the oracle.
In this stage, the hypothesis is checked against the actual state machine. If the
oracle states that the hypothesis is correct, the algorithm terminates. Otherwise,
the oracle will respond with the contradicting output string, i.e. a counterexam-
ple. In the latter case, the learner refines its hypothesis with the counterexample
and continues the learning process until it has a new acceptable hypothesis.
Note that as this is black-box testing, i.e. the oracle cannot access the internal
implementation of the SUL, and only a finite number of test cases can be per-
formed, the equivalence checking can only be approximated. The consequence

330 C. McMahon Stone et al.

of this is that in some cases it may only be possible to learn a subset of the
SUL’s behaviour. The most popular learning algorithms are implemented in the
LearnLib [30] library, which we use in the development of our tool.

4 Adapting State Machine Learning for Wi-Fi

4.1 Learning Protocols with Errors

A requirement of existing state machine learning methods is that the SUL
behaves in a totally deterministic manner, i.e., the same message sent to the
device always leads to the same reply. While protocols such as the 4-Way Hand-
shake are specified as deterministic, in practice, the unreliable medium will occa-
sionally lead to lost and corrupting packets and so not meet this requirement.
Therefore, to be able to learn these implementations, we must provide a method
which stops occasional errors disrupting the learning process.

Running our algorithm on 7 routers, LearnLib reported non-determinism for
between 0.5% and 8% of queries (full details are in Sect. 5). This error rate
means that most attempts to learn a router will fail before the state machine
can be found. The errors were mainly due to either a message not being received
and the response timing out, or a message not being received and a previous
message being retransmitted. In the later case, there is no way to tell from a
single response alone if the message is a genuine reply to a query or if it is a
retransmission due to a lost message.

To deal with non-determinism we maintain a record (or cache), separate
from LearnLib, which records all input sequences, all corresponding responses,
and the number of times those inputs and responses have been seen. LearnLib
will throw an exception when a series of inputs gives a different output to one we
have previously seen. We can then handle this exception, and execute a form of
‘majority vote’ error correction in order to decide on the correct response. This
works as follows:

1. Whenever we execute a query (and for each subsection of the query) we record
the query, and the response seen.

2. When LearnLib reports non-determinism we record the query and observed
response (which could be a timeout) and we look at the total observations
for all responses to the query that triggered the exception. Then:
(a) If the response that triggered the exception is now the strictly most com-

mon response, we decide that our previous observations must have been
errors. We then remove all queries which have the prefix that triggered
the exception from our database of learnt queries, because we concluded
they were based on learning an error.

(b) If the response that triggered the exception is not the strictly most com-
mon response, we decide that the response seen is an error, and we retry
the query (after updating our record of seen responses).

Protocol State Learning of the 802.11 4-Way Handshake 331

To avoid non-determinism in equivalence queries, we take a more straight-
forward approach. If a counter-example is found, then it is repeatedly queried
against the SUL, with varying time gaps in-between. Only if the results are
consistent is the counter-example then processed by the learning algorithm.

On average, we require in the region of 1000 queries to learn a model. Our
method, and optimisations, leads to queries being executed an average of 15
times. Assuming the highest error rate we saw of 8% means that the chance that
we learn an error response, rather than the correct response for any query is less
than 0.01% (full calculations are given in the appendix). Working backwards
from the failure probability, we find that our method will have a 95% confidence
of returning the correct automata for error rates of up to 10%. Higher confidence
and higher acceptable error rates can be achieved by retrying queries that are not
strictly needed by our method, e.g., if we repeat queries to ensure that they are
tried at least 100 times we can provide 95% confidence of learning an automata
correctly for error rates of up to 30%.

When an error response becomes the most common response to a particular
query our method will discard useful information and so be inefficient. For the
worst error rate we observed, 8% we calculate the probability of discarding a
correct response to a query with 15 tests as 0.00756, more tests do not increase
this probability significantly. On the other hand an error rate of 30% would lead
to a 0.18 probability of discarding useful data. We note that for such high error
rates we could cache the learn queries rather than discarding them so as to avoid
having to relearn responses.

4.2 Learning Time-Based Behaviour

To accommodate time behaviour into our models, we first make a number of
assumptions about the types of time-based behaviour we expect from protocols
like the 802.11 handshake. These assumptions include the types of timers in
operation and what we consider to be a change of state. This allows us to enforce
restrictions on the types of queries that can be executed, thereby making the
problem of learning timed models tractable.

Assumption 1. At any given state, there is only one timer in operation, which
could expire and trigger output.

To achieve feasible learning times within the Mealy machine model, we limit
the number of timers so that there is never more than one timer running at the
same time. Indeed, for the purpose of learning the 802.11 handshake this was
sufficient. We believe this also to be the case for other similar protocols.

Assumption 2. If a message is retransmitted, it is only when these retransmis-
sions stop, that the state of the SUL will change.

What we mean by this, is that in the scenario of the SUL retransmitting
a message, the only aspect of the state that has changed, is the progression of
time. Conversely, if a transmitted message differs from the previous transmitted

332 C. McMahon Stone et al.

message, then we infer that the state of the SUL has changed. It is not likely that
the SUL will retransmit messages indefinitely. Most protocols will implement
some sort of timeout mechanism as we will see.

It follows from Assumption 2 that we can consider a retransmission state as
a sub-state of its parent. That is, since it is only time that has progressed, all
query-responses will remain the same, therefore:

Assumption 3. Any queries after, a observing a retransmitted message, will
have the same responses as before the retransmission.

Additionally, we assume that the modeller is able to provide estimated values
for a normal response time and upper-bound timeout. The normal response time
should be large enough to give the SUL sufficient time to provide non-timer
based responses. Essentially, as long as it takes the SUL to receive and process
a message, and send a response. In Wi-Fi we set this in the region of 0.2–0.5 s.
For other protocols, or testing set ups, the value should be set according to the
quality of the medium on which the protocol is running. For example, one could
conceive of a protocol running across further distances, and as such require a
longer time allowance for single input/output queries. The second value is an
upper-bound timeout. This is required to prevent the learner waiting endlessly
if there has been a silent timeout. It should be sensibly set to a maximum value
that you expect the SUL to maintain a connection for. E.g., we set this to 20 s,
as we expect any timers to have expired and connections to be dropped if the
handshake has not completed within that time.

Solution Overview
In our solution, we split the learning procedure into two stages. The first

stage will discover behaviour such as the normal flow of the handshake, and
states unrelated to time. I.e., we first build a base model, which we can later
use to learn time behaviour. This way, we can carry out extensive and thor-
ough equivalence checking of the base model, without triggering long timeouts -
which causes a blow up in learning time-complexity. The latter stage then uses
the base model to identify time-based states, including retransmissions, time-
outs and anything else. To this end, we employ two measures. First we use the
cache described in Sect. 4.1, which records all query/responses in a database.
This enables us to separate each stage of the learning. Second, we adopt the
I/O automata learning method presented in [31]. That is, we employ a trans-
ducer that translates the non-Mealy-machine compatible SUL behaviour, into
sequences of query-responses that the Mealy machine can understand. This tech-
nique enables us to enforce learning restrictions for each corresponding stage.
The transducer is implemented as a state machine itself, namely a learning pur-
pose (LP). We construct the learning purpose such that it enforces the following
restrictions on the types of permitted queries.

1. Each input symbol i ∈ I constituting a query, maps to a single output from
the set O ∪ {TOs ∨ TOb}. Where, TO represents a timeout, which is set to
the normal response time for the first stage (TOs), and to the upper-bound
timeout for the second (TOb).

Protocol State Learning of the 802.11 4-Way Handshake 333

Fig. 2. Learning purposes used for each learning stage. The two timeouts are indicated
by TOs, TOb, φ indicates the last accepted response (retransmission), and Δ a delay
action. (Color figure online)

2. If a retransmission2 is observed, we disable all inputs. An exception is made
in the second learning stage where we allow the delay action Δ beyond this
point.

The learning purpose representing the described properties for each corre-
sponding stage is depicted in Fig. 2. We can see that the learner will begin at
state 1, where any input is enabled. From there, the resulting output O from
the SUL will determine the next transition and so on. As soon as the disable
state is transitioned to, any subsequent inputs will be disabled, meaning that
corresponding outputs will be the ‘−’ symbol. We include an optimisation of this
feature which is detailed in Sect. 4.4.

When testing 802.11 handshake implementations, we can make some adjust-
ments to the learning purpose to improve efficiency further. Since we know that
a Deauth indicates a reset of the protocol, we can disable any queries which
trigger this output. This modification is highlighted in blue in Fig. 2.

Stage 1 Learning. Run learning with the full alphabet and the learning purpose
from Fig. 2a enforced. Once a hypothesis has been produced, we run Chow’s
W-Method [32] for equivalence checking. This guarantees all states within the
restriction of the learning purpose will be discovered (given an upper bound
on the number of states). On average this stage will complete quickly, as all
time based behaviour (which dramatically increases the execution time of each
query) is ignored. Any counter-examples discovered in this stage will be recorded
in order to reconstruct the model in the second stage.

Stage 2 Learning. Given the base model we learn in the first stage, we can
then begin to learn the time related behaviour as follows:

1. Firstly, we delete all entries in the cache oracle that have resulted in the small
timeout - TOs. When learning is restarted, these deleted entries will be posed
to the SUL again, this time with the new learning purpose from Fig. 2b.

2 Retransmissions definitions can be customised. For the purpose of testing Wi-Fi, we
define a retransmission to be an identical message as before, with the exception of
the Replay Counter value.

334 C. McMahon Stone et al.

2. Learning is restarted using the new learning purpose. Each query in this stage
will first check the cache oracle to see if there is a corresponding response from
the first stage. Once a hypothesis has been conjectured, we apply the same
counterexamples learned in stage 1.

3. We then begin an equivalence checking stage with the intention of learn-
ing all timeouts. That is, for each state already learned, we simply pose
queries consisting of many delay actions. The resulting model will represent
the base model from stage one, with time based behaviour included. Any
non-retransmission, timeout or disconnect states discovered in this stage will
also undergo further equivalence checking.

4.3 Broadcast/Multicast Traffic

In addition to unicast traffic, 802.11 networks must facilitate the transmission of
messages via broadcast or multicast distribution. The former, broadcast address-
ing, is where messages are sent to all nodes on the network. The latter, multicast
addressing, is another form of one-to-many distribution where messages are sent
to a select subset of nodes on the network. The existence of these types of mes-
sages on a network poses a problem for learning a deterministic state machine
exhibited by an AP. The reason for this is that the processes producing this traffic
on the network are generally independent of that running the 4-Way Handshake.
Moreover, other nodes on the network can produce this traffic.

One solution to avoid this source of non-determinism would be to ignore these
messages. However, this is not an option if we want to incorporate this traffic
into our state machine model. Instead, we make a fundamental assumption about
what exactly indicates a state change: we assume that multicast or broadcast
message will never indicate a state change. In the context of Wi-Fi, this makes
sense—the 4-Way Handshake is between the AP and an individual client, as such,
all indications of this protocol state change will be made with unicast messages.
Working under this assumption we are able to incorporate broadcast/multicast
message observation into our model as follows:

1. Learn the model as defined in previous sections but ignore all broad-
cast/multicast messages.

2. We then transition to each of the states, and wait for a fixed period, with
the intention of detecting any broadcast/multicast traffic. This information
is then integrated into the model.

4.4 Additional Optimisation

Query Disabling. The constraints that we enforce with the learning purpose
(see Fig. 2), such as disabling any queries beyond a deauthentication or timeout,
can be exploited for further efficiency gain. Namely, if we ever observe a query
response containing an ‘disable output’ (−), then we know that any additional
inputs beyond that point will also have the ‘disable output’. This enables us to
maintain a cache of all queries, and their corresponding responses, that result

Protocol State Learning of the 802.11 4-Way Handshake 335

Table 1. Parameter definitions for the 802.11 handshake input alphabet.

Parameter Tag Values Description

Key Descriptor KD WPA1/2,
WPA2, RAND

Indicates the EAPOL Key type: WPA, WPA2 or a
random value

Cipher Suites CS MD5, SHA1 Ciphers and hash functions used for encrypting the
Key Data field and calculating the MIC. Options
are MD5 + RC4 or SHA1 +AES

RSN Element RSNE cc, tc,

ct, tt

The chosen ciphersuite combination of TKIP (t)
and CCMP (c) for the group and unicast traffic
respectively

Key Information KF P, M, S, E The combination of four flags in the Key Info field:
Pairwise (P), MIC (M), Secure (S), Encrypted
(E), or - when none is set

Nonce NONC W The Nonce field contains a consistent (default) or
inconsistent (W) nonce

MIC MIC F The MIC field contains a valid (default) or invalid
(F) Message Integrity Code

Replay Counter RC W The Replay Counter is set to a correct (default) or
an incorrect value (W)

in the learning purpose transitioning to the disable state. This cache can then
be used as a lookahead oracle for further queries. For example, say the query
q = {assoc, delay, data, data} results in response r = {accept, E1, timeout,−}.
The lookahead oracle can then record this query-response pair, as it ended up in
a disable state (indicated by the fourth output −). If then, the learner poses the
query q2 = {assoc, delay, data, data,E4}, we already know what the response
will be because q is a prefix of q2, and q ended up in the disable state. Therefore,
we can automatically generate the response r2 = {accept, E1, timeout,−,−}
without actually querying the SUL.

WPA/2 Specific Optimisation. In Sect. 4.2, we show how exploiting our
prior knowledge of observing the Deauthentication frame, to indicate a reset of
the protocol, can be used to improve learning efficiency. Similarly, we also imple-
ment a check which disables queries after a successful handshake/connection has
completed and verified (Table 1).

4.5 4-Way Handshake Input/Output Learning Alphabet

Inputs. Our abstract input alphabet consists of messages of the structure:
i ∈ I := MsgType(Params)

Where MsgType is one of {Association, EAPOL 2, EAPOL 4} and has associ-
ated parameters defined in the table below. Associations only permit the RSNE
parameter, whereas for EAPOL-Key messages, it can be any. We also include the
Delay action (Δ), (Unencrypted) Data, and Encrypted Data (TKIP and AES).
We denote the Broadcast/Multicast Delay input (described in Sect. 4.3) as BRD
in our models. In total our input alphabet consists of 45 unique messages. We

336 C. McMahon Stone et al.

note that a complete set of all possible combinations of the various EAPOL fields
would consist of 1000s of frames. We therefore select the most important fields
and values with respect to security.

Outputs. Messages received as output from the AP are parsed into the following
format:

o ∈ O := MsgType(Params)|Timestamp

Where Timestamp indicates the time elapsed since the last received message.

4.6 Implementation Details

Network Data. When learning the state machines of our selected APs, we
ensure that there is constant traffic, including unicast, broadcast and multicast,
circulating on the network at all times. This enables us to learn broadcast and
multicast traffic and also detect successful handshakes as mentioned below. We
achieve this by operating a node on the network which run scripts to send: traffic
directly to the fuzzer’s MAC address (e.g. raw data), multicast traffic (e.g. using
mDNS), and broadcast traffic (e.g. ARP).

Verifying and Resetting Connections. As the last message of the 4-Way
Handshake is sent to the client, and hence our learner, the corresponding
response will normally be a timeout, therefore we need to distinguish between the
case where a handshake has finished successfully and other kinds of time-outs.
As mentioned in the previous section, we operate a node on the network that
constantly sends unicast data addressed to our learner’s MAC address. There-
fore, once a handshake is complete we observe these messages and can decrypt
them to verify the contents. If this succeeds, we then check that the fuzzer can
itself send encrypted data. This is done by sending an ARP-request for the MAC
address of the gateway IP and waiting for an appropriate response.

Multi-core/Interface Sniffing and Injecting. Due to the unreliability of Wi-
Fi monitor mode for 802.11 frame injection and sniffing, we use two physically
independent interfaces for each task—sending queries and sniffing for responses.
We then have two processes running in parallel so that sniffing and injection
can be carried out simultaneously. This is all implemented in Python using the
Scapy3 library.

5 Results

We used our adapted state machine learning algorithm to automatically learn 7
AP-side implementations of the 4-Way Handshake (see Table 2). In this section
we will discuss the effect of our learning improvements, as well as the most
notable results, including vulnerabilities, time behaviour and other interesting
observations. This paper contains figures of two of the learned models, the rest
are available online4.
3 http://www.secdev.org/projects/scapy/.
4 https://chrismcmstone.github.io/wifi-learner/.

http://www.secdev.org/projects/scapy/
https://chrismcmstone.github.io/wifi-learner/

Protocol State Learning of the 802.11 4-Way Handshake 337

Table 2. Learning statistics for the access points we tested. Total queries excludes
discards, total learning time includes time taken for error correction.

Model Version States # Queries
(Ex. error
correction)

Error
(%) rate

Learn time
(hh:mm)

TP-Link WR841HP V1 150519 6 963 5 1:32

Cisco WAP121 1.0.6.2 12 1163 4 1:42

TP-Link AC1200 140224 12 1113 8 2:35

iOS Personal Hotspot 8.1.3 6 887 2 5:46

ZxYEL AMG1302 V2 13 1684 1 1:53

D-Link DWRr600b 2.0.0EUb02 12 1113 1 1:18

Android hostapd Oreo 8.0 12 1113 0.5 0:58

Time Behaviour. Three of the access points we tested exhibited the same
timeout behaviour (3 retransmissions of message 1 and 3 with one second gaps,
before ending with a deauthentication). Others had similar behaviour but over
different times. One did not retransmit messages but timed out after 6 s (see
Fig. 3). Most interestingly, the Cisco WAP121 started sending encrypted data
after 3 re-transmissions of message 3 over a period of 4 s. We discuss this in more
detail in Sect. 5.2. We note that this finding in particular could not be detected
by previous methods. The iOS model stands out in that it took significantly
longer to learn than the others. The reason for this is that it appears to silently
timeout and hence hit the upper-bound timeouts mentioned in Sect. 4.2. Indeed,
the implementation appears to be very minimalist, only responding to queries
it considers to be correct, and ignoring those that are not. Nevertheless, this
exemplifies the importance of the first stage of our learning method. By setting
a small timeout (the ‘normal response time’), when the learner carries out the
equivalence checking stage, these queries will not suffer from this long timeout.
Hence, thorough fuzzing was still possible, despite then having to relax this
restriction for the second stage.

Non-determinism. In Table 2 we state the error rate for each of the implemen-
tations we tested. We calculated this as the proportion of total executed queries
that were detected as an error. An increased error rate had a direct effect on the
time taken to learn. This is demonstrated by the TP-Link AC1200 which had
an almost identical model to Android Hostapd, yet took over double the time
to learn. In this particular case, the high error rate was due to the AP carrying
over data from previous handshake executions with a relatively high probability.

Query Reduction. We were able to significantly reduce the number of queries
required by the learning algorithm vs those actually posed to the SUL. Most of
this reduction is down to the restrictions we enforce (i.e. delays after retrans-
missions (Sect. 4.2) and Wi-Fi specific optimisations (Sect. 4.4). For example,
the iOS model required over 20,000 queries in total but only 887 were actually
queried, the rest predicted.

338 C. McMahon Stone et al.

Similar Models. Our results reveal that three of the implementations appear
to be very similar (TP-Link AC1200, Android Hostapd and D-Link DWRr600b).
These models are somewhat different though, for example with respect to broad-
cast traffic, the DLink AP constantly broadcasted both Beacon frames and Probe
Responses, whereas the TP-Link and hostapd only broadcasted Beacons. The
implementations are also distinguished via their learning error rate, and as a
result learning time. The TP-Link suffered from high error rate due to reasons
stated above. Whereas, the other two APs had a very similar error rate.

Fig. 3. State machine for the TP-Link TL-WR841HP, with normal transitions high-
lighted in green and those contributing to vulnerabilities in red. (In the interest of
brevity we only include a selection of the most important transition labels. All queries
that are ‘disabled’ are not included. We use the ∀ symbol to denote all input messages
not specified in other transitions.) (Color figure online)

5.1 Encrypted Multicast Traffic Leakage

Using the broadcast/multicast learning feature of our framework, we discovered
that the TP-Link WR841HP transmits multicast data in plaintext when put in a
certain state (see states 1 and 2 in Fig. 3). More specifically, before a handshake
is initiated, any multicast data will be sent encrypted with each unicast session
key for all of the connected clients. However, during the execution of a 4-Way
Handshake with a new client, and before the client has proven knowledge of the
PSK (by sending a valid Message 2), this data will broadcast unencrypted to the
client. Indeed, immediately after the 4-Way Handshake is completed, the data
will only be sent encrypted. This represents a leakage of (potentially) sensitive
multicast data.

Protocol State Learning of the 802.11 4-Way Handshake 339

5.2 Downgrade Vulnerabilities

In two access points we discovered downgrade attacks, namely for the Cisco
WAP121 and the TP-Link TL-WR841HP.

Forcing Group Key Encryption with RC4. Figure 3 shows the learned
state machine implemented by the TP-Link WR841HP. We can see that despite
initiating the connection in the Association stage with AES-CCM for both group
and unicast keys, after starting the 4-Way Handshake using AES-CCM, the AP
will surprisingly still accept a TKIP-formatted Message 2. In other words, if the
client switches ciphers mid-handshake, the AP will do also. This is indicated by
the AP’s response from state 3 to state 5, where it switches cipher suites to use
TKIP’s MD5 for the MIC, and encrypting the network’s group key with RC4. Of
particular significance is that this is in spite of the AP being set to exclusively
use AES-CCM. Indeed, this is also advertised in the AP’s Beacon and Probe
Response messages.

To exploit this vulnerability, the adversary can set up their own AP with the
same SSID as the target. This AP, however, only advertises support for TKIP in
the beacons/probe response. As shown in Fig. 4, the attacker will simultaneously
carry out a 4-Way Handshake with the target AP, using AES-CCMP as the
selected cipher. Messages will be selectively forwarded and altered between the
target AP and client. Message 1 will contain the same nonce (for generation
of the session key), but will be altered such that the cipher suite flag is set to
TKIP. The client will generate its own nonce, calculate the session key, then send
a TKIP MICed Message 2, which will be forwarded unchanged to the AP. This
is accepted by the target and induces a downgrade to TKIP, resulting in a TKIP
protected Message 3 response. The attacker will then observe this message, and
can extract the RC4 protected GTK. With this, the key can be recovered and
used for various attacks (see [23]).

AP-Side AES-CCMP to TKIP Downgrade. Both the Cisco WAP121 and
TP-Link WR841HP are vulnerable to AP-side downgrade attacks. That is, when
both AES-CCMP and TKIP are supported by the AP and client, an attacker
can force usage of TKIP. Normally, the client will always choose the more secure
AES-CCMP.

With the Cisco WAP121, this vulnerability is indicated by the fact that
Message 4, the message sent by the client to confirm the selected cipher, is
not required by the AP. We can see from the state machine diagram Fig. 5 in
AppendixA, after 3 re-transmissions of Message 3 over a period of 4 s, the AP
will give up waiting for a response and complete the connection anyway. An
illustrated exploitation of this vulnerability in depicted in Fig. 6.

The affected TP-Link AP is also vulnerable to the same attack but in a
slightly different way. That is, the AP does require a response to Message 3, but
will accept a Message 2 in the place of Message 4. This enables an attacker to
forge Message 4 by inducing a client to retransmit Message 2 and thereby carry
out an AP-side downgrade attack.

340 C. McMahon Stone et al.

802.11 Authentication

Client Attacker Access Point

Beacon/Probe Response
TKIP

Beacon/Probe Response
CCMP

Association w/ TKIP

EAPOL-Key1(CS=TKIP) EAPOL-Key1(CS=CCMP)

EAPOL-Key3(CS=TKIP,
MIC=TKIP, RSNE=CCMP)

RSNE Mis-match Detected

EAPOL-Key2(CS=TKIP, MIC=TKIP)

Receive
RC4-Encrypted GTK

Association w/ CCMP

Fig. 4. Downgrade attack on the TP-Link WR841P to force encryption of the Group
Key (GTK) with RC4

For both APs, this attack is limited to downgrading the AP only. Correctly
implemented clients will detect this downgrade through an inconsistency of the
RSNE information which is selected in the Association stage and later encrypted
and encapsulated within Message 3 from the AP. The client will decrypt the
contents of the message, find that in fact the AP supports AES-CCMP and
should then drop the connection.

Despite this, the flaw still represents a genuine vulnerability; any clients with
existing connections could be forced to carry out a new 4-Way Handshake, e.g.
due to roaming/signal loss or a client side deauthentication attack. Any data in
the queue from the previous connection will then be secured with TKIP.

Disclosure. TP-Link and Cisco have been fully informed of the vulnerabilities
found, and in line with responsible disclosure, were given 6 months to address
the vulnerabilities before publication. We also note that TP-Link no longer sell
the vulnerable AP.

6 Conclusion

In this paper we introduced methods to handle the non-deterministic and timing
related behaviour for lossy protocols such as Wi-Fi. These methods have been
shown to be effective to infer models of numerous implementations of the 802.11
4-Way Handshake. This resulted in the discovery of several security vulnerabili-
ties in widely used routers. The software will be made available as open source.
In future work we want to extend the tool to handle the recently introduced

Protocol State Learning of the 802.11 4-Way Handshake 341

WPA3. This uses the same 4-Way Handshake making it possible to use our tool
on implementations of WPA3 with only minor changes.

We would like to apply our time learning technique to more protocols where
time is important, particularly other protocols where long timeouts are present,
making standard learning difficult to use. There are many security protocols
where timing plays an important role, especially those running on unreliable
mediums, such as other wireless protocols (Bluetooth, Zigbee, LTE), distance-
bounding protocols (MasterCard’s RRP, NXP’s “proximity check” [33]), and
others (DTLS, QUIC). We would also like to experiment with relaxing our
assumptions. For instance, considering situations where multiple clocks are in
operation.

Acknowledgements. This work has been supported by the Netherlands Organisation
for Scientific Research (NWO) through Veni project 639.021.750.

A Diagrams

Fig. 5. Learned model for the Cisco WAP121. Note that for retransmission states,
assumed transitions (as per Assumption 3) are represented by dotted blue lines. (Color
figure online)

342 C. McMahon Stone et al.

Fig. 6. Downgrade attack on the Cisco WAP121 to force usage of TKIP

B Calculations

We assume the probability of any error response is pe, and that, for every query
we have at least n responses. Therefore, the probability that i of the observed
responses are correct is the number of all possible combinations of i and n − i
responses times the probability of i correct responses and n − i errors:

correct(i) = nCip
i
e(1 − pe)n−i = n!

i!(n−i)!p
n−i
e (1 − pe)i

and the probability that the majority of observed responses are correct is:
mCorrect = Σi=n/2...ncorrect(i). The probability that the correct output is
the most commonly observed for m different queries strings is then mCorrectm.

For the TP-Link AC1200, with an error rate of 8% and 1113 queries the
chance of learning it correctly is 0.9925, for all other routers the probability of
learning correctly was greater. Taking an average of 1000 queries and the average
number of queries returned by our method (15), we see that a 10% error rate
gives us a probability that the result is correct of 0.96, and with 100 tests and a
30% error rate the probability that they are all correct is 0.97.

Also important is the probability that our method will discard correct queries
that has been correctly learned. We assume the worse case which is that there
is only one incorrect message. In this case correctly learned queries are only
discarded at the ith test if, the at the i−2th test the incorrect response has been
seen 1 time less than the correct message, and the incorrect response is seen for
the next two messages.

It is only possible to have one less incorrect than correct message for an odd
number of tests. The probably of this happening is at the 2m + 1th step:

Protocol State Learning of the 802.11 4-Way Handshake 343

oneOff (2m + 1) = 2m+1Cmpme (1 − pe)m+1 = (2m+1)!
m!(m+1)!p

m
e (1 − pe)m+1

and the probably of correct queries being discarded at the 2m + 1th step as:
discard(2m + 1) = oneOff (2m − 1)p2e. Following the discard of a correct state,
there will be one more vote for the error response, therefore to return to the
correct state and discard it again, we require 2 more correct responses than
error respondences followed by 2 error responses to trigger the discard:

nextD(2m) = 2m−2Cm−2p
m−2
e (1 − pe)mpepe = (2m−2)!

(m−2)!m!p
m
e (1 − pe)m

for m ≥ 2.
The probability that the first discard of the correct query happens at a par-

ticular step is:
firstD(3) = (1 − pe)pepe
firstD(2m + 1) = discard(2m + 1) − Σi=1...m−1.firstD(2i + 1).nextD(2(m − i)

So, therefore the probably of any discard of a correct response in the first n
tests is:

AnyDiscard(x) = Σi=1..xfirstD(x)

References

1. Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kemmerer, R., Vigna, G.:
SNOOZE: toward a stateful NetwOrk prOtocol fuzZEr. In: Katsikas, S.K., López,
J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp.
343–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11836810 25

2. Butti, L., Tinnes, J.: Discovering and exploiting 802.11 wireless driver vulnerabil-
ities. J. Comput. Virol. 4(1), 25–37 (2008)

3. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

4. Vanhoef, M., Schepers, D., Piessens, F.: Discovering logical vulnerabilities in the
Wi-Fi handshake using model-based testing. In: Asia Conference on Computer and
Communications Security. ACM (2017)

5. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth
International Conference on Software Testing, Verification and Validation Work-
shops, ICSTW. IEEE (2013)

6. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., Verleg,
P.: Model learning and model checking of SSH implementations. In: 24th Interna-
tional SPIN Symposium on Model Checking of Software, SPIN 2017 (2017)

7. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX
Security, vol. 15 (2015)

8. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
379–395. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 26

https://doi.org/10.1007/11836810_25
https://doi.org/10.1007/b137241
https://doi.org/10.1007/978-3-540-30206-3_26
https://doi.org/10.1007/978-3-540-30206-3_26

344 C. McMahon Stone et al.

9. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

10. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, pp. 276–287 (2017)

11. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. (STTT) 11(5),
393–407 (2009)

12. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

13. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: Ninth IEEE International High-Level Design
Validation and Test Workshop, pp. 95–100. IEEE (2004)

14. Janssen, M.: Combining learning with fuzzing for software deobfuscation (2016)
15. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric

passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0 54

16. Jonsson, B., Vaandrager, F.: Learning mealy machines with timers. http://www.
sws.cs.ru.nl/publications/papers/fvaan/MMT/

17. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X 1

18. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Proceedings
of the Second ACM Conference on Wireless Network Security, pp. 79–86. ACM
(2009)

19. He, C., Mitchell, J.C.: Analysis of the 802.11 i 4-way handshake. In: Proceedings
of the 3rd ACM Workshop on Wireless Security, pp. 43–50. ACM (2004)

20. Mitchell, C.: Security analysis and improvements for IEEE 802.11 i. In: 12th Annual
Network and Distributed System Security Symposium, NDSS (2005)

21. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11 i and TLS. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, pp. 2–15. ACM (2005)

22. Wang, L., Srinivasan, B.: Analysis and improvements over DoS attacks against
IEEE 802.11 i standard. In: 2nd Conference on Networks Security Wireless Com-
munications and Trusted Computing, NSWCTC. IEEE (2010)

23. Vanhoef, M., Piessens, F.: Predicting, decrypting, and abusing WPA2/802.11 group
keys. In: USENIX Security Symposium (2016)

24. Mendonça, M., Neves, N.: Fuzzing Wi-Fi drivers to locate security vulnerabilities.
In: 7th Dependable Computing Conference, EDCC. IEEE (2008)

25. Vanhoef, M., Piessens, F.: Key reinstallation attacks: Forcing nonce reuse in WPA2.
In: 24th ACM Conference on Computer and Communication Security (2017)

26. Group, I.W., et al.: IEEE standard for information technology–Telecommunications
and information exchange between systems–Local and metropolitan area networks–
Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications. IEEE Std 802(11) (2010)

27. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/
http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/
https://doi.org/10.1007/3-540-45537-X_1

Protocol State Learning of the 802.11 4-Way Handshake 345

28. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis. Uni-
versität Dortmund (2003)

29. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

30. Raffelt, H., Steffen, B., Berg, T.: LearnLib: a library for automata learning and
experimentation. In: Proceedings of the 10th International Workshop on Formal
Methods for Industrial Critical Systems. ACM (2005)

31. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 6

32. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 3, 178–187 (1978)

33. Chothia, T., de Ruiter, J., Smyth, B.: Modeling and analysis of a hierarchy
of distance bounding attacks. In: 27th USENIX Security Symposium, USENIX
Security 2018. USENIX Association, Baltimore (2018). https://www.usenix.org/
conference/usenixsecurity18/presentation/chothia

https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-15375-4_6
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia

Automatic Detection of Various Malicious
Traffic Using Side Channel Features

on TCP Packets

George Stergiopoulos, Alexander Talavari, Evangelos Bitsikas,
and Dimitris Gritzalis(&)

InformationSecurity andCritical Infrastructure Protection (INFOSEC)Laboratory,
Department of Informatics, Athens University of Economics and Business,

Athens, Greece
{geostergiop,dgrit}@aueb.gr, alex.talavari@gmail.com

Abstract. Modern intrusion detection systems struggle to detect advanced,
custom attacks against most vectors; from web application injections to malware
reverse connections with encrypted traffic. Current solutions mostly utilize
complex patterns or behavioral analytics on software, user actions and services
historical data together with traffic analysis, in an effort to detect specific types
of attacks. Still, false positives and negatives plague such systems. Behavioral-
based security solutions provides good results but need large amounts of time
and data to train (often spanning months or even years of surveillance) -
especially when encryption comes into play. In this paper, we present a network-
traffic monitoring system that implements a detection method using machine
learning over side channel characteristics of TCP/IP packets and not deep packet
inspection, user analytics or binary analysis. We were able to efficiently dis-
tinguish normal from malicious traffic over a wide range of attacks with a true
positive detection rate of about 94%. Few similar efforts have been made for the
classification of malicious traffic but existing methods rely on complex feature
selection and deep packet analysis to achieve similar (or worse) detection rates.
Most focus on encrypted malware traffic. We manage to distinguish malicious
from normal traffic in a wide range of different types of attacks (e.g. unencrypted
and encrypted malware traffic and/or shellcode connections, website defacing
attacks, ransomware downloaded cryptolocker attacks, etc.) using only few side
channel packet characteristics and we achieve similar or better overall detection
rates from similar detection systems. We compare seven different machine
learning algorithms on multiple traffic sets to produce the best possible results.
We use less features than other proposed solutions and thus require less data and
achieve short times during training and classification.

Keywords: Malware traffic � Malware detection � Machine learning
Defacement � SVR � Neural networks � CART � Botnet � Reverse shells
Trojan

© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 346–362, 2018.
https://doi.org/10.1007/978-3-319-99073-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_17&domain=pdf

1 Introduction

One of the most serious open issues in securing today’s IT networks is the inability of
current solutions (i.e. intrusion detection and prevention systems (IDPS), antivirus etc.)
to detect advanced and often meticulously custom ongoing malicious attacks. Such
attacks are often tailored to specific victims and sophisticated code is used that is not
currently known by the security community. Security companies need to update their
security solutions constantly, only to often fail to detect “0-day” malware and custom
attacks against all vectors, from injecting commands to websites to detecting encrypted
malware traffic. Also, some attacks such web application defacements utilize custom
string and hex coding of malicious data that cannot be efficiently detected.

Current solutions utilize either complex pattern matching or behavioral analytics on
software, users and services in an effort to classify ongoing network events as suspi-
cious. Still, false positives and negatives plague signature-based security software. On
the other hand, behavioral based models have better detection rates but require large
periods of time to effectively monitor users and systems and/or big datasets describing
multiple scenarios to be able to accurately detect malicious traffic [22]; often unreal-
istically large amounts of data and time. On top of these, modern malware uses
encrypted traffic or inject themselves to whitelisted apps (e.g. browsers) to commu-
nicate with C&C servers and exfiltrate data, which makes behavioral analysis and
pattern matching even less successful over network traffic.

1.1 Contribution

We present a network traffic monitoring system that implements machine learning over
network captures to distinguish normal from multiple types of malicious TCP/IP traffic.
A few similar efforts have been made for classification of some types of malicious
traffic (e.g. encrypted malware traffic), yet existing methods rely mostly on complex
feature selection and/or large datasets. Overall, the main contributions of this article are
summarized as follows:

1. We manage to simultaneously detect multiple types of malicious traffic (unen-
crypted and encrypted malware traffic and/or shellcode connections, website
defacing attacks, ransomware downloaded cryptolocker attack, etc.) using a few
side channel characteristics of TCP packets and not complex features or deep packet
inspection.

2. We achieve the same or better overall detection rates with similar detection systems
while using less features (e.g. no TLS, certification features or deep packet
inspection). Consequently, our system requires less training and classification.

3. We test and compare seven (7) different machine learning algorithms over millions
of network captures spanning 8 GB of network. Experiments showed that decision
tree classifiers have good detection rates with side channel features but may be
prone false positives with packet crafting feature values and consequently trick our
classifier. Using KNN seems to greatly reduce this. However, we should avoid
neural networks as preliminary tests with neural networks show that they offer

Automatic Detection of Various Malicious Traffic 347

worse detection rates while requiring way larger amounts of time and data for
training. Also, in some instances, neural networks seem prone to biases.

4. Our system provides faster training and classification than other detection systems
during offline training and testing due to its smaller feature set. The use of side
channel features greatly reduces the size of traffic data that needs to be analyzed for
training or detecting of various types of malicious traffic and not only encrypted
malware, which seems to dominate current research projects.

Specifically, we first select an optimal set of features from raw features extracted
from TCP traffic packets. We minimize the number of features used in similar previous
research by only utilizing the ones that refer to side channel characteristics; i.e. packet
size ratios and timing events between packets. We provide experiments on real-world
malicious traffic data from three different datasets, namely FIRST 2015 [5], Milicenso
[6] and CTU13-1 [7]) to demonstrate the effectiveness and efficiency of our approach
over multiple types of malicious traffic, even with fewer, selected features.

Section 2 presents related work concerning malicious network traffic and similar
classification approaches and argues about the differences with our presented system.
Section 3 describes the datasets utilized in the current project and presents our data
sanitization process. Section 4 presents the detection methodology implemented in the
proposed system. Section 5 describes our experimental results, while Sect. 6 discusses
further improvements and potential future work.

2 Related Work

Most mainstream approaches to detecting malicious traffic mostly rely on heuristic
analysis of packets, payloads and session trends (like packets per min) along with
botnet architecture [8, 9, 10]. Others rely on statistical analysis for classifying various
types of traffic [20].

Our approach is similar to [13, 27]. In [13], researchers utilize some of the same
features as we do to extract information from the physical aspects of the network traffic.
They too utilize machine learning but focus on OSI layer 7 features to distinguish
between malicious and normal encrypted traffic. Thus, significant differences exist. The
main differences of our work with [13, 27] are the following: (a) We do not restrict our
machine learning and detection system only to encrypted traffic but try to achieve similar
(or even better) detection rates without distinguishing between different malicious
traffic, (b) we provide full payload analysis per packet and in relation to previous packets
sent, whereas researchers in [13] researchers analyze tuples that check payload sizes for
entire originator-responder sessions, (c) we minimize selected features by only using the
ones that refer to side channel characteristics, while achieving better results, and (d) we
do not aim to only understand and distinguish malicious encrypted traffic from malware
but extend this to multiple types of both encrypted and unencrypted malicious traffic,
ranging from defacing attacks, reverse shells, encrypted connections etc.

Cisco published a white paper concerning new advancements in detecting mali-
cious traffic using similar side channel features [27]. Cisco utilizes similar types of data

348 G. Stergiopoulos et al.

elements or telemetry that are independent of protocol details, such as the lengths and
arrival times of messages within a flow. Their technology supports various Cisco
routers and switches to perform detection of malicious traffic in network sessions that
utilize the Transport Layer Security (TLS) protocol.

In summary, we manage similar performance and smaller datasets utilizing only
five features on side channel characteristics, twenty two (22) features less than [13] and
four (4) less than Cisco [27].

Authors in [21] also use malicious HTTPS traffic to train neural networks and
sequence classification to build a system capable of detecting malware traffic over
encrypted connections. Similarities with our work is that we use features to train a
machine learning algorithm. The difference with our work is that: (a) we are able to
detect multiple types of malicious traffic and not only encrypted malware traffic and
(b) we utilize less data (and corresponding domain features) while achieving better and
faster results, albeit not only on encrypted traffic but on a dataset consisting of 200 K
traffic samples of different malicious traffic flows.

Using CART and KNN decision algorithms instead of neural networks, we can
achieve faster classification once the system is trained and have a more interpretable
model to detect hidden interconnections of traffic features. On the other hand, neural
networks might be more accurate (although our preliminary results do not support this),
provided there is enough training data, although they can be prone to over-fitting as
well; this is why another reason why we tested other algorithms more suitable to
unknown dataset characteristics.

Other approaches in analyzing encrypted HTTPS traffic are few [18, 19]. Most of
them focus on identifying target malware/botnet servers [19] or web servers contacted
[18], instead of understanding malicious traffic of various types.

The following publications are worth mentioning although they differentiate and
either utilize different technologies to achieve similar goals, or aim to analyze different
aspects of network traffic albeit with similar algorithms. Authors in [11, 17] utilize
signal processing techniques (e.g., Principal Component Analysis (PCA)) to create
aggregates of traffic and payload inspection data, in an effort to detect anomalous
changes to network flows [14]. They utilize a distance metric to understand network-
change patterns in traffic. Lakhina et al. [15] modelled network flows as combinations
of eigen flows to distinguish between short-lived traffic bursts, trends, noise, or normal
traffic. Terrell et al. [16] grouped network traces into time-series and selected features,
such as the entropy of the packet and port numbers, to detect traffic anomalies. While
these approaches are based on models of malware behavior (not unlike signature-based
intrusion detection), our approach seeks to identify important features on the physical
characteristics of malicious network sessions and utilize them to train machine learning
algorithms. This way, we increase the detection rate by (a) not relying on instances of
malware traffic to understand future malware and (b) by creating a trained model that
predicts the value of a network TCP sessions based on network values of several input
(or independent variables). Our approach is nonparametric, therefore it does not rely on
data belonging to a particular type of distribution. Also, it can utilize variables multiple
times in different decision analyses, thus uncovering complex interdependencies
between sets of variables [12].

Automatic Detection of Various Malicious Traffic 349

The selected machine learning algorithm and relevant network features enhance
malicious traffic detection in both encrypted and unencrypted traffic, ranging from a
series of different malicious types such as botnets, defacement attacks, reverse shells,
Trojans, etc. To our knowledge, no other prototype is able to accomplish this.

3 Datasets

We utilized datasets with both malicious and normal traffic from various sources to
build our database. Selecting useful and balanced datasets was vital in order to be
certain that the achieved detection rates correspond to real-world capabilities. Datasets
are public and contain traffic of real malware, defacing attacks, reverse shells and
software exploitation attacks along with normal traffic.

To guarantee the malicious traffic data quality and validate our detection rates, we
opted to use malicious traffic from datasets built from major companies and institutions.
The datasets used both for training and testing our system are the following:

• FIRST 2015 [5]: Dataset created for the needs of a hands-on lab for Network
Forensics. It is a collection of 4.4 GB pcap files containing normal as well mali-
cious traffic. Traffic is composed from Reverse Shell shellcode connections, website
defacing attacks, ransomware downloaded attack cryptolocker and a command and
conquer exploit attack (C2) over SSL that takes over the victim machine.

• Milicenso [6]: Dataset containing normal and malware traffic for the Ponmocup
Malware. It contains malicious traffic from a malware/trojan that connects the
victim PC on a botnet.

• CTU13-1 [7]: Dataset containing Botnet Traffic of the Neris Botnet. All traffic is
mostly encrypted botnet traffic, because the normal traffic that was captured at the
same time is not public.

Dataset traffic was included in pcap and pcapng files containing captured packets.
Packets from the FIRST 2015 were pcap files captured using Snort [24], whereas
Milicenso and CTU13-1 datasets were raw tcpdumps of monitored connections. Traffic
flows are captured using methods like WireShark [23], Snort [24], or raw TCP dumps.

3.1 Threat Model

Aforementioned datasets contain malicious traffic that covers a range of different attack
scenarios.

First 2015 dataset

• Website defacement attack (FrogSquad defacement, First 2015). Attackers
uploaded a FrogSquad image to: www.pwned.se/skyblue/fr.jpg.

• Webshell (PHP backdoor) on infected web server. FrogSquad sent multiple
commands using cm0 backdoor. FrogSquad traffic from later come back, from the
same class CIP network.

• Spear Phising email attack. APT4711 spear phishing email to Krusty
(192.168.0.54). From First2015 [5]: “Krusty uses SSL encrypted IMAP (TCP 993)

350 G. Stergiopoulos et al.

http://www.pwned.se/skyblue/fr.jpg

towards imap.google.com, so we cannot inspect the contents of his email. However,
we do know that Krusty opened the attachment at 10.35.36 UTC, which caused a
Command-and-control (C2) software do be downloaded”.

• Malware traffic (reverse shell).

CTU-13-1 dataset
As mentioned on the CTU-13 manual [7], “The CTU-13 is a dataset of botnet traffic
that was captured in the CTU University, Czech Republic, in 2011. The goal of the
dataset was to have a large capture of real botnet traffic mixed with normal traffic and
background traffic”. Traffic selected for our experiments contain several botnet sce-
narios with more than 160 different malware samples. Scenarios include:

Click Fraud attacks. The bot sent spam, connected to an HTTP CC, and use HTTP
to do some ClickFraud.
IRC communication for spam and clickjacking. Neris botnet that run for 6.15 h
in a University network. The botnet used an HTTP based C&C channel and not an
IRC C&C channel as it was erroneously reported before. Send SPAM and perform
click-fraud using some advertisement services.
Malware traffic. The machine was successfully infected with POST requests.
Malware connect to command & control (CnC) server using a raw TCP connection.
Encrypted malware traffic. HTTPS and SSH traffic.
UDP and ICMP DDoS.
Trickbot banking Trojan. Trickbot (Trojan.Trickybot) C2 over HTTPS. • Uses
Scheduled Tasks to re-run the main binary every few minutes and connect using
SSL port. Most – but not all –communication with C&C is encrypted.

The dataset contains Background, Botnet, C&C Channels and Normal botnent
traffic flows.

Milicenso dataset
This dataset contains traffic from live use of the Ponmocup malware/Trojan infection
and communication traffic. Traffic contains:

Redirect domains, kritikaa.ilanes.com 178.211.33.205
Malware download, ml.buymeaslut.com 82.211.45.82
C2 /phone home, intohave.com 64.179.44.188 (DNS request only).

3.2 Data Validation

Since the dataset is mainly comprised of malicious traffic captures, the first step was to
balance the amount of normal and malicious traffic. To ensure the quality of the dataset
used, we opted for two things:

• Provide as much ‘normal’ traffic as malicious one per session analyzed. Normal
traffic originates from different types of services and network communications. For
each setup, referenced datasets provide more information [5, 6, 7].

• Increase the amount of encrypted malware traffic to approach data sizes of other
attacks. FIRST [5] dataset encrypted malicious traffic was noticeably less than other

Automatic Detection of Various Malicious Traffic 351

http://imap.google.com

forms of malicious traffic. To achieve this, we utilized the Trickbot network to
obtain captures from CTU-13 extended dataset pcaps [7].

Since our task is not to distinguish between specific types of malware but rather a
high-level detection of any type of malicious traffic, the notion of a biased dataset in
terms of having the same amount of malicious traffic for each type of attack is not as
relevant as in [13]. Also, our dataset is comprised of real traffic data from multiple
types of attacks, either from captured malware, capture-the-flag hacking events or
similar environments. Thus, a potential imbalance of malicious traffic sub-classes
within each attack) is a real world representation and needs not to be tampered with
(e.g. the no of packets corresponding to malware reverse connection in comparison
with the no of packets corresponding to service exploitation during the same attack.
Also, the amount of data for all types of attacks is big enough to exclude unrealistic
biases in data. Thus, there is no need for rebalancing the classes of malicious traffic, the
only exception being the addition of extra encrypted malicious traffic from different
case studies, due to the small size of network captures in comparison with the rest.

We opt to report detection results using accuracy, precision, recall and f1 score in
both mixed (shuffled) and ordered dataset samples. These are popular metrics and
indicators of the overall performance of the prototype [3] and are used in multiple
similar research projects [13, 18].

4 Detection Methodology

4.1 Problem Definition

Given a TCP/IP network traffic flow, our system aims to sample and classify each
connection as malicious (i.e. produced by malicious events such as a web attack or
malware) or normal. Essentially, the system is comprised of two parts: traffic flow side
channel feature selection and network traffic classification.

Side channel feature selection: The first task is to choose correct, descriptive fea-
tures of TCP traffic that do not refer to the content of a packet, but rather to the physical
characteristics, such as time ratio between packet sending, size of payload etc.

Traffic classification: The second task is to use the selected features to classify new
traffic streams as malicious or normal. We do not aim to distinguish between types of
malicious traffic. It is our belief that human interaction and digital forensics will always
provide better solutions in dissecting security events. Instead, our system aims to warn
against any potential malicious traffic for response teams to take action.

4.2 Feature Selection

In this subsection we discuss the features we selected to feed into our Machine-
Learning algorithms and the rationale of the proposed system. We use features based
on side channel characteristics of TCP traffic to analyze packet-to-packet sequences
inside network sessions.

It is known that for any set of features, “there will be a fundamental limit to the kind
of determinations a NIDS can develop from them” [31]. Choosing a correct set of

352 G. Stergiopoulos et al.

features must always take into account the diversity of normal as well as malicious
traffic. A good approach is to examine the invariance of features in diverse malicious
traffic scenarios [31]. To this end, we opted to base our feature selection on previous
publications [13, 26, 27] that utilized similar side-channel packet features for similar
purposes. Authors in [13] and Cisco [27] made extensive tests and concluded in similar
albeit quite larger feature sets than us. Authors in [26] had previously used a subset of
features also found in [13, 27], albeit for different purposes (i.e. to leak sensitive
information from web application content).

Our intuition was that, the intersection of these features sets could minimize the
features needed for the detection of malicious traffic, while at the same time achieve the
same results. Also we believed that the same feature set could expand potential
malicious traffic detection beyond encrypted malicious traffic; which was the focus of
[13, 27]. Thankfully, we found that these types of features are enough to identify
malicious traffic. Since these features do not require complex aggregation of infor-
mation, the runtime footprint is small and the system can be easily adapted to analyze
traffic in real-time. Overall, we opt for five features on side channel characteristics,
twenty two (22) features less than [13] and four (4) less than Cisco [27].

Packet Size (Ps): Every connection is defined by the packets exchanged between a
sender and a receiver. Packet size is known to be good both for predicting the type of
connection and protocols used [25]. For that reason this is a basic feature of our project.

Payload Size (PAs): It is a feature that defines a packet. The payload is the heart of any
malicious traffic. In TCP, the payload is enclosed in the TCP Data Segment. Research
has shown that side channel analysis of payload sizes can be used as a feature for
information leakage [26].

Payload Ratio (Pr): It refers to the ratio of the payload size to the total packet size.
Malicious traffic can exhibit similar patterns concerning content ratios, so we opted to
include this as a basic feature. The formula is shown below, where PAs refers to the
payload size and Ps refers to the packet size

Pr ¼ PAs
Ps

ð1Þ

Ratio to Previous Packet (Rpp): We noticed that, when malicious traffic flows inside
the network, the packets are sequential and often exhibit specific trends in size. This
can be used for fingerprinting malicious traffic. By comparing two packets in a row that
belong in the same session, we can get the ratio to the previous packet. The value
defaults to 0 for the first packet of the session. The formula is shown below.

Rpp ¼ Pp
PPs

ð2Þ

where Pp refers to the current packet size and PPs to the previous packet size in the
same session.

Automatic Detection of Various Malicious Traffic 353

Time Difference (Td): The time difference between a packet and the previous packet
of a session can be used to fingerprint malicious traffic. The value defaults to 0 for the
first packet of a session. The formula is:

Td ¼ Pt � PPt ð3Þ

Pt refers to Packet time and PPt to Previous Packet time. Both times refer to how
long it took for a packet to be delivered.

Flag: A simple label that classifies the packet as either 0 or 1, where 0 stands for
normal traffic and 1 for malware traffic.

4.3 Traffic Classification

Our proposed system utilizes offline training to train a machine learning algorithm. The
offline analysis aims to extract traffic patterns and train the classifiers with labelled
traffic flows from real-world datasets. These real-world traffic flows from different apps,
malware types and attacks provide the data to train and verify our system’s classifier.
Each traffic flow contains a sequence of packets and corresponding sessions along with
packet receiving time, packet length, and packet protocol type. We opted to use the
Scikit-learn library over Python to train and implement our classification system. The
workflow of the entire system is depicted in Fig. 1. The above mentioned features and
labelled traffic flows are used for training multiple algorithms. Deciding on a machine-
learning algorithm was no trivial task. For experiments, we opted to compare results
between seven algorithms (see Table 1). Algorithms were selected as follows: We
gathered all machine learning categories used in similar research [16, 26, 27] and
detected their predictive model (e.g. decision tree, neural networks etc.). Then we opted
to use the most efficient algorithms from each model area.

The data mining module was also implemented using Python. It utilizes the Scapy
[1] Python library for packet captures and feature extraction to the SQL database for
easier manipulation of samples for machine-learning modules.

Using CART and KNN decision algorithms instead of neural networks, we can ac-
hi-eve faster classification once the system is trained and have a more interpretable mo-
del to detect hidden interconnections of traffic features. On the other hand, neural
networks might be more accurate, provided there is enough training data, although they
can be prone to over-fitting as well; another reason why we tested other algorithms mo
—re suitable to unknown dataset characteristics. Preliminary tests showed that neural
networks take a lot of time without having clear advantages over others neither in
classification nor optimization (see Sect. 5.1).

Data Collec on
(Packet

Captures)

Data Mining
(Export_mysql.

py)
Maria DB CSV

Files
Machine
Learning

Fig. 1. Workflow of the system from network capture to classification (training & validation)

354 G. Stergiopoulos et al.

The machine-learning module uses Pandas [2] and Scikit-learn [3] Python libraries.
Input files are CSV records exported from the database. The module performs machine-
learning on the dataset using the aforementioned machine learning algorithms.

The database used is MariaDB [4]. MariaDB is a fork of the MySQL database after
the acquisition of the later from Oracle. It was chosen due to its performance gains over
MySQL when exporting CSV files. The database role is to reduce the footprint on the
system disk while allowing us to create specialized subsets from available data for
testing our Machine Learning module. Database structure is presented in Fig. 2.

5 Experimental Results

The proposed system was tested on a Dell Inspiron 15-3537 (Intel Core i7-4500U,
8 GB RAM). Parsing PCAPs to build the SQL database for later training and building
the system took approximately 10 h. Classification and training took about 15 min for
experiment 1 and 5 min for experiment 2 on average, for all models. All tests utilized
Python and the above mentioned libraries. A sample SQL query for selecting random
side channel data samples from the database is depicted at Table 2.

Fig. 2. Structure of the MariaDB database for traffic dataset

Table 1. Machine learning algorithms tested for malicious traffic discrimination

Logistic Regression Linear Discriminant (LDA) K-Neighbours (KNN)
Decision Tree (CART) Gaussian Naïve Bayes Support Vector (SVC)
Neural Network (Multilayer Perception)

Automatic Detection of Various Malicious Traffic 355

5.1 Experiment 1: Entire Datasets with Randomly Mixed Traffic - All
Types of Malicious Traffic

In the first experiment we utilized all traffic from all datasets. Classification used
random samples from the entire traffic database; malicious and normal traffic. The
number of packets used for testing classification can be found at Table 3. The random
selection of various types of malicious traffic was performed uniformly using MariaDB
at the time of CSV export. This aims to remove any bias in data selection. The dataset
was split 70/30 and all *8 GB of dataset traffic was utilized. Side channel features
were extracted from each packet and imported to MariaDB. This includes the FIRST
2015, Milisenco, and CTU-13 datasets, along with all packets from each network
session. This is done to test non homogenous network traffic behavior with our feature
extraction. All types of malicious traffic were used in this experiment.

Machine learning and classification results are depicted at Tables 4 and 5. By
viewing the hit map for true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), it is obvious that CART and KNN algorithms have a
clear advantage over others in detecting malicious traffic using side channel charac-
teristics of packets. CART gets a 94.5% detection rate with 4.4% FP and 6.8% FN,
while KNN achieves 94% detection with about 5% FP and 7.7% FN, on the 200 K
network traffic sessions sample. We opted not include SVC because the algorithm does

Table 2. Sample SQL query for exporting random malware packet characteristics from dataset

SELECT
p.packetsize,p.payloadsize,p.payloadratio,p.packetsratiot
opreviouspacket,p.packetspreviouspacketdifferencetime,s.i
sMalicious
INTO OUTFILE "/tmp/outmalware.csv"
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\n" FROM packets AS p INNER JOIN
sessions s ON (p.idsessions = s.idsessions) WHERE
s.isMalicious = 1 ORDER BY RAND() LIMIT 10000000 ;

Table 3. Traffic packets from sessions in dataset

Total malicious traffic 6669881
Total non-malicious traffic 7968518
Non malicious non encrypted 6337244
Non malicious encrypted 1631274
Malicious non encrypted 6214670
Malicious encrypted 455211
Total 14638399

356 G. Stergiopoulos et al.

not seem to scale as well as the rest of the machine learning models. Overall, CART
and KNN are the best performing models and they will the ones used on the following
experiment.

An interesting finding was that, decreasing the overall size of the random network
traffic sample under classification seems to increase the detection rate (i.e. detection of
potential malicious traffic). To support this and remove potential biases in smaller sets
of captured traffic, we tried various combinations of malicious and normal traffic, as we
will show in Experiment 2.

Preliminary tests with neural networks show that these classification algorithms
provide worse results that decision tree (such as CART, LDA) and instance-based
algorithms like KNN. Notice here that preliminary tests with neural networks show that
they offer worse detection rates to the aforementioned algorithms while requiring way
larger amounts of time and data for training (see Tables 6 and 7). Also, in some
instances, neural networks seem prone to biases.

Table 4. Detection comparison of algorithms – Experiment 1

AI Accuracy True Pos False Pos False Neg True Neg

LR 0.61625 137214 25753 89370 47663
LDA 0.62428 145331 17636 95078 41955
KNN 0.92987 152077 10890 9541 127492
CART 0.94506 152560 10407 7256 129777
NB 0.52005 154225 8742 135241 1792
SVC 0.77211 148421 13017 82517 56045

Table 5. Performance comparison of algorithms – Experiment 1

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
LR 0.61 0.65 0.84 0.35 0.70 0.45 162967 137033
LDA 0.60 0.70 0.89 0.31 0.72 0.43 162967 137033
KNN 0.95 0.91 0.92 0.94 0.94 0.93 162967 137033
CART 0.96 0.92 0.94 0.95 0.95 0.94 162967 137033
NB 0.53 0.17 0.95 0.02 0.68 0.03 162967 137033
SVC 0.78 0.75 0.74 0.79 0.76 0.77 162967 137033

Table 6. Detection comparison for neural networks (Multilayer Perception)

AI Accuracy True Pos False Pos False Neg True Neg

NN (Multilayer Perceptron) 0.85031 152616 10351 7062 129971

Automatic Detection of Various Malicious Traffic 357

5.2 Experiment 2: 20 K Limited Packet Sample for Feature Testing - All
Types of Malicious Traffic

As mentioned previously, we detected that utilizing smaller network flow data over a
trained classifier to detect malicious traffic seems to increase the True Positive detection
rate. Thus, in this second experiment we purposely only use 20 K malicious packets
(and consequently the same amount of clean, normal traffic) from the FIRST 2015
Dataset to test our classifier. This experiment provided insight of the performance of
each algorithm with limited data.

Again, the random selection was performed uniformly by MariaDB at the time of
CSV export to remove any bias. The number of packets is deliberately small since we
want to confirm our assumptions at the feature selection stage of the project that the
selected side channel features are pretty good for classifying malicious traffic even
when data is scarce. Again, the sample along with equal sized normal traffic was split
(70–30) for updating the classifier and testing for malicious traffic detection. All types
of malicious traffic were used in this experiment.

After running the ml.py module on our dataset we get the following table of results.
By viewing the hit map for true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), it is obvious that some algorithms have a clear advantage
over others. Specifically, CART and KNN show good potential, with *89% detection
rate for any given mixed malicious traffic sample, with low false negatives and false
positives (around 10%). Execution times for offline training only took a couple of
minutes and validation took <2 min. This proves that, even with random session,
limited amount of data to train a classifier, the selected features provide very good
results given the situation in very small timeframes (see Tables 8 and 9).

An interesting find is that SVC performance increases noticeably when smaller
datasets are used for training and classification. This shows that SVC is prone to biases
since, as we increase the training sample, its detection rate falls the fastest. KNN and
CART still hold the best result percentages, while their drop in detection rates is
expected; albeit very small considering the difference in data.

Table 7. Performance of basic neural networks (Multilayer Perception)

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
NN (Multilayer Perceptron) 0.86 0.84 0.86 0.83 0.86 0.83 162967 137033

Table 8. Detection comparison of algorithms – Experiment 2

AI Accuracy True Pos False Pos False Neg True Neg

LR 0.539125 1276 801 1062 861
LDA 0.548375 1321 756 1070 853
KNN 0.888312 1878 199 264 1659
CART 0.888625 1904 173 283 1640
NB 0.542625 187 1890 21 1902
SVC 0.873062 2014 63 428 1495

358 G. Stergiopoulos et al.

5.3 Experiment 3: Detection of Encrypted Malware Traffic

Many companies (e.g. CISCO [27]) are publishing technical reports about new intru-
sion detection systems (IDSes) that utilize similar features, yet only detect encrypted
malicious traffic. To our knowledge, no tool is able to generalize this ability to multiple
types of malicious traffic, from defacement SQLi attacks to encrypted traffic, botnets
and injections like ours. Still, for arguments sake, we opt to show that malicious
encrypted malware traffic can be distinguished using less features than [27] while still
maintaining a high detection rate. During the third and last experiment, we focus only
on the selected side channel features (Sect. 4.2) and show that we are still able to
adequately detect encrypted malicious traffic.

For this experiment, our trainer program selected samples from all different
encrypted malicious traffic sessions from all datasets; whether botnets, reverse shells,
malware data transfer etc. To remove biases, the experiment was executed three times
using (i) uniformly random samples from all datasets and types of encrypted traffic (e.g.
see Table 2 above), (ii) biased (more botnet traffic in terms of 80%–20%), and (iii) per
dataset. The dataset was split 70–30 for training and classification.

The hit maps for true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) are depicted at Tables 10 and 11 (averages from three executions).

This experiment yielded the best results. From observations, we can conclude that
these types of side channel features are effective for discriminating encrypted malware
traffic; especially if we do not care to understand the type of malicious encrypted traffic
or the content being transmitted. We noticed a low percentage of False Positives and
False negatives (*8% of the total positive malicious sample).

Table 9. Performance comparison of algorithms – Experiment 2

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
LR 0.55 0.52 0.61 0.45 0.58 0.48 2077 1923
LDA 0.55 0.53 0.64 0.44 0.59 0.48 2077 1923
KNN 0.88 0.89 0.90 0.86 0.89 0.88 2077 1923
CART 0.87 0.90 0.92 0.85 0.89 0.88 2077 1923
NB 0.90 0.50 0.90 0.99 0.16 0.67 2077 1923
SVC 0.82 0.96 0.97 0.78 0.89 0.86 2077 1923

Table 10. Detection comparison for encrypted malicious traffic – Experiment 3

AI Accuracy True Pos False Pos False Neg True Neg

KNN 0.996334 488685 1495 648 135118
CART 0.99852 488849 440 484 136173

Automatic Detection of Various Malicious Traffic 359

6 Conclusions, Findings and Future Work

In this paper, we presented seven (7) machine-learning algorithms and their perfor-
mance for detecting multiple types of malicious traffic, both encrypted and unen-
crypted, based on selected side channel features. The project currently works
retroactively on already captured data. The presented experiments adequately prove
that side channel characteristics of TCP packets can be effectively used together with
machine learning to detect most types of malicious traffic, even if wide differences exist
on the types of ongoing attacks and to their corresponding traffic.

Some of our most important conclusions are the following:

• The best detection rate achieved was about 94.2% on CART and 93.4% using KNN
algorithms, on full-scale mixed types of malicious data for various datasets totaling
about *8 GB in size.

• Preliminary results show that machine learning algorithms that utilize Decision Tree
classifiers may be prone to packet crafting, if an attacker has access to the prediction
model, parameters and the entire sample. Although this is generally not feasible, we
should state here that the possibility exists. To this end, preliminary tests may
support that Instance based algorithms like KNN along with the selected side
channel features greatly reduce such attacks.

• We detected specific, descriptive features describing side channel characteristics of
TCP packets (such as packet size, delivery time ratios etc.) and built lightweight
classification modules (less than a few megabytes) that are able to run on real time
traffic and detect ongoing malicious attacks to enhance network security. We
showed that we can achieve very good malicious traffic detection percentages
without utilizing full-scale TLS and connection certification features, but instead
focus only on typical side channel packet characteristics.

• The use of side channel features significantly reduces the amount of analysis and
network traffic that needs to be saved for detection. Thus, the system can be used to
supplement network security analysts to gain a better understanding of their net-
work traffic and get robust alerts on security incidents without relying on error-
prone IDPS pattern matching or heavy behavioral analytics. We plan to combine
our system with well-known traffic monitoring systems, like Bro [28], Snort [29], or
Suricata [30].

Our experiments demonstrated the applicability of the proposed system for
detecting multiple types of malicious traffic without discriminating among types of
malicious attacks.

Table 11. Performance comparison for encrypted malicious traffic – Experiment 3

AI Precision Recall F1-score Support

0 1 0 1 0 1 0 1
KNN 1.0 1.0 1.0 0.99 1.0 0.99 489333 136613
CART 1.0 1.0 1.0 1.0 1.0 1.0 489333 136613

360 G. Stergiopoulos et al.

Our future work aims to build a working prototype for large-scale enterprise net-
works and work along well-known network traffic sniffers and monitoring systems
(Bro, Snort, Suricata). We also aim to extend the system to incorporate more features
like “connection type” and “TTL” feature to further enhance the detection mechanisms
against DDoS attacks and spoofed packets.

References

1. Biondi, P.: Scapy (2011)
2. McKinney, W.: PyData development team. Pandas: Powerful Python Data Analy. Toolkit

1625 (2015)
3. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830 (2011). http://scikit-learn.org/
4. MariaDB database server. https://mariadb.com/ Accessed 1 Jan 2018
5. First.org, Hands-on Network Forensics - Training PCAP dataset from FIRST 2015. www.

first.org/_assets/conf2015/networkforensics_virtualbox.zip
6. Milicenso, Ponmocup Malware dataset (Update 2012-10-07, http://security-research.dyndns.

org/pub/botnet/ponmocup/analysis_2012-10-05/analysis.txt Accessed 1 Jan 2018)
7. CTU-13 dataset, CTU University, Czech Republic, 2011, https://mcfp.felk.cvut.cz/publicDa-

tasets/CTU-Malware-Capture-Botnet-1/
8. Livadas, C., Walsh, B., Lapsley, D., Strayer, T.: Using machine learning techniques to

identify botnet traffic. In: Proceedings of the IEEE LCN Workshop on Network Security
(2006)

9. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: understanding, detecting, and
disrupting botnets. In: Proceedings of the Workshop on Steps to Reducing Unwanted Traffic
on the Internet (2005)

10. Binkley, J., Singh, S.: An algorithm for anomaly-based Botnet detection. In: Proceedings of
the Workshop on Steps to Reducing Unwanted Traffic on the Internet (2006)

11. Gu, G., Porras, P., Yegneswaran, V., Fong, M.W., Lee, W.: BotHunter: detecting malware.
Infection through IDS-Driven Dialog Correlation. In: Proceedings of the USENIX Security
Symposium (2007)

12. Timofeev, R.: Classification and regression trees (cart) theory and applications. Humboldt
University, Berlin (2004)

13. Střasák, F.: Detection of HTTPS malware Traffic (Detekce Malware v HTTPS komunikaci).
BSC thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum (2017)

14. Taylor, C., Alves-Foss, J.: NATE - network analysis of anomalous traffic events, a low-cost
approach. In: Proceedings of the New Security Paradigms Workshop (2001)

15. Lakhina, A., Papagiannaki, K., Crovella, M.: Structural analysis of network traffic flows. In:
Proceedings of ACM SIGMETRICS/Performance (2004)

16. Terrell, J., et al.: Multivariate SVD analyses for network anomaly detection. In: (Poster)
Proceeding of ACM SIGCOMM (2005)

17. Yen, T.-F., Reiter, M.K.: Traffic aggregation for malware detection. In: Zamboni, D. (ed.)
DIMVA 2008. LNCS, vol. 5137, pp. 207–227. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70542-0_11

18. Kohout, J., Pevny, T.: Automatic discovery of web servers hosting similar applications. In:
Proceedings of the IFIP/IEEE International Symposium on Integrated Network Manage-
ment, IEEE, pp. 1310–1315 (2015)

Automatic Detection of Various Malicious Traffic 361

http://scikit-learn.org/
https://mariadb.com/
http://www.first.org/_assets/conf2015/networkforensics_virtualbox.zip
http://www.first.org/_assets/conf2015/networkforensics_virtualbox.zip
http://security-research.dyndns.org/pub/botnet/ponmocup/analysis_2012-10-05/analysis.txt
http://security-research.dyndns.org/pub/botnet/ponmocup/analysis_2012-10-05/analysis.txt
https://mcfp.felk.cvut.cz/publicDa-tasets/CTU-Malware-Capture-Botnet-1/
https://mcfp.felk.cvut.cz/publicDa-tasets/CTU-Malware-Capture-Botnet-1/
http://dx.doi.org/10.1007/978-3-540-70542-0_11
http://dx.doi.org/10.1007/978-3-540-70542-0_11

19. Lokoč, J., Kohout, J., Čech, P., Skopal, T., Pevný, T.: k-NN classification of Malware in
HTTPS traffic using the metric space approach. In: Chau, M., Wang, G.A., Chen, H. (eds.)
PAISI 2016. LNCS, vol. 9650, pp. 131–145. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31863-9_10

20. Crotti, M., et al.: Traffic classification through simple statistical fingerprinting. ACM SIG-
COMM Comput. Commun. Rev. 37(1), 5–16 (2007)

21. Prasse, P., et al.: Malware Detection by HTTPS Traffic Analysis (2017)
22. Chari, S., et al.: A platform and analytics for usage and entitlement analytics. IBM J. Res.

Dev. 60(4), 7-1 (2016)
23. Combs, G.: “Wireshark.” (2007). http://www.wireshark.org/lastmodified Accessed 12 Feb
24. Roesch, M.: Snort: lightweight intrusion detection for networks. In: Lisa, Vol. 99, no.

1 (1999)
25. Liu, J., et al.: Effective and real-time in-app activity analysis in encrypted internet traffic

streams. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM (2017)

26. Chen, S., et al.: Side-channel leaks in web applications: a reality today, a challenge
tomorrow. In: IEEE Symposium on 2010 Security and Privacy, IEEE (2010)

27. Encrypted Traffic Analytics, Cisco public, White paper (2017). www.cisco.com/c/dam/en/
us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-
anlytcs-wp-cte-en.pdf Accessed Mar 2018

28. Bro, I.: http://www.bro-ids.org (2008)
29. Beale, J., Baker, A., Esler, J.: Snort: IDS and IPS toolkit. Syngress (2007)
30. Suricata, I.D.S.: open-source IDS. IPS/NSM engine (2014). (http://suricata-ids.org/)
31. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network

intrusion detection. In: IEEE Symposium on 2010 Security and Privacy (SP), IEEE (2010)

362 G. Stergiopoulos et al.

http://dx.doi.org/10.1007/978-3-319-31863-9_10
http://dx.doi.org/10.1007/978-3-319-31863-9_10
http://www.wireshark.org/lastmodified
http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
http://www.bro-ids.org
http://suricata-ids.org/

PwIN – Pwning Intel piN: Why DBI is
Unsuitable for Security Applications

Julian Kirsch(B), Zhechko Zhechev, Bruno Bierbaumer, and Thomas Kittel

Technical University of Munich, Munich, Germany
{kirschju,zhechev,bierbaumer,kittel}@sec.in.tum.de

Abstract. Binary instrumentation is a robust and powerful technique
which facilitates binary code modification of computer programs even
when no source code is available. This is achieved either statically by
rewriting the binary instructions of the program and then executing the
altered program or dynamically, by changing the code at run-time right
before it is executed. The design of most Dynamic Binary Instrumenta-
tion (DBI) frameworks puts emphasis on ease-of-use, portability, and effi-
ciency, offering the possibility to execute inspecting analysis code from an
interpositioned perspective maintaining full access to the instrumented
program. This has established DBI as a powerful tool utilized for analy-
sis tasks such as profiling, performance evaluation, and prototyping.

The interest of employing DBI tools for binary hardening techniques
(e.g. Program Shepherding) and malware analysis is constantly increas-
ing among researchers. However, the usage of DBI for security related
tasks is questionable, as in such scenarios it is important that analysis
code runs isolated from the instrumented program in a stealthy way.

In this paper, we show (1) that a plethora of literature implicitly seems
to assume isolation and stealthiness of DBI frameworks and strongly
challenge these assumptions. We use Intel Pin running on x86-64 Linux
as an example to show that assuming a program is running in context of
a DBI framework (2) the presence thereof can be detected, (3) policies
introduced by binary hardening mechanisms can be subverted, and (4)
otherwise hard-to-exploit bugs can be escalated to full code execution.

Keywords: Dynamic Binary Instrumentation · Intel Pin
Control Flow Integrity · Program shepherding · Malware analysis
Evasive malware · Virtual machine escape · Exploitation

1 Introduction

Malware continues to be a growing cyber security threat even nowadays. In
the early days of the Internet malware was developed for mainly experimental
reasons [26]. However, in recent years we are witnesses of malware utilized for
theft of confidential data, denial-of-service of commercial systems, or even black
mailing and cyber espionage. Industry and academia are constantly striving to
develop countermeasures against these threats in form of advanced malware
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 363–382, 2018.
https://doi.org/10.1007/978-3-319-99073-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_18&domain=pdf

364 J. Kirsch et al.

detection approaches. However, malware developers continue to become more
creative in their attempt to hinder the analysis of malware samples. Dynamic
Binary Instrumentation (DBI) can help analysts to inspect applications’ char-
acteristics or alter their functionalities even when no source code is available.
Therefore, DBI is easily employed as a malware analysis tool where the existence
of anti-analysis techniques and the absence of source code are very common.

Similarly, computer systems are often subject to external attacks that aim to
gain control over their functionality by leveraging malicious inputs. Such attacks
attempt to trigger existing programming mistakes in software such as memory
corruption bugs to subvert execution. DBI frameworks provide a possibility to
conveniently add new functionalities to existing binaries, thus rendering these
frameworks useful to harden software. One peculiarity, illustrating this approach,
is program shepherding [17] – a technique that involves monitoring of all control
transfers to ensure that each satisfies a given security policy, such as restricted
code origins and controlling return targets. According to the program shepherd-
ing’s paradigms this is possible because the hardened application is executed
in the context of a DBI framework. A typical example of program shepherding
is the implementation of Control Flow Integrity (CFI) policies using DBI to
operate on Commercial Off-The-Shelf (COTS) binaries.

In this work we challenge both scenarios painted above. We argue that the
original intent driving the motivation to build DBI frameworks was the ability
to execute analysis code in a way that interposes execution of the instrumented
program, i.e. analysis code can subscribe to be notified of any occurring event
taking place in context of the instrumented program. Furthermore, an important
design goal of DBI was to equip analysis code with full inspection capabilities
covering the complete architectural state of the target. In practice this is typi-
cally achieved by introducing a single address space for both, analysis code and
instrumented program.

This key observation is the main motivation behind our research. We show
that due to the shared memory model, DBI frameworks in their current state
are inherently incapable of providing neither stealthiness of the analysis code nor
isolation of the analysis code against manipulations of the instrumented target.
In our opinion, this conceptionally renders them unsuitable for malware analysis
and program shepherding.

In a nutshell, this paper makes the following contributions:

Relevance. We identify DBI to be a common instrument for security-related
tasks such as malware analysis and application hardening in literature.

Detectability. We demonstrate that it is trivial for an application to detect
whether it is running in context of a DBI framework, enabling malicious
software to behave in different ways during analysis.

Escapability. We attest that a malicious application can break out of the instru-
mentation engine and execute arbitrary code outside of the DBI framework.

Increased Attack Surface. We argue that counter-intuitively instead of
increasing security by introducing DBI based software hardening measures,
DBI actually decreases the overall security by escalating an otherwise hard-
to-exploit real world bug (CVE-2017-13089) into full code execution.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 365

2 Background and Related Work

In this chapter we discuss background about essential characteristics of DBI in
general, introduce a consistent taxonomy used throughout this work, and discuss
the usage of DBI frameworks for security in academic literature.

2.1 Dynamic Binary Instrumentation

A typical DBI framework consists of three components in a single address space:

1. The compiled target program which functionality should be altered
2. The functionality that is to be added to the target program
3. The DBI platform injecting the additional code into the target binary and

ensuring proper execution.

Implementers typically develop their own analysis plugins which the instru-
mentation platform injects into the binary code of an application (instrumented
application) that should be analyzed. The instrumentation platform exposes
an API that enables the analysis plugin to register callbacks for certain events
happening during the execution of the instrumented application. For example, it
might be desirable for an analysis plugin implementing a shadow stack to receive
a callback whenever the instrumented application tries to execute a call or ret
instruction (interposition). Once the analysis plugin is notified (synchronously)
of the execution of such an instruction, it may now freely inspect or modify all
register and memory contents of the instrumented application (inspection).

2.2 Required Security Properties of Analysis Frameworks

In context of this work, we follow the taxonomy of Garfinkel and Rosenblum [14]
to outline key requirements that any dynamic analysis framework needs to fulfill.
In accordance to this work, we introduce analysis plugin and the instrumentation
platform to form the analyzing system, as opposed to the instrumented applica-
tion which constitutes the analyzed system. Then, the Garfinkel and Rosenblum
taxonomy can be rephrased to DBI tools as follows:

R1 Interposition. The analyzing system can subscribe to and is notified of
certain events within the analyzed system. For DBI this means that the
instrumentation platform stops execution of the instrumented application and
transfers control to the analysis plugin once certain events occur.

R2 Inspection. The analyzing system has access to the full state of the analyzed
system. Thus, the analyzed system is unable to evade analysis. In context of
our work this implies that the analysis plugin can freely access and modify
all memory and register contents of the instrumented application.

R3 Isolation. The analyzed system is unable to tamper with the analyzing sys-
tem or any other analyzed system. This means that the instrumentation plat-
form and analysis plugin have to defend themselves against (malicious) mod-
ifications performed by the instrumented application.

366 J. Kirsch et al.

In addition, researchers realized that dynamic analysis systems suitable to
handle malware also need to operate in a way transparent to the analyzed system.
This has the simple reason that so-called split personality malware might evade
dynamic analysis if it is capable of detecting the analysis environment, as pointed
out by Lengyel et al. [20]:

R4 Stealthiness. The analyzed system is unable to detect if it currently under-
goes analysis. This means that the instrumented application must not be able
to infer the presence of the instrumentation platform.

2.3 DBI Use in Literature

There are numerous examples of DBI utilization not only by the research com-
munity but also in commercial software development.

Binary Analysis. Many researchers develop DBI tools in order to perform anal-
ysis of binaries, e.g. Salwan et al. developed Triton [30], a concolic execution
framework. Clause et al. [9] implement a dynamic taint analysis tool which sup-
ports data-flow and control-flow based tainting using DBI. Other analysis tools
based on Intel Pin include a debugging backend shipped by default with the
Interactive Disassembler (IDA) as well as Lighthouse1, a coverage measurement
tool created to enrich static analysis with dynamic information.

Bug Detection. Even in 2018, vulnerabilities resulting from memory corruption
bugs [25] are still problematic. Many researchers implement vulnerability detec-
tion and prevention tools using DBI to limit the potential damage. This is the
case because DBI provides them the advantage so that custom security code may
be directly executed within the analyzed/hardened program. The Valgrind dis-
tribution includes a lot of profiling and debugging tools, such as Memcheck [22]
which detects memory-management problems, as well as the heap profiler
Massif [24]. Similarly, on the Windows family of Operating Systems (OSs)
Dr. Memory [7] is a memory monitoring tool built on the DynamoRIO frame-
work capable of identifying memory-related programming errors.

Program Shepherding/(CFI). A lot of research is recently conducted regarding
program shepherding and CFI which attempts to restrict the set of possible
control flow transfers to those that are strictly required for correct program
execution [3]. In order to implement this approach, Davi et al. [10] developed a
Pintool that dynamically enforces sanitizing return address checks by employing
a shadow stack at run-time. While the idea of a shadow stack is much older [8,33],
the advantage of this approach was the ease of development of the dynamic
security enforcement tool. A similar approach was chosen by van der Veen et
al. who developed a Linux kernel module and a Dyninst plugin [32] which both
determine and restrict the valid execution paths and thereby ensure correct

1 https://github.com/gaasedelen/lighthouse.

https://github.com/gaasedelen/lighthouse

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 367

program execution. Instead of verifying the return address’s validity, Tymburibá
et al. [31] in contrast try to utilize Return-Oriented programming (ROP) gadgets’
characteristics in order to prevent the hijacking of program’s execution flow. In
their Pintool called RipRop they detect unusually high rates of successive indirect
branches during the execution of unusually short basic blocks, which may be an
indication of a undergoing ROP attack. Later, in the same year Follner et al.
present ROPocop [13], another Code-Reuse Attack (CRA) detection framework
targeted at Windows x86 binaries. It combines the idea of Tymburibá et al.
together with a custom shadow stack and a technique which ensures no data
is unintentionally executed. Yet another example of a Pintool utilized in ROP
attack detection was proposed by Elsabagh et al. Their tool EigenROP attempts
to detect anomalies in the execution process [11], due to execution of ROP
gadgets, based on directional statistics and the program’s own characteristics.
Finally, Qiang et al. built a fully context-sensitive CFI tool [28] on top of Pin
that may be used to protect COTS binaries. Among other advantages is that the
tool checks the execution path instead of checking each edge in this execution
path one by one which helps accelerate the process.

Malware Analysis. In addition, many security analysts employ DBI tools to
study and profile malicious programs’ behavior. Both to harden productive appli-
cations as well as to understand and reverse engineer potentially malicious pro-
gram functionality in a sandbox environment. For instance, Gröbert et al. take
advantage of a Pintool to generate execution traces and apply several heuris-
tics to automate the identification of cryptographic primitives [15] in malicious
samples. Kulakov developed a Pintool which performs static malware analysis
in order to generate a loose timeline of the whole execution [19]. Additionally,
he created an IDA plugin for better visualization of the data. Banescu et al. [4]
proposed an empirical framework which is able to behaviorally obfuscate stan-
dard malware binaries. The program’s observable behavior or path is defined by
all internal computations and the sequence of accomplished system calls during
its execution. In order to obfuscate malware samples, Banescu et al. [4] imple-
mented a Pintool which inserts and reorders system calls into the binary without
modifying its functionality but altering its known observable behavior.

Note that for the latter two of these domains, both Isolation and Stealthiness
are a fundamental requirement to provide the proposed security guarantees.

2.4 Scope

To our perception, the most prominent examples of DBI frameworks nowadays
are Intel Pin [21], Dyninst [5], Valgrind [23], DynamoRIO [6] and (more recently)
QBDI [2] and Skorpio [29]. In the following, we focused (almost exclusively) on
Intel Pin version 3.5 in Just-In-Time (JIT) mode on Linux while checking our
results also against other common DBI implementations. We also utilize, as the
time of writing, the latest release of Ubuntu 17.10 (64 bit) so that we can benefit

368 J. Kirsch et al.

Table 1. Description of different DBI detection techniques. An asterisk (*) in the first
column indicates a technique newly discovered during our research. All other techniques
were adopted from their 32 bit versions targeting Windows presented in [12], except
enter which is proposed by Ahmed Bougacha (See Footnote 3).

Technique Type Brief description

envvar EA Checks for Pin specific environment variables on stack

enter CA Checks whether enter instruction is legal and can be
executed

fsbase* CA Checks if fsbase value is the same using rdfsbase and
prctl

jitbr* CO Detects time overhead when a conditional branch is
jitted

jitlib CO Detects JIT compiler overhead when a library is loaded

nx* CA Tries to execute code on a non-executable page

pageperm EA Checks for pages with rwx permissions

mapname EA Checks mapped files’ names for known values (pinbin,
vgpreload)

ripfxsave CA Executes fxsave instruction and checks the saved rip
value

ripsiginfo* CA Causes an int3 and checks the saved rip value in
fpregs

ripsyscall CA Checks whether rip value is saved in rcx after a syscall

smc* CA Check whether the framework detects Self-Modifying
Code

vmleave EA Checks for known code patterns (VMLeave)

from the latest security mechanisms, such as, for example, a higher number of
randomized bits by Address Space Layout Randomization (ASLR)2.

Note that from the previously defined requirements, R1 (Interposition) and
R2 (Inspection) are fundamental features of DBI. In the following sections,
we will challenge the previously defined requirements R3 (Isolation) and R4
(Stealthiness) and show that subversion of any thereof consequently also anni-
hilates R1 (Interposition) and R2 (Inspection).

3 Stealthiness

In this section we present several techniques that reliably detect the presence of
different DBI frameworks. To achieve this, we not only adopted several existing
DBI detection techniques [12] to Linux x86-64 but also found new, previously

2 See /proc/sys/vm/mmap rnd bits.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 369

Table 2. Detection mechanisms on different DBI frameworks. A indicates that the
test reliably detects the presence of the indicated DBI framework, a means that a
particular test does not detect the presence of the respective DBI framework.

unknown detection techniques. We group detection techniques in three cate-
gories; (1) code cache/instrumentation artifacts (CA), (2) JIT compiler over-
head (CO), and (3) runtime environment artifacts (EA). In this paper we only
describe techniques from categories (1) and (3) in detail. While we explain these
techniques on Pin, we found them also applicable to other DBI implementations.

We have developed a tool called jitmenot which employs 13 different DBI
detection mechanisms summarized in Table 1, 7 of which were adopted from
their Windows specific 32 bit counterparts presented elsewhere [12] and one
was proposed by Ahmed Bougacha3. In the following, we describe only the most
prominent examples for space reasons. Our testing tool jitmenot is released under
an open-source license and can be downloaded from GitHub4. See Table 2 for an
overview of which detection technique is able to detect which of the analyzed
DBI frameworks.

3.1 Code Cache/Instrumentation Artifacts

In the first category – code cache artifacts – we include anomalies introduced by
the fact that the executed code is not the original one.

Abusing the syscall Instruction (ripsyscall). One less known property of
the x86-64 architecture is that when executing any system call via the syscall
instruction, the current instruction pointer value is copied to the rcx register [16],
such that the kernel can restore execution correctly via the sysret instruction
later. As operation of the OS’s kernel happens transparently, user land perceives
3 http://repzret.org/p/detecting-valgrind.
4 https://github.com/zhechkoz/PwIN.

http://repzret.org/p/detecting-valgrind
https://github.com/zhechkoz/PwIN

370 J. Kirsch et al.

the syscall instruction to have the side effect of setting the rcx register to
the instruction right behind the syscall. The ripsyscall method involves the
way the DBI frameworks emulate system calls. For example, when Pin has to
accomplish some task outside of the Virtual Machine (VM), such as forwarding
a system call request from the instrumented application or determining the next
basic block to execute, the register state of the instrumented application is saved
and the VM is left.

However, this is not the case for an instrumented application executed within
DBI. Since, DBI frameworks wrap all system calls performed by the instrumented
application, they need to save the program’s register state before switching from
the context of the instrumented application to its own internal state. When re-
entering the context of the instrumented application, apart from the system call’s
result in rax, no other side effects are propagated back to the program. As a
result, the rcx register observed by the instrumented application stays constant
across system calls. This discrepancy can be used as a detection mechanism.

Self-modifying Code (smc). Yet another code cache artifact involves the
way DBI frameworks handle Self-Modifying Code (SMC) together with the
fact that instrumentation is done at basic block granularity. According to
Intel, the Pin framework, for example, does attempt to detect manipula-
tions of the original code of the instrumented application by exposing the
PIN Set-Smc-Support configuration option and a corresponding callback func-
tion TRACE -AddSmc-Detected-Function. However, the analysis plugin pro-
grammer has to manually trigger code cache invalidation upon receiving a SMC
notification to re-trigger the JIT compiler for the altered code. If the analysis
plugin programmer does not handle SMC, or does not invalidate the code cache,
the instrumented application could detect the presence of Pin as follows: First,
the instrumented application marks its own code as readable, writeable and exe-
cutable prior to executing a probe instruction once, making sure it gets placed
into the code cache. Then the malicious tool modifies the immediate operand
of the probe mov instruction from I0 to I1 in the code cache. Since Pin does
not automatically invalidate the code cache only the original code is modified,
resulting in mov ending up with immediate operand I0. If the same sequence
is executed outside of a instrumentation platform, the code change takes effect
immediately and the mov instruction will use I1 as immediate operand. Only
if the analysis plugin monitors all write accesses of the application to its own
text segment it can reliably detect SMC. Furthermore, a code cache invalidation
request after every write (incurring performance overhead) is needed to prevent
the attack sketched above.

Wrong Emulation of enter Instruction (enter). Some DBI frameworks,
such as Valgrind, first translate the program into a processor-neutral Intermedi-
ate Representation (IR), which is then instrumented by the analysis plugin and in
the end compiled to machine code. This implies that the DBI framework is capa-
ble of emulating the whole instruction set of the processor. However, since some
instructions are less frequently used than others, DBI developers choose to either
partially or completely not support them. An example of such an instruction is

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 371

the x86 enter instruction [16], which creates a stack frame for a procedure. This
instruction executes as expected in a non-instrumented environment. However,
when a program instrumented by Valgrind attempts to execute enter, a signal
is raised because this particular instruction is not implemented in the IR. By
catching this signal, an application can determine whether it is instrumented or
not. Note that this behavior is not observed in Intel Pin since it does not rely
on IR for instrumentation.

Neglecting No-eXecute Bit (nx). W⊕X is an exploitation mitigation tech-
nique enabling the OS to mark writeable pages in memory as not executable.
The consistent application of W⊕X denies an attacker the ability to introduce
own code into the address space of a program before transferring the execution
flow to it. However, when the JIT compiler of a DBI framework fetches new
instructions for instrumentation, it does not check whether the source memory
is marked as executable; as long as the page is readable the JIT compiler will
translate any data present and emit executable assembly instructions. Note that
all DBI frameworks we tested were vulnerable to this problem. Clearly, this is a
huge security issue, as this implies that any program instrumented by a DBI
framework effectively has W⊕X disabled. We utilized this fact as a detection
technique in the following way: (1) Allocate a new page on the heap without
execute permissions and place valid code in it, (2) then execute it. Without
instrumentation, on any modern OS, a program trying to execute code on a
page without x permissions will result in a crash. Otherwise, if the program is
being instrumented, the program will be allowed to continue. This difference
allows us to determine whether an application is currently instrumented or not.

Therefore, if it is possible to divert execution to a user-controllable buffer,
an attacker can place shellcode in it and the VM will execute it. This effectively
violates the Isolation property of DBI. Later we present a real-world example of
how this can be leveraged to achieve a fully working exploit. This classifies as
a major vulnerability issue not only in PinDBI framework but also in all other
DBI engines which we tested as can be seen in Table 2. Nevertheless, introducing
proper checks for correct memory page permissions before fetching code from
memory could resolve this issue. This can be accomplished either in the JIT
compiler or as a temporary fix integrated in the instrumentation platforms.

Real Instruction Pointer (ripfxsave/ripsiginfo). This technique was
already introduced by Falcón and Riva [12]. However, as detection of the real
rip also is a building block for attacks (against the DBI Isolation property)
described later in this paper, we briefly summarize the techniques nevertheless.

In a nutshell, the DBI framework VMs execute only the translated and instru-
mented code of the application residing in the code cache but never the original
code in the original text segment of the instrumented application. To maintain
compatibility with non-relocatable applications, Pin attempts to mask the VM’s
rip with the instrumented program’s original rip value whenever necessary.

One technique for finding the real rip abuses the systems Floating Point
Unit (FPU): First, any FPU instruction (e.g. fldz) is executed. Afterwards,
the FPU state is saved using the fxsave instruction. This state includes the

372 J. Kirsch et al.

address of the most recently executed FPU instruction, which is not masked by
any instrumentation platform. A malicious instrumented application can then
compare this value to the (masked) value when directly reading the rip register.
If the values do not match, the application is being instrumented.

The same can be achieved on Linux with the help of the OS: The sigaction
system call allows the calling process to examine and/or specify the action to be
associated with a specific signal. When configured, the OS provides information
about the context at the time the signal occurred. If we execute any floating-point
instruction and then initiate a signal (for instance by deliberately triggering a
segmentation fault), the context argument passed to the signal handler contains
the state of the FPU registers. By comparing these values with the corresponding
rip, one can again determine whether the program is being instrumented.

3.2 Environment Artifacts

In this section we identify environmental artifacts introduced by DBI frame-
works. By this we refer to anomalies in the execution environment. For example,
the memory layout varies drastically with the usage of instrumentation plat-
forms. Searching for DBI artifacts such as strings or particular code patterns in
memory reveals the presence of a DBI tool inside the target process memory.

Pin Internal Environment Variables. Firstly, Pin expects certain
environment variables in order to run properly (e.g. PIN INJECTOR64 LD
LIBRARY PATH). Because the framework spawns the instrumented process as its
own child, these inherited environment variables can still be found in the instru-
mented application’s memory. Querying them by means of getenv can therefore
expose the underlying JIT engine.

Page Permissions and Code Patterns. A side effect of the JIT engine is the
presence of pages that are marked simultaneously as readable, writeable, and
executable. An attacker can use this knowledge to scan the address space for
such pages (e.g. using /proc/self/maps on Linux). Knowing that rwx memory
is not present in a particular binary this discrepancy reveals the presence of the
JIT compiler’ code cache.

Additionally, an attacker can scan the whole memory for mapped pages and
compare names of memory mapped files with names related to the DBI frame-
work (e.g. pinbin for Pin). Moreover, as the instrumented application and the
analysis plugin share one address space, the full implementation of the instru-
mentation platform has to be present as well. For example, an attacker can search
for specific code patterns such as the characteristic implementation of the tran-
sition between the instrumented application and the analysis plugin (VMLeave).
This code sequence is distinctive because it saves the current VM context on the
stack and restores the jitted application’s registers, generating assembly code
that can easily be recognized.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 373

Another method revealing the JIT engine’s presence relies on an egg-hunting
approach: A simple loop might scan all pages for a unique 8-byte-pattern. Under
normal circumstances, the pattern should be observed exactly once in the address
space (the operand of the comparison). However, when executed in context of
a DBI framework, the pattern emerges at least twice: Once in the original code
and once in the code cache.

3.3 Summary

As one can see, an instrumented application can notice whether it is currently
being executed in a DBI environment. By nature, JIT compilers cause a lot of
noise which is not only hard to disguise but trying to do so introduces even more
irregularities in the instrumented program execution (cf. [27]). It follows that,
the requirement R4 (Stealthiness) which is essential for security applications
such as malware analysis cannot be hold by DBI frameworks.

4 Isolation

After discussing detectability of DBI frameworks, the following section focuses
on the methods and possibilities to escape from and consequently evade the
instrumentation. In the original work describing Pin [21] in Sect. 3.3.1 the authors
state that the instrumented application’s code is never executed – instead it is
translated (from machine instructions to the same kind of machine instructions)
and executed together with the analysis plugin’s procedures within a custom
virtual environment (the Pin VM). All executed machine instructions reside in
the VM (code cache) and the effect of any instruction cannot escape from the VM
region. Like other VMs, the Pin framework manages the instrumented program’s
instruction pointer and translates each basic block of the original code lazily (i.e.
when reached by the execution flow). Two properties make Pin subject to attacks
compromising isolation: First, the VM may and will reuse already compiled code
because of optimization benefits. Second, Pin does not employ any integrity
checks of already translated instructions in the code cache. Therefore, we can
alter already executed instructions in memory, as they (comfortably) reside on
pages marked rwx by the instrumentation platform. Experimental evidence from
Sect. 3 indicates that the code cache implemented by other DBI tools behaves in
accordance with Pin’s code cache. However, we target the DBI implementation
of Pin on x86-64 Linux in the following sections.

For this we distinguish two different attacker models, and describe an escap-
ing mechanism suitable for each.

A1 Control of Code and Data. This is the most potent attacker. She can
freely specify which code is executed in the instrumented application and is
able to freely interact with the application while instrumented. In reality,
such an attacker would craft a malicious binary in the hope that an analyst
would execute the binary in a instrumentation platform.

374 J. Kirsch et al.

A2 Control of only Data. This is the weaker of the two attacker models.
In this case, an attacker only possesses copies of the instrumented applica-
tion, instrumentation platform, analysis plugin, and all depending dynamic
libraries. However, this attacker is also able to freely interact with the applica-
tion containing memory corruption vulnerabilities while executed in an DBI
framework. In practice this is the case when some binary hardening policy
implemented using DBI gets attacked over the network.

While detectability always required an attacker of type A1, we show that it
is possible for an attacker of type A2 to escape from the instrumentation if the
attacked program contains what is commonly referred to as a write-where-what
vulnerability.

Fig. 1. A minimal program escaping from the Pin VM.

4.1 Escaping from Pin’s Instrumentation Using Direct Code Cache
Modification

First, we describe the escaping technique for the more potent attacker A1 whose
goal is to execute arbitrary code without Pin’s instrumentation engine being able
to embed callbacks notifying the analysis plugin. The existence of the just-in-
time compilation allows us to first execute a basic block in order to allow the
Pin VM to translate its assembly code and place its address in an internal hash
table to find it later. Then the instrumented program can find the translated
version of the basic block in the code cache (using the real instruction pointer
detection techniques described in the previous section). It can then modify the
jitted code arbitrarily. Once the execution flow reaches the modified basic block
a second time, Pin will effectively execute whatever an attacker placed there.
Figure 1 depicts the steps needed.

Prior to escaping from the VM, one first has to use any of the techniques to
find the real rip value discussed in Sect. 3 (Block loc A0 in Fig. 1 showing the
ripfxsave technique). As expected, Pin executes these instructions within its

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 375

own code cache. As a result, at the end of block loc A0, rax now points to the
FPU context containing a pointer to the beginning of loc A0. Then (step 1.),
execution is redirected to block loc A1 using a jmp instruction, where an attacker
places code that patches out the first instruction of loc A0 and replaces it with
a control flow change eventually reaching loc B0 (step 2.). Then, when the
control flow reaches loc A0 for the second time, the modified instructions placed
there will be executed, now redirecting execution to block loc B0 residing in
the original code (step 3.). As the code cache is mapped rwx, this does not
trigger any page fault, hence the instrumentation engine does not get notified of
the breach happening in the VM. To maintain ABI compatibility to arbitrary
code embedded into the malicious executable, block loc B0 needs to restore the
rsp and fsbase registers, which, due to the code generation strategy of the
JIT compiler are conveniently accessible via a structure pointed to by register
r15. Now, execution can move on to any arbitrary code loc C0 in the original
executable prepared by the attacker – as all pages are mapped executable there
is no mechanism allowing Pin to re-trigger the JIT compiler process to embed
its instrumentation hooks. In fact, from Pin’s perspective the application is still
executed in the VM and awaits to regain control again, which never happens.

4.2 Escaping from Pin’s Instrumentation Using an Existing
Memory Corruption

As previously stated, it is also possible under certain circumstances to evade
the instrumentation if only an attacker of type A2 is present. Escaping the Pin
sandbox in Linux without necessarily knowing any code cache address is also
possible: We measured the relative offsets between all mapped pages in different
executions of an application instrumented by Pin. As it can be seen in Fig. 3 (top
right on page 18), the offset between libc and the code cache, as well as pinbin
(main Pin binary) and Pin’s own stack is constant. Leaking addresses from any
of these code regions therefore allows us to reliably find the other mappings.
Consequently, we can utilize all gadgets present in the code basis to build ROP
chains, or directly write shellcode using a write-what-where vulnerability into the
code cache. This is due to the fact that, as already explained, the Pin framework
copies itself into the application’s memory by allocating memory using mmap. As
pointed out in earlier work [18], the addresses of consecutively allocated memory
allocations returned by mmap are predictable (i.e. relative distances remain con-
stant) in Linux. Thus, all required information can be calculated a priori based
on known binaries of Pin, the analysis plugin, the instrumented application, and
all dynamic link libraries (cf. Fig. 3 in the Appendix).

Since Pin does not monitor its code cache for external changes and does not
restrict its execution to known memory locations, one can alter the instrumented
processes memory in any suitable way. Moreover, the address of the code cache in
the Linux version of Pin can be calculated by using any leaked address from other
similarly created memory region. Therefore, if the binary contains a function
that is executed twice and after its first invocation, a malicious user overwrites
this function’s instructions in the code cache, they are able to gain full control

376 J. Kirsch et al.

over the application. Unfortunately, such a function (rtld lock default lock)
is contained within the dynamic loader, a core component of the Linux OS.

5 Increased Attack Surface

Previously we have shown that DBI frameworks are both detectable and
escapable rendering them as not suitable for binary hardening or malware analy-
sis. In this section, we show how implementing security mechanisms enforced by
executing a given COTS binary in a DBI environment even introduces more pos-
sibilities to exploit already present bugs (i.e. attack surface is increased instead
of decreased). To support this claim we discuss an example where a vulnerability
that is not trivial to exploit during normal execution becomes exploitable when
executed within a DBI framework interacting with an attacker of type A2.

5.1 The Return of Aleph One

During the study of detectability properties of instrumentation platforms we
already pointed out that they fail to check the permissions of the code that is
to be processed by their JIT engines. This means any data in memory can (and
will) be translated to executable instructions if reached by the control flow. This
transfers us back to the dawn of buffer overflows and shellcode execution era.
As a simple example we can run an application which jumps to shellcode on
the stack. Normally, because of the set No-eXecute bit in the page tables of the
stack, the program would crash as soon as the instruction pointer points to an
address on the stack. However, instrumenting the same binary with Pin does not
crash the application. In fact, the execution continues and opens a shell.

5.2 Turning CVE-2017-13089 to a Code Execution Bug with the
Help of Intel Pin

To underline the exploitability claim, we have implemented a Proof Of Con-
cept binary (PwIN) that exploits an existing CVE vulnerability (CVE-2017-
13089, cf. [1]) that is not easily exploited when executed in a normal environ-
ment. CVE-2017-13089 is a bug in wget versions older than 1.19.2 found in
http.c:skip short body(). The bug itself is described in more detail in the
next section. Without Intel Pin the strongest attack (known to us) results in a
1
16 probability of leaking an arbitrary file stored on the victim to the server (see
below). We will discuss how the same bug can be escalated to full code execution
if the victim is instrumented using Intel Pin.

Description of the Bug. The vulnerable function in wget is called when
processing HTTP redirects together with HTTP chunked encoding. The chunk
parser uses strtol() to parse each chunk’s length into a variable of type long.
Prior to copying a chunk’s contents into a buffer on the stack, the code validates

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 377

Fig. 2. Control flow and state changes of wget when attacked by a malicious server.
The last control transfers (4.2 in purple and 5. in red) mark the transitions that are
enabled by the usage of Pin. Under normal circumstances, the program would crash as
the buffers on the stack containing the malicious shellcode would not be executable.
(Color figure online)

that the chunk size specified in the HTTP request fits into the buffer, forgetting
to ensure the supplied signed value is actually a positive number. The code then
tries to skip the chunk in pieces of 512 bytes but ends passing a negative length to
connect.c:fd read(). Unfortunately, fd read()’s length argument is of type
int, thus the high 32 bits of the length variable are discarded. Therefore, values
in the range 0xffffffff00000000 to 0xffffffffffffffff pass all checks while
the truncation to a 32 bit value still allows an attacker to control the length of
the read chunk and to overflow the dlbuf variable, a buffer of fixed size, on the
stack.

Exploitation of the Bug. The bug allows for a continuous write of arbi-
trary data on the stack. Due to the absence of stack canaries, the saved return
address on the stack can be compromised. However, without the knowledge of
the current state of ASLR, there is not much an attacker can do, as she does not
know any pointer pointing into valid memory (the binary is compiled as position
independent executable). Consequently, the only remaining option to continue
exploitation is a partial pointer override. With this technique, an attacker abuses
the fact that ASLR operates at a page (4096 = 212 bytes) granularity. There-
fore, the lowest 12 bits of any object within the address space are deterministic.

378 J. Kirsch et al.

As a consequence, an attacker can now trade the number of ROP gadgets reach-
able by a ret for exploit reliability by overwriting parts of the saved return
pointer on the stack. For example, a two-byte partial pointer overwrite needs to
guess 2 · 8 − 12 = 4 bits of randomness, allowing to transfer control to a region
sharing the same 22·8 = 65536 bytes region with the original return address.
Automatically evaluating all targets within this region using dynamic analysis
does not unveil any target where an attacker could trivially obtain arbitrary
code execution. The only noteworthy effect that can be observed is when target-
ing body file send(), as register allocation (cf. Fig. 2) matches the signature
of this function with rsi pointing to attacker controlled data specifying a file
name to transfer from the client to the server.

However, when running in context of Intel Pin we can inject and execute
shellcode situated in non-executable memory regions, reducing the challenge of
achieving code execution to just having to find a reliable mechanism to jump
to a pointer to data we control. Our full exploit chain is visualized in Fig. 2:
Fortunately, when reaching the end of the skip short body() function the rsi
register (step 1.1) contains the address of dlbuf (controlled by the attacker).
However, there are no convenient gadgets reachable with a partial overwrite on
the return address which may divert the code execution to the address contained
in rsi. We remedy this by injecting our own jmp rsi gadget into a buffer that we
can divert control to using the partial overwrite in step 1.3. As expected, before
reaching the return pointer on the stack, we inevitably have to load an invalid
pointer to rbp register (step 1.2) which fortunately, does not negatively influ-
ence our future actions. We can reach a stack lifting gadget with a partial over-
write (step 2.) that increments the stack pointer by Δ = 0x88 bytes (step 3.).
The new stack pointer location now points to a pointer to the UTF-8 encoded
value of the contents of the Set-Cookie header of the HTTP response. At this
point the ret will transfer control to an attacker controlled buffer (steps 4.1
and 4.2) but the UTF-8 encoding constrains the shellcode in an uncomfortable
way. Luckily enough, the string V\xff is encoded to V\xc3\xbf which is per-
fectly valid UTF-8 and disassembles to push rsi; ret at the same time. As
rsi still points to (now unconstrained) attacker controlled shellcode from the
HTTP response body residing in dlbuf, this control transfer (step 5.) is the last
step in achieving code execution. This attack succeeds with a probability of 1

16 ,
due to the partial pointer override used in the first step.

6 Discussion

We conclude this work by inviting other researchers to reproduce our findings,
discussing limitations and future improvements.

6.1 Reproducibility and Source Code Availability

In the spirit of open research and to enable others to reproduce our findings, we
publish the source code of all the experiments conducted in context of this work.
A Docker container is available via download at https://kirschju.re/pwin.

https://kirschju.re/pwin

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 379

6.2 Limitations and Future Work

There are some known limitations associated with the proposed methodologies.
First, the detect mechanism can be avoided by extending DBI frameworks. How-
ever, we already discussed that the JIT compiler introduces a lot of noise in
the normal execution of the application, constantly turning up new possibilities
to detect irregularities. Secondly, to escape the DBI sandbox, the application
has to execute a function at least twice and simultaneously know its address
in the code cache. Moreover, it needs to alter this function in the code cache
before its last execution. Additionally, to escape DBI without knowing exactly
the address of a function executed at least twice, requires calculation of the nec-
essary memory locations. This is only possible, since the offset between pages
created by mmap is constant [18]. However, the attacker has to possess copies
of the instrumented application, instrumentation platform, analysis plugin, and
all depending dynamic libraries because they all reside in the code cache and
influence the fixed offsets between memory regions.

The research presented in this work discussed in detail the disadvantages of
utilizing DBI engines in the security domain. The most fundamental problem is
that DBI logic and application reside in the same address space, with no iso-
lation present. The question remains how Intel Pin and other DBI frameworks
can mitigate this problem in the future and how these techniques would influ-
ence our research. A possible mitigation strategy might introduce Intel Memory
Protection Keys to change memory access permissions from user space without
sacrificing performance.

6.3 Conclusion

In this paper, we showed that DBI frameworks are commonly used in a con-
text of security, both as an analysis platform, as well as a hardening tool. Thus
we systematically discussed the requirements for DBI frameworks to be used
within such a context. We showed, that DBI is not able to hold these require-
ments in practice. We demonstrate, that the stealthiness requirement does not
hold in practice by enumerating different inherent techniques to detect DBI. In
addition, we also attested that DBI does not sufficiently isolate instrumented
applications from the instrumentation framework, which provides a possibility
for instrumented applications to gain arbitrary code execution on the analysis
system. Finally, we argue, that instead of increasing security by introducing DBI
based software hardening measures, DBI actually decreases the overall security
by escalating an otherwise hard-to-exploit real world bugs into to full code exe-
cution. To support our claim, we implemented a couple of Proof Of Concepts to
support our claims, which we are happy to freely share with the community.

380 J. Kirsch et al.

A Appendix

Fig. 3. Color matrices showing memory regions sharing random (/) or constant
(/ /) distances with each other for applications instrumented by Linux (above
right) and Windows (down left) version of Pin. The region names in red are additional
components added by the instrumentation framework while in black are presented the
program’s original mapped files. (Color figure online)

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 381

References

1. CVE-2014-0160. Available from MITRE, CVE-2017-13089. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-13089. Accessed 24 Apr 2018

2. QuarkslaB Dynamic binary Instrumentation (QBDI). https://qbdi.quarkslab.
com/. Accessed 24 Apr 2018

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity princi-
ples, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13, 4:1–4:40
(2009)

4. Banescu, S., Wüchner, T., Guggenmos, M., Ochoa, M., Pretschner, A.: FEEBO: an
empirical evaluation framework for malware behavior obfuscation. arXiv preprint
arXiv:1502.03245 (2015)

5. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and implementation of
a dynamic optimization framework for windows. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4) (2001)

6. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: International Symposium on Code Generation and Opti-
mization, CGO 2003, pp. 265–275. IEEE (2003)

7. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pp. 213–223. IEEE Computer Society (2011)

8. Chiueh, T.c., Hsu, F.H.: RAD: a compile-time solution to buffer overflow attacks.
In: 21st International Conference on Distributed Computing Systems, pp. 409–417.
IEEE (2001)

9. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, pp. 196–206. ACM (2007)

10. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend
against return-oriented programming attacks. In: ASIACCS (2011)

11. Elsabagh, M., Barbará, D., Fleck, D., Stavrou, A.: Detecting ROP with statistical
learning of program characteristics. In: Proceedings of the Seventh ACM on Con-
ference on Data and Application Security and Privacy, pp. 219–226. ACM (2017)

12. Falcón, F., Riva, N.: Dynamic binary instrumentation frameworks: i know you’re
there spying on me. In: RECon 2012 (2012). https://recon.cx/2012/schedule/
attachments/42 FalconRiva 2012.pdf. Accessed 25 Apr 2018

13. Follner, A., Bodden, E.: ROPocop - dynamic mitigation of code-reuse attacks. J.
Inf. Secur. Appl. 29, 16–26 (2016)

14. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: NDSS, vol. 3, pp. 191–206 (2003)

15. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 41–60. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0 3

16. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual, January 2018

17. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: Proceedings of the 11th USENIX Security Symposium, pp. 191–
206. USENIX Association, Berkeley (2002)

18. Kirsch, J., Bierbaumer, B., Kittel, T., Eckert, C.: Dynamic loader oriented pro-
gramming on Linux. In: ROOTS (2017)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://qbdi.quarkslab.com/
https://qbdi.quarkslab.com/
http://arxiv.org/abs/1502.03245
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf
https://doi.org/10.1007/978-3-642-23644-0_3
https://doi.org/10.1007/978-3-642-23644-0_3

382 J. Kirsch et al.

19. Kulakov, Y.: MazeWalker - enriching static malware analysis. In: RECon 2017
(2017). https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-
MazeWalker.pdf. Accessed 25 Apr 2018

20. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference,
pp. 386–395. ACM (2014)

21. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: ACM Sigplan Notices, vol. 40, pp. 190–200. ACM (2005)

22. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: VEE (2007)

23. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan Notices, vol. 42, pp. 89–100. ACM (2007)

24. Nethercote, N., Walsh, R., Fitzhardinge, J.: Building workload characterization
tools with Valgrind. In: IISWC (2006)

25. One, A.: Smashing the stack for fun and profit. In: Phrack 49 (1996)
26. Orman, H.: The Morris worm: a fifteen-year perspective. IEEE Secur. Priv. 99(5),

35–43 (2003)
27. Polino, M., et al.: Measuring and defeating anti-instrumentation-equipped mal-

ware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp.
73–96. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60876-1 4

28. Qiang, W., Huang, Y., Zou, D., Jin, H., Wang, S., Sun, G.: Fully context-sensitive
CFI for COTS binaries. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS,
vol. 10343, pp. 435–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59870-3 28

29. Quynh, N.A.: Skorpio: advanced binary instrumentation framework. In: OPCDE
2018, Dubai, April 2018

30. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l’information et des communications,
SSTIC, France, Rennes, 3–5 June 2015, pp. 31–54. SSTIC (2015)

31. Tymburibá, M., Emilio, R., Pereira, F.: RipRop: a dynamic detector of ROP
attacks. In: Proceedings of the 2015 Brazilian Congress on Software: Theory and
Practice, p. 2 (2015)

32. van der Veen, V., et al.: Practical context-sensitive CFI. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
927–940. ACM (2015)

33. Vendicator, S.S.: A Stack Smashing Technique Protection Tool for Linux (2000).
http://www.angelfire.com/sk/stackshield/info.html. Accessed 24 Apr 2018

https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
https://doi.org/10.1007/978-3-319-60876-1_4
https://doi.org/10.1007/978-3-319-59870-3_28
https://doi.org/10.1007/978-3-319-59870-3_28
http://www.angelfire.com/sk/stackshield/info.html

Protocol Security

POR for Security Protocol Equivalences

Beyond Action-Determinism

David Baelde1, Stéphanie Delaune2(B), and Lucca Hirschi3

1 LSV, ENS Paris-Saclay & CNRS, Inria, Université Paris-Saclay, Cachan, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

stephanie.delaune@irisa.fr
3 Department of Computer Science, ETH Zurich, Zurich, Switzerland

Abstract. Formal methods have proved effective to automatically anal-
yse protocols. Recently, much research has focused on verifying trace
equivalence on protocols, which is notably used to model interesting
privacy properties such as anonymity or unlinkability. Several tools for
checking trace equivalence rely on a naive and expensive exploration of
all interleavings of concurrent actions, which calls for partial-order reduc-
tion (POR) techniques. In this paper, we present the first POR technique
for protocol equivalences that does not rely on an action-determinism
assumption: we recast trace equivalence as a reachability problem, to
which persistent and sleep set techniques can be applied, and we show
how to effectively apply these results in the context of symbolic exe-
cution. We report on a prototype implementation, improving the tool
DeepSec.

1 Introduction

Security protocols are notoriously difficult to design and their flaws can have
a huge impact. Leaving aside implementation flaws and weaknesses of crypto-
graphic primitives, there is already a long history of logical mistakes in the basic
design of protocols, e.g., [4,5,13,30]. At this level of detail, protocols can how-
ever be represented in the so-called symbolic model, which makes them amenable
to automated formal verification. This approach has lead to mature tools and
industrial successes, e.g., [6,15,31].

Verification techniques have focused at first on reachability properties of pro-
tocols, used to model, e.g., secrecy or authentication. More recently, equivalence
properties have received a lot of attention, as they are often necessary to model
privacy properties such as ballot secrecy in e-voting [25], anonymity or unlinka-
bility [4,16]. Equivalence verification is complex, and each of the various state-
of-the-art techniques has its own limitations. Tools for verifying scenarios with

This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No 714955-POPSTAR), as well as from the French National Research
Agency (ANR) under the project TECAP.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 385–405, 2018.
https://doi.org/10.1007/978-3-319-99073-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_19&domain=pdf

386 D. Baelde et al.

an unbounded number of sessions such as Proverif [15] or Tamarin [14] are usu-
ally efficient but only support a constrained form of equivalence, namely diff-
equivalence, which is too limiting, e.g., to model unlinkability [29]. Many tools
for verifying bounded scenarios rely on symbolic execution [24]. For instance,
Apte [18] and its successor DeepSec [21] implement an algorithm that explores
all symbolic executions, maintaining pairs of sets of symbolic states and solving
at each step complex equality, deducibility and indistinguishability constraints.
Akiss [17] follows a different approach, enumerating all symbolic executions to
check that none yields a non-equivalence witness. The strength of these tools is
that they decide trace equivalence, which can adequately capture e.g., unlinka-
bility. However, their algorithms are very costly and, despite recent progress, it
is still only possible to analyse small scenarios in a reasonable amount of time.

All the techniques mentioned above for deciding trace equivalence of secu-
rity protocols rely on an enumeration of all symbolic executions including all
interleavings of concurrent actions. This is obviously a cause of major ineffi-
ciency, which has lead to a quest for partial-order reduction (POR) techniques.
These techniques, which have a long and successful history in traditional software
verification [11,28,33], generally consist in leveraging action independencies to
restrict the interleavings that a model-checking algorithm explores. In the con-
text of verifying reachability properties for security protocols, some specific POR
techniques have sometimes had to be devised [22,32], but there have also been
successful uses of generic POR techniques such as sleep sets [23] (see [9] for a
detailed discussion). In the context of verifying trace equivalence for security
protocols, the only available POR techniques are, to the best of our knowledge,
the ones we proposed in [8,9]. These ad hoc techniques have lead to significant
performance gains in Apte and DeepSec [9,21]. However, they crucially rely on
an action-determinism assumption (i.e., once the observable trace is fixed, the
system is deterministic) which is limiting in practice. For instance, there is no
precise modeling of unlinkability involving action-deterministic systems.

In this paper, we present the first POR technique for checking trace equiv-
alence on security protocols, without any action-determinism assumption. Our
first step towards this goal is to recast the trace equivalence problem as a reach-
ability problem in a carefully designed labeled transition system (LTS), to which
we can then apply persistent and sleep set techniques. However, this result is not
directly useful in practice, for several reasons. First, this LTS is infinitely branch-
ing, due to the arbitrary choices that the attacker can make when interacting
with the protocol. This is the main issue addressed in protocol equivalence check-
ers, typically through symbolic execution. Second, determining when two actions
are independent (the first ingredient of POR techniques) is far from obvious in
our LTS. Independencies are often approximated through simple static checks
in practical POR algorithms [28] but, as we shall see, it does not seem feasible
in our setting without losing too many independencies. Instead, we determine
independencies by exploring symbolic executions. We ignore constraint solving
in that process, as it would be too expensive: this trade-off allows us to detect
enough independencies at a reasonable cost. More generally, we show how to

POR for Security Protocol Equivalences 387

compute persistent sets in the same style, to eventually obtain a symbolic form
of the sleep set technique. Third, the direct symbolic approach would still be
overly expensive, due to another typical state explosion problem caused by con-
ditionals [12]. We circumvent it by showing that conditionals can be simplified,
and often eliminated, in a way that does not affect persistent set computations.
This approach yields a POR technique that is fast enough and allows to signif-
icantly reduce the number of symbolic traces to consider when checking trace
equivalence. It is also independent of the specific verification algorithms that will
be used to check equivalence along the reduced set of traces. We implemented
the technique as a library to validate it experimentally.

Outline. We present a standard security protocol model in Sect. 2. After recall-
ing persistent and sleep set techniques in Sect. 3, we design in Sect. 4 our con-
crete equivalence LTS to which they apply. Section 5 then defines a symbolic
abstraction of this LTS, and shows how it can be used to obtain effective POR
algorithms, notably through the collapse of conditionals. Finally, we present our
implementations and experimental results in Sect. 6. Detailed proofs of all our
results are available in [10].

2 Model for Security Protocols

We model security protocols in a variant of the applied pi-calculus [1]: processes
exchange messages represented by terms quotiented by an equational theory.

2.1 Syntax

We assume a number of disjoint and infinite sets: a set Ch of channels, denoted
by c or d; a set N of names, denoted by n or k; a set X of variables, denoted by x
or y; and a set W of handles of the form wc,i with c ∈ Ch and i ∈ N, which will
be used for referring to previously output terms. Next, we consider a signature Σ
consisting of a set of function symbols together with their arity. Terms over a set
of atomic data A, written T (A), are inductively generated from A and function
symbols from Σ. When A ⊆ N , elements of T (A) are called messages and
written m. When A ⊆ W, they are called recipes and written M , N . Intuitively,
recipes express how a message has been derived by the environment (attacker)
from the messages obtained so far. Finally, we consider an equational theory E
over terms to assign a meaning to function symbols in Σ.

Protocols are then modelled through processes using the following grammar:

P,Q := 0 | in(c, x).P | out(c, u).P | if u = v then P else Q | (P | Q) | P + Q

where c ∈ Ch, u, v ∈ T (N � X) and x ∈ X . The process 0 does nothing.
The process in(c, x).P expects a message m on the public channel c, and then
behaves like P{x �→ m}, i.e., P in which x has been replaced by m. The process
out(c, u).P outputs u on the public channel c, and then behaves like P . We
have constructions to perform tests (modulo E), parallel composition, and non-
deterministic choice. We do not consider replication, and thus we do not need a
specific “new” operation: we assume that names are implicitly freshly generated.

388 D. Baelde et al.

Example 1. We consider Σenc = {enc, dec,mac, 〈 〉, proj1, proj2, nonceerr,macerr}.
The symbols enc, dec, and mac of arity 2 represent encryption, decryption and
message authentication code; concatenation of messages is modelled through
the symbol 〈 〉 of arity 2, with projection functions proj1 and proj2 of arity 1.
The function symbols nonceerr and macerr are constants (arity 0) that are used
to model error messages. Then, we reflect the properties of the cryptographic
primitives through the equational theory induced by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x, , and proj2(〈x, y〉) = y.

We consider the BAC protocol used in e-passports which aims at establishing a
fresh session key derived from kP and kR. Informally, we have:

1. P → R : nP

2. R → P : enc(〈nR, 〈nP , kR〉〉, kE), mac(enc(〈nR, 〈nP , kR〉〉, kE), kM)
3. P → R : enc(〈nP , 〈nR, kP 〉〉, kE), mac(enc(〈nP , 〈nR, kP 〉〉, kE), kM)

The keys kE and kM are long term keys shared between the passport P and
the reader R. First, P sends a fresh random number nP to the reader, and the
reader answers to this challenge by generating its own nonce nP , as well as kR

to contribute to a fresh session key. This encryption together with a mac is sent
to the passport. The passport will then check the mac, decrypt the ciphertext
and verify whether the nonce inside corresponds to the nonce nP generated at
the first step. In case decryption fails or the nonce inside the message is not the
expected one, an error message will be sent. Otherwise, a message is sent to the
reader. After checking that the message is the expected one, both entities are
able to compute the fresh session key derived form kR and kP . In our syntax,
we model the role of the passport as follows:

P (kE , kM) = out(c, nP).in(c, x).
if mac(proj1(x), kM) = proj2(x)
then if proj1(proj2(dec(proj1(x), kE))) = nP

then out(c, 〈mP ,mac(mP , kM)〉).0
else out(c, nonceerr).0

else out(c,macerr).0

where mP = enc(〈nP , 〈proj1(dec(proj1(x), kE)), kP 〉〉, kE).

2.2 Semantics

A configuration K is a pair (P;φ) where: P is either a multiset of processes with
no free variable, or a special object ⊥i with i ∈ N; and φ = {wi � mi}1≤i≤n is a
frame, i.e., a substitution of domain dom(φ) = {w1, . . . , wn} ⊆ W such that the
mi are messages. Configurations (⊥i;φ) are called ghost configurations dead at
age i, and will only become useful in Sect. 4. Other configurations are said to be
alive.

POR for Security Protocol Equivalences 389

({in(c, x).Q} � P;φ) in(c,M)→−−−−−� ({Q{x �→ Mφ}} � P;φ) if M ∈ T (dom(φ))

({out(c, u).Q} � P;φ)
out(c,wc,i)→−−−−−−� ({Q} � P;φ ∪ {wc,i � u}) with i = #c(dom(φ))

({if u = v then Q1 else Q2} � P;φ) τ→−� ({Q1} � P;φ) if u =E v

({if u = v then Q1 else Q2} � P;φ) τ→−� ({Q2} � P;φ) if u �=E v

({Q1 +Q2} � P;φ) τ→−� ({Q1} � P;φ) ({Q1 +Q2} � P;φ) τ→−� ({Q2} � P;φ)
({Q1 | Q2} � P;φ) τ→−� ({Q1, Q2} � P;φ) ({0} � P;φ) τ→−� (P;φ)

Fig. 1. Operational semantics of processes

The operational semantics is given as an LTS on (alive) configurations, with
the relation α�−→ defined in Fig. 1. There, the index of the next output to be
performed on channel c is defined as

#c(dom(φ)) = max({0} ∪ {j + 1 | wc,j ∈ dom(φ)}).

A process may input a term that an attacker built using the knowledge
available to him through the frame, where messages output by the protocol are
added. The output rule slightly differs from the standard one, which would use
a fresh handle variable. Our use of fixed constants wc,i makes it possible to view
the transition system as a standard LTS, without any notion of freshness or
α-renaming. Anticipating on the next sections where we build on top of this a
different LTS encoding trace equivalence, we note that this design choice does
not create spurious dependencies. We do not model internal communications,
assuming instead that the attacker controls all communications (all channels are
public). The last rules evaluate conditionals (modulo E), break parallel operators,
remove null processes, and perform non-deterministic choices.

The relation K α1...αk�−−−−→ K′ between configurations, where k ≥ 0 and each αi

is an observable or a τ action, is defined in the usual way. Given a sequence tr of
actions, we denote obs(tr) the sequence of actions obtained by erasing τ actions.

Example 2. Let Ksame = (P (kE , kM);φ0) with φ0 = {wc′,0�〈m′
R,mac(m′

R, kM)〉}
and m′

R = enc(〈n′
R, 〈n′

P , k′
R〉〉, kE). Intuitively, the configuration Ksame represents

a situation where the attacker initially knows part of a past transcript (i.e., φ0)
of the passport under consideration (i.e., P (kE , kM)). We have that

Ksame
out(c,wc,0).in(c,wc′,0).τ.τ.out(c,wc,1)�−−−−−−−−−−−−−−−−−−−−−−−→ (0;φ0 � {wc,0 � nP ;wc,1 � nonceerr}).

2.3 Equivalences

Many privacy-type properties (e.g., ballot privacy in e-voting, unlinkability) are
modelled relying on trace equivalence. In our setting, this behavioural equiv-
alence relies on a notion of static equivalence that captures indistinguishable
sequences of messages.

390 D. Baelde et al.

Definition 1. Two frames φ and ψ are in static equivalence, φ ∼s ψ, when
dom(φ) = dom(ψ), and Mφ =E Nφ iff Mψ =E Nψ for any M,N ∈ T (dom(φ)).

This equivalence is then lifted from sequences of messages to configuration.

Definition 2. Let KP = (P;φ) and KQ = (Q;ψ) be two configurations with
dom(φ) = dom(ψ). We write KP t KQ if for every execution KP

tr1�−−→ (P ′;φ′),
there exists tr2 and (Q′;ψ′) such that KQ

tr2�−−→ (Q′;ψ′), obs(tr1) = obs(tr2) and
φ′ ∼s ψ′. Then, KP ≈t KQ, if KP t KQ and KQ t KP .

Example 3. Consider the configuration Kdiff = (P (k′
E , k′

M);φ0) which models the
fact that the attacker is now in presence of an other passport that the one that
produced φ0. We have that Ksame �t Kdiff , which means that the attacker is able
to detect the presence of a passport for which he has partial knowledge of a past
session (i.e., φ0). To see this, consider the trace from Example 2. It is possible
to produce the same trace starting from Kdiff , but the resulting frame is then
φ′ = φ0 �{wc,0 �nP ;wc,1 �macerr} which does not satisfy the test wc,1 = nonceerr

contrary to the frame produced starting from Ksame. This corresponds to a well-
known unlinkability attack discovered in [4] on French passports. This attack can
be easily fixed by using the same error message in both cases. In such a case,
the inclusion holds. This is a non trivial inclusion that can be automatically
established by the DeepSec verification tool.

For illustrative purposes, we have only considered here a simple scenario for
which configurations under study are actually action-deterministic, i.e., where
for any s and α there is at most one s′ such that s α�−→ s′. In practice, we
want to consider more complex scenarios involving several passports and readers,
which results in configurations that are not action-deterministic: several pass-
ports can output on the same channel at the same time. In particular, unlink-
ability is expressed as an equivalence between processes that are not action-
deterministic [4]. When considering unlinkability, we also note that using diff-
equivalence instead of trace equivalence, as is done in Tamarin and Proverif
when checking equivalences for unbounded sessions, systematically leads to false
attacks [29]. For such properties, one thus has to resort to verifying trace equiv-
alence in the bounded setting. However, the lack of POR techniques supporting
non-action-deterministic processes is a major problem, since equivalence verifica-
tion tools perform very poorly when the state explosion problem is left untamed.

3 Persistent and Sleep Sets in a Nutshell

We review the key concepts of persistent and sleep sets, based on [28] but slightly
reformulated. These general concepts apply to an action-deterministic LTS. We
thus assume, in this section, a set of states Q, a set of actions T , and a partial
transition function δ : Q × T → Q. We write s α−→ s′ when s′ = δ(s, α). We say
that α is enabled in state s if there exists an s′ such that s′ = δ(s, α). The set
of enabled actions in s is written E (s). A state s is final when E(s) = ∅.

POR for Security Protocol Equivalences 391

Definition 3. Independence is the greatest relation ↔ ⊆ T × Q × T that is
symmetric, irreflexive and such that, for all (α, s, β) ∈↔ (written α ↔s β):
– if s α−→ s′ then β ∈ E(s) iff β ∈ E(s′);
– if s α−→ s1 and s

β−→ s2, then s1
β−→ s′ and s2

α−→ s′ for some s′.

Persistent Sets. A set T ⊆ E (s) is persistent in s if, for all non-empty sequences
of actions s = s0

α0−→ s1 . . . sn
αn−−→ sn+1 such that αi �∈ T for all 0 ≤ i ≤ n, we

have that αn ↔sn
α for all α ∈ T . We may note that E (s) is persistent in s. In

practice, persistent sets may be computed from stubborn sets (see [10]).
In the following, we assume a function pset : Q × T ∗ → 2T which associates

to any state s ∈ Q and any sequence w such that s w−→ s′ with E (s′) �= ∅, a
non-empty set of actions pset(s, w) which is persistent in s′.

A trace s0
α0−→ s1 . . . αn−−→ sn+1 is persistent, written s0

α0...αn−−−−−→pset sn+1, if
αi ∈ pset(s0, α0 . . . αi−1) for all 0 ≤ i ≤ n.

Proposition 1. Let s′ be a final state that is reachable from s. We have that s′

is also reachable from s through a trace that is persistent.

Sleep Sets. If a persistent set contains two independent actions, then the asso-
ciated search has redundancies. This has lead to the introduction of sleep sets.
This technique relies on an arbitrary ordering < on actions. A sleep set execution
is an execution (s0, ∅) = (s0, z0)

α0−→ (s1, z1) . . . αn−−→ (sn+1, zn+1) with states in
Q × 2T such that s0

α0...αn−−−−−→pset sn+1, and for any 0 ≤ i ≤ n we have αi �∈ zi and
zi+1 = {β ∈ zi | αi ↔si

β} ∪ {β ∈ pset(s0, α0 . . . αi−1) | β < αi, αi ↔si
β}.

Proposition 2. Let s′ be a final state that is reachable from s (in the original
LTS). We have that s′ is also reachable from (s, ∅) through a sleep set execution.

4 Concrete LTS for Security Protocols

In order to apply the POR techniques of Sect. 3, we need to reformulate trace
equivalence as a reachability property of final states in some LTS.

Given a set of handles W ⊆ W, we define Conf(W) as the set of alive and
quiescent configurations with a frame of domain W . An alive configuration (P;φ)
is quiescent if any P ∈ P is of the form in(c, x).P ′ or out(c, t).P ′ (in other words,
no τ action can be triggered from it). We define the set of dead configurations
over W as Conf⊥(W) = {(⊥j ;φ) | dom(φ) ⊆ W and j ∈ N}.
We define our trace equivalence LTS as follows:
– States are of the form 〈|A ≈ B|〉 where A,B ⊆ Conf(W)∪Conf⊥(W) for some

W ⊆ W, and at least one configuration in A∪B is alive. The domain dom(s) of
such a state is W , and its age is age(s) = max({0}∪{j+1 | (⊥j , φ) ∈ A∪B}).

– Actions are of the form out(c,wc,i) or in(c,M) with c ∈ Ch, i ∈ N, M ∈
T (W).

– The transition relation is given by

s = 〈|A ≈ B|〉 α−→ 〈|Aa � An � Ag ≈ Ba � Bn � Bg|〉

where Ag, Aa, An are given below (and Bg, Bn, and Ba are defined similarly):

392 D. Baelde et al.

• Aa = {A′ | ∃A ∈ A such that A α�−→ A′′ τ∗
�−→ A′ � τ�−→},

• An = {(⊥age(s);φ) | (P;φ) ∈ A, (P;φ) is alive, (P;φ) � α�−→}, and
• Ag = A ∩ Conf⊥(dom(s)).

The transitions gather all alternatives that can perform the same output
(resp. input) action. Therefore, even if our protocol allows several alternatives
for a given observable action, our resulting trace equivalence LTS is action-
deterministic. Configurations that cannot execute such an action become ghosts.
A ghost configuration (⊥i;φ) is a configuration that cannot evolve anymore; its
index i will crucially be used to know what other frames were present when it
died (see Example 4).

Given a set of configurations A, we define A
≥i as the set of all configurations

of A that are still alive at age i. More formally, we have that:

A
≥i = {(P, φ) ∈ A | (P, φ) is alive or P = ⊥j with j ≥ i}

We write φ s ψ when dom(φ) ⊆ dom(ψ) and both frames are in static equiva-
lence on their common domain, i.e., φ ∼s ψ|dom(φ). We lift s to a set of frames
(and thus configurations): φ s Ψ when there exists ψ ∈ Ψ such that φ s ψ.

Definition 4. A state s = 〈|A ≈ B|〉 is left-bad when there exists (P;φ) ∈ A

such that:
– either (P;φ) is a ghost, i.e., P = ⊥j for some j, and φ �s B

≥j;
– or (P;φ) is alive and φ �s (B ∩ Conf(dom(s))).
The notion of being right-bad is defined similarly, and we say that a state s is
bad when it is right-bad or left-bad.

We will see that trace inequivalence implies the existence of a bad state.
Thanks to ghosts, this will directly imply the existence of a final bad state. Fun-
damentally, ghosts are there to avoid that partial-order reduction makes us miss
a bad state by not exploring certain transitions. Of course, practical verification
algorithms will never perform explorations past a state that corresponds to a
inequivalence witness. Note, however, that detecting such states is only possible
thanks to complex constraint solving, which we cannot afford in our symbolic
POR algorithms. Hence, one important aspect in our design of ghosts is that
they lift well to the “unsolved” symbolic setting.

Example 4. Ghosts are crucial to make sure that progressing in the LTS never
kills a witness of inequivalence. For instance, consider the two processes:
Pu = out(c, u)+(out(c, n).out(d, n′)) where u ∈ {a, b} are two public constants.

Consider s0 = 〈|(Pa; ∅) ≈ (Pb; ∅)|〉 and s0
out(c,wc,0)−−−−−−−→ s1

out(d,wd,0)−−−−−−−→ s2 where:
– s1 = 〈|{(0; {wc,0 � a}), A} ≈ {(0; {wc,0 � b}), A}|〉
– s2 = 〈|{(⊥0; {wc,0 � a}), A′} ≈ {(⊥0; {wc,0 � b}), A′}|〉
– A = (out(d, n′); {wc,0 � n}), and A′ = (0; {wc,0 � n,wd,0 � n′}).
Note that s1 is bad because {w0

c �a} �∼s {w0
c �b} and s2 is bad because the ghost

configurations are not statically equivalent either. However, without the ghost
configurations, s2 would not be bad (neither left nor right).

POR for Security Protocol Equivalences 393

Our first contribution is a result that reduces trace equivalence to reachability
of a final bad state in our trace equivalence LTS, on which POR techniques can
be applied.

Proposition 3. Let A0 and B0 be two alive configurations of same domain, and
s0 = 〈|A0 ≈ B0|〉 where A0 = {A | A0

τ�−→∗
A � τ�−→}, and B0 = {B | B0

τ�−→∗
B � τ�−→}.

The following conditions are equivalent:
1. A0 is trace included in B0, i.e., A0 t B0;
2. no left-bad state is reachable from s0 in the trace-equivalence LTS;
3. no left-bad, final state is reachable from s0 in the trace-equivalence LTS.

5 POR in Symbolic Semantics

The POR techniques of Sect. 3 apply to the LTS of Sect. 4, but this is not directly
usable in practice because our trace equivalence LTS is infinitely branching. Sym-
bolic execution is typically used to circumvent such problems, both in traditional
software verification [12] and security protocol analysis [19,20]. In this section,
we define a symbolic abstraction of our trace equivalence LTS, and we show how
it can be used to effectively apply the persistent and sleep set techniques.

5.1 Symbolic Equivalence LTS

As is common in symbolic semantics for security protocols [19,20], we rely on
second-order variables, which will be instantiated by recipes, and first-order vari-
ables, which will be instantiated by messages. First-order variables are distinct
from standard variables occurring in processes to represent input messages. More
precisely, when an input is executed symbolically, the associated variable will be
substituted by a first-order variable. As a result, standard variables will only
occur bound in symbolic processes, while first-order variables will only occur
free. Conversely, only first-order variables will be allowed to occur free in pro-
cesses, frames, and states.

Second-order and first-order variables will respectively be of the form Xc,i

and xc,i
φ where c ∈ Ch, i ∈ N, and φ is a symbolic frame, i.e., a frame whose

terms may contain first-order variables. Intuitively, Xc,i stands for the recipe
used for the ith input on channel c, and xc,i

φ will be instantiated by the message
resulting from that recipe in the context of the frame φ. The use of variables
with explicit c, i parameters avoids us to deal with freshness or α-renaming issues
when implementing the symbolic analysis. We denote vars1(t) (resp. vars2(t))
the first-order (resp. second-order) variable occurring in t. Finally, vars(R) is the
set of handles that occur in a recipe R. We say that a symbolic frame φ is well-
founded if, whenever φ(wc,i) = t and xd,j

ψ ∈ vars1(t), we have that φ is a strict
extension of ψ meaning that φ|dom(ψ) = ψ (denoted ψ φ), and ψ �= φ. This
well-foundedness condition will obviously be preserved in symbolic executions:
if t is the ith output on channel c, it may only depend on inputs received before
that output, i.e., at a time where the frame ψ does not contain wc,i. From now

394 D. Baelde et al.

on, we impose that all frames are well-founded, which allows us to define the
first-order substitution associated to a second-order substitution.

Definition 5 (λθ). Let θ be a substitution mapping second-order variables to
recipes. Its associated first-order substitution λθ is the unique substitution of
(infinite) domain {xc,i

φ | vars(Xc,iθ) ⊆ dom(φ)} such that λθ(x
c,i
φ) = (Xc,iθ)(φλθ),

which can be defined by induction on the size of frame domains.

We now define symbolic actions and states, and their concretisations. We take
symbolic actions of the form out(c,wc,i) and in(c,Xc,i,W), where c ∈ Ch, i ∈ N

and W ⊆ W. Given a substitution θ mapping second-order variables to recipes,
we define the θ-concretisations of symbolic actions as follows: out(c,wc,i)θ =
out(c,wc,i), and in(c,Xc,i,W)θ = in(c,R) when Xc,iθ = R ∈ T (W). We will use
constraints which are conjunctions of equations and disequations over (symbolic)
terms, i.e., terms that may contain first-order variables. The empty constraint
is written �, and conjunction is written ∧ and considered modulo associativity-
commutativity.

A symbolic state S = 〈A ≈ B〉I
C is formed from a mapping I : Ch → N

providing input numbers, a constraint C, and two sets A and B of symbolic
configurations, i.e., configurations that may contain first-order variables. We
further require that:
– there is at least one alive configurations in A ∪ B;
– all alive configurations in A∪B share the same frame domain, noted dom(S);
– any ghost configuration in A ∪ B should have a domain W ⊆ dom(S);
– processes in configurations do not contain null processes, and do not feature

top-level conditionals, parallel and choice operators.
With this in place, we define the solutions of S = 〈A ≈ B〉I

C as the set Sol(S)
containing all the substitutions θ such that:
– dom(θ) = {Xc,i | i < I(c)};
– for any u = v (resp. u �= v) in C, uλθ =E vλθ (resp. uλθ �=E vλθ).
Given S and θ ∈ Sol(S), we define its θ-concretisation Sθ as 〈|Aλθ ≈ Bλθ|〉.
Remark 1. Beyond the differences in formalism, our notion of solution is quite
close to ones found, e.g., in [19,20], with one difference: when no xc,i

φ variable
occurs in S, θ(Xc,i) is completely unconstrained. This means that when an input
variable is unused in the input’s continuations, our solutions are incorrect wrt.
the corresponding recipe. We do not need to worry about this mismatch, though,
because we only need a symbolic semantics that covers all concrete executions; it
does not need to be sound. In fact, our analysis will never rely on the existence of
a solution for a given symbolic state. It will never check that a term is deducible,
and will almost ignore (dis)equality constraints, only checking for immediate
contradictions among them.

We can now define symbolic transitions, and establish their completeness.

Definition 6. Consider a symbolic state S = 〈A ≈ B〉I
C and a symbolic action

A, the possible transitions S
A� S′ are defined by mimicking concrete transitions

as follows:

POR for Security Protocol Equivalences 395

– We first execute the action A, gathering all possible resulting configurations
into a pre-state SA = 〈A′ ≈ B

′〉I′
C . To be possible, such a transition has to

be of the form A = in(c,Xc,i,W) with i = I(c), or A = out(c,wc,i) with
i = #c(dom(S)). The resulting pre-state SA is not a valid state because it
may contain e.g., top-level conditionals, choice operators. This pre-state also
includes ghosts (⊥n;φ) of the configurations (P;φ) of S that could not perform
A, where n = age(S) as defined in the concrete semantics. We define I ′ to
coincide with I on all channels, except on c where I ′(c) = I(c) + 1 when A is
an input on c. When executing A = in(c,Xc,i,W) in a configuration (P;φ)
of S that can perform an input on c, we use the term xc,i

φ|W to substitute for
the input variable.

– Then we declare S
A� S′ if S′ is a state that can be obtained from SA by

repeatedly performing the following operations, until none applies:
• If a configuration features a top-level conditional, the conditional is

replaced by one of its branches, and the constraints are enriched accord-
ingly.

• If a configuration features a top-level choice operator, it is replaced by the
two configurations where the choices are made.

We also require that S′ does not have an immediately contradicting constraint,
i.e., a constraint containing an equation and its negation.

A perhaps surprising consequence of our definition is that, if in(c,Xc,i,W) is
enabled in S, then any in(c,Xc,i,W ′) is also enabled. Allowing smaller domains
is important for checking independencies. We also allow larger domains, possibly
even larger than dom(S), mainly because it simplifies the theory, at no cost in
practice.

Example 5. Consider arbitrary terms t, u, and v �= v′, and the symbolic state
S = 〈(P;ψ) ≈ (P;ψ′)〉I

� where P = in(c, x).if x = t then out(c, ok) else 0,

φ = {wc,0 �→ u}, ψ = φ � {wd,0 �→ v} and ψ′ = φ � {wd,0 �→ v′}.

We illustrate how the choice of W affects which transitions are possible from
state S with action A = in(c,Xc,i,W), where i = I(c) is the only value that
allows this action to execute, and I ′ coincides with I except on c for which
I ′(c) = I(c) + 1. If W = {wc,0}, then there are two possible transitions:

S
A� 〈(out(c, ok);ψ) ≈ (out(c, ok);ψ′)〉I′

xc,i
φ =t

S
A� 〈(0;ψ) ≈ (0;ψ′)〉I′

xc,i
φ 	=t

If W = {wc,0, wd,0}, four transitions are possible, notably including

S
A� 〈(out(c, ok);ψ) ≈ (0;ψ′)〉I′

xc,i
ψ =t, xc,i

ψ′ 	=t
.

Indeed, we are considering here an input whose recipe may exploit the different
frames of our two configurations. It is a priori possible that the resulting message
passes the test x = t only in one configuration.

396 D. Baelde et al.

Remark 2. It may be useful to note that the following property is preserved by
symbolic execution, though we do not exploit it: in a configuration (P;φ) of a
state 〈A ≈ B〉I

C , the only first-order variables that appear are of the form xc,i
ψ

with ψ φ and i < I(c).

Proposition 4. Let S = 〈A ≈ B〉I
C be a symbolic state, θ ∈ Sol(S). Let s′ and

α be such that Sθ
α−→ s′. There exists S′, A and θ′ � θ (i.e. θ′|dom(θ) = θ) such

that S
A� S′, θ′ ∈ Sol(S′), α = Aθ′, and s′ = S′θ′. Moreover, if α is of the form

in(c,R), the proposition holds with A = in(c,Xc,I(c),W) for any W such that
vars(R) ⊆ W .

5.2 Independence Relations

We first define the enabled symbolic independence relation, and show that it is a
sound abstraction of independence for enabled actions. For that, we assume here
a notion of incompatible constraints. It can be anything as long as two constraints
C and C′ are only declared incompatible when C ∧C′ is unsatisfiable. In practice,
we only check for immediate contradictions, i.e., the presence of an equation and
its negation. This allows us to easily check ⇔ee in the implementation.

Definition 7. Given a symbolic state S, and two symbolic actions A and B
enabled in S, we write A ⇔ee

S B when:
– A and B are neither two inputs nor two outputs on the same channel;
– for any S

A� SA, S
B� SB, we have that SA

B� SAB and SB
A� SBA for

some symbolic states SAB and SBA;
– for any S

A� SA
B� SAB, and S

B� SB
A� SBA, we have that SAB and

SBA have incompatible constraints, or SAB = SBA.

We now turn to defining a sound abstraction of independence between a
concretely disabled and enabled action. Intuitively, A ⇔de

S B will guarantee that
executing concretisations of B cannot enable new concretisations of A.

Definition 8. Given a symbolic state S, as well as two symbolic actions A
and B, we write A ⇔de

S B when B is enabled in S, and
– either A is not enabled in S′ for any S′ such that S

B� S′;
– or A is enabled in S but A/B are not of the form in(c,Xc,i,W)/out(d,wd,j)

with wd,j ∈ W .

Proposition 5. Let S be a symbolic state and A and B be two symbolic actions.
Let θ ∈ Sol(S), s = Sθ and α (resp. β) be a concretisation of A (resp. B).
– If A ⇔ee

S B, and α, β ∈ E (s), then α ↔s β.
– If A ⇔de

S B, α �∈ E (s) and β ∈ E (s), then α ↔s β.

Example 6. Let P = in(c, x).out(c, x) | out(d, t), and S = 〈(P; ∅) ≈ (P; ∅)〉I0
�

with I0(c) = 0 for any c ∈ Ch. We have in(c,Xc,0, ∅) ⇔ee
S out(d,wd,0): inputs

and outputs commute, for inputs whose recipes rely on the currently avail-
able (empty) domain. We have in(c,Xc,0, ∅) ⇔de

S out(d,wd,0) (the output does

POR for Security Protocol Equivalences 397

not enable new concretisations for the input) but not in(c,Xc,0, {wd,0}) ⇔de
S

out(d,wd,0) (the input is feasible, but performing it after the output would
enable new concretisations).

5.3 Persistent Set Computation

Having defined over-approximations of transitions and dependencies, we now
describe how to compute, for a state S, a set of actions T+(S) that yields a per-
sistent set for any concretisation of S. More precisely, we shall compute stubborn
sets (cf. [10]).

Our symbolic LTS is still infinitely branching, due to the absence of con-
straints on inputs domains W . However, when exploring the LTS, it often suffices
to consider inputs with a canonical domain, i.e., the domain of the current state.
We formalise this by defining the enabled cover of a symbolic state S: EC (S) is
the set of all actions that are enabled in S, with the constraint that inputs are
of the form in(c,Xc,i,dom(S)). Proposition 4 already ensures that any concrete
action in E(Sθ) can be mapped to a symbolic action in EC (S).

Definition 9. Let S be a symbolic state, A and B be two symbolic actions such
that B is enabled in S. We say that A ⇔S B when (i) A ⇔de

S B and, (ii) if A
is enabled in S then A ⇔ee

S B.

Given a symbolic state S, we say that a set of actions X is a symbolic stubborn
set for S when X ∩ EC (S) �= ∅ and, for any A ∈ X and any execution

S = S1
B1� S2 . . . Sn

Bn� Sn+1 with Bi ∈ EC (Si) for all 1 ≤ i ≤ n

such that A �⇔Sn
Bn, there exists 1 ≤ i ≤ n such that Bi ∈ X.

We assume a computable function which associates to any symbolic state S
such that EC (S) �= ∅ a set T+(S) that is a symbolic stubborn set for S. Com-
puting T+(S) is typically achieved as a least fixed point computation, initialising
the set with an arbitrary action in EC (S), exploring executions that avoid the
current set and adding actions Bn when they are dependent with an action
already in the set. In this process all transitions in the enabled cover of S and
its successors are considered (unless they are in the current set) without caring
for the existence of a solution for the visited states. The computation is carried
out with each possible action of EC (S) as its initial set, and a result of minimal
cardinality is kept. In the worst case, it will be EC (S) itself.

If done in a depth-first fashion, the computation is (a symbolic approximation
of) Godefroid’s stubborn set computation through first conflict relations [28]. It
is however more efficient to perform the explorations in breadth, since the addi-
tion of an action along an exploration can potentially prevent the continuation
of another exploration. In any case, the details of how T+(S) is computed do
not matter for correctness.

Example 7. Consider the process P = in(c, x).Q | in(d, x).out(d, t).Q′ where Q,
Q′ and t are arbitrary. Consider computing T+(S) for S = 〈(P ; ∅) ≈ (P ; ∅)〉I0

� ,

398 D. Baelde et al.

initialising the set with A0 = in(c,Xc,0, ∅). Since A0 ⇔S in(d,Xd,0, ∅) we have
to explore successors of S by the input on d. There is only one, call it S′.
We have A0 ⇔S′ out(d,wd,0), so again we consider the successor S′′ by the
output action. We have A1 = in(c,Xc,0, {wd,0}) ∈ EC (S′′) with A1 �⇔S′′ A0,
hence we add A1 to our set. We repeat the process from S. We have that
A1 ⇔S in(d,Xd,0, ∅), then A1 �⇔S′ out(d,wd,0). More precisely, we have that
A1 �⇔de

S′ out(d,wd,0). Hence we add A2 = out(d,wd,0) to our set. Because
A2 �⇔de

S in(d,Xd,0, ∅) = A3, we will also add that action in the next iter-
ation. We thus obtain T+(S) = {A0, A1, A2, A3}, satisfying our specifica-
tion of T+. This symbolic stubborn set yields the symbolic persistent set
T+(S) ∩ EC (S) = {in(c,Xc,0, ∅), in(d,Xd,0, ∅)}; in that case, no reduction is
possible. However, starting with process P | out(e, t′).P ′ and initialising the set
with A4 = out(e,we,0) will often lead to a very good reduction, i.e., a singleton.

Proposition 6. Let S be a symbolic state such that EC (S) �= ∅, and T =
{Aθ | A ∈ T+(S)}. For any θ′ ∈ Sol(S), the set T ∩E (Sθ′) is persistent in Sθ′.

Having computed symbolic persistent sets, we now define a persistent set
assignment pset for the concrete LTS. By completeness, we know that, for any
concrete execution s0

α0−→ s1 . . .
αn−1−−−→ sn there exists S0

A0� S1 . . . An−1� Sn and
θ0 θ1 . . . θn with θ0 the empty substitution, θi ∈ Sol(Si) and Siθi = si for
all i ∈ [0;n], and Aiθi+1 = αi for all i ∈ [0;n − 1]. We assume a choice function
abs which, to each such concrete execution associates a symbolic abstraction:
abs(s0, α0 . . . αn−1) = (S0, S1, . . . , Sn). We can assume that the choice is com-
patible with prefixing:

abs(s0, α0 . . . αn) = (Si)0≤i≤n+1 implies abs(s0, α0 . . . αn−1) = (Si)0≤i≤n.

Building on this, we define pset(s0, α0 . . . αn−1) = {Aθ | A ∈ T+(Sn)}∩E (Snθn)
where abs(s0, α0 . . . αn−1) = (S0, . . . , Sn), which, by Proposition 6, is a persistent
set in sn (uniquely defined as the state reachable from s0 after α0 . . . αn−1). In
other words, we obtain the persistent set for a concrete state from the symbolic
persistent set of one of its symbolic abstractions, but we choose this abstraction
depending on the concrete execution and not only its resulting state.

With this in place, Proposition 1 guarantees that for any execution from s0 to
a final state sf , there exists a persistent execution (wrt. pset) from s0 to sf . Hence,
the search for final bad states can be restricted to only explore concretisations
of symbolic persistent traces, i.e., symbolic executions where the only transitions
considered for a state S are those in T+(S) ∩ EC (S).

5.4 Symbolic Sleep Sets

We finally describe how we implement sleep sets symbolically. We shall define
a symbolic LTS with sleep sets, whose states (S,Z) compound a symbolic state
S and a set of symbolic actions Z. The sleep set technique relies on a strict
ordering of actions, but the order is only relevant for comparing independent
actions, which do not have the same skeleton (the skeleton of an action denotes

POR for Security Protocol Equivalences 399

its input/output nature and its channel). Thus, we assume a strict total order <
on action skeletons, and lift it to symbolic and concrete actions. Then, a sleep
set execution in our symbolic LTS is any execution

(S0, ∅) = (S0, Z0)
A0� (S1, Z1) . . . (Sn, Zn)

An� (Sn+1, Zn+1)

such that for 0 ≤ i ≤ n, we have that Ai ∈ T+(Si) ∩ EC (Si), Ai �∈ Zi, and
Zi+1 = {B ∈ Zi | B ⇔ee

Si
Ai} ∪ {A′ ∈ T+(Si) ∩ EC (Si) | A′ < Ai, A′ ⇔ee

Si
Ai}.

These symbolic sleep set executions are complete with respect to the sleep
set technique applied to our concrete LTS with the pset function defined above.

Proposition 7. Let (s0, ∅) α0−→ (s1, z1) . . .
αn−1−−−→ (sn, zn) be a sleep set execution

in our initial LTS. Then, there is (S0, ∅)
A0� (S1, Z1) . . . An−1� (Sn, Zn) a sleep

set execution in our symbolic LTS, and substitutions ∅ = θ0 θ1 . . . θn such
that si = Siθi, αi = Aiθi+1 for i ∈ [1;n − 1], and sn = Snθn.

Example 8. Let S be the state from Example 7. Starting with (S, ∅), we may per-
form two transitions in the sleep LTS: A0 = in(c,Xc,0, ∅) and A3 = in(d,Xd,0, ∅).
Assuming that S

A0� Sc and A0 > A3, we have (S, ∅)
A0� (Sc, {A3}). Assum-

ing now that Q starts with another input on c, the persistent set for Sc will
contain inputs on c and d. However, executing A3 is not allowed in (Sc, {A3}).
Intuitively, while the persistent set technique only looks forward, the sleep set
technique also takes into account the past, and indicates here that exploring A3

is not useful after A0, since it can equivalently be performed before it.

5.5 Collapsing Conditionals

The above techniques allow us, in principle, to compute significantly reduced set
of symbolic traces whose concretisations contain a witness of non-equivalence
when such a witness exists. However, the algorithm for computing persistent
sets is quite inefficient when applied on practical case studies: it relies on explo-
rations of their symbolic LTS, which is highly branching and too large due to
conditionals. This is a typical problem of symbolic execution, which manifests
itself acutely in our setting, where the branching factor of a state is generally the
product of those of its configurations. We circumvent this difficulty by observing
that stubborn sets for a state (and its sleep set executions) can be computed by
analysing a transformed state where conditionals are pushed down. Our trans-
formation can often completely eliminate conditionals in our case studies, and
is key to obtaining acceptable performances.

To justify an elementary step of this transformation, we consider a symbolic
state S containing a conditional we would like to simplify: S = S′[if u =
v then P else Q] (S′[·] denotes a state with a hole). We require that P and
Q are respectively of the form α.P ′ and β.Q′ where α and β have the same
skeleton. We make the observation that, independently of the execution and the
evaluation of the test u = v, the same action will be released and, in case of
outputs, the precise output term has little impact in the context of our symbolic
analysis. Following this intuition, we would like to postpone the conditional by

400 D. Baelde et al.

considering Sc = S′[γ.if u = v then P ′ else Q′], where γ is either the input
α = β, or a well-chosen combination of the outputs α and β. The choice of γ
should ensure that the transformation cannot create action independencies that
did not hold before the transformation. Formally, we assume a fresh function
symbol Δ of arity 4, and take Sc = S′[T c] where T c is defined as:

in(c, x).if u = v then P ′ else Q′ when (α, β) = (in(c, x), in(c, x))
out(c,Δ(t, t′, u, v)).if u = v then P ′ else Q′ when (α, β) = (out(c, t), out(c, t′))

Proposition 8. For any execution S = S0
A1� S1 . . .

An� Sn, there is an execu-
tion Sc = T0

A1� T1 . . .
An� Tn, such that, for any A and i ∈ [1;n], A ⇔Ti−1 Ai

(resp. Ai ⇔Ti−1 A) implies A ⇔Si−1 Ai (resp. Ai ⇔Si−1 A).
Hence, T+(Sc) is a symbolic stubborn set for S and any sleep set execution

from S is also a sleep set execution from Sc.

Repeatedly applying this result, we can eliminate most conditionals from our
protocols, and compute stubborn sets and sleep set executions efficiently.

6 Implementation and Benchmarks

The results of the previous sections allow us to compute a set of symbolic
actions, that can be used to restrict the search when looking for a witness of non-
equivalence. By Proposition 3, (P1; ∅) �≈ (P2; ∅) iff a bad state can be reached
from s0 = 〈|B1 ≈ B2|〉, where Bi = {Ki | (Pi; ∅) τ�−→∗ Ki � τ�−→}. By Proposition 2,
this implies the existence of a sleep set execution in our trace equivalence LTS
from (s0, ∅) to a bad state. By Proposition 7, this implies the existence of a con-
crete execution whose underlying symbolic trace S0 = 〈B1 ≈ B2〉I0

�
A0� . . .

An�
Sn+1 is a sleep set execution in our symbolic LTS. Such symbolic traces can be
computed.

6.1 Implementation

To concretely realise and evaluate our techniques, we have implemented our
symbolic analysis as a standalone library called Porridge [7], and have interfaced
it with Apte in the first place, and then with its successor DeepSec, once this tool
has been made available [21]. These tools perform an exhaustive search for non-
equivalence witnesses using symbolic execution. Conceptually, this search can
be seen as a naive symbolic exploration, combined with an elaborate constraint
solving procedure. The two aspects being orthogonal, we can straightforwardly
obtain a correct optimisation by restricting the symbolic exploration according
to the set of traces computed by Porridge.

Porridge. The library is open-source, written in OCaml. The code imple-
ments exactly the techniques presented above, with only a few minor additions.
It consists of ∼6k LoC. Performance-wise, we heavily make use of hashcons-
ing and memoization, but not from multicore programming yet. The design of

POR for Security Protocol Equivalences 401

Table 1. Relative speed-up and reduction of explorations with Porridge vs. without
Porridge. In the last column, we show the computation time without Porridge. The
size refers to the total number of processes in parallel.

Test Size Time (ratio) Explorations (ratio) Time (s)

BAC (unlinkability) 4 7.6 7.23 12.23

Private Auth. (anonymity) 2 1.25 2.71 0.04

Private Auth. (anonymity) 3 1.67 4.01 0.04

Private Auth. (anonymity) 4 8.21 10.51 1.17

Private Auth. (anonymity) 5 14.89 16.61 10.57

Private Auth. (anonymity) 6 60.2 36.75 4864

Private Auth. (unlinkability) 2 2.29 9.6 0.16

Private Auth. (unlinkability) 3 14.06 29.77 79.57

Private Auth. (unlinkability) 4 46.2 46.69 7171

Feldhofer (anonymity) 2 1 4.72 0.03

Feldhofer (anonymity) 3 4.63 7.08 0.37

Feldhofer (anonymity) 4 22.47 16.3 544.93

Feldhofer (unlinkability) 4 36.27 22.58 1510.09

Fig. 2. Relative speed-up and reduction of explorations with Porridge vs. without
Porridge on Private Authentication (ANO) of different sizes.

the library, with an independent POR functor, makes it easy to apply symbolic
POR analyses to other LTS; we can already perform POR for trace inclusion,
and expect to use this flexibility to consider slightly different protocol semantics.

Integration in Apte and DeepSec. As mentioned above, Apte and DeepSec
are based on constraint solving procedures on top of which an exhaustive and
naive symbolic executions exploration is performed. This exploration is naive
in the sense that all interleavings are considered (except for the specific case
of action-deterministic protocols already discussed in introduction). We have
shown that restricting the exploration to symbolic sleep set traces still yields a
decision procedure for trace equivalence. This restriction is easily implemented,
as lightweight modifications (∼500 LoC) of Apte and DeepSec. Note that the

402 D. Baelde et al.

differences between the semantics presented in Sect. 2 and the ones used by
those tools can easily be ignored by slightly restricting the class of protocols.
Concretely, we exploit the class of protocols with non-blocking outputs as done
in [9], which is not restrictive.

6.2 Experimental Evaluation

We have carried out numerous benchmarks, focusing on DeepSec since it is both
more general and more efficient than Apte, and measuring the improvements
brought by Porridge in terms of computation time and number of explorations.
The latter is also a good indicator of the effectiveness of the reduction achieved
since it represents the number of times DeepSec explores an action and applies
its costly constraint solving procedure.

Case Studies. We verify some privacy properties on several real-life protocols
of various sizes by modifying the number of sessions being analysed. We model
unlinkability [4,29] of the BAC protocol [4], of Private Authentication [2] and of
Feldhofer [26], and anonymity as well for some of them. The results are shown
in Table 1 and make use of processes that are not action-deterministic.

Setup. We run DeepSec and Porridge both compiled with OCaml 4.06.0 on a
server running Ubuntu 16.04.5 (Linux 4.4.0) with 12 ∗ 2 Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20 GHz and 256 GB of RAM. We run each test on a single core
with a time-out of 2 h (real-time) and maximal memory consumption of 10 GB.

Results. We report in Table 1 the relative speed-up of computation time and
the reduction of explorations brought by Porridge. We plot the same information
for numerous sizes of Private Authentication in Fig. 2. We observe that speed-
ups are closely related to the reduction achieved on the number of explorations.
As the size of protocols increases, Porridge quickly speeds up computations by
more that one order of magnitude.

7 Conclusion

We have presented the first POR technique that is applicable to verifying trace
equivalence properties of security protocols, without any action-determinism
assumption. Our contributions are: an equivalence LTS that recasts trace equiva-
lence as a reachability property; a symbolic abstraction of the equivalence LTS on
which persistent and sleep set techniques can be effectively computed; a collapse
of conditionals that significantly speeds up these computations. Our technique
applies to a wide class of protocols, has been implemented as a library and inte-
grated in the state-of-the-art verifier DeepSec, showing significant performance
improvements on case studies.

POR for Security Protocol Equivalences 403

Compared to (our) earlier work on POR for protocol equivalences [8,9], we
follow a radically different approach in this paper to obtain a technique that
applies without any action-determinism assumption. In the action-deterministic
case, the two techniques achieve similar but incomparable reductions: sleep sets
are more efficient on improper blocks, but the focused behavior of compression
is unmatched with sleep sets. Finally, we note that although sleep sets allow to
recover a form of dependency constraint, we do not know how to justify its use
in practice outside of the action-deterministic case. We hope that future work
will allow to unify and generalize both techniques.

A crucial aspect of our new approach is that it manages to leverage clas-
sic POR techniques, namely persistent and sleep sets, for use in our specific
security setting. In fact, we view this work as a first step towards bridging the
gap between standard POR and security-specific techniques. As usual in POR,
many variations (e.g., in how we integrate with the equivalence verifiers) and
approximations (e.g., in independencies or stubborn set computations) should be
explored to look for performance gains. The recent work on dynamic POR [3,27]
(DPOR), which aims to find a trade-off between performance and quality of the
computed persistent sets, is of particular interest here, though it is unclear at this
point to which extent generic results can be extracted from the above-mentioned
works for re-use in our security setting.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115. ACM Press (2001)

2. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3), 427–
476 (2004)

3. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. ACM SIGPLAN Not. 49(1), 373–384 (2014)

4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of 23rd Computer Secu-
rity Foundations Symposium (CSF 2010), pp. 107–121. IEEE Computer Society
Press (2010)

5. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.T.: Formal analysis
of SAML 2.0 web browser single sign-on: breaking the SAML-based single sign-on
for Google apps. In: Proceedings of the 6th ACM Workshop on Formal Methods
in Security Engineering (FMSE 2008), pp. 1–10 (2008)

6. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

7. Baelde, D., Delaune, S., Hirschi, L.: Porridge, an OCaml library implementing
POR techniques for checking trace equivalence of security protocols. https://hal.
inria.fr/hal-01821474

8. Baelde, D., Delaune, S., Hirschi, L.: Partial order reduction for security proto-
cols. In: Proceedings of the 26th International Conference on Concurrency Theory

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://hal.inria.fr/hal-01821474
https://hal.inria.fr/hal-01821474

404 D. Baelde et al.

(CONCUR 2015). LIPIcs, Madrid, Spain, vol. 42, pp. 497–510. Leibniz-Zentrum
für Informatik (2015)

9. Baelde, D., Delaune, S., Hirschi, L.: A reduced semantics for deciding trace equiv-
alence. Log. Methods Comput. Sci. 13(2:8), 1–48 (2017)

10. Baelde, D., Delaune, S., Hirschi, L.: POR for security protocols equivalences:
beyond action-determinism. Technical report (2018). https://arxiv.org/abs/1804.
03650

11. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

12. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://
doi.org/10.1145/3182657. ISSN 0360-0300

13. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard
for entity authentication. J. Comput. Secur. 21(6), 817–846 (2013)

14. Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equiv-
alence. In: Proceedings of the 22nd ACM Conference on Computer and Commu-
nications Security (CCS 2015), pp. 1144–1155. ACM (2015)

15. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of the 14th Computer Security Foundations Workshop (CSFW 2001),
pp. 82–96. IEEE Computer Society Press (2001)

16. Bruso, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: Proceedings of the 23rd IEEE Computer Security Foundations
Symposium (CSF 2010). IEEE Computer Society Press (2010)

17. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence proper-
ties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
108–127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-
2 6

18. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 50

19. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: negative
tests and non-determinism. In: Proceedings of the 18th Conference on Computer
and Communications Security (CCS 2011). ACM Press (2011)

20. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theor. Comput. Sci. 492, 1–39 (2013)

21. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence proper-
ties in security protocols - theory and practice. In: Proceedings of the 39th IEEE
Symposium on Security and Privacy (S&P 2018). IEEE Computer Society Press
(2018)

22. Clarke, E., Jha, S., Marrero, W.: Partial order reductions for security protocol
verification. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 503–518. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-
0 34

23. Cremers, C.J.F., Mauw, S.: Checking secrecy by means of partial order reduction.
In: Amyot, D., Williams, A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 171–188.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31810-1 12

24. Delaune, S., Hirschi, L.: A survey of symbolic methods for establishing equivalence-
based properties in cryptographic protocols. J. Log. Algebraic Methods Program.
87, 127–144 (2017)

25. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 4, 435–487 (2008)

https://arxiv.org/abs/1804.03650
https://arxiv.org/abs/1804.03650
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/3-540-46419-0_34
https://doi.org/10.1007/3-540-46419-0_34
https://doi.org/10.1007/978-3-540-31810-1_12

POR for Security Protocol Equivalences 405

26. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28632-5 26

27. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. ACM SIGPLAN Not. 40, 110–121 (2005)

28. Godefroid, P.: Partial-order methods for the verification of concurrent systems.
Ph.D. thesis, Université de Liège (1995)

29. Hirschi, L., Baelde, D., Delaune, S.: A method for verifying privacy-type properties:
the unbounded case. In: Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P 2016), San Jose, California, USA, pp. 564–581, May 2016

30. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 43

31. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

32. Mödersheim, S., Viganò, L., Basin, D.: Constraint differentiation: search-space
reduction for the constraint-based analysis of security protocols. J. Comput. Secur.
18(4), 575–618 (2010)

33. Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.)
CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028727

https://doi.org/10.1007/978-3-540-28632-5_26
https://doi.org/10.1007/978-3-540-28632-5_26
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727

Automated Identification
of Desynchronisation Attacks on Shared

Secrets

Sjouke Mauw1,2, Zach Smith1(B), Jorge Toro-Pozo1,
and Rolando Trujillo-Rasua2,3

1 CSC, University of Luxembourg, Esch-sur-Alzette, Luxembourg
zach.smith@uni.lu

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
3 School of Information Technology, Deakin University, Geelong, Australia

Abstract. Key-updating protocols are a class of communication pro-
tocol that aim to increase security by having the participants change
encryption keys between protocol executions. However, such protocols
can be vulnerable to desynchronisation attacks, a denial of service attack
in which the agents are tricked into updating their keys improperly,
impeding future communication. In this work we introduce a method
that can be used to automatically verify (or falsify) resistance to desyn-
chronisation attacks for a range of protocols. This approach is then used
to identify previously unreported vulnerabilities in two published RFID
grouping protocols.

1 Introduction

Key-updating protocols form a class of communication protocols in which par-
ticipants change their encryption keys between executions. Such protocols are
used in several domains - the Signal protocol uses the Diffie-Hellman Double
Ratchet algorithm [19], and the Gossamer protocol [18] also uses updating keys.
Many grouping protocols [12,21], which aim to prove that two or more RFID
tags are simultaneously present, also use such methods.

There are several formally defined security properties which demonstrate
the benefits of key-updating protocols. For example, forward privacy, intro-
duced by Avoine [2], prevents an attacker from learning about past sessions,
even after compromising a participant. Post-compromise security, as defined by
Cohn-Gordon et al. [5], states that if an adversary compromises an agent, their
influence can be reversed if they do not continually monitor communication.

Such goals are typically realised by security protocols which update encryp-
tion keys, for example by using a one-way hash function. This way, if an adversary
learns the encryption keys used in a single session, they cannot reconstruct past
keys. However such methods introduce the problem of requiring the protocol
participants to synchronise their key updates - so that their local states remain
consistent.
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 406–426, 2018.
https://doi.org/10.1007/978-3-319-99073-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_20&domain=pdf

Automated Identification of Desynchronisation Attacks 407

The synchronisation requirement of key-updating protocols has created new
attack vectors. If improperly designed or implemented, an attacker can cause
agents to update their keys in an improper manner, preventing them from cor-
rectly interpreting communications from their partner. This kind of Denial-of-
Service attack is called a desynchronisation attack [7]. Such attacks allow an
adversary to prevent future runs of a communication protocol, stopping the pro-
tocol from achieving its intended purpose.

Security properties for communication protocols can be formally verified
using symbolic analysis. This type of analysis is well-supported by a range of
automated proving tools such as ProVerif [3] and Tamarin [17], which typically
attempt to reduce analysis of the protocol to a bounded case. This is especially
true in the case of stateless protocols, where information between sessions is
never carried forwards to future executions. However, key-updating protocols
are inherently stateful - information must be preserved between sessions. This
can cause problems in analysis due to the explosion of the state space. Indeed,
reachability queries are in general an undecidable problem [4,10].

Existing Formalisms of Desynchronisation Resistance. Desynchronisation repre-
sents a class of attacks that are not covered by traditional definitions. A protocol
that is impervious to such attacks is said to be desynchronisation resistant, and
while there is a strong intuitive understanding of what this property means,
there are few attempts at formal definitions in the literature.

There exist a variety of works that either claim a form of desynchronisation
resistance [13,15,22,25] or provide a desynchronisation attack on published pro-
tocols [14,16,23]. Both types of papers only provide an informal treatment of
the topic, without automated tool support. Only few papers provide a formal
definition of a desynchronisation attack or desynchronisation resistance. We will
briefly discuss two of these approaches, namely the work of Van Deursen et al.
[6] and the work of Radomirović and Dashti [20].

Van Deursen et al. [6] introduce desynchronisation in the context of RFID
protocols. They say an RFID reader owns a tag if it knows a secret key allowing
it to authenticate the tag in absence of the adversary. A protocol is then said
to be desynchronisation resistant if being owned is an invariant property. For
example, if there is a time t such that a tag T is owned by a reader R, then at
time t + 1 there must exist some reader R′ (who may be the same or different
to R) which ‘owns’ T . The authors demonstrate how existing RFID protocols
violate their definition. They do not provide, however, any means for formally
verifying that it holds for an arbitrary protocol.

A second existing approach that relates to desynchronisation resistance is the
work on derailing attacks by Radomirović and Dashti [20]. In a derailing attack,
a protocol is led away from its intended execution by an adversary. Reachable
states in the protocol are labelled as safe, unsafe, or transitional, describing
whether a desirable ‘success’ condition is reachable from the current point. A
protocol is said to be susceptible to derailing attacks if there exists a reachable
state S such that in absence of the adversary, there are no safe states that are
reachable from S.

408 S. Mauw et al.

Contributions. In this paper, a formal definition of desynchronisation resistance
is given in terms of the traces of a security protocol. The definition we provide can
be seen as an extension of the two theories above. Like Radomirović and Dashti,
our definition concerns the reachability of certain states, and an examination of
the transitions between them. Like Deursen et al., the knowledge of secret keys is
an important factor in our definitions. However, we go further by providing a set
of conditions for key-updating protocols that allows for automated verification
(or falsification) of desynchronisation.

Although traditional security protocol verification tools allow for reachabil-
ity queries, they lack inherent support for the liveness properties that we are
verifying. As such, we provide under- and over- approximations in the form of
verifiable security properties.

Organisation. In Sect. 2, a detailed introduction to multiset rewriting theory is
given, presenting the language that will be used throughout the paper. In Sect. 3,
a series of definitions regarding reachability are provided, and used to create a
formal definition of desynchronisation resistance. In Sect. 4, the model is refined
to focus on sequential key-updating protocols. A set of security properties are
provided that are proved to be sufficient to ensure desynchronisation resistance in
this setting. Section 5 shows the result of applying this analysis to existing secret-
updating protocols by using the automated verification tool Tamarin. Novel
attacks are found on a number of protocols in the literature. Finally in Sect. 6,
we discuss future work, as well as related concepts.

2 Security Protocol Model

In order to model security protocols in which shared secrets are updated, a
multiset rewriting model will be used. Multiset rewriting is a common basis
for modelling stateful systems. In a stateful system, different sessions can be
dependent on each other, with information that is dynamic between executions.

A protocol specification covers a set of rules that govern how a multiset
describing the protocol state is allowed to proceed. This state contains infor-
mation such as the messages that have been sent by different participants of
the protocol, markers denoting if certain stages of the protocol have been suc-
cessfully reached, and the knowledge and actions of an adversary who seeks to
undermine the protocol’s successful execution.

2.1 Multiset Rewriting

The multisets used in our model are built on terms constructed from an order-
sorted signature, such as those described by Goguen and Meseguer [11]. An
order-sorted signature is a triple (S,≤, Σ), where ≤ is a partial ordering on a
set of types S, and Σ is a collection of functions between types. For two types s
and t we define Σs,t to be the functions in Σ which map from type s to type t.

Automated Identification of Desynchronisation Attacks 409

Further, we use the standard notation for the Cartesian product of sets, so for
example:

f ∈ ΣR2,N := f : R × R → N.

Our model must track not only the messages that are on the network, but
also auxiliary information about the state, such as an agent’s encryption keys.
To do this, we define two top types msg and fact, and further define subtypes
public, nonce < msg, and agent, const < public.

The set of terms over S is defined iteratively, as follows. First, for each type
s ∈ S we build two infinite carrier sets Ns and Vs of names (i.e. known values)
and variables (i.e. unknown or uninstantiated values) of type s. We refer to these
types of terms as atoms. We will often use the following notation for variables:

x, y : nonce, m, k : msg, A,B : agent.

From here, successive terms are built by the application of functions from Σ on
the atoms. Given a term t, we define the set of subterms of t as follows. If t is an
atom, then subterms(t) = {t}. Otherwise, we have t = f(t1, t2, . . . , tn) for some
function symbol f ∈ Σ. In this case, we define

subterms(t) = {t} ∪ {subterms(t1), . . . , subterms(tn)}.

A term t is ground if subterms(t) ∩ Vs = ∅, and we denote the set of all
(ground) terms of type s as Ters (GTers). A (ground) substitution σ is a partial
function from variables to (ground) terms of the same type or supertype. Given
a substitution σ and a term t, we write tσ to denote the application of the
substitution. Given a set S = {t1, . . . , tn}, we write Sσ = {t1σ, . . . , tnσ}. We say
σ is a grounding substitution for S if all terms in Sσ are ground.

The model is extended with an equational theory E, which describes the
semantics of the functions in Σ. Pairs lhs = rhs in E define an equivalence
relation �E on terms constructed using (S,≤, Σ).

Example 1. We define the pair operator 〈 , 〉 ∈ Σmsg×msg,msg, and the corre-
sponding projection functions fst , snd ∈ Σmsg,msg such that fst(〈x, y〉) = x and
snd(〈x, y〉) = y.

The equivalence relation E is extended to other terms in the algebra in the
natural way, e.g. fst(〈〈x, y〉, z〉) �E 〈x, y〉.

A multiset is a set, M , counted with multiplicity - multiple copies of an
element k can be contained in M . We write |k|M to denote the number of
occurrences of k in M , with |k|M = 0 if k �∈ M . Given a set S, we write M(S)
to denote the collection of all multisets that can be written using elements of S.

The multisets we will study are a restricted subset of those constructible
using the order-sorted signature (S,≤, Σ) above. In particular, we define the
universe of states, U(Σ) as:

410 S. Mauw et al.

U(Σ) = M({f(t1, . . . , ti) | i ≥ 0 ∧ f ∈ Σmsgi,fact ∧
∀k ∈ {1 . . . i}. tk ∈ GTermsg}).

Each element S ∈ U(Σ) represents a single valid state of a protocol execution.
We now look at how we can move from one state to the next.

A rule r is defined by a pair (lhs, rhs) of multisets. Suppose σ is a grounding
substitution for lhs. A rule application rσ is a mapping U(Σ) → U(Σ). It acts
on a state S ∈ U(Σ) by identifying a submultiset of S equivalent to σ(lhs), and
replacing it with σ(rhs). Note that multiset rules must respect the equational
theory E, so that S �E S′ =⇒ rσ(S) �E rσ(S′). We express protocol rules as
labelled transitions.

Example 2. Consider the protocol rule Combine:

A(x) A(y)
B(x, y)

Combine,

which takes two terms of type fact built with symbol A, and returns a
new fact which contains the subterms of the two previous terms. Let S =
{A(a),A(b),A(c)}. The substitution σ = {x �→ a, y �→ b} maps:

{A(a),A(b),A(c)} rσ−→ {B(a, b),A(c)}

Definition 2.1 (Protocol specification). A protocol specification P is
defined by a tuple (Σ,E,R, Sstart) where:

– Σ = (F,F) is a collection of function symbols of signature types Σmsg∗,msg

and Σmsg∗,fact, respectively.
– E is an equational theory over Σmsg∗,msg.
– R is a collection of rules.
– Sstart ⊆ U(Σ) is a collection of potential starting states.

The set of starting states will usually be infinite, as they carry the details of
a specific execution - the number of participating agents, their encryption keys,
and so on.

A trace, τ , on P is a choice of starting state S0 ∈ Sstart and a finite ordered
list of rule applications (r1σ1 . . . rnσn) such that each successive application
S0 r1σ1−−−→ . . .

rnσn−−−→ Sn is valid.
The intermediate states in a trace can be reconstructed from the choices

of rule applications. Given a trace τ = (S0, (r1σ1 . . . rnσn)), a second trace τ ′

is an extension of τ , writing τ � τ ′, if τ ′ = (S0, (r1σ1 · · · rnσn . . . rn+kσn+k)).
Similarly, we also say that τ is a prefix of τ ′ in this case.

Given a trace τ we write firstState(τ) and lastState(τ) to denote the first
state and the (implicit) last state in the trace. We write rules(τ) to denote the
set of rules {r1, . . . , rn} in τ . We write traces(P) to denote the set of all possible
traces on the protocol P .

Automated Identification of Desynchronisation Attacks 411

We define an event fact, E� to be a fact which appears only on the right-
hand side of rules in R. Such facts can never be removed from the state of the
protocol. Intuitively, while standard facts mark the current situation of a state,
event facts form an indelible history of all important occurrences in a trace.

As such, we define the multiplicity of an event fact in a trace without ambi-
guity as |E�(t1 . . . tn)|τ := |E�(t1 . . . tn)|lastState(τ),

We define a quasi-order on event facts within traces, <τ , as follows. Given
two event facts E�(t1 . . . tn),F�(s1 . . . sm), we say E�(t1 . . . tn) <τ F�(s1 . . . sm)
if there exists a prefix τ ′ � τ such that:

(|E�(t1 . . . tn)|τ ′ > 0
) ∧ (|F�(s1 . . . sm)|τ ′ = 0

) ∧ (|F�(s1 . . . sm)|τ > 0
)
.

In particular, this means that F� was added to the state at some point
after E�. In addition, we write E�(t1 . . . tn) ≤τ F�(s1 . . . sm) to indicate that
E�(t1 . . . tn) <τ F�(s1 . . . sm) or {E�(t1 . . . tn),F�(s1 . . . sm)} ⊆ firstState(τ).

We reserve several symbols in F for all protocols, with the following inter-
pretations:

– Net(msg) represents a message on the communication network.
– Fr(nonce) represents that the nonce in the argument has been freshly gener-

ated. By convention, we require that freshly generated terms are atomic.
– K(msg) represents that the adversary ‘knows’ the term in the argument.

Additional event facts are introduced as a consequence of the security require-
ments of the protocol being analysed. In Sects. 3 and 4, we will introduce several
more event fact symbols used in order to analyse key-updating protocols.

2.2 The Adversary

An important concept in discussing the security of a protocol is an understanding
of the adversary’s capabilities. In this work, the Dolev-Yao adversary model [8] is
used. The Dolev-Yao adversary is assumed to have full control over the commu-
nication network. We make the perfect cryptography assumption: the adversary
is incapable of decrypting messages without the appropriate key.

The adversary knowledge is modelled using facts K. The initial knowledge
of the adversary is defined by the starting states of the protocol specification,
but at a minimum contains all terms of type public. A set of additional protocol
rules describe the capabilities of the adversary. These protocol rules allow the
adversary to eavesdrop, block or modify messages that are sent on the commu-
nication network. We assume that all protocols being studied contain (at least)
the set of adversary rules provided in Fig. 1. The set of rules which model the
actions of the adversary is denoted as Adv .

Given a state S, adversary knowledge K and a term x, we write (S,K) � x
to indicate that some combination of (only) the rules in Fig. 1 will allow the
adversary to derive x from the state S.

412 S. Mauw et al.

Net(x)
Net(x) K(x)

Eavesdrop
Net(x)
K(x)

Block

K(x)
K(x) Net(x)

Inject
K(x1, . . . , xn)

K(f(x1, . . . , xn))
Function

Fig. 1. The minimal set of adversary rules.

We often also grant the adversary the limited ability to corrupt an agent,
learning the value of any secret keys they hold. This is done through either the
choice of starting states, or additional adversary rules.

2.3 Security Claims

Given a protocol P , a security claim on P is a first-order logic statement about
the existence and ordering of event facts in traces of P .

We note that the validity of security claims is dependent upon a faithful
description of the protocol in question. For example, in order to make security
claims about the secrecy of certain knowledge, we should expect the protocol
specification to contain Secret�(t) (or similar) facts denoting the terms that are
believed to be secret.

3 Desynchronisation Resistance

The intuition behind desynchronisation is that the protocol reaches a state from
which it can no longer proceed in a meaningful way. In order to define precisely
what this means, we must start with a notion of reachability. We refine this
definition to progressively stronger versions, before introducing our definition of
desynchronisation resistance.

Reachability is a property describing the ability of the protocol to transition
from a given state to some desirable situation. We will want to ensure that
in any reasonable conditions, the adversary cannot prevent the protocol from
completing, but rather only delay it.

Definition 3.1 (State Reachability). Given a protocol P = (Σ,E,R, Sstart),
a set of rules W ⊆ R and two states S, S′ ∈ U(Σ), we say that S′ is reachable
from S avoiding W , denoted by S �¬W S′, if:

∀τ ∈ traces(P). lastState(τ) = S =⇒
∃τ ′ ∈ traces(P).τ � τ ′ ∧ lastState(τ ′) = S′ ∧ rules(τ ′ \ τ) ∩ W = ∅.

Note that we pay particular attention to the idea of reachability avoiding
certain rules. We wish to show that no matter which actions an adversary takes,
it is possible for the execution of a protocol to continue once the adversary

Automated Identification of Desynchronisation Attacks 413

becomes inactive. As such, we use �¬Adv to denote reachability in absence of
the adversary, and � for the particular case when no rules are forbidden.

Given a protocol P = (Σ,E,R, Sstart) and a state S ∈ U(Σ) we define the
set of states reachable from S as reachable(S) = {S′ ∈ U(Σ) | S � S′}. Over-
loading notation, we define the set of states reachable by P as reachable(P) =⋃

S0∈Sstart reachable(S0).
Next, the notion of reachability is extended from the context of states to the

context of event facts.

Definition 3.2 (Event Reachability). Let P be a protocol, S ∈ U(Σ) a state,
W a set of rules and E� an event fact. We say that E� is reachable from S
avoiding W , denoted by S �¬W E�, if:

∃S′ ∈ U(Σ). (S �¬W S′) ∧ (|E�|S < |E�|S′).

Intuitively, given a trace τ that contains S, it is possible to extend τ in such
a way that the event fact E� is reached. Like before, we will write S � E� to
indicate S �¬∅ E�.

Reachability captures the idea that a desired state or event can be achieved
once. However, we desire that our protocol not only be able to successfully
complete once, but arbitrarily many times. To do this, we need a definition
stronger than standard reachability. To do so, we introduce the event facts:

– Complete�(agent, agent) indicates that the first agent believes they have suc-
cessfully completed a run of the protocol with the second.

– Corrupt�(agent) represents that the named agent has performed an action
that deviates from their protocol specification, or that the adversary has
stolen confidential data from them.

Desynchronisation occurs when two agents who were originally able to finish a
protocol execution lose this ability.

Definition 3.3 (Desynchronisation Resistance). A protocol P is desyn-
chronisation resistant if:

∀A,B : agent, S0 ∈ Sstart . S0 �¬Adv Complete�(A,B) =⇒
(∀τ ∈ traces(P). firstState(τ) = S0 =⇒

lastState(τ) �¬Adv Complete�(A,B) ∨
Corrupt�(A) ∈ τ ∨
Corrupt�(B) ∈ τ

)
.

Intuitively, if A and B are able to complete the protocol once without any
actions being performed by the adversary, then they will always be able to do
this, except in the case that one of the participants been corrupted, giving secret
data to the adversary.

414 S. Mauw et al.

4 Verifying Desynchronisation Resistance

In this section we look at a specific instantiation of the theory in the previous
sections, and show that it can be used to verify desynchronisation resistance. We
also provide ‘lower’ and ‘upper’ bounds to desynchronisation resistance, proving
that violating this combination of properties results in an attack. Note that
other choices of environment could be made depending on the target domain,
with comparable results.

We model a synchronous key updating environment, in which a pair of agents
each store a number of secret communication keys to be used with their intended
partner. In an ideal execution, the keys stored by one agent will always corre-
spond to those stored by their partner.

4.1 A Sequential Key Updating Environment

Recall that a protocol specification is defined by a tuple (Σ,E,R, Sstart), where
Σ is further divided into the collections F and F of functions on terms and fact
symbols. We provide next a framework composed of F , E, and F . Depending
on the protocol, it may be necessary to extend the equational theory. The set of
rules R is a consequence of the protocol being examined.

F = {senc : msg × msg → msg, sdec : msg × msg → msg,
aenc : msg × msg → msg, adec : msg × msg → msg,
pk : msg → msg, h : msg → msg}.

E = {sdec(senc(msg, key), key) = msg,
adec(aenc(msg, pk(ltk)), ltk) = msg}.

The function symbols in F represent the standard symmetric and asymmetric
encryption and decryption functions, and E defines their semantics.

F = { ShKeys(agent, agent, 〈nonce, . . .〉), Session(agent, agent, 〈msg, . . .〉),
AddKey�(agent, agent,msg), DropKey�(agent, agent,msg),
Complete�(agent, agent)}.

The facts ShKeys and Session provide information about the knowledge of
an agent. ShKeys facts represent their long term knowledge, in the form of
communication keys for use with a named partner. Session facts are used to
store session data for a single execution of the protocol. The AddKey� and
DropKey� event facts mark changes to the stored keys of an agent.

Definition 4.1 (Starting States). The set of starting states Sstart is the set
composed of all S0 ∈ U(Σ) that satisfy the following conditions:

Automated Identification of Desynchronisation Attacks 415

(i) �x : msg.Net(x) ∈ S0,

(ii) �A,B : agent, y : msg. Session(A,B, y) ∈ S0,

(iii) ∀A,B : agent, k1, . . . , kn : msg. ShKeys(A,B, 〈k1, . . . , kn〉) ∈ S0 =⇒
�l1, . . . , lm : msg, 〈k1, . . . , kn〉 �= 〈l1, . . . , lm〉. ShKeys(A,B, 〈l1, . . . , lm〉) ∈ S0,

(iv) ∀A,B : agent, ki : msg.

ShKeys(A,B, 〈. . . ki . . .〉) ∈ S0 =⇒ AddKey�(A,B, ki) ∈ S0,

(v) ∀A,B : agent, k : msg. AddKey�(A,B, k) ∈ S0 ⇐⇒
∃k1 . . . kn : msg. ShKeys(A,B, 〈. . . k . . .〉) ∈ S0 ∨ DropKey�(A,B, k) ∈ S0

(vi) ∀A,B : agent, k : nonce.
(
ShKeys(A,B, 〈. . . k . . .〉) ∈ S0 ∧ ((S0,K) � k)

)
=⇒

Corrupt�(A) ∈ S0 ∨ Corrupt�(B) ∈ S0.

We note the following intuitions behind the above requirements:

(i) A starting state may not contain messages.
(ii) A starting state may not contain session data.
(iii) An agent stores only one set of keys for use with each potential communi-

cation partner.
(iv) If a starting state contains an agent A who stores a secret key ki for com-

municating with an agent B, then there is a corresponding AddKey� fact
showing that A has added this key.

(v) If a starting state contains an AddKey� fact, then either the corresponding
agent has that key in their knowledge, or there is also a corresponding
DropKey� fact.

(vi) If a starting state contains an agent A who stores a secret key ki for com-
municating with an agent B, and the adversary knows the value ki, then
either A or B is corrupt.

We point out that a starting state does allow for instances of the Complete�

event fact. This does not interfere with any reachability claims, as these describe
the ability to add new instances of these event facts to the trace.

In addition, we grant the adversary two capabilities. Firstly, the adversary is
able to “corrupt” an agent, learning any secret keys they are holding. Second,
we allow the adversary to “cancel” the session of an agent, causing them to lose
any stored session data. For example, this models the ability of an adversary
to block messages sent on the network until an agent assumes their partner has
halted communication. We do this by requiring that the set of rules R contains
the rules Corrupt and Sess Cancel, defined below.

ShKeys(A,B, 〈k1 . . . kn〉)
K(〈k1 . . . kn〉) Corrupt∗(A)

Corrupt
Session(A,B, y)

Sess Cancel

4.2 Satisfying Desynchronisation Resistance

Given a protocol constructed in the model above, we provide a set of conditions
that are sufficient to satisfy desynchronisation resistance.

416 S. Mauw et al.

We start with a predicate stating whether two agents share a common key
in a given state. Let P be a protocol and S ∈ reachable(P). We say that two
agents A and B have a common key in S, denoted CommonKeyA,B(S), if and
only if:

∃k1, . . . , kn, l1, . . . , lm : msg.
({k1, . . . , kn} ∩ {l1, . . . , lm} �= ∅ ∧

ShKeys(A,B, 〈k1, . . . , kn〉) ∈ S ∧ ShKeys(B,A, 〈l1, . . . , lm〉) ∈ S
)

.

Now we define reachability conditional on a common key as the property of
a protocol that two agents are able to complete the protocol with each other in
absence of the adversary if and only if they have a common key.

Property 4.2 (Reachable Conditional on Common Key). We say that P
satisfies completion conditional on a common key if:

∀S0 ∈ Sstart , A,B : agent,

S0 �¬Adv Complete(A,B) ⇐⇒ CommonKeyA,B(S0).

With these in mind, we now define several other properties describing the
nature in which the shared keys used by agents in a protocol are updated.
Properties 4.3 and 4.4 give syntactic requirements on protocols. In particular, we
require that a protocol’s specification is consistent in the way that ShKeys linear
facts are modified with respect to the addition of the AddKey� and DropKey�

event facts. We also make the assumption that an agent always stores the same
number of encryption keys for communicating with their partner.

Property 4.3 (Well-Formed Key Updates). A protocol P = (Σ,E,
R, Sstart) satisfies Well-Formed Key Updates if the following two conditions
hold for all rules r ∈ R:

AddKey�(A,B, k) ∈ rhs(r) ⇐⇒
(∃ k1 . . . kn, l1 . . . lm . ShKeys(A,B, 〈k1 . . . k . . . kn〉) ∈ rhs(r) ∧

ShKeys(A,B, 〈l1 . . . lm〉) ∈ lhs(r) ∧ ∀ i . li �= k
)
,

DropKey�(A,B, k) ∈ rhs(r) ⇐⇒
(∃ k1 . . . kn, l1 . . . lm . ShKeys(A,B, 〈k1 . . . k . . . kn〉) ∈ lhs(r) ∧

ShKeys(A,B, 〈l1 . . . lm〉) ∈ rhs(r) ∧ ∀ i . li �= k
)
.

Next we define the Key Conservation property. It states that every agent
must keep the same number of keys during the execution of the protocol. We
also require each rule to consider at most a single shared key fact.

Property 4.4 (Key Conservation). A protocol P = (Σ,E,R, Sstart) sat-
isfies Key Conservation if for every rule r ∈ R, and every A,B : agent,
k1, . . . , kn : msg, there exists an instance of ShKeys(A,B, 〈k1, . . . , kn〉) on the
left-hand side of r if and only if there is some l1, . . . , ln : msg such that the right-
hand side of r contains ShKeys(A,B, 〈l1, . . . , ln〉).

Automated Identification of Desynchronisation Attacks 417

Next we define Key Uniqueness as the notion that a given encryption key will
only be generated at most once. Once discarded by an agent they will never re-
use it, nor can a different pair of agents ever (intentionally or otherwise) generate
the same encryption key.

Definition 4.5 (Key Uniqueness). A protocol P satisfies Key Uniqueness if
for every τ ∈ traces(P) and every A,B,A′, B′ : agent and every k : msg with
{A,B} �= {A′, B′} it holds that:

AddKey�(A,B, k) ∈ τ =⇒
|AddKey�(A,B, k)|τ = 1 ∧ |AddKey�(A′, B′, k)|τ = 0.

We next describe the properties of Key Preparedness and Key Resilience.
Together with Key Uniqueness, these are the main security requirements that
are to be verified. Intuitively, they provide a semi-strict ordering on the key
updates of paired agents.

Definition 4.6 (Key Preparedness for agents A and B). A protocol P
satisfies Key Preparedness for agents A and B if

∀τ ∈ traces(P),∀k : msg,

AddKey�(A,B, k) ∈ τ =⇒ AddKey�(B,A, k) ≤τ AddKey�(A,B, k).

Definition 4.7 (Key Resilience for agents A and B). A protocol P satisfies
Key Resilience for agents A and B if

∀τ = (S0, (riσi)) ∈ traces(P),∀k : msg,

DropKey�(A,B, k) ∈ τ =⇒
DropKey�(B,A, k) ≤τ DropKey�(A,B, k).

The second case in the Key Resilience claim accounts for the trivial case of
a starting state containing DropKey� facts for which we cannot be sure of the
source.

We note that the above properties are verifiable, either by examination of
the protocol specification (Properties 4.2, 4.3 and 4.4), or through verification of
traces in an automated prover tool (Definitions 4.5, 4.6 and 4.7). We denote the
properties as WF, KC, KU, KP and KR respectively for Well Formedness, Key
Conservation, Key Uniqueness, Key Preparedness and Key Resilience.

Theorem 4.8 (Sufficiency). Let P = (Σ,E,R, Sstart) be a protocol that satis-
fies Properties 4.2, 4.3, 4.4 and Definition 4.5. P satisfies desynchronisation resis-
tance if for all S0 ∈ Sstart and all agents A,B such that CommonKeyA,B(S0),
one of the following conditions holds:

– Key Preparedness (Definition 4.6) for agents A and B holds, and Key
Resilience (Definition 4.7) for agents B and A holds, or

– Key Preparedness (Definition 4.6) for agents B and A holds, and Key
Resilience (Definition 4.7) for agents A and B holds.

418 S. Mauw et al.

Before we begin the proof of Theorem4.8, we provide some helper lemmas.
We define the strip() function, which allows us to transform a state into a starting
state.

Definition 4.9 (Strip Function). We define the function strip(), which maps
from states to states. We define strip(S) to be the multiset that is equal to S,
but with all instances of Session, K and Net removed.

Lemma 4.10. Let P be a protocol which satisfies Key Conservation (Prop-
erty 4.4) and Well-Formed Key Updates (Property 4.3). Suppose S ∈
reachable(P). Then strip(S) is a starting state of this protocol, as per the require-
ments of starting states in Definition 4.1.

Proof. Points (i), (ii) and (vi) are immediate from the absence of corresponding
facts. (iii) is a consequence of Key Conservation, (iv) and (v) from Well-Formed
Key Updates. ��
Lemma 4.11. Let P be a protocol which satisfies Key Conservation (Prop-
erty 4.4) and Well-Formed Key Updates (Property 4.3), and τ a trace of P with
final state S. Suppose γ is a trace of P with starting state strip(S) that contains
no adversary rules. Then γ · τ ∈ traces(P) is a trace extension of τ .

Proof. Suppose γ = (strip(S), r1σ1 . . . rnσn). We claim that the series of rule
applications r1σ1 . . . rnσn are valid from the state S. Indeed, the rule application
r1σ1 can be dependent only on ShKeys facts, as these are the only linear facts
which can be in a starting state. These facts exist in both S and strip(S). By
the same logic, the rest of the series of applications are also valid. ��
Proof (Theorem 4.8). Assume that the agents A and B are not corrupt. Without
loss of generality, we assume the first case holds - that we have Key Preparedness
for A and B, and Key Resilience for B and A.

Our proof proceeds in two steps. First, we show that the common key pred-
icate is sufficient to ensure completion from any state, not just the starting
states:

∀S ∈ reachable(P),
CommonKeyA,B(S) =⇒ S �¬Adv Complete(A,B).

Secondly, we show that the common key property is invariant :

∀S ∈ reachable(P), r ∈ R,

(CommonKeyA,B(S) ∧ S
rσ−→ S′) =⇒ CommonKeyA,B(S′).

From these two claims, the result will immediately follow. To show the first
point, we use the strip() function from Definition 4.9. Note that if A and B
have a common key in S, then they have a common key in strip(S). Then, by
Lemma 4.11, the claim follows.

Automated Identification of Desynchronisation Attacks 419

For the second point, we must show that for any rule application rσ in which
a DropKey� event fact is added, the common key predicate is preserved. Indeed,
the well-formedness properties of Property 4.3 ensure that these are the only
possible rule applications which can affect the predicate.

Suppose we have S ∈ reachable(P) such that CommonKeyA,B(S), and a rule
application rnσn. We split into the cases when DropKey�(A,B, k) is added, or
when DropKey�(B,A, k) is added. Suppose now rnσn adds DropKey�(A,B, k),
then:

KC=⇒ ∃k′ : msg. rnσnadds AddKey�(A,B, k′)
KP=⇒ ∃i < n. riσi adds AddKey�(B,A, k′)
KU=⇒ �j. rjσj adds DropKey�(A,B, k′)

KDR=⇒ �m. rmσm adds DropKey�(B,A, k′)
=⇒ ShKeys(B,A, 〈. . . , k′, . . .〉) ∈ S

and so now k′ is a common key after the rule application. Therefore the Common
Key predicate is preserved.

Suppose instead rnσn adds DropKey�(B,A, k), then:

KDR=⇒ ∃i < n. riσi adds DropKey�(A,B, k)
WF=⇒ ∃j < i. rjσj adds AddKey�(A,B, k)
KU=⇒ �l �= i. rlσi adds AddKey�(A,B, k)
=⇒ ShKeys(A,B, 〈. . . , k, . . .〉) �∈ S

and so k was not a common key before the rule application. Therefore since S
contained some key k′ that was a common key, so does the state after the rule
application, and so the common key predicate is preserved. ��

Theorem 4.8 provides a set of sufficient conditions to ensure that a protocol
in our model satisfies desynchronisation resistance. We provide one example of
a necessary condition to satisfy desynchronisation resistance: any protocol that
fails to meet this condition also fails to provide resistance against desynchroni-
sation attacks.

Theorem 4.12 (Necessity). Let P = (Σ,E,R, Sstart) be a protocol that satis-
fies Properties 4.2, 4.3, and 4.4. Let S0 ∈ Sstart and ShKeys(A,B, k) ∈ S0 (i.e.
A stores exactly one key for B) and assume P does not satisfy Key Preparedness
(Definition 4.6) for A and B. Then P either contains no reachable key update
rule applications for A, or it does not satisfy desynchronisation resistance.

Proof. Suppose P contains at least one key update rule for A. We will construct
a trace from which the Complete�(A,B) is no longer reachable without adversary
interference.

420 S. Mauw et al.

Let τ = (S0, r1σ1, . . . , rnσn) be a trace such that rnσn is a key update rule
application for A that violates the Key Preparedness property. Consider the
state strip(lastState(τ)). Note this state is reachable from lastState(τ) through
the rules Sh Cancel and Block.

By Reachability Conditional on a Common Key (Property 4.2), there exist
no traces starting from strip(lastState(τ)) that lead to the Complete�(A,B)
event fact without adversary interference. Thus desynchronisation resistance is
violated. ��

5 Automated Verification

In this section we discuss the automated verification of the security properties
from the previous section in the proving tool Tamarin. Tamarin uses multiset
rewriting theory at its core, allowing for our model to be naturally implemented.
We discuss the basic details of the implementation of the properties from Sect. 4
in Tamarin, before discussing two protocols that were analysed and shown to
have attacks by using the Tamarin prover. In AppendixA we discuss some of
the obstacles overcome in the implementation. The full implementations, along
with diagrams and full descriptions of the attack traces can be found on our git
repository1, along with several other demonstrations of the security properties
defined in this paper.

Definitions 4.5, 4.6, and 4.7 can be readily implemented in Tamarin. The
remaining definitions used in our results can be verified syntactically from a
protocol specification. With these considerations, our security properties can be
analysed.

We note that the environment introduced in Sect. 4 is applicable to a large
majority of key updating protocols. For example, many modern messaging appli-
cations make use of variations of the Diffie-Hellman Double Ratchet algorithm,
which satisfies Common-Key Reachability (Property 4.2), Key Conservation
(Property 4.4), and Key Uniqueness (Property 4.5). Note that Well-Formedness
is a consequence of the specification of the protocol, not the protocol itself. The
Gossamer protocol in the RFID domain also satisfies these properties. As a con-
sequence, the verification of these protocols is limited only by the power of the
analysis tools involved.

5.1 Identified Attacks

Our analysis identified novel attacks in two papers from the domain of RFID
grouping protocols. In particular, these protocols were shown to violate the con-
ditions of Theorem 4.12.

A desynchronisation attack was found on the grouping protocol of Sundare-
san, Doss, and Zhou [26]. The attack consists of a modified replay message,
taking advantage of the algebraic properties of the exclusive-OR function, which

1 https://github.com/DesynchTamarin/desynch.

https://github.com/DesynchTamarin/desynch

Automated Identification of Desynchronisation Attacks 421

Reader Tag
IDR, kt

R, kt+1
R IDR, ktag

Fetch TS , Data from server
Generate nR

D ← Data ⊕ nR

I ← IDR ⊕ h(TS ⊕ nR)
δ1 ← h(IDR ⊕ kt

R) ⊕ nR

δ2 ← h(IDR ⊕ kt+1
R) ⊕ nR

TS ,D,I,δ1,δ2−−−−−−−−−−−−−→
n′ ← δ1 ⊕ h(IDR ⊕ ktag)

if IDR = I ⊕ h(TS ⊕ n′):
if n′ = (n′)t−1: abort
else: ktag ← h(ktag)

else:
n′ ← δ2 ⊕ h(IDR ⊕ ktag)
if IDR �= I ⊕ h(TS ⊕ n′) or

n′ = (n′)t−1: abort
D ← f(D ⊕ n′)

D⊕n′
←−−−−−−−−−−−−−−

Reader

IDR, kt
R, kt+1

R

Tag
IDR, ktag

Adversary

(TS , D, I, δ1, δ2)

n′ ← δ1 ⊕ h(IDR ⊕ ktag)

ktag ← h(ktag)

Generate nA

DA ← D ⊕ nA

δA ← δ2 ⊕ nA

x ← (TS ⊕ nA, DA, I, δ, ∗)

f(D) ⊕ n′

x

n′ ← δ ⊕ h(IDR ⊕ ktag)

ktag ← h(ktag)

f(D) ⊕ n′

Fig. 2. The grouping protocol of Sundaresan et al. (left), and attack trace (right)

is used to mask data. This replay causes an RFID tag to incorrectly authenticate
the adversary as a valid reader, updating their key past a safe threshold. The
intended execution of the protocol, and a trace which leads to a desynchronisa-
tion attack, can be found in Fig. 2. A very similar attack can be found on another
RFID grouping protocol, by Sundaresan, Doss, Piramuthu and Zhou [24].

An attack was also found on the ‘two-round grouping proof’ of Abughazalah,
Markantonakis and Mayes [1]. This protocol consists of a single message-response
round which allows multiple tags to authenticate to a single RFID reader. How-
ever, a modified replay attack abuses a built-in measure that allows a tag to
‘reset’ its group key. In this instance, the adversary can launch countless replay
messages, causing a tag to update its personal encryption key arbitrarily many
times. Further information about the attack can be found in AppendixB.

6 Conclusion

Denial-of-Service attacks are often not considered in the analysis of security pro-
tocols, mainly because such attacks are hard to distinguish from regular omis-
sions in the underlying communication channel. However, some types of DoS
attacks are aimed at vulnerabilities at the protocol level. A typical example is
formed by the class of desynchronisation attacks, which aim to disrupt all future
communications between the protocol agents by desynchronising their commu-
nication keys.

Even though such desynchronisation attacks have been known for over a
decade, formal analysis tools have been lacking. In this paper we have addressed
this issue by developing a formal definition of desynchronisation resistance using
a protocol model based on multiset rewriting. This definition has been opera-
tionalised by defining a set of sufficient and necessary conditions that can be

422 S. Mauw et al.

easily validated by current state-of-the-art verification tools, such as Tamarin.
We showed the applicability of our methodology by deriving two novel desyn-
chronisation attacks on published RFID protocols.

A Tamarin Implementation Details

In Tamarin, executions always begin from the empty trace. The adversary knowl-
edge is assumed to contain all public terms (such as the names of agents). To
model this, we add a set of additional rules describing the establishment of shared
keys between agents, as well as corruption rules where agents reveal their secret
information to the adversary. Such rules are commonplace, and are comparable
to those found in the Tamarin User Manual [27].

Tamarin allows for the implementation of user-defined equational theories.
However, it requires that they be subterm convergent. We note that progress has
been made on implementing more permissive equational theories, such as the
work by Dreier et al., which provides an extension allowing for AC-convergent [9]
equational theories.

Because of this, in some cases we are required to under-approximate the
equational theory of a protocol. The most notable example of this is with the
exclusive-or (XOR) operator. This under-approximation means that any identi-
fied attack traces are still valid, but it is possible that Tamarin will incorrectly
report that a property holds. This is a limitation of the tool, not of the model
itself.

Tamarin supports unbounded analysis, using induction arguments to suc-
cessfully limit the search space in its backwards search approach. However, for
stateful protocols, it is not uncommon for Tamarin to require assistance in find-
ing proofs, sometimes failing to terminate. This means that at times we have
aided the tool by manually identifying minor ‘helper’ lemmas which identify the
key induction steps needed.

For ease of readability, we have assumed that the participants of a protocol
can be assigned to roles. For example, in the RFID case, an agent may be a tag
or a reader. As such, the event fact AddKey� is divided into the two event facts
TagAddsKey� and ReaderAddsKey�.

B Attack on the Two-Round Grouping Proof
of Abughazalah, Markantonakis and Mayes

Abughazalah, Markantonakis and Mayes provide a two-round RFID grouping
proof protocol [1], which uses updating keys. An RFID tag stores two updating
keys, for authenticating itself as well as identifying the group that it is a part of.

A system is in place to allow a tag to re-synchronise its group key if it is absent
for a run of the protocol, and does not receive the needed message to cause it to
update its key naturally. However, this system allows for replay attacks to cause
a tag to desynchronise its personal key with that stored by the verifier.

The analysis of the protocol in Tamarin revealed that it fails to satisfy the
conditions of Theorem4.12, resulting in an attack.

Automated Identification of Desynchronisation Attacks 423

Protocol Description. The protocol is described in detail in the original paper.
Here, we provide a simplified description of the protocol for the sake of concise-
ness. For example, the attack involves communication only between the reader
and a single tag, so we focus on only looking at one tag. We also adopt the
slightly adapted notation from Table 1. A diagram of the intended execution of
the protocol is provided in Fig. 3.

Table 1. Notation used in the protocol by Abughazalah et al.

IDG The identity of the reader, a secret value

IDT The identity of the tag, a secret value

kG A secret key for the group being tested

kT A secret key for the specific tag being tested

TS t An encrypted timestamp, used in construction of the proof

nR A fresh (random) nonce generated by the reader

nT A fresh (random) nonce generated by the tag

h(·) A cryptographic hash function

Attack Trace Description. The grouping protocol has the advantage of
requiring only two exchanged messages during its main execution between the
reader and tag. However, this results in a vulnerability which leads to a desyn-
chronisation attacks. The protocol was analysed in Tamarin, with the server role
merged into the reader role. This is because the reader and server are assumed
to have a secure communications channel.

Note that blocking the tag’s message to the reader during a run of the pro-
tocol leads to a situation where the tag updates its secret, but the reader will
not. The next time the protocol runs, the tag will receive the first message from
the reader. Regardless of whether the reader updated the group key kG (which
it may have, because of the presence of other tags in the group completing the
protocol), the tag will authenticate to this message and update its key a further
time.

The authors seem aware of this problem, and suggest that it is possible
for the server to calculate future values of the tag’s key in order to prevent
desynchronisation. However, there exists the capability to perform replay former
messages, causing the tag to update its personal key arbitrarily many times.

As mentioned in the protocol paper, each tag stores previous nonces that
they successfully authenticated to. However, an RFID tag has limited memory
capacity - a typical EPC Generation 2 tag (such as those mentioned in the paper)
has around 512 bits of storage space, meaning that there is very little space to
store previously received nonces.

424 S. Mauw et al.

Server

IDG, IDT , kG, kT

Reader

IDT

Tag
IDG, IDT , kG, kT

Generate TS t

TS t, IDG, kG

Generate nR

MR
G ← h(IDG, nR, kG)

K ← kG ⊕ h(IDG ⊕ nR)

nR,TS t, MR
G , K

nR = nt−1
R

If MR
G = h(IDG, nR, kG)

kG ← K ⊕ h(IDG ⊕ nR)

Generate nT

MG ← h(IDG, nT , nR, kG, IDT)
MT ← h(IDT , nT , nR, kT ,TS t)

kG ← h(kG)
kT ← h(kT)

nT , MT , MG

MG = h(IDG, nT , nR, kG, IDT)

nt, MT , MG

kG ← h(kG)
kT ← h(kT)

Reader

IDT

Tag
IDG, IDT , kG, kT

Adversary

Receive TSt1 , IDg , kG1
Generate nR1
MR

G1
← h(IDG, nR1 , kG1)

K1 ← kG1 ⊕h(IDG ⊕nR1)

nR1 ,TS t1 , MR
G1

, K1

Generate nT

MG1 ← h(IDG, nT , nR1 , kG1 , IDT)
MT1 ← h(IDT , nT , nR1 , kT ,TS t1)

kG ← h(kG)
kT ← h(kT)

nT , MT , MG

Receive TSt2 , IDg , kG2
Generate nR2
MR

G2
← h(IDG, nR2 , kG2)

K ← kG2 ⊕ h(IDG ⊕ nR2)

nR2 ,TS t2 , MR
G2

, K2

kG ← K ⊕ h(IDG ⊕ nR2)
kG ← h(kG)
kT ← h(kT)

nT , MT , MG

nR1 ,TS t1 , MR
G1

, K1

kG ← K ⊕ h(IDG ⊕ nR1)
kG ← h(kG)
kT ← h(kT)

nR2 ,TS t2 , MR
G2

, K2

kG ← K ⊕ h(IDG ⊕ nR2)
kG ← h(kG)
kT ← h(kT)

Fig. 3. Two-rounds grouping proof protocol (left) and attack trace (right).

As such, if an adversary is able to eavesdrop at least two runs of the protocol,
a tag will readily accept a replay of a message from a previous execution. At
this point, the tag will update its key. The adversary can then replay a different
message, and repeat this cycle as long as desired.

References

1. Abughazalah, S., Markantonakis, K., Mayes, K.: Two rounds RFID grouping-proof
protocol. In: 2016 IEEE International Conference on RFID, RFID 2016, Orlando,
FL, USA, 3–5 May 2016, pp. 161–174 (2016)

2. Avoine, G.: Adversarial model for radio frequency identification. IACR Cryptology
ePrint Archive 2005, 49 (2005)

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSF 2001, pp. 82–96 (2001)

4. Blanchet, B.: Using Horn clauses for analyzing security protocols. In: Formal Mod-
els and Techniques for Analyzing Security Protocols, vol. 5, pp. 86–111 (2011)

5. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: CSF
2016, pp. 164–178. IEEE (2016)

Automated Identification of Desynchronisation Attacks 425

6. van Deursen, T., Mauw, S., Radomirović, S., Vullers, P.: Secure ownership and
ownership transfer in RFID systems. In: Backes, M., Ning, P. (eds.) ESORICS
2009. LNCS, vol. 5789, pp. 637–654. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04444-1 39

7. van Deursen, T., Radomirovic, S.: Attacks on RFID protocols. IACR Cryptology
ePrint Archive 2008, 310 (2008)

8. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

9. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6 6

10. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

11. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

12. Juels, A.: “Yoking-proofs” for RFID tags. In: 2nd IEEE Conference on Pervasive
Computing and Communications Workshops (PerCom 2004 Workshops), Orlando,
FL, USA, 14–17 March 2004, pp. 138–143 (2004)

13. Jung, S.W., Jung, S.: HRP: A HMAC-based RFID mutual authentication protocol
using PUF. In: International Conference on Information Networking (ICOIN), pp.
578–582. IEEE (2013)

14. Kapoor, G., Piramuthu, S.: Vulnerabilities in some recently proposed RFID owner-
ship transfer protocols. In: First International Conference on Networks and Com-
munications, pp. 354–357. IEEE (2009)

15. Li, Q.S., Xu, X.L., Chen, Z.: PUF-based RFID ownership transfer protocol in an
open environment. In: 15th International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 131–137. IEEE (2014)

16. Li, T., Wang, G.: Security analysis of two ultra-lightweight RFID authentication
protocols. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.)
SEC 2007. IIFIP, vol. 232, pp. 109–120. Springer, Boston, MA (2007). https://doi.
org/10.1007/978-0-387-72367-9 10

17. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

18. Peris-Lopez, P., Hernandez-Castro, J.C., Tapiador, J.M.E., Ribagorda, A.:
Advances in ultralightweight cryptography for low-cost RFID tags: gossamer pro-
tocol. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379,
pp. 56–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00306-
6 5

19. Perrin, T., Marlinspike, M.: The double ratchet algorithm. GitHub Wiki (2016)
20. Radomirovic, S., Dashti, M.T.: Derailing attacks. In: Security Protocols XXIII -

23rd International Workshop, Cambridge, UK, 31 March- 2 April 2015, Revised
Selected Papers, pp. 41–46 (2015)

21. Saito, J., Sakurai, K.: Grouping proof for RFID tags. In: 19th International Confer-
ence on Advanced Information Networking and Applications (AINA 2005), Taipei,
Taiwan, 28–30 March 2005, pp. 621–624 (2005)

https://doi.org/10.1007/978-3-642-04444-1_39
https://doi.org/10.1007/978-3-642-04444-1_39
https://doi.org/10.1007/978-3-662-54455-6_6
https://doi.org/10.1007/978-0-387-72367-9_10
https://doi.org/10.1007/978-0-387-72367-9_10
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-00306-6_5
https://doi.org/10.1007/978-3-642-00306-6_5

426 S. Mauw et al.

22. Srivastava, K., Awasthi, A.K., Kaul, S.D., Mittal, R.C.: A hash based mutual RFID
tag authentication protocol in telecare medicine information system. J. Med. Syst.
39(1), 153 (2015)

23. Sun, D., Zhong, J.: Cryptanalysis of a hash based mutual RFID tag authentication
protocol. Wirel. Pers. Commun. 91(3), 1085–1093 (2016)

24. Sundaresan, S., Doss, R., Piramuthu, S., Zhou, W.: A robust grouping proof pro-
tocol for RFID EPC C1G2 tags. IEEE Trans. Inf. Forensics Secur. 9(6), 961–975
(2014)

25. Sundaresan, S., Doss, R., Zhou, W.: Secure ownership transfer in multi-tag/multi-
owner passive RFID systems. In: Symposium on Selected Areas in Communica-
tions, Globecom 2013, pp. 2891–2896. IEEE (2013)

26. Sundaresan, S., Doss, R., Zhou, W.: Zero knowledge grouping proof protocol for
RFID EPC C1G2 tags. IEEE Trans. Comput. 64(10), 2994–3008 (2015)

27. The Tamarin Team: MS Windows NT Kernel Description (2018). https://tamarin-
prover.github.io/manual/tex/tamarin-manual.pdf

https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

Stateful Protocol Composition

Andreas V. Hess1(B) , Sebastian A. Mödersheim1 ,
and Achim D. Brucker2

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
{avhe,samo}@dtu.dk

2 The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

Abstract. We prove a parallel compositionality result for protocols with
a shared mutable state, i.e., stateful protocols. For protocols satisfying
certain compositionality conditions our result shows that verifying the
component protocols in isolation is sufficient to prove security of their
composition. Our main contribution is an extension of the composition-
ality paradigm to stateful protocols where participants maintain shared
databases. Because of the generality of our result we also cover many
forms of sequential composition as a special case of stateful parallel com-
position. Moreover, we support declassification of shared secrets. As a
final contribution we prove the core of our result in Isabelle/HOL, pro-
viding a strong correctness guarantee of our proofs.

1 Introduction

The typical use of communication networks like the Internet is to run a wide
variety of security protocols in parallel, for example TLS, IPSec, DNSSEC, and
many others. While the security properties of many of these protocols have
been analyzed in great detail, much less research has been devoted to their
parallel composition. It is far from self-evident that the parallel composition of
secure protocols is still secure, in fact one can systematically construct counter-
examples. One such problem is if protocols have similar message structures of
different meaning, so that an attacker may be able to abuse messages, or parts
thereof, that he has learned in the context of one protocol, and use them in the
context of another where the same structure has a different meaning. Thus, we
have to exclude that the protocols in some sense “interfere” with each other.
However, it is unreasonable to require that the developers of the different proto-
cols have to work together and synchronize with each other. Similarly, we do not
want to reason about the composition of several protocols as a whole, neither in
manual nor automated verification. Instead, we want a set of sufficient conditions
and a composition theorem of the form: every set of protocols that satisfies the
conditions yields a secure composition, provided that each protocol is secure in
isolation. The conditions should be realistic so that many existing protocols like
TLS (without modifications) actually satisfy them, and they should be simple,

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 427–446, 2018.
https://doi.org/10.1007/978-3-319-99073-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_21&domain=pdf
http://orcid.org/0000-0001-6312-6311
http://orcid.org/0000-0002-6901-8319
http://orcid.org/0000-0002-6355-1200

428 A. V. Hess et al.

in the sense that checking them is a static task that does not involve considering
the reachable states.

The main contribution of this paper is the extension of the compositionality
paradigm to stateful protocols, where participants may maintain a database
(e.g., a list of valid public keys) independent of sessions. Such databases do
not necessarily grow monotonically during protocol execution—we allow, for
instance, negative membership checks and deletion of elements from databases.
Moreover, we allow for such databases to be shared between the protocols to be
composed. For instance, in the example of public keys, there could be several
different protocols for registering, certifying, and revoking keys that all work on
the same public-key database. Since such a shared database can potentially be
exploited by the intruder to trigger harmful interferences, an important part of
our result is a clear coordination of the ways in which each protocol is allowed to
access the database. This coordination is based on assumptions and guarantees
on the transactions that involve the database. Moreover, this also allows us to
support protocols with the declassification of long-term secrets (e.g., that the
private key to a revoked public key may be learned by the intruder without
breaking the security goals). The result is so general that it actually also covers
many forms of sequential composition as a special case, since one can for instance
model that one protocol inserts keys into a database of fresh session keys, and
another protocol “consumes” and uses them.

The proof of the main result is by a reduction to a problem finding solutions
for intruder constraints: given a satisfiable constraint representing an attack on
the composition, we show that the projection of the constraints to the individ-
ual protocols are satisfiable. This particular tricky part of the proof has been
formalized in the interactive theorem prover Isabelle/HOL. This formalization,
along with all proofs, is available at:

https://people.compute.dtu.dk/samo/composec.html

An extended version of this paper that includes the pen-and-paper proofs and
short explanations of the Isabelle proofs is also available at this website [15].
Last but not least, as already indicated in [17], the formulation of the problem
over intruder constraints allows us to apply our result with a variety of protocol
formalisms such as applied-π calculus and multi-set rewriting.

The rest of the paper is organized as follows. Preliminaries are introduced
in Sect. 2. In Sect. 3 we define stateful constraints and protocols. Afterwards
we define protocol composition and introduce a keyserver protocol example in
Sect. 4. We define our compositionality conditions and prove our main result in
Sect. 5. Finally, we conclude in Sect. 6 and discuss related work.

2 Preliminaries

2.1 Terms and Substitutions

We model terms over a countable signature Σ of function symbols and a count-
ably infinite set V of variable symbols. We do not fix here a particular set of

https://people.compute.dtu.dk/samo/composec.html

Stateful Protocol Composition 429

cryptographic operators but rather parameterize our theory over arbitrary Σ.
A term is either a variable x ∈ V or a composed term of the form f(t1, . . . , tn)
where f ∈ Σn and ti are terms and Σn denotes the symbols in Σ of arity n. The
set of constants C is defined as Σ0. The set of variables of a term t is denoted
by fv(t) and if fv(t) = ∅ then t is ground. Both of these notions are extended to
sets of terms. By � we denote the subterm relation.

Substitutions are defined as functions from variables to terms. The domain
of a substitution δ is denoted by dom(δ) and is defined as the set of variables
that are not mapped to themselves by δ: dom(δ) ≡ {x ∈ V | δ(x) �= x}. The
substitution image, img(δ), is then defined as the image of dom(δ) under δ:
img(δ) ≡ δ(dom(δ)). If the image of δ is ground then δ is said to be a ground
substitution. Additionally, we define an interpretation to be a substitution that
assigns a ground term to every variable: I is an interpretation iff dom(I) = V
and img(I) is ground. We extend substitutions to functions on terms and set
of terms as expected. For substitutions δ with finite domain we will usually use
the common value mapping notation: δ = [x1 �→ t1, . . . , xn �→ tn]. Finally, a
substitution δ is a unifier of terms t and t′ iff δ(t) = δ(t′).

2.2 The Intruder Model

The intruder model follows the standard of Dolev and Yao, roughly, the intruder
can encrypt and decrypt terms where he has the respective keys, but he cannot
break the cryptography. This is often done by a set of rules specialized to the
concrete cryptographic functions, but since our model is parameterized over an
arbitrary set Σ, we also need to parameterize it over (a) a predicate public over
Σ that says for each function whether it is available to the intruder and (b) a
function Ana that takes a term t and returns a pair (K,T) of sets of terms. The
meaning is: from the term t the intruder can obtain the terms T , provided that
he knows all the “keys” in the set K. For instance if crypt is a public function
symbol to represent asymmetric encryption and inv is a private function symbol
(i.e., ¬public(inv)) mapping public keys to the corresponding private key, then
we may define Ana(crypt(k,m)) = ({inv(k)}, {m}) for any terms k and m. Thus
we can inductively define the relation 	, where M 	 t means that an intruder
who knows the set of terms M can derive the message t as the least relation
that includes M , is closed under composition with public functions and is closed
under analysis with Ana as follows where Σn

pub ≡ {f ∈ Σn | public(f)}:

Definition 1 (Intruder model)

M 	 t
(Axiom),
t ∈ M

M 	 t1 · · · M 	 tn
M 	 f(t1, . . . , tn)

(Compose),
f ∈ Σn

pub

M 	 t M 	 k1 · · · M 	 kn

M 	 ti

(Decompose),Ana(t) = (K,T),
ti ∈ T,K = {k1, . . . , kn}

Note that [16] in contrast considers only public function symbols; one can
simulate however a private function symbol of arity n by a public function symbol

430 A. V. Hess et al.

of arity n+1 where the additional argument is used with a special constant that
is never given to the intruder; in this way all results can be lifted to a model with
both private and public function symbols. For instance we can encode inv ∈ Σ1

in terms of a public symbol inv′ ∈ Σ2 and a special secret constant secinv.
Our results will not work with an arbitrary analysis function, so we make the

following requirements on Ana:

1. Ana(x) = (∅, ∅) for variables x ∈ V,
2. Ana(f(t1, . . . , tn)) = (K,T) implies T ⊆ {t1, . . . , tn}, finite K, and fv(K) ⊆

fv(f(t1, . . . , tn)),
3. Ana(f(t1, . . . , tn)) = (K,T) implies Ana(δ(f(t1, . . . , tn))) = (δ(K), δ(T)).

Note that Ana must be defined for arbitrary terms, including terms with variables
(while the standard Dolev-Yao deduction is typically applied to ground terms).
The three conditions regulate that Ana is also meaningful on symbolic terms. The
first requirement says that we cannot analyze a variable. The second requirement
says that the result of the analysis are immediate subterms of the term being
analyzed, and the keys can be any finite set of terms, but built with only variables
that occur in the term being analyzed. The third requirement says that analysis
does not change its behavior when instantiating a term (that is not a variable).

Example 1. We model asymmetric encryption and signatures with the following
Ana theory: Ana(crypt(k,m)) = ({inv(k)}, {m}), Ana(sign(k,m)) = (∅, {m}). We
will also later use some transparent functions: Ana(pair(t, t′)) = (∅, {t, t′}) and
Ana(update(s, t, u, v)) = (∅, {s, t, u, v}). For all other terms t: Ana(t) = (∅, ∅).

3 Stateful Protocols

We now introduce a strand-based protocol formalism for stateful protocols
adapted from [17]. This formalism is compact and reduced to the key concepts
needed here, while more complex formalisms like process calculi can easily be
fitted similarly. The semantics is defined by a symbolic transition system where
constraints are built-up during transitions. The models of the constraints then
constitute the concrete protocol runs. We will use a typing result that shows
that for a large class of protocols, it is without loss of attacks to restrict the
constraints to well-typed models [17].

3.1 Stateful Symbolic Constraints

We use intruder constraints as a key concept for reasoning about protocol execu-
tions and attacks. This is in fact applicable with a variety of protocol verification
formalisms, such as process calculi or multi-set rewrite rules. The idea is to define
a symbolic transition system where the variables of sent and received messages
of the original protocol formalism are not instantiated (only renamed as neces-
sary) and formulate symbolic constraints on these variables: the intruder needs
to be able to construct each message an honest agent receives from the messages

Stateful Protocol Composition 431

the honest agents have sent up to that point. When equipping these constraints
also with equalities and inequalities, the set of all executions (and the attack
predicates) of many formalisms like Applied π-calculus can be described by a
set of constraints. An attack can then be defined by satisfiability of a constraint
in which the intruder produces a secret. Stateful constraints can furthermore
express queries and updates on databases. They are defined as finite sequences
of steps and are built from the following grammar where t and t′ ranges over
terms and x̄ over finite variable sequences x1, . . . , xn:

A ::= send(t).A | receive(t).A | t
.= t′.A | (∀x̄. t � .= t′).A |

insert(t, t′).A | delete(t, t′).A | t ∈̇ t′.A | (∀x̄. t � ∈̇ t′).A | 0

Instead of ∀x̄. t � .= t′ and ∀x̄. t � ∈̇ t′ we may write t � .= t′ and t � ∈̇ t′ whenever x̄ is
the empty sequence. We may also write t � ∈̇ f() for f ∈ Σn as an abbreviation of
∀x1, . . . , xn. t � ∈̇ f(x1, . . . , xn). The bound variables of a constraint A consists of
its variable sequences while the remaining variables, fv(A), are the free variables.
Also, by trms(A) we denote the set of terms occurring in A and the set of set
operations of A, called setops(A), is defined as follows where (·, ·) ∈ Σ2

pub :

setops(A) ≡ {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s or ∀x̄. t � ∈̇ s occurs in A}

For the semantics of constraints we first define a predicate �M,D;A� I, where
M is a ground set of terms (the intruder knowledge), D is a ground set of tuples
(the state of the sets), A is a constraint, and I is an interpretation as follows:

�M,D; 0� I iff true
�M,D; send(t).A� I iff M 	 I(t) and �M,D;A� I

�M,D; receive(t).A� I iff �{I(t)} ∪ M,D;A� I
�M,D; t .= t′.A� I iff I(t) = I(t′) and �M,D;A� I

�M,D; (∀x̄. t � .= t′).A� I iff �M,D;A� I and I(δ(t)) �= I(δ(t′))
for all ground substitutions δ with domain x̄

�M,D; insert(t, s).A� I iff �M, {I((t, s))} ∪ D;A� I
�M,D; delete(t, s).A� I iff �M,D \ {I((t, s))};A� I

�M,D; t ∈̇ s.A� I iff I((t, s)) ∈ D and �M,D;A� I
�M,D; (∀x̄. t � ∈̇ s).A� I iff �M,D;A� I and I(δ((t, s))) /∈ D

for all ground substitutions δ with domain x̄

We then define that I is a model of A, written I |= A, iff �∅, ∅;A� I.
A crucial requirement on constraints is that they are well-formed in the sense

that every variable first occurs in a message the intruder sends, or in a positive
check like t

.= t′ or t ∈̇ s, and that the intruder knowledge monotonically grows
over time. The latter condition is already built-in in our constraint notation, the
former is expressed as follows: A constraint A is well-formed w.r.t. the set of
variables X (or just well-formed if X = ∅) iff the free variables and the bound

432 A. V. Hess et al.

variables of A are disjoint and wf X(A) holds where:

wf X(0) iff true
wf X(receive(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(send(t).A) iff wf X∪fv(t)(A)
wf X(t .= t′.A) iff fv(t′) ⊆ X and wf X∪fv(t)(A)
wf X(insert(t, t′).A) iff fv(t) ∪ fv(t′) ⊆ X and wf X(A)
wf X(delete(t, t′).A) iff fv(t) ∪ fv(t′) ⊆ X and wf X(A)
wf X(t ∈̇ t′.A) iff wf X∪fv(t)∪fv(t′)(A)
wf X(a.A) iff wf X(A) otherwise

Note that this allows to “introduce” variables in a send step, on the left-hand
side of an equation, or in a positive set-membership check (and we will work
only with well-formed constraints throughout the paper).

3.2 Typed Model

Our result is based on a typed model of protocols, i.e., where the intruder by
definition cannot send ill-typed messages. [17] shows that this is not a restriction
for a large class of so-called type-flaw resistant stateful protocols, since for every
ill-typed attack also exists a well-typed one. This gives a sufficient condition for
protocols to satisfy a prerequisite of our compositionality result. The definition
of typed model is then as follows. Type expressions are terms built over the
function symbols of Σ and a finite set Ta of atomic types like Agent and Nonce.
Further, we define a typing function Γ that assigns to every variable a type,
to every constant an atomic type, and that is extended to composed terms as
follows: Γ (f(t1, . . . , tn)) = f(Γ (t1), . . . , Γ (tn)) for every f ∈ Σn \ C and terms
ti. We also require that {c ∈ C | public(c), Γ (c) = β} is infinite for each β ∈ Ta,
thus giving the intruder access to an infinite supply of terms of each atomic type.

The sufficient condition for a protocol to satisfy the typing result is now
based on the following notions. A substitution δ is well-typed iff Γ (x) = Γ (δ(x))
for all x ∈ V. Given a set of messages that occur in a protocol we define the
following set of sub-message patterns, intuitively the ones that may occur during
constraint reduction:

Definition 2 (Sub-message patterns). The sub-message patterns SMP(M)
for a set of messages M is defined as the least set satisfying the following rules:

1. M ⊆ SMP(M).
2. If t ∈ SMP(M) and t′ � t then t′ ∈ SMP(M).
3. If t ∈ SMP(M) and δ is a well-typed substitution then δ(t) ∈ SMP(M).
4. If t ∈ SMP(M) and Ana(t) = (K,T) then K ⊆ SMP(M).

The sufficient condition for the typing result is now that non-variable sub-
message patterns have no unifier unless they have the same type:

Definition 3 (Type-flaw resistance). We say a set M of messages is type-
flaw resistant iff ∀t, t′ ∈ SMP(M) \ V. (∃δ. δ(t) = δ(t′)) −→ Γ (t) = Γ (t′). We
may also apply the notion of type-flaw resistance to a constraint A to mean that:

Stateful Protocol Composition 433

– trms(A) ∪ setops(A) is type-flaw resistant,
– if t and t′ are unifiable then Γ (t) = Γ (t′), for all t

.= t′ occurring in A,
– Γ (fv(t) ∪ fv(t′)) ⊆ Ta for all insert(t, t′) and delete(t, t′) occurring in A, and
– Γ ((fv(t) ∪ fv(t′)) \ x̄) ⊆ Ta for all ∀x̄. t � .= t′ and ∀x̄. t � ∈̇ t′ occurring in A.

We have formalized in Isabelle/HOL the following typing result theorem,
which shows that for type-flaw resistant protocols it is safe to check satisfiability
of constraints within the typed model [17]:

Theorem 1 ([17]). If A is a well-formed, type-flaw resistant constraint, and if
I |= A, then there exists a well-typed interpretation Iτ such that Iτ |= A.

3.3 Protocol Semantics

Protocols are defined as sets P = {R1, . . .} of transaction rules of the form:
Ri = ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S where S is a transaction strand,
i.e., of the form receive(t1). · · · .receive(tk).φ1 · · · .φk′ .send(t′1). · · · .send(t′k′′) where

φ : := t
.= t′ | ∀x̄. t � .= t′ | t ∈̇ t′ | ∀x̄. t � ∈̇ t′ | insert(t, t′) | delete(t, t′)

The prefix ∀x1 ∈ T1, . . . , xn ∈ Tn denotes that the transaction strand S is
applicable for instantiations σ of the xi variables where σ(xi) ∈ Ti. The con-
struct new y, . . . , ym represents that the occurrences of the variables yi in the
transaction strand S will be instantiated with fresh terms. We extend trms(·)
and setops(·) to transactions strands, rules, and protocols as expected.

We define a transition relation ⇒•
P for protocol P where states are con-

straints and the initial state is the empty constraint 0. First we define the
dual of a transaction strand S, written dual(S), as “swapping” the direction
of the sent and received messages of S: dual(send(t).S) = receive(t).dual(S),
dual(receive(t).S) = send(t).dual(S), and otherwise dual(s.S) = s.dual(S). The
transition A ⇒•

P A.dual(α(σ(S))) is then applicable if these conditions are met:

1. (∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S) ∈ P,
2. dom(σ) = {x1, . . . , xn, y1, . . . , ym},
3. σ(xi) ∈ Ti for all i ∈ {1, . . . , n},
4. σ(yi) is a fresh ground term of type Γ (yi) for all i ∈ {1, . . . ,m}, and
5. α is a variable-renaming of the variables of σ(S) where α is well-typed and

the variables in img(α) do not occur in σ(S).

Hence transaction rules are processed atomically, and converted into constraints,
during transitions. Note that each transaction rule can be executed arbitrarily
often and so we support an unbounded number of “sessions”. For instance, the
transaction rule ∀A ∈ Hon. new PK . insert(PK , ring(A)) models that each honest
agent a ∈ Hon can insert one fresh key into its keyring ring(a) during each
application of the transaction rule. This rule can be executed any number of
times with any agent a ∈ Hon and a fresh value for PK each time.

434 A. V. Hess et al.

We say that a constraint A is reachable in protocol P if 0 ⇒•�
P A where ⇒•�

P
denotes the transitive reflexive closure of ⇒•

P . We need to ensure that these
constraints are well-formed and we will therefore always assume the following
sufficient requirement on the protocols P that we work with: for any transaction
strand S occurring in any rule ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S of P the
constraint dual(S) is well-formed w.r.t. the variables {x1, . . . , xn, y1, . . . , ym}. In
other words, the variables of S must first occur in either a receive step, a positive
check (.=, ∈̇), or be part of {x1, . . . , xn, y1, . . . , ym}.

To model goal violations of a protocol P we first fix a special constant unique
to P, e.g., attackP . Secondly, we add the rule receive(attackP) to P that we use
as a signal for when an attack has occurred. The protocol then has a (well-typed)
attack if there exists a (well-typed) satisfiable reachable constraint of the form
A.send(attackP). A protocol with no attacks is secure.

With sets we can model events, e.g., asserting an event e amounts to insert-
ing e into a distinguished set of events while checking whether e has previ-
ously occurred (or not) corresponds to a positive (respectively negative) set-
membership check. We therefore support all security properties expressible in
the geometric fragment [1]. This covers many standard reachability goals such as
authentication; it seems that any significantly richer fragment of first-order logic
would be incompatible with our result. We do not currently support privacy-
type properties, i.e., where goal violations occur if the observable behavior of
protocols can be distinguished.

4 Composition and a Running Example

The core definition of this paper is rather simple: we define the parallel composi-
tion P1 ‖ P2 of protocols P1 and P2 as their union: P1 ‖ P2 ≡ P1∪P2. Protocols
P1 and P2 are also referred to as the component protocols of the composition
P1 ‖ P2. For such a composed protocol the reachable constraints in P1 ‖ P2 will
in general contain steps originating from both component protocols. To keep
track of where a step in a constraint originated we assign to each step a label

 ∈ {1, 2, �}. The steps that are exclusive to the first component are marked with
1 while the steps exclusive to the second are marked with 2. In addition to the
protocol-specific labels we also have a special label � that we explain later.

Let A be a constraint with labels and
 ∈ {1, 2, �}, we define A|� to be the
projection of A to the steps labeled
 or � (so the �-steps are kept in every a pro-
jection). We extend projections to transaction rules and protocols as expected.
We may also write P� instead of P|�.

4.1 A Keyserver Example

As a running example, Figs. 1 and 2 define two keyserver protocols that share
the same databases of valid public keys registered at the keyserver. In a nutshell,
the first protocol Pks,1 = {R1

1, . . . , R
10
1 } allows users to register public keys out

of band and to update an existing key with a new one (revoking the old key in

Stateful Protocol Composition 435

Fig. 1. The transaction rules of the first keyserver protocol Pks,1.

the process), while the second protocol Pks,2 = {R1
2, . . . , R

10
2 } uses a different

mechanism to register new public keys.
We use here three atomic types: the type of agents Agent, public keys PubKey,

and the type Attack of the attacki constants. We partition type Agent into the
honest users Hon, the dishonest users Dis, and the keyservers Ser. There are sets
for authentication goals begin1, end1, begin2, and end2, and all protocol steps
related to these sets are highlighted in gray; let us first ignore these.

Protocol Pks,1. In the first protocol, rule R5
1 models that an honest user registers

a new public key PK out of band (e.g., by physically visiting a registration site);
this is achieved by inserting PK (in the same transaction) both into a keyring
ring(A) for user A and into a shared database valid(A,S) of the user’s currently

436 A. V. Hess et al.

Fig. 2. The transaction rules of the second keyserver protocol Pks,2.

valid keys. There is also a corresponding rule for dishonest users: R9
1. Dishonest

users may register in their name any key they know (hence the receive(PK) step),
so the key is not necessarily freshly created; also we do not model a keyring for
them. (Rule R4

i gives the intruder access to arbitrarily many fresh key pairs.)
Secondly, we model a key update with revocation of old keys. To request an

update of key PK with a newly generated key NPK at server S, an honest user
sends NPK signed with PK as in R6

1. (For this rule there is no equivalent for the
dishonest agents, since they may produce an arbitrary update request message.)

The rule R7
1 shows how S receives the update message from an honest agent:

it checks (1) that the key PK is currently valid, and that NPK is neither
registered as valid or revoked. If so, it updates its databases accordingly: it
moves the old key from valid(A,S) to revoked(A,S) and registers the new key
NPK by inserting it into valid(A,S). Also, we reveal here inv(PK), in order to
specify that the protocol must even be secure when old private keys are leaked.
This is an example of declassification of a secret shared between two protocols:
after intentionally revealing inv(PK) it should no longer count as a secret. The
rule R8

1 is the pendant for dishonest agents. The last rule R10
1 acts as a signal

for when an attack has occurred in Pks,1.

Stateful Protocol Composition 437

Protocol Pks,2. The second protocol has another mechanism to register new keys:
every user has a password pw(A,S) with the server (the dishonest agents reveal
their password to the intruder with rule R7

2). Instead of using a (possibly weak)
password for an encryption, the registration message is encrypted with the public
key of the server (rule R5

2). For uniformity, we model the server’s public keys in a
set pubkeys(S) that is initialized with rule R9

2 (in fact, the server may thus have
multiple public keys). Rule R6

2 models how the server receives a registration
request (in case of honest users): to protect against replay, the server uses a
set seen of seen keys (this may in a real implementation be a buffer-timestamp
mechanism). Rule R8

2 is the pendant for the dishonest users. Finally, the rule
R10

2 acts as a signal for when an attack has occurred in Pks,2.

Authentication. Besides the secrecy goal R1
i that no valid private key of an

honest agent may ever be known by the intruder, the crucial authentication goal
is that all insertions into valid(A,S) for honest A are authenticated. The classical
injective agreement is modeled by the steps highlighted in gray: when an honest
agent generates a fresh key for server, it inserts it into a special set begin, and
whenever a server accepts a key that appears to come from an honest agent A,
then it inserts it into a special set end. (Note that these sets exist only in our
model to specify the goals.) It is a violation of non-injective agreement if the
server accepts a key that is not in begin (rule R2

i), and of injective agreement if
the server accepts a key that is already in end (rule R3

i).
Such a specification is more declarative when one separates the protocol rules

from the attack rules, but that has one drawback: if the protocol indeed had an
attack, then one would allow the server to actually insert an unauthenticated
key into its database and then in the next step the attack rule fires. For the
composition result, however, we want that each protocol can rely on the other
protocols to never insert unauthenticated keys into the database. This is why we
integrate in rules R6

i of each protocol the checks that we are in an authenticated
case (otherwise, the rules R2

i or R3
i fire). This is similar to a “lookahead” where

we prevent the execution of a transition if it leads to an attack, and directly
trigger an attack. This computation of the lookahead version of goals may of
course be lifted from the user by verification tools.

5 The Compositionality Results

With stateful protocols and parallel composition defined we can now formally
define the concepts underlying our results and state our compositionality theo-
rems. We first provide a result on the level of constraints and afterwards show
our main theorems for stateful protocols.

5.1 Protocol Abstraction

Note that all steps containing the valid set family in our keyserver example have
been labeled with �. Labeling operations on the shared sets with � is actually
an important part of our compositionality result and we now explain why.

438 A. V. Hess et al.

Essentially, compositionality results aim to prevent that attacks can arise
from the composition itself, i.e., attacks that do not similarly work on the com-
ponents in isolation. Thus we want to show that attacks on the composed system
can be sufficiently decomposed into attacks on the components. This however
cannot directly work if the components have shared sets like valid in the example:
if one protocol inserts something to a set and the other protocol reads from the
set, then this trace in general does not have a counter-part in the second protocol
alone. We thus need a kind of interface to how the two protocols can influence
their shared sets. In the key server example, both protocols can insert public
keys into the shared set valid, the first protocol can even remove them. The idea
is now that we develop from each protocol an abstract version that subsumes
all the modifications that the concrete protocol can perform on the shared sets.
This can be regarded as a “contract” for the composition: each protocol guaran-
tees that it will not make any modifications that are not covered by its abstract
protocol, and it will assume that the other protocol only makes modifications
covered by the other protocol’s abstraction. We will still have to verify that each
individual protocol is also secure when running together with the other abstract
protocol, but this is in general much simpler than the composition of the two
concrete protocols. (In the special case that the protocols share no sets, i.e. like
in all previous parallel composition results, the abstractions are empty, i.e., we
have to verify only the individual components.)

In general, the abstraction of a component protocol P is defined by restric-
tion to those steps that are labeled �, i.e., P�. We require that at least the
modification of shared sets are labeled �. In the keyserver example we have also
labeled the operations on the authentication-related sets with a � (everything
highlighted in gray): we need to ensure that we insert into the set of valid keys of
an honest agent only those keys that really have been created by that agent and
that have not been previously inserted. So the contract between the two protocols
is that they only insert keys that are properly authenticated, but the abstrac-
tion ignores how each protocol achieves the authentication (e.g. signatures vs.
passwords and seen-set). There are also some outgoing messages labeled with �
which we discuss a little below.1

Example 2. Consider the abstractions of rules R5
2 and R6

2:

∀A ∈ Hon, S ∈ Ser. new NPK .
� : insert(NPK , begin2(A,S)).
� : send(NPK)

∀A ∈ Hon, S ∈ Ser.
� : NPK ∈̇ begin2(A,S).
� : NPK � ∈̇ end2(A,S).
� : insert(NPK , valid(A,S)).
� : insert(NPK , end2(A,S))

Notice that the gray steps prevent unauthenticated key registration because
keys can only be registered if inserted into begin2 by an honest agent. If we did
1 We require also well-formedness of the �-projected protocols. This is violated, for

instance, if a protocol contains a rule where only one outgoing message is labeled
� and this message contains variables. However, given that the concrete protocol is
already well-formed, this is easy to fix automatically, transparent to the user.

Stateful Protocol Composition 439

not ensure such authenticated key-registration then the intruder would be able
to register arbitrary keys in P�

ks,2. This would lead to an attack on secrecy in
the protocol Pks,1 ‖ P�

ks,2.
One may wonder why there is no similar specification for secrecy, i.e., that

inv(NPK) is secret for every key NPK that is being inserted into valid. In fact,
below we will declare all private keys to be secret by default. Thus, unless explic-
itly declassified, they are (implicitly) required to be secret.

5.2 Shared Terms

Before giving the compositionality conditions we first formally define what terms
can be shared: Every term t that occurs in multiple component protocols must
be either a basic public term (meaning that the intruder can derive t without
prior knowledge, i.e., ∅ 	 t) or a shared secret. If the intruder learns a shared
secret (that has not been explicitly declassified) then it is considered a violation
of secrecy in all component protocols. For instance, agent names are usually
basic public terms whereas private keys are secrets. In fact, we will have that
all shared terms (except basic public terms) are by default secrets—even public
keys—before they are declassified.

Let Sec be a set of ground terms, representing the initially shared secrets
of the protocols. Note that the set of shared secrets Sec is not a fixed prede-
fined set of terms, but rather just a parameter to our compositionality con-
dition. We require that all shared terms of the protocols are either in Sec or
basic public terms. To precisely define this requirement, we first define the
ground sub-message patterns (GSMP) of a set of terms M as GSMP(M) ≡
{t ∈ SMP(M) | fv(t) = ∅}. This definition is extended to constraints A as the
set GSMP(A) ≡ GSMP(trms(A) ∪ setops(A)), and similarly for protocols. To
make matters smooth, we also require that Sec ∪ {t | ∅ 	 t} is closed under
subterms (which is trivially the case for the basic public terms).

Example 3. We will typically study the ground subterms of each individual pro-
tocol in parallel with the abstraction of the other. For the example, the set
GSMP(Pks,1 ‖ P�

ks,2) is the closure under subterms of the following set:

{attack1, (pk , ring(a)), (pk , valid(a, s)), (pk , revoked(a, s)), (pk , begini(a, s)),
(pk , endi(a, s)), sign(inv(pk), pair(a,npk)) | i ∈ {1, 2}, pk ,npk , a, s ∈ C,
Γ ({pk ,npk}) = {PubKey}, Γ ({a, s}) = {Agent}}

and GSMP(P�
ks,1 ‖ Pks,2) is the closure under subterms of the following set:

{attack2, (pk , valid(a, s)), (pk , seen(a, s)), (pk , begini(a, s)), (pk , endi(a, s)),
(pk , pubkeys(s)), inv(pk), crypt(pk , update(a, s,npk , pw(a, s))) | i ∈ {1, 2},
pk ,npk , a, s ∈ C, Γ ({pk ,npk}) = {PubKey}, Γ ({a, s}) = {Agent}}

For composition we will require that two protocols are disjoint in their ground
sub-message patterns except for basic public terms and shared secrets:

440 A. V. Hess et al.

Definition 4 (GSMP disjointedness). Given two sets of terms M1 and M2,
and a ground set of terms Sec (the shared secrets), we say that M1 and M2 are
Sec-GSMP disjoint iff GSMP(M1) ∩ GSMP(M2) ⊆ Sec ∪ {t | ∅ 	 t}. This is
extended to constraints and protocols as expected.

5.3 Declassification and Leaking

Up until now the set of shared secrets has been static. We now remove this restric-
tion by introducing a notion of declassification that will allow shared secrets to
become public during protocol execution. For instance, in protocol Pks,1 we
give revoked private keys of the form inv(PK) to the intruder by transmitting
them over the network: send(inv(PK)). The transmitted key inv(PK) should
no longer be secret after transmission and so we call such steps declassification.
Since declassification involves shared secrets we require that they are declassified
for all component protocols together. Thus we label them with �.

For any constraint A with model I we can now formally define the set of
secrets that has been declassified in A under I:

Definition 5 (Declassification). Let A be a labeled constraint and I a model
of A. Then declassified(A, I) ≡ I({t | � : receive(t) occurs in A}) is the set of
declassified secrets of A under I.

Given a protocol P, a reachable constraint A (i.e., 0 ⇒•�
P A), and a model I of

A, then I(A) represents a concrete protocol run and the set declassified(A, I)
represents the messages that have been declassified by honest agents during the
protocol run. Note that in this definition we have reversed the direction of the
declassification transmission, because the send and receive steps of reachable
constraints are duals of the transaction rules they originated from.

Declassification also allows us to share terms that have shared secrets as
subterms but which are not themselves meant to be secret. For instance, public
key certificates have as subterm the private key of the signing authority, and
such certificates can be shared between protocols by modeling them as shared
secrets that are declassified when first published.

Finally, if the intruder learns a secret that has not been declassified then it
counts as an attack. We say that protocol P leaks a secret s if there is a reachable
satisfiable constraint A where the intruder learns s before it is declassified:

Definition 6 (Leakage). Let Sec be a set of secrets and I be a model of the
labeled constraint A. A leaks a secret from Sec under I iff there exists s ∈
Sec \ declassified(A, I) such that I |= A|1.send(s) or I |= A|2.send(s).
Our notion of leakage requires that one of the components in isolation leaks a
secret. This is important for our compositionality result later—we will require
protocols not to leak in isolation (which can be verified on the protocols in
isolation) for the composition to work. Note also that the set declassified(A, I)
is unchanged during projection of A, and so it suffices to pick the leaked s from
the set Sec \ declassified(A, I) instead of Sec \ declassified(A|i, I).

Stateful Protocol Composition 441

Example 4. The terms occurring in the GSMP intersection of the two keyserver
protocols are (a) public keys pk, (b) private keys of the form inv(pk), (c) agent
names, and (d) operations on the shared set families valid, begini, and endi. Agent
names are basic public terms in our example, i.e., ∅ 	 a for all constants a of type
Agent. The public keys are initially secret, but we immediately declassify them
whenever they are generated. To satisfy GSMP disjointedness of Pks,1 ‖ P�

ks,2

and P�
ks,1 ‖ Pks,2 it thus suffices to choose the following set as the set of shared

secrets (where the secf are special secret constants used in the encoding of the
private function symbol f):

Sec = {pk , inv(pk), (pk , f(a, s)), f(a, s), secinv, secf | Γ ({a, s}) = {Agent},
Γ (pk) = PubKey, f ∈ {valid, begin1, end1, begin2, end2}, pk , a, s ∈ C}

Note that we want the set symbols like valid to be private. This is because terms
like valid(A,S) occurs in both component protocols and so we have to prevent
the intruder from constructing them.

5.4 Parallel Compositionality for Constraints

With these concepts defined we can list the requirements on constraints that are
necessary to apply our result on the constraint level:

Definition 7 (Parallel composability). Let A be a constraint and let Sec be
a ground set of terms. Then (A,Sec) is parallel composable iff

1. A|1 and A|2 are Sec-GSMP disjoint,
2. for all terms t the step � : send(t) does not occur in A,
3. for all s ∈ Sec and s′ � s, either ∅ 	 s′ or s′ ∈ Sec,
4. for all
 : (t, s),
′ : (t′, s′) ∈ labeledsetops(A), if (t, s) and (t′, s′) are unifiable

then
 =
′,
5. A is type-flaw resistant and A, A|1, A|2, and A|� are all well-formed,

where labeledsetops(A) ≡ {
 : (t, s) |
 : insert(t, s) or
 : delete(t, s) or
 : t ∈̇ s or

 : (∀x̄. t � ∈̇ s) occurs in A}. (This definition is also extended to protocols.)

The first requirement is at the core of our compositionality result and states
that the protocols can only share basic public terms and shared secrets. The
second requirement ensures that � steps are only used for declassification, checks,
and stateful steps. The third condition is our only requirement on the shared
terms; it ensures that the set Sec∪{t | ∅ 	 t} is closed under subterms. The fourth
condition is our requirement on stateful protocols; it implies that shared sets
must be labeled with a �. Finally, the last condition is needed to apply the typing
result and it is orthogonal to the other conditions; it is indeed only necessary so
that we can apply Theorem 1 and restrict ourselves to well-typed attacks. Typing
results with different requirements could potentially be used instead. Note that
we require well-formedness of all projections of A. This is because we usually
consider constraints reachable in composed and augmented protocols, and we
need well-formedness to apply the typing result to these constraints.

With these requirements defined we can state our main result on constraints:

442 A. V. Hess et al.

Theorem 2. If (A,Sec) is parallel composable and I |= A then there exists a
well-typed interpretation Iτ such that either Iτ |= A|1 and Iτ |= A|2 or some
prefix A′ of A leaks a secret from Sec under Iτ .

That is, we can obtain a well-typed model of projections A|1 and A|2 for sat-
isfiable parallel composable constraints A—or one of the projections has leaked
a secret. In other words, if we can verify that a parallel composable constraint
A does not have any well-typed model of both projections, and no prefix of A
leaks a secret under any well-typed model, then it is unsatisfiable.

5.5 Parallel Compositionality for Protocols

Until now our parallel compositionality result has been stated on the level of
constraints. As a final step we now explain how we can use Theorem 2 to prove
a parallel compositionality result for protocols.

First, we define the traces of a protocol P as the set of reachable constraints:
traces(P) ≡ {A | 0 ⇒•�

P A}. We then define a compositionality requirement on
protocols that ensures that all traces are parallel composable:

Definition 8 (Parallel composability, for protocols). Let P1 ‖ P2 be a
composed protocol and let Sec be a ground set of terms. Then (P1 ‖ P2,Sec) is
parallel composable iff

1. P1 ‖ P�
2 and P�

1 ‖ P2 are Sec-GSMP disjoint,
2. for all terms t the step � : receive(t) does not occur in P1 ‖ P2,
3. for all s ∈ Sec and s′ � s, either ∅ 	 s′ or s′ ∈ Sec,
4. for all
 : (t, s),
′ : (t′, s′) ∈ labeledsetops(P1 ‖ P2), if (t, s) and (t′, s′) are

unifiable then
 =
′,
5. P1 ‖ P2 is type-flaw resistant and P1, P2, P�

1 , and P�
2 are all well-formed.

For protocols we need to require that their composition is type-flaw resistant.
It is not sufficient to simply require it for the component protocols in isolation;
unifiable messages from different protocols might break type-flaw resistance oth-
erwise. Note also that type-flaw resistance of a protocol P implies that the traces
of P are type-flaw resistant, because SMP(A) ⊆ SMP(P) for any A ∈ traces(P)
and because the traces consists of the duals of the transaction strands occurring
in the protocol; likewise for GSMP disjointedness. Thus if (P1 ‖ P2,Sec) is paral-
lel composable then (A,Sec) is parallel composable for any A ∈ traces(P1 ‖ P2).

Example 5. Continuing Example 4 we now show that Pks,1 ‖ Pks,2 is parallel
composable, i.e., that it satisfies the conditions of Definition 8. We have pre-
viously shown type-flaw resistance and well-formedness for a similar keyserver
protocol [17] and so we focus on the remaining four conditions here. GSMP
disjointedness of the composed keyserver protocols was explained in Exam-
ple 4. Hence the first condition of Definition 8 is satisfied. Conditions two and
three are satisfied since Pks,1 ‖ Pks,2 does not contain any steps of the form

Stateful Protocol Composition 443

� : receive(t) and since any subterm of a term from Sec (as defined in the previ-
ous example) is either in Sec or an agent name (a basic public term). Note that
labeledsetops(Pks,1 ‖ Pks,2) consists of instances of labeled terms from the follow-
ing set: {1: (PK 0, ring(A0)), 1: (PK 1, revoked(A1, S1)), 2: (PK 2, seen(A2, S2)),
� : (PK 3, valid(A3, S3)), � : (PK i

4, begini(Ai
4, S

i
4)), � : (PK i

5, endi(Ai
5, S

i
5)) | i ∈

{1, 2}}. For all pairs
 : (t, s),
′ : (t′, s′) in this set we have that
 =
′ if (t, s)
and (t′, s′) are unifiable. Hence condition 4 is satisfied.

As a consequence of Theorem 2 we have that any protocol P1 can be safely
composed with another protocol P2 provided that P1 ‖ P�

2 is secure and that
P�
1 ‖ P2 does not leak a secret:

Theorem 3. If (P1 ‖ P2,Sec) is parallel composable, P1 ‖ P�
2 is well-typed

secure in isolation, and P�
1 ‖ P2 does not leak a secret under any well-typed

model, then all goals of P1 hold in P1 ‖ P2 (even in the untyped model).

Note that the only requirement on protocol P2 is that it does not leak any
secrets (before declassifying), but we do not require that P2 is completely secure.
This means, if we have a secure protocol P1, that the goals of P1 continue to hold
in any composition with another protocol P2 that satisfies the composability
conditions and does not leak secrets, even if P2 has some attacks. This is in
particular interesting if we run a protocol P1 in composition with a large number
of other protocols that are too complex to verify in all detail.

Finally, the composition of parallel composable and secure protocols is secure:

Corollary 1. If (P1 ‖ P2,Sec) is parallel composable and P1 ‖ P�
2 and P�

1 ‖ P2

are both secure in isolation then the composition P1 ‖ P2 is also secure (even in
the untyped model).

5.6 Sequential Composition

Until now we have focused entirely on parallel composition where protocols are
run “side-by-side”. Another type of protocol composition is sequential composi-
tion where protocols are run in sequence, e.g. most recently [6] for PKIs. Thanks
to the generality of our result, we can cover such sequential compositions as a
parallel composition with sets dedicated to the hand-over between the proto-
cols. Let us take a key-exchange protocols like TLS as an example, where the
handshake protocol establishes a pair of shared keys between a client A and
a server S, and then subsequently, the transport protocol uses these keys to
encrypt communication between A and S. We illustrate how the last transition
of the handshake and the first transition of the transport protocol look for A
where t1 and t2 are terms representing the two shared keys established in the
handshake (and there are similar rules for S):

∀A ∈ Hon, S ∈ Ser.
1: · · ·
� : insert((t1, t2), keys(A,S))

∀A ∈ Hon, S ∈ Ser.
� : (K1,K2) ∈̇ keys(A,S).
� : delete((K1,K2), keys(A,S)).
2: · · ·

444 A. V. Hess et al.

Note that, like in the keyserver example, the set keys(A,S) does not represent
a means of communication between two participants, but rather a buffer or glue
between two protocols: one protocol is producing keys, the other protocol is
consuming them. Of course, one needs to require here that the first protocol
only inserts authenticated and secret keys into the set, which is similar to the
assume-guarantee reasoning we have illustrated for our keyserver example.

In fact, our result allows for a generalization of existing sequential compo-
sition results: while all results like [6] and the similar vertical result [11] are
specialized to a particular set of data to be transferred from one protocol to
another, our result does not prescribe a particular setup, but allows for any
exchange of data through shared sets. This only requires one to specify sufficient
assumptions on the shared-set operations for the assume-guarantee reasoning,
but one does no longer need to establish a new composition theorem for each
new form of sequential composition. In fact, the composition does not even need
to be strictly sequential, e.g. if the first protocol establishes keys for the sec-
ond protocol, one may well have that additionally the second protocol can also
establish new keys for subsequent sessions.

6 Conclusion and Related Work

Our composition theorem for parallel composition is the newest in a sequence of
parallel composition results that are each pushing the boundaries of the class of
protocols that can be composed [1–3,7–9,12–14]. The first results simply require
completely disjoint encryptions; subsequent results allowed the sharing of long-
term keys, provided that wherever the common keys are used, the content mes-
sages of the different protocols are distinguished, for instance by tagging. Other
aspects are which primitives are supported as well as what forms of negative
conditions, e.g. to support as goals the full geometric fragment.

Our result lifts the common requirement that the component protocols only
share a fixed set of long-term public and private constants. Our result allows
for stateful protocols that maintain databases (such as a key server) and the
databases may even be shared between these protocols. This includes the possi-
bility to declassify long-term secrets, e.g., to verify that a protocol is even secure
if the intruder learns all old private keys. Both databases, shared databases, and
declassification are considerable generalizations over the existing results.

Like [1] our result links the parallel compositionality result with a typing
result such as the result of [17], i.e., essentially requiring that all messages of
different meaning have a distinguishable form. Under this requirement it is sound
to restrict the intruder model to using only well-typed messages which greatly
simplifies many related problems. While one may argue that such a typing result
is not strictly necessary for composition, we believe it is good practice and also
fits well with disjointness requirements of parallel composition. Moreover, many
existing protocols already satisfy our typing requirement, since, unlike tagging
schemes, this does not require a modification of a protocol as long as there is
some way to distinguish messages of different meaning.

There are other types of compositionality results for sequential and vertical
composition, where the protocols under composition do build upon each other,

Stateful Protocol Composition 445

e.g., one protocol establishes a key that is then subsequently used by another pro-
tocol [2,6,8,10,11,19]. This requires that one protocol satisfies certain properties
(e.g. that the key exchange is authenticated and secret) for the other protocol to
rely on. Our composition result allows for such sequential composition through
shared databases: a key exchange protocol may enter keys into a shared set,
and the other protocol consumes these keys. Thus our concept of sharing sets
generalizes the interactions between otherwise independent protocols, and one
only needs to think about the interface (e.g., only authenticated, fresh, secret
keys can be entered into the database; they can only be used once). Moreover,
we believe that sets are also a nice way to talk about this interaction.

There are several interesting aspects of compositionality that our result does
not cover, for instance, [7] discusses the requirements for composing password-
based protocols, and [3] investigates conditions under which privacy properties
can be preserved under protocol composition.

So far, compositionality results are solely “paper-and-pencil” proofs. The
proof arguments are often quite subtle, e.g., given an attack where the intruder
learned a nonce from one protocol and uses it in another protocol, one has to
prove that the attack does not rely on this, but would similarly work for dis-
tinct nonces. It is not uncommon that parts of such proofs are a bit sketchy
with the danger of overlooking some subtle problems as for instance described
in [16]. For this reason, we have formalized the compositionality result—on the
level of ordinary constraints—in the proof assistant Isabelle/HOL [20], extending
the formalization of [16,17], giving the extremely high correctness guarantee of
machine-checked proofs. To our knowledge, this work is the first such formaliza-
tion of a compositionality result in a proof assistant, with the notable exception
of a study in Isabelle/HOL of compositional reasoning on concrete protocols [5].

Finally, all the works discussed so far are based on a black-box model of
cryptography. There are several cryptographic frameworks for composition, most
notably universal composability, reactive simulatability [4], and [18]. Considering
the real cryptography makes compositional reasoning several orders of magnitude
harder than abstract cryptography models. It is an intriguing question whether
stateful protocol composition can be lifted to the full cryptographic level.

Acknowledgments. This work was supported by the Sapere-Aude project “Com-
posec: Secure Composition of Distributed Systems”, grant 4184-00334B of the Danish
Council for Independent Research. We thank Luca Viganò for helpful comments and
discussions.

References

1. Almousa, O., Mödersheim, S., Modesti, P., Viganò, L.: Typing and compositional-
ity for security protocols: a generalization to the geometric fragment. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 209–229.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 11

2. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirović,
S.: A framework for compositional verification of security protocols. Inf. Comput.
206(2–4), 425–459 (2008)

https://doi.org/10.1007/978-3-319-24177-7_11

446 A. V. Hess et al.

3. Arapinis, M., Cheval, V., Delaune, S.: Composing security protocols: from confi-
dentiality to privacy. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 324–343. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46666-7 17

4. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

5. Butin, D.F.: Inductive analysis of security protocols in Isabelle/HOL with appli-
cations to electronic voting. Ph.D. thesis, Dublin City University, November 2012

6. Cheval, V., Cortier, V., Warinschi, B.: Secure composition of PKIs with public key
protocols. In: CSF, pp. 144–158, August 2017. https://doi.org/10.1109/CSF.2017.
28

7. Chevalier, C., Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-
based protocols. Formal Methods Syst. Des. 43(3), 369–413 (2013). https://doi.
org/10.1007/s10703-013-0184-6

8. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: CSF,
pp. 322–336. IEEE (2010)

9. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods
Syst. Des. 34(1), 1–36 (2009). https://doi.org/10.1007/s10703-008-0059-4

10. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Sequential protocol com-
position in Maude-NPA. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 303–318. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15497-3 19

11. Groß, T., Mödersheim, S.: Vertical protocol composition. In: CSF, pp. 235–250
(2011). https://doi.org/10.1109/CSF.2011.23

12. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.
In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 303–317. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1 22

13. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: CSFW, pp. 24–34. IEEE (2000)

14. Heintze, N., Tygart, J.D.: A model for secure protocols and their compositions.
In: Security and Privacy, pp. 2–13, May 1994. https://doi.org/10.1109/RISP.1994.
296596

15. Hess, A.V., Mödersheim, S.A., Brucker, A.D.: Stateful protocol composition
(extended version). Technical report, DTU Compute (2018). Technical report-2018-
03. https://people.compute.dtu.dk/samo/

16. Hess, A.V., Mödersheim, S.: Formalizing and proving a typing result for security
protocols in Isabelle/HOL. In: CSF (2017)

17. Hess, A.V., Mödersheim, S.: A typing result for stateful protocols. In: CSF (2018)
18. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-

sion identifiers. In: CCS, pp. 41–50. ACM, New York (2011). https://doi.org/10.
1145/2046707.2046715

19. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04444-1 21

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

https://doi.org/10.1007/978-3-662-46666-7_17
https://doi.org/10.1007/978-3-662-46666-7_17
https://doi.org/10.1109/CSF.2017.28
https://doi.org/10.1109/CSF.2017.28
https://doi.org/10.1007/s10703-013-0184-6
https://doi.org/10.1007/s10703-013-0184-6
https://doi.org/10.1007/s10703-008-0059-4
https://doi.org/10.1007/978-3-642-15497-3_19
https://doi.org/10.1109/CSF.2011.23
https://doi.org/10.1007/978-3-642-00596-1_22
https://doi.org/10.1109/RISP.1994.296596
https://doi.org/10.1109/RISP.1994.296596
https://people.compute.dtu.dk/samo/
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1007/978-3-642-04444-1_21
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Privacy (I)

Towards Understanding Privacy
Implications of Adware and Potentially

Unwanted Programs

Tobias Urban1,2(B), Dennis Tatang2, Thorsten Holz2, and Norbert Pohlmann1

1 Institute for Internet-Security, Gelsenkirchen, Germany
urban@internet-sicherheit.de

2 Ruhr-University Bochum, Bochum, Germany

Abstract. Web advertisements are the primary financial source for
many online services, but also for adversaries. Successful ad campaigns
rely on good online profiles of their potential customers. The financial
potentials of displaying ads have led to the rise of malicious software that
injects or replaces ads on websites, in particular, so-called adware. This
development leads to continuously further optimized and customized
advertising. For these customization’s, various tracking methods are
used. However, only little work has gone into privacy issues emerging
from adware.

In this paper, we investigate the tracking capabilities and related pri-
vacy implications of adware and potentially unwanted programs (PUPs).
Therefore, we developed a framework that allows us to analyze any net-
work communication of the Firefox browser on the application level to
circumvent encryption like TLS. We use this framework to dynamically
analyze the communication streams of over 16,000 adware or potentially
unwanted programs samples that tamper with the users’ browser ses-
sion. Our results indicate that roughly 37% of the requests issued by the
analyzed samples contain private information and are accordingly able
to track users. Additionally, we analyze which tracking techniques and
services are used by attackers.

Keywords: Adware · Potentially unwanted programs · Privacy

1 Introduction

Nowadays, browsers almost substitute application programs for particular tasks
such as e-mail. They allow users to socially interact with others, work on projects,
share ideas, or access a broad variety of multimedia content. The amount of
private and critical data that browsers mediate continues to increase every year.
Naturally, this leads to new risks in the scope of the browsers ecosystem (e.g.,
banking fraud, user tracking, spam, etc.) since it becomes an attractive target
for adversaries. New threats are potentially unwanted programs (PUPs), adware,
and malicious browser extensions which tamper with the user’s browser session.
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 449–469, 2018.
https://doi.org/10.1007/978-3-319-99073-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_22&domain=pdf

450 T. Urban et al.

Injecting and replacing ads, as well as redirecting search queries, are popular
ways of attackers to make profit.

Gathering, analyzing, and predicting user behavior using private information
(e.g., clickstream data) has become a considerable spread phenomenon on the
Internet [1]. It is well-known that tracking users and building user profiles is
part of the business model of websites and other applications (e.g., mobile appli-
cations) [2–8]. However, privacy implications of malware are not well explored
yet. In this work, we research privacy leakage by adware and PUPs—to the best
of our knowledge, we are the first ones to report such implications on a larger
scale.

As these topics are somehow related, technical differences and disparities
in the motivation why users are being tracked exist. On the technical side, in
contrast to websites and browser extensions, adware and PUPs are not installed
with the users’ consent or their knowledge, and therefore they do not know
that they are being tracked. If it comes to tracking capabilities, websites and
extensions are limited to the browser while adware and PUPs have richer access
to the users’ device and can thereby access more sensitive information (e.g.,
passwords). Especially malicious programs can track every step of a user by
injecting tracking tools into every website a user visits. Thus, these programs
can quickly create a comprehensive profile of a particular user which contains
highly sensitive data and this is of potentially great value to ad companies.

However, on the motivational side, websites track users to monitor the users’
behavior on their sites to improve their services (e.g., suggesting videos the users
might like). Extensions might leak private information to third parties, or the
extensions server, due to the service they offer (e.g., an extension that checks if a
user visits a malicious URL might naturally send the URL to a third party). On
the contrary, malware exfiltrates personal data in a purely malicious manner. As
scamming money in classical Internet frauds (e.g., credit-card fraud) gets harder
and harder, attackers search for new ways to maximize their monetizing efforts
(e.g., ransomware or ad injection). Another, not well-explored way, to do that
is to exfiltrate private data to build personalized online profiles e.g., the users’
clickstreams which can be sold to third parties [9].

In this work, we show the scope of this unnoticed privacy breaches that
emerge from adware and PUPs. We found that adware and PUPs heavily focus
on the users’ clickstream data which can give great detail about the users’ per-
sonal life. Roughly 27% of all analyzed adware and around 30% of the PUP
samples steal the full visited URLs of their victims. Furthermore, we show that
data exfiltration is a central component of the malicious activities of adware and
PUPs. Our results show that Asian tracking services are popular data sinks for
the exfiltrated data. Given the high prevalence of adware and PUPs [10], this
data exfiltration is a considerable threat to our modern society.

To sum up, we make the following contributions:

– We introduce a framework that allows us to capture traffic of software that
tampers with the browser session on the application level (see Sect. 4) when
visiting a predefined set of websites (see Sect. 4.2).

Privacy Implications of Adware and PUPs 451

– We provide a detailed analysis of the negative privacy impact emerging
from adware and PUPs. Our results show that more than 45% of all ana-
lyzed adware and PUPs samples exfiltrate personal data or track users (see
Sect. 4.3). To the best of our knowledge, we are the first to report on data
leakage and profiling by adware and PUPs on a large scale.

– Finally, we identified (1) the services used to track users, (2) the websites
most commonly tracked, (3) and data that is predominantly exfiltrated by
adware or PUPs (see Sect. 5.1).

2 Background

In this section, we explain the terms adware, potentially unwanted programs, and
browser extensions. Further, we give a brief overview of the adware ecosystem
and describe several tracking mechanisms.

2.1 Adware, Potentially Unwanted Programs, and Browser
Extensions

In this work, we analyze two different types of software, namely adware and
potentially unwanted programs (PUPs). We further analyze browser extensions
to assess our results and to make them more comparable to other related work
(e.g., [2,11–13]). In the following, we explain these types of software and discuss
how we understand them in the scope of this work:

1. Adware is (malicious) software that generates revenue by displaying ads to
users (e.g., by injecting or replacing ads on websites). Aside from the ad
injection, adware often redirects search requests to advertising websites or
collects private data of the users (e.g., clickstream data). Commonly, adware
is considered to be malicious if the collection of data or ad-injection happens
without adequately notifying the user and if it is installed like other malware
(e.g., drive-by-downloads).

2. Potentially unwanted programs (PUPs), is a type of software that users
might perceive undesirable, as it is installed along with software the user
intends to install. The PUPs are bundled with popular benign software and
are distributed by so-called pay-per-install services (PPI). PPI services get
paid for installations of software (the installer bundle) on target hosts. PUPs
could be software with any capability, malicious or benign. However, in the
wild, this kind of software often shows similar behavior as adware [10] (e.g.,
ad-injection or user-tracking).

3. Browser extensions are programs that extend the functionality of a web
browser (e.g., block advertisements). Extensions have generous access to many
functions provided by the browser.

In this work, we examine the negative privacy implications of adware and
PUPs and compare these findings to extension downloaded from the Firefox

452 T. Urban et al.

Fig. 1. Overview of the adware ecosystem. The adversary infects the victim’s device
with malicious software which insert ads into a visited website. After displaying the
ads, or a click on the ad by the user, the adversary gets paid typically by a an ad
network.

Add-On repository [14]. In the past, adware or PUPs could come in form of an
extension but due to policy changes of Firefox one can only install extensions
present in their repository. This is probably why none of the analyzed samples
successfully installed an extension. We focus on the negative privacy impact of
adware and PUPs but also give hints regarding the “ad injection” and “search
query redirection” capabilities of the analyzed samples (see Sect. 5).

As just defined, adware and PUPs have similar capabilities, and therefore
it is reasonable to analyze both and compare them to each other. In order to
make our results more comparable to previous work, we additionally analyzed
browser extensions which are well explored regarding their (malicious) behavior.
Of course, adware has more access to the operating system and could, therefore,
come along with many other malicious capabilities than browser extensions.
Therefore, we analyze the outbound network traffic that is not emerging from
the browser (“second channel”) to examine privacy breaches on that channel,
too.

2.2 Adware Ecosystem

The focus of this work lies in the analysis of privacy implications of adware and
PUPs. The adware ecosystem is presented in Fig. 1: (1) The user’s system is
infected with software (i.e., adware, PUPs, or extensions) that tampers with the
browser session. (2) The extensions, PUPs, and adware inject their (malicious)
objects (e.g., JavaScript code, or images) into the visited website. These objects
might be used to load some content from a third party (e.g., ads), or might
exfiltrate private information about the user.

Many parts of the ecosystems are already well explored (dotted lines). In this
work, we analyze the privacy implications of adware an PUPs for users (dashed
lines). To the best of our knowledge, there has been no research analyzing this
part systematically on a large scale.

Privacy Implications of Adware and PUPs 453

The main monetization technique of adware (as the name hints) is injecting
ads into websites and getting paid based on the payment model of the ad-network
(e.g., pay-per-view) (3). Nevertheless, authors of adware, PUPs, or malicious
extensions might also sell private data they exfiltrate from their victims [15] (4).

2.3 Tracking Mechanisms

Tracking mechanisms can be subdivided into stateful and stateless tracking
methods. Stateful tracking identifies users through a unique identifier chosen by
the tracker. On the contrary, stateless tracking tries to determine users through
properties of the users’ device or browser (e.g., installed fonts or drivers).

Two exemplary stateful tracking techniques are explained in the following:

– A web beacon (sometimes called tracking pixel or web bug) is often not larger
than 1 × 1 pixel and usually a transparent graphic image, which is placed on
a website for monitoring the user behavior [16]. It is often used with cookies
as an additional tracking mechanism. Software that tampers with the user’s
browser session, like browser extensions, can insert such web beacons on every
visited website.

– Third party cookies are a popular way to track users across different
servers. In contrast to first-party cookies, which are set by the currently vis-
ited website, third party cookies are set, e.g., by content loaded from the
third party by the visited website. However, third-party cookies are set for
the same reason than standard first-party cookies so that a visited website
can identify a user later on.

Two examples of stateless tracking are browser and canvas fingerprints:

– Browser fingerprinting enables website providers to recognize and identify
a user’s system by unique properties of each browser. Eckersley demonstrates
that a combination of browser and device features can almost uniquely iden-
tify most users on the web [17]. Web-based browser fingerprinting is, there-
fore, a conventional technique that has been investigated by several other
researchers [17–20]. This technique can further be abused for customization
of displayed products, e.g., recently Hupperich et al. showed that the location
plays a role in the price offered for hotel bookings [21].

– Canvas fingerprinting is possible by abusing the HTML canvas element,
that was introduced in HTML5, to draw graphics onto websites. Mowery and
Shacham demonstrate that it is feasible to use for user tracking [7].

3 Related Work

Adware and Malicious Add-Ons. Jagpal et al. [22] present WebEval, a
system that identifies malicious extensions for the Google Chrome web browser.
The authors identify different types of malicious extensions. The two most com-
mon types are Facebook session hijackers and ad-injectors (adware). Similar to

454 T. Urban et al.

our work, they perform a dynamic analysis of each extension and log how it inter-
acts with the browser and operating system. Jagpal et al. do that by performing
everyday tasks like querying search engines, visiting social media, and browsing
favorite news sites. Aside from their dynamic approach they also conduct a static
code analysis to decide if an extension is malicious or not.

Hulk [11] is another framework that is used to identify malicious browser
extensions. Hulk employs so-called HoneyPages and a technique called “event
handler fuzzing”. HoneyPages are empty HTML pages. If an extension queries
for a tag on a website (e.g., getElementById ("foo")) this tag is automatically
inserted into the HoneyPage. Thus, the extension assumes the element is present
on the website and interacts with it. Using event handler fuzzing, Hulk pretends
to visit all websites on the Alexa Top 1M [23] but just presents a HoneyPage to
the extension.

Thomas et al. [12] combine Hulk and WebEval to measure the effect of
malicious extensions on the websites google.com, amazon.com, and walmart.com.
They report that 5% of the daily unique IP addresses visiting google.com are
infected with malware that injects ads into websites.

OriginTracer [8] is a tool developed by Arshad et al., which allows tracking
the provenance of web content injected into websites by web extensions. They
evaluate the usability and performance of the introduced tool and show that
such a tool is of great value for users to identify content that was injected into
websites by third parties.

Neither Hulk, WebEval nor OriginTracer target privacy implications
but focus on identifying malicious browser extensions. We measured and ana-
lyzed the negative privacy impact for users that are infected by adware or PUPs.

Analysis About Fingerprinting on the Web. In a large-scale study, Acar
et al. examine three advanced web tracking mechanisms (canvas fingerprinting,
evercookies, and cookie syncing) [3]. According to their study, 5% of the top
100k websites use canvas fingerprints to identify users.

In 2010, Ashkan et al. conducted a study on the use of Flash cookies [24].
50% of the websites in their set (Alexa top 100 sites [23]) use this kind of cookie
mostly without disclosing this in their privacy policies. Note that since May 2011,
all EU countries adopted a directive which says amongst others that websites
have to display a “warning” to users if they use cookies [25].

FPDetective, a framework to analyze and detect web-based fingerprints,
is introduced by Acar et al. [26]. They used their framework to crawl the most
popular websites and analyze if the JavaScript code that is transmitted is used
to create fingerprints. In their work, the authors show that fingerprinting is a
growing problem and significantly more attractive than previous work suggested.

Englehardt and Narayanan [5] present the most recent study on online track-
ing. They introduce the open-source measurement tool OpenWPM, which they
used to crawl and analyze the top one million websites on the internet. They mea-
sure several stateful and stateless tracking techniques and discover some methods
that have not been noticed in the wild before (e.g., audio fingerprinting).

http://google.com
http://amazon.com
http://walmart.com

Privacy Implications of Adware and PUPs 455

The introduced work measures the tracking capabilities and other privacy
implications of modern websites. In this work, we analyze the exfiltration of
private data and user tracking by malware, i.e., adware and PUPs.

Prevalence of Potentially Unwanted Programs. The prevalence and distri-
bution of PUPs are examined by Kotzias et al. [10]. By analyzing AV telemetry,
Kotzias et al. show that around 54% of 3.9 million analyzed hosts have PUPs
installed. Furthermore, they found that the top PUP publisher ranks 15 among
all software publisher (benign or not). They analyze the PUP-malware rela-
tionship and conclude that PUP and malware distribution is independent from
another.

The pay-per-install (PPI) ecosystem is analyzed by Thomas et al. [27]. The
authors show that PPIs sell access to the users’ systems for prices ranging from
0.10$ to 1.50$ per installation. Furthermore, they show that PPI services take a
considerable part in distributing PUPs. Based on Google Safe Browsing teleme-
try, they show that PUPs are downloaded three times more often than classical
malware. Both works show the massive prevalence of PUPs but do not investi-
gate the influence this type of software has on the users’ privacy.

Privacy Implications of Browser Extensions. The privacy diffusion
enabled by browser extensions is examined by Starov and Nikiforakis [2]. They
dynamically analyze the privacy leakage of extensions available for the Google
Chrome browser. They find that a non-negligible amount (6.3%) of the top
10,000 extensions leak privacy-sensitive data. To counter the leakage, they design
BrowsingFog a tool to conceal the user’s actual interest on the web. The
tool pretends to visit different websites on the internet (“fog”) which makes it
arguably harder to distinguish between intended and non-intended page visits.

The most recent work in this field of research is written by Weissbacher
et al. [13]. The authors present a prototype implementation called Ex-Ray that
can identify the privacy-violating behavior of browser extensions. In their work,
they use an unsupervised learning approach to identify those extensions. The
proposed experimental setup is comparable to our setup but only captures traffic
on the network level. Thus, they cannot access and analyze the data, if they are
transferred over a TLS secured channel.

The work of Starov and Nikiforakis is to some extent comparable to our
work but, due to the nature of their analysis framework, does not cover track-
ing capabilities of extensions and does not look for exfiltrated metadata (e.g.,
user-agents or passwords). In [2] the software is analyzed that might need some
personal information to successfully run their service (e.g., to identify malicious
URLs). In contrast, we focus on malware that exfiltrates data in a purely mali-
cious manner which foreshadows that there is a clear distinction between these
two types of software. On a technical level we extend the findings of [2] by (1)
identifying all exfiltrated data, (2) showing that there is a significant difference
in type and amount of exfiltrated data, (3) identify websites to which visits are

456 T. Urban et al.

primary tracked, (4) analyzing the tracking behavior of malware, (5) determin-
ing the tracking services used by different malware families, and (6) identifying
the used tracking techniques.

4 Approach

In this section, we introduce our framework, describe its working principles,
inform about our analyzed data set, and give an overview of the investigated
samples. Note that in contrast to most related work, due to the application-level
monitoring, our system can even inspect HTTPS traffic, can find private data
in encoded and deflated content, and allows a stateful analysis.

4.1 Framework

We developed a framework (see Fig. 2) that allows us to (1) perform a state-
ful analysis of each sample, (2) capture, if needed decrypt, decode and analyze
HTTP(s) communication on application level, and further (3) collect and analyze
all network traffic not emerging from the browser.

The general workflow of a single analysis run goes as follows. The analysis
slave pulls and installs an adware sample, PUP sample or extension from the
server (1). Afterward, the slave visits a predefined set of websites (2a) and logs
the resulting communication. To do so, we developed a browser extension that
captures all network traffic on the application level. Since we save the traffic on
the application level, we can inspect all requests and responses before or after
they are encrypted or decrypted, by the TLS layer. After visiting a website, we
wait for 30 seconds so it can finish loading and the analyzed software has time
to inject content into the site. Additionally, we record all traffic on network level
that is originated from aside the browser (2b). We cannot decrypt the traffic
apart from the browser. Thus in our analysis, we are limited to the unencrypted
traffic. At the end of the analysis run, the plain HTTP(s) traffic and the further
communication is sent to the server for review. Before the analysis we—if needed
and possible—inflate (e.g., gzip) and decode (e.g., BASE64) all data (see also
Sect. 4.3).

In this work, we perform a stateful analysis which means that the used
browser has properties that a mock browser or a default state would typically
not show (e.g., a browsing history or cookies). If one wants to analyze the track-
ing capabilities of the software, it is inevitable to perform a stateful analysis
because resetting the state of the browser during the investigation of a sam-
ple might disable some mechanisms that are used for tracking (e.g., cookies).
The clean installation state of our slaves—that is recovered after each restart—
has a browsing history, several cookies set, passwords in the browser’s password
vault, and other properties that are usually set when using a browser. Note
that most prior work performs a stateless analysis of ad-injectors or browser
extensions [11,12,26]. Only OpenWPM performs a stateful analysis [5].

Privacy Implications of Adware and PUPs 457

Fig. 2. Overview of our developed framework for the dynamic traffic analysis of adware,
PUPs and browser extensions.

To conduct a representative analysis, we need to learn the regular communi-
cation of a website to distinguish between requests regularly issued by the site
and requests issued by an object injected by the adware, PUP, or extension. We
collect the non-malicious regular communication of a website for our analysis by
visiting all sites with an analysis slave— but without installed sample or browser
extension.

Since websites tend to load dynamic content from various and often changing
sources, each slave collects new reference values after analyzing two samples. All
collected reverence values are combined to one reference set Rref . In our analysis,
we consider requests that target domains (TLD+1) that are not part of Rref for a
given site. We call that set Rnew Example (see also the right side of Fig. 2): Let’s
assume that Rref for example.org contains requests to cdn.com and news.com.
However, if an infected client visits example.com the websites issues requests to
evil.xxx, and shady.com. In our study, we only consider requests evil.xxx,
and shady.com because they are not in Rnew.

4.2 Dataset

We used the global Alexa Top 100 [23] (as of 01/15/2017) as the basis for our set
of websites which are visited by the analysis slaves. We restricted our analysis
to unique hostnames from this list (e.g., we only analyze google.com even if
google.co.uk is on the list as well) because we assume that the communication
would be similar.

After filtering the sets consists of 57 domains. We added five popular e-
commerce domains (e.g., bestbuy.com) because we expect the adware or PUPs
to be more active on e-commerce websites, which turned out to be true for PUPs
but not necessarily for adware (see Sect. 5. For each of those domains, we chose
two subsites either randomly by visiting the domain and selecting two links, or
if possible by selecting the most popular subsites for this site (e.g., products).

458 T. Urban et al.

Fig. 3. Distribution, on a logarithmic scale, of the analyzed malware sample families.
One adware family (Dealply) is dominant in our set while the rest is more or less
balanced - which allows us to generalize our results.

A more detailed overview of the set can be found in AppendixA. In total,
the analysis of each sample takes around 70 min (including booting, infection,
visiting the 128 websites, waiting 30 s, etc.). Previous work either visited a broad
set of websites once to conduct their analysis (e.g., [5]), used some mock pages
to analyze the injected content (e.g., [11]), or did not disclose how many sites
they visit (e.g., [22]).

For our analysis, we used 8,536 distinct adware samples (referred to as SAD)
and 8,109 distinct PUP samples (SPUP) (different regarding SHA256 hashes).
The samples in SAD ∪ SPUP come from 484 different malware families (AV
labels). Less than 12% of the samples belong to the most common adware family
(DealPly), and 5% belong to the most common PUP family (InstallCore).
The full distribution—on a logarithmic scale—of malware families is displayed
in Fig. 3. The distribution of samples across malware families shows that the
data set is balanced and allows to generalize our results.

We used samples that were submitted to VirusTotal [28] between 01/01/2017
and 12/20/2017. VirusTotal shut down their API in August and ever since then
provides a data set for researchers on Google drive that is updated monthly.
The used samples are either identified to be a potentially unwanted program
(PUP) or adware by the anti-malware engines used by VirusTotal. We used
samples with these labels because we expect that those samples will primarily
exfiltrate private data and inject content into websites. To better assess our
findings regarding adware and PUPs and to make our work more comparable
with previous work, we analyzed the top 5,500 Firefox extensions (Sext) available
in the Firefox add-on repository [14]. According to the number of users, we
took from the add-on repository, the top 5,500 extension cover 97.2% off all
Firefox extension installations. Previous work focused on Chrome extensions,
and therefore our analysis also complements these results.

4.3 Analysis

In the following, we focus on analyzing the communication of adware and PUPs.
More specifically, we analyze the used tracking services, exfiltrated information,
and tracked websites. Additionally, we compare these findings to privacy leakage
of the browser extensions we analyzed and with results of previous work.

Privacy Implications of Adware and PUPs 459

A website can implement a Content Security Policy (CSP) as a defense mech-
anism to mitigate certain types of attacks like cross-site scripting or data injec-
tion attacks. During our analysis, we found that only 17 subsites use CSPs.

Exfiltrated Personal Information. In this work, we consider information to
be private if it holds: (1) data that can be used to identify the client (e.g., IP-
addresses), (2) can be used to create a user profile (e.g., visited URLs), or (3)
contain sensitive data stored on the computer (e.g., passwords). We consider a
website to be a tracker (or tracking service) if it gathers data that can be used
to identify users or create profiles about them.

We identified the exfiltrated data by analyzing the transferred cookie, or
data sent via the HTTP body. Individual headers can be used to gather
personal information about the user (e.g., the user agent or user’s pre-
ferred language), but these headers are commonly set by default. Hence,
we cannot measure if the analyzed sample utilizes these fields. Before ana-
lyzing the fields we, if possible, deflate (e.g., gzip/deflate) and decode
(e.g., BSAE64) them. If possible, we repeat this process in case fields are
encoded or inflated multiple times, as observed by Starov et al. [2] (e.g.,
base64 enc(base64 enc(url enc(<data>)))).

After the inflating and decoding, we perform a keyword matching to deter-
mine whether a request is used to leak private information. We identified the
keywords by manual inspection of several requests issued by the different ana-
lyzed samples. We used 13 keyword categories that on the one hand are com-
monly used to identify or track users (e.g., screen resolution or installed fonts)
and on the other hand information that is specific for our analysis setup (e.g.,
IP addresses or passwords). Some categories are identified by multiple keywords
others just by one (e.g., the password is equal for all machines all the time while
the user agent varies from sample to sample). We found 15,462 keywords in the
analyzed requests. A manual inspection of a sample of the requests we identified
a small (less than ten requests) to be false negatives (e.g., a keyword in a seem-
ingly random string - AR5WIN7SP1UFB2RI3). A list of the most relevant
keywords (based on their occurrence) is given in Table 2. Furthermore, we check
if script code that is sent to the client within the response might be used to track
users. If possible, we implemented several metrics provided in [5,26] to identify
JavaScript that is used to track users.

To summarize, we consider a request to have negative privacy implication
if and only if (1) it is part of Rnew, and (2) it is used for tracking or contains
private information.

5 Results

In this section, we provide an overview of the results of our analysis. Throughout
this section, if not stated otherwise, we only consider requests used to track users
or leak personal data to third parties.

460 T. Urban et al.

Table 1. Websites that were actively tracked by the analyzed samples (Alexa Ranks
as off 11/30/2017).

Adware PUPs Extensions

%-Sam.Website Cat. Rank%-Sam.Website Cat. Rank%-Sam.Website Cat. Rank

15.94 tmall.com shopping 14 17.02 tmall.com shopping 14 19.74 tmall.com shopping 14

6.54 msn.com misc 49 6.65 cnn.com news 106 10.05 instagram.com image 17

5.40 cnn.com news 106 6.07 asos.com shopping 360 9.40 youtube.com video 2

5.28 youtube.comvideo 2 5.96 ebay.com shopping 38 7.11 microsoft.com shopping 50

4.93 asos.com shopping 360 5.90 target.com shopping 283 6.13 cnn.com news 106

In total, we analyzed 16,645 malicious software samples (8,536 adware sam-
ples and 8,109 PUPs) and 5,500 Firefox extensions. We analyzed about 850GB
(compressed JSON data) of generated adware/PUP traffic. 45% of the adware
samples, 40% of the PUP samples, and 45% of the Firefox extensions inject con-
tent into a website that issued requests to domains not present in Rref . Our
results, if not stated otherwise, only take these samples into account.

We found that the adware and PUP samples issued 21,429 requests to
domains not present in our reference dataset, an increase of 10%. 61 of the
adware samples changed the home page of the browser, and 221 changed the
browser’s standard search engine or redirected search queries. In contrast, only
6 PUPs changed the home page, but still, 180 replaced the default search engine.
Due to Firefox policies, Firefox extensions cannot change these attributes.

5.1 Privacy Aspects

In this subsection, we present the results of the analysis of the HTTP(s) traffic
emerging from the browser. Remember that our framework allows to (1) analyze
all traffic in plain text—no matter if HTTPs was used or not—and (2) tries to
deflate and decode all data before the analysis (e.g., HTTP GET parameters).

Tracked Websites. Table 1 displays the top websites to which visits were
actively tracked by the analyzed samples. We consider a website to be tracked
if the analyzed sample injects content that can be used for tracking (e.g., a web
beacon), or if an observed outgoing request contains any personal information.
In our set of websites, each site is tracked by at least 1.5% of the adware and
PUP samples. These samples circumvent the CSPs used by websites.

It is notable that the extensions and adware focus on popular websites (e.g.,
Youtube or Instagram) from different categories while PUPs predominantly
focuses on shopping sites. This indicates that PUPs try to understand what a
user plans to buy while adware is gathering information that gives a broader
overview of the users habits since they track more general websites as well as
shopping sites. Accordingly, this allows providing targeted ads for individual per-
sons, making these kinds of information valuable for ad-companies. Overall, way
fewer extensions exfiltrate personal information (31.64%) compared to adware
and PUPs (46.41%).

Privacy Implications of Adware and PUPs 461

Our results show that user tracking is a significant part of the mali-
cious behavior of adware and PUPs. Almost 40% of the request issued by
the adware samples, and 35% of the requests issued by PUPs contain per-
sonal information or may be used to track users (e.g., they include the visited
URL: shady.com/?url=google.com%2Fiphone%2B6). In contrast, only 28% of
the requests are used by the extensions for those purposes.

Leaked Personal Information. To measure the privacy impact, we first iden-
tify the transferred personal information triggered by the tested samples. We
analyze the transferred cookie, and data sent in the HTTP body requests. Fur-
thermore, we inspect if a response contains JavaScript that is used for stateless
tracking or if the answer includes a web beacon.

As described in Sect. 4.3, after deflating and decoding, we perform a keyword
matching to determine whether a request leaks personal information usable for
tracking mechanisms or not. Table 2 shows the results of that matching.

Figure 4 displays the third parties receiving the personal information. Note,
if a request contains multiple keywords, we count the request numerous times.

In general, compared to PUPs, extensions and adware focus on meta infor-
mation (e.g., language, time, IP address, etc.). The visited domain is exfiltrated
by all analyzed software types alike (32%) while PUPs and adware predomi-
nately exfiltrate the full request URL (domain and GET parameters). However,
one can argue that some extensions transfer this information as part of their
service (e.g., an extension that checks if the users visit a malicious website will
naturally send the current URL to a third party). In contrast, adware or PUPs
leak personal data in a malicious manner or because the used ad services requires
the current URL. In either way, the user’s privacy is undermined unnoticed and
without the user’s consent. Table 2 shows that PUPs and adware, in contrast to
extensions, focuses on the user’s clickstream (i.e., browsing history). This is a
more significant threat to the user privacy due to the detailed information leaked
users’ personal life (e.g., habits).

We can not identify any privacy-related information in about 6.9% of
the requests issued by adware and PUPs (e.g., cdn.gigya.com/JS/gigya.
js?apiKey=3 GL3L[...]) and 56% of the requests did not contain any data
we analyzed (e.g., code.jquery.com/jquery-2.2.4.min.js).

To the best of our knowledge, there has not been any report on privacy
breaches of adware and PUPs. Our measurements show that a significant part,
more than 1⁄3, of the adware’s and PUPs communication leaks personal infor-
mation of users or tracks them. If one takes into account that the majority of
the leaked data is the user’s browsing history (Domain and URL in Table 2) this
kind of leakage is way more severe than the extension leaks.

Starov and Nikiforakis observed that several Chrome extensions, 6.3% of the
top 10k, ‘unintentionally’ leak the HTTP referrer header to third parties (e.g., by
embedding objects on every website) [2]. We observed a comparable leakage by
6.55% of the analyzed Firefox extensions and by 6.91% of the analyzed adware.

462 T. Urban et al.

Table 2. Most commonly leaked personal information

Information Adware PUP Extensions

%-S. Median Max %-S. Median Max %-S. Median Max

IP address 0.92 3 3 0.69 2 3 0.85 6 30

Operating sys. 5.49 2 5 5.54 2 5 6.21 2 30

User-Agent 5.41 2 2 4.77 2 3 5.35 14 60

Desktop res. 7.35 3 20 6.32 2 7 7.19 2 9

Domain 32.16 2 27 35.12 2 26 32.77 2 126

Full URL 27.18 2 13 29.52 2 10 15.56 2 66

Referrer leak 6.91 0 19 3.31 3 23 6.55 0 20

We did not further investigate this unintentional leakage because the header
provides only little utility for the adversary and there are several other ways
for her to access this information (e.g., by merely reading the visited URL) and
furthermore we cannot measure if the header is utilized. Naturally, the third
party receiving the referrer header could use this information. Thus, this kind
of leakage still poses a threat to the user’s privacy.

Tracking Services. Figure 4 displays the tracking services used by the different
malware families. To increase readability, we only listed services used at least
seven times by any family and the top 16 malware families individually and
combined all other families to Others. Agent, Dealply, the most common adware
families in our dataset, and InstallCore, the most common PUP family in
our dataset, are using a broad variety of tracking services One can see that
TaboTabo and MMStat are overall the most common services used to track users.
taobao.com is operated by Zhejiang Taobao Network Ltd., while mmstat.com
is operated by Alibaba Co., Ltd. Both two big Chinese players in the Internet
landscape. The third most common observed tracker, GoogleVideo, is a content
delivery network—which is also a known tracker—used to host video or sound
files. An overall overview of the most commonly used tracking services and the
personal data used by these services is given in AppendixB.

Along with the findings that ad-injection targets users in South Asia, and
South East Asia [12] our results indicate that adware and PUPs use services
based in Asia. The usage of these services is understandable because access to
big American tracking services (e.g., Facebook or Google) is not possible since
they are blocked in China [29].

Tracking Techniques. Table 3 presents the tracking techniques utilized by the
analyzed samples—only requests are listed that are used for a specific tracking
technique. Previous work shows that stateless tracking is becoming more com-
mon on popular websites [5]. However, the analyzed adware samples and PUPs
do not utilize stateless tracking techniques. This behavior is comprehensible since

Privacy Implications of Adware and PUPs 463

Fig. 4. Top tracking services used by the analyzed adware (A) and PUP (P) families.

the samples can manipulate every website the user visits and therefore can inject
a stateful tracking object into each site. Thus, they do not have to rely on more
complex and error-prone stateless tracking techniques.

Our analysis shows that web beacons are the most common tracking method
among all analyzed samples (adware, PUPs and browser extensions). This result
is reasonable since they are easy to implement and are not as easy to block as
third-party cookies. It is notable that extensions do not as often use web beacons
but utilize 3rd party cookies more commonly.

The results indicate that user tracking is less critical to adware and PUP
authors than exfiltrating personal data. But one can argue that exfiltrating the
visited URL or domain is also a form of tracking. Requests that contain personal
information but do not follow a specific tracking scheme are not considered (e.g.,
A request contains personal information and loads a picture bigger than a typical
web beacon is not counted). The vast majority (around 88%) of requests that
impact the users’ privacy leak personal information.

Non-browser Emitted Communication. The analysis in this section
includes all malware and PUP samples even if they did not insert any object into
a website. Similar to the analysis of the traffic emitted by the browser, we used
the communication of Rref as reference values for non-malicious communication

464 T. Urban et al.

Table 3. Tracking techniques used by the analyzed adware and extensions. The vast
majority tracks the users in a different way (e.g., by leaking the URL to a third party).

Cookies Web beacon Stateless Data leakage

Adware (%-Sam.) 0.03 % 17.36 % 0.02 % 88.55 %

PUPs (%-Sam.) 0.02 % 16.93 % 1.07 % 87.42 %

Extensions (%-Sam.) 4.47 % 9.83 % 0.09 % 89.32 %

(e.g., connections issued by the operating system). The analysis in this chapter
excludes all local traffic and traffic on the browser level.

We used our identified keywords to check if any personal information is sent
to any of these IP addresses (malicious or non-malicious). To do that we match
the identified keywords against the payload of each unencrypted packet.

Less than 0.5% of the packets contain meta information (e.g., operation sys-
tem, or used language), and no packet included clickstream data. The small
amount of exfiltrated data shows that adware and PUPs do not leak unen-
crypted personal information on network level which makes this kind of leakage
hard to detect. Due to the low amount of identified exfiltrated data, we did not
further investigate this communication, but this analysis could be part of future
work on this topic.

6 Discussion

In the following, we discuss ethical considerations and limitations of our work.

6.1 Ethical Considerations

Running live malware samples always comes with some ethical issues. On the one
hand, one wants to understand how malware works in a realistic environment
but on the other hand, running malware might result in harming individuals not
involved in the analysis process (e.g., via credit card fraud). Since we run malware
that generates revenue by displaying ads and stealing private information we
eventually created some income for the malware authors during our analysis.
We implemented measures to decrease the potential harm a sample can cause
(e.g., by limiting the upload bandwidth to minimize their participation in a
possible DDoS attack).

6.2 Limitations

Our developed framework allows the dynamic analysis of software that tam-
pers with the users’ browser session. However, it comes, like most dynamic
approaches, with some limitations. Using a predefined set of websites leaves
the risk that the analyzed software does not get active on the visited websites

Privacy Implications of Adware and PUPs 465

(e.g., banking-malware might only get active on specific subsites of a particu-
lar banking site). However, previous work has shown that the top-ranked pages
trigger a lot of malware samples and extensions [2,11,12,26]. Also, some samples
might only inject content into websites only if certain search words appear, as
shown in [12]. Since we use a predefined set of websites and therefore predefined
keywords, we will not see injections related to other keywords.

Currently, our analysis slaves do not interact with the websites in a way a real
user might (e.g., scrolling, or clicking on links). Some malware samples might
only trigger if an event occurs, if the user interacts with a website we missed
this kind of behaviour.

Since we are using a virtual environment to execute the malware, some sam-
ples might recognize that they are being analyzed. We took several measures
to hide that the malware is executed on a virtual machine (e.g., changing CPU
information and some registry keys). However, a malware sample might still
detect that it is being analyzed and show a different behavior.

7 Conclusion

Our results show that not only websites and browser extensions but also—on
a massive scale—adware and PUPs negatively impact the user’s privacy. We
analyzed over 16,000 adware and PUP samples towards their privacy implica-
tions to the user. Our results illustrate that these kinds of software excessively
leak private data (e.g., IP addresses or clickstream data). More than 37% of
all requests issued by malware or PUPs is used for one of these two purposes.
Adware and PUPs mainly focus on the user’s clickstream which holds sensitive
personal information and may give great detail of the user’s life ranging from
e.g., habits, personal preferences to political views. Thus, adware is a not negli-
gible threat to the user’s privacy especially because the leakage happens without
consent or knowledge of the user. Regarding the tracking behavior PUPs and
adware are quite similar and, since they heavily focus on the users’ clickstream,
pose a far worse threat to the users’ privacy than extensions do.

We could show that while there are—regarding the privacy influence—
similarities between extensions and adware/PUPs there are also apparent dif-
ferences. Adware and PUPs mainly focus on the users’ clickstream and can,
therefore, create comprehensive profiles of users’ which are valuable to different
companies (e.g., ad-networks). Furthermore, our results show that adware and
PUPs do not adopt state of the art tracking techniques.

Acknowledgment. This work was partially supported by the Ministry of Culture and
Science of the German State of North Rhine-Westphalia (MKW grant 005-1703-0021
“MEwM”) and partially supported by the German Federal Ministry of Education and
Research (BMBF grants 16KIS0395 “secUnity” and 01IS14009B “BD-Sec”). We would
like to thank the anonymous reviewers for their valuable feedback.

466 T. Urban et al.

A Set of Websites

The websites used in our analysis are listed in Table 4. We used the Alexa top
100 as the basis for the set. The set of the websites is described in detail in
Sect. 4.2.

The set consists of ten search engines, 20 social media sites, 11 online-shops,
5 domains hosting adult content, and 16 domains that do not fit in any of these
categories (e.g., github.com or cnn.com). 34 of the domains are hosted in the
United States of America, 14 are hosted in the People’s Republic of China, four
in the Russian Federation, three in the Kingdom of the Netherlands, two in the
Republic of Ireland, and five sites are hosted in different countries in Asia (ROK,
SVR, JPN, HKG, and TWN).

Table 4. Set of websites used in our analysis.

search.rakuten.co.jp instagram.com coccocqc.com

movie.youku.com search.naver.com forums.craigslist.org

www.baidu.com everysinglewordspoken.tumblr.com www.ebay.com

health.china.com.cn foodwishes.blogspot.com coccoc.com

www.flipkart.com edition.cnn.com news.xinhuanet.com

www.zalando.de www.google.com hyperboleandahalf.blogspot.com

channel.pixnet.net www.youtube.com history.gmw.cn

vk.com www.bing.com sd.360.cn

marketplace.asos.com stock.sohu.com 2kindsofpeople.tumblr.com

imgur.com github.com www.xvideos.com

zy.youku.com xhamster.com www.pixnet.net

military.china.com.cn news.gmw.cn www.alibaba.com

finance.qq.com en.bongacams.com world.taobao.com

mall.360.com stackoverflow.com www.microsoftstore.com

www.reddit.com www.asos.com bbs.tianya.cn

www.twitch.tv www.so.com www.apple.com

world.tmall.com en.wikipedia.org news.mail.ru

www.quora.com www.aliexpress.com news.youth.cn

ok.ru news.naver.com www.xinhuanet.com

www.groupon.com www.sogou.com auto.mail.ru

www.pornhub.com www.facebook.com twitter.com

yandex.ru cbachina.sports.sohu.com www.msn.com

www.linkedin.com www.amazon.com de.pinterest.com

newyork.craigslist.org intl.target.com www.imdb.com

ent.qq.com www.hao123.com www.microsoft.com

www.walmart.com v.youth.cn

B Tracking Services

Table 5 displays the most common services to which privacy-related information
are leaked or which provide tracking tools (e.g., web beacons). Only one service

http://search.rakuten.co.jp
http://instagram.com
http://coccocqc.com
http://movie.youku.com
http://search.naver.com
http://forums.craigslist.org
http://www.baidu.com
http://everysinglewordspoken.tumblr.com
http://www.ebay.com
http://health.china.com.cn
http://foodwishes.blogspot.com
http://coccoc.com
http://www.flipkart.com
http://edition.cnn.com
http://news.xinhuanet.com
http://www.zalando.de
http://www.google.com
http://hyperboleandahalf.blogspot.com
http://channel.pixnet.net
http://www.youtube.com
http://history.gmw.cn
http://vk.com
http://www.bing.com
http://sd.360.cn
http://marketplace.asos.com
http://stock.sohu.com
http://2kindsofpeople.tumblr.com
http://imgur.com
http://github.com
http://www.xvideos.com
http://zy.youku.com
http://xhamster.com
http://www.pixnet.net
http://military.china.com.cn
http://news.gmw.cn
http://www.alibaba.com
http://finance.qq.com
http://en.bongacams.com
http://world.taobao.com
http://mall.360.com
http://stackoverflow.com
http://www.microsoftstore.com
http://www.reddit.com
http://www.asos.com
http://bbs.tianya.cn
http://www.twitch.tv
http://www.so.com
http://www.apple.com
http://world.tmall.com
http://en.wikipedia.org
http://news.mail.ru
http://www.quora.com
http://www.aliexpress.com
http://news.youth.cn
http://ok.ru
http://news.naver.com
http://www.xinhuanet.com
http://www.groupon.com
http://www.sogou.com
http://auto.mail.ru
http://www.pornhub.com
http://www.facebook.com
http://twitter.com
http://yandex.ru
http://cbachina.sports.sohu.com
http://www.msn.com
http://www.linkedin.com
http://www.amazon.com
http://de.pinterest.com
http://newyork.craigslist.org
http://intl.target.com
http://www.imdb.com
http://ent.qq.com
http://www.hao123.com
http://www.microsoft.com
http://www.walmart.com
http://v.youth.cn

Privacy Implications of Adware and PUPs 467

gathers additional information about the client’s system aside from the domain.
All, but one, tracking services are operated by “big players” based in China.
The analyzed extensions tend to use tracking services operated by American
companies (e.g., Google or Facebook). Our results show that the services used
by Firefox extensions are comparable to Google Chrome extensions [2].

In total only 151 different trackers were used. 60 trackers are used by just
three or fewer samples. Adware and PUP authors tend to rely on existing infras-
tructure rather than setting up their own. Among the observed tracking services,
there is no indication for any preferred service. The top 20 services are used on
average by 7.48% (±0.78%) of the adware and PUP samples. This result indi-
cates that the used services do not differentiate among each other regarding the
utility of the adware or PUP.

Table 5. Tracking services used by the analyzed adware, leaked information, and the
most common communication path

Service %-S. Information Company

taobao.com 10.04 URL, time, language,
os.

Taobao Network

mmstat.com 8.47 URL, time, language,
os, browser, screen res.

Alibaba

sogoucdn.com 8.36 domain Sogou Info. Service

ebaystatic.com 8.28 domain eBay

ykimg.com 8.23 domain Nexperian Holding

References

1. Bucklin, R.E., Sismeiro, C.: A model of web site browsing behavior estimated on
clickstream data. J. Mark. Res. 40(3), 249–267 (2003)

2. Starov, O., Nikiforakis, N.: Extended tracking powers: measuring the privacy dif-
fusion enabled by browser extensions. In: Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, pp. 1481–1490. International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva
(2017)

3. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014, pp. 674–689. ACM, New York (2014)

4. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161,
pp. 31–46. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-
4 4

5. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 1388–1401. ACM, New York (2016)

https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1007/978-3-642-29615-4_4

468 T. Urban et al.

6. Olejnik, �L., Acar, G., Castelluccia, C., Diaz, C.: The leaking battery. In:
Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 254–263. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2 18

7. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In:
Fredriksonn, M. (ed.) Proceedings of the Web 2.0 Security and Privacy Workshop
(W2SP), pp. 1–12. IEEE Computer Society, New York, May 2012

8. Arshad, S., Kharraz, A., Robertson, W.: Identifying extension-based ad injection
via fine-grained web content provenance. In: Monrose, F., Dacier, M., Blanc, G.,
Garcia-Alfaro, J. (eds.) RAID 2016. LNCS, vol. 9854, pp. 415–436. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45719-2 19

9. LLC, WS: WOT API—WOT (Web of Trust) (2017). https://www.mywot.com/
en/api. Accessed 31 Oct 2017

10. Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP prevalence and PUP dis-
tribution through pay-per-install services. In: 25th USENIX Security Symposium
(USENIX Security 16), pp. 739–756. USENIX Association, Austin (2016)

11. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
eliciting malicious behavior in browser extensions. In: Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC 2014, pp. 641–654. USENIX
Association, Berkeley (2014)

12. Thomas, K., et al.: Ad injection at scale: assessing deceptive advertisement mod-
ifications. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy,
SP 2015, pp. 151–167. IEEE Computer Society, Washington (2015)

13. Weissbacher, M., Mariconti, E., Suarez-Tangil, G., Stringhini, G., Robertson, W.,
Kirda, E.: Ex-Ray: detection of history-leaking browser extensions. In: Proceedings
of the 33rd Annual Computer Security Applications Conference, pp. 1–13. ACM,
New York (2017)

14. Mozilla Foundation: Add-ons for Firefox (2017). https://addons.mozilla.org/.
Accessed 05 July 2017

15. Bonderud, D.: WOT privacy breach: trust tanks as browser add-on caught selling
user data (2017). https://securityintelligence.com/news/wot-privacy-breach-trust-
tanks-as-browser-add-on-caught-selling-user-data. Accessed 31 Oct 2017

16. Smith, R.M.: The web bug faq. Nov 11, 4 (1999)
17. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.

(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8 1

18. Hupperich, T., Maiorca, D., Kührer, M., Holz, T., Giacinto, G.: On the robust-
ness of mobile device fingerprinting: can mobile users escape modern web-tracking
mechanisms? In: Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pp. 191–200. ACM, New York (2015)

19. Kurtz, A., Gascon, H., Becker, T., Rieck, K., Freiling, F.C.: Fingerprinting mobile
devices using personalized configurations. Proc. Priv. Enhanc. Technol. (PoPETs)
2016(1), 4–19 (2016)

20. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP 2013,
pp. 541–555. IEEE Computer Society, Washington (2013)

21. Hupperich, T., Tatang, D., Wilkop, N., Holz, T.: An empirical study on online
price differentiation. In: Proceedings of the Eighth ACM Conference on Data and
Application Security and Privacy, CODASPY 2018, pp. 76–83. ACM, New York
(2018)

https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1007/978-3-319-45719-2_19
https://www.mywot.com/en/api
https://www.mywot.com/en/api
https://addons.mozilla.org/
https://securityintelligence.com/news/wot-privacy-breach-trust-tanks-as-browser-add-on-caught-selling-user-data
https://securityintelligence.com/news/wot-privacy-breach-trust-tanks-as-browser-add-on-caught-selling-user-data
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1

Privacy Implications of Adware and PUPs 469

22. Jagpal, N., et al.: Trends and lessons from three years fighting malicious extensions.
In: Proceedings of the 24th USENIX Conference on Security Symposium, SEC
2015, pp. 579–593. USENIX Association, Berkeley (2015)

23. Alexa Internet: Top 500 global sites (2017). http://www.alexa.com/topsites
24. Soltani, A., Canty, S., Mayo, Q., Thomas, L., Hoofnagle, C.J.: Flash cookies and

privacy. In: AAAI Spring Symposium: Intelligent Information Privacy Manage-
ment, pp. 1–6. Association for the Advancement of Artificial Intelligence, Palo
Alto (2010)

25. European Parliament: The Council: Directive 2009/136/ec (2009)
26. Acar, G., et al.: FPDetective: dusting the web for fingerprinters. In: Proceedings of

the 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2013, pp. 1129–1140. ACM, New York (2013)

27. Thomas, K., et al.: Investigating commercial pay-per-install and the distribution
of unwanted software. In: 25th USENIX Security Symposium (USENIX Security
16), pp. 721–739. USENIX Association, Austin (2016)

28. VirusTotal: Free online virus, malware and url scanner (2017). https://virustotal.
com/. Accessed 24 July 2017

29. GreatFire: Blocked sites in China - bringing transparency to the great firewall of
China (2017). https://en.greatfire.org/search/blocked

http://www.alexa.com/topsites
https://virustotal.com/
https://virustotal.com/
https://en.greatfire.org/search/blocked

Anonymous Single-Sign-On
for n Designated Services

with Traceability

Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne,
and Stephan Wesemeyer(B)

Department of Computer Science, University of Surrey,
Guildford, Surrey GU2 7XH, UK

s.wesemeyer@surrey.ac.uk

Abstract. Anonymous Single-Sign-On authentication schemes have
been proposed to allow users to access a service protected by a verifier
without revealing their identity. This has become more important with
the introduction of strong privacy regulations. In this paper we describe
a new approach whereby anonymous authentication to different verifiers
is achieved via authorisation tags and pseudonyms. The particular inno-
vation of our scheme is that authentication can occur only between a user
and its designated verifier for a service, and the verification cannot be
performed by any other verifier. The benefit of this authentication app-
roach is that it prevents information leakage of a user’s service access
information, even if the verifiers for these services collude. Our scheme
also supports a trusted third party who is authorised to de-anonymise
the user and reveal her whole service access information if required. Fur-
thermore, our scheme is lightweight because it does not rely on attribute
or policy-based signature schemes to enable access to multiple services.
The scheme’s security model is given together with a security proof, an
implementation and a performance evaluation.

Keywords: Anonymous Single-Sign-On · Security · Privacy
Anonymity

1 Introduction

Single-Sign-On (SSO) systems are a user-friendly way of allowing users access
to multiple services without requiring them to have different usernames or pass-
words for each service. SSO solutions (e.g. OpenID 2.0 [35] by the OpenID
foundation or Massachusetts Institute of Technology (MIT)’s Kerberos [33]) are
designed to make the users’ identities and possibly additional personal identifi-
able information (PII) available to the verifiers of the services which they wish to
access. However, for some services, a verifier may not require the user’s identity
(nor any associated PII), just that the user is authorised to access the desired
service. Moreover, the introduction of more stringent obligations with regards to
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 470–490, 2018.
https://doi.org/10.1007/978-3-319-99073-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_23&domain=pdf

Anonymous Single-Sign-On for n Designated Services with Traceability 471

the handling of PII in various jurisdictions (e.g. GDPR in Europe [20]), requires
service providers to minimise the use of PII.

Anonymous Single-Sign-On schemes [19,26,29,38] exist which can protect a
user’s identity, but may not do so for all entities within a scheme. Moreover, a
user’s service request can be verified by all verifiers of a system and not just the
one it is intended for, which may pose a potential privacy risk to both the user
and that verifier. Our proposed scheme addresses these issues and provides the
following features: (1) only one authentication ticket is issued to a user, even if
she wants to access multiple distinct services; (2) a user can obtain a ticket from
a ticket issuer anonymously without releasing anything about her personal iden-
tifiable information — in particular, the ticket issuer cannot determine whether
two ticket requests are for the same user or two different users; (3) a designated
verifier can determine whether a user is authorised to access its service but can-
not link different service requests made by the same user nor collude with other
verifiers to link a user’s service requests; (4) designated verifiers can detect and
prevent a user making multiple authentication requests using the same authen-
tication tag (“double spend”) but cannot de-anonymise the user as a result; (5)
tickets cannot be forged; and (6) given a user’s ticket, a central verifier is autho-
rised to recover a user’s identity as well as the identities of the verifiers for the
requested services in the user’s ticket.

Our contributions are: a novel anonymous single-sign-on scheme providing
the above features; its associated security model and security definitions; a corre-
sponding formal proof of its security as well as an empirical performance analysis
based on a Java-based implementation of our scheme.

1.1 Related Work

We now look at previous research which is most closely related to our scheme in
the areas of: (i) Anonymous Single-Sign-On protocols, (ii) anonymous authenti-
cation schemes, (iii) multi-coupon schemes and (iv) designated verifiers signature
schemes.

Anonymous Single-Sign-On Schemes

One of the anonymous Single-Sign-On system was proposed by Elmufti et al.
[19] for the Global System for Mobile communication (GSM). In their system, a
user generates a different one-time identity each time they would like to access
a service and, having authenticated the user, a trusted third party will then
authenticate this one-time identity to the service provider. Consequently, the
user is anonymous to the service provider but, unlike in our scheme, not the
trusted third party who authenticated the one-time identity.

In 2010, Han et al. [26] proposed a novel dynamic SSO system which uses a
digital signature to guarantee both the unforgeability and the public verification
of a user’s credential. In order to protect the user’s privacy, their scheme uses
broadcast encryption which means that only the designated service providers
can check the validity of the user’s credential. Moreover, zero-knowledge proofs
are used to show that the user is the owner of those valid credentials to prevent

472 J. Han et al.

impersonation attacks. However, again unlike our scheme, the user is still known
to the trusted third party which issued the credentials.

Wang et al. [38], on the other hand, propose an anonymous SSO based on
group signatures [3]. In order to access a service, the user generates a different
signature-based pseudonyms from her credentials and sends the signature to the
service provider. If the signature is valid, the service provider grants the user
access to the service to the user; otherwise, the service request is denied. The
real identities of users can be identified by using the opening technique in [3].
While the user remains anonymous, their scheme (unlike ours) does not, however,
provide designated verifiers, i.e. all verifiers can validate a user’s request.

Lastly, Lee [29] proposed an efficient anonymous SSO based on Chebyshev
Chaotic Maps. In this scheme, an issuer, the “smart card processing center”,
issues secret keys to users and service providers when they join in the system
and to access a service, a user and service provider establish a session key with
their respective secret keys. If the session key is generated correctly, the service
request is granted; otherwise, it is denied. However, unlike our scheme, each
service provider knows the identity of the user accessing their service.

While in [29,38], a user can access any service in the system by using her
credentials, in our scheme, a user can only access the services which she selects
when obtaining a ticket but can do so while remaining completely anonymous
to both issuer and service provider.

Anonymous Authentication Schemes

With respect to anonymous authentication solutions, we consider schemes whose
primary feature is to support multiple anonymous authentication. As in our
scheme, anonymous authentication enables users to convince verifiers that they
are authorised users without releasing their exact identities.

Teranishi et al. [37] proposed a k-times anonymous authentication (k-TAA)
scheme where the verifiers determine the number of anonymous authentication
that can be performed. The k-TAA scheme provides the following two features:
(1) no party can identify users who have been authenticated within k times; (2)
any party can trace users who have been authenticated more than k times. The
verifier generates k tags and for each authentication, a user selects a fresh tag.
Nguyen et al. [34] proposed a similar dynamic k-TAA scheme to restrict access
to services not only the number of times but also other factors such as expiry
date.

Camenisch et al. [9] proposed a periodic k-TAA scheme which enables users
to authenticate themselves to the verifiers no more than k times in a given time
period but supports reuse of the k times authentication once the period is up. In
this scheme, the issuer decides the number of anonymous authentication request
a user can make in a given time period. When a user makes an anonymous
authentication request, he proves to a verifier that he has obtained a valid CL
signature [11] from the issuer.

Note, however, that our scheme also prevents a verifier from establishing
whether a user has used any of the other services thereby also guaranteeing
verifier anonymity.

Anonymous Single-Sign-On for n Designated Services with Traceability 473

Furthermore, in all of these k-TAA schemes [9,34,37], authentication is not
bound to a particular verifier, whereas in our scheme authentication tags are
bound to specific verifiers. Moreover, k-TAA schemes allow verifiers to deter-
mine a user’s identity who has authenticated more than k times while in our
scheme multiple authentications to a single verifier is considered “double spend-
ing” which a verifier can detect but which does not lead to the de-anonymisation
of a user. However, to prevent users from potentially abusing the system, our
scheme allows for a central verifier who, given a user’s ticket, can extract from it
both the user’s and verifiers’ public keys using the authentication tags contained
within it and thus establish the identities of both the user and her associated
verifiers.

Lastly, Camenisch et al. in [13] and the IBM identity mixer description of its
features in [27] define a scheme that has similar properties to ours including that
of a central verifier (called “inspector”) trusted to reveal a user’s identity. The
scheme is based on users obtaining a list of certified attributes from an issuer
and the users using a subset of their attributes to authenticate to verifiers. The
distinguishing difference between their scheme and ours is that their verification
of anonymous credentials is not bound to a designated verifier whereas our is.

Multi-coupon Schemes

There is some degree of similarity between our scheme and a number of multi-
coupon schemes. Armknecht et al. [1] proposed a multi-coupon scheme for fed-
erated environments where multiple vendors exist. In [1], a user can redeem
multiple coupons anonymously with different vendors in an arbitrary order. To
prevent double-spending of a coupon, a central database is required to record
the transaction of each multi-coupon. The main difference to our scheme is that
each coupon can be redeemed against any service provider while our authen-
tication tags can only be validated by its designated verifier. Moreover, our
“double-spend” detection is done by the verifier and does not require a central
database.

Similarly, the schemes propose by Liu et al. [31] which provides strong user
privacy and where a user can use an e-coupon anonymously no more than k
times before his identity can be recovered. However, the user’s coupons can be
redeemed against any service rather than a designated verifier as our scheme
provides.

Designated Verifiers

Jakobsson in [28] introduced the concept of a designated verifier which means
that in a proof we ascertain that nobody but this verifier can be convinced
by that proof while the authors in [21] present an anonymous attribute-based
scheme using designated-verifiers. In their work they focus on identifying mul-
tiple designated verifiers. This is achieved through using the verifier’s private
key in the verification so that no other third party can validate the designated
verifier signature. We adopt the high level concept of a designated verifier in
our approach, i.e. given a valid authentication tag for service A, only service
A’s verifier can establish its validity. As this property is conceptually similar to

474 J. Han et al.

the designated signatures described in [21,28], our verifiers are called designated
verifiers. However, this is where the similarity ends with Jakobsson’s designated
verifiers. Notably, in [28], a verifier cannot convince others that the signature
is from the signer because the verifier can generate the signature by himself.
In our scheme, everyone can check that the authentication tags are signatures
generated by the ticket issuer.

In summary, while a number of previous authentication schemes address the
anonymity of the user and multiple authentications, the novelty of our work
is that we ensure no information leakage across verifiers, since authentication
can only occur between a user and its designated verifier while also providing a
central verifier who can de-anonymise the user and reveal the identity of the veri-
fiers in case of a misbehaving user. To the best of our knowledge, our anonymous
Single-Sign-On scheme using designated verifiers is the first which has been for-
mally presented in term of definitions, security models and proven to be secure
under various cryptographic complexity assumptions together with an empirical
performance evaluation.

1.2 Paper Organisation

This paper is organised as follows: Sect. 2 provides a high-level overview of the
scheme and its claimed security properties; Sect. 3 outlines the applicable security
model; Sect. 4 introduces the cryptographic building blocks and notation used
throughout this paper; Sect. 5 describes the formal construction of our while
Sect. 6 presents the theorems for its security proof; Sect. 7 provides a perfor-
mance evaluation of our scheme; and Sect. 8 concludes the paper with directions
for future work. The full version of this paper in [25] contains detailed formal
definitions, security models and proofs of the scheme.

2 Scheme Overview and Security Properties

Entities in Our Proposed Scheme

Before providing a high-level overview of our anonymous single-sign-on scheme,
we first introduce the various entities in the scheme as shown in Fig. 1, and define
their purpose and roles: the Central Authority (CA) is a trusted third party
responsible for establishing the cryptographic keys and parameters used in the
scheme and issues credentials to the other entities in the scheme; a User (U) is
someone who wishes to access some distinct services anonymously; the Ticket
Issuer (I) issues tickets to registered, yet anonymous users for the requested
services; a Designated Verifier (V) is a verifier for a specific service that a user
might want to access; the Central Verifier (CV) is another trusted third party
which is allowed to retrieve the identities of the user, U , and the verifiers, Vs,
from the authentication tags present in a user’s ticket, TU ; an Authentication
Tag (TagV) is both tied to a user, U , and a designated verifier, V and is used
to prove to the designated verifier that the user is a valid user and allowed to

Anonymous Single-Sign-On for n Designated Services with Traceability 475

Fig. 1. Interaction of the various entities in our scheme

access the associated service; a Ticket (TU) contains the authentication tags
for the services a user, U , has requested.

Overview of Proposed Scheme

Figure 1 illustrates at a high-level how our scheme works. For its detailed formal
construction, please refer to Sect. 5. Conceptually, our scheme operates as follows:
Registration: The issuer, verifiers, central verifier and users all register with the
CA. Ticket Issuing: A user decides which services (and thus which verifiers)
she wants to access and requests an appropriate ticket from the issuer. Tag
Validation: To access a service, the user presents the appropriate authentication
tag to the service. The validity period and any other restrictions of the tag can
be captured in the free text part of the tag or be a default set by the verifier. If
a user’s tag is valid then the user is logged in to the service. Note that, unlike
some other Single-Sign-On systems, the issuer does not need to be on-line for
the tag validation to succeed. “Double-Spend” detection: If the user present
the same tag twice then the verifier can warn the user that she is already logged
in and that she should resume the already existing session or offer to terminate
the previous session and start with a fresh one. Ticket trace: If a user is seen
to abuse the service (e.g. violate the terms and conditions), the central verifier
might be called upon to de-anonymise the user and determine any other services
she has used.

Security Properties in Our Proposed Scheme

Having defined the different entities and described how they interact, we now
list the security properties of our scheme:

– User Anonymity: In our scheme, users use pseudonyms whenever they
interact with the issuer or a verifier. As such, the issuer cannot link a user

476 J. Han et al.

across different ticket requests. Similarly, a user’s identity is also hidden from
a designated verifier.

– Authentication Tag Unlinkability: Apart from the central verifier and
the issuer, no set of colluding verifiers can establish whether two or more
different authentication tags came from the same anonymous user.

– Verifier Anonymity: The verifier’s identify is protected from other users
and verifiers, i.e. given an authentication tag, only the designated verifier can
validate it and no other verifier (apart from the central verifier and the issuer)
can determine for whom it is.

– Designated Verifiability: Given an authentication tag, TagV for verifier,
V, only V can validate it.

– “Double-spend” detection: Any verifier, V, can detect when a user
attempts to re-use an authentication tag but cannot de-anonymise the user.

– Unforgeability: Neither tickets nor individual authentication tags can be
forged by any colluding users or verifiers.

– Traceability: There exists a trusted third party, a central verifier, who can,
given a user’s ticket, TU , retrieve the user’s and the verifiers’ public keys
(and hence their respective identities) from the authentication tags contained
within TU .

In the next section, we provide the security models in which these properties
hold while Sect. 6 contains the associated theorems which are used to prove those
models.

3 Security Model Overview

We now present a high-level overview of the security models which are used to
prove the security of our scheme. The models are defined by the following games
executed between a challenger and an adversary. Detailed formal security models
as well as their proofs are presented in the full version of this paper [25] which
also demonstrates the correctness of our scheme.

Unlinkability Game

This game covers the security properties of user anonymity, authentication tag
unlinkability, verifier anonymity, designated verifiability and “double spend”
detection. In this game verifiers and other users can collude but cannot profile a
user’s whole service information. In other words, no party can link different tags
to the same user and determine a verifier’s identity included in an authentica-
tion tag (thus proving verifier anonymity) except for the designated verifier, the
ticket issuer or the central verifier. Moreover, for each authentication tag, the
adversary can query its validity once, which in the context of this game addresses
the properties of designated verifiability and “double spending”.

Unforgeability Game

This game focuses on proving the unforgeability property of our scheme. Users,
verifiers and the central verifier can collude but cannot forge a ticket on behalf
of the ticket issuer.

Anonymous Single-Sign-On for n Designated Services with Traceability 477

Table 1. Syntax summary

Syntax Explanations Syntax Explanations

1� A security parameter Vi The i-th ticket verifier

CA Central authority JU The service set of U consisting of the

I Ticket issuer identities of ticket verifiers & IDCV

V Ticket verifier PP Public parameters

U User PsU A set of pseudonyms of U
CV Central verifier PsV The pseudonym generated for V
IDI The identity of I TagV An authentication tag for V
IDV The identity of V TagCV An authentication tag for CV
IDU The identity of U TU A ticket issued to U
IDCV The identity of CV |X| The cardinality of the set X

ε(�) A negligible function in � x
R← X x is randomly selected from the set X

σI The credential of I A(x) → y y is computed by running the

σV The credential of V algorithm A(·) with input x

σU The credential of U KG(1�) A secret-public key pair generation

σCV The credential of CV algorithm

MSK Master Secret Key BG(1�) A bilinear group generation algorithm

H1, H2 Cryptographic hash
functions

p, q Prime numbers

Traceability Game

This game focuses on the traceability property of our scheme. It shows that even
if users, verifiers and the central verifier collude, they cannot generate a ticket
which is linked to a user who has never obtained a ticket or a user who is not
the real owner of the ticket.

4 Preliminaries

In this section, we introduce the cryptographic building blocks used by our
scheme including bilinear groups, the BBS+ signature scheme, zero knowledge
proofs and various complexity assumptions needed to ensure its security. The
mathematical notation and symbols used throughout this paper are summarised
in Table 1.

4.1 Bilinear Groups and Pairings

In our scheme, bilinear groups are used to support the BBS+ signature scheme
(defined in Sect. 4.2 below).

Let G1, G2 and Gτ be three cyclic groups with prime order p. A pairing is
defined to be a bilinear, non-degenerative and computable map e : G1 × G2 →

478 J. Han et al.

Gτ [7]. Given a security parameter, 1�, we define BG(1�) → (e, p,G1,G2,Gτ) to
be a bilinear group generation algorithm. Note that Galbraith, Paterson and
Smart [22] classified parings into three basic types and our scheme is based
on the Type-III pairing where the elements on G1 are short (≈160 bits). This
was chosen because for all g ∈ G1 and g ∈ G2, there exists an polynomial-
time efficient algorithm to compute e(g, g) ∈ Gτ resulting in a more efficient
algorithm.

4.2 BBS+ Signature

Based on the group signature scheme [6], Au, Susilo and Mu [2] proposed the
BBS+ signature. This signature scheme works as follows:

– Setup: Let BG(1�)→(e, p,G1,G2,Gτ), h be a generator of G1 and g, g0, g1, · · · ,
gn be generators of G2.

– KeyGen: The signer selects x
R← Zp and computes Y = hx. The secret-public

key pair is (x, Y).
– Signing: To sign a block message (m1,m2, · · · ,mn) ∈ Z

n
p , the signer selects

w, e
R← Zp, and computes σ = (g0gw

∏n
i=1 gmi

i)
1

x+e . This signature on
(m1,m2, · · · ,mn) is (w, e, σ).

– Verification: Given a signature (w, e, σ) and (m1,m2, · · · ,mn), the verifier
checks e(Y he, σ) ?= e(h, g0g

w
∏n

i=1 gmi
i). If so, the signature is valid; other-

wise, it is invalid.

Au, Susilo and Mu [2] reduced the security of the above signature to
the q-SDH assumption (see Definition 2 below) in Type-II paring. Recently,
Camenisch, Drijvers and Lehmann [8] reduced its security to the JOC-version-
q-SDH assumption (see Definition 3 below) for Type-III pairing.

4.3 Zero-Knowledge Proof

In our scheme, zero-knowledge proof of knowledge protocols are used to prove
knowledge and statements about various discrete logarithms including: (1) proof
of knowledge of a discrete logarithm modulo a prime number [36]; (2) proof of
knowledge of equality of representation [15]; (3) proof of knowledge of a com-
mitment related to the product of two other commitments [12]. We follow the
definition introduced by Camenish and Stadler in [14] which was formalised by
Camenish, Kiayias and Yung in [10]. By PoK:{(α, β, γ) : Υ = gαhβ ∧ Υ̃ = g̃αh̃γ},
proof on knowledge of integers α β and γ such that Υ = gαhβ and Υ̃ = g̃αh̃β hold
on the groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉, respectively. The convention
is that the letters in the parenthesis (α, β, γ) represent the knowledge which is
being proven by using the other values to which the verifier can have access.

Anonymous Single-Sign-On for n Designated Services with Traceability 479

4.4 Complexity Assumptions

The security of our scheme relies on a number of complexity assumptions defined
in this subsection.

Definition 1 (Discrete Logarithm (DL) Assumption [24]). Let G be a cyclic group
with prime order p and g be a generator of G. Given Y ∈ G, we say that the
discrete logarithm (DL) assumption holds on G if for all adversary can output a
number x ∈ Zp such that Y = gx with a negligible advantage, namely

AdvDL
A = Pr [Y = gx|A(p, g,G, Y) → x] ≤ ε(�).

The DL assumption is used in the proof of the traceability property of our
scheme.

Definition 2 (q-Strong Diffie-Hellman (q-SDH) Assumption [4]). Let BG(1�) →
(e, p,G1,G2,Gτ). Suppose that g and g are generators of G1 and G2, respec-
tively. Given a (q + 2)-tuple (g, gx, gx2

, · · · , gxq

, g) ∈ G
q+1
1 × G2, we say that

q-strong Diffie-Hellman assumption holds on (e, p,G1,G2,Gτ) if for all prob-
abilistic polynomial-time (PPT) adversary A can output (c, g

1
x+c) ∈ Zp × G1

with a negligible advantage, namely Advq−SDH
A = Pr[A(g, g, gx, gx2

, · · · , gxq

) →
(c, g

1
x+c)] ≤ ε(�), where c ∈ Zp − {−x}.

Definition 3 ((JOC Version) q-Strong Diffie-Hellman (JOC-q-SDH) Assump-
tion [5]). Let BG(1�) → (e, p,G1,G2, Gτ). Given a (q + 3)-tuple
(g, gx, · · · , gxq

, g, gx) ∈ G
q+1
1 × G

2
2, we say that the JOC- q-strong

Diffie-Hellman assumption holds on the bilinear group (e, p,G1,G2,Gτ)
if for all probabilistic polynomial-time (PPT) adversaries A can output
(c, g

1
x+c) ∈ Zp × G1 with a negligible advantage, namely AdvJOC−q−SDH

A =

Pr
[
(c, g

1
x+c) ← A(g, gx, · · · , gxq

, g, gx)
]

< ε(�), where c ∈ Zp − {−x}.
The security of the BBS+ signature used in our scheme relies on both the

(q-SDH) and JOC-q-SDH) assumptions.

Definition 4 (Decisional Diffie-Hellman (DDH) Assumption [18]). Let BG(1�) →
(e, p,G1,G2, Gτ). Give a 3-tuple (ξ, ξα, ξβ , T) ∈ G

3
1, we say that the deci-

sional Deffie-Hellman assumption holds on (e, p,G1,G2,Gτ) if for all probabilis-
tic polynomial-time (PPT) adversaries A can distinguish T = ξαβ or T = M
with negligible advantage, namely AdvDDH

A = |Pr[A(ξ, ξα, ξβ , T = ξαβ) =
1] − Pr[A(ξ, ξα, ξβ , T = M) = 1]| < ε(�) where M

R← G1.

Note that the DDH assumption is believed to be hard in both G1 and G2

for the Type-III pairing [23] used in our scheme which means that we actually
makes use of the following stronger complexity assumption.

Definition 5 (Symmetric External Diffie-Hellman (SXDH) Assumption [23]). Let
BG(1�) → (e, p,G1, G2,Gτ). We say that the symmetric external Diffie-Hellman
assumption holds on (e, p,G1,G2, Gτ) if the decisional Diffie-Hellman (DDH)
assumption holds on both G1 and G2.

480 J. Han et al.

5 Scheme Construction

In this section, we present a more detailed description of the interactions (cf.
Fig. 1) between the entities of our scheme. These interactions are: (i) System
Set-up, (ii) Registration, (iii) Ticket Issuing, (iv) Tag Verification and (v) Ticket
Tracing. Moreover, we provide details of the mathematical operations involved in
these interactions. Formal definitions of the algorithms presented in this section
can be found in the full version of this paper [25].

5.1 System Set-Up

Figure 2 shows the details of the system initialisation in which the central author-
ity CA generates a master secret key, MSK, and the required public parameters,
PP . Note: Once the system has been set up, all communication between the
different entities in our scheme is assumed to be over secure, encrypted chan-
nels which can be established by the various entities using standard Public Key
Infrastructure. This ensures that our scheme is not susceptible to simple Man-
In-The-Middle attacks.

System Set-up:CA runs BG(1�) → (e, p,G1,G2,Gτ) with e : G1 × G2 → Gτ . Let
g, h, ξ, h̃ be generators of the group G1 and g be generators of G2. Suppose that
H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp are two cryptographic hash functions. CA
selects xa

R← Zp and computes YA = gxa . The master secret key is MSK = xa and
the public parameters are PP = (e, p,G1,G2,Gτ , g, h, ξ, h̃, g, YA, H1, H2).

Fig. 2. System set-up algorithm

5.2 Registration

Figure 3 depicts the registration processes. When registering with the CA, I, V,
U and CV use the PP and generate their own secret-public key pairs. They then
send their identities and associated public keys to CA which, after receiving a
registration request from an entity, uses MSK to generate the corresponding
credential for them. Note that only the ticket issuer has two public keys, YI

and ỸI . The first one is used to sign the tickets while the second one is used to
validate the ticket.

5.3 Ticket Issuing

During the ticket issuing process (shown in Fig. 4), the user U defines JU to be
the set containing the identities of the ticket verifiers whose services she wants
to access as well as the identity of the central verifier. In order to request a
ticket from I, U creates pseudonyms, (PV , QV), for each IDV ∈ JU by using her
secret key to protect the anonymity of the verifiers. She also produces a proof of
knowledge of her credentials and submits this proof together with the set JU and

Anonymous Single-Sign-On for n Designated Services with Traceability 481

Ticket-Issuer-Registration

Ticket Issuer: I Central Authority: CA
Selects xi

R← Zp, and computes
YI = ξxi and ỸI = gxi .
The secret-public key pair is

(xi, YI , ỸI).
IDI ,YI ,ỸI−−−−−−−→ Selects ei, ri

R← Zp and

Verifies: e(σI , YAg
ei) ?= e(ghriYI , g).

σI ,ri,ei←−−−−− computesσI = (ghriYI)
1

xa+ei .
Keeps the credential as Stores (IDI , YI , ỸI , (ri, ei, σI)).
CredI = (ei, ri, σI).

Ticket-Verifier-Registration

Ticket-Verifier: V Central Authority: CA
Selects xv

R← Zp and computes
YV = ξxv .

The secret-public key pair is (xv, YV).
IDV ,YV−−−−−→ Selects λv, rv

R← Zp and

Verifies: e(σV , YAg
ev) ?= e(ghrv YV , g).

σV ,rv,λv←−−−−−− computes σV = (ghrv YV)
1

xa+λv .
Keep the credential as Stores (IDV , YV , (rv, λv, σV)).
CredV = (λv, rv, σV).

User-Registration

User: U Central Authority: CA
Selects xu

R← Zp, and computes
YU = ξxu .

This secret-public key pair is (xu, YU).
IDU ,YU−−−−−→ Select eu, ru

R← Zp and
Verifies: e(σU , YAg

eu) ?= e(ghruYU , g).
σU ,eu,ru←−−−−−− computes σU = (ghruYU)

1
xa+eu .

Keep the credential as Stores (IDU , YU , (ru, euσU)).
CredU = (eu, ru, σU).

Central-Verifier-Registration

Central Verifier: CV Central Authority: CA
Selects xcv

R← Zp, and computes
YCV = ξxcv

The secret-public key pair is (xcv, YCV).
IDCV ,YCV−−−−−−−→ Select λcv, rcv

R← Zp and
computes

Verifies: e(σcv, YAg
λcv) ?= e(ghrcv YCV , g).

σCV ,λcv,rcv←−−−−−−−− σCV = (ghrcv YCV)
1

xa+λcv .
Keep the credential as Stores (IDCV , YCV , (rcv,
CredCV = (λcv, rcv, σCV). λcv, σCV)).

Fig. 3. Registration algorithm

the pseudonyms to I to convince him that she is a registered user and created
the pseudonyms. Once I has received this information and verified the proof of
knowledge, he generates an authentication tag TagV for each IDV ∈ JU as well

482 J. Han et al.

Ticket-Issuing

Let JU is U ’s list of the identities of verifiers which U wants to access as well as
IDCV

User: U Ticket Issuer: I
Computes BU = ghruYU

Select v1, v2, zu
R← Zp and

computes v3 = 1
v1
, σ̄U = σv1

U ,
v = ru − v2v3, B̄U = Bv1

U h−v2 ,
σ̃U = σ̄−eu

U Bv1
U (= σ̄xa

U), (zv =
H1(zu||IDV), PV = YUY zv

P ,
QV = ξzv)IDV ∈JU

Computes the proof
∏1

U : Δ−→ Verifies
∏1

U and e(σ̄U , Y) ?= e(σ̃U , g).
PoK{(xu, ru, eu, σU , v1, v2, v3, v, Selects tu

R← Zp and computes CU = ξtu

(zv)IDV ∈JU) : σ̃U
B̄U

= σ̄−eu
U hv2 For IDV ∈ JU , selects dv, wv, ev

R← Zp

∧ g−1 = B̄−v3
U ξxuhv ∧ (PV = and computes DV = H2(CU ||IDV),

ξxuY zv
P ∧ QV = ξzv)V ∈JU } EV = ξdv , FV = Y dv

V , KV = YV Y dv
P ,

Let Δ = (((PV , QV)IDV ∈JU), sv = H1(PV ||QV ||EV ||FV ||KV ||Texta)

σ̄U , σ̃U , B̄U , JU ,
∏1

U) and ZV = (ghwv h̃sv)
1

xi+ev

Let TagV = (PV , QV , EV , FV , KV , T ext,
sv, wv, ev, ZV)

For the central verifier IDCV , selects
wcv, ecv

R← Zp and computes
scv = H1(s1||s2|| · · · ||s|JU |) and

ZCV = (ghwcv h̃scv)
1

xi+ecv

a) For IDV ∈ JU , verify
TU←−−
CU

The ticket is:

DV
?= H2(CU ||IDV), TU =

{
(DV , TagV)|V ∈ JU

} ∪ {
scv, wcv,

sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text) ecv, ZCV

}
where sv and scv are the

and e(ZV , ỸIg
ev) ?= e(ghwv h̃sv , g). serial numbers of TagV and TU ,

b) Verify scv
?= H1(s1||s2|| · · · ||s|JU |) respectively.

and e(ZCV , ỸIg
ecv) = e(ghwcv h̃scv , g)

c) Keep (zu, CU) secret

a Text consists of the system version information and all other information which
can be used by verifiers to validate the tag, e.g. valid period, tag type, etc.

Fig. 4. Ticket issuing algorithm

as an overall TagCV for CV in case the ticket needs to be traced. Note that these
tags are constructed using the public keys of the respective verifiers and thus
can only be validated by the corresponding V or the central verifier, CV. The
ticket is formed from these individual tags. Note that each tag and the overall
ticket are signed by the issuer using his private key while the integrity of the

Anonymous Single-Sign-On for n Designated Services with Traceability 483

tags and the overall ticket is assured using hashes of their respective content.
The ticket is sent back to U who verifies the integrity of each tag and the overall
ticket using the supplied hash values as well as that each tag and the overall
ticket have been signed by the issuer.

Tag-Verification

User: U Tag verifier: V (IDV ∈ JU)

Computes DV = H2(CU ||IDV)
IDV←−−− Initialize a table TV if none exists already.

and searches (DV , TagV).
Computes zv = H1(zu||IDV)
and the proof:

∏2
U :

PoK{(xu, zv) : PV = ξxuY zv
P

∏2
U−−−−→

TagV

If (ev, wv, sv, ZV) ∈ TV , aborts; otherwise,

∧ QV = ξzv }. adds (ev, wv, sv, ZV) in TV and checks:
(1) The correctness of

∏2
U ;

(2) sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?= Exv

V ;
(4) e(ZV , YSg

ev) ?= e(ghwv h̃sv , g).
If (1), (2), (3), (4) hold, the tag is valid;
otherwise, it is invalid.

Fig. 5. Tag Verification algorithm

5.4 Tag Verification

The tag verification process is shown in Fig. 5. When the user U wants to access
a service, the ticket verifier V send his identity information to the user which
U uses to look up the corresponding tag, TagV . In order to access the service,
U must submit a proof of knowledge of her secret key alongside the relevant
authentication tag TagV to prevent users from sharing authentication tags. V
checks his table of previously received tags to ensure that the tag has not already
been used previously (double-spend detection), before verifying the user’s proof
of knowledge in Step 1. Step 2 checks the integrity of the tag using a hash
function while Step 4 verifies that it has been issued by the ticket issuer, I. Step
3 can only be verified by V as it requires the private key of the verifier. Only if
V can complete all steps successfully, is the user granted access.

5.5 Ticket Tracing

Lastly, in the case that a user U ’s whole service information JU needs to be
traced, the central verifier, CV, sends its identity to U who is then required to
submit the information, Π2

U , TagCV , (which is the same information as that of
the Tag Verification algorithm) as well as her overall ticket. Note that, provided a

484 J. Han et al.

Ticket-Trace

User: U Central Verifier: CV
Computes DV = H2(CU ||IDCV)

IDCV←−−−−
and searches (DV , TagCV).
Computes zv = H1(zu||IDCV)
and the proof:

∏2
U :

PoK{(xu, zv) : PV = ξxuY zv
CV

∏2
U ,TU−−−−−→

TagCV

Firstly, verify TagCV is contained in TU ;

∧ QV = ξzv }. abort if this check fails
Secondly, verify that the tag is valid by:
(1) The correctness of

∏2
U ;

(2) sv
?= H1(PV ||QV ||EV ||FV ||KV ||Text);

(3) FV
?= Exv

V ;
(4) e(ZV , YSg

ev) ?= e(ghwv h̃sv , g).
If (1), (2), (3), (4) hold, the tag is valid;
otherwise abort as it is invalid.
Finally, de-anonymise the user and
her services by:
(5) Let ΩU = {}. For each TagV in TU

(i) Compute: YU = PV

Q
xp
V

and YV = KV

E
xp
V

.

(ii) Look up the IDV of YV . Check:
(iia) sv

?= H1(PV ||QV ||EV ||KV ||Text);
(iib) e(ZV , YSg

wv) ?= e(ghwv h̃sv , g);
(iii) If (5i) and (5ii) hold, set ΩU =

ΩU ∪ {IDV }; otherwise abort.
(iv) verify YU remains the same for all

tags.
(6) scv

?= H1(s1||s2|| · · · ||s|ΩU |);
(7) e(ZCV , ỸSg

wcv) ?= e(ghwcv h̃scv , g).
Provided (5), (6), (7) can be computed,
CV can determine that the service
information of U with public key YU is:
JU = ΩU ; otherwise, the trace has failed.

Fig. 6. Ticket trace algorithm

single tag is known, the whole ticket information could also be obtained directly
from the issuer, I, in case the user is not co-operating.

On receipt of this information, the central verifier first validates that the
submitted tag TagCV passes the standard verification process (see Sect. 5.4) as
the central verifier’s IDCV is always included in JU . As discussed previously,
this steps ensures that U is a valid user and that the tag belongs to her. Once
this steps has passed, the central verifier can then validate the integrity of the
ticket and that the previously presented authentication tag is indeed part of

Anonymous Single-Sign-On for n Designated Services with Traceability 485

the ticket which establishes that the ticket does indeed belong to the user who
presented it. Using his private key, the central verifier can now compute the user
U ’s public key as well as the public keys of all the verifiers contained within
the authentication tags and thus determine the user’s identity and her service
information JU .

6 Security Analysis

In this section we present the theorems which establish the security of our
scheme. Their proofs can be found in the full version of this paper [25].

Theorem 1 (Unlinkability). An anonymous Single-Sign-On for n designated
services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (ρ1, ρ2, ρ3, ε

′(�))-
selectively unlinkable if the DDH assumption holds on the bilinear group
(e, p,G1,G2,Gτ) with the advantage at most ε(�), and H1,H2 are secure cryp-
tographic hash functions, where
1 is the total number of verifiers selected by A
to query tickets,
2 is the number of ticket validation queries,
3 is the number
of ticket trace queries, ε(�) = ε′(�)

2 .

Theorem 2 (Unforgeability). An anonymous Single-Sign-On for n desig-
nated services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (�, ε′(�))-
unforgeable if the JOC-version-q-SDH assumption holds on the bilinear group
(e, p,G1,G2,Gτ) with the advantage at most ε(�), and H1,H2 are secure cryp-
tographic hash functions, where
 is the total number of verifiers selected by A
to query tickets,
 ≤ q, ε(�) = (p−q

p + 1
p + p−1

p3)ε′(�).

Theorem 3 (Traceability). An anonymous Single-Sign-On for n designated
services with traceability scheme in Figs. 2, 3, 4, 5 and 6 is (ρ, ε(�))-traceable
if the q-SDH assumption holds on the bilinear group (e, p,G1,G2,Gτ) with the
advantage at most ε1(�), the DL assumption holds on the group G1 with the
advantage at most ε2(�), and H1,H2 are secure cryptographic hash functions,
where ε(�) = max

{
ε1(�)
2 (p−q

p + 1
p + p−1

p3), ε2(�)
2

}
,
 is the total number of ticket

issuing queries made by A and
 < q.

7 Benchmarking Results

In order to evaluate the performance of our scheme, it has been implemented in
Java using a benchmarking framework [17] to extract the computational timings
of the algorithms. The benchmark was executed on a Dell Inspiron Latitude
E5270 laptop with an Intel Core i7-6600U CPU, 1TB SSD and 16 GB of RAM
running Fedora 27. Our implementation makes use of bilinear maps using ellip-
tic curves as well as other cryptographic primitives. The implementation of the
scheme relies on the JPBC library [16] for the bilinear maps and uses the cryp-
tographic functions provided by bouncycastle [30]. Note that the Java based
implementation of the JPBC API [16] was used throughout.

486 J. Han et al.

Table 2. Benchmark results (in ms)

Protocol phase Entity r = 160 bits r = 320 bits

System Initialisation - Central Authority (CA)

Initialise the system CA 1398 3385

Registration - Issuer (I)

Generate I credentials CA 12 45

Verify I credentials I 641 979

Registration - User (U)

Generate user credentials CA 12 20

Verify user credentials User 301 498

Registration - Central Verifier (CV)

Generate CV credentials CA 9 23

Verify CV credentials CV 269 497

Registration - Verifier (V)

Generate V credentials CA 10 23

Verify V credentials V 290 623

Tag Verification - Verifier (V)

Retrieve TagV & generate Π2
U User 13 34

Verify Π2
U & TagV V 225 575

Issuing phase

Protocol phase Entity V = #verifiers

2 3 2 3

Generate Π1
U & ticket request User 93 101 280 309

Verify Π1
U , generate ticket Issuer 481 515 916 1044

Verify ticket User 764 960 1960 2567

Ticket Tracing - Central Verifier (CV)

Retrieve ticket TU & TagCV ; generate Π2
U User 8 9 33 37

Verify Π2
U , TagCV ; trace TU CV 983 1146 2575 3182

7.1 Timings

Table 2 shows the results of the computational time spent in the various phases
of our proposed scheme which required more complex computations (i.e. some
form of verification using bilinear maps or generation of zero knowledge proofs).
The bilinear map used in the protocol implementations was a Type F elliptic
curve provided by the JPBC library where G is the group of points of the elliptic
curve and |G| = p is its prime order whose binary representation requires r-bits.
We chose to benchmark primes p with r = 160 bits and r = 320 bits using 2 or
3 verifiers per ticket. The number of verifiers only impacts on the issuing and
ticket tracing phases while the size of r impacts on all phases. The generation of

Anonymous Single-Sign-On for n Designated Services with Traceability 487

credentials by the CA for the issuer, user and the (central) verifiers during the
registration phase of the protocol is on average around 12 ms for r = 160 bits and
30 ms for r = 320 bits while the verification of those credentials by the various
parties takes about 300 ms and 650 ms for 160 bits and 320 bits respectively.
It can be seen from Table 2 that the current implementation of the our scheme
is reasonably fast for elliptic curves when r = 160 (e.g. ≈1.5 s and ≈250 ms
for ticket issuing and verification respectively) and still acceptable for r = 320
bits (≈4 s and ≈600 ms for the same steps). Moreover, it should be possible
to improve the performance of the code considerably by pre-computing static
values off-line where possible and switching from the current Java-based version
to using a Java-wrapper to the C-based implementation of the pbc libraries [32],
instead.

8 Conclusion and Future Work

Previous Anonymous Single-Sign-On schemes usually protect the user’s identity
from other verifiers but not always the issuer nor the verifier to whom the user
needs to authenticate. However, previously, the identity of these verifiers has
not been considered extensively and neither has the need to ensure that only
a designated verifier can validate a given access request. In this paper we pro-
posed an Anonymous Single-Sign-On scheme which enables users and verifiers
to remain anonymous throughout while protecting the system from misbehaving
users through a central verifier who can, if required, trace the identities of a user
and her associated verifiers. Moreover, we provided a formal security model and
proofs for the security properties of our scheme as well as an implementation
demonstrating the feasibility of deployment.

In our scheme, a user can currently only authenticate to a verifier once as
there is only one authentication tag for each verifier in a user’s ticket. If the user
needs to authenticate herself to a verifier, V, multiple times, she must request
additional tickets with the required authentication tag for V from the issuer. Our
scheme could alternatively be amended to allow multiple authentication tags per
verifier in each ticket. In this case the scheme’s security model and proofs would
need to be amended to support this.

Anonymous Single-Sign-On was the main motivational use case for our
scheme, but there are other scenarios to which the could be applied, e.g. the
purchase of tickets for tourist attractions, where being able to issue a ticket
through an Android implementation would be appropriate. Initial results how-
ever demonstrate that the timings on an Android client are significantly slower,
for example ticket validation can take ≈200 times longer than on the laptop.
Future work will focus on improving the scheme’s performance further (espe-
cially on the Android platform) by moving from a pure Java-based implementa-
tion to a C-based version as well as performing pre-computations of static values
required by proofs of knowledge where possible. Lastly, extending our scheme
with an option for users to enable the controlled release of personal informa-
tion to a given verifier, e.g. by letting a user control which verifier is allowed to
de-anonymise her authentication tag, is another area of future research.

488 J. Han et al.

Acknowledgement. This work has been supported by the EPSRC Project DICE:
“Data to Improve the Customer Experience”, EP/N028295/1. The authors would also
like to thank the anonymous reviewers and Dr François Dupressoir for their valuable
feedback and comments.

References

1. Armknecht, F., Löhr, H., Manulis, M., Sadeghi, A.-R., et al.: Secure multi-coupons
for federated environments: privacy-preserving and customer-friendly. In: Chen,
L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 29–44. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79104-1 3

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

9. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication.
In: ACM CCS 2006, pp. 201–210. ACM (2006)

10. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 25

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

12. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8

13. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer.
In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15898-8 13

https://doi.org/10.1007/978-3-540-79104-1_3
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-642-15898-8_13

Anonymous Single-Sign-On for n Designated Services with Traceability 489

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

16. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: ISCC 2011,
pp. 850–855. IEEE (2011)

17. DICE Project: Benchmark E-ticketing Systems (BETS) (2017). https://github.
com/swesemeyer/BenchmarkingETicketingSystems

18. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Inf. Theory Soc.
22(6), 644–654 (1976)

19. Elmufti, K., Weerasinghe, D., Rajarajan, M., Rakocevic, V.: Anonymous authen-
tication for mobile single sign-on to protect user privacy. Int. J. Mob. Commun.
6(6), 760–769 (2008)

20. European Commission and European Council: Regulation (EU) 2016/679: General
Data Protection Regulation (2016). https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679&from=EN

21. Fan, C.I., Wu, C.N., Chen, W.K., Sun, W.Z.: Attribute-based strong designated-
verifier signature scheme. J. Syst. Softw. 85(4), 944–959 (2012)

22. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

23. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 11

24. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discret. Math. 6(1), 124–138 (1993)

25. Han, J., Chen, L., Schneider, S., Treharne, H., Wesemeyer, S.: Anonymous Single-
Sign-On for n services with traceability (2018). https://arxiv.org/abs/1804.07201

26. Han, J., Mu, Y., Susilo, W., Yan, J.: A generic construction of dynamic single
sign-on with strong security. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010.
LNICSSITE, vol. 50, pp. 181–198. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16161-2 11

27. IBM Research Zürich: Identity mixer (2018). https://www.zurich.ibm.com/
identity mixer/

28. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

29. Lee, T.F.: Provably secure anonymous single-sign-on authentication mechanisms
using extended chebyshev chaotic maps for distributed computer networks. IEEE
Syst. J. 12(2), 1499–1505 (2015)

30. Legion of the Bouncy Castle Inc: Bouncy Castle Crypto APIs. https://www.
bouncycastle.org/

31. Liu, W., Mu, Y., Yang, G., Yu, Y.: Efficient e-coupon systems with strong user
privacy. Telecommun. Syst. 64(4), 695–708 (2017)

32. Lynn, B.: The pairing-based cryptography (PBC) library (2010). https://crypto.
stanford.edu/pbc/

33. MIT Kerberos: Kerberos: The network authentication protocol (2017). https://
web.mit.edu/kerberos/

https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-48071-4_7
https://github.com/swesemeyer/BenchmarkingETicketingSystems
https://github.com/swesemeyer/BenchmarkingETicketingSystems
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.1007/978-3-642-13013-7_11
https://arxiv.org/abs/1804.07201
https://doi.org/10.1007/978-3-642-16161-2_11
https://doi.org/10.1007/978-3-642-16161-2_11
https://www.zurich.ibm.com/identity_mixer/
https://www.zurich.ibm.com/identity_mixer/
https://doi.org/10.1007/3-540-68339-9_13
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/

490 J. Han et al.

34. Nguyen, L., Safavi-Naini, R.: Dynamic k -times anonymous authentication. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
318–333. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 22

35. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: DIM 2006, pp. 11–16. ACM (2006)

36. Schnor, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

37. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

38. Wang, J., Wang, G., Susilo, W.: Anonymous single sign-on schemes transformed
from group signatures. In: INCoS 2013, pp. 560–567. IEEE (2013)

https://doi.org/10.1007/11496137_22
https://doi.org/10.1007/978-3-540-30539-2_22

Efficiently Deciding Equivalence
for Standard Primitives and Phases

Véronique Cortier1, Antoine Dallon1,2,3(B), and Stéphanie Delaune3

1 LORIA, CNRS, Nancy, France
dallon@lsv.fr

2 LSV, CNRS and ENS Paris-Saclay, Cachan, France
3 Univ Rennes, CNRS, IRISA, Rennes, France

Abstract. Privacy properties like anonymity or untraceability are now
well identified, desirable goals of many security protocols. Such proper-
ties are typically stated as equivalence properties. However, automati-
cally checking equivalence of protocols often yields efficiency issues.

We propose an efficient algorithm, based on graph planning and SAT-
solving. It can decide equivalence for a bounded number of sessions,
for protocols with standard cryptographic primitives and phases (often
necessary to specify privacy properties), provided protocols are well-
typed, that is encrypted messages cannot be confused. The resulting
implementation, SAT-Equiv, demonstrates a significant speed-up w.r.t.
other existing tools that decide equivalence, covering typically more than
100 sessions. Combined with a previous result, SAT-Equiv can now be
used to prove security, for some protocols, for an unbounded number of
sessions.

1 Introduction

Security protocols are notoriously difficult to design. A common good practice
is to formally analyse protocols using symbolic techniques, in order to spot flaws
possibly before their deployment (e.g. TLS 1.3 [4,20], an avionic protocol [5]).
These symbolic techniques are mature for reachability properties like confiden-
tiality or authentication. More recently, this approach has been extended to pri-
vacy properties, such as vote secrecy, anonymity, untraceability, or unlinkability.
These properties are expressed through equivalences. For example, in the case of
biometric passports, an attacker should not be able to distinguish whether she
is in contact with Alice’s passport or Bob’s passport.

Recently, a new tool, SAT-Equiv [16], has been proposed to decide such
equivalence properties for security protocols, for a bounded number of sessions.

The research leading to these results has received funding from the European
Research Council under the European Union’s horizon 2020 research and innovation
program (ERC grant agreement n◦ 714955-POPSTAR and n◦ 645865-SPOOC), as
well as from the French National Research Agency (ANR) under the project TECAP,
and the DGA.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 491–511, 2018.
https://doi.org/10.1007/978-3-319-99073-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_24&domain=pdf

492 V. Cortier et al.

It is based on a standard model-checking approach, namely graph planning [7,23]
and SAT-solving. Intuitively, protocols executions are over-approximated as a
graph planning problem, which allows to consider several possible interleavings
in parallel, allowing the analysis of dozen of sessions of a protocol in a few
seconds. However, this result is limited to a very small set of primitives, namely
symmetric encryption and concatenation.

Our Contributions. Building upon this novel approach, we enrich SAT-Equiv in
order to cover protocols using asymmetric primitives and/or phases. As for the
original SAT-Equiv, we assume a non confusion property: encrypted messages
should not be confused, a condition automatically checked by our tool and which
can be enforced e.g. through appropriate labelling.

First, we extend SAT-Equiv to cover all standard primitives: symmetric
and asymmetric encryption, signatures, and hashes. Since graph planning is a
bounded model-checking technique, SAT-Equiv relies on a small model prop-
erty, that bounds the size of messages. More precisely, [12] guarantees that if
there is an attack, then there is a well-typed attack, where messages follow a fix
format. This result has been recently extended to standard primitives [14]. The
straightforward extension of SAT-Equiv to standard primitives however yields
severe efficiency issues. Indeed, unlike the symmetric encryption case, checking
whether two sequences of messages are equivalent (i.e. in static equivalence) may
require complex tests where the attacker construct messages (that is, hash or
asymmetrically encrypt messages). We therefore provide a precise characteri-
sation of the set of tests that need to be considered when checking for static
equivalence. This characterisation is of independent interest and could be used
in other contexts. We also extend SAT-Equiv to consider protocols with phases,
which are useful to model game-based properties.

Our extension of SAT-Equiv now provably terminates. In [16], termination
can be guaranteed by checking that any state of the planning graph is indeed
reachable, which requires to query a SAT-solver at each step. While this provides
termination in theory, this yields a non practical algorithm and has not been
implemented. Instead, we exhibit a bound on the maximal length of the smallest
attack (bounding the attacker steps as well). It is therefore sufficient to stop the
construction of the graph planning once this bound has been reached, enforcing
termination for free (no computation overhead).

Finally, we have considerably revisited and improved the original implemen-
tation of SAT-Equiv. This significant speedup now allows for security proofs for
an unbounded number of sessions. Indeed, [13] shows decidability of equivalence,
for an unbounded number of sessions, for protocols with an acyclic dependency
graph. The notion of dependency graph is introduced in [13] and intuitively cap-
tures how the input/output actions of the protocol may use messages from other
steps of the protocol. As a corollary, [13] induces a bound on the number of
sessions that needs to be considered for an attack, which depends on the size
and structure of the graph. This bound can be rather large (50 to 100 sessions,
even on small examples) but SAT-Equiv is now able to reach such bounds.

Efficiently Deciding Equivalence for Standard Primitives and Phases 493

These novelties are implemented in an extension of SAT-Equiv and compared
with the other tools of the literature, namely Spec [25], Akiss [8] and the very
recent DeepSec [11] tool. Our experiments show that SAT-Equiv is much faster
on all the examples, allowing to reach typically more than 100 sessions. As an
application, we consider two protocols, Denning-Sacco and Needham-Schroeder
symmetric keys, shown to have acyclic dependency graphs in [13]. Considering
the necessary number of sessions as induced by [13], we establish trace equiva-
lence for these two protocols, for an unbounded number of sessions.

Due to lack of space, the reader is referred to the companion technical
report [17] for the missing proofs and additional details.

Related Work. There are two main families of tools to analyse equivalence proper-
ties on security protocols. Some tools prove equivalence for an arbitrary number
of sessions, that is, no matter how often a protocol is used. The main tools in this
category are ProVerif [6], Tamarin [24], Maude-NPA [22], Type-Eq [18]. Maude-
NPA often suffers from termination issues when used for equivalence proper-
ties. Type-Eq [18,19] is a sound (but incomplete) type-checker for equivalence
properties that has good performance. It requires that protocols have a similar
structure. ProVerif and Tamarin work well in practice. They actually prove a
stronger notion of equivalence, diff-equivalence, that also requires that the two
considered protocols have a very similar structure. Moreover, equivalence proper-
ties are undecidable in general for an unbounded number of sessions. Therefore,
ProVerif may not terminate and Tamarin may need some user guidance.

A second approach consists in deciding equivalence, for a bounded number
of sessions. Spec [25] is one of the first tool that decides equivalence of security
protocols but it does not scale well when the number of sessions grows (it can
typically handle up to three sessions for small protocols). DeepSec [11] is a very
recent tool that builds upon Akiss [8] and Apte [9]. All these tools analyse sym-
bolic executions and typically have to consider all possible interleavings between
the roles of the protocol, which often raises efficiency issues.

2 Model

Protocols are modeled through a process algebra, in the spirit of the applied-pi
calculus [1]. We consider here a model similar to the ones used e.g. in [14,16].

2.1 Term Algebra

As usual, messages are modeled by terms. Private data are represented through
an infinite set N of names used to model e.g. keys or nonces. We consider an infi-
nite set C0 of constants to represent public data such as agent names or attacker’s
nonces or keys. We consider also two sets of variables X and W. Variables in X
model arbitrary data expected by the protocol, while variables in W are used
to store messages learnt by the attacker. A data is either a constant, a variable,
or a name. Cryptograhic primitives are represented by function symbols. We
consider the signature Σ parameterised by n ≥ 2:

494 V. Cortier et al.

– Σc = {senc, aenc, hash, pub, sign, vk, ok} ∪ {〈 〉k | 2 ≤ k ≤ n};
– Σd = {sdec, adec, getmsg} ∪ {projkj | 2 ≤ k ≤ n and 1 ≤ j ≤ k}; and
– Σ = Σc ∪ Σd ∪ {check}.

The symbols senc, aenc, sdec, and adec of arity 2 are used to model resp. sym-
metric and asymmetric encryption. We also consider signature sign and hash
function hash. Concatenation of messages is modeled through tuple operators
together with their projection functions. For example, 〈m1,m2,m3〉3 represents
the concatenation of the three messages m1, m2, and m3. It is syntactically dif-
ferent from the nested pairs 〈m1, 〈m2,m3〉2〉2. These two representations corre-
spond to different implementation choices. We distinguish between constructors
in Σc and destructors in Σd. The symbol check of arity 2, which corresponds to
the verification of a signature, is neither a destructor nor a constructor. The set
of terms built from a signature F and a set of data D is denoted T (Σ,D). Given
a term u, we denote St(u) the set of its subterms, vars(u) the set of its variables,
and root(u) its root symbol. A term is ground if it contains no variable. The
application of a substitution σ to a term u is written uσ. We denote dom(σ) its
domain and img(σ) its image. Two terms u1 and u2 are unifiable when there
exists a substitution σ such that u1σ = u2σ.

We consider two sorts: atom and bitstring. The sort atom represents atomic
data like nonces or keys while bitstring models arbitrary messages. Names in N
and constants in C0 have sort atom. Any f ∈ Σc comes with its sorted arity:

〈 〉k : bitstring × · · · × bitstring → bitstring
senc : bitstring × atom → bitstring
aenc : bitstring × bitstring → bitstring
sign : bitstring × atom → bitstring

ok : → bitstring
pub : atom → bitstring
vk : atom → bitstring
hash : bitstring → bitstring

Given D ⊆ C0
 X , the set T0(Σc,D) is the set of terms t in T (Σc,D) such
that (i) for any term pub(u) (resp. vk(u)) in St(t), u is of sort atom; (ii) for any
aenc(u, v) ∈ St(t), v = pub(v′) for some v′. Terms in T0(Σc,N
 C0) are called
messages. Intuitively, messages are terms with atomic keys.

The properties of the cryptographic primitives are reflected through the fol-
lowing convergent rewriting rules.

sdec(senc(x, y), y) → x adec(aenc(x, pub(y)), y) → x
getmsg(sign(x, y)) → x check(sign(x, y), vk(y)) → ok

projkj (〈x1, . . . , xk〉k) → xj with 2 ≤ k ≤ n and 1 ≤ j ≤ k

A term u can be rewritten into v if there is a position p in u, and a rewriting
rule g(t1, . . . , tn) → t such that u|p = g(t1, . . . , tn)θ for some substitution θ, and
v = u[tθ]p, i.e. u in which the subterm at position p has been replaced by tθ.
Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages, in particular
they do not contain destructor symbols. As usual, we denote →∗ the reflexive-
transitive closure of →, and u↓ the normal form of a term u.

An attacker builds her own messages by applying public function sym-
bols to terms she already knows and which are available through variables in
W. Formally, a computation done by the attacker is a recipe, i.e. a term in
T (Σ,W
 C0).

Efficiently Deciding Equivalence for Standard Primitives and Phases 495

2.2 Process Algebra

We consider processes that may receive and send messages. We assume that each
process communicates on a dedicated public channel. In practice, IP addresses
and sessions identifiers are typically used to desambiguate which message is
addressed to whom and for which session. Of course, these channels may be
freely manipulated by the attacker. Since we consider equivalence properties,
distinct (public) channels provide more abilities for the adversary to distinguish
between protocols. Formally, given a set Ch of channels, we consider the fragment
of simple processes without replication built on basic processes as defined e.g.
in [10].

Definition 1. A basic processes is defined as follows:

P,Q := 0 | in(c, u1).P | out(c, u2).P | i:P

with u1, u2 ∈ T0(Σc, C0
N
X), c ∈ Ch, and increasing phase numbers. A simple
process is a multiset of basic processes on pairwise distinct channels. A protocol
is a simple process such that all its variables are in the scope of an input.

The process 0 does nothing and we often omit it. The process “in(c, u1).P”
expects a message m of the form u1 on channel c and then behaves like Pσ
where σ is a substitution such that m = u1σ. Note that checking whether
a received message has the expected form is done through pattern-matching
instead of explicit tests. The process “out(c, u2).P” emits u2 on c, and then
behaves like P . Our calculus also has a phase instruction, in the spirit of [6],
denoted i:P . This instruction is useful to model security requirements, for exam-
ple in case the attacker interacts with the protocol before being given some secret.

Example 1. As an illustrative example, we consider a simplified version of the
Denning-Sacco protocol which is a key distribution protocol relying on asym-
metric encryption and signature. Informally, the protocol is as follows.

A → B : aenc(sign(〈A,B,Kab〉, prv(A)), pub(B))

The agents A and B aim at authenticating each other and establishing
a fresh session key Kab. We model this protocol in our formalism through
the simple process PDS = {PA;PB} where PA = out(cA, aenc(sign(〈a, b, kab

〉3, ska), pub(skb))).0 and PB = in(cB , aenc(sign(〈a, b, x〉3, ska), pub(skb))).0
where ska, skb, and kab are names, a and b are constants, and x is a variable.

The operational semantics of a process is defined using a relation over con-
figurations. A configuration is a tuple (P;φ;σ; i) with i ∈ N and such that:

– P is a multiset of processes (not necessarily ground);
– φ = {w1 � m1, . . . ,wn � mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W, and m1, . . . ,mn are messages;
– σ is a substitution such that fv(P) ⊆ dom(σ), and img(σ) are messages.

496 V. Cortier et al.

Fig. 1. Semantics for processes

A configuration is said to be initial when σ = ∅. Intuitively, P represents the
processes that still remain to be executed; φ represents the sequence of messages
that have been learnt so far by the attacker, and σ stores the value of the variables
that have already been instantiated. We write P instead of 0:P and P
P instead
of {P}
 P. Given a protocol P, we also often write P instead of (P; ∅; ∅; 0).
The operational semantics is induced by the relation α−→ over configurations
defined in Fig. 1. For example, the In rule defines how messages can be input
on a (public) channel: the adversary may send any message, provided she can
construct it through a recipe R applied on her previous knowledge φ. Note that
only messages can be received (and sent). The relation tr−→ between configurations
(where tr is a possibly empty sequence of actions) is defined in the usual way.
Given a configuration K, we write:

trace(K) = {(tr, φ) | K tr−→ (P ′;φ;σ; i) for some configuration (P ′;φ;σ; i)}.

Example 2. Continuing Example 1, let KDS = ({PA;PB ;PB′};φ0; ∅; 0)
where PB′ models an additional session of the role B obtained by simply renam-
ing cB and x with c′

B and x′. The frame φ0 = {wa�vk(ska),wb�pub(skb)} models
the fact that the attacker initially knows the public key of b and the verifica-
tion key of a. We consider a simple scenario without dishonest participant. The
trace tr0 = out(cA,w1).in(cB ,w1).in(c′

B ,w1) is executable from KDS, and yields
φ = φ0
 {w1 � aenc(sign(〈a, b, kab〉3, ska), pub(skb))}, i.e. (tr0, φ) ∈ trace(KDS).

2.3 Type-Compliance

We present here our main assumption on protocols. Intuitively, we assume that
ciphertexts cannot be confused, and we rely for this on a notion of typing system.

Definition 2. A typing system is a pair (Tinit, δ) where Tinit is a set of elements
called initial types, and δ is a function mapping data in C0
 N
 X to types τ :

τ, τ1, τ2 = τ0 | f(τ1, . . . , τn) with f ∈ Σc and τ0 ∈ Tinit

Then, δ is extended to constructor terms as follows:

δ(f(t1, . . . , tn)) = f(δ(t1), . . . , δ(tn)) with f ∈ Σc.

Efficiently Deciding Equivalence for Standard Primitives and Phases 497

A configuration is type-compliant if two unifiable encrypted subterms have
the same type. We write ESt(t) for the set of encrypted subterms of t, i.e.
ESt(t) = {u ∈ St(t) | u is of the form f(u1, . . . , un) and f = 〈 〉i}.

Definition 3. An initial configuration K is type-compliant w.r.t. a typing sys-
tem (Tinit, δ) if for every t, t′ ∈ ESt(K) we have that t and t′ unifiable implies
that δ(t) = δ(t′).

Example 3. Continuing our running example, we consider the typing system
generated from TDS = {τa, τb, τk, τsk} of initial types, and the function δDS that
associates the expected type to each constant/name (δDS(a) = τa, δDS(kab) = τk,
etc.), and such that δDS(x) = δDS(x′) = τk. We have that KDS is type-compliant
w.r.t. (TDS, δDS): unifiable encrypted subterms occurring in the configuration
have the same type since δDS(x) = δDS(x′) = δDS(kab).

Type-compliant protocols have the property that, when looking for attacks, it
is sufficient to consider well-typed execution: K tr−→ (P;φ;σ; i) is well-typed w.r.t.
a typing system (Tinit, δ), if σ is a well-typed substitution, i.e. every variable of
its domain has the same type as its image.

2.4 Trace Equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as
trace equivalence [2,21]. Intuitively, two configurations are trace equivalent if an
attacker cannot tell with which of the two configurations she is interacting. We
first introduce a notion of equivalence (actually, inclusion) between frames.

Definition 4. Two frames φ1 and φ2 are in static inclusion, written φ1 �s φ2,
when dom(φ1) = dom(φ2), and:

– for any recipe R, we have that Rφ1↓ is a message implies that Rφ2↓ is a
message;

– for any recipes R,R′ such that Rφ1↓, R′φ1↓ are messages, we have that:
Rφ1↓ = R′φ1↓ implies Rφ2↓ = R′φ2↓.

Intuitively, φ1 is included in φ2 if any recipe producing a message in φ1 also
produces a message in φ2 and if any equality satisfied in φ1 is also satisfied in φ2.

Example 4. We consider φ1 = φ
 {w2 � senc(m1, kab),w′
2 � senc(m1, kab)}, and

φ2 = φ
 {w2 � senc(m2, k),w′
2 � senc(m2, k

′)} where m1,m2 ∈ C0. We have that
w2φ1↓ = w′

2φ1↓ whereas this equality does not hold in φ2. Hence φ1 �s φ2.

Trace inclusion is the active counterpart of static inclusion. Two configu-
rations are in trace inclusion if, however the attacker behaves, the resulting
sequences of messages observed by the attacker are in static inclusion.

Definition 5. Let K and K′ be two configurations. We have that K �t K′, if for
every (tr, φ) ∈ trace(K), there exists (tr, φ′) ∈ trace(K′) such that φ �s φ′.

498 V. Cortier et al.

We easily derive a notion of trace equivalence: two configurations K and K′

are trace equivalence, denoted K ≈t K′, if K �t K′ and K′ �t K. This notion of
trace equivalence slightly differs from the one used in e.g. [12] but they actually
coincide on the class of protocols we consider in this paper [8].

Example 5. To model secrecy of the key kab, we define strong secrecy of kab by
requiring that kab is indistinguishable from a fresh value. Formally, we consider
P 1

B (resp. P 1
B′) obtained by replacing the process 0 with 1:out(cB , senc(m1, x))

(resp. 1:out(c′
B , senc(m1, x

′))). On the other side of the equivalence, we con-
sider P 2

B and P 2
B′ obtained by replacing the process 0 with 1:out(cB , senc(m2, k))

(resp. 1:out(c′
B , senc(m2, k

′))) with fresh names k and k′.

K1
DS = ({PA;P 1

B ;P 1
B′};φ0) and K2

DS = ({PA;P 2
B ;P 2

B′};φ0).

Then, we can show that K1
DS �t K2

DS since kab is not strongly secret. An
attacker can replay the message sent by A due to lack of freshness. This is exem-
plified by the trace tr0.out(cB ,w2).out(c′

B ,w′
2) and the test given in Example 4.

3 From Static Inclusion to Planning

The overall objective of this paper is to provide a practical algorithm for deciding
trace inclusion (and thus trace equivalence) relying on graph planning and SAT
solving. We start here by explaining how to build a planning problem from two
frames such that the planning problem has a solution if, and only if, the two
corresponding frames are not in static inclusion.

3.1 Planning Problems

We first recall the definition of a planning problem, slightly simplified from [15].
Intuitively, a planning system defines a transition system from sets of facts to
sets of facts. New facts may be produced and some old facts may be deleted.

Definition 6. A planning system is tuple 〈Fact, Init,Rule〉 where Fact is a
set of ground formulas called facts, Init0 ⊆ Fact is a set of facts representing
the initial state, and Rule is a set of rules of the form Pre −→ Add;Del where
Pre, Add, Del are finite sets of facts such that Add ∩ Del = ∅, Del ⊆ Pre. We
write Pre −→ Add when Del = ∅.

Given a rule r ∈ Rule of the form Pre −→ Add;Del, we denote Pre(r) =
Pre, Add(r) = Add, and Del(r) = Del. If S ⊆ Fact are such that Pre(r) ⊆ S,
then we say that the rule is applicable in S, denoted S

r−→ S′, and the state
S′ = (S � Del) ∪ Add is the state resulting from the application of r to S.
We allow some rules to be applied in parallel when no facts are deleted. Given
S ⊆ Fact, and a set of rules {r1, . . . , rk} such that Del(ri) = ∅ and Pre(ri) ⊆ S

for any i ∈ {1, . . . , k}, {r1, . . . , rk} is applicable in S, denoted S
{r1,...,rk}−−−−−−→ S′,

and the state S′ =
⋃k

i=1 Add(ri) ∪ S is the state resulting from the application
of {r1, . . . , rk} to S.

Efficiently Deciding Equivalence for Standard Primitives and Phases 499

A planning path from S0 ⊆ Fact to Sn ⊆ Fact is a sequence r1, . . . , rn

made of rules or sets of rules in Rule such that S0
r1−→ S1

r2−→ . . . Sn−1
rn−→ Sn

for some states S1, . . . , Sn−1 ⊆ Fact. A planning problem for a system Θ =
〈Fact, Init,Rule〉 is a pair Π = 〈Θ,Sf 〉 where Sf ⊆ F represents the target
facts. A solution to Π = 〈Θ,Sf 〉, called a plan, is a planning path from Init to
a state Sn such that Sf ⊆ Sn.

A transition S
{r1,...,rk}−−−−−−→ S′ can be mimicked by S

r1−→ S1
r2−→ . . .

rk−→ S′, thus
the possibility of applying set of rules in a single step does not change the set of
reachable states from a given state S. However, this allows us to consider plans
of smaller length and will be useful later on to derive a tight bound and ensure
the termination of our algorithm.

In this section, we explain the translation of static inclusion into a planning
problem. We consider an (infinite) set Fact0 of facts that represent the attacker’s
knowledge, i.e. formulas of the form att(uP , uQ) where uP and uQ are messages,
plus a special symbol bad. Intuitively, att(uP , uQ) means that the attacker knows
uP in the “left” frame, while she knows uQ in the “right” one.

3.2 Attacker Analysis Rules

Following [16], we first describe the planning rules that correspond to the analysis
part of the attacker behaviours. We start by describing a set of abstract rules
RAna that will be instantiated later on, yielding a (concrete) planning system.

att(〈x1, . . . , xk〉k, 〈y1, . . . , yk〉k) −→ att(xi, yi) with i ≤ k
att(senc(x1, x2), senc(y1, y2)), att(x2, y2) −→ att(x1, y1)

att(aenc(x1, pub(x2)), aenc(y1, pub(y2))), att(x2, y2) −→ att(x1, y1)
att(sign(x1, x2), sign(y1, y2)) −→ att(x1, y1)

These rules correspond to the attacker’s ability to project, decrypt, and
retrieve messages from their signature. There is no Del since the attacker never
forgets. Given a rule r ∈ RAna, we explain how to compute its concretiza-
tion denoted Concrete(r). Formally, we have that Concrete(r) = Concrete+(r) ∪
Concrete−(r).

Concrete+(r). The positive concretizations of r consist of instantiating r such
that the resulting terms are messages. More formally, we have:

Concrete+(r) = {rσ | σ substitution such that rσ only involve messages.}

Concrete−(r). We say that a sequence of ground facts att(u1, v1), . . . , att(uk, vk)
left-unifies with a sequence att(u′

1, v
′
1), . . . , att(u

′
k, v′

k) if there exists σ such that
u′
1σ = u1, . . . , u

′
kσ = uk (and symmetrically for right-unification). Given an

abstract attacker rule r = Pre −→ Add, we define Concrete−(r) as the set con-
taining f1, . . . , fk −→ bad for any sequence of facts f1, . . . , fk ∈ Fact0 such that
f1, . . . , fk left-unifies with Pre, whereas f1, . . . , fk does not right-unify with Pre.

500 V. Cortier et al.

Example 6. The negative concretizations of the abstract rule corresponding to
asymmetric decryption are all the concrete rules of the form

att(aenc(u1, pub(u2)), v), att(u2, v
′) −→ bad

where u1, u2, v, v′, aenc(u1, pub(u2)) are messages, whereas adec(v, v′)↓ is not.

3.3 Static Inclusion

According to Definition 4, to break static inclusion, an attacker may build new
terms (using both analysis and synthesis rules) but also check for equalities and
computation failures. To encode static inclusion using planning in an efficient
way, we need to strictly control the terms that an attacker has to synthesize.

We say that R is destructor-only if R ∈ T (Σd, C0 ∪ W). It is simple if there
exists destructor-only recipes R1, . . . , Rk, and a context C made of constructors
such that R = C[R1, . . . , Rk].

Definition 7. Let φ, ψ be such that dom(φ) = dom(ψ). We write φ �simple
s ψ if:

1. For each destructor-only recipe R such that Rφ↓ is a (resp. atomic) message,
Rψ↓ is a (resp. atomic) message.

2. For each simple recipe R and destructor-only recipe R′ such that Rφ↓, R′φ↓
are messages and Rφ↓ = R′φ↓, we have that Rψ↓ = R′ψ↓.

3. For each destructor-only recipes R,R′, if Rφ↓ = sign(t, s), and R′φ↓ = vk(s)
for some term t and atom s, then Rψ↓ = sign(t′, s′), and R′ψ↓ = vk(s′) for
some term t′ and atom s′.

4. For each destructor-only recipe R, such that Rφ↓ = pub(s) for some atom s,
Rψ↓ = pub(s′) for some atom s′.

We write φ �simple+
s ψ when the test described at item 2 is only performed

when (i) either R is destructor-only; (ii) or root(R) ∈ {senc}∪{〈 〉k | 2 ≤ k ≤ n},
and root(R′) = adec.

This notion of static inclusion is equivalent to the original one.

Lemma 1. Let φ and ψ be two frames having the same domain. We have that:

φ �s ψ ⇔ φ �simple
s ψ ⇔ φ �simple+

s ψ.

From this new characterisation of static inclusion �simple
s , we derive the plan-

ning rules that capture all the cases of failures with those in Concrete−(RAna).

Ratom
fail = {att(u, v) −→ bad | u is an atom but v is not}

Rpub
fail = {att(pub(u), v) −→ bad | v is not of the form pub(v′)}

Rcheck
fail =

{
att(sign(u1, u2), v1)
att(vk(u2), v2)

−→ bad | check(v1, v2)↓ is not a message
}

Rtest
fail =

⎧
⎨

⎩

att(u1, v1), . . . , att(uk, vk)
att(C[u1, . . . , uk], v) −→ bad |

C is a constructor context,
C[u1, . . . , uk] ∈ St(φ) ∪ C0

v = C[v1, . . . , vk].

⎫
⎬

⎭

Efficiently Deciding Equivalence for Standard Primitives and Phases 501

Actually, not all subterms of St(φ) need to be considered. Therefore, we
consider an optimised version that captures only the terms that may not be
reconstructed from their subterms. Formally, Stopti(t) is defined as follows.

– Stopti(〈t1, t2〉) = Stopti(t1) ∪ Stopti(t2);
– Stopti(senc(t1, t2)) = Stopti(t1);
– Stopti(aenc(t1, t2)) = {aenc(t1, t2)} ∪ (Stopti(t1) � {t1})
– Stopti(sign(t1, t2)) = {sign(t1, t2)} ∪ Stopti(t1);
– Stopti(f(t)) = {f(t)} with f ∈ {hash, pub, vk}.

Thanks to the fact that �simple+
s is equivalent to static inclusion, we may only

consider simple recipes which evaluation yields a term in Stopti(φ).

Lemma 2. Let φ be a frame, R = C[R1, . . . , Rk] be a simple recipe such that
root(R) ∈ {senc} ∪ {〈 〉k | 2 ≤ k ≤ n}, and R′ be a destructor-only recipe such
that root(R′) = adec. Assume that Rφ↓ and R′φ↓ are both messages such that
Rφ↓ = R′φ↓. We have that either C is the empty context, or Rφ↓ ∈ Stopti(φ)∪C0.

Therefore, Rtest
fail can be replaced by the following (smaller) set of rules:

Rtest1
fail = {att(u1, v1), att(u1, v2) −→ bad | v1 �= v2}

Rtest2
fail = {att(u1, v1), . . . , att(uk, vk), att(C[u1, . . . , uk], v) −→ bad | C is a non-empty

constructor context, C[u1, . . . , uk] ∈ Stopti(φ) ∪ C0, and v �= C[v1, . . . , vk].}

Let φ and ψ be two frames with dom(φ) = dom(ψ) and built using constants
from C ⊆ C0. The set of facts associated to φ and ψ is defined as follows:

FactC(φ, ψ) = {att(a, a) | a ∈ C} ∪ {att(wφ,wψ) | w ∈ dom(φ)}

Two frames are in static inclusion if, and only if, the corresponding planning
system has no solution. Actually, when the frames are not in static inclusion, we
provide a bound on the length of the (minimal) plan witnessing this fact.

Proposition 1. Let φ and ψ be two frames with dom(φ) = dom(ψ), and Θ =
〈Fact0,FactC0(φ, ψ),R〉 where

R = Concrete(RAna) ∪ Rtest1
fail ∪ Rtest2

fail ∪ Ratom
fail ∪ Rcheck

fail ∪ Rpub
fail .

Let Π = 〈Θ, {bad}〉. We have that φ �s ψ if, and only if, Π has a solution
of length at most (N + 1) × depth(φ) + 1 where N is the number of names n
occurring in φ at a key position, i.e. such that n (resp. pub(n)) occurs in key
position of an encryption in φ.

Intuitively, once all needed keys are derived, the minimal plan witnessing
non-inclusion contains at most depth(φ) rules where depth(φ) is the maximal
depth of a term occurring φ. Then we may need depth(φ) rule to derive each
deducible key, hence the bound.

502 V. Cortier et al.

4 From Trace Inclusion to Planning

We are now ready for the active case. Given two configurations, we show how to
build a planning problem such that the planning problem has a solution if, and
only if, the two corresponding configurations are not in trace inclusion.

In several places of this section, we will consider three special constants,
namely c�

0 and c�
1 of sort atom, and c�

+ of sort bitstring. These three constants
have a special type, denoted τ�.

4.1 Abstract Protocol Rules

We first define the abstract rules describing the protocol behaviour. We
denote CP (resp. CQ) the constants from C0 occurring in P (resp. Q), and we
consider C� = (CP ∪ CQ)
 {c�

0, c
�
1, c

�
+}. For simplicity we assume that variables

of P and Q are disjoint. In addition to the facts of the form att(u, v) used to
represent attacker’s knowledge, we also consider:

– facts of the form Phase(i) with i ∈ N to represent phases; and
– facts of the form St(P,Q) = statec

P,Q(idP , idQ) where P , Q are two basic
processes on channel c, and idP (resp. idQ) is the identity substitution of
domain fv(P) (resp. fv(Q)).

Therefore, in this section, we consider the infinite set of facts Fact0 that consists
of all the ground facts of this form, plus the special symbol bad.

To deal with phases, we mimic the Phase rule by considering basic processes
in normal form w.r.t. the rule i:j:P −→ j:P . Then, the transformation Rule(P ;Q)
from basic processes (in normal form) to abstract planning rules is defined by
Rule(P ;Q) = ∅ when P = i:0, and otherwise:

1. Case output: i.e. if P = i:out(c, u).P ′.
– {St(P,Q),Phase(i) −→ att(u, v),St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)

when if Q = i:out(c, v).Q′

– {St(P,Q),Phase(i) −→ att(u, c�
0), bad} otherwise.

2. Case input: i.e. P = i:in(c, u).P ′.
– {St(P,Q), att(u, v),Phase(i) −→ St(P ′, Q′); St(P,Q)} ∪ Rule(i:P ′; i:Q′)

when Q = i:in(c, v).Q′

– {St(P,Q), att(u, x),Phase(i) −→ bad} otherwise (with x fresh).

Intuitively, abstract rules simply try to mimic each step of P by a similar step
in Q. Clearly, if Q cannot follow P , the two processes are not in trace equivalence,
which is modelled here by the bad state. Note that, in case P = i:out(c, u).P ′

whereas Q is not ready to perform an output, bad will be triggered only if the
sent term is indeed a message. This transformation is then extended to protocols
in a natural way considering in addition planning rule to model phase changes.
We consider P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn}, and we assume w.l.o.g.
that Pi and Qi are basic processes on channel ci. We define:

– Rule(P,Q) = Rule(P1, Q1) ∪ . . . ∪ Rule(Pn, Qn).
– Rphase = {Phase(i) −→ Phase(i + 1) ; Phase(i) | i ∈ N}.

Efficiently Deciding Equivalence for Standard Primitives and Phases 503

4.2 Concrete Protocol Rules

To derive concrete rules from the abstract ones, we could instantiate them with
arbitrary terms. However, this would not allow us to derive a decision procedure.
Moreover, we would like our algorithm to have good performance. To achieve
this, we first show that only three constants need to be considered (and no
nonces), in addition to those explicitly mentioned in the protocol.

Given a protocol P that is type-compliant w.r.t. to a typing system (TP , δP)
(and such that τ� does not occur in δP(P)), an execution P tr−→ (P ′;φ′;σ′; i′) is
quasi-well-typed if δP(xσ′) � δP(x) for every variable x ∈ dom(σ′) where � is
the smallest relation on types defined as follows:

– τ� � τ and τ � τ for any type τ (initial or not);
– f(τ1, . . . , τk) � f(τ ′

1, . . . , τ
′
k) when τ1 � τ ′

1, . . . , τk � τ ′
k, and f ∈ Σc.

The attacker needs at most the constants c�
0, c

�
1, c

�
+ to mount an attack.

Theorem 1. Let KP be an initial configuration type-compliant w.r.t. (TP , δP)
and KQ be another initial C0-configuration. We have that KP �t KQ if, and
only if, there exists a witness (tr, φ) ∈ trace(KP) of this non-inclusion which only
involves constants from C�, simple recipes, and with a quasi-well-typed underlying
execution.

The existence of a quasi well-typed witness comes from [14] with some extra
work to guarantee that we can consider simple recipes. The reduction to three
constants extends the previous reduction [16] to asymmetric primitives.

Flattening. In terms of efficiency, one key step of our algorithm is to avoid
composition rules from the attacker. For static inclusion, we only consider specific
contexts, hence very specific synthesis rules, guided by the form of the underlying
frames. For the active case, we transform protocol rules in order to pre-compute
all necessary composition steps. This flattening step was already used in e.g. [3,
16], and is quite intuitive.

Example 7. Consider our Denning Sacco protocol presented in Example 1. Agent
B expects a message of the form u = {sign(〈a, b, x〉3, ska)}pub(skb). Either the
attacker obtains a message m of the expected form, or the attacker obtains sev-
eral components of it and forges the whole message. For example, it is sufficient
for him to obtain m1 of the form u1 = sign(〈a, b, x〉3, ska) and m2 of the form
u2 = pk(skb). Therefore, in addition to the (informal) protocol rule u → . . ., we
also consider the rule u1, u2 → Similarly, we also need to consider the rules
a, b, x, ska, pk(skb) → . . . and a, b, x, ska, skb →

More generally, given an abstract protocol rule r, we now define Flat(r) the
set of rules obtained by performing flattening on each fact. To decompose a
term, we follow its structure, and the structure of a variable is given by its
type. Moreover, when the other side of the process is not able to follow the
decomposition, this leads us to a failure rule.

504 V. Cortier et al.

Definition 8. Given a term u ∈ T0(Σc, C0
 N
 X), we say that u is decom-
posable when either u ∈ X and δP(u) is not an initial type; or u ∈ C0
 N
 X .

A variable of non initial type is decomposable since it may be instantiated
by a non atomic term which, in turns, may have been obtained by composition.
Given att(u, v) with u decomposable, and let f ∈ Σc be such that δP(u) =
f(τ1, . . . , τk), split(att(u, v)) = (f; {att(x1, y1), . . . , att(xk, yk)};σP ;σQ) where

– x1, . . . , xk are fresh variables of type τ1, . . . , τk, σP = mgu(u, f(x1, . . . , xk));
– y1, . . . , yk are fresh variables, σQ = mgu(v, f(y1, . . . , yk)).

Note that σP exists and is necessarily a quasi-well-typed substitution. By
convention, we assume that mgu(u, u′) = ⊥ when u and u′ are not unifiable.

Let r be an abstract rule of the form Pre −→ Add;Del with f = att(u, v) ∈ Pre
such that u is decomposable and split(f) = (f, S, σP , σQ). The decomposition
of r w.r.t. f , denoted decom(r, f), is defined as follows:

1.
(
(Pre � f) ∪ S −→ bad

)
σP in case σQ = ⊥;

2.
(
(Pre � f) ∪ S −→ Add;Del

)
(σP
 σQ) otherwise.

Then, decomposition is applied recursively on each rule.

Flat(r) = {r} ∪ Flat({decom(r, f)|f = att(u, v) ∈ Pre(r) with u decomposable})

Concretization. Given an abstract rule r, we denote vars left(r) the variables
occurring on the left (first parameter) of a predicate occurring in r, i.e.

vars left(att(u, v)) = vars(u); and vars left(statec
P,Q(σP , σQ)) = vars(img(σP)).

Given a substitution σ grounding for r, the application of σ on an abstract state
is the concrete state obtained by simply composing the substitutions, i.e.

stc
P,Q(σP , σQ)σ = stc

P,Q(σ ◦ σP , σ ◦ σQ).

Given an abstract protocol rule r, its concretizations Concrete(r) simply con-
sist in all its positive and negative concretizations. The positive concretizations
are all its instantiations that are quasi-well-typed w.r.t. the left side of the rule.

Concrete+(r) = {rσ | σ substitution such that rσ only involves messages
with constants in C� andδP(xσ) � δP(x) for any x ∈ vars left(r)}

Similarly to the static case, we need to make sure that we can detect when P
and Q are not in trace inclusion, and we therefore consider some additional
rules. Given an abstract protocol rule r = Pre −→ Add;Del, Concrete−(r) is
the set of planning rules that contains: f1, . . . , fk −→ bad for any sequence of
facts f1, . . . , fk such that f1, . . . , fk left-unify with Pre with substitution σL and
u ∈ T0(Σc,N ∪C�) for any att(u, v) ∈ AddσL, and such that one of the following
conditions holds:

– f1, . . . , fk does not right-unify with Pre;
– f1, . . . , fk right-unify with Pre with substitution σR but v ∈ T0(Σc,N ∪ C�)

for some att(u, v) ∈ AddσR.

Efficiently Deciding Equivalence for Standard Primitives and Phases 505

Main Result. Our main technical result states that our encoding is sound and
complete: two protocols are in trace inclusion if, and only if, the corresponding
planning system has a solution. Moreover, when a witness of non-inclusion exists,
we are able to bound the length of the resulting plan. Below, nbin(P) (resp.
nbout(P)) denotes the number of inputs (resp. outputs) occurring in P whereas
maxphase(P) is the maximal integer occurring in a phase instruction in P.

Theorem 2. Let P a protocol type-compliant w.r.t. (TP , δP), and Q be another
protocol. We consider the following set R of concrete rules:

Concrete(RAna ∪Flat(Rule(P,Q)))∪Rphase ∪Rtest1
fail ∪Rtest2

fail ∪Ratom
fail ∪Rcheck

fail ∪Rpub
fail

Let Θ = 〈Fact0,FactC�(P,Q),R〉 and Π = 〈Θ, {bad}〉. We have that P �t Q if,
and only if, Π has a solution of length

1 + nbin(P) + nbout(P) + maxphase(P) + depth(δP(P)) × [1 + nbin(P) + N]

where N is the number of names occurring in P having a key type, i.e. such that
δP(n) (resp. pub(δP(n))) occurs in key position of an encryption in δP(P).

Proof (Sketch). It is rather easy to establish that a solution to the planning prob-
lem defines a witness of non trace inclusion. Conversely, thanks to Theorem1, if
P �t Q, then there exists a quasi well-typed witness of non trace inclusion, that
uses at most three constants (besides the constants of P and Q). This witness
guides the definition of a plan of Π. Establishing a not too coarse bound on its
length requires some care. It relies on the flattening of the protocol and the fact
that the plan can mimic the computation of several messages in parallel. ��

5 Algorithm

Similarly to the algorithm presented in [16], we decide trace inclusion by
applying graph planning and SAT-solving techniques to the planning problem
that encodes trace inclusion (thanks to Theorem 2). Given a protocol P, type-
compliant w.r.t. (TP , δP), and a protocol Q, our algorithm proceeds as follows.

1. It first computes the corresponding abstract rules, namely Flat(Rule(P;Q))∪
RAna and the initial state Fact(P,Q).

2. It then applies a planning graph algorithm, a standard technique to solve
planning problems (see e.g. [7]). The only difference is that, for efficiency
reasons, we do not construct the planning problem Π a priori but instead,
we compute it “on the fly”, while building the associated planning graph. This
planning graph over-approximates the possible solutions by executing several
actions in parallel, even if they may be incompatible. Some incompatibilities
are recorded and propagated through so-called mutex. The planning graph
is deemed to capture all possible plans. More precisely, the planning graph
built until depth k captures all possible plans of length at most k.

506 V. Cortier et al.

3. In case no fact bad has been reached while building the planning graph, we
can immediately conclude that P �t Q. Otherwise, since the planning graph
over-approximates the possible executions, we need to check that bad is truly
reachable. This is done by encoding each path leading to bad as a SAT for-
mula. We then call the SAT solver mini-SAT to decide its satisfiability. In
case bad is indeed reachable, mini-SAT provides a solution that is translated
back to a witness of non-inclusion. To improve termination, we check acces-
sibility of a state containing bad as soon as it appears in the graph, even if
the construction of the graph is not completed yet.

Termination. The algorithm defined above may not terminate. The planning
graph contains facts of the form att(u, v) where u must be (quasi) well-typed.
There is therefore only a finite number of such u. However, the planning graph
construction may introduce several facts of the form att(u, v1), . . . , att(u, vk),
where the vi get arbitrarily large. We exhibit some (contrived) examples where
the algorithm does not terminate (see AppendixA). [16] suggests that termina-
tion could be enforced by checking at each step (thanks to the SAT-solver) that
each node of the planning graph is indeed reachable. This would however not be
practical. Instead, we can enforce termination thanks to the bound provided in
Theorem 2 that also bounds the maximal depth of the planning graph that needs
to be considered. Indeed, it is sufficient to simply stop the construction of the
planning graph as soon as the bound is reached. The interest of this approach is
that we guarantee termination at no cost (computing the bound is immediate).
In practice, the planning graph is typically much smaller than this bound.

SAT-Equiv. We have implemented our new algorithm in the tool SAT-Equiv,
extending it to protocols with phases and all the standard cryptographic prim-
itives and guaranteeing termination. Moreover, we significantly improve its effi-
ciency by rewriting parts of the codes and modifying the data structure.

6 Experiments

In this section, we analyse several protocols of the literature and compare the
results obtained using different tools. We ran our experiments a single Intel
3.1 GHz Xeon. We limit the memory to 128 Go (MO stands for memory out)
and the execution time to 24 h (TO stands for time out).

For all the considered protocols, we analyse strong secrecy of the exchanged
key or nonce, as for Example 5, except for the passport protocol (PA), for which
we prove anonymity as in [2]. We progressively increase the number of sessions
in order to consider a semi complete scenario, where Alice’s role is instantiated
by honest a talking to honest b or dishonest c and Bob’s role is instantiated
by b talking to a or c. This typically corresponds to 7 sessions in the case of a
symmetric key protocol (with 3 roles).

Efficiently Deciding Equivalence for Standard Primitives and Phases 507

Fig. 2. Comparison of SAT-Equiv with the other tools. We indicate the number of
sessions for which the tool fails (time out, memory out, or other issues). When we did
not reach the limit of the tool, we write >k to indicate that the tool can analyse more
than k sessions, and we indicate the analysis time for k. *See Sect. 6.2

6.1 Comparison with the Other Tools

Our experiments show a significant speed-up w.r.t. the original version of SAT-
Equiv [16]. Our new is 100 faster in average, allowing to analyse about twice more
sessions, as exemplified in Fig. 2. We compare SAT-Equiv with other tools of the
literature that decide equivalence for a bounded number of sessions, namely Spec
[25], Akiss [8] and Deepsec [11]. We did not include APTE in our study [9] as
it is now subsumed by Deepsec. For each protocol, we progressively increased
the number of sessions until we reached a time out. The overall results of our
experiments are summarized in Fig. 2. They show a significant speed-up even
w.r.t. the very recent Deepsec tool. Note however that Deepsec covers more
protocols (with else branches, or not type compliant), except if they include
phases. Deepsec can also be parallelized thus the analysis time can be divided
by the number of available cores. The detailed results for the Denning-Sacco
protocol are below.

Denning-Sacco Spec Akiss Deepsec CSF’17 SAT-Equiv

3 12 s 0.08 s <0.01 s 0.3 s 0.07 s 42

6 5 h 9 s <0.01 s 1 s 0.1 s 64

7 MO 75 s <0.01 s 2 s 0.2 s 74

10 MO 0.01 s 4 s 0.3 s 114

21 18 s 60 s 1.3 s 216

35 TO 9 min 6 s 344

84 13 h 164 s 792

98 TO 6 min 920

210 4 h 20 1942

508 V. Cortier et al.

The 2nd column for SAT-Equiv indicates the theoretical bound on the length
of the planning graph, as given by Theorem2. This illustrates that this bound
remains reasonable although our tool actually terminates before reaching it.

6.2 Towards an Unbounded Number of Sessions

Although equivalence is undecidable in general for an unbounded number of ses-
sions, [13] exhibits a decidability result, for type-compliant protocols that have
an acyclic dependency graph. Intuitively, the dependency graph captures how
a message expected as input may be built (and therefore may depend) from
messages sent as output of the protocol. Decidability is proven by showing that
a (minimal) attack trace may be mapped to this dependency graph. Looking at
the dependency graphs of the Denning-Sacco and the Needham-Schroeder sym-
metric key protocols, we deduce that it is sufficient to analyse respectively 42
and 94 sessions. Thanks to the efficiency of SAT-Equiv, we can easily analyse 42
sessions of Denning-Sacco (in 10 s). We can therefore deduce from [13] that the
protocol remains secure even if the considered sessions are arbitrarily replicated.
The case of the Needham-Schroeder protocol requires a bit more work as 94 ses-
sions is slightly out of reach of SAT-Equiv. However, we noticed that, according
to [13], we do not need to analyse 94 full sessions. Instead, some of them may be
truncated (a minimal attack will use only the first step for example). Since SAT-
Equiv can prove equivalence of these refined 94 sessions (in 20h30min), we can
again deduce from [13] that the protocol remains secure even if the considered
sessions are arbitrarily replicated.

As future work, we plan to optimize the bound on sessions induced by [13]
and automatically generate the desired scenario, in order to extend SAT-Equiv
to proofs of equivalence for an unbounded number of sessions.

A Examples of Non Termination

We exhibit two examples on which the original SAT-Equiv algorithm does not
terminate. Given a channel c, consider P (c) and Q(c) defined as follows.

P (c) := in(c, 〈x, a〉).out(c, 〈x, a〉)
Q(c) := in(c, 〈x, a〉).out(c, 〈〈x, x〉, a〉)

where a is a public constant and x a variable. We consider KP = {P (c1);P (c2)}
and KQ = {Q(c1);Q(c2)} for some public channel names c1, c2. Starting with
att(b, b) (with b a public constant in the initial knowledge of the attacker), the
following facts will be successively added when computing the planning graph:

att(〈b, a〉, 〈b, a〉), att(〈b, a〉, 〈〈b, b〉, a〉), att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉), . . .

Actually, att(〈b, a〉, 〈〈b, b〉, a〉) can be added in two different ways: either con-
sidering the output on c1, or the one on c2. Therefore this fact will not be
put in mutex with the other ones. In particular, the fact att(〈b, a〉, 〈〈b, b〉, a〉)

Efficiently Deciding Equivalence for Standard Primitives and Phases 509

and the state fact indicating that the process on channel c1 has not yet started
are not in mutex, and can be used to trigger the planning rules leading to
att(〈b, a〉, 〈〈〈b, b〉, 〈b, b〉〉, a〉). Since the term computed on the Q’s side grows at
each step, this computation is endless.

Here, KP is not trace included in KQ: an attacker can distinguish between b
and 〈b, b〉. So, as soon as a message is outputted, the resulting frames are not in
static inclusion. Therefore, termination can be retrieved by enforcing SAT-Equiv
to stop the exploration of the planning graph as soon as an attack is found.

We can turn this example into a more complex one on which the original
SAT-Equiv will not terminate even if we decide to stop the exploration of the
planning graph as soon as an attack is found. Consider the processes P0(c), P1(c)
and Q1(c) given below. We assume that k is name representing a symmetric
secret key, whereas a, b, c are public constants.

P0(c) = in(c, x).out(c, senc(x, k))
P1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).P (c)
Q1(c) = in(c, 〈senc(a, k), senc(b, k), senc(c, k)〉3).Q(c)

We consider the configurations K′
P = {P0(c0);P0(c1);P1(c2);P1(c3)} and K′

Q =
{P0(c0);P0(c1);Q1(c2);Q1(c3)} where c0, c1, c2, c3 are public channel names.
Processes P0 on channels c0 and c1 are used as oracles. Roughly, we can get two
ciphertexts among the three ciphertexts: senc(a, k), senc(b, k), and senc(c, k). It
is however not possible to get the three of them. Noticing this, it is then easy to
see that KP and KQ are trace included.

However, as in the previous example, the planning graph is not precise enough
to detect that it is not possible to obtain these three ciphertexts. Once the
inputs on channel c2 and c3 are executed, we reach a situation similar to the one
discussed in the previous example. Each time bad will be added into the planning
graph, our SAT encoding will tell us that this state is not truly reachable (but
only exists in the over-approximation). Thus, we will continue to explore the
planning graph for ever since no attack will be found (the protocols are trace-
equivalent).

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of 28th ACM Symposium on Principles of Programming Languages,
POPL 2001, pp. 104–115. ACM (2001)

2. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of 23rd Computer Secu-
rity Foundations Symposium (CSF 2010), pp. 107–121. IEEE Computer Society
Press (2010)

3. Armando, A., Compagna, L.: Sat-based model-checking for security protocols anal-
ysis. Int. J. Inf. Secur. 7, 3–32 (2008)

4. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: Proceedings of 38th IEEE
Symposium on Security and Privacy (S&P 2017). IEEE Computer Society Press
(2017)

510 V. Cortier et al.

5. Blanchet, B.: Symbolic and computational mechanized verification of the
ARINC823 avionic protocols. In: Proceedings of 30th IEEE Computer Security
Foundations Symposium (CSF 2017), pp. 68–82. IEEE Computer Society Press
(2017)

6. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Logic Algebr. Program. 75(1), 3–51 (2008)

7. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artif. Intell.
90, 281–300 (1997)

8. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence proper-
ties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
108–127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-
2 6

9. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 50

10. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theoret. Comput. Sci. 492, 1–39 (2013)

11. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence prop-
erties in security protocols - theory and practice. In: Proceedings of 39th IEEE
Symposium on Security and Privacy (S&P 2018), pp. 525–542. IEEE Computer
Society Press (2018)

12. Chrétien, R., Cortier, V., Delaune, S.: Typing messages for free in security proto-
cols: the case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6 26

13. Chrétien, R., Cortier, V., Delaune, S.: Decidability of trace equivalence for proto-
cols with nonces. In: Proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF 2015). IEEE Computer Society Press (2015)

14. Chrétien, R., Cortier, V., Dallon, A., Delaune, S.: Typing messages for free in
security protocols. Technical report (2018)

15. Compagna, L.: SAT-based model-checking of security protocols. Ph.D. thesis, Uni-
versità degli Studi di Genova and the University of Edinburgh (joint programme),
September 2005

16. Cortier, V., Dallon, A., Delaune, S.: SAT-equiv: an efficient tool for equivalence
properties. In: Proceedings of the 30th IEEE Computer Security Foundations Sym-
posium (CSF 2017). IEEE Computer Society Press, August 2017

17. Cortier, V., Dallon, A., Delaune, S.: Efficiently deciding equivalence for standard
primitives and phases. Research report, June 2018. https://hal.archives-ouvertes.
fr/hal-01819366

18. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: A type system for privacy prop-
erties. In: Proceedings of 24th ACM Conference on Computer and Communications
Security (CCS 2017), pp. 409–423. ACM (2017)

19. Cortier, V., Grimm, N., Lallemand, J., Maffei, M.: Equivalence properties by typing
in cryptographic branching protocols. In: Bauer, L., Küsters, R. (eds.) POST 2018.
LNCS, vol. 10804, pp. 160–187. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89722-6 7

20. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A compre-
hensive symbolic analysis of TLS 1.3. In: Proceedings of 24th ACM Conference on
Computer and Communications Security (CCS 2017), pp. 1773–1788. ACM (2017)

21. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 4, 435–487 (2008)

https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-28869-2_6
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/978-3-662-44584-6_26
https://doi.org/10.1007/978-3-662-44584-6_26
https://hal.archives-ouvertes.fr/hal-01819366
https://hal.archives-ouvertes.fr/hal-01819366
https://doi.org/10.1007/978-3-319-89722-6_7
https://doi.org/10.1007/978-3-319-89722-6_7

Efficiently Deciding Equivalence for Standard Primitives and Phases 511

22. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoret. Comput. Sci.
367(1–2), 162–202 (2006)

23. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings 10th European
Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

24. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

25. Tiu, A., Dawson, J.: Automating open bisimulation checking for the spi calculus.
In: Proceedings of 23rd IEEE Computer Security Foundations Symposium (CSF
2010), pp. 307–321. IEEE Computer Society Press (2010)

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

DigesTor: Comparing Passive Traffic
Analysis Attacks on Tor

Katharina Kohls1(B) and Christina Pöpper2

1 Ruhr-University Bochum, Bochum, Germany
katharina.kohls@rub.de

2 New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
christina.poepper@nyu.edu

Abstract. The Tor anonymity network represents a rewarding target
for de-anonymization attacks, in particular by large organizations and
governments. Tor is vulnerable to confirmation attacks, in which pow-
erful adversaries compromise user anonymity by correlating transmis-
sions between entry and exit nodes. As the experimental evaluation of
such attacks is challenging, a fair comparison of passive traffic analysis
techniques is hardly possible. In this work, we provide a first compar-
ative evaluation of confirmation attacks and assess their impact on the
real world. For this purpose, we release DigesTor, an analysis framework
that delivers a foundation for comparability to support future research
in this context. The framework runs a virtual private Tor network to
generate traffic for representative scenarios, on which arbitrary attacks
can be evaluated. Our results show the effects of recent and novel attack
techniques and we demonstrate the capabilities of DigesTor using the
example of mixing as a countermeasure against traffic analysis attacks.

Keywords: Tor · Traffic analysis · Confirmation attack · Mixing

1 Introduction

With more than 2 million daily users [29] and 7000 active relays, Tor [28] is
the most prominent example of an anonymity system that took the step from
a scientific concept into the real world. Tor protects user privacy on the Inter-
net by separating the origin of a connection from the requested services using
onion-encrypted circuits. This mechanism cannot differentiate between benign
use cases like censorship circumvention and malicious or illegal activities, but it
protects the identities of both groups equally. While legal authorities are moti-
vated in revealing identities to prosecute criminal behavior, censoring authorities
can apply the same techniques to identify the origin of unwanted contents or links
and thereby maintain control over the dissemination of information.

The existence of successful de-anonymization attacks against Tor is tremen-
dously impactful because of its broad use. As a consequence, many classes of
attacks have been introduced that attempt to reveal sensitive information about
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 512–530, 2018.
https://doi.org/10.1007/978-3-319-99073-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_25&domain=pdf

DigesTor 513

entities in the network [1,8,19]. These academic approaches are an essential
building block for improving Tor, by more clearly defining the threat model it
must address. At the same time, we may wonder if documented research attacks
fully encapsulate the threat model experienced by Tor in practice. Scientific
attacks can pose a serious threat and affect millions of users, but are driven by
a focus on novelty rather than realism. This leads to a fundamental challenge of
estimating an attack’s real-world impact.

Our focus in this work is on passive traffic analysis attacks. These attacks are
a current concern to the Tor community, in which user anonymity is compromised
by an adversary correlating transmissions at the entry and exit of the circuit [20,
26]. Recent work [1,2,14,16] has demonstrated that an autonomous system (AS)-
level adversary can successfully conduct confirmation attacks, correlating the
characteristics of transmitted data to identify connections within the network.

The weakness to correlation is aggravated by routing attacks and nation-state
adversaries with capabilities to surveil substantial fractions of the network. Bor-
der Gateway Protocol (BGP) attacks like RAPTOR [27] can increase the effi-
cacy of confirmation attacks by directing traffic through an adversarial AS. This
allows adversaries to have a near-total view of the network, a threat model not
addressed by Tor. Mitigating traffic confirmation attacks, in particular against
a global adversary, remains an open research problem [30].

Tor threat research is lacking comparable evaluation methodologies. Instead,
analyses have been very divergent, ranging from theoretical models on the basis
of statistical assumptions [3,4], to approximate simulation systems [11], to exper-
iments on the live Tor network [32,33]. Theoretical models provide upper and
lower bounds, but are limited by the assumptions made. Simulated systems can
incorporate more real-world characteristics and often analyze network charac-
teristics at a realistic scale, but only approximate certain parameters like the
dynamics of an underlying network. The complexity of real-world network con-
ditions makes it impossible to define holistic models that cover all potential
cases, a fact that only allows for an estimation of effects on theoretical models
and simulations. In contrast, experiments on the live Tor system demonstrate
realistic conditions. However, especially in the context of traffic analysis attacks,
work on the live network puts users at risk and is ethically discouraged [31].

Beyond the individual strengths of each of these methods, their diversity
has led to a fundamental drawback: it is difficult to compare different attacks
or understand their combined impact. This lack of comparability hinders the
ability to understand existing attack vectors and progress defensive research in
response.

We introduce DigesTor to address this fundamental shortcoming. DigesTor
is an evaluation framework that guarantees comparability for recent, current,
and future passive traffic analysis attacks, combining the strengths of simulated
and real-world evaluation. The framework runs a virtual private Tor network
to generate traffic for representative scenarios on which arbitrary attacks can
be evaluated. The network uses virtual machines with individual CPU cores for
each node and transmissions of realistic traffic through the actual network stack.

514 K. Kohls and C. Pöpper

Intermediate links simulate realistic network conditions using traffic shaping
with parameters from empirical measurements in the live Tor network. This
experimental setup increases realism over artificial traffic generation in simulated
environments [11], can provide realistic link models, and satisfies the ethical
guidelines for Tor research.

DigesTor includes a suite of state-of-the-art attack techniques that we eval-
uate using our framework. As a starting point for future work, this analy-
sis provides a first performance comparison of existing attacks for their de-
anonymization capabilities. Also, we demonstrate DigesTor by evaluating the
use of delays as a potential countermeasure. The results of our attacks are sum-
marized on https://digestor.selfip.org to demonstrate the features of our frame-
work.

In short, our major contributions are:

– We release DigesTor, a comprehensive evaluation framework for passive traffic
analysis attacks on Tor. This framework provides a basis to enable a fair
comparison of existing and future attacks, is made publicly available, and
includes an extensive corpus of transmission traces.

– We demonstrate the usefulness of DigesTor to evaluate the performance of
state-of-the-art attack techniques. This leads to a first empirical overview of
attack performance for different exemplary use cases and is a starting point
for the development of future techniques.

– We use DigesTor to analyze low-latency mixing as a potential countermeasure
to passive traffic analysis attacks. Results show that mixing, in fact, can
counter confirmation attacks at a limited performance overhead only.

2 Traffic Analysis in Tor

Tor is a circuit-based transmission system that selects paths over network relays
to form circuits. Usually, a circuit consists of one entry node, one middle node,
and one exit node. Through successive layers of encryption to each relay, Tor
separates the source of data from its destination, offering anonymity. We survey
the attacks known to exist against Tor as follows and discuss two empirical
adversary models.

2.1 Traffic Analysis Attacks

Tor defends against a set of known attack vectors, for instance, by ensuring
unlinkable byte patterns through layered onion encryption. However, Tor ensures
low-latency transmissions that trade performance for vulnerability against traffic
analysis attacks. We introduce different classes of such attacks as follows.

In general, traffic analysis attacks exploit side channel information of
encrypted transmissions through the network. This allows an adversary to mon-
itor activities in the underlying network and reveal related connections. We dis-
tinguish the attack type, if an attack is (A/P) active (�) or passive (�), adver-
sary model (Adv.) (��: partial adversary, �: global adversary), the evaluation

https://digestor.selfip.org

DigesTor 515

setup (�: evaluated in live Tor, ��: reduced private network model, �: theoret-
ical model), the consideration of background noise (�: real noise, ��: empirical
noise, �: statistical noise), and the consideration of different application types
(App.) (�: yes, �: no). Furthermore, we document whether a traffic metadata
feature was used and define an attack metric (Corr: Correlation, MI: Mutual
Information, Enc: Encoding, Cell: Cell Manipulation, Blend: Blending, Stat:
Statistical Analysis) (Table 1).

Table 1. Overview of end-to-end confirmation attack classes. In the Traffic Analysis
Framework, we focus on passive attacks and flow comparison attacks.

Attack Ref. A/P Adv. Setup Noise App. Feature Metric

Flow comp. [15,26] � � �� �� � iat Corr

[14,35] � � �� �� � iat MI

IXP samples [21] � �� � � � iat Stat

Disclosure [3,4,13,18] � � � � � - Stat

Watermarking [1,7,8,32] � �� � � � iat Corr

Coding [16,17,24,34] � �� � � � - Enc

Protocol [6,9] � �� � � � - Cell

n-1 [5,23,25] � � � � � - Blend

Passive Flow Comparison. A passive adversary monitors traffic at strate-
gic points in the network and tries to detect related streams to de-anonymize
users. This is accomplished through similarity/distance metrics that reveal rela-
tions between traffic measured at the source (client) and destination (server)
of a connection. For this comparison, features like the timing between arriving
packets [14,26] are derived from unencrypted packet headers or transmission
dynamics.

Further Attack Classes. In the literature we find further classes of pas-
sive attacks, e. g., disclosure attacks [4] or IXP (Internet exchange point) sam-
pling [21] use statistical methods to compute the probability of two streams being
related. An active adversary extends the scope of passive attacks by interference
with the traffic stream, e. g., for injecting watermarks [1] or specific codes [16]
that help to distinguish individual streams.

Even though the above attack landscape is motivated by the shared goal of
learning sensitive information about anonymity systems and their users, we see a
high diversity in their evaluation approaches. One example for this are statistical
attacks, where we face evaluation results either from the live network [21] or a
fully theoretical setup [4]. DigesTor overcomes this diversity by providing a con-
sistent evaluation framework for passive flow comparison attacks. In particular,
the use of DigesTor enables us to analyze the technical limitations of existing
attacks. Furthermore, we introduce two empirical adversary models as follows.

516 K. Kohls and C. Pöpper

2.2 Empirical Adversary

Besides their technical limitations, the success of traffic analysis attacks further
depends on the adversarial network coverage, i. e., the probability of monitoring
the correct Tor relays increases with higher coverage [27]. In a worst-case sce-
nario, a global adversary has access to all traffic in the network. While this is a
highly restrictive assumption and not considered in Tor’s original attacker model,
recent empirical studies reveal the potential threat of colluding and nation-state
adversaries that achieve a significant coverage of the network. We derive two
empirical attacker models from this:

1. Partial Passive Attacker: Approximately 40% of Tor circuits are vulnerable to
confirmation attacks by a single malicious AS [22]. This threat represents the
view of an “average” adversary—or the impact of compromising an individual
AS at the core of the Internet.

2. Strong Partial Passive Attacker : When ASes are considered on the state level,
an adversarial nation could potentially compel multiple ASes within its gov-
ernance to collude in correlation. Such an adversary could observe as many
as 85% of circuits [27].

However, for our experiments (see Sect. 5), we consider the global passive adver-
sary as the upper bound. This encompasses weaker models, where a decreased
network coverage limits the success probability of an attack (see Sect. 4.4).

3 DigesTor Framework

DigesTor is an open source analysis framework that provides comparability for
the evaluation of passive traffic analysis attacks. We provide a high-level overview
and introduce its evaluation set in the following.

3.1 System Components

DigesTor provides two core features: a Traffic Analysis Framework and a Virtual
Private Tor Network. The Traffic Analysis Framework applies a set of attack
techniques from related work to traces of our experimental network and outputs
a performance assessment regarding the success of existing confirmation attacks.
The framework covers five comparison metrics, which estimate the similarity or
distance between observations in the network, i. e., pairs of client and server
traces.

The Virtual Private Tor Network is used to generate network traffic that
corresponds to typical use case scenarios. The traces are the monitored traffic
streams an adversary would gather in a confirmation attack and are thus used
as an input to generic passive end-to-end confirmation attacks. We use a virtu-
alized private network for two main reasons. First, isolating the setup protects
users of the live Tor network and ensures we do not violate the existing ethical
guidelines for Tor research [31]. Second, the technical characteristics of a virtual

DigesTor 517

setup provide significant advantages compared to a simulated setup. Using vir-
tual machines for all nodes in the network, we utilize the actual protocol stack
and transmit realistic application data. To improve the realism of our private
network, we use empirical link models to imitate transmission delays monitored
in the live Tor network.

3.2 Traffic Analysis Framework

In the following, we detail the traffic analysis component of DigesTor. Recent
work suggests two types of metrics for flow comparison attacks. Correlation-
based [15,26] attacks compute the similarity in monitored traffic and iden-
tify relations between streams using the inter-arrival times, i. e., time periods
between packets. Mutual information [14,35] is a measure of the dependence
of two streams and estimates similarity based on the entropy of observed pairs.
Again, inter-arrival times are mentioned as a traffic feature for this type of attack.

From the current state of passive end-to-end confirmation attacks, we adopt
the Pearson correlation coefficient (P) and Mutual Information (MI). We extend
this by the Root-Mean-Square Error (RMSE) as a measure of distance between
two observations, and a scalar comparison (SC) of features, in which we compare
the sum of a metadata vector. Moreover, we sample an optional preprocessing
step with the combination of the principal component analysis and Pearson
correlation (PCA-P).

Eventually, we measure the success of an attack through the number of cor-
rectly guessed client/server connections, defined as success rate, and compare its
improvement over random guessing, defined as ΔRG. The success rate describes
the relative number of correct guesses in a setup, whereas the ΔRG indicates the
strength of an attack. Furthermore, we use the area under the curve (AUC) for
CDFs (cumulative distribution function) that summarize the results for combi-
nations of multiple scenario setups. The AUC is a measure of the robustness of
a successful attack, i. e., a smaller AUC indicates higher success rates.

3.3 Helpers

Besides the core components of DigesTor, we utilize a parser for transforming
raw traces of network traffic to aggregated metadata vectors. More precisely, we
extract a set of five features fi: (f1 = cnt) packet counts, (f2 = iat) inter-
arrival-timing, (f3 = len) packet length, (f4 = ttl) time to live, and (f5 = wis)
TCP window size. This metadata can be read from the header information of a
TCP/IP packet (len, ttl, wis) or derived from packet occurrences (cnt, iat).

Using a window-based aggregation [15,26], an average of all packets falling
into one window is collected, e. g., for a measurement of 10 s and a window
length of 0.1 s, we aggregate data in 100 equidistant windows. This results in
time vectors of metadata information (fi,1, fi,2, · · ·, fi,n) with features fi over n
time windows.

This feature set is parsed for each connection and filtered in the downlink
direction (data flow from server to client). The feature set is non-exhaustive

518 K. Kohls and C. Pöpper

but extends the standard features in the literature (packet counts, inter-arrival
times) with three more characteristics (packet length, window size, time to live)
whose relevance will be part of the experimental analysis in Sect. 5.

4 Experimental Setup

In our experiments, we perform a comparative performance evaluation of attack
metrics and demonstrate DigesTor by analyzing mixing as a potential counter-
measure against traffic analysis attacks. We introduce the experimental setup,
define the analyzed use case scenarios, and discuss the influence of Tor’s network
infrastructure as follows.

4.1 Technical Specification

Our experimental network (cf. Fig. 1) is defined by the different node types, i. e.,
clients, servers, and Tor relays, and by the topology that connects them.

Tor Network

Client

Bridge Guard
Middle,

Authority
Exit,
(Mix)

Servers
1GB.bin

1Mbit/s 1Mbit/s
Traffic
shaping

tcpdump

Fig. 1. Clients connect to servers through circuits of three relays. The bridge applies
empirical traffic shaping for each client connection individually. Servers provide random
binary files for downloads or proxy web requests [10].

Nodes. Entities in the network are configured to serve as (i) clients that make
requests through Tor, (ii) servers that provide requested data, and (iii) relay
nodes that build the private Tor network. Each client connects to a predefined
server and follows a use case scenario which includes either download requests
via the cURL library or website browsing using the browser automation frame-
work Selenium and a headless browser (developed as part of Mozilla Firefox).
Requests are made through the SOCKS5 proxy at port 9050. They are synchro-
nized via NTP for all clients, i. e., experiments start and end at the same time.
The server nodes provide file downloads over HTTP at port 80 and reverse proxy
requests to a set of Alexa Top 50 websites at port 80 and 443. We use three relay
nodes of which one is configured as guard, one as middle and authority, and one
as exit relay. The relay, authority, and client nodes run Tor version 0.2.9.8.

DigesTor 519

Network. We use an empirical link model for the downlink connection of all
clients. The link model adds per-packet delays drawn from measurements of
arbitrary circuits in the live Tor network, which are individually assigned for each
connection. This traffic shaping is accomplished by a bridge interface, where each
client connection samples from an individual delay distribution. For the network
topology either a directed setup, using 1:1 connections between n clients and
n servers, or a grouped setup, using n:2 connections between n clients and two
servers, is used. The number of relays is fixed to three.

Hardware. The VMs run in a cloud space hosted in one central location, each
node is assigned a distinct CPU core. The full setup can utilize up to 63 cores,
132 GB of RAM, and 504 GB of disk space. We capture the traffic of all client and
server nodes using tcpdump. Raw network traces are gathered on one central file
server for further processing outside the Tor network environment and therefore
do not interfere with the performance of network nodes.

4.2 Scenarios

We test individual topologies of 2 to 30 clients to 2 to 30 servers in a Directed and
of 2 to 30 clients to two servers in a Grouped setup. Furthermore, we distinguish
three individual application models:

– Static download. The user requests a file from the server via cURL and
permanently loads it during the entire duration of the measurement.

– Random download. Each user requests a file from the server via cURL,
whereas on/off periods for the downloads are randomized for the entire dura-
tion of the measurement. Off periods are uniformly distributed between 2 s
to 10 s, on periods are uniformly distributed between 2 s to 5 s.

– Browsing. From the Alexa Top 50 web pages, each client requests a random
set of sites using a scripted headless browser. Between site requests, clients
wait for a random period with a uniform distribution between 2 s to 5 s before
the next request is sent.

We emphasize that the randomization of on/off periods can influence the
results, as a higher variance in the duration of off periods helps to distinguish
individual transmissions. Consequently, our results can only represent the param-
eter choices made above. We discuss the definition of more sophisticated use case
scenarios in Sect. 6.

4.3 Comparison of Attack Metrics

In the following, we apply the Traffic Analysis Framework (combinations of fea-
tures cnt,iat,len,ttl,wis and metrics P,MI,RMSE,SC,PCA-P) to all combina-
tions (directed, grouped; static, random, browsing) and an increasing number
of clients n = 2 to 30; each experiment is repeated for five random repetitions.
We compute the general attack success (AS: how many connections were guessed

520 K. Kohls and C. Pöpper

correctly?), the improvement over random guessing (ΔRG: how much better was
the attack compared to an uneducated guess?), and the area under the curve
(AUC: how convincing and robust was a result?) of the cumulative distribution
function (CDF) of results.

4.4 Tor Network Infrastructure

While our experimental setup covers the technical comparison of attack metrics
and traffic features, we are further interested how Tor’s network infrastructure
influences the organizational aspects of an attack. Therefore, we discuss the
scalability of our setup and the relay selection process as a preliminary step to
the performance comparison in Sect. 5.

Scalability. In the setups we demonstrate, clients run at a maximum rate of
1 Mbit/s. For the described Grouped and Directed scenarios, this translates into
a throughput of 30 Mbit/s passing through each of the relays. This scale places
these relays within the top 10% of active Tor relays by bandwidth. Experiments
with fewer active clients would approximate the traffic of less active relays, with
approximately 2

3 of relays transmitting at least 4 Mbit/s of traffic, the level of
traffic we simulate in our smallest experiments. We do not model the number
of active connections experienced by Tor relays. While we can expect a total of
500000 active clients at any given point [12], it is less clear how those clients
are distributed across relays and bridges. However, the median relay will have
less than 50 active clients regardless of the distribution. With up to 30 parallel
connections our network setup achieves a similar relay workload.

Relay Popularity. Tor’s network infrastructure is skewed towards the countries
where we find the most Tor supporters, e. g., Germany (19.4%), the US (18.7%),
and France (14.2%) maintain more than half of the entire network. Further-
more, higher bandwidth relays are preferred in the circuit buildup procedure.
An attacker can benefit from these characteristics and focus on frequently used
nodes, e. g., it is possible to cover 75% of all selected exit relays by monitoring
approximately 26% of nodes (cf. Fig. 2). This situation supports the empirical
adversary models (Sect. 2) and is incorporated by the attack setup of DigesTor.

5 Evaluation

We use the above experimental setup of DigesTor for a first comparative analysis
to (i) derive the best performing metric and feature combinations for each setup,
compare the characteristics of different (ii) topologies and application types, and
(iii) analyze mixing as one possible countermeasure against traffic confirmation.
Finally, we (iv) give an overview of the takeaway messages of our evaluation.

DigesTor 521

0kB

50kB

100kB

150kB

0.0

0.5

1.0

1.5

0 50 100 150 200
Exit Nodes

Ba
nd

w
id

th
R

elay C
ounts [%

]

Avg. Bandwidth Bandwidth Relay Popularity

Fig. 2. Distribution of exit relay popularity and respective advertised bandwidth, mea-
sured for a total of 100,000 Tor standard circuits.

5.1 Metrics and Features

As initial research question, we address the performance comparison of attack
metrics and metadata features. Beginning with the overall global performance, we
get a first impression of the impact of confirmation attacks in generic scenarios.
We continue with an analysis of individual combinations of metrics and features
for all scenarios.

Global Performance. In our first evaluation step, we identify the overall best-
performing metrics and features for a combination of all scenario setups. Figure 3
summarizes the attack success, i. e., the relative number of successful connection
identifications, for all traces in the DigesTor corpus. Each box represents the
full performance range of a metric/feature, whereas we focus on the comparison
median (horizontal bar) results. We see that Mutual information (MI) provides
the best overall result (median = 0.48) in a global comparison. This result sum-
marizes the attack success for all combinations of MI with the given traffic fea-
tures and applies for all scenarios introduced in Sect. 4.2. In the comparison of
metadata features the time to live field (ttl) performs best (median = 0.44).

Individual Performance. Figure 4 highlights the performance of all individual
combinations of metrics and features. Darker tiles in the heat map indicate
a higher attack success at a specific experimental setup. Table 2 summarizes
these results and provides an overview of the best performing metric and feature
combinations for individual setups. We see that (MI,iat) performs best in a
global comparison, i. e., it is the most robust combination while performing 23%
better than random guessing. Overall, iat is the most reliable metadata feature
for most scenarios, whereas we see varying metrics for individual setups.

522 K. Kohls and C. Pöpper

0.00

0.25

0.50

0.75

1.00

SC PCA−P P RMSE MI cnt iat len ttl wis
Metric/Feature

R
el

. A
tta

ck
 S

uc
ce

ss

Fig. 3. Comparison of attack success for individual metrics (red) and features (blue)
for all topologies and applications combined. Results show the median (horizontal bar
in box) aggregated for 2 clients to 30 clients in comparison to the average success of
random guessing (dashed line). (Color figure online)

Table 2. Best performing metric and feature combinations. Results show the improve-
ment over random guessing (Δ RG), global performance (AUC), and average success
rate (AS) through all experiments.

Scenario Metric Feature Δ RG AUC AS

Directed P ttl 35% 0.72 0.49

Grouped MI iat 22% 0.50 0.55

Random RMSE cnt 52% 0.48 0.80

Static MI iat 16% 0.65 0.46

Browsing SC iat 7.4% 0.70 0.34

Global MI iat 23% 0.61 0.52

What Metric and Feature Combination Performs Best? Without any
prior knowledge of the use case and number of concurrent transmissions, MI/ttl
outperform an average random guessing attack. As soon as it is possible to adjust
to a certain scenario, the targeted combination of a metric and feature helps to
increase the improvement over random guessing.

5.2 Scenarios

Different topologies have two characteristics that influence the success of an
attack. First, grouped setups, where n clients connect to only 2 individual servers,
induce more noise through concurrent transmissions for traffic that is captured
at the server. Such noise complicates the application of comparison metrics and
destroys connection-individual parameters. One example for this is the attack
success for a random download in the directed (cf. Fig. 4(c)) and grouped (cf.
Fig. 4(d)) topology. We see that it is possible to distinguish connections even for
high user numbers in the directed setup (ΔRG = 35%), whereas we lose too much
information in the grouped experiments (ΔRG = 22%). Second, the number of

DigesTor 523

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

0.000.250.500.751.00

(a) Directed Static

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

0.000.250.500.751.00

(b) Grouped Static

MI P PCA−P RMSE SC
0

10
20

30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

(c) Directed Random

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

(d) Grouped Random

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

(e) Directed Browsing

MI P PCA−P RMSE SC
0

10
20

30

cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is cn
t

ia
t

le
nttlw
is

N
um

. C
lie

nt
s

(f) Grouped Browsing

Fig. 4. Average performance of all metrics and features for both topologies and all
application types. The heatmap indicates the relative attack success, ranging from 0,
no success, lighter to 1, high success, darker.

candidates for guessing a connection is limited to two serves in the grouped
setup. Consequently, we experience more stable results for grouped topologies
(AUC = 0.5) than in directed setups (AUC = 0.72) with overall more connection
candidates (Figs. 5 and 6).

524 K. Kohls and C. Pöpper

●

●
●

●

●

●
●

● ●

●

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Avg. Relative Success

C
D

F

● Random Static Browsing

Fig. 5. Cumulative distribution function of average attack success for the comparison
of three use case scenarios.

●

●

●
● ● ● ● ● ●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Avg. Relative Success

C
D

F

● Directed Grouped

Fig. 6. Cumulative distribution function of average attack success for the comparison
of directed and grouped network topologies.

What Scenarios Favor Attacks? Guessing on fewer candidates (grouped
topology) makes it easier to achieve positive success rates for an attack. At
the same time, it becomes harder to distinguish individual traffic characteris-
tics through simple comparison metrics. Our results show that random down-
loads, where a high amount of data is sent in individual patterns, provide the
best improvement over an uneducated guess. In combination with a setup that
reduces noise of concurrent transmissions, this leads to a successful attack even
for higher user numbers. The same does not apply to user-individual browsing,
where traffic patterns are unique but the amount of data sent is insufficient for
distinguishing connections reliably.

5.3 Countermeasures

We can counter traffic analysis by perturbing traffic features during the trans-
mission process. One example for this is mixing [35], where intended delays for

DigesTor 525

packets change the timing relations of a connection. As such countermeasures can
decrease a system’s performance, we analyze mixing concerning its protection
capabilities and performance impairments.

Implementation. We implement a mix within the Tor code and deploy it in
the exit relay of our experimental setup. The mix delays TLS records within Tor
before they are emitted for further transmission; it uses a defined delay duration
(time held back) and rate (relative amount affected). TLS records are, within a
Tor relay, closest to the transport layer on which an adversary monitors connec-
tions. We, therefore, expect a maximum effect on traffic analysis attacks. In the
following, we give an example for different mix delays (time added to sending of
TLS records) and mix rates (a portion of records affected by mixing). The mix
does not provide any differentiation of TLS records from different connections,
e. g., mixing is applied to a fraction of all records in the relay.

Results. At a static mix rate of 20% (directed network topology, static down-
load application), we achieve an AUC in the range of 0.9 to 0.95 for delay dura-
tions between 10 ms to 1 ms, which represents at least 20% improvement over
the unmixed attack success (AUC = 0.72). At the same time, we see that varying
mix rates do not influence the attack success significantly (Fig. 7).

0

200

400

600

170 180 190 200
Delay [ms]

Fr
eq

ue
nc

y

No Mixing 0.1ms 1ms 10ms

Fig. 7. Distribution of end-to-end delays measured in our experimental setup. Results
show slightly increasing round trip time for mixed setups, where we tested a static
mixing rate of 20% and increasing mix delays.

Moreover, we analyze the end-to-end delays for increasing mix delays at a
fixed rate of 20%. Results show slightly increased delays for mixed connections,
while the performance impairments are still in an acceptable range. Does Mix-
ing Counter Attacks? Our results support the concept of mixing, whereas the
delays can only protect a subset of metadata features. The achieved obfuscation
is sufficient for casual scenarios at an acceptable performance overhead, but at
this price cannot guarantee perfect traffic analysis resistance.

526 K. Kohls and C. Pöpper

5.4 Overview of Results

We summarize the results of our experimental evaluation as follows.

1. Metrics and Features Combined. For all topologies and applications we
found a metric and feature combination that outperformed random guessing
(Table 2). These combinations do not focus on a single traffic feature, hence,
an isolated obfuscation of metadata features cannot protect against traffic
analysis in general.

2. Topologies and Applications. Even though we found topologies and appli-
cations that hinder an attack, the attack framework outperformed random
guessing attacks by 26.48% on average (individual scenarios) and 23% in
generic scenarios.

3. Affordable Countermeasures. We use the comparative evaluation of
DigesTor to demonstrate low-latency mixing as a countermeasure to traf-
fic analysis attacks. Such effects can be achieved at minimal additional delays
of 1 ms, which renders this solution an actual option for the live system.

6 Discussion

After demonstrating the experimental benefits of our traffic analysis framework,
we now introduce how DigesTor can be used to support future research and what
limitations the system faces at the moment. Furthermore, we discuss the ethical
guidelines for this work and the potential of mixing as a countermeasure.

6.1 Goals of DigesTor

The goal of our evaluation framework is to accelerate the deployment of new
defenses. To achieve this, we must provide a set of conditions which appropriately
represent Tor’s infrastructure, but also operate at sufficient scale to approximate
the parameters of the real network.

How to Use DigesTor? The results of this work provide a first comparative
overview of attack metrics and metadata features. Our work supports future
research as follows.

– Trace Corpus. Our trace corpus represents standard topologies and appli-
cation types and can be used to evaluate generic passive attacks without
harming users of the live network. Furthermore, this once more supports the
comparability of results.

– Attacks. The traffic analysis framework already provides a representative set
of metrics and can be extended further by new attack metrics and metadata
features. This allows comparing new approaches with the success of existing
work.

– Defenses. Following the example of mixing as a countermeasure, future
defensive research can use the performance comparison to assess the effects
of novel countermeasures.

DigesTor 527

Limitations. For the use case scenarios, we approximate real user behavior by
simple models, e. g., through randomized web requests to a restricted set of sites
or random download patterns. This does not represent the user behavior that
defines the traffic patterns in a real-world scenario. In end-to-end confirmation
attacks, a matching between client and server traces is the primary interest.
Adding user models to the experimental setup in a future revision of DigesTor
helps to create more realistic scenarios, but is not crucial for the technical eval-
uation of attacks.

6.2 Ethics

In compliance with the Tor Ethical Research Guidelines [31], we designed this
work in a way that does not harm users of the live network. We emphasize
that especially the experimental evaluation of traffic analysis attacks can cause
damage to real-world users and should always be conducted in a controlled envi-
ronment. In turn, this applies to the analysis of countermeasure implementations
whose security yet has to be proven.

6.3 Mix Countermeasure

Our TLS mix concept is implemented at exit nodes and can support a slow
rollout over the existing network. Mixing of TLS records means there cannot
be mixed and unmixed connections at the same time in one relay, reducing the
unmixed bandwidth for the sake of increased security. However, not all nodes in
the network must provide mixing, as a small fraction is sufficient to introduce
uncertainty for an adversary across many active circuits. Along with the dynamic
adaption of mix parameters, this makes the mix concept flexible: instead of using
fixed setups, mix parameters can be coupled with monitoring the current network
status and load.

7 Conclusion

DigesTor is an appeal to comparability in security research on Tor. The attack
landscape of current research offers various classes of offensive work that might
or might not pose a threat to the live Tor network. With DigesTor we share two
core features: We generated a first traffic analysis corpus of this kind that we
share to support the comparability of future research. The second core feature is
the Traffic Analysis Framework, which applies a set of recent attack techniques
for comparative performance analysis. To demonstrate the benefits of DigesTor,
we analyze mixing as a potential countermeasure against passive traffic analysis
attacks. Our results indicate that mixing, in fact, hinders the success of otherwise
successful confirmation attacks.

528 K. Kohls and C. Pöpper

Acknowledgments. This work was supported in part by Intel (ICRI-CARS) and
the German Research Foundation (DFG) Research Training Group GRK 1817/1. We
would like to thank Maximilian Golla for his support with the experimental setup.

References

1. Biryukov, A., Pustogarov, I., Weinmann, R.-P.: Trawling for Tor hidden services:
detection, measurement, deanonymization. In: Symposium on Security and Pri-
vacy, pp. 80–94. IEEE (2013)

2. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using flow
records. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp.
247–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2 24

3. Danezis, G.: Statistical disclosure attacks. In: Gritzalis, D., De Capitani di Vimer-
cati, S., Samarati, P., Katsikas, S. (eds.) SEC 2003. ITIFIP, vol. 122, pp. 421–426.
Springer, Boston, MA (2003). https://doi.org/10.1007/978-0-387-35691-4 40

4. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7 3

5. Diaz, C., Preneel, B.: Taxonomy of mixes and dummy traffic. In: Deswarte, Y.,
Cuppens, F., Jajodia, S., Wang, L. (eds.) SEC 2004. IIFIP, vol. 148, pp. 217–232.
Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8145-6 18

6. Fu, X., Ling, Z., Luo, J., Yu, W., Jia, W., Zhao, W.: One cell is enough to break
Tor’s anonymity. In: Proceedings of Black Hat Technical Security Conference, pp.
578–589 (2009)

7. Houmansadr, A., Borisov, N.: SWIRL: a scalable watermark to detect correlated
network flows. In: NDSS (2011)

8. Houmansadr, A., Borisov, N.: The need for flow fingerprints to link correlated
network flows. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol.
7981, pp. 205–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39077-7 11

9. Houmansadr, A., Brubaker, C., Shmatikov, V.: The parrot is dead: observing unob-
servable network communications. In: Symposium on Security and Privacy, pp.
65–79. IEEE (2013)

10. icons8. Figure Icons. https://icons8.com. Accessed 23 Apr 2018
11. Jansen, R., Hopper, N.: Shadow: running Tor in a box for accurate and efficient

experimentation. In: Symposium on Network and Distributed System Security, ser.
NDSS 2012. Internet Society, San Diego, February 2012

12. Jansen, R., Johnson, A.: Safely measuring Tor. In: Conference on Computer and
Communications Security, pp. 1553–1567. ACM (2016)

13. Kedogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open environments. In:
Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36415-3 4

14. Kwon, A., AlSabah, M., Lazar, D., Dacier, M., Devadas, S.: Circuit fingerprint-
ing attacks: passive deanonymization of tor hidden services. In: USENIX Security
Symposium (2015)

15. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.: Timing attacks in low-latency
mix systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27809-2 25

https://doi.org/10.1007/978-3-319-04918-2_24
https://doi.org/10.1007/978-0-387-35691-4_40
https://doi.org/10.1007/978-3-540-75551-7_3
https://doi.org/10.1007/1-4020-8145-6_18
https://doi.org/10.1007/978-3-642-39077-7_11
https://doi.org/10.1007/978-3-642-39077-7_11
https://icons8.com
https://doi.org/10.1007/3-540-36415-3_4
https://doi.org/10.1007/978-3-540-27809-2_25

DigesTor 529

16. Ling, Z., Fu, X., Jia, W., Yu, W., Xuan, D., Luo, J.: Novel packet size-based
covert channel attacks against anonymizer. IEEE Trans. Comput. 62(12), 2411–
2426 (2013)

17. Ling, Z., Luo, J., Yu, W., Fu, X., Xuan, D., Jia, W.: A new cell counter based
attack against Tor. In: Conference on Computer and Communications Security,
pp. 578–589. ACM (2009)

18. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting
statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol.
3424, pp. 17–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409 2

19. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analy-
sis of low-latency anonymous communication using throughput fingerprinting. In:
Conference on Computer and Communications Security, ser. CCS 2011, pp. 215–
226. ACM, Chicago, October 2011

20. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Symposium on
Security and Privacy, ser. SP 2005, pp. 183–195. IEEE, Oakland, May 2005

21. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level
adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7 11

22. Nithyanand, R., Starov, O., Zair, A., Gill, P., Schapira, M.: Measuring and mitigat-
ing as-level adversaries against Tor. In: Symposium on Network and Distributed
System Security, ser. NDSS 2016. Internet Society, San Diego, February 2016

23. O’Connor, L.: On blending attacks for mixes with memory. In: Barni, M., Herrera-
Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol.
3727, pp. 39–52. Springer, Heidelberg (2005). https://doi.org/10.1007/11558859 4

24. Sengar, H., Ren, Z., Wang, H., Wijesekera, D., Jajodia, S.: Tracking Skype VoIP
calls over the internet. in International Conference on Computer Communications,
pp. 1–5. IEEE (2010)

25. Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: active attacks
on several mix types. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp.
36–52. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3 3

26. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006). https://doi.org/10.1007/
11863908 2

27. Sun, Y., et al.: RAPTOR: routing attacks on privacy in Tor. In: USENIX Security
Symposium, ser. USENIX 2016, pp. 271–286. USENIX, Washington, D.C., August
2015

28. The Tor Project. The Onion Router. https://www.torproject.org. Accessed 23 Apr
2018

29. The Tor Project. Tor Metrics. https://metrics.torproject.org. Accessed 23 Apr 2018
30. The Tor Project. Tor Security Advisory: “Relay Early” Traffic Confirmation

Attack, July 2014. https://blog.torproject.org/blog/tor-security-advisory-relay-
early-traffic-confirmation-attack. Accessed 23 Apr 2018

31. The Tor Project. Ethical Tor Research: Guidelines, November 2015. https://blog.
torproject.org/blog/ethical-tor-research-guidelines. Accessed 23 Apr 2018

32. Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency
anonymous communication systems. In: Symposium on Security and Privacy, pp.
116–130. IEEE (2007)

33. Wang, X., Reeves, D.S.: Robust correlation of encrypted attack traffic through
stepping stones by manipulation of interpacket delays. In: Conference on Computer
and Communications Security. ACM, pp. 20–29 (2003)

https://doi.org/10.1007/11423409_2
https://doi.org/10.1007/978-3-540-75551-7_11
https://doi.org/10.1007/11558859_4
https://doi.org/10.1007/3-540-36415-3_3
https://doi.org/10.1007/11863908_2
https://doi.org/10.1007/11863908_2
https://www.torproject.org
https://metrics.torproject.org
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/ethical-tor-research-guidelines
https://blog.torproject.org/blog/ethical-tor-research-guidelines

530 K. Kohls and C. Pöpper

34. Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: DSSS-based flow marking tech-
nique for invisible traceback. In: Symposium on Security and Privacy. IEEE, pp.
18–32 (2007)

35. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET
2004. LNCS, vol. 3424, pp. 207–225. Springer, Heidelberg (2005). https://doi.org/
10.1007/11423409 13

https://doi.org/10.1007/11423409_13
https://doi.org/10.1007/11423409_13

CPS and IoT Security

Deriving a Cost-Effective Digital Twin
of an ICS to Facilitate Security Evaluation

Ron Bitton1, Tomer Gluck1, Orly Stan1, Masaki Inokuchi2, Yoshinobu Ohta2,
Yoshiyuki Yamada2, Tomohiko Yagyu2, Yuval Elovici1, and Asaf Shabtai1(B)

1 Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

shabtaia@bgu.ac.il
2 Security Research Laboratories, NEC Corporation, Minato, Japan

Abstract. Industrial control systems (ICSs), and particularly supervi-
sory control and data acquisition (SCADA) systems, are used in many
critical infrastructures and are inherently insecure, making them desir-
able targets for attackers. ICS networks differ from typical enterprise
networks in their characteristics and goals; therefore, security assess-
ment methods that are common in enterprise networks (e.g., penetra-
tion testing) cannot be directly applied in ICSs. Thus, security experts
recommend using an isolated environment that mimics the real one for
assessing the security of ICSs. While the use of such environments solves
the main challenge in ICS security analysis, it poses another one: the
trade-off between budget and fidelity. In this paper we suggest a method
for creating a digital twin that is network-specific, cost-efficient, highly
reliable, and security test-oriented. The proposed method consists of two
modules: a problem builder that takes facts about the system under test
and converts them into a rules set that reflects the system’s topology and
digital twin implementation constraints; and a solver that takes these
inputs and uses 0–1 non-linear programming to find an optimal solution
(i.e., a digital twin specification), which satisfies all of the constraints.
We demonstrate the application of our method on a simple use case of a
simplified ICS network.

Keywords: Industrial control systems
Supervisory control and data acquisition · Penetration test
Non linear integer programming

1 Introduction

Supervisory control and data acquisition (SCADA) is user to refer to a range
of industrial control systems (ICSs) which assist in overseeing complex indus-
trial processes. SCADA systems are used in a long list of industrial applications
and processes in facilities including electricity generation plants, chemical plants,
manufacturing plants, water and sewage treatment facilities, and industries such

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 533–554, 2018.
https://doi.org/10.1007/978-3-319-99073-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_26&domain=pdf

534 R. Bitton et al.

as the transportation industry. SCADA systems have gained increasing popular-
ity, and industries have become heavily dependent on these systems for collecting
data from industrial processes in order to control and monitor their operations
to ensure that they are functioning properly. A failure in a SCADA system or
one of its elements may result in a failure of the industrial process being con-
trolled. In some cases those systems are life critical, and thus a successful attack
on them can jeopardize thousands of people’s lives [12,18]. Because of this, the
foremost design considerations of such systems have always included a high level
of reliability and availability. In general, modern SCADA systems are comprised
of a communication infrastructure and the following major elements:

The programmable logical controller (PLC) is one of the main com-
ponents of the SCADA system. Field devices, e.g., sensors and controllers, send
signals and status updates to the PLC and receive operational commands from
the PLC, usually without the direct involvement of a human operator. The PLC is
also responsible for reflecting the field device state to remote devices (e.g., HMI).

The engineering workstation (EWS) is a computer workstation used to
update the PLC software and program the PLC logic.

The human machine interface (HMI) is a computer workstation that
makes the industrial process controlled by a SCADA system accessible to a
human operator. The operator can monitor processes (e.g., the HMI may display
the current water level at an automated reservoir) and send commands to the
field devices through an HMI (e.g., stopping the operation of a pump).

Sensors are used in order to reflect the state of an industrial element (e.g.,
wind speed in a wind tunnel) or the environment (e.g., air temperature). The
information from sensors is used by the PLC to control the industrial elements.

Communication infrastructure includes switches, cables, wireless
receivers, etc. Contemporary SCADA systems are able to use Ethernet and
TCP/IP infrastructure in order to achieve connectivity; legacy SCADA systems
rely on older technologies and communication protocols. SCADA components
communicate by utilizing standard SCADA protocols, such as DNP3 and IEC
61850, or proprietary vendor-specific protocols, such as S7 and variants of Modbus.

Additional components such as controllers and actuators, databases
which store historical information (i.e., Historian), and security elements such
as Firewall and one-way traffic devices can also be found in a typical SCADA
system.

SCADA systems, especially legacy SCADA systems, are inherently insecure.
Initially they were designed and built using specialized and proprietary proto-
cols, implemented by old software and hardware which were rarely patched [11].
Security measures such as anti-viruses and encryption are usually not consid-
ered in ICSs. These security measures are not capable of identifying and defend-
ing against ICS-specific attacks (e.g., attacks against SCADA protocols such as
Modbus) and might harm the availability of the system, which is one of its most
important requirements [7,14].

The use of SCADA systems in critical infrastructures makes them desirable
targets for attackers. Attacks on such systems have been increasing in recent

Deriving a Cost-Effective Digital Twin of an ICS 535

years. As demonstrated by the Stuxnet worm, and more recently by the TRITON
malware, a successful SCADA attack can have serious impact on a nation’s
economy, safety, and stability. For this reason, continuous security evaluation of
ICSs is crucial for mitigating cyber-attacks.

Penetration testing (pen-testing) [1] is a commonly used security measure.
The goal of pen-testing is to detect weaknesses in the network such as hosts
running vulnerable software, misconfiguration of network components or security
countermeasures, usage of default passwords for login services, etc.

The security evaluation of an ICS is quite different from the security evalu-
ation of a typical enterprise network. Typical pen-testing activity focuses on an
enterprise’s IT environment, especially IT components that can be exploited via
the Internet. These kinds of tests usually represent a small part of a typical secu-
rity evaluation of an ICS [1]. Pen-testing for ICSs mainly focuses on the indus-
trial components (e.g., Historian, HMI, PLC, and sensors) which communicate
over dedicated industrial protocols (e.g., Modbus, DNP3). These components
and protocols were originally developed for serial communication based on the
assumption that ICSs are isolated from the IT environment (and thus not con-
nected to the Internet); therefore, security properties such as authentication and
encryption are usually not implemented in these protocols. Currently, industrial
protocols are commonly transmitted over TCP/IP; in addition, many ICSs are
connected to the Internet, thus making them easy targets for attackers.

The fact that SCADA systems are implemented in critical infrastructures also
makes it difficult to evaluate their security. A typical pen-testing activity (for a
non-industrial environment) is usually executed within the enterprise network,
however this cannot be done in the case of an ICS. Pen-testing activities involve
intrusive actions such as port scanning (e.g., using Nmap) and vulnerability
assessment (e.g., using OpenVAS or a Zeus scanner), which may crash industrial
components and therefore cannot be directly executed in operational industrial
environments. Given this, security experts have suggested the construction of a
dedicated testbed for evaluating the security of an ICS [5,7,9].

A testbed is an isolated environment which contains a generic implementa-
tion of the architecture of the system under test and allows safe execution of
penetration tests. The creation of a testbed requires significant investment of
funds and effort. Therefore, an efficient testbed should be able to mimic a vari-
ety of ICS setups [5]. For this reason, most testbeds are not designed to represent
a specific ICS environment, but are more generic so as to be able to address the
needs of multiple facilities in the same industry. Keeping the testbed generic can
compromise the fidelity (i.e., the requirement that a testbed should represent
the system under inspection as accurately as possible) [17].

In this paper, we introduce a new automated method for inferring the spec-
ification of a digital twin that is designed to facilitate the security evaluation of
a specific industrial environment. In contrast to testbeds, which are generic, a
digital twin is a replica of a specific ICS; i.e., a model that consists of all of the
components from the original industrial environment. Each replicated compo-
nent can either be implemented as a digital clone (e.g., by using simulation or

536 R. Bitton et al.

virtualization software), or alternatively can be physically installed in the twin
model. The components that are implemented within the digital twin, as well
as the level of implementation of each component, defines the specific security
tests that can be conducted on the digital twin (e.g., a digital twin without the
HMI implemented does not support the execution of security tests on the HMI).
The primary benefit of using a digital twin, as opposed to a testbed, is that it
reliably represents the real industrial environment. In other words, the results of
a pen-test conducted on the digital twin genuinely reflect the expected results
of conducting the same test in the real environment.

One of the most challenging tasks in the process of creating a digital twin
is determining the implementation level (specification) of its components. The
implementation level of the components in the digital twin directly affects the
overall cost of establishing the digital twin as well as the degree to which it
reflects the industrial environment (fidelity). For example, a twin model that is
completely identical to the real industrial environment (i.e., a physical clone) has
the highest fidelity (as it allows the execution of all possible tests), but imple-
menting such a model is extremely expensive. We present a method for deriving
the specification of a cost-effective digital twin that is specifically designed to
facilitate the security evaluation of a specific industrial environment. The pro-
posed method models the problem of deriving the digital twin for a specific
industrial environment as an optimization problem. The optimization problem
attempts to maximize the impact of the digital twin under strict budget con-
straints (i.e., allowing the execution of the most important penetration tests for
improving the security of the industrial environment).

The contributions of this paper are as follows:

– We introduce the concept of creating a cost-effective digital twin that is specif-
ically designed to facilitate the security evaluation of a specific industrial
environment.

– We propose a method that is based on a constrained optimization problem,
specifically, 0–1 non-linear programming, for deriving the configuration of the
digital twin model of a specific industrial environment.

– We demonstrate the application of our proposed method on a simplified ther-
mal power plant architecture.

2 Related Work

In order to conduct penetration testing on ICS networks, the use of a testbed has
been proposed. A testbed is an isolated environment that simulates the operation
of some real system.

According to a recent survey conducted by Qassim et al. [15] testbed imple-
mentation approaches can be categorized as follows:

Physical implementation: refers to a physical clone of the components. This
approach reflects the industrial environment at the highest degree. However,
physical implementation of all of the components of a specific factory is in

Deriving a Cost-Effective Digital Twin of an ICS 537

most cases, not feasible because of the high costs of such implementation. As
a result, the majority of physical testbeds are more generic, aimed at being
able to address the needs of multiple facilities in the same industry, rather
than specific facilities.

Virtualization/emulation software: eliminates the software’s dependency on
the hardware. Virtualization/emulation software enables the establishment
of large-scale testbeds, while requiring less hardware, thereby reducing the
implementation costs. This approach enables the testing of software compo-
nents and protocols, but it does not enable the testing of hardware compo-
nents. In addition, by eliminating software and hardware dependencies, some
of the penetration tests may not provide the expected results as tests per-
formed in the real environment.

Software simulation: designed to simulate the inputs, outputs, and behav-
ior of real components (e.g., temperature sensor). This approach can provide
large-scale implementation at a low cost, however, it provides very low fidelity.
Therefore, the main usage of simulation software is to enable the testing of
other components (e.g., to feed a virtual or physical component with simu-
lated inputs/outputs).

To avoid the high costs (as described above), as well as the maintenance
involved in a physical replication testbed, many researchers chose to implement
their testbed using the simulation, virtualization, or hybrid approaches.

Genge et al. [4] and Lemay et al. [8] presented testbeds for assessing the secu-
rity of ICS networks. Both works suggested the combination of emulated and
simulated components in order to reduce implementation costs. Lemay et al. [8]
provided the following methodology for component implementation: the compo-
nents that are relevant to the test objectives should be emulated; components
that directly interface with the emulated components should be implemented as
closely as possible to real life; the remaining components can be implemented at
any level, and can even be simulated.

Unlike Genge et al. [4] and Lemay et al. [8], Gao et al. [3] and Green et al.
[5] suggested the integration of physical devices in their testbeds.

Alves et al. [2] also addressed the discrepancies between different implemen-
tation levels. They established physical and virtual gas pipeline testbeds and
showed that the testbeds behave differently under a denial of service attack, and
behave similarly under a man-in-the-middle attack.

A digital twin is a concept from the product life-cycle management (PLM)
domain introduced by Grieves et al. [6]. It is a virtual representation of a specific
physical product. The idea behind this concept is that the digital twin should be
linked to the physical product throughout the product’s life-cycle and constantly
mirror it. By doing so, the digital twin enables the prediction of the future
behavior and performance of the real product.

Unlike the previously mentioned works that suggested general testbed archi-
tectures, we propose an adaptive method for deriving the configuration of
a cost-effective digital twin for a specific industrial environment. The cost-
effective digital twin defines the implementation level of the different industrial

538 R. Bitton et al.

components (physical implementation, virtualization/emulation software, and
simulation software) to allow the evaluation of the desired security tests.

3 Cost-Effective Digital Twin for ICS

In this section, we present an adaptive method for deriving a digital twin speci-
fication for a given ICS, under strict budget constraints. The proposed method
maximizes, within the budgetary limitations, the impact of the digital twin. The
impact of a digital twin is evaluated by the number and types of security pen-
etration tests that it supports. On one hand, each test has its own benefit i.e.,
security-wise, one test might be more important than another. On the other
hand, each test has its own cost. The cost of a test is determined by the costs
of the participating components (i.e., the direct cost of implementing them in
the digital twin), as well as the test’s execution costs (e.g., security expert’s
time/salary). Note that a component might be required for multiple security
tests.

Similar to the creation of testbeds, we consider three types of implemen-
tation levels for each element: physical, virtualization/emulation, and software
simulation. The output of the proposed method specifies the digital twin config-
uration, i.e., which components of the ICS should be implemented and at which
implementation level.

Our proposed method models the problem of deriving a cost-effective digital
twin as a 0–1 non-linear programming problem. Such problems optimizes a non-
linear target function (e.g., the overall benefit of the tests supported by the
digital twin), while being subjected to multiple related constraints (e.g., budget
limits).

3.1 Notations

In order to formally describe the problem and the method’s inputs, we define
the following notations.

General ICS Environment Information. The set of possible ICS compo-
nents is denoted by

C = {c1, . . . , cnC
}.

For example, C = {PLC,EWS,Historian, PC, . . .}.
We also define the following subsets of C:

– N ⊂ C - ICS component communicating over IP
– M ⊂ N - ICS components running modern operating systems (e.g., desktops,

Web servers, HMI, EWS, Historian)
– NC ⊂ N - Network components (e.g., router, switch, and firewall)
– F ⊂ C - Field devices (e.g., generator and boiler)

Deriving a Cost-Effective Digital Twin of an ICS 539

– D ⊂ N - ICS components which are part of the direct control layer (e.g.,
RTU and PLC)

– S ⊂ M - ICS components which are part of the supervision layer (e.g., HMI,
EWS, and Historian)

General Test Specification. The set of all possible tests is denoted by

T = {t1 . . . tnT
}

A list of possible tests for the penetration testing of electric utilities based
on the NESCOR methodology [16] is presented in AppendixC.

We denote the execution of test ti on component cj by ti(cj). For each test
ti ∈ T we specify three types of prerequisites in order to be able to execute ti
on cj : device implementation requirements (DIR), environment implementation
requirements (EIR), and prerequisite test (PT).

– DIR(ti, cj), ti ∈ T ∧ cj ∈ C - denotes the minimal implementation level of a
tested component cj , which enables the execution of test ti in the digital twin.
For example, disassembling an embedded device (test t4.1.1 in AppendixC)
cannot be performed on either an emulated or simulated device, thus a phys-
ical implementation of the component in the digital twin is essential for exe-
cuting this test. The formal representation of this requirement is as follows
(p stands for physical):

DIR(t4.1.1, f ∈ F) = fp

– EIR(ti, cj), ti ∈ T ∧ cj ∈ C - denotes the minimal implementation level of
components that communicate with cj and are required for executing ti. For
example, in order to perform functional analysis (test t4.2.1 in AppendixC) on
d ∈ D, such as a PLC, one must emulate the components that communicate
with the PLC from the direct control group, such as other PLCs (denoted by
Dd), and from the supervisory control group, such as HMI (denoted by Sd).
In addition, there is a need to simulate field devices that communicate with
the PLC (denoted by Fd). The formal representation of these requirements is
as follows (e stands for emulation, and s stands for simulation):

EIR(t4.1.1, d ∈ D) = {De
d, S

e
d, F

s
d }

– PT (ti, cj), ti ∈ T ∧ cj ∈ C - represents the dependencies between tests; for
example,

PT (t4.2.5, f ∈ F) = {t4.2.3, t4.2.2, t4.2.1}
indicates that tests t4.2.3, t4.2.2, t4.2.1 should be executed first in order to
execute test t4.2.5 on f .

Using these three types of requirements, we define the set of test dependencies
(TD) for executing test ti ∈ T on a component cj ∈ C, as follows:

TD(ti, cj) = <DIR(ti, cj), EIR(ti, cj), PT (ti, cj)>

540 R. Bitton et al.

– Example I: Device disassembly. In order to enable the disassembling of a
field device f ∈ F (t4.2.1), the digital twin model must physically implement
f . Thus, the test dependencies for device disassembly of field devices f ∈ F
are as follows:

TD(t4.2.1, f ∈ F) = <fp, ∅, ∅>

– Example II: Endpoint fuzzing. Endpoint fuzzing (t4.2.5) is a pen-testing
activity that could be executed on an emulated or physical device. However, it
is not possible to perform fuzzing without understanding the tested interface
and without capturing and analyzing the communication with the interface.
For these reasons, capture analysis (t4.2.3), communication capture (t4.2.2),
and interface functional analysis (t4.2.1) are prerequisite tests for endpoint
fuzzing. In addition, in order to perform this test the digital twin must also
emulate the direct control devices which communicate with the tested device.
Thus, the test dependencies for fuzzing a field device f ∈ F are as follows:

TD(t4.2.5, f ∈ F) = <fe, {De
f}, {t4.2.3, t4.2.2, t4.2.1}>

Specific ICS Environment Information. The specific ICS environment (for
which we would like to derive the digital twin definition) is denoted as follows:

– E = {e1, . . . , enE
} - the set of elements in a specific ICS environment, e.g., ei

is a specific PLC in the ICS.
– Communication = {<ei, ej> | ei, ej ∈ E} - the set of links between elements

in the specific ICS environment, as was observed in the ICS’s network, e.g.,
<ei, ej> indicates that a communication was observed between element ei
and element ej .

– Topology = <E,Communication> - the topology of the specific ICS,
which consists of the set of elements (E) and their communication links
(Communication).

– I = {p, v, s} - the set of possible implementation levels of an element in E
where p stands for physical replica, v for virtualization, and s for simulation.

– role : E → C - a function that maps an element in the specific ICS envi-
ronment to its type, e.g., role(e1) = PLC indicates that element e1 is an
instance of a PLC in the ICS.

In addition, we define the specific environment dependencies (ED) as follows:

ED(ti, ej), ti ∈ T ∧ ej ∈ E

Unlike the test dependencies (TD), the environment dependencies
(ED) are derived for a specific ICS environment, e.g., the following expression:
ED(tm, en) = {e2

v, e4
s, e5

s} indicates that in order to execute test tm on the spe-
cific element en, the digital twin must contain the following: a virtual (or higher)
implementation of element e2 and at least a simulation of elements e4, and e5.

Deriving a Cost-Effective Digital Twin of an ICS 541

According to the proposed method the main prerequisite for deriving the
digital twin is the topology of the specific ICS environment. Typical ICS envi-
ronments are extremely complex and may change over time; thus, acquiring
the environment information is not a trivial task. There are several tools and
methods that can be used to collect the required information, including the
ICS blueprints which usually contain the architecture design of the specific ICS
environment, as well as passive monitoring tools such as the GRASSMARLIN
that are able to extract information from the live (or recorded) network traffic
(including IP addresses, operating system of components, vendors, and compo-
nent types).

Costs, Benefits and Budget

– cost : E × I → R - a function that maps a specific implementation of an
element to its cost, e.g., cost(e, p) = 650 indicates that a physical implemen-
tation of element e in the digital twin costs $650.

– benefit : T × E → R - a function that defines the benefit of executing a test
on an element, e.g., by setting the benefit(t, e) to b, the asset owner indicates
that the benefit of executing test t on element e is b; where, a high b value
will increase the probability that this test will be supported by the digital
twin model (by setting the benefit(t, e) to ∞, the asset owner can force the
algorithm to derive a digital twin which support this test). The benefit of a
test is assigned according to the importance of the test (the significance of
the expected findings) and the element being tested.

– Budget ∈ R - the overall budget assigned to create the digital twin.

3.2 Proposed Method

The proposed method consists of the following three main modules (see Fig. 2
in AppendixE):

The Data Processor is responsible for integrating the general test depen-
dencies (i.e., TD) and the topology of a specific industrial environment (i.e.,
Topology), in order to derive the list of environment dependencies (i.e., ED) of
the specific industrial environment.

The Problem Builder is responsible for translating the information pro-
vided for the specific industrial environment (e.g., budget and test dependencies)
to a non-linear maximization problem.

The Solver solves the non-linear maximization problem in order to derive
the specification of the cost-effective digital twin.

The input to the proposed method includes the following:
ICS Architecture: the specification of the architecture of the industrial

environment for which the digital twin is created. The specification includes:
system topology

(Topology) i.e., a description of the elements in the system (E) and their
communication patterns (Communication); the role of each element (role(e));

542 R. Bitton et al.

the cost for each possible implementation of the elements (cost(e, i)); and the
benefit of executing tests on elements (benefit(t, e)).

Budget: (Budget) the overall budget allocated for the creation of the digital
twin.

Test Specification: includes the set of possible tests T = {t1 . . . tnT
} and

the set of test dependencies TD(ti, cj), ti ∈ T ∧ cj ∈ C.

3.3 Data Processor

The Data Processor derives the set of environment dependencies (ED) by
analyzing the following inputs: (1) a general specification of test dependen-
cies (TD); (2) the specific topology of the industrial environment under test
(Topology = <E,Communication>); and (3) an element in the environment
(e ∈ E). This is done according to the process presented in Algorithm1.

Given the inputs, the Data Processor initially adds the appropriate device
implementation requirement (DIR) to the environment dependencies (lines 10–
12). Then, for each environment implementation requirement r ∈ EIR it adds
the elements in the ICS that communicate with e and are of the type specified in
r (lines 13–16). Finally, it recursively adds the environment dependencies of the
prerequisite tests (lines 19–21). The output of the procedure are the environment
dependencies for executing t on e, which are specific for the particular ICS
architecture.

3.4 Problem Builder

The Problem Builder represents the digital twin inference problem as a 0–1
non-linear programming problem. The non-linear integer programming problem
focuses on the optimization of a non-linear target function, while satisfying a set
of non-linear constraints (that are represented as algebraic equations) [10]. The
non-linear integer problem is formally defined as follows:

min /max f(x)
s.t gi(x) ≤ bi, i = 1, . . . ,m hi(x) = yi, j = 1, . . . , k
x ∈ X,X ⊂ Z

n andX is a finite set

where f(x) is the target function that we wish to maximize (or minimize), and
the constraints are represented by gi(x) and hi(x).

A 0–1 non-linear programming problem is a special case of the non-linear
integer programming problem, in which x can either be 0 or 1. In this section,
we describe how we define the target function (f(x)) and the constraints (gi(x)),
in order to represent the digital twin specification inference problem as a 0–1
non-linear programming problem.

The specification of a given digital twin model is defined by the variables of
the 0–1 non-linear programming problem, which are denoted as follows:

X = <xs
1, x

e
1, x

p
1, . . . , x

s
nE

, xe
nE

, xp
nE

>. (1)

Deriving a Cost-Effective Digital Twin of an ICS 543

Algorithm 1. Data Processor
1: Inputs:
2: {TD(t, c)|t ∈ T ∧ c ∈ C}
3: Topology ← <E,Communication>
4: e ∈ E
5: Precondition:
6: role(e) ∈ C
7: Initialize:
8: ED ← ∅
9: function ProcessData(TD(t, c), e ,Communication)

10: DIR ← GetDeviceImplementationRequirement(TD(t, c))
11: i ← GetImplementationLevel(DIR)
12: ED ← ED ∪ ei

13: EIR ← GetEnvironmentImplementationRequirement(TD(t, c))
14: for each r ∈ EIR do
15: i ← GetImplementationLevel(r)
16: C ← GetIndustrialControlSubGroup(r)
17: for each <j, k> ∈ Communication|j = e ∧ role(k) ∈ C do
18: ED ← ED ∪ ki

19: PT ← GetPrerequisiteTests(TD(t, c))
20: for each t∗ ∈ PT do
21: ED ← ED ∪ Process(TD(t∗, c), e, Communication)

22: return ED

Each variable indicates whether a specific element e is implemented as i
within the digital twin as defined by Eq. 2.

X = {xi
e | i ∈ I, e ∈ E} (2)

These variables can be equal to 0 (zero) or 1 (one), and thus the first set of
constraints is:

xi
e ∈ {0, 1} (3)

where xi
e = 1 indicates that element e is implemented in the digital twin as i,

and xi
e = 0 indicates that element e is not implemented in the digital twin as i.

Equation 4 presents the implementation constraint, which ensures that an
element e is implemented as either simulated, virtualized, physical, or not imple-
mented at all. The number of implementation constraints is equal to the number
of elements in the given ICS (i.e., nE).

xp
e + xv

e + xs
e ≤ 1 (4)

In order to ensure that the overall cost of the digital twin implementation
does not exceed the allocated budget, we define the cost constraint presented in
Eq. 5. ∑

xi
e∈X

cost(xi
e) ≤ Budget (5)

544 R. Bitton et al.

Each assignment for X defines a possible configuration of the digital twin,
where a valid assignment satisfies all of the defined constraints.

Given the above constraints, the target function (defined in Eq. 6) is designed
to maximize the impact of the digital twin model.

max
(∑

e∈E,t∈T

benefit(t, e) ·
∏

eij∈ED(t,e)

xi
ej

)
(6)

where the impact of a given digital twin model (defined by the assignment X)
is defined as the sum of all of the benefit values for the tests in T that can
be executed on X. As can be seen, the benefit value is added only if all of the
dependencies of a test are satisfied.

3.5 Solver

A 0–1 non-linear programming problem is NP-hard [13]. In small environments the
solution for this problem can be determined by applying a brute force approach,
i.e., for each possible assignment for X, first check whether it satisfies all of the
constraints; if all of the constraints are satisfied, compute the value of the target
function, and finally, select a valid assignment that provides the maximal value.

The time that it will take for the brute force approach to provide the optimal
result is significant as it grows exponentially by the number of components. Given
n components, and m security tests, and three implementation levels (real, emu-
lated, simulated), the time complexity for the brute force algorithm is as follows:

O(3n · nm · n) (7)

where, 3n represents all of the possible implementation of a components, nm rep-
resents the maximum tests per component, and n is the calculation of the cost per
implementation state. The exponential time complexity makes the brute force
algorithm unsuitable for large ICS environments (more than 20 components).
For example, executing the brute force approach on the simple ICS environment
presented in Appendix E in Fig. 3, which consisted of 14 components, takes three
minutes when using a standard personal computer. In future work, we plan to
develop and evaluate different heuristics which are on average sub-exponential
(but may not provide the best setup for the digital twin.)

4 Demonstration

In this section, we demonstrate the application of the proposed method on a
simplified ICS environment of a thermal power station with one boiler and two
generators.

4.1 Description of the Tested ICS Environment

The simplified environment (illustrated in AppendixE, Fig. 3) consists of an
enterprise network, a supervision layer, a direct control layer, and field devices.

Deriving a Cost-Effective Digital Twin of an ICS 545

The enterprise network contains an IT client and an IT server, which are con-
nected to the supervision layer through a firewall that filters improper packets.
The supervision layer consist of the following components which monitor and
control the direct control components:

– Historian. Responsible for logging all events occurring during the process.
To do so, the historian periodically queries the PLCs for their states (via
Modbus/TCP in the case of PLC-1, or S7comm in the case of PLC-2).

– Human machine interface (HMI). Provides a human-friendly interface
for interacting with the field devices. In order to report the field devices’
states and alarms to the operator, the HMI periodically queries the PLCs,
as the Historian does (via Modbus/TCP in the case of PLC-1, or S7comm
in the case of PLC-2). Moreover, the HMI enables the operator to remotely
change field devices’ parameters.

– Engineering Work Station (EWS). Enables the operator to change the
PLCs’ configurations and logic. The EWS has all of the required programming
and configuration software installed. It communicates with the PLCs and HMI
through the S7comm protocol when such updates occur.

The supervision layer’s components are connected to the direct control
devices through a switch. The direct control components include:

– Two Siemens S7-300 PLCs. These components directly control the field
devices. PLC-1 controls both the boiler (BLR) and one of the generators
(GEN-1). It can turn the boiler’s heater on or off, change the generator’s
rotation speed, and start or stop its operation. PLC-2 controls only GEN-2
and can perform the two latter actions as well. The PLCs are connected to the
supervision layer via the switch (SW-2), and communicate with each other
via the S7comm protocol.

– Remote Terminal Unit (RTU). This component is connected directly
to the PLCs and enables the operator to manually change the field devices’
parameters and present their current states and alarms.

The field devices include the components that physically perform the process.
This simplified environment contains two generators (GEN-1 and GEN-2) and
one boiler (BLR).

4.2 Security Test Specifications

For the demonstration, we followed the pen-testing methodology presented by
the National Electric Sector Cybersecurity Organization Resource (NESCOR)
[16]. This methodology provides guidelines for executing penetration tests on
smart grid systems. Although the NESCOR methodology is specifically designed
for smart grid systems such as advanced metering infrastructure (AMI), wide-
area monitoring, protection and control (WAMPAC), and home area network
(HAN), it provides an extensive list of pen-testing activities that can be applied
on other types of ICSs.

546 R. Bitton et al.

The various testing activities presented in their methodology are classified
into four categories: embedded device penetration tasks, which address the physi-
cal attack vector against field devices; network communication penetration tasks,
which address the exploitation of devices through network protocol manipula-
tion; server application penetration tasks, which address testing applications that
are running on the control servers; and, server operating system penetration tasks,
which address testing of the operating system of the control servers.

Execution of the pen-tests presented in the NESCOR methodology on a
digital twin in which not all of the components are physically implemented is
not trivial, because, as described in Sect. 3.2, the execution of some activities in
a digital twin may depend on a specific set of requirements (denoted by DIR,
EIR, and PT).

We thoroughly analyzed more than 80 penetration tests presented in the
NESCOR methodology and defined the three types of requirements for each
test. The complete set of tests and requirements is summarized in Appendix C.
For our demonstration we select the following five tests: Device Disassembly
(4.1.1), Interface Functional Analysis (4.2.1) Communication Capture (5.2.1),
Fuzzing (5.2.4), Application Fingerprinting (7.1.1), and Application Functional
Analysis (7.1.2).

4.3 Implementation Cost Description

In the proposed method we considered three types of implementation levels:
physical, virtual, and simulation.

Obviously, not all of the components can be implemented by all type of
implementations, and some physical devices may not have an emulated/virtual
version. In addition, the pricing of different implementation levels is not the
same for different vendors. For example, a physical SIEMENS PLC can cost
from hundreds of dollars to thousands with an average cost of about $2500
for the S7300 models1; a license for S7-Plcsim software, which can be used for
emulating a SIEMENS PLC or HMI costs $7002; and using third party tools to
simulate a PLC can be less expensive (e.g., awlsim3 is free of charge, with costs
just for the setup time).

For simplicity, in our demonstration we assumed that a physical implemen-
tation of a device would have the highest cost and a simulation-based imple-
mentation the lowest. Specifically, as presented in AppendixB, a physical imple-
mentation is ten times more expensive than virtualization, which is three times
more expensive than simulation. In addition, an equal benefit for all tests i.e.,
benefit(t, e) = 1 ∀t ∈ T ∧ e ∈ E was assumed. It should be mentioned that
these assumptions do not affect the construction of the problem or its solution
by using 0–1 non-linear methods; therefore we believe that these assumptions
are plausible.
1 http://www.isgautomation.com/siemens-simatic-s7-300-plc-6es7.html.
2 https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/

429647.
3 https://github.com/mbuesch/awlsim.

http://www.isgautomation.com/siemens-simatic-s7-300-plc-6es7.html
https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/429647
https://www.steinerelectric.com/p/siemens-simatic-s7-s7-plcsim-v5-4-floating-lic/429647
https://github.com/mbuesch/awlsim

Deriving a Cost-Effective Digital Twin of an ICS 547

4.4 Results

The creation of the cost-effective digital twin model for the specific ICS environ-
ment starts with processing the generic test specification (TD) and the specific
topology inputs (Topology = <E,Communication>). This is done by apply-
ing the data processing algorithm presented in Algorithm1 on each combination
of element e ∈ E and test t ∈ T . The output of this algorithm produces 42
different tests (presented in AppendixD), each of which includes a set of envi-
ronment dependencies (ED). The environment dependencies are specific to the
ICS environment described in Sect. A.

Next, given the specific budgetary limitations, we apply the Problem Builder
module and create the 0–1 non-linear programming problem (A formal repre-
sentation of the problem is presented in AppendixA). We implemented a naive
brute force algorithm to find the optimal configuration for a given budgetary
limitation.

We conducted an experiment in which we derived the configuration of a
digital twin model for different budgetary limitation values, while considering
all of the tests presented in AppendixD (a total of 42 tests).

The results of this experiment are presented in Fig. 1. As expected, the higher
the available budget the higher the impact of the digital twin.

In this figure, it can also be seen that when Budget = $3700, all of the
elements are implemented as virtual devices; in this case, the digital twin model
supports 36 tests of the 42 possible tests. The remaining tests require physical
implementation of various elements; in order to support all of the tests, the
budget required is $23500 (while the total cost of the industrial system is $40000).

The results show a logarithmic increase of the benefit (impact) with the
increase in the available budget.

5 Conclusions and Future Work

We present a method for deriving the specification of a digital twin for an ICS
for the purpose of security analysis. The resulting specification is a cost-effective
representation of the ICS under test that provides the high fidelity required for
executing a given set of security tests. The method is designed as a three step
process. First, the Data Processor derives the ICS’s environment dependencies
from its topology and the tests’ dependencies. Then, the Problem Builder uses
the ICS’s architecture, tests’ dependencies, and budgetary limitations to create a
0–1 non-linear programming problem representation. Finally, the Solver applies
a search algorithm to find the best solution for the problem, i.e., finds the dig-
ital twin specification with the highest impact and an affordable cost (i.e., its
implementation cost does not exceed the specified budget). To demonstrate the
application of the proposed method, we used a simplified structure of a thermal
power station and the NESCOR pen-testing methodology to define the tests and
their requirements.

In future work we plan to evaluate the method on more realistic environments
from a diverse range of industries and propose a heuristic algorithm for finding a

548 R. Bitton et al.

Fig. 1. The trade-off between the budget and the impact of the digital twin computed
for the simple thermal power station.

near-optimal solution (digital twin setup) with sub-exponential time complexity.
In addition, we plan to extend the solution to support different pricing strategies
for the various implementations, such as software bundles with contribution
margin-based pricing. We also plan to (1) add new types of constraints, e.g.,
constraints that take the physical space available within the digital twin that
will be implemented (e.g., a small room or an open space) into account; (2)
consider implementations of multiple elements as virtual or simulations on the
same machine; and (3) handle identical setups in an industrial environment
(e.g., if two similar production lines are implemented, there is no need to test
both of them). Finally, a general knowledge base of possible tests and their test
dependencies should be researched and established.

A Formal Representation

1. C = {PC, Server, Switch, F irewall, EWS,HMI,
Historian, PLC,RTU,Generator,Boiler}

2. N = {PC, Server,Historian,HMI,EWS,PLC}
3. M = {PC, Server,Historian,HMI,EWS}
4. NC = {Switch, F irewall}
5. F = {Generator,Boiler}
6. D = {PLC,RTU}
7. S = {EWS,HMI,Historian}
8. E = {IT − Client, IT − Server, SW − 1, FW − 1, EWS − PC,HMI −

PC, SW − 2,Hist − PC,PLC − 1, PLC − 2, RTU − 1, GEN − 1, GEN −
2, BLR}

Deriving a Cost-Effective Digital Twin of an ICS 549

9. Communication = {<IT − Client, IT − Server>,
<IT − Server, IT − Client>,<Hist − PC,PLC − 1>,
<Hist − PC,PLC − 2>,<HMI − PC,PLC − 1>,
<HMI − PC,PLC − 2>,<EWS − PC,HMI − PC>,
<EWS − PC,PLC − 1>,<EWS − PC,PLC − 2>,
<PLC−1, GEN−1>,<PLC−1, BLR>,<PLC−2, GEN−2>,<RTU−1,
PLC − 1>, <RTU − 1, PLC − 2>}

10. T = {4.1.1, 4.2.1, 5.2.1, 5.2.4, 7.1.1, 7.1.2}.

11. role(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC, e = IT − Client

Server, e = IT − Server

Switch, e ∈ {SW − 1, SW − 2}
Firewall, e = FW − 1
EWS, e = EWS − PC

HMI, e = HMI − PC

Historian, e = Hist − PC

PLC, e ∈ {PLC − 1, PLC − 2}
RTU, e = RTU − 1
Generator, e ∈ {GEN − 1, GEN − 2}
Boiler, e = BLR

12. The cost function is defined in AppendixB.

B Implementation Costs of the ICS Components (USD)

p v s

IT − Client 1000 100 30

IT − Server 4000 100 30

SW − 1 3000 300 90

SW − 2 3000 300 90

FW − 1 4000 400 120

EWS − PC 1000 100 30

HMI − PC 1000 100 30

Hist − PC 1000 100 30

PLC − 1 2500 250 75

PLC − 2 2500 250 75

RTU − 1 1000 100 30

GEN − 1 4000 400 120

GEN − 2 4000 400 120

BLR 8000 800 120

550 R. Bitton et al.

C Specification of Penetration Testing Activities Based
on NESCOR Methodology

Category Subcategory ID Name T DIR EIR PT

Embedded

Device

Electronic

Component

4.1.1 Device Disassembly f ∈ F fp {}

4.1.2 Circuit Analysis f ∈ F fp {} 4.1.1

4.1.3 Datasheet Analysis f ∈ F fs {} 4.1.2

4.1.4 Dumping Embedded

Data

f ∈ F fp {} 4.1.3

4.1.5 Bus Snooping f ∈ F fp {} 4.1.3

4.1.6 String Analysis f ∈ F fp {} 4.1.4,4.1.5

4.1.7 Entropy Analysis f ∈ F fp {} 4.1.4,4.1.5

4.1.8 Systematic Key Search f ∈ F fp {} 4.1.4,4.1.5

4.1.9 Data Decoding f ∈ F fp {} 4.1.6,4.1.7,4.1.8

4.1.10 Embedded Hardware

Exploitation

f ∈ F fp {} 4.1.9

4.1.1 Device Disassembly d ∈ D dp {}
4.1.2 Circuit Analysis d ∈ D dp {} 4.1.1

4.1.3 Datasheet Analysis d ∈ D ds {} 4.1.2

4.1.4 Dumping Embedded

Data

d ∈ D dp {} 4.1.3

4.1.5 Bus Snooping d ∈ D dp {} 4.1.3

4.1.6 String Analysis d ∈ D dp {} 4.1.4,4.1.5

4.1.7 Entropy Analysis d ∈ D dp {} 4.1.4,4.1.5

4.1.8 Systematic Key Search d ∈ D dp {} 4.1.4,4.1.5

4.1.9 Data Decoding d ∈ D dp {} 4.1.6,4.1.7,4.1.8

4.1.10 Embedded Hardware

Exploitation

d ∈ D dp {} 4.1.9

Technician

Interface

4.2.1 Interface Functional

Analysis

f ∈ F fe {De}

4.2.2 Communication

Capture

f ∈ F fe {De} 4.2.1

4.2.3 Capture Analysis f ∈ F fe {De} 4.2.2

4.2.4 Endpoint

Impersonation

f ∈ F fe {De} 4.2.3

4.2.5 Endpoint Fuzzing f ∈ F fe {De} 4.2.3

4.2.6 Exploitation f ∈ F fe {De} 4.2.4,4.2.5

4.2.1 Interface Functional

Analysis

d ∈ D de {De, F s, Se}

4.2.2 Communication

Capture

d ∈ D de {De, F s, Se} 4.2.1

4.2.3 Capture Analysis d ∈ D de {De, F s} 4.2.2

4.2.4 Endpoint

Impersonation

d ∈ D de {De, F s, Se} 4.2.3

4.2.5 Endpoint Fuzzing d ∈ D de {De, F s, Se} 4.2.3

4.2.6 Exploitation d ∈ D de {De, F s, Se} 4.2.4,4.2.5

(continued)

Deriving a Cost-Effective Digital Twin of an ICS 551

(continued)

Category Subcategory ID Name T DIR EIR PT

Firmware

Binary

4.3.1 Disassembly f ∈ F fp {}

4.3.2 Code Analysis f ∈ F fp {} 4.3.1

4.3.3 Exploitation f ∈ F fp {} 4.3.2

4.3.1 Disassembly d ∈ D dp {}
4.3.2 Code Analysis d ∈ D dp {} 4.3.1

4.3.3 Exploitation d ∈ D dp {} 4.3.2

Network Protocol

Analysis

5.2.1 Communication Capture n ∈ N ne {Ne}

5.2.2 Cryptographic Analysis n ∈ N ne {Ne} 5.2.1

5.2.3 Unknown Protocol Decoding n ∈ N ne {Ne} 5.2.2

5.2.4 Fuzzing n ∈ N ne {Ne} 5.2.1

5.2.5 Exploitation n ∈ N ne {Ne} 5.2.4

Server OS Information

Gathering

6.1.1 DNS Interrogation m ∈ M me {}
6.1.2 Port Scanning m ∈ M me {}
6.1.3 Service Fingerprinting m ∈ M me {} 6.1.2

6.1.4 SNMP Enumeration m ∈ M me {} 6.1.3

6.1.5 Packet Sniffing m ∈ M me {Me, De} 6.1.4

6.1.2 Port Scanning n ∈ NC ne {}
6.1.3 Service Fingerprinting n ∈ NC ne {} 6.1.2

6.1.5 Packet Sniffing n ∈ NC ne {} 6.1.4

Vulnerability

Analysis

6.2.1 Unauthenticated Vulnerability

Scanning

m ∈ M me {} 6.1.4

6.2.2 Authenticated Vulnerability

Scanning

m ∈ M me {} 6.1.4

6.2.3 Vulnerability Validation m ∈ M me {} 6.2.1,6.2.2

6.2.4 Packet Capture Analysis m ∈ M me {Me, De} 6.1.5

6.2.1 Unauthenticated Vulnerability

Scanning

n ∈ NC ne {} 6.1.4

6.2.2 Authenticated Vulnerability

Scanning

n ∈ NC ne {} 6.1.4

6.2.3 Vulnerability Validation n ∈ NC ne {} 6.2.1,6.2.2

6.2.4 Packet Capture Analysis n ∈ NC ne {} 6.1.5

Exploitation 6.3.1 Identify Attack Avenues m ∈ M me {Me, De} 6.1,6.2

6.3.2 Vulnerability Exploitation m ∈ M me {Me, De} 6.3.1

6.3.3 Post Exploitation m ∈ M me {Me, De} 6.3.2

6.3.1 Identify Attack Avenues n ∈ NC ne {} 6.1,6.2

6.3.2 Vulnerability Exploitation n ∈ NC ne {} 6.3.1

6.3.3 Post Exploitation n ∈ NC ne {} 6.3.2

Server

Applica-

tions

Application

Mapping

7.1.1 Application Fingerprinting m ∈ M me {}
7.1.2 Functional Analysis m ∈ M me {Me, Ds} 7.1.1

7.1.3 Process Flow Modeling m ∈ M me {Me, Ds} 7.1.2

7.1.4 Request/Resource Mapping m ∈ M me {Me, Ds} 7.1.3

Application

Discovery

7.2.1 Default Configuration Testing m ∈ M me {}

7.2.2 Authentication Testing m ∈ M me {Me, Ds}
7.2.3 Session Management Testing m ∈ M me {Me, Ds} 7.2.2

7.2.4 Authorization Testing m ∈ M me {Me, Ds} 7.2.3

7.2.5 Business Logic Testing m ∈ M me {Me, Ds}
7.2.6 Code Injection Testing m ∈ M me {Me, Ds}
7.2.7 Denial of Service Testing m ∈ M me {Me, Ds}
7.2.8 Client-Side Code Testing m ∈ M me {Me, Ds}

Application

Exploitation

7.3.1 Identify Attack Avenues m ∈ M me {Me, Ds} 7.1,7.2

7.3.2 Vulnerability Exploitation m ∈ M me {Me, Ds} 7.3.2

7.3.3 Post Exploitation m ∈ M me {Me, Ds} 7.3.3

552 R. Bitton et al.

D Environment Dependencies

ID Test Element The list of environment dependencies

1 5.2.1 IT-client {IT − cliente, IT − servere, SW − 1e}
2 5.2.4 IT-client {IT − cliente, IT − servere, SW − 1e}
3 7.1.1 IT-client {IT − cliente}
4 7.1.2 IT-client {IT − cliente, IT − servere}
5 5.2.1 IT-server {IT − servere, IT − cliente, SW − 1e}
6 5.2.4 IT-server {IT − servere, IT − cliente, SW − 1e}
7 7.1.1 IT-server {IT − servere}
8 7.1.2 IT-server {IT − servere, IT − cliente}
9 5.2.1 SW-1 {SW − 1e, IT − servere, IT − cliente, SW − 2e, FW − 1e}
10 5.2.4 SW-1 {SW − 1e, IT − servere, IT − cliente, SW − 2e, FW − 1e}
11 5.2.1 SW-2 {SW −2e, SW −1e, FW −1e, HMI−PCe, EWS−PCe, PLC−1e, PLC−2e}
12 5.2.4 SW-2 {SW −2e, SW −1e, FW −1e, HMI−PCe, EWS−PCe, PLC−1e, PLC−2e}
13 5.2.1 EWS-PC {EWS − PCe, PLC − 1e, PLC − 2e, SW − 2e}
14 5.2.4 EWS-PC {EWS − PCe, PLC − 1e, PLC − 2e, SW − 2e}
15 7.1.1 EWS-PC {EWS − PCe}
16 7.1.2 EWS-PC {EWS − PCe, PLC − 1s, PLC − 2s}
17 5.2.1 HMI-PC {HMI − PCe, PLC − 1e, PLC − 2e, SW − 2e}
18 5.2.4 HMI-PC {HMI − PCe, PLC − 1e, PLC − 2e, SW − 2e}
19 7.1.1 HMI-PC {HMI − PCe}
20 7.1.2 HMI-PC {HMI − PCe, PLC − 1s, PLC − 2s}
21 5.2.1 Hist-PC {Hist − PCe, PLC − 1e, PLC − 2e, SW − 2e}
22 5.2.4 Hist-PC {Hist − PCe, PLC − 1e, PLC − 2e, SW − 2e}
23 7.1.1 Hist-PC {Hist − PCe}
24 7.1.2 Hist-PC {Hist − PCe, PLC − 1s, PLC − 2s}
25 4.1.1 PLC-1 {PLC − 1p}
26 4.2.1 PLC-1 {PLC − 1e, RTU − 1e, BLRs, GEN − 1s, HMI − PCe, EWS −

PCe, Hist − PCe}
27 5.2.1 PLC-1 {PLC − 1e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
28 5.2.4 PLC-1 {PLC − 1e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
29 4.1.1 PLC-2 {PLC − 2p}
30 4.2.1 PLC-2 {PLC − 2e, RTU − 1e, GEN − 2s, HMI − PCe, EWS − PCe, Hist − PCe}
31 5.2.1 PLC-2 {PLC − 2e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
32 5.2.4 PLC-2 {PLC − 2e, RTU − 1e, HMI − PCe, EWS − PCe, Hist − PCe, SW − 2e}
33 4.1.1 RTU-1 {RTU − 1p}
34 4.2.1 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
35 5.2.1 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
36 5.2.4 RTU-1 {RTU − 1e, PLC − 1e, PLC − 2e}
37 4.1.1 GEN-1 {GEN − 1p}
38 4.2.1 GEN-1 {GEN − 1e, PLC − 1e}
39 4.1.1 GEN-2 {GEN − 2p}
40 4.2.1 GEN-2 {GEN − 2e, PLC − 2e}
41 4.1.1 BLR {BLRp}
42 4.2.1 BLR {BLRe, PLC − 1e}

Deriving a Cost-Effective Digital Twin of an ICS 553

E Illustrations

Fig. 2. An illustration of the proposed
method.

Fig. 3. Simple thermal power station
environment.

References

1. Cyber security assessment of industrial control systems - a good practice guide.
Technical report, Centre for the Protection of National Infrastructure, April 2011

2. Alves, T., Das, R., Morris, T.: Virtualization of industrial control system testbeds
for cybersecurity, pp. 10–14. ACM

3. Gao, H., Peng, Y., Dai, Z., Wang, T., Jia, K.: The design of ICS testbed based
on emulation, physical, and simulation (EPS-ICS testbed). In: 2013 Ninth Inter-
national Conference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing, pp. 420–423. IEEE (2013)

4. Genge, B., Siaterlis, C., Fovino, I.N., Masera, M.: A cyber-physical experimenta-
tion environment for the security analysis of networked industrial control systems.
Comput. Electr. Eng. 38(5), 1146–1161 (2012)

5. Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D., Rashid, A.: Pains,
gains and PLCs: ten lessons from building an industrial control systems testbed for
security research. In: 10th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 2017). USENIX Association, Vancouver (2017)

6. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.)
Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-38756-7 4

https://doi.org/10.1007/978-3-319-38756-7_4

554 R. Bitton et al.

7. Holm, H., Karresand, M., Vidström, A., Westring, E.: A Survey of Industrial Con-
trol System Testbeds. Springer, Cham (2015)

8. Lemay, A., Fernandez, J., Knight, S.: An isolated virtual cluster for SCADA net-
work security research. In: Proceedings of the 1st International Symposium for ICS
& SCADA Cyber Security Research, p. 88 (2013)

9. Leszczyna, R., Egozcue, E., Tarrafeta, L., Villar, V.F., Estremera, R., Alonso, J.:
Protecting industrial control systems-recommendations for Europe and member
states. Technical report (2011)

10. Li, D., Sun, X.: Nonlinear Integer Programming, vol. 84. Springer, Cham (2006)
11. McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A.-R., Maniatakos,

M., Karri, R.: The cybersecurity landscape in industrial control systems. Proc.
IEEE 104(5), 1039–1057 (2016)

12. Mitchell, R., Chen, I.-R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

13. Murray, W., Ng, K.-M.: An algorithm for nonlinear optimization problems with
binary variables. Comput. Optim. Appl. 47(2), 257–288 (2010)

14. Nazir, S., Patel, S., Patel, D.: Assessing and augmenting SCADA cyber security:
a survey of techniques. Comput. Secur. 70, 436–454 (2017)

15. Qassim, Q., et al.: A survey of SCADA testbed implementation approaches. Indian
J. Sci. Technol. 10, 26 (2017)

16. Searle, J.: NESCOR guide to penetration testing for electric utilities. Technical
report, National Electric Sector Cybersecurity Organization Resource (NESCOR)

17. Siaterlis, C., Genge, B.: Cyber-physical testbeds. Commun. ACM 57(6), 64–73
(2014)

18. Stouffer, K., Falco, J., Scarfone, K.: Guide to industrial control systems (ICS)
security. NIST Spec. Publ. 800(82), 16 (2011)

Tracking Advanced Persistent Threats
in Critical Infrastructures Through

Opinion Dynamics

Juan E. Rubio1(B), Rodrigo Roman1, Cristina Alcaraz1, and Yan Zhang2

1 Department of Computer Science, University of Malaga,
Campus de Teatinos s/n, 29071 Malaga, Spain

{rubio,roman,alcaraz}@lcc.uma.es
2 Department of Informatics, University of Oslo, Oslo, Norway

yanzhang@ieee.org

Abstract. Advanced persistent threats pose a serious issue for mod-
ern industrial environments, due to their targeted and complex attack
vectors that are difficult to detect. This is especially severe in critical
infrastructures that are accelerating the integration of IT technologies.
It is then essential to further develop effective monitoring and response
systems that ensure the continuity of business to face the arising set of
cyber-security threats. In this paper, we study the practical applicability
of a novel technique based on opinion dynamics, that permits to trace
the attack throughout all its stages along the network by correlating
different anomalies measured over time, thereby taking the persistence
of threats and the criticality of resources into consideration. The result-
ing information is of essential importance to monitor the overall health
of the control system and correspondingly deploy accurate response
procedures.

Keywords: Advanced persistent threat · Detection · Traceability
Opinion dynamics

1 Introduction

Traditional SCADA (Supervisory Control and Data Acquisition) systems that
manage the main production cycle of most of the industries have been work-
ing in an isolated fashion during years. In turn, the current scenario shows an
evolution towards a model in which the organization externalizes some services
by interconnecting their resources to Internet networks. The counterpart of this
modernization is the appearance of new cyber-security threats and an increase
of vulnerabilities in the industrial sector, as some reports show [1].

Many of these attack vectors are leveraged in APTs (Advanced Persistent
threats). This is a type of sophisticated attack perpetrated against a particu-
lar organization, where the perpetrator has significant experience and resources
to penetrate the victim network without being noticed for a prolonged period
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 555–574, 2018.
https://doi.org/10.1007/978-3-319-99073-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_27&domain=pdf

556 J. E. Rubio et al.

of time [2]. Mechanisms such as firewalls, Intrusion Detection Systems (IDS),
antivirus, etc. represent a first solution to the wide range of cyber-security threats
faced by an industrial control system in presence of an APT. However, there is
still a latent need to find advanced mechanisms that are capable of firstly detect-
ing and then tracing one of this threats from a holistic perspective, during its
entire life-cycle.

In this context, graph theory can be leveraged to apply distributed algo-
rithms. Such algorithms can correlate various anomalies measured over the net-
work that are potentially consequence of these attacks, while being able to locate
the most affected areas within the topology. More specifically, we take the pro-
posed scheme in [3] as a basis for our extended solution. This previous work
proposed the use of opinion dynamics as a multi-agent collaborative algorithm,
focusing only on the detection of topological changes over a graph-defined net-
work. In this article, we show the feasibility of using the core of this approach
to actually include realistic sources of anomaly and successfully trace the move-
ment of an APT within a defined network architecture, which helps to deploy
tailored response techniques. In order to achieve this, we review the literature
of the most reported cases of APTs with the aim to realistically represent their
stages and the sort of anomalies detected in each step of their kill chain. Finally,
the effectiveness of the solution is theoretically demonstrated and shown in a
test-case. We can summarize our contributions as:

– Modeling of an APT and its attack actions considering the persistence and
criticality of resources.

– Adaptation and implementation of a distributed algorithm to detect realistic
anomalies affecting the network nodes.

– Creation of indicators to inform about the threat evolution and the network
health status.

The remainder of this paper is organized as follows: Sect. 2 outlines the pro-
posed architecture and introduces the concept of opinion dynamics. In Sect. 3 the
literature is reviewed to extract information about the APT modus operandi.
Based on this extracted model, an algorithm that can detect and trace the
presence of APT is simulated in Sect. 4. Then, the approach is experimentally
analyzed using Matlab in Sect. 5. Finally, the conclusions drawn are presented
in Sect. 6.

2 Preliminaries

In this section, we lay the theoretical base that permits, on the one hand, the
formal representation of actual APT attacks over a defined network, and the
execution of the detection technique, on the other.

2.1 Proposed Network Architecture

As discussed in the Introduction, most industrial ecosystems are nowadays
adopting cutting-edge technologies onto their production chain and monitor-
ing systems. The counterpart of the modernization of industrial technologies

Tracking APTs in Critical Infrastructures 557

(which we will refer to as ‘operational technologies’ or OT) and its integration
of IT (‘information technology’) in this context comes with the appearance of
new cyber-security threats. Some of them are inherited from the IT paradigm
and some other arise from the growing integration between IT and OT. We are
talking about attack vectors such as denial of service, presence of malware in the
control teams, exploitation of vulnerabilities in communication protocols, phish-
ing and social engineering, etc. that will be further described in Sect. 3.1. For
this reason, since there are several reported APTs that attempt to compromise
resources belonging to both the IT and OT parts of the industrial network, it
makes sense that the whole industrial topology can be split into these different
sections: IT and OT, which will be interconnected by firewalls.

The formalization of the proposed network architecture is explained in the
following. Let G(V,E) be a graph that represents the entire network topology,
that contains devices and communication links that transmit information and
control commands between them. This network is composed by the IT and OT
sections, which are respectively represented with subgraphs G(VIT , EIT) and
G(VOT , EOT). These sections are joined by a set of firewalls placed in between
(VFW henceforth), so that V = VIT ∪ VOT ∪ VFW . In order to understand how
these network sections are merged, we firstly must introduce a graph theory
concept related structural controllability [4] and power dominance [5]. The aim
is to select the set of those nodes within the network that have the maximum
dominance, which are called the driver nodes (denoted by ND). As introduced
in [5] and extended in [6], let us assume the following two observation rules over
a given network G(V,E):

OR1. A driver node nd in DN observes itself and all its neighbors: this is,
the rest of nodes that share a communication link with nd. This conforms
the Dominating Set (DS) of G, and implies that every node not in DN is
adjacent to at least one member of DN.

OR2. If a driver node nd in DN of degree d ≥ 2 is adjacent to d − 1 observed
driver nodes, then the remaining un-observed vertex becomes observed as well.
This also implies that OR1 ⊆ OR2 given that the subset of nodes that
comply with OR1 becomes part of the set of nodes that complies with OR2,
conforming the Power Dominating Set (PDS). It means that every edge
in E is adjacent to at least one node of DN.

An example of the election of these driver nodes is depicted in Fig. 1. More
specifically, the PDS will be used in the OT section of the industrial topology to
represent the set of devices that are connected to the firewalls that also connect
to the IT nodes, thereby merging both sections. The reason for such election
is that in an operational environment multiple kinds of devices coexist. How-
ever, apart from sensors and actuators, PLCs and HMIs, only SCADA systems
and high-level servers are actually connected to external networks (i.e., the IT
section or Internet). Therefore, these are the nodes that hierarchically have more
connectivity (so they will be linked to the firewall nodes), which is equivalent to
the controllability concept introduced before. As for the IT section, since most

558 J. E. Rubio et al.

Fig. 1. Observation rules for the election of the most dominating nodes

of the devices range from ERP to customer-end systems (and whose computa-
tional capabilities are not as restricted as OT devices), we assume all nodes are
connected to the firewalls and thereby can access the operational area.

However, concerning the network topology of the IT and OT section, we
must note that each of these subnetworks is built with a different network distri-
bution. On the one hand, G(VOT , EOT) follows a specific network construction
centered on power-law distributions of type y ∝ x−α, which is extensively used
to model the topological hierarchy of a electric power grid and their monitoring
systems [7]. These networks commonly contain substations, which are nodes with
high degree (i.e., the number of edges incident on the node) connected to nodes
with lower degree, like sensors and actuators. In turn, the IT section (given by
G(VIT , EIT)) is modeled according to a small-world network distribution, that
represents the conventional topology of TCP/IP networks [8].

Once we have established the architecture for the network, we are in position
to not only simulate attacks over the topology, but also deploying the detection
system based on opinion dynamics, which is the main contribution of our work.

2.2 Opinion Dynamics

In this section, we present the fundamentals behind the distributed detection
technique from a theoretical point of view. In order to better understand what
this solution measures and how it provides a valuable insight for further mon-
itoring and response procedures, we must attend to how an APT behaves. As
introduced in the first section, one of these threats comprises several stages over
which the attacker manages to compromise certain devices over the victim net-
work until he/she reaches an interest point. It is then when the intruder usually
chooses to either disrupt the productive process or exfiltrate information to the
attacker headquarters, as described further in Sect. 3.1.

This chain of individual attack actions commonly takes quite a long time to
perpetrate the network resources; over this evolution, it would be of paramount
interest to extract two main pieces of information:

1. The portion of the network that is subject of attack at any time, being pos-
sible to distinguish what set of devices are experiencing the same degree of
anomaly, which can be produced by an attack. This is essential for applying
effective response techniques and potentially isolate the attack, while the rest

Tracking APTs in Critical Infrastructures 559

of the areas can keep functioning as in normal conditions, hence ensuring the
continuity of the production by this way.

2. The traceability of events occurred to the network, with respect to the evo-
lution of the intrusion throughout the network since the very first moment it
broke into it. In this sense, when it comes to APTs, we must also take the per-
sistence of attacks into special consideration at all times, since an advanced
threat can go unnoticed during months and suddenly perform a new attack. In
terms of the detection technique, this implies that it is also necessary to keep
track of old subtle anomalies noticed in the network, to serve as feedback to
the technique and correlate their relevance with current detected anomalies,
that altogether may be part of a more ambitious threat. As it is technically
described in Sect. 4, this weight given to anomalies experienced on the net-
work in the past devalues over time depending on the criticality of the victim
devices and the type of anomaly detected.

These objectives are accomplished by the means of a distributed coopera-
tive algorithm called based on Opinion Dynamics [9], since it models the actual
opinion formation among the individuals of a society: each of these individu-
als (denoted as agents in the following) does not simply share or disregard the
opinion of the rest of agents, but he/she takes them into account to a certain
extent in order to form his own opinion. From this moment on, what the opin-
ion dynamics process does is to take an average over the opinions that can
be repeated over and over again. This eventually leads to formed consensus of
opinions belonging to different agents closer to each other. Correspondingly, it
is equivalent to obtaining a fragmentation of the different opinions within the
society, which can be applied to intrusion detection by representing the opinion
according to the level of anomaly that each agent (representing a device of the
network) experiences.

In the following, we formalize the intrinsics of this multi-agent algorithm,
which constitutes a light modification of the approach proposed in [9] and an
extension of the work presented in [3]. Let A be the set of agents of the system
such that A = {a1, a2, . . . , an}. Here, xi(t) represents the individual opinion of
each ai at time t (ranging from zero to one), where t refers to the iteration of
the algorithm. On the other hand, the weight given to the opinion of any other
agent j is denoted by wij , where

∑n
k=1 wik = 1 (therefore, agent i also takes its

own opinion into account). Finally, the formation of the opinion for agent i in
the next iteration t + 1 is described as follows:

xi(t + 1) = wi1x1(t) + wi2x2(t) + . . . + winxn(t)

Consequently, every agent adjusts its opinion in period t + 1 by taking a
weighted average of the opinions of the rest of agents. When t tends to infinity,
consensus of opinions are formed (so finally there are just a few opinions shared
by clusters of agents), which can also be represented visually. Conversely, what
we want to accomplish in our particular scenario is to use these opinions as a
way to represent a detected anomaly by a given agent that is installed within
the network, so that similar values (provoked by the same threats) converge the

560 J. E. Rubio et al.

most critically affected areas from a high-level perspective (and the severity of
such attacks) can be ultimately located.

One aspect that needs to be clarified is the assignment of weight among
agents: for simplicity, for a given agent, we assume that the weight value assign
to its neighbors is uniformly divided into those agents whose opinion is very close
to its one (we establish a epsilon value of 0.2 of deviation between both values).
This models the fact that agents close to each other with the same degree of
anomaly are likely to be detecting the same threat in their surroundings.

In order to successfully apply this concept of a multi-agent algorithm to the
context of anomaly detection in an industrial setting, there are various ques-
tions that need to be further addressed: (i) who can play the role of agents
within the industrial network, considering that there should be as many logical
agents as nodes within the network (|V | in our case); (ii) how each anomaly
can be represented as an opinion held by an agent, and how to retrieve such
anomaly values; and (iii) how the attacks affect the persistence and the anomaly
detection, depending on their severity and the criticality of the victim nodes,
which influences the persistence and the application of the opinion dynamics.
These questions will be reviewed and answered in Sect. 3 through the analysis
of real-word APTs and existing defense mechanisms and architectures.

3 Attack and Defense Models

3.1 Review of Existing APTs, APT Stages, and Defenses

For the specification of the opinion dynamics algorithm, we need to provide an
accurate representation of APT attacks in the context of our network model.
Therefore, here we will first review the most important APT threats and groups
that have specifically targeted industrial control systems. For the interested
reader, a more detailed review of these APTs – including exploited vulnera-
bilities, software modules, etc. – is available at [10].

Stuxnet (2009). Stuxnet was one of the APTs that popularized this concept and
brought it to the limelight. Developed by a state agent, the main goal of this
worm was to hinder the enrichment of uranium in the Iranian nuclear facility of
Natanz [11]. It is believed that its primary infection vector, which was used to
infiltrate the facility, was USB flash drives. Once the malware was installed in the
‘patient zero’ computer, it also used other mechanisms (network shares, infected
project files) to spread through the internal network, searching for the computers
that directly controlled the uranium enriching centrifuges. Finally, the malware
modified the code that controlled the centrifuges in order to silently destroy
them.

DragonFly group (2013–2014, 2015-). Active since 2010, this particular APT
actor has always focused on cyberespionage. On 2013, it started several cam-
paigns against energy suppliers [12]. In its first wave of attacks, the main goal

Tracking APTs in Critical Infrastructures 561

was to discover and map the existence of OPC (Open Platform Communica-
tions) SCADA servers located in the attacked network. For this purpose, after
the initial infection, the malware queried the network in search of OPC servers
using specific OPC DCOM (Distributed Component Object Model) calls. On the
other hand, its second wave of attacks followed a more conservative approach: it
retrieved information mostly by extracting documents and screenshots from the
infected computers.

BlackEnergy (2015–2016). The BlackEnergy malware, created by an APT actor
known as Sandworm, was used to attack the energy infrastructure of Ukraine in
December 2015 [13]. After the initial infection, the first goal of the malware was
to replicate to as much computers as possible through Windows Admin Shares
(e.g. through PsExec and remote file execution). The second goal of the mal-
ware was to set up various connections to external command&control networks.
Using these networks, malicious operators were able to activate various com-
ponents (KillDisk, circuit breaker manipulator) that caused havoc in electricity
distribution companies.

ExPetr (2017). ExPetr was a wiper disguised as ransomware, which tar-
geted local administrations and various industrial companies in Russia and
Ukraine [14]. It used two primary infection vectors: a modified version of the
EternalBlue exploit used by WannaCry, and an trojanized version of the MEDoc
tax accounting software. Once ‘patient zero’ was infected, this malware used
both the EternalBlue exploit and the BlackEnergy propagation mechanisms to
propagate over the local network. Immediately afterwards, the fake ransomware
component of the malware would be activated.

Another element that is essential for the formalization of the behaviour of
APTs in our network model is the definition of the different attack stages (i.e.
intrusion kill chains) that are performed by APTs. These attack stages – whose
order can be changed depending on the specific APT – have been extensively
studied and described by various academic and industrial researchers [15–17],
and can be summarized in the following steps:

– Reconnaissance. Adversaries gather information about the targeted indus-
trial network, and create an attacking plan.

– Delivery. After choosing a set of vulnerable computers (‘patient zero’) at the
targeted industrial network, adversaries deliver the malware to those comput-
ers, either directly (e.g. through email or vulnerable services) or indirectly
(e.g. contaminating websites with malware).

– Compromise. At this stage, the malware is executed in the target machine,
and takes control of it. This stage involves several steps, such as privilege
escalation, maintaining persistence, and executing defense evasion techniques.

– Command and Control. Once the malware controls ‘patient zero’, it opens
a communication channel with the remote attacker, which will be used to send
commands, extract information, etc.

562 J. E. Rubio et al.

– Lateral Movement. The concept of lateral movement encompasses the dif-
ferent steps that the malware takes in order to control other computers located
in the targeted network. Lateral movement includes internal reconnaissance,
compromise of additional systems, and collection of sensitive information.

– Execution. The malware finally performs the attack against the targeted
industrial network. Attacks range from exfiltration (extraction of sensitive
data) to destruction of resources.

Finally, in order to define our defense model, and to provide an answer to the
questions raised in the previous section, it is necessary to provide a brief overview
on the actual state of the art of the existing defense mechanisms against the
attack stages defined above. This information is extracted from more detailed
reviews that are already available in the literature, such as [18]. Here, we will
only highlight the most important aspects that will influence over the defense
model of our network and the different detection probabilities:

– Detection coverage. As of 2018, there are multiple intrusion detection and pre-
vention mechanisms, both commercial and academic, that are able to analyze
the state of all elements and communication systems in industrial networks,
including the field devices.

– Central correlator systems. There are several commercial platforms, such
as [19], whose goal is to provide support for event correlation. These platforms
can retrieve events and alerts from various domains (e.g. IT, OT networks)
and from various sources (e.g. SIEM systems, vulnerability scanners) in a
distributed way.

– Beyond attack signatures. There exist several solutions that are able to indi-
cate the potential existence of anomalous situations, even if the attack sig-
natures are unknown. Examples include not only diverse statistics (e.g. traf-
fic volume, network connections, protocols used), but also machine learning
mechanisms, specification-based systems, and industrial honeypots.

– Network features. In comparison to the IT infrastructure, OT networks exhibit
a more consistent behaviour. This feature is actually used by certain detection
mechanisms to more accurately pinpoint the existence of anomalies.

3.2 Representation of APT Attacks and Detection Probabilities

After reviewing the behaviour of industrial APTs and the state of the intrusion
detection mechanisms, we can define a realistic attack and defense model for our
network architecture, thereby addressing the questions raised in Sect. 2.2. Our
attack model is simple: we assume that, given a certain goal (exfiltration and/or
destruction), adversaries are able to successfully perform an APT attack against
the network architecture defined in Sect. 2.1 using any set of the attack stages
defined in Sect. 3.1. As for the defense model, and given the actual state of the
art in the area, we assume that all the elements of the network are covered by
anomaly detection mechanisms, whose outputs can be retrieved by correlation
systems similar to the ones described in [18].

Tracking APTs in Critical Infrastructures 563

By assuming the existence of a correlation system, it is possible to centralize
the computation of the opinion dynamics algorithm in a more computationally
powerful node (that gathers all the opinions and perform the correlation). As a
consequence, the agents described in Sect. 2.2 can now be instantiated as logical
agents, whose inputs will be retrieved from the different outputs of the anomaly
detection mechanisms. From those inputs, every agent can now derive a certain
opinion xi(t), or detection probability (i.e. the probability that an attack is tak-
ing place) for a given interval of time. These opinions are in turn influenced by the
amount of alerts and their criticality. For example, a combination of anomalous
statistics will slightly raise the opinion of an agent, and the existence of a con-
firmed attack (e.g. through the detection of an attack signature) will maximize
that opinion. Compared to traditional detection mechanisms, the effectiveness
of this approach resides in the ability to correlate anomalies throughout the net-
work and hence trace the location of attacks, also considering their severity and
persistence.

Taking into account the attacker model, we can now provide a formal rep-
resentation of the intrusion kill chain of APT attacks. Let attackStages be
a set of potential attack stages that an APT can perform against the indus-
trial control network G(V,E) as defined in Sect. 2.1, such that attackStages =
{attack stage1, attack stage2, . . . , attack stagen}. This set comprises the follow-
ing elements:

– initialIntrusion(IT,OT,FW). The initial access that affects a node n0 (known
as ‘patient zero’) of the IT network, OT network, and firewall, respectively.

– compromise. The adversary takes control of a certain node ni, obtaining
higher privileges, maintaining persistence, and executing defense evasion tech-
niques. Moreover, this stage also includes the internal reconnaissance of the
direct neighbourhood of ni, neighbours(ni).

– targetedLateralMovement (IT,OT,FW). From a certain node ni, the adver-
sary chooses a FW, IT, or OT node nj from the set neighbours(ni), and
executes a lateral movement towards that node. Note that, in this model,
the concept of lateral movement only encompasses the delivery of malware
towards the target node.

– controlLateralMovement. From a certain node ni, the adversary chooses
the node nj from the set neighbours(ni) with the highest betweeness (i.e.
the node with significant influence over the network), and executes a lateral
movement towards that node.

– randomLateralMovement. From a certain node ni, the adversary chooses
a random node nj from the set neighbours(ni), and executes a lateral move-
ment towards that node.

– spreadLateralMovement. From a certain node ni, the adversary executes
a lateral movement towards all nodes from the set neighbours(ni).

– exfiltration. From a certain node ni, the adversary establishes a connection
to an external command&control network, and extracts information using
that connection.

564 J. E. Rubio et al.

– destruction. The adversary either destroys the node ni, or manipulates the
physical equipment (e.g. uranium enriching centrifuges) controlled by node
ni.

– idle. In this phase, no operation is performed.

Once the set attackStages is defined, it is possible to represent APT attacks
that target our particular network model G(V,E). In particular, for every APT
APT , there can be an ordered set attackSetAPT , comprised by one or more
elements of the attackStages set, that represent the APT chain of attack actions.
As an example, the attack set of Stuxnet can be represented as follows:

attackSetStuxnet = {initialIntrusionIT , compromise, exfiltration,

targetedLatMoveFW , compromise, targetedLatMoveOT ,

. . . , targetedLatMoveOT , idle, . . . , destruction}
These particular instances are defined taking into consideration the overall

goal of every APT. For example, in the case of the Stuxnet malware, its goal is
to find a particular node nOT ′ ∈ VOT that manages an uranium enriching cen-
trifuge. Therefore, after infecting patient zero nIT 0 ∈ VIT , it seeks the location
of a firewall node nFW ∈ VFW that connects the G(VIT , EIT) and G(VOT , EOT)
regions. Afterwards, it moves inside the G(VOT , EOT) region until it finds node
nOT ′ . Finally, after waiting for some time, the malware executes its payload,
manipulating the centrifuge.

Regarding how the different attack stages influence over the application of
the opinion dynamics and the calculation of the detection probabilities, we need
to consider that certain attack stages will generate more security alerts. This,
in turn, will increase the probability of detecting that particular attack stage.
Therefore, we need to consider the existence of different classes of detection
probabilities. Here, we define Θ as an ordered set of detection probabilities of
size d, where Θ = {θ1, . . . , θd} and θi = [0, 1], such that ∀θi, θi > θi+1.

Table 1. Map of attackStages to Θ

initialIntrusion(n0) θ3

compromise(ni → neighbours(ni)) θ2 → θ5

∗LateralMovementIT,FW (ni → nj) θ5 → θ4

∗LateralMovementOT (ni → nj) θ5 → θ3

spreadLateralMovement(ni → neighbours(ni)) θ5 → θ4

exfiltration(ni) θ4

destruction(ni) θ1

Once Θ is defined, we can create a model that maps every element of the
set attackStages to the elements of Θ. Such model, where d = 5 and Θ =
{θ1, θ2, θ3, θ4, θ5}, is described in Table 1. We explain the rationale behind this
mapping in AppendixB.

Tracking APTs in Critical Infrastructures 565

4 Detection of APTs

After formally representing the attack stages, plus their relation to the detection
probabilities, we can now use the proposed detection probabilities as inputs to
the opinion dynamics algorithm, and hence simulate its response in an industrial
architecture when it faces a particular instance of APT.

Algorithm 1 describes the life cycle of an APT composed by a set of attack
actions against a given network. Each of these attacks generates an anomaly
that is detected by the corresponding agents (and possibly by their neighbors),
increasing their opinion in a value defined by the previously introduced Θ. After
this, as commented in earlier sections, we also introduce a attenuation value
on the opinion that represents the effect of old attacks in order to reduce their
influence when computing the current opinion. This “decay” value, applied in the
UpdateOpinionsWithDecay function, depends on the attack stages suffered
in the past by the agent and the criticality of its monitored device: the more
devastating the alert generated is (during the detection phase), the longer its
effect will take to disappear. Consequently, we define Φ as an ordered set of
decay values, where Φ = {φ1, . . . , φd} and φi = [0, 1], such that ∀φi, φi < φi+1.
Therefore, for all i ∈ d, φi is inversely proportional to the θi value, and both
are applied to the detected anomaly value after each stage. This procedure,
explained in Algorithm2, is a way to account for the persistence when computing
the opinion dynamics. It is important to note that both the respective anomaly
and decay addition or reduction implies a normalization of the opinion value,
from 0 to 1.

Once the x vector of opinions is updated with the new attack action (with θ)
and attenuated due to old stages (through Φ), the opinion dynamics algorithm is
executed to identify the affected areas of nodes and the level of severity of these
attacks. However, although this gives insight of the location of threats (as it is
visualized in the experimentation section), it would be also necessary to obtain
an overall value of the network health from the opinion dynamics processing.
Therefore, we have created the so-called delta indicator, which represents a global
anomaly value and is computed in the ComputeDelta function. This value is
calculated with the weighted average of opinions by the amount of agents that
hold the same detected abnormality, as described in Algorithm 3. However, since
this aggregated value is dependent on the number of agents to calculate the
average, in practice we can compute it over different sections of the network
(i.e., IT or OT), thereby increasing its granularity. Using these values, we can
quickly know the overall anomaly degree of every portion of the network.

Note that all these algorithms and the approach itself are validated from a
theoretical point of view in AppendixA.

5 Experimental Simulations and Discussion

In the following, we present a test case for illustrating how we can apply the
opinion dynamics-based technique while representing an APT against a given

566 J. E. Rubio et al.

Algorithm 1. APT life cycle - anomaly calculation
output: δ representing the delta value
local: Graph G(V, E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: attackSet ← attackStageAPTx , representing the APT chain of attack actions

x ← zeros(|V |) (initial opinion vector)
{performedAttacks ← �}
{attack ← firstattackfromattackSet}
while attackSet �= � do

if attack == initialIntrusion(IT, OT, FW) then
attackedNode ← random v ∈ V(IT,OT,FW)
x(attackedNode) ← x(attackedNode) + θ3

else if attack == compromise then
x(attackedNode) ← x(attackedNode) + θ2
for neighbour in neighbours(attackedNode) do

x(attackedNode) ← x(attackedNode) + θ5
end for

else if type(attack) == LateralMovement then
previousAttackedNode ← attackedNode
attackedNode ← SelectNextNode(G, attackedNode)
x(previousAttackedNode) ← x(previousAttackedNode) + θ5
x(attackedNode) ← x(attackedNode) + θ3,4

else if attack == exfiltration then
x(attackedNode) ← x(attackedNode) + θ4

else if attack == destruction then
x(attackedNode) ← x(attackedNode) + θ1

else if attack == idle then
No attack performed

end if

x ← UpdateOpinionsWithDecay(x, performedAttacks)
performedAttacks ← performedAttacks ∪ attack
mergedOpinions ← ComputeOpinionDynamics(x)
δ ← ComputeDelta(mergedOpinions)
attackSet ← attackSet \ attack

end while

Algorithm 2. Decay of anomaly values over time depending on the attack
action

function UpdateOpinionsWithDecay(x,performedAttacks)
for attack in performedAttacks do

affectedNode ← getAffectedNode(attack)
if attack == initialIntrusionIT,OT,FW then

x(affectedNode) ← x(affectedNode) − φ3
else if attack == compromise then

x(affectedNode) ← x(affectedNode) − φ2
for neighbour in neighbours(affectedNode) do

x(affectedNode) ← x(affectedNode) − φ5
end for

else if type(attack) == LateralMovement then
origin ← getOriginOfMovement(attack)
x(origin) ← x(origin) − φ5
x(affectedNode) ← x(affectedNode) − φ3,4

else if attack == exfiltration then
x(affectedNode) ← x(affectedNode) − φ4

else if attack == destruction then
x(affectedNode) ← x(affectedNode) − φ1

end if
end for
return x

end function

Tracking APTs in Critical Infrastructures 567

Algorithm 3. Computation of delta value
function ComputeDelta(mergedOpinions)

opinionClusters ← uniqueValues(mergedOpinions)
frequencyV ector ← zeros(|opinionClusters|)
for i:=1 to size(opinionClusters) step 1 do

frequencyV ector(i) ← CountOccurrencesOfOpinion(opinionClusters(i), mergedOpinions)
end for

δ ← 0
for j:=1 to size(opinionClusters) step 1 do

δ ← δ + frequencyV ector(j) ∗ uniqueV alues(j)
end for

δ ← δ/size(mergedOpinions)
return δ

end function

IT/OT industrial topology, as described in the paper. For this test case, we have
implemented the network topology and Algorithms 1, 2 and 3 in Matlab.

Let us assume that we have a topology composed by three OT nodes and
three IT nodes connected by a firewall, as explained in Sect. 2.1. According
to Sect. 3.2, Stuxnet comprises a set of nine different attack actions that will
be perpetrated against the proposed network, where each node counts on an
individual agent to monitor its anomalies. If we execute the opinion dynamics
algorithm after each stage, we can analyze the different clusters of anomalies
detected by sets of agents. Following the model presented in Sect. 3.2, we have
assigned values for each θ and φ according to the ordered set of probabilities
in Table 2, considering a realistic scenario. We have also introduced a deviation
of 0.1 to values in θ to simulate a low level of noise or probability of detecting
the corresponding anomaly after each attack stage. Figure 2 visually represents
the resulting values in each agent after the four most representative stages,
where (1) the attacker compromises the IT node and exfiltrates information,
(2) compromises the firewall and then (3) moves to the last OT of the network
and remains idle, right before the destruction of this node is performed (4).
Four different idle operations are performed in this point, with a total of twelve
attack actions. Numbers by the name of nodes represent the value of anomaly
(opinions) that each agents holds.

Table 2. Detection probability and decay values used in the Stuxnet test case

i 1 2 3 4 5

θi 0.9 0.7 0.5 0.3 0.1

φi 0.01 0.025 0.05 0.075 0.1

As we can also see in Fig. 2, the attacker traverses the whole network accord-
ing to the Stuxnet behavior (where the current attacked node appears rounded),
while the agents and its neighbors are able to detect the anomalies that conse-
quently take place (the more red the node is, the greater the detected anomaly

568 J. E. Rubio et al.

(a) Exfiltration (b) FW compro-
mise

(c) OT compromise (d) Destruction

Fig. 2. Network topology used in the test case (Color figure online)

is). At the same time, we see how attenuation of anomalies also occurs, especially
visible when the attacker leaves a node. In this example, the first IT node com-
promised is the number 1 while the final one is the OT number 3; the former is
gradually attenuating its value as the attack evolves, according to the behavior
explained in Sect. 4.

Fig. 3. Opinion dynamics after the second stage

This ability to identify where the threat is active within the network is
enabled by opinion dynamics. If we have a look at its value in form of a plot in
some point, we obtain the graph in Fig. 3. This corresponds to the execution of
the algorithm (with 20 inner iterations) after the second stage depicted in Fig. 2,

Tracking APTs in Critical Infrastructures 569

where the FW is compromised after attacking the first IT nodes. As we can
rapidly see in the resulting graph, there are two agents (the aFW and the aIT

node) that successfully detect the same level of critical abnormality in their area;
this is also detected by some of their neighbors mildly, which is represented with
the central consensus. Apart from these, the rest of nodes only detect a negligible
value of anomaly.

By this means, we can statically identify where the threat is located and
which severity it experiences. However, as commented in Sect. 2.2, it would be
also necessary to trace all the events of the APT and highlight the most affected
nodes it has traversed. In this sense, if we represent the succession of opinions
agreed by agents over time for the Stuxnet attack described previously, we easily
have such information, which is represented with Fig. 4.

0

12

0.2

10

8

0.4

Attack Actions

6

O
pi

ni
on

 (
A

no
m

al
y)

0.6

4
7

6

Nodes (IT-FW-OT)

2 5

0.8

4
3

0 2
1

1

Fig. 4. Evolution of the opinions over time to trace the APT stages

As we can see there, the opinion profile for all agents evolves over the set
of APT attack actions, showing a more pronounced value in the IT section in
earlier stages and the OT in latter phases of the Stuxnet APT, as the attack aims
to ultimately compromise a PLC by firstly intruding the network through a IT
node. A similar effect is seen when we study the change in the delta value, which
can be calculated either in the whole network or on any of its subnetworks (i.e.,
IT or OT). Figure 5 shows the progression of this indicator in each case, which
also shows us how IT delta decreases over time and its value in OT increases
according to the chain of attacks. In general, the value acquires the highest value
when the last OT node is compromised, since the network has suffered most of
the attacks in the previous stages. Beyond that point, delta decreases (due to the
idle operations) and then it finally increases with the destruction of the node.

570 J. E. Rubio et al.

0 2 4 6 8 10 12

Attack actions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
el

ta
 e

vo
lu

tio
n

Global delta
IT delta
OT delta

Fig. 5. Evolution of delta opinions over the network for the Stuxnet attack

6 Conclusions

APTs nowadays represent a dramatic source of economic losses and reputation
damage for the industry, which obligates researchers, managers and operators
to make a great effort to analyze them to trace their behavior and anticipate
their effect. It then becomes mandatory to explore new ways of detecting and
tracing anomalies beyond traditional detection techniques. In this paper, we have
described the feasible application of an already available theoretical approach
based on a distributed collaborative algorithm (opinion dynamics). We review
the literature to gather the set of attack vectors that these threats leverage with
the aim of representing the anomalies and show the effectiveness of the algorithm
in a realistic setting, which also considers the influence of persistence over time.
As a result, we have valuable information about the status of the network at all
times. This design constitutes the middle step towards a future implementation
in a real testbed that is currently being under development, which also takes
into account additional sources of detection and accurate indicators.

Acknowledgments. This work has been partially supported by the research project
SADCIP (RTC-2016-4847-8), financed by the Ministerio de Economı́a y Competitivi-
dad, and DISS-IIoT, financed by the University of Malaga (UMA) trough the “I Plan
Propio de Investigación y Transferencia” of UMA. Likewise, the work of the first author
has been partially financed by the Spanish Ministry of Education under the FPU pro-
gram (FPU15/03213). The authors also thank J. Rodriguez (NICS Lab.) for his valu-
able comments, support, ideas, and incredible help. You rock.

A Correctness Proof: Consensus-Based Detection
and Traceability

This section presents the correctness proof of the consensus-based detection and
traceability problem for APTs. This problem is solved when the following con-
ditions are met:

Tracking APTs in Critical Infrastructures 571

1. The attacker is able to find an IT/OT device in the system and attack it.
2. The detection system is able to trace the threat, thanks in part to the con-

sensus (detection and traceability).
3. The system is able to properly finish in a finite time (termination).
4. The algorithm is capable of terminating and providing advanced detection at

any moment (validity).

The first requirement is satisfied because we assume that the attacker is
capable (i) declaring the chain of attacks in advance, such as scanning, lateral
movement, exfiltration or destruction (see Sect. 3.2), and (ii) identifying kinds
of devices (e.g. IT/OT nodes and firewalls) by their functionalities. The modus
operandi of the attacker is systematic except when the attacker needs to make a
specific lateral movement, either through the selection of a new random neighbor
node within the network or the selection of the neighbor with the highest betwee-
ness. To comply with the predefined attack patterns, the attacker first needs to
identify the first target node, which generally belongs to IT network − evidently,
this characteristic depends on the type of attacker (insider or outsider) and their
skills. If the attacker is an outsider, her goal is to find a vITi

∈ VIT in order to
penetrate by itself within the system, and to advance until reaching those nodes
serving as firewalls such that vFWi

∈ VFW . Once a vFWi
is finally reached, the

attacker tries to gain access in the operative network to compromise the most
critical devices, i.e. vOTi

∈ VOT . If the attacker is an outsider, the compromises
relies, in this case, on the pre-established APT threat chain; i.e. on attackSet.

The second requirement is also found due to the software prevention agents,
ai ∈ A, integrated as part of vITi

, vFWi
and vOTi

of G(V,E). These agents
present capacities to detect anomalies and trace the intrusive presence by means
of opinion dynamic parameters, the values of the which are attenuated according
to time and aggressiveness of the threat (the decay factor). This attenuation,
dependent on Φi, does not means to completely forget an incident in past. But
rather, in remembering the most significant aftermaths of the previous attacks in
order to show the advance of the threat in real time, and therefore its traceability.

Through induction we demonstrate the third requirement, corresponding to
termination of the approach. To do this, we specify the initial and final conditions
together with the base case. Namely:

Precondition: by assumptions, we assume that the attacker is an advanced
expert with skills to reach the IT-OT communication channels belonging
to G(V,E). However, this capacity depends on the set attackSet defined in
Algorithm 1, which defines threat chain such that attackSet �= 	.

Postcondition: (i) the attacker reaches the network G(V,E) and compromises
at least a node in V such that attackSet = 	 after the loop in Algorithm1.
And (ii) the system successful detects the threat such that δ > 0 and marks
the traceability according to the real consensus state of G(V,E), registered
in the array vector x.

Case 1: attackSet �= 	, but | attackSet |= 1. In this case, the attacker needs
to launch the unique attack defined in attackSet. As mentioned, if the attack

572 J. E. Rubio et al.

does not imply a lateral movement, the success of the threat is concentrated
on just one node in V , since the following iteration of the loop implies that
attackSet ← attackSet \ attack, and therefore attackSet = 	. To the con-
trary, if the attack entails a lateral movement, then the attacker has to select
a new neighbor node, either from a random or target point of view.
Any attack in V means an impact on the attacked node with a significant
influence in its opinion dynamic (i.e. x(attackednode). If, in addition, the
decay factor is activated, the system weakens, but does not delete, the aggres-
siveness of the threat to stress the current trace of threat over the time. This
computation is possible through Φi in Algorithm 2. Once x is updated, the
system computes the δ value taking into account the weighted average of the
opinion dynamics of the entire system (see Algorithm 3).

Induction: if we assume that we are in step k (k ≥ 1) of the loop where
attackSet �= 	, then Case 1 is going to be considered each time. When k =|
attackSet |, the system computes Case 1 and ends the detection algorithm
with δ > 0 since attackSet = 	, showing the traceability of the threat through
x and complying with the postcondition.

Finally, the latter requirement is also satisfied since the algorithm finalizes
and detects the threat through opinion dynamic (either individual or collective)
and shows the traceability of the threat over the time.

B The Mapping of the attackStages to Θ

We have presented in Sect. 3.2 a model that maps every element of the set
attackStages to the elements of Θ = {θ1, θ2, θ3, θ4, θ5}. For this mapping, we
have taken into consideration the defense mechanisms analyzed in Sect. 3.1. In
particular, the rationale behind this mapping is as follows:

– We assign θ1 only to the destruction stage, because any major disruption in
the functionality of a device (e.g. unavailable resources, device turned off) will
trigger multiple high priority alerts. Note that, as explained in our defense
model, we assume that all field devices are also covered by detection mecha-
nisms, thus any attack (e.g. the Stuxnet final payload) against these sensitive
devices can be easily detected.

– θ2 is only assigned to the element at the left side of the compromise stage
(ni → neighbours(ni)). The reason is simple: the act of compromising
and taking control of ni will not only trigger various host alerts, but also
multiple network alerts due to the various discovery queries targeting all
neighbours(ni). The correlation of all these events will draw attention to the
state of ni.

– For θ4, we consider the security alerts caused by combination of a single
anomalous connection to a node plus the delivery of malware to that node. As
such, this θ covers all the elements at the right side of the lateralMovement
stages. Note, however, that in some particular cases (like the initialIntrusion
stage and the ∗LateralMovementOT stages), additional anomalies will be

Tracking APTs in Critical Infrastructures 573

detected: a potentially anomalous external connection, and a certain insta-
bility in the otherwise stable OT communication environment, respectively.
Therefore, the θ assigned to the elements of those stages will be θ3.

– Finally, θ5 is assigned to those stages where the nodes produce or receive
anomalous traffic (e.g. a connection that deviates from what is considered
as normal traffic). Again, in situations where a connection with the outside
world is made (e.g. exfiltration stage), as the possibility of anomalous traffic
will increase, the θ will be increase as well.

References

1. Cazorla, L., Alcaraz, C., Lopez, J.: Cyber stealth attacks in critical information
infrastructures. IEEE Syst. J. 12(2), 1778–1792 (2018)

2. Singh, S., Sharma, P.K., Moon, S.Y., Moon, D., Park, J.H.: A comprehensive study
on apt attacks countermeasures for future networks communications: challenges
solutions. J. Supercomput. 1–32 (2016). https://doi.org/10.1007/s11227-016-
1850-4

3. Rubio, J.E., Alcaraz, C., Lopez, J.: Preventing advanced persistent threats in
complex control networks. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 402–418. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66399-9 22

4. Lin, C.-T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208
(1974)

5. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination
in graphs applied to electric power networks. SIAM J. Discret. Math. 15(4),
519–529 (2002)

6. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination
complexity. Inf. Process. Lett. 98(4), 145–149 (2006)

7. Pagani, G.A., Aiello, M.: The power grid as a complex network: a survey. Phys.
A: Stat. Mech. Appl. 392(11), 2688–2700 (2013)

8. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

9. Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence
models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3), 1–33 (2002)

10. Lemay, A., Calvet, J., Menet, F., Fernandez, J.M.: Survey of publicly available
reports on advanced persistent threat actors. Comput. Secur. 72, 26–59 (2018)

11. Falliere, N., Murchu, L.O., Chien, E.: W32.stuxnet dossier, version 1.4, February
2011. https://www.symantec.com. Accessed Apr 2018

12. Symantec Security Response Attack Investigation Team. Dragonfly: Western
energy sector targeted by sophisticated attack group (2017). https://www.
symantec.com. Accessed Apr 2018

13. SANS Industrial Control Systems. Analysis of the cyber attack on the Ukrainian
power grid (2016). https://ics.sans.org. Accessed Apr 2018

14. Cherepanov, A.: Telebots are back - supply-chain attacks against Ukraine (2017).
https://www.welivesecurity.com. Accessed Apr 2018

15. MITRE Corporation. MITRE ATT&CK (2018). https://attack.mitre.org.
Accessed Apr 2018

https://doi.org/10.1007/s11227-016-1850-4
https://doi.org/10.1007/s11227-016-1850-4
https://doi.org/10.1007/978-3-319-66399-9_22
https://doi.org/10.1007/978-3-319-66399-9_22
https://www.symantec.com
https://www.symantec.com
https://www.symantec.com
https://ics.sans.org
https://www.welivesecurity.com
https://attack.mitre.org

574 J. E. Rubio et al.

16. Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent threats. In: De
Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4 5

17. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains. Lead. Issues Inf. Warf. Secur. Res. 1(1), 80 (2011)

18. Rubio, J.E., Alcaraz, C., Roman, R., Lopez, J.: Analysis of intrusion detection
systems in industrial ecosystems. In: 14th International Conference on Security
and Cryptography, pp. 116–128 (2017)

19. S2Grupo. Emas SOM - Monitoring System for Industrial Environments (2018).
https://s2grupo.es/es/emas-ics/. Accessed Apr 2018

https://doi.org/10.1007/978-3-662-44885-4_5
https://s2grupo.es/es/emas-ics/

Hide Your Hackable Smart Home from
Remote Attacks: The Multipath Onion

IoT Gateways

Lei Yang1, Chris Seasholtz2, Bo Luo2, and Fengjun Li2(B)

1 Amazon LLC., Seattle, WA, USA
ynglei@amazon.com

2 The University of Kansas, Lawrence, KS, USA
{seasholtz,bluo,fli}@ku.edu

Abstract. The rapid expansion of IoT-enabled home automation is
accompanied by substantial security and privacy risks. A large number
of real-world security incidents exploiting various device vulnerabilities
have been revealed. The Onion IoT gateways have been proposed to
provide strong security protection for potentially vulnerable IoT devices
by hiding them behind IoT gateways running the Tor hidden services,
in which the gateways can only be accessed by authorized users with
the .onion addresses of the gateways and correct credentials. However,
the limited bandwidth of Tor makes this approach very impractical and
unscalable. To tackle this issue, we present two novel designs of multipath
Onion IoT gateway and split channel Onion IoT gateway. The first design
implements a customized multipath routing protocol in Tor to construct
a multi-circuit anonymous tunnel between the user and the Onion gate-
way to support applications that require low latency and high bandwidth.
The second scheme splits command and data channels so that small-sized
command packets are transmitted through the more secure channel over
the Tor hidden service, while the less secure data channel over the public
network is used for outbound very-high-bandwidth data traffic. Exper-
iment results show that the proposed approaches significantly improve
the performance of Onion IoT gateways, so that they can be practically
adopted to securely transmit low-latency and high-bandwidth data, such
as HD video streams from home surveillance cameras. We also prove the
security guarantees of the proposed mechanism through security analysis.

Keywords: IoT security · Smart homes · Tor hidden service

1 Introduction

By connecting billions of smart devices to the Internet, the Internet-of-Things
leads to a pervasive deployment of intelligence into our daily life with innova-
tive applications. In a recent estimation, approximately 8.4 billion IoT devices
are connected to the Internet worldwide in 2017 – a 31% increase from 2016. By
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 575–594, 2018.
https://doi.org/10.1007/978-3-319-99073-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_28&domain=pdf

576 L. Yang et al.

2020, the number of connected device will reach 20.4 billion, resulting in a global
market of $2 trillion [22]. One of the fastest growing IoT fields is smart home
systems, sometimes referred as home automation, in which smart appliances such
as baby monitors, security cameras, smoke alarms, smart locks, smart lights, and
smart switches/plugs are connected to the home network and remotely control-
lable through the Internet. Beyond convenience, the smart home technology also
provides tangible benefits such as safety and energy-efficiency.

While we are witnessing a rapid expansion of IoT-enabled home automation,
the increasing use of the networked IoT devices is accompanied by substantial
security and privacy risks [29,31,35], which in some cases could lead to chilling
safety consequences since the smart devices in home automation are monitor-
ing our personal activities at home. For example, burglars can hack into our
surveillance system [13] or analyze our electricity consumption [43] to observe
our life pattern, and get into our homes with the help of our smart locks [18]. To
make things worse, the compromised devices can be turned into bots to launch a
DDoS attack. For example, the Mirai botnet compromising millions of cameras
and digital video recorders took down the Dyn DNS servers in 2016 and caused
a massive Internet outage as well as up to $110 million economic loss [17].

As security and privacy has become a most important consideration in the
design and implementation of the smart home technology, various security solu-
tions have been proposed to secure light-weight IoT communication protocols
(e.g., DTLS [27,32] for RPL [38], 6LoWPAN [33] and CoAP [34]), enhance
authentication [28,30] and access control [25,26,36], attest operational status
of remote devices and detect intrusions, etc. However, over the recent years, a
large number of real-world attack incidents have been revealed by academia,
security firms and individual researchers, which have exploited various types of
vulnerabilities in consumer IoT devices and applications involving the use of
surveillance cameras [4,13] and baby cameras [1], smart locks and garage open-
ers [18], smart appliances [2,9], thermostats [3], plugs and light bulbs [29], etc.

A root cause of these vulnerabilities is that the manufacturers have been
lax in adopting appropriate or even basic security measures. For example, the
D-LINK DCS2132L Internet cameras require no credential to access the manage-
ment interface [4,35], and the WeMo devices allow mobile Apps to access them
through an unencrypted SOAP API [31]. The lack of security protection is due
to several reasons. First, it is difficult to extend conventional security schemes
to IoT devices that are usually resource-constrained. Moreover, implementing
security measures on IoT devices especially on the low-end ones requires skills
and resources, and thus increases design and development costs. Finally, manu-
facturers are under business pressures to hit the market so that security is not
their priority.

Consider the large number of heterogeneous IoT devices, manufacturers’ gen-
eral lack of incentives to adopt appropriate security practices, and the slow
progress in IoT security standardization/regulation, it is difficult, if not com-
pletely impossible, to develop security solutions for each individual device, nor to
force each device vendor to ensure a flawless implementation or adopt adequate

Hide Your Hackable Smart Home from Remote Attacks 577

security protections. Recognizing the fact that security vulnerabilities always
exist in IoT devices, the question we pose is in what strategy the chance of
adversaries attacking vulnerable devices can be reduced and where this protection
should be deployed?

Smart devices

(a) Direct access model

Home router IoT Gateway

Smart devices

(b) Gateway-based access model

Fig. 1. Home automation operational models

This naturally leads to an isolation-based approach that uses a dedicated IoT
gateway to separate the private network, in which the IoT devices are deployed,
from the public network, and secure the perimeter of the private network at the
gateway. As shown in Fig. 1b, the IoT gateway coordinates the connected home
automation devices and isolates them from direct access from the public Internet.
Open-source platforms such as Home Assistant [5] and open Home Automation
Bus (openHAB) [8] are introduced to support the interconnection of devices in
different types and from different manufacturers. In this work, we developed our
secure IoT gateways on the Home Assistant platform, but our design can be
easily extended to other platforms. Since all devices are managed and controlled
through the gateway, individual devices no longer offer interfaces for remote
control and thus are not directly exposed to remote adversaries. However, the
gateway, which may have its own security vulnerabilities, becomes the new target
of interest to the adversaries, and also the single point of failure.

One approach to secure the IoT gateway is to connect it to a back-end cloud
server that relays all the commands from the cloud so that it can utilize the
existing security mechanisms provided by the cloud. Samsung’s SmartThings
[11], Apple’s HomeKit and Google’s Brillo are several examples. However, the
cloud-based approach needs to store IoT data on the cloud and thus yields a
serious privacy issue if the cloud service provider is not fully trusted to view
our private IoT data. In fact, users have expressed serious security and privacy
concerns due to data breaches and various types of data abuses [20].

Therefore, we propose to integrate the Tor hidden service onto the poten-
tially vulnerable IoT gateway so that it is protected from being directly exposed
to remote adversaries. This is because in most network attacks, a critical step
is to identify vulnerable, Internet-facing nodes through reconnaissance. By hid-
ing the gateway behind the Tor network, the adversaries, without knowing the

578 L. Yang et al.

gateway’s .onion address, cannot directly scan or access the gateway. In this
way, the Tor hidden service acts as an additional security buffer between the
smart home applications and the adversaries. This idea was first introduced by
Nathan Freitas from the Tor Project in [21], which described a straightforward
approach of obtaining an .onion address for the IoT gateway and running the
Tor hidden service directly on it. However, in practice, this approach suffer from
a well-known performance problem of the Tor network, in which Tor users often
experience very high delays [41,42]. The poor performance of the IoT gateway
running the Tor hidden service affects any IoT applications with realtime require-
ments. Moreover, to prevent congestion, Tor actively throttles high-bandwidth
applications. Consequently, IoT gateways with high-bandwidth services such as
video streaming will be blocked.

To tackle the performance problem, we propose two novel and practical
designs of multi-path Onion IoT gateways, namely IoT gateway over multipath
Tor hidden services, and IoT gateway over split channels. Both designs provide
strong security protection by hiding the IoT devices behind the gateway run-
ning the Tor hidden services. In the first solution, we extended the multipath
routing protocol mTor [42] and customized it to construct an end-to-end tunnel
consisting of multiple Tor circuits between the user and the proposed Onion
IoT gateway. By applying a self-adaptive scheduling scheme, the tunnel trans-
fers data over multiple circuits efficiently and thus achieves a good throughput
to support IoT applications that require low network latency. Since the traffic
is routed through the anonymous tunnel, this scheme provides a same security
protection as the original Tor-based approach. Therefore, it fits the user who
requires strong security protection and a reasonable performance.

We further improved the performance of the Onion gateway in our second
design by using split channels for command and data transmission. In particular,
the IoT gateway running the Tor hidden service maintains two separate channels:
the command channel handles requests and responses, which are tiny messages,
through the hidden service ports over the Tor network, and the data channel is
only used to send high-bandwidth traffic to remote users over the public network.
By separating the command and data channels, we provide a good security
protection by hiding the security-sensitive command interface behind Tor, while
avoiding injecting high-bandwidth traffic into the Tor network.

The main contributions of this work are as follows:

– We present a general security solution to safeguard IoT devices with potential
security vulnerabilities by hiding them behind the specially designed IoT
gateways running the Tor hidden services.

– We propose two novel designs of Onion IoT gateways to provide strong secu-
rity protection by integrating the Tor hidden services on the IoT gateway
with optimized performance to support high-bandwidth and low-latency IoT
applications.

– To our best knowledge, the proposed Onion IoT gateway design is the first
practical solution to integrate Tor hidden service with secure IoT gateways.

Hide Your Hackable Smart Home from Remote Attacks 579

The rest of this paper is organized as follows. We first introduce the pre-
liminaries in Sect. 2, and then present our IoT gateway designs, namely multi-
path Onion IoT gateway and split channel Onion IoT gateway, in Sects. 3 and
4, respectively. We evaluate the performance of the proposed designs through
experiments in Sect. 5 and analyze their security in Sect. 6. Finally, we discuss
the related work in Sect. 7 and conclude this work in Sect. 8.

2 Preliminaries

2.1 One Instance of Smart Home Gateway: Home Assistant

Home Assistant (HA) is an open-source home automation platform running on
Python 3, which is able to automatically discover, monitor, control and automate
various consumer IoT devices [5]. It can run on major operating systems (e.g.,
Linux, Windows, OS X) and hardware modules ranging from PCs to micro-
controllers such as Raspberry Pi. Home Assistant offers a web interface and
allows users to remotely access it through web browsers or mobile applications.

We choose Home Assistant as our implementation platform for several rea-
sons. First, HA is an open-source platform supporting the major brands of IoT
devices, and thus is widely used in home automation application development.
It also has good community supports. Moreover, Freitas implemented the Tor-
based gateway on HA [21], so it is fair to compare his scheme with ours on the
same platform. It worths noting that our designs do not rely on the HA platform.
In particular, the first design using the customized multipath Tor routing pro-
tocol is platform-independent, and the second design can be easily implemented
in other platforms with a small effort.

2.2 Tor and Tor Hidden Service

The Tor network [19] is an overlay network consisting of Onion Routers (ORs)
contributed by volunteers to support anonymous communication over the Inter-
net. To do so, the client’s proxy, known as the Onion Proxy (OP), randomly
selects three routers to establish a Tor circuit to the destination. It then encrypts
the data in layers, packs them into 512-byte cells and sends data cells through
the circuit. Each router along the circuit peels off one layer of encryption and for-
wards the cell to the next router until it reaches the last relay (known as “exit”),
which further forwards the data to the original destination. Each hop only knows
who has sent the data (predecessor) and to whom it is relaying (successor) due
to the layered encryption.

Tor hidden services use rendezvous points (RPs) to allow service operators
to offer TCP-based services, such as web or instant messaging servers, without
revealing their real IP addresses. Service operators can enable it by setting up
Tor as the proxy for their services. Figure 2 illustrates the basic components
of Tor hidden services: (1) The hidden server (HS) randomly selects several
routers as its introduction points (IPs) and builds onion circuits to them. (2)

580 L. Yang et al.

Hidden
Server

Alice Rendezvous Point
(1)

(2)(3)

(4)

(5) (6)

(7)(8)

HSDir

Introduction Point

Fig. 2. Tor hidden services architecture

HS uploads its service descriptor to the hidden service directory (HSDir), where
the descriptor along with HS’s public key and the set of IPs is signed by HS’s
private key. Now, HS is ready to accept connections from clients. (3) To connect
to the hidden service, a client (e.g., Alice) contacts HSDir to retrieve the service
descriptor of HS using its onion address, which Alice learns out of band. (4) With
the set of IPs and HS’s public key from the service descriptor, Alice randomly
selects a router as her RP, gives it a rendezvous cookie (RC) which is a one-
time secret, and builds a circuit to it. (5) Alice sends an introduce message to
one of the IPs and (6) asks it to forward the message to HS, which contains
the rendezvous cookie, RP address and the first part of a Diffie-Hellman (DH)
handshake encrypted by HS’s public key. (7) After decrypting the introduce
message, HS establishes a new circuit to Alice’s RP and sends a rendezvous cell
to it, containing RC and the second part of DH handshake. (8) RP relays the
rendezvous cell to Alice. (9) After verifying RC and generating the end-to-end
session key, Alice and HS start communicating through RP, which relays data
cells between the two circuits without change.

In our design, the IoT gateway built on the Home Assistant platform is
running Tor hidden services, so it can only be accessed by its .onion address with
an optional authentication token shared between authorized users. By applying
multiple-hop onion routing and the end-to-end encryption, Tor hidden services
provide strong protection to traffic flows and the location of the hidden server.
This prevents the remote adversaries from knowing the IP address of the IoT
gateway by probing or scanning the network, or even the existence of the IoT
gateways, and thus reduces the risks of remote exploitation.

Flow Control. Tor uses a two-layer window-based end-to-end flow control
scheme to guarantee a steady flow between two ends. Since multiple streams
multiplex a circuit, the outer layer performs a circuit-level control which restricts
the number of cells transmitted over a circuit for all streams. The inner layer
enforces a stream-level control for individual streams. At both ends of a circuit,
two OPs (one for sender and one for receiver) control the speed of data cells
entering and leaving the circuit by keeping track of the circuit and stream win-
dows. By default, a circuit window starts with 1000 cells and a stream window
is initialized to 500 cells. When a data cell is sent, both windows decrease by

Hide Your Hackable Smart Home from Remote Attacks 581

one. When a stream window becomes empty, the sender stops sending from this
stream; when a circuit window reaches zero, the sender stops sending from all
streams on this circuit. Windows are increased when the corresponding acknowl-
edgment cell known as SENDME is received. For every 100 cells received on a
circuit, the receiver sends a circuit SENDME to inform the sender to forward
another 100 cells from this circuit. For every 50 cells received from a stream in
this circuit, the receiver sends a stream SENDME to request another 50 cells
from this stream.

The Performance Problem of Tor. There are about 7,000 onion routers
in the Tor network, among which the majority is low-bandwidth relays. So, the
donated bandwidth resource is relatively scarce comparing to the large user scale
(i.e., almost 2.5 million users per day). Besides, due to the current path selection
scheme, many users tend to select relays from a very small set of high-bandwidth
relays when constructing the circuits, which causes frequent congestions on these
relays. When congestion happens, a congested relay in a 3-hop circuit will greatly
degrade the performance of the entire circuit. Hence, the problem becomes worse
in hidden services, in which the circuit connecting the user to the hidden server
contains six relays. In [21], Freitas proposed to directly deploy Home Assistant
over the Tor hidden service, therefore, this scheme inevitably suffers the same
performance problem stated above.

3 IoT Gateway over Multipath Tor Hidden Services

To overcome the performance problem of the current deployment of Tor for IoT
gateway, we extend the mTor approach in [42], and customize it into an end-to-
end multipath routing scheme to support Tor hidden services, namely mTorHS.

As illustrated in Fig. 3, mTorHS constructs an anonymous tunnel consisting
of m circuits, where m is a client-specified parameter. While the capacity of
each circuit is dynamic over time, our proposed mTorHS scheme can adaptively
distribute traffic onto m circuits in proportion to their dynamic capacities, and
thus avoid the communication being blocked by a congested circuit and achieve
an optimal overall performance. mTorHS is transparent to the Tor network, that
is, no modification needs to be made on regular Tor relays. Only the two Tor
Onion Proxies (OPs) on the user side (for users who choose to use mTorHS) and
the hidden server side (i.e., Tor OP for Home Assistant) need to be updated. In
particular, new functions are added for associating multiple circuits to a client
stream, adding sequence number to data cell, reordering out-of-sequence cells,
and scheduling cells across multiple circuits. Next, we will elaborate the pro-
cess of tunnel construction and data transmission. For the ease of presentation,
we denote user’s Onion Proxy as OP or Alice interchangeably, and call hidden
server’s OP as HS in the following sections.

582 L. Yang et al.

3.1 Tunnel Construction

In our scheme, the server establishes hidden service and client retrieves service
descriptors in the same way as the conventional Tor hidden service (i.e., step 3–6
in Sect. 2.2). Our modification starts from step 4.

Tunnel Initialization. Different from the current scheme which randomly
selects one router as the rendezvous point (RP), the user Alice chooses m routers
and constructs m circuits of 3 hops, each ending at a distinct router. Then, Alice
gives m different rendezvous cookies (RC) to the RPs, which will be used to link
the joining circuits established from the hidden server. We denote the first estab-
lished circuit as the primary circuit and the other m−1 circuits as the auxiliary
circuits. Once m circuits are established, Alice does the same thing as steps 5–6
in Sect. 2.2. In particular, Alice sends an introduce1 message to an introduction
point, which will forward it to the hidden server with an introduce2 message.
The message contains the rendezvous cookie, RP address and the first part of a
DH handshake for the primary circuit. We add two new fields to this message,
namely, is multipath and tunnel width, which indicate the request is to build a
multipath tunnel with tunnel width m. After receiving the introduce2 message,
HS checks if is multipath is set. If so, HS generates a unique 32-bit tunnel iden-
tifier (TID); otherwise, HS follows the original Tor protocol. HS establishes a
new circuit to the RP of the primary circuit and sends Alice a rendezvous1 cell
containing RC, the second part of DH handshake, and TID. RP relays the con-
tent of the rendezvous1 cell to Alice with a rendezvous2 cell. Once Alice receives
it and successfully verifies RC, she extracts TID and generates the end-to-end
session key. A 6-hop circuit is established between Alice and HS. Now, Alice and
HS can communicate with each other through the primary circuit. It is worth
noting that while two 3-hop anonymous circuits (between client and RP and
between server and RP) join at the RP conceptually, we re-design the entire
circuit construction protocol to enable end-to-end encryption between the client
and the server so that no intermediate router can observe the clear traffic in Tor.

Fig. 3. An example of mTorHS architecture where m = 3.

With TID, Alice adds the remaining auxiliary circuits to the tunnel by send-
ing m − 1 next rp m1 messages to HS along the primary circuit. The format of
1 To distinguish from the commands in current Tor, all the newly added commands

in mTorHS have a suffix m.

Hide Your Hackable Smart Home from Remote Attacks 583

each next rp m message is similar to the introduce1 message, which contains TID
and RP’s address used in auxiliary circuits. In response to the next rp m message,
HS builds a new circuit connecting to the corresponding RP, and acknowledges
each successful joining with a rendezvous1 to that RP. HS associates all circuits
with the same TID to form a tunnel for Alice. After Alice receives all m ren-
dezvous2 cells including 1 cell from the primary circuits and m−1 cells from the
auxiliary circuits, a multipath tunnel is successfully constructed.

Tunnel Management. Atop circuit management of Tor, mTorHS introduces
additional tunnel management to oversee circuits in the tunnel. mTorHS man-
ages the multipath tunnel dynamically according to the congestion status of
member circuits over time. If OP detects that the transmission on a member
circuit becomes very slow, OP will construct a new circuit to replace it (will be
elaborated in the next subsection). The slow circuit closing scheme provides OP
the ability of responding to real-time network dynamics, and prevents a slow
circuit from becoming a bottleneck of the entire tunnel. In particular, OP can
add new auxiliary circuits or tear down any existing circuit at any time. In par-
ticular, a new auxiliary circuit can be added by sending a next rp m command
to inform HS of the new RP address. To tear down a circuit, OP informs HS
to drop it using a drop m message. After receiving drop m cell, HS immediately
stops sending on this circuit and responds to OP using a dropped m message
with the number of cells that have already been sent on this circuit (denoted as
ns). Once OP receives ns cells on this circuit, it terminates the circuit.

3.2 Data Transmission

When Alice’s data stream arrives at OP via SOCKS, OP spawns the client stream
(denoted as the parent stream) to m subflows and appends them to the tunnel by
associating each subflow with a circuit. Each subflow has its own stream window
and inherits a common stream ID from the parent. Next, OP sends a relay begin
cell through a random member circuit to start the access.

Scheduling and Data Cell Allocation. Conceptually, data cells can be for-
warded through any member circuit in the tunnel. However, if the number of
allocated cells on a particular circuit exceeds its capacity, it will become con-
gested. Since the overall performance of a tunnel is bounded by the slowest
circuit, two endpoints of a tunnel need to cooperate to schedule cells across mul-
tiple circuits based on the capacities of individual circuits. A naive approach for
cell allocation is to probe the capacity of each circuit after it is initiated and
schedule traffic according to the probed capacity.

However, the method is problematic in practice. First, it will introduce a
large amount of probing traffic to the Tor network. Moreover, the capacity
of each circuit may change dramatically after probing. Therefore, the static
scheduling scheme cannot adapt to network dynamics so that it is ineffective.
In [14], Alsabah et al. presented an opportunistic probing approach to estimate
the round-trip-time (RTT) of a circuit based on Tor’s circuit-level congestion
control scheme. The RTT-based approach is reactive to network dynamics, but

584 L. Yang et al.

2 1 1 2 2 4 2 4 494

CircID Cell
Cmd

Relay
Cmd Recognized Stream

ID Digest Len Seq.
No. Data

Cell Header Cell Payload

Payload Header Multipath Header

Fig. 4. mTorHS cell format: a new filed, sequence number marked in red, is added as
the multipath header, representing the sequence number of sent-out cells. (Color figure
online)

it is still not very accurate because the congestion feedbacks are received infre-
quently [15]. We argue that RTT-based approach may not be a good choice in
cross-layer scheduling, which is also recognized in multipath TCP design [16].

In mTorHS, we adopt a “pulling” scheduling scheme – instead of pushing
data cells to circuits by a scheduler, we let each subflow actively pull data from
a shared send buffer, whenever its stream window becomes nonempty. Initially,
each subflow has a stream window of 500 cells. As described in Sect. 2.2, the
stream window decreases by one when sending a cell out and increases by 50
when receiving a stream-level SENDME. Consequently, a subflow stops sending
cells when its stream window size drops to zero and resumes when it receives
a SENDME. When the circuit to which a subflow is appended becomes con-
gested, cells will be moving much slower towards the receiver, resulting in delayed
stream-level SENDMEs and long waiting at the sender end. Whereas, subflows on
fast circuits will send out data cells fast and steadily. In this way, the “pulling”
scheduling is subflow self-adaptive without accurate explicit circuit RTT mea-
surements. When multiple subflows have a nonzero stream window, we adopt a
FIFO (first-in-first-out) queue to schedule them.

Slow Circuit Detection. Another challenge in mTorHS design is the detection
of slow circuits. To avoid a congested circuit becoming the bottleneck of the
entire tunnel, OP will replace slow circuits with new ones. We adopt a distance-
based outlier detection approach to determine whether a circuit is congested
based on a sliding window of 50 cells. In particular, we measure the time of
receiving every 50 cells and find the lower and upper quartiles (Q1 and Q3) of
ten most recent records to calculate the interquartile range (IQR) where IQR =
Q3 − Q1. If a new measurement falls out of the range of (0, Q3 + 1.5IQD], it
is considered as an outlier indicating the circuit is experiencing a congestion.
To increase detection reliability, OP considers a circuit as congested if at least
three consecutive outliers occur. Once detected, OP and HS will collaborate to
tear down the congested circuit and replace it with a new one. This can be done
through the tunnel management discussed above.

Data Re-ordering. Combining the self-adaptive “pulling” scheduling and
active congestion detection schemes, mTorHS is able to adapt to network
dynamics, which potentially prevents slow circuits from degrading the overall

Hide Your Hackable Smart Home from Remote Attacks 585

performance of multipath tunnel. However, due to dynamic scheduling, data
cells may arrive at the receiver out of order. To solve this issue, we have to mod-
ify the format of Tor data cell to incorporate a 32-bit sequence number in the
multipath data packets. As shown in Fig. 4, the first four bytes of data payload
is reserved for this purpose. Moreover, we add a new relay subdata m command
to indicate a data cell is multipath data. When OP receives a multipath data cell
from a subflow, it first checks if the sequence number is expected. An expected
cell is immediately forwarded to the application stream, while an out-of-order
cell is stored in a buffer and ordered according to its sequence numbers.

3.3 Discussions

By applying congestion detection, users of multipath hidden services can route
traffic through multiple circuits (some may be lightly occupied), and thus
improve the overall performance. Such a congestion avoidance scheme also ben-
efits single-path users, since mTorHS stops using the congested paths to give
bandwidth to others’ traffic. To further balance the usage on high-bandwidth
relays between multipath users and general users, we can force multipath users
to use the low-bandwidth relays to establish their tunnel and still achieving an
acceptable performance, since most Tor relays are low-bandwidth and they are
under-utilized in the current Tor [42]. We can bundle these idle, low-bandwidth
relays to effectively serve the multipath users without hurting general users. In
terms of security, this solution, namely IoT gateway over multipath Tor hidden
services, transmits all traffic, including incoming and outgoing traffic, on gate-
way through Tor network, so the IP address of gateway is still hidden from the
public Internet and thus the adversary cannot scan and attack the gateway.

mTorHS improves the network utilization by employing low-bandwidth
relays. However, it will not increase the overall bandwidth of Tor network. If
millions of users access their gateways via Tor, especially for bulk traffic like
watching camera videos, the huge demand on bandwidth may exceed the capac-
ity of Tor. Therefore, IoT gateway over mTorHS is best for users who have
very strong security requirement but only need an acceptable performance. For
the majority users who want to achieve a better balance between security and
performance, we propose an alternative solution, namely IoT gateway with split
command and data channels, which will be presented in next section.

4 IoT Gateway with Split Command and Data Channels

Tor provides very strong security protection but limited bandwidth, while the
public Internet has the opposite – high bandwidth but weak security protection.
To combine the advantages, we propose a novel scheme, namely IoT gateway with
split command and data channels, which leverages the security of Tor and the
good performance of the public Internet. More specifically, the IoT gateway only
accepts incoming traffic from the Tor channel, while responding to the remote
client with encrypted (data) traffic through the Internet channel.

586 L. Yang et al.

Event BusCommand: watch video
on temporary Port
56789 with token

Service
Registry

Camera Component:
Open video stream on
Port 56789 and send
to user

Data: video stream

State Machine

Call service open
stream on Port 56789

State_changed events

Set state

Push video

Poll state

Home Assistant (HA)User

abc.onion

Video player

Receiver

Connect to HA
on port 56789

Forward to
video player

Tor

Internet

Call service: send video
stream on Port 56789

Fig. 5. An example of IoT gateway with split command and data channels: user sends
request to watch camera video on port 56789 through the Tor channel, while Home
Assistant temporarily opens port 56789 to deliver encrypted video through Internet.

With this scheme, the IoT gateway can still defend against vulnerability
scanning by refusing to respond to any request coming from the Internet, such as
ICMP ping, telnet, or HTTP request. The adversary obtains nothing by scanning
the gateway with IP address. Besides, since the onion address of hidden service is
only known by the user himself, the adversary cannot scan the gateway through
Tor. Therefore, the security of the IoT gateway is still well protected. From
the efficiency perspective, the incoming command traffic to the IoT gateway is
usually transient and very small, so transmitting the commands through Tor
will not introduce much overhead to Tor. In response to the command coming
from the Tor channel, the gateway sends out bulk traffic, such as camera videos,
to the user through the Internet channel. Since the video stream is transfered
through the public Internet, we need to ensure strong encryption and mutual
authentication between the user and the IoT gateway.

An overview of the protocol is shown in Fig. 5. Next, we deliberate this pro-
tocol with an example in which a user remotely requests video stream from a
camera behind the IoT gateway.

Step 1: Connection Initialization Through Tor. The user connects to the
IoT gateway, such as Home Assistant, using its onion address (e.g., abc.onion).
At the client side, the user selects a device (e.g., a camera) and specifies a
random high TCP port pd for the data stream. Meanwhile, a 256-bit ran-
dom token rA, a 1024-bit random number x and its corresponding gx (for
Diffie-Hellman) will be generated. The random token rA will be used for the
later mutual authentication, and gx will be used to generate the session key.
Then, user submits this configuration to IoT gateway (e.g., Home Assistant)
through Tor.

Step 2: Service Initialization at IoT Gateway. In a conventional IoT gate-
way, data will be disseminated to the user through the same channel as the

Hide Your Hackable Smart Home from Remote Attacks 587

incoming request. For example, video from the camera will be sent back to the
user on the web interface, transmitted through Tor, if the request comes from
Tor HS. In our scheme, we redesign the interfaces of the data-intensive devices,
such as the Camera Component, so that the data stream is re-directed to a
temporary port specified by the user, and transmitted to the user through the
public Internet channel. To do so, we add a new functionality to the Camera
Component and register this service (i.e., camera through Internet) to the Ser-
vice Registry. Since this new service is implemented at the component level, it
can work with different types of cameras seamlessly.

When Home Assistant receives user’s request from the Tor channel, it gen-
erates a 256-bit random token rHS , a 1024-bit random number y and its corre-
sponding Diffie-Hellman number gy. HA uses the received gx and y to generate
the session key gxy and responds to user with the random token rHS through
the Tor channel. Meanwhile, HA opens port pd, which is specified by the user,
and waits for the connection for data dissemination, e.g., video streaming.

Step 3: Initialization of Data Channel Through Internet. After user
receives the token rHS and the second half of Diffie-Hellman handshake gy

through Tor, he will generate the session key gxy, and send a request containing
rHS to Home Assistant through the data channel, which is encrypted with gxy.

Step 4: Data Dissemination Through Internet. Once user’s request for
video stream arrives at port pd through the Internet channel, Home Assistant
decrypts it with the session key and verifies the token rHS . If the authentication
succeeds, Home Assistant sends rA followed by the subsequent data to the user.
The communication is encrypted with the session key. Meanwhile, HA discards
requests that fail the authentication. Finally, when the user receives the reply, he
decrypts it to get rA to verify the server. If the authentication succeeds, he will
accept the subsequent data stream. Otherwise, the connection will be closed.

5 Experiment and Performance Evaluation

To demonstrate the performance improvement of our proposed schemes, we
implement all three Tor-based IoT gateway approaches, and perform experi-
ments on the live Tor network. In particular, we compare network throughput
for video streaming in the following settings: (1) the original Home Assistant
without Tor hidden services (denoted by HA-No-Tor), (2) HA with single-path
Tor hidden services (HA-sTorHS), (3) HA with multipath Tor hidden services
(HA-mTorHS) and (4) HA with split command and data channel (HA-Split).

Setup. We deployed Home Assistant on a dedicated Raspberry Pi 2 [10] to
simulate the proposed IoT gateway, which connects to a VStarCam IP camera
[12]. The video stream is fed into Home Assistant via FFmpeg. The Raspberry
Pi 2 is equipped with a 700 MHz ARM A6 microprocessor and 512 MB of RAM.
The client accesses Home Assistant through a laptop with 2.5 GHz Intel i5 CPU,
8 GB RAM and OSX.

588 L. Yang et al.

Experiments. To compute the throughput, we measure the overall time for the
client to receive a 10 MB streaming data from Home Assistant. For HA-Split,
we modify Home Assistant using Python 3 on the backend and Polymer on the
frontend. For HA-mTorHS, we change the source code of Tor-v0.2.9.10. Note
that all changes are made to the client’s proxy and hidden server’s proxy, so
no change is needed on the Tor network. We compare two different multipath
settings where the tunnel width m is set to 2 and 4, respectively. To eliminate the
difference caused by circuits’ capacities, we let the HA-4TorHS scheme to use
the default path selection algorithm to choose relays for 4 circuits and record
the used relays. Then, we let the HA-2TorHS scheme randomly choose 2 out
of 4 circuits, while HA-sTorHS randomly chooses 1 from the 4 circuits. Each
experiment is repeated 60 times over different time of a day, and the average
transmission time for each approach is recorded.

Fig. 6. Average network throughput provided by various approaches, compared with
throughput needs of household IoT devices: Setting 1: two full HD (1280 × 1080)
surveillance cameras, 30 fps, H.264 high quality compression; Setting 2: two HD 720p
(1280× 720) cameras, 30 fps, H.264 high quality compression; Setting 3: two HD 720p
cameras, 15 fps, H.264 medium quality compression.

Results. Figure 6 compares the performance of different schemes. The Y-axis is
the throughput measured from transmitting 10 MB video from the IoT camera.
We can see that the baseline approach (HA-sTor) that directly integrates Tor
hidden services into Home Assistant achieves the worst performance, which is
almost 7 times slower than the direct access to HA through the public Internet
(HA-No-Tor).

Figure 6 also shows that the proposed multipath Tor hidden services can
improve the performance significantly. In particular, the HA-2TorHS scheme
adopting two multipath circuits is 1.7 times faster than HA-sTorHS, while HA-
4TorHS is 3 times faster. In fact, HA-4TorHS is fast enough for a typical home
surveillance setting with two HD 720p (1280× 720) cameras capturing at 30 fps
with H.264 high quality compression.

Lastly, HA-Split can achieve the same performance as accessing Home Assis-
tant without using Tor with a comparably weaker security guarantee. More
specifically, it provides the same security guarantee for the command channel

Hide Your Hackable Smart Home from Remote Attacks 589

and the same anti-scanning feature for the IoT devices and HA. In summary,
both HA-mTorHS (with m > 3) and HA-Split schemes can achieve an accept-
able performance with enhanced security as we expect. We recommend users
with larger throughput requirement to adopt the HA-Split scheme, which also
avoids overloading the Tor network with a large amount of IoT data. While for
users with higher security requirements, we recommend using the HA-mTorHS
scheme, which hide both the IoT devices and the client behind Tor hidden service
with a strong anonymity protection.

As we have discussed, a single Tor path can (and often) get congested.
mTorHS with slow circuit detection and congestion control overcomes this prob-
lem. To demonstrate this, we conduct another experiment – a 6-hop path between
the client and the hidden server is established using very fast relays measured
by Tor, i.e., 3 relays used by client are 2391A, 92CFD and 3E13E, while 3
relay used by client are A7047, 96DAF and 8C23B. They are respectively Top
1%, 5%, 14%, 30%, 11% and 20% fastest relays among all Tor routers at the time
of experiment (July 12, 2017). Unfortunately, the real throughput of this path
consisting of very fast relays was lower than average: it takes 55 s to transmit the
10 MB video file. This poor performance is usually due to congestion on at least
one of relays in the path [37]. Then, for HA-2TorHS, we keep the first path as
is, and add another path with congestion control. The performance is improved
to 16 s for transmitting a 10 MB file, since most traffic can be routed through
the second path, which may also alleviate the congestion on the first path. For
HA-4TorHS, we add 2 more paths with congestion control, and the performance
is further improved to 10 s.

6 Security Analysis

In this section, we analyze the security of two proposed schemes in terms of
authentication, encryption and anti-scanning.

Authentication. Home Assistant provides optional password-based authenti-
cation, but it is not required. Besides, such an authentication approach has sev-
eral known weaknesses such as weak passwords, which is a commonly observed in
many use cases. Moreover, password-based authentication is particularly vulner-
able if adversaries are allowed unlimited attempts when guessing the password.
As a result, the embedded authentication of Home Assistant is not reliable.

To tackle this problem, our proposed schemes offer two additional layers of
authentication provided by Tor hidden services. First, adversaries cannot access
Home Assistant over hidden services without knowing the onion address of the
device behind the gateway. Since the onion address generated by Tor is an 80-
bit number in base32, it is not easy for adversaries to predict the one used by a
target. In addition, even if the adversary obtains the onion address by chance,
Tor hidden services also require users to have a 132-bit authentication cookie in
base64 to access the hidden server. It is very difficult for adversaries to guess
the correct combination of onion address and authentication cookie. Therefore,

590 L. Yang et al.

our schemes, by integrating Tor hidden services with the gateway, can provide
a reliable authentication service to secure the IoT gateway.

Encryption. Home Assistant does not use HTTPS by default, so it is very
insecure when accessing from remote. To address this problem, users are often
suggested to set up additional link encryption using Let’s Encrypt [7] for exam-
ple. However, this requires a tedious process to configure the setup, especially for
users who has little knowledge about networking and security. In practice, this
usually discourages users from adopting secure configurations. On the contrary,
our schemes are atop Tor hidden services, which have built-in onion encryption
and end-to-end encryption. With a very simple configuration process during
installation, we can set up the IoT gateway running over Tor hidden service.
After that, all traffic that goes through Tor is well protected without any user
involvement.

In the HA-mTorHS scheme, since all communication is over Tor, the data
confidentiality completely relies on Tor’s strong cryptography technologies. In
the HA-Separation scheme, we use Tor channel for command and Internet chan-
nel for data. All commands are protected by Tor as discussed before, while data
is also encrypted by an AES session key, which is negotiated through the com-
mand channel between user-end application and Home Assistant over hidden
service.

Anti-scanning. Anti-scanning approach is an effective solution for cyberattacks
against smart homes. The current Home Assistant running on the default port
8123 will respond to adversary’s scanning on this port, so the adversary can
find vulnerabilities and exploit them. In our HA-mTorHS scheme, all the access
to Home Assistant must pass through the hidden services. Without knowing
the onion address and the authentication cookie, adversary does not know the
existence of Home Assistant, and thus cannot probe and access it. In our HA-
Separation scheme, authentication and key negotiation are conducted through
the command channel over Tor, so those vulnerability scanning techniques will
not work any more. For data channel, it is still resistant to scanning when the
port is temporarily open to the public Internet for data transmission due to two
reasons: (1) On the data channel Home Assistant only responds to the connection
request that contains the nonce encrypted by session key, which is sent to the
user through Tor. Any other traffic will be dropped, so the scanning without the
correct nonce will receive no response; (2) Since the port on Home Assistant is a
random port and only temporarily open during data transmission, the adversary
even may not have enough window of time to detect a open port via massive
scanning, let alone a successful attack.

7 Related Work

Extensive research has been conducted to enhance the security of individual
devices. For authentication, Liao et al. [28] propose a secure ECC-based RFID
authentication scheme to realize the mutual authentication between devices.

Hide Your Hackable Smart Home from Remote Attacks 591

Wu et al. [39] further improve the security by proposing lightweight private
mutual authentication and private service discovery. For encryption, traditional
cryptography can be applied to secure IoT. Dinu et al. introduce a benchmark
framework to evaluate how well lightweight block ciphers, such as AES, RC5,
Simon and Speck, etc., are suited to IoT devices. For communication, a bunch of
dedicated protocols such as CoAP [34], RPL [38], and 6LoWPAN [33] and their
variants have been proposed, which are not only lightweight for IoT devices but
also security-oriented.

Another direction of approach that aims to achieve both security and effi-
ciency is cloud-assisted IoT security designs. Since resource-constrained IoT
devices usually cannot afford costly cryptographic techniques and large data
storage, many schemes propose to solve this problem by leveraging the connected
cloud, which provides powerful computation and storage capacity [23,24,40,44].
For example, [17,29] focus on cloud-assisted healthcare IoT, which mainly use
the storage resources of the cloud. In [17], they proposed a scheme to add water-
mark into the collected data of a patient to avoid the privacy leakage on the
cloud, while Yang et al. proposed a scheme that allows health service providers
such as doctors to access and verify the encrypted medical records stored on
the cloud by using a searchable encryption with forward privacy support [29].
In contrast, [28] utilizes the computation resources of the cloud to implement a
data publishing scheme adopting attribute-based encryption, while [24] proposes
a data access control scheme for constrained IoT devices and cloud computing
based on hierarchical attribute-based encryption. The above solutions mainly
focus on securing individual IoT devices, while IoT gives us a way to manage
and secure a bunch of heterogeneous devices. For example, Intel IoT gateway
can support comprehensive device protection with integrated McAfee, including
secure boot, application integrity monitor, encrypted storage and more [6].

This work is also related to Tor routing optimization. Several multipath Tor
schemes have been proposed to balance security and performance in Tor rout-
ing [14,41,42]. AlSabah et al. [14] first explored how to use multipath routing
to improve Tor’s performance, and Yang et al. [42] further analyzed the relay
usage and proposed to use low-bandwidth relays to construct multiple circuits to
improve performance and increase network utilization. Yang et al. [41] proposed
a partial multipath routing scheme for Tor hidden services to enhance the resis-
tance to traffic analysis. The tunnel is only built between the rendezvous point
and the hidden server. They improve the anonymity based on the insight that
traffic pattern are distorted by flow splitting and flow merging operations and
by the multiple routes with different network dynamics. In contrast, with the
goal of improving the performance, our proposed multipath Tor hidden services
for IoT gateway adopts an end-to-end multipath structure, which leverages the
end-to-end traffic management to work with network dynamics. Another notable
difference is that our multipath scheme is transparent to Tor network, namely,
no modifications are required on existing Tor routers except user proxy who is
using multipath Tor, and thus, our scheme can be seamlessly adopted, while all
other three schemes require new Tor routers to support their designs.

592 L. Yang et al.

8 Conclusion

Security and privacy are critical issues in the adoption of IoT devices. IoT onion
gateways provide strong security protection, but they suffer from the perfor-
mance bottleneck caused by the limited bandwidth of Tor. To tackle this issue,
we present a multipath Onion IoT gateway, which transmits IoT data stream
through an anonymous tunnel with multiple Tor circuits with congestion con-
trol. We also present a split channel Onion gateway, which splits the command
and data channels, to utilize the less-secure public Internet to route encrypted
data streams. We have demonstrated the effectiveness, efficiency, and security
guarantees of the proposed approach through experiments and security analysis.

Acknowledgment. This work is sponsored in part by the National Security Agency
(NSA) Science of Security Initiative and the US National Science Foundation under
NSF CNS-1422206 and DGE-1565570.

References

1. 9 baby monitors wide open to hacks that expose users’ most pri-
vate moments. https://arstechnica.com/security/2015/09/9-baby-monitors-wide-
open-to-hacks-that-expose-users-most-private-moments/

2. Hack Samsung Fridge. https://www.pentestpartners.com/security-blog/hacking-
defcon-23s-iot-village-samsung-fridge/

3. Hackers Make the First-Ever Ransomware for Smart Thermostats. https://
motherboard.vice.com/en us/article/aekj9j/internet-of-things-ransomware-
smart-thermostat

4. Hacking 14 IoT Devices. https://www.iotvillage.org/slides DC23/IoT11-slides.pdf
5. Home Assistant. https://home-assistant.io/
6. Intel IoT Gateway. https://www.intel.com/content/www/us/en/internet-of-

things/gateway-solutions.html
7. Let’s Encrypt. https://letsencrypt.org/
8. Openhab. https://www.openhab.org/
9. Ransomware Ruins Holiday By Hijacking Family’s LG Smart TV on Christmas

Day. https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-
201136667.html

10. Raspberry Pi. https://www.raspberrypi.org/
11. Smartthings. http://www.samsung.com/us/smart-home/smartthings/hubs/f-

hub-us-2-f-hub-us-2/
12. VStarCam Eye4. http://www.eye4.so/
13. Trendnet cameras - i always feel like somebody’s watching me (2012). http://

console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
14. AlSabah, M., Bauer, K., Elahi, T., Goldberg, I.: The path less travelled: overcoming

Tor’s bottlenecks with traffic splitting. In: De Cristofaro, E., Wright, M. (eds.)
PETS 2013. LNCS, vol. 7981, pp. 143–163. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39077-7 8

15. AlSabah, M., et al.: DefenestraTor: throwing out windows in Tor. In: Fischer-
Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 134–154. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4 8

https://arstechnica.com/security/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/
https://arstechnica.com/security/2015/09/9-baby-monitors-wide-open-to-hacks-that-expose-users-most-private-moments/
https://www.pentestpartners.com/security-blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://www.pentestpartners.com/security-blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://www.iotvillage.org/slides_DC23/IoT11-slides.pdf
https://home-assistant.io/
https://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html
https://www.intel.com/content/www/us/en/internet-of-things/gateway-solutions.html
https://letsencrypt.org/
https://www.openhab.org/
https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-201136667.html
https://www.yahoo.com/tech/ransomware-ruins-holiday-hijacking-familys-201136667.html
https://www.raspberrypi.org/
http://www.samsung.com/us/smart-home/smartthings/hubs/f-hub-us-2-f-hub-us-2/
http://www.samsung.com/us/smart-home/smartthings/hubs/f-hub-us-2-f-hub-us-2/
http://www.eye4.so/
http://console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
http://console-cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-feel-like.html
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.1007/978-3-642-22263-4_8

Hide Your Hackable Smart Home from Remote Attacks 593

16. Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice.
In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011. LNCS, vol. 6640, pp. 444–457. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20757-0 35

17. Burke, S.: Massive cyberattack turned ordinary devices into weapons (2016).
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html

18. Coldewey, D.: Smart locks yield to simple hacker tricks (2016). https://techcrunch.
com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/

19. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 2004

20. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: Proceedings of the 37th IEEE Symposium on Security and Privacy
(2016)

21. Freitas, N.: Internet of onion things (2016). https://blog.torproject.org/blog/
quick-simple-guide-tor-and-internet-things-so-far

22. Gartner Inc.: Gartner IoT forecast (2017). http://www.gartner.com/newsroom/
id/3598917

23. Hossain, M.S., Muhammad, G.: Cloud-assisted industrial internet of things (IIoT)-
enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016)

24. Huang, Q., Wang, L., Yang, Y.: DECENT: secure and fine-grained data access
control with policy updating for constrained IoT devices. World Wide Web 21(1),
151–167 (2018)

25. Jia, Y.J., et al.: ContexIoT: towards providing contextual integrity to appified
IoT platforms. In: Proceedings of The Network and Distributed System Security
Symposium, vol. 2017 (2017)

26. Kim, J.E., Boulos, G., Yackovich, J., Barth, T., Beckel, C., Mosse, D.: Seamless
integration of heterogeneous devices and access control in smart homes. In: 2012
8th International Conference on Intelligent Environments (IE), pp. 206–213. IEEE
(2012)

27. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: DTLS based security
and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–
2723 (2013)

28. Liao, Y.P., Hsiao, C.M.: A secure ECC-based RFID authentication scheme inte-
grated with ID-verifier transfer protocol. Ad Hoc Netw. 18, 133–146 (2014)

29. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of
internet of things: a case study of the smart plug system. IEEE Internet Things J.
4(6), 1899–1909 (2017)

30. Ning, H., Liu, H., Yang, L.T.: Aggregated-proof based hierarchical authentication
scheme for the internet of things. IEEE Trans. Parallel Distrib. Syst. 26(3), 657–
667 (2015)

31. Notra, S., Siddiqi, M., Gharakheili, H.H., Sivaraman, V., Boreli, R.: An experi-
mental study of security and privacy risks with emerging household appliances.
In: 2014 IEEE Conference on Communications and Network Security (CNS), pp.
79–84. IEEE (2014)

32. Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt, T.: Lithe: lightweight
secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)

33. Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet, vol. 43.
Wiley, Hoboken (2011)

34. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP)
(2014)

https://doi.org/10.1007/978-3-642-20757-0_35
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html
https://techcrunch.com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/
https://techcrunch.com/2016/08/08/smart-locks-yield-to-simple-hacker-tricks/
https://blog.torproject.org/blog/quick-simple-guide-tor-and-internet-things-so-far
https://blog.torproject.org/blog/quick-simple-guide-tor-and-internet-things-so-far
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917

594 L. Yang et al.

35. Sivaraman, V., Chan, D., Earl, D., Boreli, R.: Smart-phones attacking smart-
homes. In: Proceedings of the 9th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pp. 195–200. ACM (2016)

36. Sivaraman, V., Gharakheili, H.H., Vishwanath, A., Boreli, R., Mehani, O.:
Network-level security and privacy control for smart-home IoT devices. In: 2015
IEEE 11th International Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), pp. 163–167. IEEE (2015)

37. Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware path selection for
Tor. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 98–113. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 9

38. Winter, T.: RPL: IPv6 routing protocol for low-power and lossy networks (2012)
39. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication

for the internet of things. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 301–319. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45741-3 16

40. Yang, L., Humayed, A., Li, F.: A multi-cloud based privacy-preserving data pub-
lishing scheme for the internet of things. In: Proceedings of the 32nd Annual Con-
ference on Computer Security Applications, pp. 30–39. ACM (2016)

41. Yang, L., Li, F.: Enhancing traffic analysis resistance for tor hidden services with
multipath routing. In: 2015 IEEE Conference on Communications and Network
Security (CNS), pp. 745–746. IEEE (2015)

42. Yang, L., Li, F.: mTor: a multipath tor routing beyond bandwidth throttling. In:
2015 IEEE Conference on Communications and Network Security (CNS), pp. 479–
487. IEEE (2015)

43. Yang, L., Xue, H., Li, F.: Privacy-preserving data sharing in smart grid systems.
In: 2014 IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pp. 878–883. IEEE (2014)

44. Yang, L., Zheng, Q., Fan, X.: RSPP: a reliable, searchable and privacy-preserving
e-healthcare system for cloud-assisted body area networks. In: INFOCOM. IEEE
(2017)

https://doi.org/10.1007/978-3-642-32946-3_9
https://doi.org/10.1007/978-3-319-45741-3_16

SCIoT: A Secure and sCalable
End-to-End Management Framework

for IoT Devices

Moreno Ambrosin1(B) , Mauro Conti3 , Ahmad Ibrahim2,
Ahmad-Reza Sadeghi2, and Matthias Schunter1

1 Intel Labs, Hillsboro, OR, USA
moreno.ambrosin@intel.com, matthias.schunter@intel.com

2 TU Darmstadt, Darmstadt, Germany
{ahmad.ibrahim,ahmad.sadeghi}@trust.tu-darmstadt.de

3 University of Padova, Padova, Italy
conti@math.unipd.it

Abstract. The Internet of Things (IoT) is connecting billions of smart
devices. One of the emerging challenges in the IoT scenario is how to effi-
ciently and securely manage large deployments of devices. This includes
sending commands, monitoring status and execution results, updating
devices firmware, and interactively resolving problems.

In this paper we propose SCIoT, a Secure and sCalable framework
for IoT management. SCIoT guarantees low complexity in terms of com-
munication, storage and computation on both managed devices and the
management entity. SCIoT enables secure management of large deploy-
ments with a single low-power management device, by leveraging trees
of common untrusted intermediate infrastructures. SCIoT brings three
technical contributions: (1) a domain-independent management specifi-
cation by means of extended finite state machines, which specifies states
and desired transitions to describe the whole management process; (2)
a protocol for securely and efficiently distributing applicable transitions
of the automaton corresponding to commands; and (3) a protocol for
securely aggregating status responses from the managed nodes using a
tree of untrusted nodes. We show feasibility and efficiency of SCIoT by
both a proof-of-concept implementation of the client agent on Riot-OS
– an operating system for the IoT, and a large scale evaluation, using
realistic assumptions. Our thorough evaluation highlights the efficiency
of our command distribution protocol, as well as the small (logarithmic)
runtime and overhead of data collection.

This research was co-funded by the German Science Foundation, as part of project S2
within CRC 1119 CROSSING, HWSec, the Intel Collaborative Research Institute for
Collaborative Autonomous & Resilient Systems (ICRI-CARS), the EU TagItSmart!
Project (agreement H2020-ICT30-2015-688061), and by the Intel grant “Scalable
IoT Management and Key security aspects in 5G systems”.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 595–617, 2018.
https://doi.org/10.1007/978-3-319-99073-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_29&domain=pdf
http://orcid.org/0000-0002-2520-9092
http://orcid.org/0000-0002-3612-1934

596 M. Ambrosin et al.

1 Introduction

The increasing demand of connectivity and services that rely on distributed sens-
ing and control is populating the world with billions of interconnected devices.
Cisco [2] forecasts that 50 billion of such devices will exist in 2020. This phe-
nomenon is commonly called the Internet of Things (IoT). IoT devices are uti-
lized in many different domains, ranging from small-size ecosystems, such as
smart homes, to very large scale deployments for automation or distributed
sensing. Examples of large IoT deployments are the experimentation facility
at Santander city [27], which currently counts more than 2000 interconnected
devices, and, at a much larger scale, smart metering systems, which only in the
US count over 65 million devices [17].

IoT devices have constrained resources and limited (usually intermittent)
connectivity. They are usually connected to edge (or gateway) devices, which
provide services such as protocol translation, access to intermediate connectivity
infrastructures, and data caching and aggregation at the edge of the network;
these features are particularly useful in large scale deployments [12,20,22,33].

In many deployments, an efficient and effective management of IoT devices
is fundamental [29]. Device management comprises critical tasks, such as dis-
tribution of commands and software updates, or device monitoring. Manage-
ment processes are typically planned and controlled by systems administrators.
In this paper, we consider a scenario in which a system administrator, which
may have limited computational resources, needs to manage a large popula-
tion of IoT devices.1 We consider a management process comprising two main
tasks: (1) broadcasting a subset of commands to targeted devices (accompanied
by additional corresponding data, such as command parameters or a firmware
update package); and (2) collecting statistics on the outcome of commands exe-
cution. As an example, the system administrator of a large deployment may
want to know the percentage of devices that are in a correct (known) state, after
a collective software update has been executed. Management operations are per-
formed over an intermediate aggregation and cache-capable network, which is
untrusted for providing data integrity or authenticity.

In the above scenario, secure and efficient management turns out to be par-
ticularly challenging: On the one hand, while solutions and standards for secure
and lightweight IoT device management already exist (e.g., the work in [29], or
the Lightweight Machine to Machine protocol from the Open Mobile Alliance
– OMA LWM2M [25]), they are designed for individual device management.
Therefore, unless all intermediate aggregation nodes are trusted, their cost scales
linearly with the number of devices to be managed. On the other hand, existing
approaches for efficient aggregate statistics collection over an aggregation tree
impose a linear verification overhead on the management entity [16,34].

Contribution. This paper presents SCIoT, a framework for IoT device manage-
ment that targets large deployments. SCIoT considers a layered and realistic
1 Industrial trends envision using low-power devices, e.g., a smartphone, for managing

a large number of devices.

SCIoT: A Secure and sCalable End-to-End Management Framework 597

architecture, and on top of it defines a set of protocols for scalable and secure
IoT device management. In particular, this paper brings the following contribu-
tions:

– A simple domain-independent management process abstraction by means
of a finite state machine, that we call Management Finite State Machine
(M-FSM). M-FSM allows to express potentially complex management tasks
using a concise and high-level representation.

– The design of a simple, fully-cacheable, and end-to-end secure protocol for
commands distribution, based on the management representation provided
by M-FSM. Our protocol can sit on top of any pull-based message-response
protocols. It leverages in-network caching to speed-up commands distribu-
tion. SCIoT’s commands distribution protocol allows clients to “manage
themselves”, i.e., only selectively download the specific subset of informa-
tion needed to take the next management action (e.g., a specific software
update).

– The design of a protocol for scalable monitoring of large deployments. We
devise an aggregation protocol based on the protocol from [16] that leverages
an untrusted tree-based aggregation infrastructure to aggregate inbound sta-
tus information, while maintaining a constant verification overhead at both
device and management side, and a logarithmic traffic. Our protocol ensures
that even if millions of nodes report back to a central management node,
traffic and required computation at the server remains manageable.

– We implemented and tested a client device agent for Riot-OS – an operating
system for resource-constrained devices – and ran a thorough experimental
evaluation of our protocols via simulation (similar to [7,8]); our evaluation
demonstrates the scalability of SCIoT, and its low overhead at the manage-
ment side.

2 Background and Primitives

2.1 Multi-signature

A multi-signature scheme allows a set of users to compute a signature on the
same message m so that individual signatures can be aggregated into a single
compact multi-signature. The multi-signature can be verified in constant time
by means of a unique aggregate public key. Signature verification succeeds if all
the computed signatures are included into the multi-signature. In this paper, we
consider the multi-signature scheme in [10], built using bilinear pairings [11].

Consider three multiplicative groups G1, G2 and GT of prime order p, and
an efficiently computable bilinear map e : G1 ×G2 → GT s.t., e(g1, g2)xy = gxy

t ,
where g1, g2, gT are generators for G1, G2 and GT , respectively, and x, y ∈ Zp.
Let H : {0, 1}∗ → G1 be a hash function that maps a bitstring of arbitrary size
into an element of G1. A multi-signature scheme is defined as follows:

598 M. Ambrosin et al.

Key Generation. Each signer i generates a random secret key xi ∈ Zp, and
computes its public key as pki ← gxi

2 . Public keys can be aggregated into an
aggregate public key Y ← ∏n

i=1 pki , where n is the number of signers.

Multisignature Generation. A signer i produces a signature σi on a message
m as σi ← H(m)xi ; all σi-s can be combined into a multi-signature Σ ← ∏n

i=1 σi,
where n is the number of signers.

Multisignature Verification. Given the aggregate public key Y , the multi-
signature Σ can be verified by checking whether e(Σ, g2) = e(H(m), Y).

This multi-signature scheme is provably secure against existential forgery
under chosen message attacks in any Gap Diffie-Hellman (GDH) group [10].

2.2 Secure In-Network Aggregation

In-network aggregation allows reducing the communication overhead when per-
forming queries and collecting statistics from nodes in large networks. In this
paper, we devise a hierarchical in-network aggregation scheme with constant
verification overhead. Our scheme is based on the solution from [16] and satisfies
the requirement of SCIoT.

Our in-network aggregation scheme is organized in two main phases: (i) a
query dissemination and response collection phase, and (ii) a result verification
phase.

Collection Phase. In this phase a central querying entity (i.e., the manager
in SCIoT) broadcasts a query to all nodes in the network along an aggregation
tree. Then, starting at leaves, nodes recursively aggregate responses coming from
their child nodes and forward the result to their parent nodes. Each node also
commits to its aggregation by computing and forwarding a hash over all the
responses it aggregates. The computed hash also include hashes that come from
child nodes. Finally, the final aggregate response and commitment are reported
back to the querying entity.

Verification Phase. In this phase the querying entity broadcasts the received
aggregate response and commitment, asking nodes to check whether their con-
tribution has been integrated correctly in that response. Each individual device
verifies their correct contribution to the final response and creates an acknowl-
edgment message and sends it the querying entity. Acknowledgment messages
are authenticated using the multi-signature scheme we introduced above, which
allows their secure aggregation with constant communication and verification
overhead.

3 SCIoT Architecture Design

3.1 System Model

We define the system model in Fig. 1, where a manager M, is in charge of car-
rying out the management of (some or all the devices in) a network G. More

SCIoT: A Secure and sCalable End-to-End Management Framework 599

Fig. 1. System model as a network of devices; each device acts as at least one of the
following entities: endpoint (vj), aggregator (al), and cache (cu).

precisely, we consider a network of interconnected physical devices Di ∈ G (each
pictured as a dotted rectangle in Fig. 1), where each can act as one or more of the
following logical entities: endpoint (vj), aggregator (al), or cache (cu). A endpoint
vj is the endpoint entity of the management process; vj receives and executes
commands from M and, upon request, provides M with statistical information
regarding its current status. Aggregators and caches are relay entities (i.e., edge
or gateway devices) that have different roles: al is capable of aggregating statis-
tics collected from endpoints, while cu caches commands distributed by M. As a
consequence, they play a role in distinct parts of the management process, i.e., cu

helps speeding up one-to-many commands distribution, while al has the purpose
of reducing both network and M-side computation overhead when collecting
statistics from vj .

Entities in the system are organized into two logical tree structures:2 a dis-
tribution tree where inner nodes are caching entities and leaf nodes are managed
entities (solid lines in Fig. 1), and an analogous aggregation tree that has aggre-
gating entities as inner nodes, and managed entities are leaves (dashed lines in
Fig. 1). Note that, in this model a failing inner node can be simply replaced by
its parent in the tree. The connection interfaces between nodes are purely logical,
i.e., they do not necessarily have a one-to-one mapping with a single physical
communication interface. A clear example is v1 in Fig. 1: interactions with both
c1 and a1 are performed internally to the physical device D1. Similarly, v4 com-
municates with a3 through an internal interface, while it communicates with c3
(which is located in D5) through a network link.

This representation is sufficiently generic to represent different scenarios
and use cases, from Wireless Sensor Networks (WSNs), where all the devices
in the network act as all the three entities, to infrastructured settings, where
IoT devices act as endpoint entities, while gateways represent either caches, or
aggregators, or both. Note that, the definition of our management scheme is
independent from the caching strategy adopted by caching entities. However,
the capacity of caches together with the adopted caching policy, play an impor-
tant role in improving the performance of the system. Nevertheless, this usually
depends on the deployment scenario, and the capabilities of devices. Thus, we
consider this to be out-of-scope.

2 See [8] for how aggregation trees are constructed and maintained.

600 M. Ambrosin et al.

3.2 Requirements and Assumptions

Scalability and Security Requirements. We aim at providing a highly scalable
solution for management systems, which enables handling a large number of
devices, through a resource constrained manager. Our goal is to reduce both
computation and storage complexity for M, while at the same time maintain a
low communication and computation overhead on al, cu and vj . More precisely,
we identify the following set of properties that defines a scalable and secure
management system:

1. Outbound efficiency. The management system should guarantee an efficient
broadcast distribution of management commands to endpoints.

2. Commands freshness. The system should provide mechanisms to allow end-
points to assess whether a received command is still valid.

3. Inbound efficiency. M should efficiently collect aggregate statistics of end-
points (e.g., the number of endpoints in a certain state).

4. Outbound security. It should be guaranteed that only legitimate management
commands coming from the manager are executed on endpoints.

5. Inbound security. The integrity of the statistics collected from endpoints
should be ensured.

Security Model. We assume M is trusted, i.e., it honestly follows the management
process and protocols. We also assume that M issues authorized management
commands for distribution. We do not trust all the intermediate entities that
are responsible for aggregation and caching, i.e., al, and cu. All these entities
can be under full control of the adversary. As for vj , we assume these entities
are trusted in executing management commands and providing statistical infor-
mation. We assume all devices that contain a vj to have the necessary security
hardware that protect vj from compromise (e.g., TrustLite [24]). Finally, we
consider a stealthy adversary that aim at manipulating the management and
collection process without being detected. Thus, we consider Denial of Service
(DoS) attacks that aim at undermining the availability of these services to be
out-of-scope.

Attacker Goals. The goals of the adversary controlling cu are to: (i) Tamper
with commands sent by M; and (ii) Impersonate M issuing commands to vj .
Analogously, an adversary controlling one or more aggregating entities al, has
the following goals: (a) Tampering with the statistics collected from one or more
devices; and (b) Impersonating a device sending fake statistics to M.

3.3 FSM Abstract Specification of Management Objectives

An important component of SCIoT is the abstraction we use to decouple domain-
specific management requirements from the actual realization of the management
process. Such abstraction allows to define a management-independent commu-
nication protocol between endpoints and M, which is both simple and highly
scalable. The main intuition behind this abstraction is to allow M to carry out

SCIoT: A Secure and sCalable End-to-End Management Framework 601

the whole management process by simply serving, upon devices’ request, a set of
static (and therefore cacheable) contents. These contents are efficiently delivered
to the endpoints by leveraging the intermediate caching entities cu.

We represent our management process specification by means of an extended
finite state machine, that we call Management Finite State Machine (M-FSM).
M-FSM represents, in its minimal form (i.e., sub-M-FSM), a single command
execution. Sub-M-FSM comprises (see Fig. 2):

– At least three states a device can assume: (1) a starting state, representing a
device waiting for a command to execute; (2) an attempted execution state,
representing the device after the execution of the command; and (3) at least
one termination state (e.g., a system failure). Each state is uniquely identified
by an ID SID.

– At least two transitions: (1) one transition from the starting state to the
attempted execution state. This transition is labeled by an execute event and
a corresponding COMMAND action (i.e., a command to execute); and (2) at least
one transition ending to a terminal state. Actions are executed by the func-
tion Execute, and may write into global variables. In particular, the COMMAND
writes its outcome (i.e., the return code of the command) in the out vari-
able. Outgoing transitions from the attempted execution state are labeled
with a switch event, parametrized on the value of the out variable, and an
OTHER ACTION to execute. These transitions can “point” to either a terminal
state, or the starting state of another sub-M-FSM.

Figure 2 provides a graphical representation of a sub-M-FSM, where ovals
represent states, and arrows represent state transitions. Events and correspond-
ing actions are placed on top of each transition and separated by “|”. Boolean
guards, based on which transition is chosen, are indicated within squared brack-
ets. The sub-M-FSM in Fig. 2 represents a single command execution (or may
represent a loop, in case the sub-M-FSM has a transition from the executing to
the starting state). More complex execution processes can be obtained combining
several sub-M-FSMs, to represent the execution of consecutive commands where
the execution of a subsequent command depends on the successful execution of
the previous one. This is done by adding an outgoing transition (based on the
outcome of the command) from the attempted execution state to the starting
state of another sub-M-FSM.

M-FSM Composability and Overhead. It is worth noticing that, as the M-FSM
is a composition of single sub-M-FSMs, each representing a command execution,
in a management process the M-FSM can be arbitrarily incremented with addi-
tional M-FSMsover time. This property is particularly useful in the management
scenario, as it allows to model management processes that cannot be completely
defined statically, such as subsequent firmware/software update releases. As a
consequence, from an endpoint perspective, at a generic point in time ti the
entire management process can be represented only as the current command to
execute. This guarantees an almost constant overhead at the endpoint.

602 M. Ambrosin et al.

Fig. 2. Basic sub-M-FSM. A device in “Starting” state executes the only transition
to the attempted execution state, performing an action Execute. Depending on the
outcome (e.g., return code) out of Execute, the device might follow one of the outgoing
transitions: to the starting state, to a termination state, or to (the starting state of)
another sub-M-FSM.

Use Case Example (Device Firmware Update M-FSM). An interesting use case
M-FSM is the (simplified) device firmware update process shown in Fig. 3. A
single device update process is composed of an update installation phase, and a
recovery attempt phase. These two phases are represented by analogous sub-
M-FSMs. The update process starts from a “Not Updated” state (S1); the
execute transition (and the consequent execution via Execute of UPDATE) brings
the device into an “Update Attempted” state (S2). The function Execute writes
its outcome (e.g., an integer code) into the global variable out. Based on out,
the device follows a specific switch transition, and executes the NULL action
(i.e., no action is executed). In case of FATAL ERROR, the process moves to a
terminal “System Failure” state (S3). If, instead, the update process terminates
successfully (i.e., out == SUCCESS), the device jumps to the starting state of
the next sub-M-FSM in the process specification.3 Finally, if the update pro-
cess encountered a recoverable error (SIMPLE ERROR), it switches to a recovery
phase, jumping to the initial state “Erroneous State” of the Recovery Phase sub-
M-FSM. In such phase, the device tries to recover the previous software state by
executing a RECOVERY action with the function execute, jumping to a “Recovery
Attempted” state. The outcome of execute is written into out2, which is used
to switch to an end state (representing a fatal unrecoverable error), or to the
previous “Not Updated” state.

Note that, in order to avoid an infinite number of attempts, the action
RECOVERY maintains a counter, recording the number of attempts made by
the device; if this number is greater than a threshold, execute will return a
FATAL ERROR (this is not shown in Fig. 3 for simplicity). Furthermore, while
shown in Fig. 3 as a transition to a different state S7, in practice, in order to
avoid state explosion [32], S2 switch transition may simply return to S1, which
represents a “Not Updated” state, but with a different SID.

3 New “Not Updated” state, which will have a different SID w.r.t. the previous anal-
ogous state.

SCIoT: A Secure and sCalable End-to-End Management Framework 603

Fig. 3. Example: firmware update management.

4 SCIoT Protocols

4.1 A Scalable Self-management Protocol

The first main component of SCIoT is a simple and scalable protocol to dis-
tribute management commands from M to endpoints vj . Commands distribution
is based on an M-FSM specification (e.g., firmware update M-FSM in Sect. 3.3).
Based on abstraction provided by the M-FSM, we designed a secure pull-based
message-response protocol which allows: (1) domain-independent device man-
agement; (2) efficient cacheable distribution of management commands, suit-
able for caching networks or content delivery networks; and (3) minimal storage
requirement on endpoints.

In order to simplify the exposition, in what follows we detail our self-
management protocol between a single endpoint vj , and M.

The main idea behind our protocol is the following. Each endpoint vj “moves”
inside the M-FSM maintaining information about its current state only, while
pulling the next available transition from M. More precisely, vj pulls either: (a)
An execute event, and corresponding COMMAND action, from a starting state; or
(b) A switch event and corresponding OTHER ACTION action from an attempted
execution state. vj queries M issuing a request message (req) that is forwarded
through intermediate cu entities. M then responds with a response messages
(resp). Note that, caching entities may cache response messages, before serving
them back to the querier, to better serve “bursty” requests and reduce latency.
This is particularly important when devices request large payloads, such as
firmware updates [6]. This communication model is supported by existing appli-
cation level protocols (such as CoAP [14], which implements a message-response
protocol on top of UDP), as well as by recently proposed information-centric
protocols (such as Named-Data Networking [23]).

Protocol Description. As shown in Fig. 4, from a state SID, vj queries M for
the next available transition (and event-action pair). More precisely, vj sends a

604 M. Ambrosin et al.

Fig. 4. Self-management protocol using μTesla. Here, we assume vi already has a
commitment (i.e., a key it trusts) corresponding to time interval τ − 2.

req message, which contains vj ’s current state ID SID, and a list of key-value
pairs [< var1 : val1 >, . . .] indicating M-FSM variables, and their current value.
These parameters are used by M, or by caching entities, to select the matching
response packet to return to vj . Note that, the way SID and the key-value pairs
are included as parameters of vj ’s request depends on the adopted underlying
transport protocol.

The response supplied by M contains the next event and action to execute
(using the function Execute). Once the command in action is executed, vj jumps
to the next attempted execution state, and issues a new request message req ′.
The endpoint then obtains a new event and action to execute and move to the
next M-FSM state, which can be either terminal or starting state – MoveToState.

In case of large command payloads, e.g., a new firmware, the action specifies
only a “pointer”, e.g., a hash of the payload, to use for (potentially cached)
payload retrieval. vj then downloads the payload in an additional step. Note
that, as caching entities may directly respond to req with a cached response,
we added a timestamp parameter t and a validity interval Δt to each (signed)
response returned to vj . In this way, endpoints can determine whether a received
transition (or command payload) is “fresh”, i.e., not expired according to t and
Δt. In order to guarantee availability, intermediate caching entities must ensure
that devices are able to detect whether a content is fresh or not, and should
provide mechanisms to “force” requests to be served directly from the source.4

Protocol Security. SCIoT works in conjunction with several security layers suit-
able for large scale broadcast distribution. In particular, in SCIoT M may either

4 This feature is transport specific: In content-centric protocols such as Named-Data
Networking (NDN) [23], content freshness is controlled by flags contained inside
headers, i.e., via data packet’s Freshness and interest’s MustBeFresh header fields.
In CoAP [14], however, this is not possible. Response packets carry a Max-Age option
indicating that the response is to be considered not fresh after its age is greater than
the specified number of seconds.

SCIoT: A Secure and sCalable End-to-End Management Framework 605

use digital signatures, or μTesla authenticated broadcast protocol [26] to authen-
ticate management commands. Using μTesla, SCIoT’s management automation
protocol guarantees public verifiability for resource-constrained devices (i.e.,
devices able to compute only basic cryptographic operations, such as hash
functions and Message Authentication Codes – MACs), while preserving the
cacheability of the distributed data.

Depending on the authentication mechanism in use, responses generated by
M are sent along with either a digital signature, or a MAC. In the case of digital
signatures, M signs each response with its secret key skM and endpoints verify
it using M’s public key pkM. On the other hand, while using μTesla M attaches
a MAC to each response, computed using a symmetric key kτ that is valid only
within a certain time interval τ . At time τ +d, kτ is disclosed, i.e., broadcasted in
a special packet. Endpoints can then verify the MAC on the buffered response
packets received during time interval τ [26]. In detail, vj downloads the next
transition packet from M at time τ , and stores it in a local cache. vj verifies the
message at time τ + d, i.e., after receiving the broadcasted key kτ . This process
is shown in Fig. 4. In order to build a cryptographically verifiable key series, M
makes use of one way hash chains, i.e., the key used at time τ is obtained as
the hash of the key that will be used at time τ + 1 [26]. Note that, different
applications may require different key disclosure time intervals. For this reason,
M keeps several key sequences, generated from different hash chains and have
different key disclosure time intervals. Upon receiving a request req , M computes
the MAC on each response using different keys. The key sequence to be used is
specified in req .

While the digital signature is permanently cacheable, MACs have an expira-
tion period, which corresponds to the key disclosure time. Endpoints are free to
choose between requesting a response with a digital signature or a MAC. In other
words, endpoints can autonomously determine the best trade-off between com-
putation overhead and the delay in the reception of the data. Devices choose
between different options based on a set of factors, including their computa-
tional power, remaining energy, and the time limits specified by the application.
Moreover, endpoints can choose between MACs with different “delays” (i.e., key
disclosure interval Δτ) based on their degree of synchronization. This provides
a trade-off between security level and response delay. The number of MACs and
the time interval for each hash chain are design parameters that may depend on
the properties of the network (e.g., bandwidth or size), and on the requirements
for different applications.

4.2 Scalable Device Monitoring and Assessment

The protocol described in Sect. 4.1 alone enables managed entities to execute
available commands, perform state transitions, and conduct error recovery as
specified by the management finite-state automaton. However, it does not allow
the management layer to learn to what extent the management strategy has
been successful. A simple example is that M would not learn if a given firmware
update always leads to failures. More generally, M needs to collect and maintain

606 M. Ambrosin et al.

statistics, such as the percentage of endpoints that are in a certain state in the
update process shown in Sect. 3.3.

Näıve Approach. A näıve approach for device state assessment would be by
requesting the required information from each device individually; M could
broadcast a challenge, and collect the individual responses from endpoints. This
approach, however, is hard to scale, as it would result in O(|G|) traffic and
verification complexity.

In-Network Aggregation. A more scalable way to collect the global network state
is relying on in-network aggregation. Each device reports its state to its upstream
aggregating node. This, in turn, computes the aggregate sum of each value com-
ing from its children and forwards it to its parent aggregating node in the internal
tree structure, and so on. Using authenticated channels, M can efficiently verify
the authenticity of the received aggregate counts. This simple approach has been
adopted in several solutions, such as in [8]. However, a major important draw-
back of simple aggregation is the absence of end-to-end integrity in presence of
malicious aggregating entities, i.e., in-network aggregation requires fully trusted
aggregators [7].

Secure In-Network Aggregation. Our approach for collecting statistics on end-
points over untrusted aggregators is based on the hierarchical secure in-network
aggregation scheme presented in Sect. 2. It allows: (1) using in-network aggre-
gation to compute an aggregate value, and (2) integrity verification by M in
constant time. Recall that aggregation in SCIoT is performed by logical aggre-
gating entities, which (similarly to [7,8]) can form an overlay aggregation tree
rooted at M, where aggregating entities al are inner nodes, and vj are leaves.
Finally, aggregating nodes are also untrusted for authenticity of aggregation.
The overall protocol runs as follows:

– The manager M broadcasts the state it is interested in collecting statistics
for (either signed with M’s secret key, or using an authenticated broadcasts
protocol, such as the one described in Sect. 4.1).

– Each endpoint vj responds with 1 if it is currently in that state, and with 0
otherwise.

– Intermediate aggregators sum the received values, and forward the computed
value up to M.

– After collecting the aggregate value computed on phase (i), M broadcasts
the final aggregate result authenticated in the same manner as above.

– Based on the commitments (see Sect. 2), endpoints can verify that their con-
tribution has been added to the aggregate value. If this is the case, each
endpoint vi produces a multi-signature σi on a pre-established “OK” mes-
sage using its secret key ski . Otherwise (in case the verification fails), it sends
a negative acknowledgment (NACK) to its gateway aggregator.

– Aggregators combine all the signatures (along the formed overlay aggregation
tree) according to the multi-signature scheme described in Sect. 2, and finally
deliver a single aggregate signature Σ to M.

– M can verify the signature using the pre-computed aggregate public key Y .

SCIoT: A Secure and sCalable End-to-End Management Framework 607

Note that, in the case in which the verification fails, M can conclude that an
error happened, i.e., the contribution of a node was lost, or that some aggregator
maliciously modified either the aggregate value, or the signature.

Inspecting Individual Devices. The protocol discussed in the previous sections,
count the devices in each given state. However, in some cases, inspection of
a given small number of devices may be desirable. In order to enable device
inspection, the manager can issue a call-back command to all endpoints in a
given state. This command triggers the devices to “call home”, report their ID,
and then be available for further debugging. To enable this, an endpoint can be
“probed” by M, and respond with the identifier of its current status in a signed
response message. Note that, unless debugging is constrained to few devices, this
might quickly create a bottleneck on the whole system, especially in the case in
which M needs to collect several periodical statistics from the devices.

5 Prototype Implementation

We implemented SCIoT’s client agent as a module for Riot-OS [9,21] (i.e., tar-
geting IETF Class 1 and 2 devices [13]). This module implements both SCIoT’s
commands distribution protocol, and responds to device assessment requests
from M. M implementation is fairly simple, as it consists in a simple server
application that exposes basic APIs (later discussed in this section), and peri-
odically queries devices; for this reason, it will not be discussed in this section.

Riot-OS [9,21] is an operating systems suitable for resource constrained envi-
ronments. It implements a micro-kernel architecture, and allows applications to
include only the minimum modules necessary for their execution. Furthermore,
Riot-OS does not differentiate between processes and threads. Each application
runs on its own thread of execution, but can freely create other threads (the
limit in number is given by the available memory). Our client implementation
module exposes a concise set of APIs, and can be easily utilized by applications
to automate management tasks.

Our implementation uses CoAP [14] for both M-FSM management, and to
deliver statistics collection queries from M to endpoints.

The device agent runs on its own thread of execution (see Fig. 5), and inter-
acts with a simple CoAP server. An application that needs to carry out a man-
agement process should wait for transitions (i.e., commands) coming from the
agent via Riot-OS IPC (Inter-Process Communication), and react accordingly,
i.e., execute a command with a specific ID. The device “talks” to a server via
a minimal set of CoAP REST APIs. The server runs either at the manager, or
on an edge node, which may act as a proxy and translate CoAP requests into
HTTP [18]. The client device requests transitions by issuing a CoAP request

coap : //[SERVER IP]/sid?sid = SID& . . .,

where SERVER IP is either the IP address of M, or of the 1st-hop aggregating
node, and sid = SID is the only mandatory parameter of the query. Similarly,

608 M. Ambrosin et al.

the agent running on the device accepts CoAP assessment requests for a state
ID SID, of the form:

coap : //[BROADCAST IP]/assess/?nonce = N&sid = SID.

Client Agent Module

IPC IPC

Riot OS Core

Threads

Scheduler IPC Interrupt
Handler

...

Application Client
Agent

CoAP
Server

Hardware

Fig. 5. Client agent module for Riot-OS.

6 Performance Evaluation

In this section, we present an evaluation of our solution, based on our imple-
mentation presented in Sect. 5, and on an emulated, yet realistic setting. Our
considered setting consists of low-end devices compatible in capabilities with M3
Open Node devices from the IoT-Lab/SensLAB testbed [3]. These devices are
featured with an ARM Cortex M3, 32-bits microcontroller running at 72 MHz,
64 Kbyte of RAM, and a 2.4 GHz IEEE 802.15.4 capable transceiver [4]. More-
over, we consider M to be a low-cost medium-power device, compatible with a
Raspberry Pi Mod B, i.e., equipped with a 700 MHz CPU, 512 Mbyte of RAM,
and 2 Gbyte of storage.

We implemented the multi-signature scheme we introduced in Sect. 4.2, based
on the embedded system library in [31]; we used the mbedTLS library [1] for the
remaining cryptographic operations: SHA-1 based HMAC (Hmac1), and ECDSA.
We evaluated the approaches we presented in Sect. 4 at large scale using network
simulation.

6.1 Storage Overhead

Aggregating nodes, al, do not need to store any information. Caching entities
have a storage overhead which depends on the size of their cache, and the data
currently contained in it. An endpoint vi keeps in its persistent storage: (i) M’s
public key pkM (32 byte in case of public key), or the commitment for the
whole key chain (20 byte in case of μTesla [26]); (ii) the current state of the
M-FSM, which comprises the ID SIDj (2 byte); (iii) Di’s public and private
multi-signature keys (256 byte and 32 byte, respectively). The overall storage
requirement of each device is 322 byte, if public key is used, and 310 byte if
μTesla is used. Low-end devices targeted by SCIoT have at least 1024 bytes of
secondary memory [7], and thus SCIoT will use 31.4% of it when the public key
is used, and 30.3% otherwise.

SCIoT: A Secure and sCalable End-to-End Management Framework 609

6.2 Communication Overhead

We now provide an estimate of the bytes transmitted between an endpoint vj ,
and M. In general the use of μTesla generates an overhead of one key release
(approx 30 byte [26]) per time interval τ of each time series. Note that, we focus
only on the overhead introduced by SCIoT protocols, and thus, we do not include
the overhead generated by the underlying protocol stack.5

Commands Distribution. When requesting a transition, Di produces a request
indicating the ID SID of its current state, and, if using μTesla, the parameter
Δτ , indicating the time series Di is using. This generates at most as little as
6 bytes. M sends out a packet comprising a transition (TID, SIDS , SIDD, and
a command), a timestamp t, a validity interval Δt, and an authenticator (i.e.,
a digital signature or a MAC). Referring to our implementation in Sect. 5, and
considering 4 bytes for both t and Δt, the overall communication overhead of
command distribution protocol is between 80 and 334 byte, when using digital
signatures, and between 37 and 291 byte, when using μTesla.

Device Assessment. In the first phase of this scheme each device sends a 26 byte
label. The amount of bytes generated by the second part of the protocol is loga-
rithmic in the size of the network. More precisely, the overhead of this protocol
varies based on the height of the aggregation tree, and the number of leaf end-
point nodes. This overhead is mainly due to the off-path6 information required
by the scheme to allow each device to verify whether its contribution has been
added to the aggregate value. The off-path values are locally cached by each
aggregating node during the data collection, and re-distributed by the network
in the second step of the scheme. Each label has a size of 26 byte. Thus, let h
be the height of the tree formed by aggregating nodes (only), and l the number
of leaves (i.e., endpoints) connected to the last layer of the aggregating tree; the
total communication overhead on each endpoint, in terms of received data, is
26× (h+ l) byte. As an example, consider a binary tree, and let l = 24 = 16, and
n = 210; in this case, h = 14, and thus, the average amount of bytes received
by each endpoint will be 780 byte. Finally, the acknowledgment sent by each
endpoint (and aggregated by aggregators) consists of 84 byte (a 20 byte nonce,
and a 64 byte multi-signature).

6.3 Runtime

We estimate the runtime of both the command distribution protocol (Sect. 4.1),
and the statistics collection protocol (Sect. 4.2). Execution time is mainly dom-
inated by cryptographic operations, and data transmission. Table 1 shows the
time overhead introduced by the adopted cryptographic operations on two types
of devices: M3 device (low- end) from IoT-LAB, and Raspberry Pi Mod B
(higher-end).
5 Typically, the stack comprises CoAP, 6LowPAN, IPv6 and 802.15.4. Additional over-

head is introduced by protocol headers, plus possible segmentation or fragmentation.
6 For each node, off-path information are the commitments of every child nodes of

each node that is on its path to the manager.

610 M. Ambrosin et al.

Table 1. Cryptographic overhead

Function Time (ms)

M3 IoT-LAB
(Endpoint)

Raspberry Pi Mod
B (Aggregator)

H(m) ∈ G1
a 360.319 89.168

gx
1 , g1 ∈ G1 494.619 124.604

g1 × g′
1, g1, g1 ∈ G1 23.615 8.459

e : G1 × G2 → GT –b 1.736

Hash1c 0.102 0.031

Hmac1c 0.408 0.124

ECDSA Verifyc 1181.140 –b

aComputed on a 20 bytes nonce
bNot performed by the device during the protocol
cComputed on 64 bytes

In addition to real world implementation and testing, we evaluated scalability
of SCIoT based on a large scale simulation using the OMNeT++ discrete event
simulator [5]. We considered two different settings: (I) An infrastructured setting
where low-end devices, acting as endpoints, are directly connected to higher-
end nodes, which form a layer of aggregators and caches; and (II) an ad-hoc
setting comprising low-end devices acting as both endpoints, aggregators and
caches. We simulated the execution of the various protocol operations by adding
respective delays. Furthermore, we configured the communication rate for links
among low-end devices, and between them and high-end devices, to 75 Kbps, i.e.,
the effective measured data rate for ZigBee, a common communication protocol
for IoT devices [30]. We set links among high-end devices (comprising manager),
with a bandwidth of 10 Mbps.

Setting (I) has a variable number of low-end nodes (i.e., endpoints), between
26 and 220 = 1, 048, 5761; the layer of aggregators and caches is internally orga-
nized as a binary tree, e.g., as an overlay. We set the size of this intermediate
layer to be proportional to the number of low-end devices, i.e., the number of
endpoints per aggregator/cache is constant. We indicate with r the ratio between
the number of high-end nodes acting as aggregators/caches, and low-end devices.
For simplicity, we assume the tree configuration is static, and pre-determined; as
an example, this may be the case of an infrastructure supporting data collection
in a smart city scenario.

Setting (II) comprises a variable number of low-end devices that embody
all the three entities, between 26 and 220 = 1, 048, 5761. Similarly, we assume
low-end devices can form a binary tree, rooted at the manager.

Commands Distribution. We configured setting (I) with r = 32. Caches use
a First-In-First-Out (FIFO) policy. Endpoints (i.e., low-end devices) request a
transition from M, starting at a random time between 0 and 1 s, and can either
verify a digital ECDSA signature on the received response, or use μTesla; in the

SCIoT: A Secure and sCalable End-to-End Management Framework 611

latter case, the endpoint waits for the subsequent key disclosure interval τ +d (in
our setting, we considered Δτ ∈ {0.5, 1} s, and d ∈ {1, 2} s) to fetch the necessary
information and verify the response from M. Similar to [6], we compared direct
fetching, and cache-aided fetching of transitions (the latter is enabled by SCIoT);
we measured the average time it takes for an endpoint low-end device to fetch
a transitions from M. Results are shown in Fig. 6. As expected the distributed
caching of responses helps speed up the response fetching for a given request:
The download time grows logarithmically in the size of the device population.
Moreover, with the considered parameters, μTesla with d = 1 shows a reduced
overhead than using digital signatures; this, however, comes at the price of a
more complex and expensive key management, and stricter constraints (e.g.,
each device must be loosely synchronized with M) [26].

This simple experiment shows the scalability of our protocol, which indeed
maximizes the cacheability of each response issued by M. These results are in
line with previous evaluation, such as the one in [6], where the experiments
where conducted on top of a Named-Data Networking (NDN) network [23], but
on smaller scale.

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

0 200k 400k 600k 800k 1M

R
un

-ti
m

e
[s

] (
lo

g
sc

al
e)

Number of endpoint nodes

Direct Fetching + ECDSA
SCIoT + ECDSA

SCIoT + μTesla [Δτ=1s, d=1]
SCIoT + μTesla [Δτ=1s, d=2]

SCIoT + μTesla [Δτ=0.5s, d=1]
SCIoT + μTesla [Δτ=0.5s, d=2]

(a) Setting (I)

 0.25
 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

0 200k 400k 600k 800k 1M

R
un

-ti
m

e
[s

] (
lo

g
sc

al
e)

Number of endpoint nodes

Direct Fetching + ECDSA
SCIoT + ECDSA

SCIoT + μTesla [Δτ=1s, d=1]
SCIoT + μTesla [Δτ=1s, d=2]

SCIoT + μTesla [Δτ=0.5s, d=1]
SCIoT + μTesla [Δτ=0.5s, d=2]

(b) Setting (II)

Fig. 6. Commands fetching in SCIoT.

Device Assessment. We compared our in-network aggregation scheme to the work
from [16]. We evaluated these protocols in the same settings, settings (I) and
(II), used in the evaluation of the commands distribution protocol. In Setting (I)
the ratio between the number of endpoints and aggregators is constant. Results
are shown in Fig. 7. In general, we observe that the runtime introduced by the
protocol in [16] grows linearly in the number of endpoints, while the runtime
of our scheme grows logarithmically with the number of endpoints. The most
expensive part of the protocol in [16] is the verification of the acknowledgments
received by M, which consists of computing linear number of HMACs (i.e., n).
Instead, our scheme that is adopted by SCIoT, introduces a constant overhead
for such verification.

The runtime of both [16] and our aggregation scheme depends also on the
depth of the aggregation tree, which in our settings depends on the ratio between
the number of endpoints r and aggregator nodes; in our setting, the runtime is
higher when r = 32, compared to r = 16. This is due to the required off-path

612 M. Ambrosin et al.

information that the network must provide to endpoints, and the derived com-
putation for verifying the inclusion of each endpoint. As previously mentioned
in Sect. 6.2, this is proportional to both the height of aggregation tree, and r.

 2

 4

 8

 16

 32

 64

 128

64 256 1k 4k 16k 66k 262k 1M

R
un

-ti
m

e
[s

] (
lo

g
sc

al
e)

Number of endpoint nodes (log scale)

SCIoT; r=16
SCIoT; r=32

Chan et al.; r=16
Chan et al.; r=32

(a) Setting (I)

 2

 4

 8

 16

 32

 64

 128

64 256 1k 4k 16k 66k 262k 1M

R
un

-ti
m

e
[s

] (
lo

g
sc

al
e)

Number of endpoint nodes (log scale)

SCIoT
Chan et al.

(b) Setting (II)

Fig. 7. Device assessment overhead. Axes are in logarithmic scale.

For small-medium scale settings, the scheme from [16] is more efficient than
our scheme, requiring less than 4 s to complete the assessment. Indeed, comput-
ing a multi-signature costs more than computing a Hmac for low-end devices.
However, in case of very large settings the runtime of the scheme from [16]
quickly grows, requiring a non-negligible overhead on M. On the other hand,
the use of multi-signatures presents a much more manageable overall overhead.
As an example, considering r = 16 in our evaluation setting, when number of
endpoints is 32, 768 the use of multi-signatures shows an improvement in sys-
tem’s scalability: The runtime grows slowly compared to the scheme from [16],
taking 4.7 s to run an assessment (compared to 5.4 s of [16]). This suggests the
possibility of using an hybrid approach tailored to the specific setting, where M
can select the protocol to use depending on the number of endpoints.

7 Security Consideration

We now briefly discuss the security of our management system, w.r.t. our require-
ments. We consider a probabilistic polynomial time (PPT) adversary A, whose
target is twofold: (1) inject fake commands, i.e., transitions, inside the network
of devices, with the aim to interfere with the management process (i.e., with the
protocol in Sect. 4.1) and thus fooling benign endpoints into performing differ-
ent actions than the ones specified by the M-FSM; (2) manipulate the aggregate
state collected by M (i.e., interfere with the protocol in Sect. 4.2), and make
M accept such manipulated value, that does not reflect the values reported
by endpoints. In order to perform the attack, A can compromise one or more
aggregators or caching entities, i.e., al or cu, or act as a man-in-the-middle. Fur-
thermore, A can also compromise a limited number of endpoints vj . However,
we assume that the number of compromised endpoints is too small to influence
the collected statistics.

SCIoT: A Secure and sCalable End-to-End Management Framework 613

We formalize goals (1) and (2) as two security experiments: Exp1, between
A and a benign endpoint vj , and Exp2, between A, and vj and M, respectively.
In Exp1, after a polynomial number of steps by A, in terms of the security
parameters �Sign, �Hash, and �MAC, vj outputs o1 = 1 if it accepts the received
transition, or o1 = 0 otherwise. Similarly, in Exp2 after a polynomial number of
steps by A in terms of �Sign or �Hash and �MAC, and �N , M outputs o2 = 1, if it
accepts the manipulated aggregate value, or o2 = 0 otherwise.

Definition 1 (Secure management service). A management service is
secure if Pr[o1 = 1|Exp1(1�) = o1] is negligible in � = f(�Sign, �Hash, �MAC),
and Pr[o2 = 1|Exp2(1�) = o2] is negligible in �′ = f ′(�Sign, �N , �Hash, �MAC); the
functions f and f ′ are polynomial in all the parameters specified.

Theorem 1 (Management service security). Our management service is
secure, according to Definition 1, if both the adopted multi-signature scheme and
the public key signatures are unforgeable, and μTesla is secure.

Proof (Proof (Sketch)). We now provide an intuition of our statement regarding
the security of our scheme.

(1) Pr[o1 = 1|Exp1(1�) = o1]: vj outputs o1 = 1 iff IsValid(resp) = true, that is,
if the verification of the digital signature, or MAC in case of using μTesla, σ
taken over {TID, . . . , t,Δt} is valid. In order to carry out this attack, A can
create a new response with a signature σ′ attributed to M. If M uses public
key signatures, e.g., using RSA, A should be able to forge σ. However, using
an unforgeable public key signature scheme, the success probability for A is
negligible in �Sign.

In case of using μTesla, authenticity and integrity of the received transition is
guaranteed by a MAC. In this scenario, however, besides trying to forge the MAC
σ (which has negligible success probability in �MAC), A may also try to use an
older key kτ ′ belonging to a time interval τ ′ < τ , where τ is the current time
interval, to compute the MAC on the response, for the time interval τ . Recall
that, a key sequence is created from a reverse hash chain, in a way such that:
kτ−1 ← Hash(kτ); thus, for the properties of hash algorithms, the probability of
kτ−1 = kτ is negligible in �Hash.

(2) Pr[o2 = 1|Exp21�) = o2]: A can perform the following attacks on the assess-
ment protocol: (a) attack part (i) of the device assessment protocol by mod-
ifying the value sent by M to vj ; (b) attack part (ii) of the protocol by
creating a valid acknowledgment of vj , using an old signature σold from a
previous interaction; or (c) attack part (ii) of the protocol by creating a fake
acknowledgment with a multi-signature σ that attributes to vj .

In order to perform the attack (a), A should be able to either forge a signature
generated by M, or to violate the security of μTesla; this is unfeasible for A,
similar to (1). Finally, strategies (b) and (c) are unfeasible for a PPT attacker like
A, due to the security of the multi-signature scheme against existential forgery
attacks.

614 M. Ambrosin et al.

8 Related Work

Device Management. The Lightweight Machine to Machine protocol
(LWM2M) [25], proposed by the Open Mobile Alliance (OMA), is a protocol
designed for secure device management. Unfortunately, while certainly a valid
solution, the protocol is intended for management of individual devices, and
therefore not suitable in our scenario. In general, previous work in the literature
either focus on network management for IoT devices [28], or consider scenar-
ios where devices can be managed individually [29]. We consider all the above
works to be complementary to ours; they can be used, for example, to perform
one time bootstrap operation, topology maintenance, or individual device inspec-
tion. In [6] Ambrosin et al. proposed a protocol for efficient and secure delivery
of confidential software updates to devices, by leveraging untrusted inner cache
enabled networks. The authors provided the description of their solution over a
Named-Data Networking (NDN) based inner network. However, different from
our work, the authors did not provide an efficient protocol to collect device
statistics. Burke et al. [15] presented a secure NDN-based security architecture
for instrumented environments, such as building automation systems, and in
particular for one of its sub-domains, i.e., lighting control. Their proposed solu-
tion provides privacy and authenticity for both command and acknowledgment
messages, but unfortunately does not provide multicast features, i.e., for manage-
ment of multiple devices, the management entity must issue multiple individual
commands.

Secure Data Aggregation. There is a rich literature dealing with secure in-network
data aggregation, especially in the context of Sensor Networks (SN), and Wire-
less Sensor Networks (WSN). These approaches are typically executed on top
of an aggregation tree, and allow to combine the contribution of each node in
a secure way, i.e., in a way that is verifiable by the collector node. In other
words, the collector can verify that the aggregate result has not been tampered
by inner aggregator nodes, and that all nodes contributed7 to the computed
aggregate value. Secure aggregation protocols usually focus on limiting commu-
nication and computation overhead for end nodes, and in the network, but pay
less attention to the overhead at the verifier, which is assumed to be power-
ful enough to perform a (usually linear) number of cryptographic operations to
verify the aggregate result. However, in our scenario, i.e., in case of large scale
network managed by a low/medium power entity, the complexity at the manage-
ment entity should be reduced as much as possible. In the following, we discuss
only some related protocols. In [16], Chan et al. propose a secure data aggre-
gation scheme for SN and WSN. Overall, the algorithm incurs in O(Δ log2 n)
node congestion, where node congestion is the worst case communication load
on each sensor node. Frikken et al. [19] further reduces the node congestion
of [16] to O(Δ log n), proposing a new commitment structure. Unfortunately,
both schemes impose a linear verification overhead on the collector node, which

7 This does not apply to every in-network data aggregation scheme.

SCIoT: A Secure and sCalable End-to-End Management Framework 615

needs to compute the XOR of all MACs created by end nodes. A different app-
roach is considered by Yang et al. in SDAP [34]. SDAP is a non-exact mechanism
which reduces the complexity of the verification while adding an (albeit small)
overhead on the data collector.

9 Conclusions

In this paper we present the design of SCIoT, a framework for scalable and
secure IoT device management. SCIoT represents the management process using
an abstract finite state machine, thus decoupling it from its specific domain.
Based on this representation, we design a protocol that allows devices to effi-
ciently retrieve control messages, such as commands or firmware updates, from
the management control entity. Another important feature provided by SCIoT
is the ability for the control entity to monitor the status of the managed devices
(e.g., number of devices that are in a given state). This is done by efficiently col-
lecting device state information. Messages carrying device statistics are securely
aggregated by an inner aggregation network, to minimize communication and
computation complexity. Our evaluation shows the benefits of our approach in
terms of improved scalability and manageable overhead.

References

1. ARMR© mbedTLS cryptographic library (2016). https://tls.mbed.org/
2. Cisco Forecast on Internet of Things (2016). https://newsroom.cisco.com/feature-

content?type=webcontent&articleId=1208342
3. IoT-LAB: a very large scale open testbed (2016). https://www.iot-lab.info/
4. IoT-LAB M3 Open Node (2016). https://www.iot-lab.info/hardware/m3/
5. Omnet++ Discrete Event Simulator (2016). https://omnetpp.org/
6. Ambrosin, M., Busold, C., Conti, M., Sadeghi, A.-R., Schunter, M.: Updaticator:

updating billions of devices by an efficient, scalable and secure software update
distribution over untrusted cache-enabled networks. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 76–93. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11203-9 5

7. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: CCS 2016, pp. 731–
742 (2016)

8. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: CCS 2015, pp.
964–975 (2015)

9. Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., Schmidt, T.C.: RIOT OS: towards
an OS for the internet of things. In: INFOCOM WKSHPS 2013, pp. 79–80 (2013)

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

11. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

https://tls.mbed.org/
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
https://www.iot-lab.info/
https://www.iot-lab.info/hardware/m3/
https://omnetpp.org/
https://doi.org/10.1007/978-3-319-11203-9_5
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26

616 M. Ambrosin et al.

12. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: MCC 2012, pp. 13–16 (2012)

13. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks.
Technical report, iETF RFC-7228, May 2014

14. Bormann, C., Shelby, Z.: Block-wise transfers in the constrained application pro-
tocol (CoAP). Technical report, iETF RFC-7959, August 2016

15. Burke, J., Gasti, P., Nathan, N., Tsudik, G.: Securing instrumented environments
over content-centric networking: the case of lighting control and NDN. In: INFO-
COM WKSHPS 2013, pp. 394–398 (2013)

16. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor
networks. In: CCS 2006, pp. 278–287 (2006)

17. Cooper, A.: Electric company smart meter deployments: foundation for a smart
grid. Technical report, October 2016

18. Dijk, E., Rahman, A., Fossati, T., Loreto, S., Castellani, A.: Internet-draft: guide-
lines for HTTP-CoAP mapping implementations. Technical report, iETF-draft,
November 2016

19. Frikken, K.B., Dougherty IV, J.A.: An efficient integrity-preserving scheme for
hierarchical sensor aggregation. In: WiSec 2008, pp. 68–76 (2008)

20. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. ACM SIG-
COMM Comput. Commun. Rev. 45(5), 37–42 (2015)

21. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the internet of things: a survey. IEEE Internet Things J. 3(5), 720–734
(2016)

22. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile
fog: a programming model for large-scale applications on the internet of things. In:
MCC 2013, pp. 15–20 (2013)

23. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking named content. In: CoNEXT 2009, pp. 1–12 (2009)

24. Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: European Conference on Computer
Systems (2014)

25. Open Mobile Alliance: Lightweight Machine to Machine Technical Specification, v
1.0. Technical report, April 2016

26. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: security
protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

27. Sanchez, L., et al.: SmartSantander: IoT experimentation over a smart city testbed.
Comput. Netw. 61, 217–238 (2014)

28. Sehgal, A., Perelman, V., Kuryla, S., Schonwalder, J.: Management of resource
constrained devices in the internet of things. IEEE Commun. Mag. 50(12), 144–
149 (2012)

29. Sheng, Z., Mahapatra, C., Zhu, C., Leung, V.C.: Recent advances in industrial
wireless sensor networks toward efficient management in IoT. IEEE Access 3, 622–
637 (2015)

30. Spanogiannopoulos, G., Vlajic, N., Stevanovic, D.: A simulation-based performance
analysis of various multipath routing techniques in ZigBee sensor networks. In:
Zheng, J., Mao, S., Midkiff, S.F., Zhu, H. (eds.) ADHOCNETS 2009. LNICST,
vol. 28, pp. 300–315. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11723-7 20

31. Unterluggauer, T., Wenger, E.: Efficient pairings and ECC for embedded systems.
In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 298–315.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 17

https://doi.org/10.1007/978-3-642-11723-7_20
https://doi.org/10.1007/978-3-642-11723-7_20
https://doi.org/10.1007/978-3-662-44709-3_17

SCIoT: A Secure and sCalable End-to-End Management Framework 617

32. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

33. Vögler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: A scalable framework for
provisioning large-scale iot deployments. ACM Trans. Internet Technol. 16(2), 11
(2016)

34. Yang, Y., Wang, X., Zhu, S., Cao, G.: SDAP: a secure hop-by-hop data aggregation
protocol for sensor networks. ACM Trans. Inf. Syst. Secur. 11(4), 18:1–18:43 (2008)

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

Author Index

Alcaraz, Cristina I-555
Alimohammadifar, Amir II-463
Alrabaee, Saed I-26
Ambrosin, Moreno I-595
Androulaki, Elli I-111
Asokan, N. I-132
Attrapadung, Nuttapong II-395
Au, Man Ho II-83

Baelde, David I-385
Balagani, Kiran S. I-263
Bana, Gergei II-350
Bierbaumer, Bruno I-363
Bitsikas, Evangelos I-346
Bitton, Ron I-533
Blanton, Marina II-438
Blass, Erik-Oliver I-87
Bochmann, Gregor V. I-243
Brucker, Achim D. I-427
Buescher, Niklas II-416

Cachin, Christian I-111
Cai, Ruoyan I-66
Canard, Sébastien II-331
Chabanne, Hervé I-152
Chadha, Rohit II-350
Chen, Liqun I-470
Chen, Xiaofeng II-83
Chen, Yuanmi II-143
Chothia, Tom I-325
Chu, Chen II-143
Conti, Mauro I-263, I-595
Cortier, Véronique I-491
Cristani, Matteo I-281
Cuellar, Jorge II-3
Cui, Qian I-243

Dallon, Antoine I-491
De Caro, Angelo I-111
de Ruiter, Joeri I-325
Debbabi, Mourad I-26, II-463
Delaune, Stéphanie I-385, I-491

Eckert, Claudia I-3
Eeralla, Ajay Kumar II-350
Elbashir, Khalid II-485
Elovici, Yuval I-533

Fang, Kaiming II-20
Ferreira Torres, Christof II-60
Ferrell, Benjamin II-122
Flood, Jason I-243

Gao, Neng I-197
Garcia, Flavio D. I-305
Gasti, Paolo I-263
Ge, Jingquan I-197
Georgiev, Martin I-263
Gluck, Tomer I-533
Gotfryd, Karol II-309
Gritzalis, Dimitris I-346
Groß, Sascha II-41
Grossklags, Jens I-3
Gurtler, Tristan I-263

Hallgren, Per II-373
Hamlen, Kevin W. II-122
Hammer, Christian II-41
Han, Jinguang I-470
Hanaoka, Goichiro II-395
Hanna, Aiman I-26
Hao, Shuang II-122
Hess, Andreas V. I-427
Hirschi, Lucca I-385
Holz, Thorsten I-449
Hou, Xiaolu II-373
Hou, Y. Thomas II-187
Huang, Xinyi II-167

Ibrahim, Ahmad I-595
Inokuchi, Masaki I-533
Isobe, Takanori II-249

Jarraya, Yosr II-463
Jeong, Myoungin II-438

Jonker, Hugo II-60
Jourdan, Guy-Vincent I-243
Joye, Marc II-548
Juuti, Mika I-132

Karafili, Erisa I-281
Karlsson, Linus II-485
Kasinathan, Prabhakaran II-3
Katzenbeisser, Stefan II-416
Kerschbaum, Florian I-87
Keuffer, Julien I-152
Khakpour, Narges I-48
Kim, Jihye II-269
Kirsch, Julian I-363
Kittel, Thomas I-363
Kohls, Katharina I-512
Kokoris-Kogias, Eleftherios I-111

Lai, Junzuo II-527
Lain, Daniele I-263
Lapid, Ben I-175
Lee, Jiwon II-269
Lee, Seunghwa II-269
Li, Fengjun I-575
Li, Jin II-187
Li, Kang I-66
Li, Zhao II-143
Liao, Yibin I-66
Libert, Benoît II-288
Liu, Jianghua II-167
Liu, Jiqiang II-187
Liu, Joseph K. II-83, II-228
Liu, Zeyi I-197
Lorek, Paweł II-309
Lou, Wenjing II-187
Lu, Haifeng II-143
Lu, Rongxing II-187
Luo, Bo I-575

Ma, Hui II-507
Ma, Jinhua II-167
Madi, Taous II-463
Majumdar, Suryadipta II-463
Mantel, Heiko I-218
Mauw, Sjouke I-406
McMahon Stone, Chris I-325
Michalevsky, Yan II-548
Miller, Charissa I-263
Minematsu, Kazuhiko II-249

Mödersheim, Sebastian A. I-427
Molas, Kendall I-263
Molva, Refik I-152
Mori, Tatsuya I-132
Morita, Hiraku II-395
Muntean, Paul I-3

Nuida, Koji II-395

Ochoa, Martín II-373
Oh, Hyunok II-269
Ohata, Satsuya II-395
Ohta, Yoshinobu I-533
Onut, Iosif-Viorel I-243

Paladi, Nicolae II-485
Patel, Sarvar II-207
Persiano, Giuseppe II-207
Peters, Thomas II-288
Pieprzyk, Josef II-228
Pohlmann, Norbert I-449
Pointcheval, David II-331
Pöpper, Christina I-512
Pourzandi, Makan II-463

Qian, Chen II-288

Rios, Ruben II-373
Roman, Rodrigo I-555
Rubio, Juan E. I-555

Sadeghi, Ahmad-Reza I-595
Samarin, Nikita I-263
Santos, Quentin II-331
Saraci, Eugen I-263
Schickel, Johannes I-218
Schneider, Steve I-470
Schunter, Matthias I-595
Seasholtz, Chris I-575
Shabtai, Asaf I-533
Shao, Jun II-228
Shirani, Paria I-26
Skandylas, Charilaos I-48
Smith, Zach I-406
Song, Zishuai II-507
Stan, Orly I-533
Stavrou, Angelos II-143
Stergiopoulos, George I-346
Sun, Bo I-132

620 Author Index

Sun, Shi-Feng II-83, II-228
Sun, Shuzhou II-507

Talavari, Alexander I-346
Tang, Qiang II-527
Tatang, Dennis I-449
Teruya, Tadanori II-395
Tippenhauer, Nils Ole II-373
Tiwari, Abhishek II-41
Toro-Pozo, Jorge I-406
Traoré, Jacques II-331
Treharne, Helen I-470
Trujillo-Rasua, Rolando I-406
Tsudik, Gene I-263
Tu, Chenyang I-197

Urban, Tobias I-449

Van den Herrewegen, Jan I-305
Viganò, Luca I-281

Wang, Haining II-143
Wang, Jianfeng II-83
Wang, Lingyu I-26, II-463
Wang, Wei II-187
Wang, Wenhao II-122
Wang, Xingchen II-101
Wang, Xueou II-373
Weber, Alexandra I-218
Weber, Alina II-416
Weber, Friedrich I-218

Wesemeyer, Stephan I-470
Wool, Avishai I-175
Wu, Lynn I-263
Wuerl, Sebastian I-3

Xiang, Ji I-197
Xiang, Yang II-167
Xiao, Yuting II-507
Xu, Haitao II-143
Xu, Xiaoyang II-122

Yagyu, Tomohiko I-533
Yamada, Yoshiyuki I-533
Yan, Guanhua II-20
Yang, Guomin II-507
Yang, Lei I-575
Yang, Yifan II-143
Ye, Heng II-187
Yeo, Kevin II-207
Yin, Yue I-66
Yuan, Jun I-197

Zagórski, Filip II-309
Zhan, Zhi-Hui II-83
Zhang, Rui II-507
Zhang, Yan I-555
Zhao, Yunlei II-101
Zhechev, Zhechko I-363
Zhou, Wanlei II-167
Zhu, Guodong I-66
Zuo, Cong II-228

Author Index 621

	Preface
	ESORICS 2018 23rd European Symposium on Research in Computer Security Barcelona, Spain September 3–7, 2018 Organized by Universitat Politecnica de Catalunya - BarcelonaTech, Spain
	Contents – Part I
	Contents – Part II
	Software Security
	CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions with LLVM
	1 Introduction
	2 Background
	2.1 C++ Type Casting
	2.2 C/C++ Legal and Illegal Object Type Casts
	2.3 Ordered vs. Unordered Virtual Tables

	3 Threat Model
	4 Design and Implementation
	4.1 Architecture Overview
	4.2 Virtual Table Inheritance Tree Projection
	4.3 Object Type Confusion Detection
	4.4 Implementation

	5 Evaluation
	5.1 Performance Overhead (RQ1)
	5.2 Precision (RQ2)
	5.3 Effectiveness (RQ3)
	5.4 Programmer Assistance (RQ4)

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	On Leveraging Coding Habits for Effective Binary Authorship Attribution
	1 Introduction
	2 BinAuthor
	2.1 Filtration Process
	2.2 Canonicalization
	2.3 Choices Categorization
	2.4 Feature Vectors
	2.5 Classification

	3 Evaluation
	3.1 Implementation Setup
	3.2 Dataset
	3.3 Experimental Setup
	3.4 Accuracy
	3.5 Scalability
	3.6 Applying BinAuthor to Real Malware Binaries

	4 Related Work
	5 Limitations
	6 Conclusion
	A Example of Qualitative Choices
	B False Positives
	C Impact of Code Transformation Techniques
	References

	Synthesis of a Permissive Security Monitor
	1 Introduction
	2 Preliminaries
	3 The Method Overview
	4 Security Control Flow Model
	5 Monitor Synthesis
	6 Implementation and Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	MobileFindr: Function Similarity Identification for Reversing Mobile Binaries
	1 Introduction
	2 Background
	2.1 Reverse Engineering Mobile Apps
	2.2 Challenges

	3 Design and Implementation
	3.1 Overview
	3.2 Preprocessing
	3.3 On-Device Dynamic Analysis
	3.4 Feature Extraction
	3.5 Similarity Searching

	4 Evaluation
	4.1 Experiment Setup
	4.2 Ground Truth Dataset
	4.3 Obfuscation Options
	4.4 Peer Tools
	4.5 Evaluation Results
	4.6 Real-World App Case Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Blockchain and Machine Learning
	Strain: A Secure Auction for Blockchains
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Blockchain

	3 Security Definition
	4 Maliciously-Secure Comparisons
	4.1 Secure Comparisons Against Semi-honest Adversaries
	4.2 Secure Comparisons Between Two Malicious Adversaries

	5 Blockchain Auction Protocol
	5.1 Verifiable Key Distribution for Commitments
	5.2 Determining the Winning Bid
	5.3 Latency Evaluation
	5.4 Optional: Preparation of Pseudonyms

	6 Related Work
	7 Conclusion
	A Proofs of DLOG Equivalence
	B Security Analysis
	C Dining Cryptographer Networks
	References

	Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains
	1 Introduction
	2 Preliminaries
	3 Asset Management in a Single Channel
	3.1 Unspent Transaction-Output Model
	3.2 Protocol

	4 Atomic Cross-Channel Transactions
	4.1 Asset Transfer Across Channels
	4.2 Cross-Channel Trade with a Trusted Channel
	4.3 Cross-Channel Trade Without a Trusted Channel

	5 Using Channels for Confidentiality
	5.1 Deploying Group Key Agreement
	5.2 Enabling Cross-Shard Transactions Among Confidential Channels

	6 Case Study: Cross-Shard Transactions on Hyperledger Fabric
	7 Conclusion
	References

	Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews
	1 Introduction
	2 Background
	3 System Model
	3.1 Attack Model
	3.2 Generative Model
	3.3 Controlling Generation of Fake Reviews
	3.4 Experiment: Varying Generation Parameters in Our NMT Model

	4 Evaluation
	4.1 Replication of State-of-the-Art Model: LSTM
	4.2 Similarity to Existing Fake Reviews
	4.3 Comparative User Study

	5 Defenses
	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	References

	Efficient Proof Composition for Verifiable Computation
	1 Introduction
	1.1 Problem Statement
	1.2 Idea of the Solution: Embedded Proofs
	1.3 Related Work
	1.4 Paper Organization

	2 Building Blocks
	2.1 GVC: Verifiable Computation Based on QAPs
	2.2 EVC: Sum-Check Protocol
	2.3 Multilinear Extensions
	2.4 Ajtai Hash Function

	3 Embedded Proofs
	3.1 High Level Description of the Generic Protocol
	3.2 A Protocol Instance

	4 Embedded Proofs for Neural Networks
	4.1 Motivation
	4.2 A Verifiable Neural Network Architecture

	5 Implementation and Performance Evaluation
	5.1 Matrix Multiplication Benchmark
	5.2 Two-Layer Verifiable Neural Network Experimentations

	6 Conclusion
	A Appendix: Embedded Proofs Security
	A.1 Correctness
	A.2 Soundness

	B Appendix: Prover's Input Privacy
	B.1 Prover's Input Privacy

	References

	Hardware Security
	Navigating the Samsung TrustZone and Cache-Attacks on the Keymaster Trustlet
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Preliminaries
	2.1 ARM TrustZone Overview
	2.2 TrustZone Usage in Android
	2.3 Attack Model

	3 The Exynos Secure World Components
	4 The Exynos Normal World Components
	4.1 The MobiCore Kernel Module
	4.2 The mcDriverDaemon Process
	4.3 Keystore and Keymaster Hardware Abstraction Layer (HAL)
	4.4 Samsung's Keymaster HAL and Trustlet

	5 Attacking the Keymaster Trustlet
	5.1 The Target of the Attack
	5.2 Challenges in Mounting the Attack
	5.3 Tracing Trustlet Execution Using Flush+Reload
	5.4 Designing an Improved Attack

	6 Conclusions
	A End-to-End Keymaster Communication Example
	References

	Combination of Hardware and Software: An Efficient AES Implementation Resistant to Side-Channel Attacks on All Programmable SoC
	1 Introduction
	2 Background and Related Work
	2.1 All Programmable SoC (Zynq-7000)
	2.2 Software and Hardware Implementations of AES
	2.3 Side Channel Attacks
	2.4 Countermeasures Against Side Channel Attacks
	2.5 Test Vector Leakage Assessment (TVLA)

	3 AES Implementation with Combination of Hardware and Software
	3.1 Encryption Data Flow
	3.2 Software and Hardware Stages
	3.3 Communication Between Software and Hardware

	4 Experimental Evaluation
	4.1 Cache Timing Attacks
	4.2 Power/Electromagnetic Analysis Attacks
	4.3 Data Throughput and FPGA Resource Requirements

	5 Conclusion
	References

	How Secure Is Green IT? The Case of Software-Based Energy Side Channels
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Procedure for Distinguishing Experiments
	3.2 Attacker Models

	4 Qualitative Results on Bouncy Castle RSA
	4.1 Experimental Setup
	4.2 Results for Sequential
	4.3 Results for Concurrent

	5 Quantification of the Weakness
	5.1 A Distinguishing Test
	5.2 Quantitative Results

	6 A Security Evaluation of Candidate Countermeasures
	6.1 Case Study
	6.2 Experimental Setup
	6.3 Experimental Results and Interpretation

	7 Related Work
	7.1 Power-Consumption Side Channels
	7.2 Quantitative Side-Channel Analysis

	8 Conclusion
	A RSA Parameters
	References

	Attacks
	Phishing Attacks Modifications and Evolutions
	1 Introduction
	2 Phishing Attacks Clustering
	2.1 DOM Similarity Between Phishing Attacks
	2.2 Optimal Threshold
	2.3 Intra-cluster Vectors Connections
	2.4 Quality of Clustering
	2.5 Phishing Attacks Modifications Graph

	3 Experiments
	3.1 Phishing Sites Database
	3.2 Vectors and Clustering Results

	4 Analysis of the Modifications Seen in Phishing Attacks
	4.1 Who Made Modifications, Phishers or Hosts?
	4.2 Clusters Sample Selection
	4.3 Analysis of Master Vectors
	4.4 Analysis of Variation History
	4.5 Types of Modifications Seen on Phishing Attacks

	5 Related Work
	5.1 Phishing Detection
	5.2 Phishing Kits

	6 Conclusion and Future Work
	References

	SILK-TV: Secret Information Leakage from Keystroke Timing Videos
	1 Introduction
	2 Related Work
	3 System and Adversary Model
	4 Overview and Data Collection
	4.1 Passwords
	4.2 PINs
	4.3 Timing Extraction from Video

	5 Password Guessing Using SILK-TV
	5.1 Results

	6 PIN Guessing Using SILK-TV
	6.1 Pin Inference

	7 Conclusion
	References

	A Formal Approach to Analyzing Cyber-Forensics Evidence
	1 Introduction
	2 The Syntax of the Evidence Logic EL
	2.1 ELE: Evidence
	2.2 ELI: Evidence Interpretation
	2.3 ELR: Evidence Reasoning

	3 The Semantics of the Evidence Logic EL
	4 The Rewriting System of the Evidence Logic EL
	4.1 Rewriting Rules
	4.2 Rewriting Procedure

	5 A Detailed Case Study: Attribution of a Cyber-Attack
	6 Related Work and Concluding Remarks
	A Appendix: Soundness of the Rewriting System and Correctness of the Algorithm
	References

	Malware and Vulnerabilities
	Beneath the Bonnet: A Breakdown of Diagnostic Security
	1 Introduction
	2 Background
	2.1 Unified Diagnostic Services
	2.2 Diagnostic Communication Channels
	2.3 Universal Measurement and Calibration Protocol

	3 Cryptanalysis of Diagnostic Protocols
	3.1 Obtaining and Analysing ECU Firmware Images
	3.2 Analysis of the Ford Challenge-Response Cipher
	3.3 Analysis of the Fiat Challenge-Response Cipher
	3.4 Analysis of the Volkswagen Group Cipher

	4 Remote Code Execution over CAN
	4.1 Use Case: Changing the Odometer on a Ford Instrument Cluster
	4.2 Use Case: Reprogramming a Fiat Body System Interface

	5 Building a Firmware Modification and Extraction Framework
	6 Mitigation
	7 Discussion
	8 Conclusion
	References

	Extending Automated Protocol State Learning for the 802.11 4-Way Handshake
	1 Introduction
	2 Related Work
	3 Background
	3.1 The 802.11 4-Way Handshake
	3.2 State Machine Learning

	4 Adapting State Machine Learning for Wi-Fi
	4.1 Learning Protocols with Errors
	4.2 Learning Time-Based Behaviour
	4.3 Broadcast/Multicast Traffic
	4.4 Additional Optimisation
	4.5 4-Way Handshake Input/Output Learning Alphabet
	4.6 Implementation Details

	5 Results
	5.1 Encrypted Multicast Traffic Leakage
	5.2 Downgrade Vulnerabilities

	6 Conclusion
	A Diagrams
	B Calculations
	References

	Automatic Detection of Various Malicious Traffic Using Side Channel Features on TCP Packets
	Abstract
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Datasets
	3.1 Threat Model
	3.2 Data Validation

	4 Detection Methodology
	4.1 Problem Definition
	4.2 Feature Selection
	4.3 Traffic Classification

	5 Experimental Results
	5.1 Experiment 1: Entire Datasets with Randomly Mixed Traffic - All Types of Malicious Traffic
	5.2 Experiment 2: 20 K Limited Packet Sample for Feature Testing - All Types of Malicious Traffic
	5.3 Experiment 3: Detection of Encrypted Malware Traffic

	6 Conclusions, Findings and Future Work
	References

	PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications
	1 Introduction
	2 Background and Related Work
	2.1 Dynamic Binary Instrumentation
	2.2 Required Security Properties of Analysis Frameworks
	2.3 DBI Use in Literature
	2.4 Scope

	3 Stealthiness
	3.1 Code Cache/Instrumentation Artifacts
	3.2 Environment Artifacts
	3.3 Summary

	4 Isolation
	4.1 Escaping from Pin's Instrumentation Using Direct Code Cache Modification
	4.2 Escaping from Pin's Instrumentation Using an Existing Memory Corruption

	5 Increased Attack Surface
	5.1 The Return of Aleph One
	5.2 Turning CVE-2017-13089 to a Code Execution Bug with the Help of Intel Pin

	6 Discussion
	6.1 Reproducibility and Source Code Availability
	6.2 Limitations and Future Work
	6.3 Conclusion

	A Appendix
	References

	Protocol Security
	POR for Security Protocol Equivalences
	1 Introduction
	2 Model for Security Protocols
	2.1 Syntax
	2.2 Semantics
	2.3 Equivalences

	3 Persistent and Sleep Sets in a Nutshell
	4 Concrete LTS for Security Protocols
	5 POR in Symbolic Semantics
	5.1 Symbolic Equivalence LTS
	5.2 Independence Relations
	5.3 Persistent Set Computation
	5.4 Symbolic Sleep Sets
	5.5 Collapsing Conditionals

	6 Implementation and Benchmarks
	6.1 Implementation
	6.2 Experimental Evaluation

	7 Conclusion
	References

	Automated Identification of Desynchronisation Attacks on Shared Secrets
	1 Introduction
	2 Security Protocol Model
	2.1 Multiset Rewriting
	2.2 The Adversary
	2.3 Security Claims

	3 Desynchronisation Resistance
	4 Verifying Desynchronisation Resistance
	4.1 A Sequential Key Updating Environment
	4.2 Satisfying Desynchronisation Resistance

	5 Automated Verification
	5.1 Identified Attacks

	6 Conclusion
	A Tamarin Implementation Details
	B Attack on the Two-Round Grouping Proof of Abughazalah, Markantonakis and Mayes
	References

	Stateful Protocol Composition
	1 Introduction
	2 Preliminaries
	2.1 Terms and Substitutions
	2.2 The Intruder Model

	3 Stateful Protocols
	3.1 Stateful Symbolic Constraints
	3.2 Typed Model
	3.3 Protocol Semantics

	4 Composition and a Running Example
	4.1 A Keyserver Example

	5 The Compositionality Results
	5.1 Protocol Abstraction
	5.2 Shared Terms
	5.3 Declassification and Leaking
	5.4 Parallel Compositionality for Constraints
	5.5 Parallel Compositionality for Protocols
	5.6 Sequential Composition

	6 Conclusion and Related Work
	References

	Privacy (I)
	Towards Understanding Privacy Implications of Adware and Potentially Unwanted Programs
	1 Introduction
	2 Background
	2.1 Adware, Potentially Unwanted Programs, and Browser Extensions
	2.2 Adware Ecosystem
	2.3 Tracking Mechanisms

	3 Related Work
	4 Approach
	4.1 Framework
	4.2 Dataset
	4.3 Analysis

	5 Results
	5.1 Privacy Aspects

	6 Discussion
	6.1 Ethical Considerations
	6.2 Limitations

	7 Conclusion
	A Set of Websites
	B Tracking Services
	References

	Anonymous Single-Sign-On for n Designated Services with Traceability
	1 Introduction
	1.1 Related Work
	1.2 Paper Organisation

	2 Scheme Overview and Security Properties
	3 Security Model Overview
	4 Preliminaries
	4.1 Bilinear Groups and Pairings
	4.2 BBS+ Signature
	4.3 Zero-Knowledge Proof
	4.4 Complexity Assumptions

	5 Scheme Construction
	5.1 System Set-Up
	5.2 Registration
	5.3 Ticket Issuing
	5.4 Tag Verification
	5.5 Ticket Tracing

	6 Security Analysis
	7 Benchmarking Results
	7.1 Timings

	8 Conclusion and Future Work
	References

	Efficiently Deciding Equivalence for Standard Primitives and Phases
	1 Introduction
	2 Model
	2.1 Term Algebra
	2.2 Process Algebra
	2.3 Type-Compliance
	2.4 Trace Equivalence

	3 From Static Inclusion to Planning
	3.1 Planning Problems
	3.2 Attacker Analysis Rules
	3.3 Static Inclusion

	4 From Trace Inclusion to Planning
	4.1 Abstract Protocol Rules
	4.2 Concrete Protocol Rules

	5 Algorithm
	6 Experiments
	6.1 Comparison with the Other Tools
	6.2 Towards an Unbounded Number of Sessions

	A Examples of Non Termination
	References

	DigesTor: Comparing Passive Traffic Analysis Attacks on Tor
	1 Introduction
	2 Traffic Analysis in Tor
	2.1 Traffic Analysis Attacks
	2.2 Empirical Adversary

	3 DigesTor Framework
	3.1 System Components
	3.2 Traffic Analysis Framework
	3.3 Helpers

	4 Experimental Setup
	4.1 Technical Specification
	4.2 Scenarios
	4.3 Comparison of Attack Metrics
	4.4 Tor Network Infrastructure

	5 Evaluation
	5.1 Metrics and Features
	5.2 Scenarios
	5.3 Countermeasures
	5.4 Overview of Results

	6 Discussion
	6.1 Goals of DigesTor
	6.2 Ethics
	6.3 Mix Countermeasure

	7 Conclusion
	References

	CPS and IoT Security
	Deriving a Cost-Effective Digital Twin of an ICS to Facilitate Security Evaluation
	1 Introduction
	2 Related Work
	3 Cost-Effective Digital Twin for ICS
	3.1 Notations
	3.2 Proposed Method
	3.3 Data Processor
	3.4 Problem Builder
	3.5 Solver

	4 Demonstration
	4.1 Description of the Tested ICS Environment
	4.2 Security Test Specifications
	4.3 Implementation Cost Description
	4.4 Results

	5 Conclusions and Future Work
	A Formal Representation
	B Implementation Costs of the ICS Components (USD)
	C Specification of Penetration Testing Activities Based on NESCOR Methodology
	D Environment Dependencies
	E Illustrations
	References

	Tracking Advanced Persistent Threats in Critical Infrastructures Through Opinion Dynamics
	1 Introduction
	2 Preliminaries
	2.1 Proposed Network Architecture
	2.2 Opinion Dynamics

	3 Attack and Defense Models
	3.1 Review of Existing APTs, APT Stages, and Defenses
	3.2 Representation of APT Attacks and Detection Probabilities

	4 Detection of APTs
	5 Experimental Simulations and Discussion
	6 Conclusions
	A Correctness Proof: Consensus-Based Detection and Traceability
	B The Mapping of the attackStages to
	References

	Hide Your Hackable Smart Home from Remote Attacks: The Multipath Onion IoT Gateways
	1 Introduction
	2 Preliminaries
	2.1 One Instance of Smart Home Gateway: Home Assistant
	2.2 Tor and Tor Hidden Service

	3 IoT Gateway over Multipath Tor Hidden Services
	3.1 Tunnel Construction
	3.2 Data Transmission
	3.3 Discussions

	4 IoT Gateway with Split Command and Data Channels
	5 Experiment and Performance Evaluation
	6 Security Analysis
	7 Related Work
	8 Conclusion
	References

	SCIoT: A Secure and sCalable End-to-End Management Framework for IoT Devices
	1 Introduction
	2 Background and Primitives
	2.1 Multi-signature
	2.2 Secure In-Network Aggregation

	3 SCIoT Architecture Design
	3.1 System Model
	3.2 Requirements and Assumptions
	3.3 FSM Abstract Specification of Management Objectives

	4 SCIoT Protocols
	4.1 A Scalable Self-management Protocol
	4.2 Scalable Device Monitoring and Assessment

	5 Prototype Implementation
	6 Performance Evaluation
	6.1 Storage Overhead
	6.2 Communication Overhead
	6.3 Runtime

	7 Security Consideration
	8 Related Work
	9 Conclusions
	References

	Author Index

