LNCS 11098

Javier Lopez - Jianying Zhou
Miguel Soriano (Eds.)

Computer Security

23rd European Symposium
on Research in Computer Security, ESORICS 2018
Barcelona, Spain, September 3-7, 2018, Proceedings, Part |

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

11098

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Javier Lopez - Jianying Zhou
Miguel Soriano (Eds.)

Computer Security

23rd European Symposium

on Research in Computer Security, ESORICS 2018
Barcelona, Spain, September 3-7, 2018
Proceedings, Part I

@ Springer

Editors

Javier Lopez Miguel Soriano

Department of Computer Science Universitat Politécnica de Catalunya
University of Malaga Barcelona

Malaga, Malaga Spain

Spain

Jianying Zhou

Singapore University of Technology
and Design

Singapore

Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-99072-9 ISBN 978-3-319-99073-6 (eBook)
https://doi.org/10.1007/978-3-319-99073-6

Library of Congress Control Number: 2018951097
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book contains the papers that were selected for presentation and publication at the
23rd European Symposium on Research in Computer Security — ESORICS 2018 —
which was held in Barcelona, Spain, September 3—7, 2018. The aim of ESORICS is to
further the progress of research in computer, information, and cyber security and in
privacy, by establishing a European forum for bringing together researchers in these
areas, by promoting the exchange of ideas with system developers, and by encouraging
links with researchers in related fields.

In response to the call for papers, 283 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Each paper was reviewed by at least three members of the Program Committee.
The Program Committee meeting was held electronically, with intensive discussion
over a period of two weeks. Finally, 56 papers were selected for presentation at the
conference, giving an acceptance rate of 20%.

ESORICS 2018 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the general chair, Miguel
Soriano, the organization chair, Josep Pegueroles, the workshop chair, Joaquin
Garcia-Alfaro, and all workshop co-chairs, the publicity chairs, Giovanni Livraga and
Rodrigo Roman, and the ESORICS Steering Committee and its chair, Sokratis
Katsikas.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

We hope that you will find the program stimulating and a source of inspiration for
future research.

June 2018 Javier Lopez
Jianying Zhou

ESORICS 2018

23rd European Symposium on Research in Computer Security

Barcelona, Spain
September 3-7, 2018

Organized by Universitat Politecnica de Catalunya - BarcelonaTech, Spain

General Chair
Miguel Soriano

Program Chairs

Javier Lopez
Jianying Zhou

Workshop Chair
Joaquin Garcia-Alfaro
Organizing Chair
Josep Pegueroles

Publicity Chairs

Giovanni Livraga
Rodrigo Roman

Program Committee

Gail-Joon Ahn
Cristina Alcaraz
Elli Androulaki
Vijay Atluri
Michael Backes
Carlo Blundo
Levente Buttyan
Jan Camenisch
Alvaro Cardenas
Aldar C-F. Chan
Liqun Chen

Universitat Politecnica de Catalunya, Spain

University of Malaga, Spain
SUTD, Singapore

Telecom SudParis, France

Universitat Politecnica de Catalunya, Spain

Universita degli studi di Milano, Italy
University of Malaga, Spain

Arizona State University, USA
University of Malaga, Spain

IBM Research - Zurich, Switzerland
Rutgers University, USA

Saarland University, Germany
Universita degli Studi di Salerno, Italy
BME, Hungary

IBM Research - Zurich, Switzerland
University of Texas at Dallas, USA
University of Hong Kong, SAR China
University of Surrey, UK

VIII ESORICS 2018

Sherman S. M. Chow
Mauro Conti
Jorge Cuellar

Chinese University of Hong Kong, SAR China

University of Padua, Italy
Siemens AG, Germany

Frédéric Cuppens

Nora Cuppens-Boulahia

Marc Dacier

Sabrina De Capitani di
Vimercati

Hervé Debar

Roberto Di-Pietro

Josep Domingo-Ferrer

Haixin Duan

José M. Fernandez

Jose-Luis Ferrer-Gomila

Simone Fischer-Hiibner

Simon Foley

Sara Foresti

David Galindo

Debin Gao

Dieter Gollmann

Dimitris Gritzalis

Stefanos Gritzalis

Guofei Gu

Juan Hernandez

Amir Herzberg

Xinyi Huang

Sushil Jajodia

Vasilios Katos

Sokratis Katsikas

Kwangjo Kim

Steve Kremer

Marina Krotofil

Costas Lambrinoudakis

Loukas Lazos

TELECOM Bretagne, France
TELECOM Bretagne, France
EURECOM, France

Universita degli studi di Milano, Italy

Télécom SudParis, France

HBKU, Qatar

University Rovira-Virgili, Spain

Tsinghua University, China

Polytechnique Montreal, Canada

University of the Balearic Islands, Spain
Karlstad University, Sweden

IMT Atlantique, France

Universita degli studi di Milano, Italy
University of Birmingham, UK

Singapore Management University, Singapore
Hamburg University of Technology, Germany
Athens University of Economics and Business, Greece
University of the Aegean, Greece

Texas A&M University, USA

Universitat Politécnica de Catalunya, Spain
Bar-Ilan University, Israel

Fujian Normal University, China

George Mason University, USA
Bournemouth University, UK

NTNU, Norway

KAIST, Korea

Inria, France

FireEye, USA

University of Piraeus, Greece

University of Arizona, USA

Ninghui Li Purdue University, USA
Yingjiu Li Singapore Management University, Singapore
Hoon-Wei Lim SingTel, Singapore
Joseph Liu Monash University, Australia
Peng Liu Pennsylvania State University, USA
Xiapu Luo Hong Kong Polytechnic University, SAR China
Mark Manulis University of Surrey, UK
Konstantinos RHUL, UK
Markantonakis

Olivier Markowitch
Fabio Martinelli
Gregorio Martinez Perez

Université Libre de Bruxelles, Belgium
IIT-CNR, Italy
University of Murcia, Spain

Ivan Martinovic
Sjouke Mauw
Catherine Meadows
Weizhi Meng

Chris Mitchell
Haralambos Mouratidis
David Naccache
Martin Ochoa

Eiji Okamoto

Rolf Oppliger
Giinther Pernul
Joachim Posegga
Christina Ppper
Indrajit Ray
Giovanni Russello
Mark Ryan

Peter Y. A. Ryan
Rei Safavi-Naini
Pierangela Samarati
Damien Sauveron
Steve Schneider
Einar Snekkenes
Willy Susilo

Pawel Szalachowski
Qiang Tang

Juan Tapiador

Nils Ole Tippenhauer
Aggeliki Tsohou
Jaideep Vaidya
Serge Vaudenay
Luca Vigano
Michael Waidner
Cong Wang
Lingyu Wang
Edgar Weippl
Christos Xenakis
Kehuan Zhang
Sencun Zhu

Organizing Committee

Oscar Esparza
Marcel Fernandez
Juan Hernandez
Olga Leon

ESORICS 2018

University of Oxford, UK

University of Luxembourg, Luxembourg
Naval Research Laboratory, USA
Technical University of Denmark, Denmark
RHUL, UK

University of Brighton, UK

Ecole Normale Superieure, France
Universidad del Rosario, Colombia
University of Tsukuba, Japan
eSECURITY Technologies, Switzerland
Universitit Regensburg, Germany
University of Passau, Germany

NYU Abu Dhabi, UAE

Colorado State University, USA
University of Auckland, New Zealand
University of Birmingham, UK
University of Luxembourg, Luxembourg
University of Calgary, Canada
Universita degli studi di Milano, Italy
XLIM, France

University of Surrey, UK

Gjovik University College, Norway
University of Wollongong, Australia
SUTD, Singapore

LIST, Luxembourg

University Carlos III, Spain

SUTD, Singapore

Ionian University, Greece

Rutgers University, USA

EPFL, Switzerland

King’s College London, UK

Fraunhofer SIT, Germany

City University of Hong Kong, SAR China
Concordia University, Canada

SBA Research, Austria

University of Piracus, Greece

Chinese University of Hong Kong, SAR China

Pennsylvania State University, USA

Isabel Martin
Jose L. Munoz
Josep Pegueroles

IX

X ESORICS 2018
Additional Reviewers

Akand, Mamun

Al Magbali, Fatma
Albanese, Massimiliano
Amerini, Irene
Ammari, Nader
Avizheh, Sepideh
Balli, Fatih
Bamiloshin, Michael
Bana, Gergei

Banik, Subhadeep
Becerra, Jose
Belguith, Sana

Ben Adar-Bessos, Mai
Berners-Lee, Ela
Berthier, Paul
Bezawada, Bruhadeshwar
Biondo, Andrea
Blanco-Justicia, Alberto
Blazy, Olivier
Boschini, Cecilia
Brandt, Markus
Bursuc, Sergiu

Bohm, Fabian

Cao, Chen

Caprolu, Maurantonio
Catuogno, Luigi
Cetinkaya, Orhan
Chang, Bing

Charlie, Jacomme
Chau, Sze Yiu

Chen, Rongmao
Cheval, Vincent

Cho, Haehyun

Choi, Gwangbae
Chow, Yang-Wai
Ciampi, Michele
Costantino, Gianpiero
Dai, Tianxiang
Dashevskyi, Stanislav
Del Vasto, Luis
Diamantopoulou, Vasiliki
Dietz, Marietheres
Divakaran, Dinil

Dong, Shuaike
Dupressoir, Frangois
Durak, Betiil

Eckhart, Matthias

El Kassem, Nada
Elkhiyaoui, Kaoutar
Englbrecht, Ludwig
Epiphaniou, Gregory
Fernandez-Gago, Carmen
Fojtik, Roman
Freeman, Kevin
Fritsch, Lothar
Fuchsbauer, Georg
Fuller, Ben

Gabriele, Lenzini
Gadyatskaya, Olga
Galdi, Clemente
Gassais, Robin

Genc, Ziya A.
Georgiopoulou, Zafeiroula
Groll, Sebastian
Groszschaedl, Johann
Guan, Le

Han, Jinguang

Hassan, Fadi

Hill, Allister

Hong, Kevin

Horvath, Maté

Hu, Hongxin

Huh, Jun Ho
lakovakis, George
Tovino, Vincenzo
Jadla, Marwen

Jansen, Kai

Jonker, Hugo
Judmayer, Aljosha
Kalloniatis, Christos
Kambourakis, Georgios
Kannwischer, Matthias Julius
Kar, Diptendu
Karamchandani, Neeraj
Karati, Sabyasach
Karati, Sabyasachi

Karegar, Farzaneh
Karopoulos, Georgios
Karyda, Maria

Kasra, Shabnam
Kohls, Katharina
Kokolakis, Spyros
Kordy, Barbara
Krenn, Stephan
Kilin¢, Handan
Labréche, Frangois
Lai, Jianchang

Lain, Daniele

Lee, Jehyun
Leontiadis, Iraklis
Lerman, Liran

Leodn, Olga

Li, Shujun

Li, Yan

Liang, Kaitai

Lin, Yan

Liu, Shengli
Losiouk, Eleonora
Lykou, Georgia
Lyvas, Christos

Ma, Jack P. K.
Magkos, Emmanouil
Majumdar, Suryadipta
Malliaros, Stefanos
Manjon, Jesus A.
Marktscheffel, Tobias
Martinez, Sergio
Martucci, Leonardo
Mayer, Wilfried
Mcmahon-Stone, Christopher
Menges, Florian
Mentzeliotou, Despoina
Mercaldo, Francesco
Mohamady, Meisam
Mohanty, Manoranjan
Moreira, Jose
Mulamba, Dieudonne
Murmann, Patrick
Mufioz, Jose L.
Mykoniati, Maria
Mylonas, Alexios
Nabi, Mahmoodon

ESORICS 2018

Nasim, Tariq

Neven, Gregory
Ngamboe, Mikaela
Nieto, Ana
Ntantogian, Christoforos
Nufiez, David

Oest, Adam

Ohtake, Go

Oqaily, Momen
Ordean, Mihai

P., Vinod

Panaousis, Emmanouil
Papaioannou, Thanos
Paraboschi, Stefano
Park, Jinbum

Parra Rodriguez, Juan D.
Parra-Arnau, Javier
Pasa, Luca

Paspatis, Ioannis
Perillo, Angelo Massimo
Pillai, Prashant
Pindado, Zaira
Pitropakis, Nikolaos
Poh, Geong Sen
Puchta, Alexander
P6hls, Henrich C.
Radomirovic, Sasa
Ramirez-Cruz, Yunior
Raponi, Simone

Rial, Alfredo
Ribes-Gonzalez, Jordi
Rios, Ruben

Roenne, Peter

Roman, Rodrigo
Rubio Medrano, Carlos
Rupprecht, David
Salazar, Luis
Saracino, Andrea
Schindler, Philipp
Schnitzler, Theodor
Scotti, Fabio
Sempreboni, Diego
Senf, Daniel
Sengupta, Binanda
Sentanoe, Stewart
Sheikhalishahi, Mina

XI

XII ESORICS 2018

Shirani, Paria
Shrishak, Kris
Siniscalchi, Luisa
Smith, Zach

Smyth, Ben
Soria-Comas, Jordi
Soumelidou, Katerina
Spooner, Nick
Stergiopoulos, George
Stifter, Nicholas
Stojkovski, Borce
Sun, Menghan

Sun, Zhibo

Syta, Ewa

Tai, Raymond K. H.
Tang, Xiaoxiao
Taubmann, Benjamin
Tian, Yangguang
Toffalini, Flavio
Tolomei, Gabriele
Towa, Patrick
Tsalis, Nikolaos
Tsiatsikas, Zisis
Tsoumas, Bill
Urdaneta, Marielba
Valente, Junia
Venkatesan, Sridhar
Veroni, Eleni
Vielberth, Manfred
Virvilis, Nick
Vizar, Damian

Vukolic, Marko
Wang, Daibin
Wang, Ding
Wang, Haining
Wang, Jiafan
Wang, Jianfeng
Wang, Juan

Wang, Jun

Wang, Tianhao
Wang, Xiaolei
Wang, Xiuhua
Whitefield, Jorden
Wong, Harry W. H.
Wu, Huangting
Xu, Jia

Xu, Jun

Xu, Lei

Yang, Guangliang
Yautsiukhin, Artsiom
Yu, Yong

Yuan, Lunpin
Zamyatin, Alexei
Zhang, Lei

Zhang, Liang Feng
Zhang, Yangyong
Zhang, Yuexin
Zhao, Liang

Zhao, Yongjun
Zhao, Ziming
Zuo, Cong

Contents — Part 1

Software Security

Castsan: Efficient Detection of Polymorphic C++ Object Type
Confusions with LLVM e 3
Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eckert

On Leveraging Coding Habits for Effective Binary Authorship Attribution. . . 26
Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi,
and Aiman Hanna

Synthesis of a Permissive Security Monitor 48
Narges Khakpour and Charilaos Skandylas

MobileFindr: Function Similarity Identification for Reversing
Mobile Binaries 66
Yibin Liao, Ruoyan Cai, Guodong Zhu, Yue Yin, and Kang Li

Blockchain and Machine Learning

Strain: A Secure Auction for Blockchains 87
Erik-Oliver Blass and Florian Kerschbaum

Channels: Horizontal Scaling and Confidentiality

on Permissioned Blockchains 111
Elli Androulaki, Christian Cachin, Angelo De Caro,
and Eleftherios Kokoris-Kogias

Stay On-Topic: Generating Context-Specific Fake Restaurant Reviews. 132
Mika Juuti, Bo Sun, Tatsuya Mori, and N. Asokan

Efficient Proof Composition for Verifiable Computation 152
Julien Keuffer, Refik Molva, and Hervé Chabanne

Hardware Security

Navigating the Samsung TrustZone and Cache-Attacks
on the Keymaster Trustlet 175
Ben Lapid and Avishai Wool

Combination of Hardware and Software: An Efficient AES Implementation
Resistant to Side-Channel Attacks on All Programmable SoC. 197
Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, Zeyi Liu, and Jun Yuan

X1V Contents — Part 1

How Secure Is Green IT? The Case of Software-Based Energy

Side Channels. 218
Heiko Mantel, Johannes Schickel, Alexandra Weber,
and Friedrich Weber

Attacks

Phishing Attacks Modifications and Evolutions. 243
Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann,
losif-Viorel Onut, and Jason Flood

SILK-TV: Secret Information Leakage from Keystroke Timing Videos 263
Kiran S. Balagani, Mauro Conti, Paolo Gasti, Martin Georgiev,
Tristan Gurtler, Daniele Lain, Charissa Miller, Kendall Molas,
Nikita Samarin, Eugen Saraci, Gene Tsudik, and Lynn Wu

A Formal Approach to Analyzing Cyber-Forensics Evidence 281
Erisa Karafili, Matteo Cristani, and Luca Vigano

Malware and Vulnerabilities

Beneath the Bonnet: A Breakdown of Diagnostic Security 305
Jan Van den Herrewegen and Flavio D. Garcia

Extending Automated Protocol State Learning for the 802.11
4-Way Handshake. 325
Chris McMahon Stone, Tom Chothia, and Joeri de Ruiter

Automatic Detection of Various Malicious Traffic Using Side Channel

Features on TCP Packets 346
George Stergiopoulos, Alexander Talavari, Evangelos Bitsikas,
and Dimitris Gritzalis

PwIN — Pwning Intel piN: Why DBI is Unsuitable

for Security Applications 363
Julian Kirsch, Zhechko Zhechev, Bruno Bierbaumer,
and Thomas Kittel

Protocol Security

POR for Security Protocol Equivalences: Beyond Action-Determinism 385
David Baelde, Stéphanie Delaune, and Lucca Hirschi

Automated Identification of Desynchronisation Attacks on Shared Secrets . .. 406
Sjouke Mauw, Zach Smith, Jorge Toro-Pozo,
and Rolando Trujillo-Rasua

Contents — Part 1 XV

Stateful Protocol CompoSition.t 427
Andreas V. Hess, Sebastian A. Médersheim, and Achim D. Brucker

Privacy (I)

Towards Understanding Privacy Implications of Adware and Potentially
Unwanted Programs 449
Tobias Urban, Dennis Tatang, Thorsten Holz, and Norbert Pohlmann

Anonymous Single-Sign-On for n Designated Services with Traceability 470
Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne,
and Stephan Wesemeyer

Efficiently Deciding Equivalence for Standard Primitives and Phases. 491
Véronique Cortier, Antoine Dallon, and Stéphanie Delaune

DigesTor: Comparing Passive Traffic Analysis Attacks on Tor........... 512
Katharina Kohls and Christina Popper

CPS and IoT Security

Deriving a Cost-Effective Digital Twin of an ICS to Facilitate

Security Evaluation 533
Ron Bitton, Tomer Gluck, Orly Stan, Masaki Inokuchi, Yoshinobu Ohta,
Yoshiyuki Yamada, Tomohiko Yagyu, Yuval Elovici, and Asaf Shabtai

Tracking Advanced Persistent Threats in Critical Infrastructures Through
Opinion Dynamicst 555
Juan E. Rubio, Rodrigo Roman, Cristina Alcaraz, and Yan Zhang

Hide Your Hackable Smart Home from Remote Attacks: The Multipath
Onion IoT Gateways e 575
Lei Yang, Chris Seasholtz, Bo Luo, and Fengjun Li

SCIoT: A Secure and sCalable End-to-End Management Framework

for IoT Devices e e 595
Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
and Matthias Schunter

Author Index e 619

Contents — Part 11

Mobile Security

Workflow-Aware Security of Integrated Mobility Services 3
Prabhakaran Kasinathan and Jorge Cuellar

Emulation-Instrumented Fuzz Testing of 4G/LTE Android Mobile Devices
Guided by Reinforcement Learning 20
Kaiming Fang and Guanhua Yan

PIAnalyzer: A Precise Approach for PendingIntent Vulnerability Analysis . . . 41
Sascha Grof, Abhishek Tiwari, and Christian Hammer

Investigating Fingerprinters and Fingerprinting-Alike Behaviour
of Android Applications. 60
Christof Ferreira Torres and Hugo Jonker

Database and Web Security

Towards Efficient Verifiable Conjunctive Keyword Search for Large

Encrypted Database. 83
Jianfeng Wang, Xiaofeng Chen, Shi-Feng Sun, Joseph K. Liu,
Man Ho Au, and Zhi-Hui Zhan

Order-Revealing Encryption: File-Injection Attack and Forward Security 101
Xingchen Wang and Yunlei Zhao

SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. 122
Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen,
and Shuang Hao

Detecting and Characterizing Web Bot Traffic in a Large

E-commerce Marketplace. 143
Haitao Xu, Zhao Li, Chen Chu, Yuanmi Chen, Yifan Yang, Haifeng Lu,
Haining Wang, and Angelos Stavrou

Cloud Security

Dissemination of Authenticated Tree-Structured Data with Privacy
Protection and Fine-Grained Control in Outsourced Databases 167
Jianghua Liu, Jinhua Ma, Wanlei Zhou, Yang Xiang, and Xinyi Huang

XVIIL Contents — Part 11

Efficient and Secure Outsourcing of Differentially Private

Data Publication 187
Jin Li, Heng Ye, Wei Wang, Wenjing Lou, Y. Thomas Hou, Jigiang Liu,
and Rongxing Lu

Symmetric Searchable Encryption with Sharing and Unsharing. 207
Sarvar Patel, Giuseppe Persiano, and Kevin Yeo

Dynamic Searchable Symmetric Encryption Schemes Supporting Range
Queries with Forward (and Backward) Security 228
Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk

Applied Crypto (I)

Breaking Message Integrity of an End-to-End Encryption
Scheme of LINE. 249
Takanori Isobe and Kazuhiko Minematsu

Scalable Wildcarded Identity-Based Encryption. 269
Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh

Logarithmic-Size Ring Signatures with Tight Security
from the DDH Assumptiont 288
Benoit Libert, Thomas Peters, and Chen Qian

RiffleScrambler — A Memory-Hard Password Storing Function. 309
Karol Gotfryd, Pawet Lorek, and Filip Zagorski

Privacy (IT)

Practical Strategy-Resistant Privacy-Preserving Elections 331
Sebastien Canard, David Pointcheval, Quentin Santos,
and Jacques Traoré

Formal Analysis of Vote Privacy Using Computationally Complete
Symbolic Attacker. 350
Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla

Location Proximity Attacks Against Mobile Targets: Analytical Bounds

and Attacker Strategies e 373
Xueou Wang, Xiaolu Hou, Ruben Rios, Per Hallgren,
Nils Ole Tippenhauer, and Martin Ochoa

Contents — Part II XIX

Multi-party Computation

Constant-Round Client-Aided Secure Comparison Protocol 395
Hiraku Morita, Nuttapong Attrapadung, Tadanori Teruya,
Satsuya Ohata, Koji Nuida, and Goichiro Hanaoka

Towards Practical RAM Based Secure Computation 416
Niklas Buescher, Alina Weber, and Stefan Katzenbeisser

Improved Signature Schemes for Secure Multi-party Computation
with Certified Inputs 438
Marina Blanton and Myoungin Jeong

SDN Security

Stealthy Probing-Based Verification (SPV): An Active Approach

to Defending Software Defined Networks Against Topology

Poisoning Attackso e 463
Amir Alimohammadifar, Suryadipta Majumdar, Taous Madi,
Yosr Jarraya, Makan Pourzandi, Lingyu Wang, and Mourad Debbabi

Trust Anchors in Software Defined Networks. 485
Nicolae Paladi, Linus Karlsson, and Khalid Elbashir

Applied Crypto (II)

Concessive Online/Offline Attribute Based Encryption with Cryptographic

Reverse Firewalls—Secure and Efficient Fine-Grained Access Control

on Corrupted Machines 507
Hui Ma, Rui Zhang, Guomin Yang, Zishuai Song, Shuzhou Sun,
and Yuting Xiao

Making Any Attribute-Based Encryption Accountable, Efficiently 527
Junzuo Lai and Qiang Tang

Decentralized Policy-Hiding ABE with Receiver Privacy 548
Yan Michalevsky and Marc Joye

Author Index e 569

Software Security

®

Check for
updates

CASTSAN: Efficient Detection
of Polymorphic C++ Object Type
Confusions with LLVM

Paul Muntean®™), Sebastian Wuerl, Jens Grossklags, and Claudia Eckert

Technical University of Munich, Munich, Germany
{paul.muntean,sebastian.wuerl,claudia.eckert}@sec.in.tum.de,
jens.grossklags@Qin.tum.de

Abstract. C++ object type confusion vulnerabilities as the result of ille-
gal object casting have been threatening systems’ security for decades.
While there exist several solutions to address this type of vulnerability,
none of them are sufficiently practical for adoption in production scenar-
ios. Most competitive and recent solutions require object type tracking
for checking polymorphic object casts, and all have prohibitively high
runtime overhead. The main source of overhead is the need to track the
object type during runtime for both polymorphic and non-polymorphic
object casts. In this paper, we present CASTSAN, a C++ object type
confusion detection tool for polymorphic objects only, which scales effi-
ciently to large and complex code bases as well as to many concurrent
threads. To considerably reduce the object type cast checking overhead,
we employ a new technique based on constructing the whole virtual table
hierarchy during program compile time. Since CASTSAN does not rely on
keeping track of the object type during runtime, the overhead is dras-
tically reduced. Our evaluation results show that complex applications
run insignificantly slower when our technique is deployed, thus making
CASTSAN a real-world usage candidate. Finally, we envisage that based
on our object type confusion detection technique, which relies on ordered
virtual tables (vtables), even non-polymorphic object casts could be pre-
cisely handled by constructing auziliary non-polymorphic function table
hierarchies for static classes as well.

Keywords: Static cast - Type confusion - Bad casting - Type safety
Type casting

1 Introduction

Real-world security-critical applications (e.g., Google’s Chrome, Mozilla’s Fire-
fox, Apple’s Safari, etc.) rely on the C++ language as main implementation lan-
guage, due to the balance it offers between runtime efficiency, precise handling of
low-level memory, and the object-oriented abstractions it provides. Thus, among
the object-oriented concepts offered by C++, the ability to use object typecast-
ing in order to increase, or decrease, the object scope of accessible class fields

© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 3-25, 2018.
https://doi.org/10.1007/978-3-319-99073-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_1&domain=pdf

4 P. Muntean et al.

inside the program class hierarchy is a great benefit for programmers. However,
as C++ is not a managed programing language, and does not offer object type or
memory safety, this can potentially lead to exploits.

C++ object type confusions are the result of misinterpreting the runtime type
of an object to be of a different type than the actual type due to unsafe type-
casting. This misinterpretation leads to inconsistent reinterpretation of memory
in different usage contexts. A typical scenario, where type confusion manifests
itself, occurs when an object of a parent class is cast into a descendant class type.
This is typically unsafe, if the parent class lacks fields expected by the descendant
type object. Thus, the program may interpret the non-existent field or function
in the descendant class constructor as data, or as a virtual function pointer in
another context. Object type confusion leads to undefined behavior according
to the C++ language draft [1]. Further, undefined behavior can lead to memory
corruption, which in turn leads to exploits such as code reuse attacks (CRAs) [6]
or even to advanced versions of CRAs including the COOP attack [30]. These
attacks violate the control flow integrity (CFI) [2,3] of the program, by bypass-
ing currently available OS-deployed security mechanisms such as DEP [26] and
ASLR [28]. In summary, the lack of object type safety and, more broadly, mem-
ory safety can lead to object type confusion vulnerabilities (i.e., CVE-2017-3106
[12]). The number of these vulnerabilities has increased considerably in the last
years, making exploit based attacks against a large number of deployed systems
an everyday possibility.

Table1 depicts Table 1. High-level feature overview of existing C++ object

the currently type confusion checkers.
available solutions,

which can be used Checker Year Poly| Non-poly |No blacklist|Obj. Tracking| Threads

. UBSan [15] [2014| v v
for — C++ object everma o[v [v % v Timited
type confusion [Clang CFI [8][2016] v 7 7
detection during TypeSan [18] [2016| v/ v v v v
runtime. The HexType [19](2017| v v v v v

. CASTSAN 2018| v |future work v not required v
tools come with

the following lim-

itations: (1) high

runtime overhead (mostly due to the usage of a compiler runtime library), (2)
limited type checking coverage, (3) lack of support for non-polymorphic classes,
(4) absence of threads support, and (5) high maintenance overhead, as some
tools require a manually maintained blacklist.

We consider runtime efficiency and coverage to be most impactful for the
usage of such tools. While coverage can be incrementally increased by support-
ing more object allocators (e.g., child *obj=dynamic_cast<*child>(parent),
ClassA *obj=new (buffer) ClassA();, char *str=(char) malloc(sizeof
(8)); S *obj=reinterpret_cast<*S>(str) ;, see TypeSan, HexType, for more
details) and instrumenting them for later object type runtime tracking, increas-
ing performance is more difficult to achieve due to the required runtime of
type tracking support on which most tools rely. Reducing runtime overhead

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 5

is regarded to be far more difficult to achieve, since object type data has to be
tracked at runtime and updating data structures at runtime (i.e., red-black trees,
etc.) has to be performed during a type check. As such, due to their perceived
high runtime overhead, most of the currently available tools do not qualify as
production-ready tools. Furthermore, the per-object metadata tracking mech-
anisms generally represent an overhead bottleneck in case the to-be hardened
program contains: (1) a high volume of object allocations, (2) a large number
of memory freeing operations, (3) frequent use of object casts, (4) exotic object
memory allocators (i.e., Chrom’s tcmalloc (), object pool allocators, etc.) for
which the detection tool implementation has to be constantly maintained.

We present CASTSAN, paple 2. Object type confusion detection overhead for

a Clang/LLVM compiler- SPEC CPU2006 benchmark.
based solution, usable as

an always-on sanitizer for Programs

. Checker ‘soplex (C++)‘xalancbmk (C++) ‘ astar (C++)
detecting all types of G ERRIT 5.03% 4.49% 0.9%
polymorphic-only object casrsan 2.07% 1.78% 0.3%
type confusions during run- Speed-Up 2.42 times 2.52 times 3 times

time, with comparable cov-

erage to Clang-CFI [8]. CasTSAN has significantly lower runtime performance
overhead than existing tools (see Table 2). Its technique is based on the observa-
tion, that virtual tables (vtables) of polymorphic classes can be used as a success-
ful replacement for costly metadata storage and update operations, which similar
tools heavily rely on. Our main insight is that: (1) program class hierarchies can
be used more effectively to store object type relationships than Clang-CFI’s bit-
sets, and (2) the Clang-CF1T bitset checks can be successfully replaced with more
efficient virtual pointer based range checks. Based on these observations, the
metadata that has to be stored and checked for each object during object cast-
ing is reduced to zero. Next, the checks only require constant checking time due
to the fact that no additional data structures (i.e., TypeSan and HexType use
both red-black trees for storing relationships between object types) have to be
consulted during runtime. Finally, this facilitates efficient and scalable runtime
vptr-based range checks.

CastSAN performs the following steps for preparing the required metadata
during compile time. First, the value of an object vptr is modified through inter-
nal compiler intrinsics such that it provides object type information at runtime.
Second, these modified values are used by CAsTSAN to compute range checks
that can validate C++ object casts during runtime. Third, the computed range
checks are inserted into the compiled program. The main observation, which
makes the concept of vptr based range checks work, is that range checks are
based on the fact, that any sub-tree of a class inheritance tree is contained in
a continuous chunk of memory, which was previously re-ordered by a pre-order
program virtual table hierarchy traversal.

CAsTSAN is implemented on top of the LLVM 3.7 compiler framework [24] and
relies on support from LLVM’s Gold Plug-in [23]. CasTSAN is intended to address
the problem of high runtime overhead of existing solutions by implementing an

6 P. Muntean et al.

explicit type checking mechanism based on LLVM’s compiler instrumentation.
CASTSAN’s goal is to enforce object type confusion checks during runtime in pre-
viously compiled programs. CASTSAN’s object type confusion detection mecha-
nism relies on collecting and storing type information used for performing object
type checking during compile time. CasTSAN achieves this without storing new
metadata in memory and by solely relying on virtual pointers (vptrs), that are
stored with each polymorphic object.

We evaluated CastSan with the Google Chrome [16] web browser, the open
source benchmark suite of TypeSan [18], the open source benchmark programs of
IVT [5], and all C++ programs contained in the SPEC CPU2006 [31] benchmark.
The evaluation results show that, in contrast to previous work, CASTSAN has
considerably lower runtime overhead while maintaining comparable feature cov-
erage (see Table 1 for more details). The evaluation results confirm that CAsTSAN
is precise and can help a programmer find real object type confusions.

In summary, we make the following contributions:

— We develop a novel technique for detection of C++ object type confusions
during runtime, which is based on the linear projection of virtual table hier-
archies.

— We implement our technique in a prototype, called CasTSan, which is based
on the Clang/LLVM compiler framework [24] and the Gold plug-in [23].

— We evaluate CasTSaAN thoroughly and demonstrate that CasTSAN is more
efficient than other state-of-the-art tools.

2 Background

Before presenting the technical details of our approach, we review necessary
background information.

2.1 C++ Type Casting

Object type casting in C++ allows an object to be cast to another object, such
that the program can use different features of the class hierarchy. Seen from
a different angle, object typecasting is a C++ language feature, which aug-
ments object-oriented concepts such as inheritance and polymorphism. Inheri-
tance facilitates that one class contained inside the program class hierarchy inher-
its (gets access) to the functionality of another class that is located above in the
class hierarchy. Object casting is different, as it allows for objects to be used in
a more general way (i.e., using objects and their siblings, as if they were located
higher in the class hierarchy). C++ provides static, dynamic, reinterpret
and const casts. Note that reinterpret_cast can lead to bad casting, when
misused and is unchecked “by design”, as it allows the programmer to freely
handle memory. In this paper, we focus on static_cast and dynamic_cast (see
N4618 [1] working draft), because the misuse of these can result in bad object
casting, which can further lead to undefined behavior. This can potentially be

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 7

exploited to perform, for example, local or remote code reuse attacks on the
software.

The terminology of this paper is aligned to the one used by colleagues [18],
in order to provide terminology traceability as follows. First, runtime type refers
to the type of the constructor used to create the object. Second, source type is
the type of the pointer that is converted. Finally, target type is the type of the
pointer after the type conversion.

An upcast is always permitted if the target type is an ancestor of the source
type. These types of casts can be statically verified as safe, as the object source
type is always known. Thus, if the source type is a descendant of the target type,
the runtime type also has to be a descendant and the cast is legal. On the other
hand, a downcast cannot be verified during compile time. This verification is
hard to achieve, since the compiler cannot know the runtime type of an object,
due to intricate data flows (for example, inter-procedural data flows). While it
can be assumed that the runtime type is a descendant of the source type, the
order of descendancy is not known. As only casts from a lower to a higher (or
same) order are allowed, a runtime check is required to check this.

2.2 C/C++ Legal and Illegal Object Type Casts

A type cast in C/C++ is legal only when the destination type is an ancestor of
the runtime type of the cast object. This is always true if the destination type
is an ancestor of the source type (upcast). In contrast, if the destination type is
a descendant of the source type (downcast), the cast could only be legal if the
object has been upcast beforehand.

X /* downcast */
virtual x() X *x = new WQ);
/ \ Y xy = static_cast<¥>(x);
/* first upcast™/
Y Y4

Z *z = new Z();

downcast
yseadn

virtual x() virtual x()

X *x = static_cast<X>(z);

/* second upcast */

W Y *y = new WQ;

virtual x() X *x = static_cast<X>(y);

(a) Class hierarchy with four classes. (b) Downcast and upcast cast in C++.

Fig. 1. C++ based object type down-casting and up-casting examples.

Figure 1 depicts upcast and downcast in an example hierarchy. The graph
of Fig.1(a) is a simple class hierarchy. The boxes are classes, and the arrows
depict inheritance. The code of Fig. 1(b) shows how upcast and downcast look
in C4++. The upcast and downcast arrows besides the graph visualize the same
casts that are coded in C++ in Fig.1(a). To verify the cast, the runtime type
of the object is needed. Unfortunately, the exact runtime type of an object is

8 P. Muntean et al.

not necessarily known to the compiler for each cast, as explained in the previous
section. While the source type is known to the compiler for each cast, it can only
be used to detect very specific cases of illegal casts (e.g., casts between types
that are not related in any way, which means they are not in a descendant-
ancestor relationship). All upcasts can be statically verified as safe because the
destination type is an ancestor of the runtime type. If the destination type is
not an ancestor of the runtime type, then the compiler should throw an error.

2.3 Ordered vs. Unordered Virtual Tables

In this section, we briefly describe the differences between in-memory ordered
and unordered vtables and how these can be used to detect object type confusions
during runtime.

X 0x00 | sublist: X,Y,W,Z
virtual x() [,’,\,‘,“,y, - ,”\ 7\\ 7777777777777777
1. //legal downcast
[y 0x08 sublist: YW iz 0x10 [sublist: Z ; 2. //vp of x: 0x18
Virtual X0 ! Virtuarx0 ‘ 3. X xx = new WO);
0x08 - 0x18 : 0x10 - 0x10 : 4. z = static_cast<¥>(x);
"""""""""""""""""""" 0x00 X::x()
0x08 ¥::x0) 6. //illegal downcast
,,,,, 6. //vp of x: 0x10
w 0x18 {sublist: W Y | 0x10 Z::xO 7. X *x = new Z();
virtual x() 0x18 - 0x18 : 0x18 W::x() 8. z = static_cast<¥>(x);
@ (b) (©
‘X 0x00] sublist: X,Y,W,Z
virtual xO 0x00-0x18
1. //legal downcast
Y 0x08 {sublist: Y,W i\z 0x18|subli5t:Z : 2. //vp Sf x: 0x10
virtual x() © |virtual x() ! 3. X *x = new WO);
0x08 - 0x10 : 0x18 - 0x18 : 4. z = static_cast<Y>(x);
"""""""""""""""""""" 0x00 X::x0)
0x08 ¥::x0) 5. //illegal downcast
,,,,,,,,,,,,,,,,,,,,, 6. //vp of x: 0x18
0x10 fsublist: W : 0x10 W::xO) 7. X *x = new ZQ);
virtual x() 0x10 - 0x10 0x18 Z::x() 8. z = static_cast<¥>(x);
(d © ®

Fig. 2. Illegal and legal object casts vs. ordered and unordered virtual tables. (Color
figure online)

Figure2(a), (b), and (c) highlight the case in which an illegal object cast
would not be detected if the vtables are not ordered (see blue shaded code in
line number eight), while Fig.2(d), (e), and (f) show how a legal (see green
shaded code in line number four) and an illegal (see red shaded code in line
number eight) object cast can be correctly identified by using the object vptr in
case the vtables are ordered in memory.

On the one hand, Fig.2(c) shows the vptr value as it would be present in
the unordered case of Fig. 2(b) and (a). The object z, that is constructed at line
number seven with the constructor of Z (runtime type) has a vptr of value 0x18
in the unordered case. x is referenced by a pointer of type X (source type) and

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 9

at line number eight it is cast to Y (destination type). This is an illegal object
cast, as Z does not inherit from Y. The vptr of x is in the range of Y built from
the unordered vtable layout of Fig. 2(b). A range check would, therefore, falsely
conclude that the cast is legal.

On the other hand, Fig. 2(f) depicts the same objects as constructed after
ordering according to Fig.2(e) and (d). At line number three, the object x is
instantiated having (runtime) type W. The object, therefore, has a vptr with
value 0x10 according to Fig.2(d). The object is referenced by a pointer of type
X (source type) and at line number four, the object x is cast to Y (destination
type). This cast is a legal object cast, as the vptr 0x10 has a value between the
vtable address of Y 0x08 and the address value of the last member of the sub-list
of Y 0x10. Note that this memory range is depicted in Fig. 2(e). Further, at line
number seven, the object = is newly allocated with the constructor of Z. Next,
the object is cast to Y at line number eight. As x’s vptr is 0x18, which is the
vtable address of Z, it can be observed that the cast is illegal. The reason is that
the vptr value 0x18 is larger than the largest value of the sub-list of Y, which
is the vtable address of W, 0x10. Thus, in this way the object type confusion
located at line number eight can be correctly detected.

Finally, note that the range checks, which we will use in our implementation,
are precise, when the vtables of all program hierarchies are ordered with no gaps
in memory according to, for example, their pre-order traversal. In case this is
not guaranteed, then the range checks could generate false positives as well as
false negatives (see the blue shaded code in Fig. 2(c)).

3 Threat Model

The threat model used by CASTSAN resembles HexType’s threat model. Specif-
ically, we assume a skilled attacker who can exploit any type of object type
confusion vulnerability, but who does not have the capability to make arbitrary
memory writes. CASTSAN’s instrumentation is part of the executable program
code and thus assumed to be write-protected through data execution protection
(DEP) or another mechanism. Further, CASTSAN does not rely on information
hiding; as such the attacker is assumed to be able to perform arbitrary reads.
This is not a limitation, as CASTSAN does not rely on randomization or code
shuffling as other CFI schemes [10,33]. As CASTSAN focuses exclusively on C++
object down-cast type confusions, we assume that other types of memory corrup-
tions (i.e., buffer overflows, etc.) are combated with other types of protection
mechanisms and that CASTSAN can work along these complementary defense
mechanisms. Finally, we assume that for any large existing source code base,
which is affected by object type confusions (e.g., [11]), this cannot currently be
fixed solely by inspecting the source code statically or manually and that the
attacker has access to the source code of this vulnerable application.

10 P. Muntean et al.

4 Design and Implementation

In Sect. 4.1, we present the architecture of CasTSan, and in Sect. 4.2, we explain
how virtual table inheritance tree projections are used by CAsTSAN, while in
Sect. 4.3, we describe our object type confusion detection checks. Finally, in
Sect. 4.4, we outline CASTSAN’s implementation.

4.1 Architecture Overview

CASTSAN’s Main Analysis Steps. CASTSAN instruments object casts as fol-
lows: (1) source code files are fed into the Clang compiler, which adds several
intrinsics needed to mark all possible cast locations in the code, (2) CasTSAN
uses the vtable metadata and the virtual table hierarchies, which were embed-
ded in each object file in the Clang front-end, (3) placeholder intrinsic-based
instructions are used for recuperating the vptr and the mangled name of the
object type which will be later cast, and (4) placeholder intrinsic-based instruc-
tions for the final pre-cast checks are inserted, containing the per object cast
range. The intrinsics will be removed before runtime and will be converted to
concrete instruction sequences used to perform the object type cast check. The
placeholder intrinsics are used by CAsTSAN since part of the information needed
for the checking of illegal casts is not available during compile time (the vptr
value is computed during runtime). Finally, during link time optimization (LTO)
[25], the following operations are performed: (1) the virtual table hierarchy is
constructed and decomposed into primitive vtable trees, and (2) the placeholder
intrinsics used to check for down-cast violations are inserted based on the anal-
ysis of the previous primitive vtable trees.

Figure3 depicts the placement of CASTSAN’s components within the
Clang/LLVM compiler framework and the analysis flow indicated by circled
numbers.

Building Virtual Pointer Based Range Checks. First, the Lvalue (LLVM
data type) @ and RValue (LLVM data type) @ casts are instrumented inside the
Clang compiler with additional C++ code. Second, only the polymorphic casts
are selected from these casts ®. Third, the polymorphic casts are flagged for
instrumentation using an LLVM intrinsic @ during LTO. Fourth, the intrinsics
inserted by CasTSAN with the help of Clang are detected @ for later usage during
LTO. Fifth, the metadata of the intrinsics is read out ® to acquire all necessary
information about an object cast-site. Sixth, the ranges necessary for checking
object type confusions are built in @. Note that an object range is computed by
using the virtual address of the object destination type and the count of all nodes
(vtables) inheriting from the destination type. Finally, the object cast-sites are
instrumented with a range check @.

4.2 Virtual Table Inheritance Tree Projection

CasTSAN computes virtual table inheritance trees for each class hierarchy con-
tained in the analyzed program. Next, CASTSAN uses these vtable inheritance

CAsTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 11

Clang IR LTO

Y

VT

X build virtual class hierarchy

collect polymorphic virtual class & reorder vtables
metadata

classes

-
|
|
|

Gt CastSan Instrumented
virtual table |
IR-code

—

8

source code addresses |
—_—> Py
LValue casts RValue casts |
|
I
|
A

lextract polymorphic casts

6
extract type metadata

find intrinsics

type cast
metadata

insert intrinsics

Fig. 3. CASTSAN system architecture.

trees to determine if the ancestor-descendant relation between the types of the
cast objects holds. The ancestor-descendant relations between object types rely
on several properties of these ordered vtable inheritance trees, which we will
explain next. The root of such a virtual table inheritance tree is a polymorphic
class that does not inherit from other polymorphic classes (root type). Note that
a class has only one vtable associated to it. Further, each such vtable is broken
into multiple primitive vtables. Also note that these vtables can occupy different
places in this ordering. The children of any node in the vtable tree are all types
that directly inherit from the ancestor class and are located underneath this class
in the program class hierarchy. If a class inherits from multiple vtables, it has
a node in any tree that the ancestor types are a part of. The leaves of a vtable
tree are vtables, which have no descendants. CAsTSAN will put the vtables that
are in any type of a descendant-ancestor relation to each other in a single virtual
inheritance tree. Next, we show how a virtual table projection list is computed.

Figure 4(a) depicts the memory layout of the vtables of the class represented
by the primitive hierarchy in Fig.4(b). The vtables contain their addresses as
these are laid out in memory (i.e., consider address 0x08) along with the pointers
to the virtual functions (i.e., Y: :x()). Note that in the unordered table located
on the left side of Fig.4(a), there is no relationship between the addresses of
the vtables and the class hierarchy. For simplicity reasons, we opted in Fig. 4(a)
to depict each box of the vtable hierarchy to contain a single entry. In general,
when there are multiple entries in each vtable contained in the vtable hierarchy,
the vtables will be interleaved to ensure that their base pointers are consecutive
addresses in memory. After ordering the values of the addresses of the vtables

12 P. Muntean et al.

X 0x00
virtual x()
Y 0x08 z 0x18
virtual x() virtual x()
0x00 X::x0) 0x00 X::x0) I
0%08 Y::x0) ordered virtual table 0x08 ¥::x0
e
0x10 Z::x0) 0x10 W: :x0) w 0x10 [x [Y [wW [z |
virtual x()
0x18 Wi ixO 0x18 2::x0 loxoo Joxos Joxi0 Jox18 |
(@) (b) ©

Fig. 4. Unordered and ordered (a) vtables of the tree rooted in X. The tree (b) contains
the vptr of each type after ordering. (c) depicts the projected list corresponding to (b).

(right table in Fig. 4(a)) the addresses are in ascending order (e.g., W inherits from
Y directly, thus it comes directly after Y in the vtable). Further, after interleaving
the addresses of the vtables, their values are in ascending order corresponding
to the depth-first traversal, as shown in the projected list depicted in Fig. 4(c).
Next, CAsTSAN uses a pre-order traversal of each vtable inheritance tree in order
to construct a list of vtables, which represents a projection of a tree hierarchy
onto a list. For example, if the type of a vtable (first row in a box, see Fig. 4(b))
is the descendant of another type, it is inserted after the other type in the list.
Further, any sub-tree of each tree is represented as a continuous sub-list of virtual
tables by CaAsTSAN. This means that the types that inherit from the root type
of the sub-tree will be inserted into the list in direct succession to the sub-tree
root. Finally, the projected list will be used to compute object cast ranges which
will subsequently be used to determine legal and illegal relations between the
object types during a cast operation.

4.3 Object Type Confusion Detection

Virtual Pointer Usage as Runtime Object Type Identifier. CasTSAN
uses the virtual pointer (vptr) of an object to identify its type at runtime. Note
that any polymorphic type contains a set of virtual methods that are reachable
from any object using its vptr. The vptr of a type is saved in any polymorphic
object that is created using the type’s constructor. By type constructor, we
mean the function which is called when an object of a certain type is allocated.
Furthermore, note that each legally cast instance of a polymorphic object can
be uniquely identified by its vptr since the vptr of an object is always the first
field of that object. CasTSAN therefore reads the vptr of any object at runtime
to uniquely identify its runtime type. CaASTSAN does this by loading the first
64-bit of the object into a register using an intermediate representation (IR)
load instruction. This load instruction is inserted by CastSaAN during LTO for
runtime usage.

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 13

Determine Object Type Inheritance at Runtime. As previously men-
tioned, CasTSAN checks object casts by using the projected virtual table hier-
archy list (see Fig.4(c) for more details). A projected class hierarchy consists
of ordered vtable addresses. The runtime type of an object must inherit from
the destination type of the cast in order for the cast to be legal. This happens
if the vtable of the runtime type is a child in the sub-tree of the vtable of the
destination type. Further, if this is the case, the runtime type comes after the
destination type in the depth-first list of the tree. Since all nodes of a sub-tree
are placed successively in the projected list, this means that these nodes are
located before the last element of the sub-tree in the list. Therefore, CASTSAN
does not need to traverse the whole sub-list representing the sub-tree of the
destination type to check if the runtime type is part of it. It is enough to check
whether it is anywhere between the first and the last element in the list. This
holds because the type of the object holding the vptr has to have a vtable in the
sub-tree of the destination type, which means it inherits from the destination
type. Otherwise, if the vptr is not in the range, it has no vtable inheriting from
the vtable of the destination type and therefore its type does not inherit from the
destination type. Therefore, the object cast is illegal in this situation. CAsTSAN
implements this mechanism at runtime using range checks on the vtable pointer
of an object and additionally by using the values of the vtable addresses of the
destination type sub-tree. CASTSAN checks during runtime if the value of the
vptr is larger than the vtable address of the destination type and smaller than
the address value of the last vtable entry located in the sub-list corresponding
to the destination type. If this holds, then the runtime type must inherit from
the destination type; therefore, the cast is legal. Otherwise, if the vptr value is
not contained between the above mentioned boundaries, then the runtime type
does not inherit from the destination type, thus the object cast is not legal.

Virtual Table Based Range Checks. CaAsTSAN uses vtable based range
checks in order to check if the vptr of an object resides between two allowed
values. CASTSAN’s range check is based on the observation that the addresses
of the ordered vtables are re-arranged by interleaving them through a pre-order
traversal of the inheritance trees in which these vtables are contained. There-
fore, the addresses of any sub-tree lay continuously and gapless in memory. By
continuously and gapless we mean that there is no starting address of another
vtable not belonging to the sub-tree in between the addresses of a sub-tree, and
the starting addresses of the vtable lie consecutively in memory, respectively.
Further, if the vptr points to any address between the first and the last address
of the sub-tree, then it has to be in the list of all addresses located in the sub-tree
and therefore the cast is legal. In this way, CASTSAN can simplify the type check
to a range check. CasTSAN builds a range check by using the vtable address V' of
the destination type X and the count c of all classes that inherit from X. V and
c can be statically determined at compile time for each object cast performed
in the program. To perform the check at runtime, the vptr value P is extracted
from the object before the cast. Next, the following expression is evaluated by

14 P. Muntean et al.

CASTSAN during runtime. If V + ¢ > P > V holds, then the cast is legal, oth-
erwise the cast is illegal and program execution will be terminated or an error
log output can be produced depending on the employed CAsTSAN usage mode
flag. Note that CastSan offers the possibility to include in the else-branch of
the inserted cast check the option to log back-trace information instead of ter-
minating the program which is obviously not always desired (see Fig. 5 for more
details).

The generated object cast range check has the following advantages com-
pared to other state-of-the-art techniques. First, in terms of memory overhead,
CasTSAN does not require any additional metadata at runtime to be recorded,
deleted or updated in order to determine class hierarchy relationships. Second,
the range check needed for the sub-typing check has O(1) runtime cost com-
pared to O(n) runtime cost of other tools due to traversals of additional data
structures (e.g., red-black tree).

Instrumenting a C+4++ Object Cast. CasTSAN replaces the cast check intrin-
sics inserted into the code within the Clang compiler with a range based cast
check (see ® depicted in Fig. 3 for more details) during LTO. The check is sub-
stituted with an equality check if the count of vtables in the range is one. The
equality check matches the vtable address of the range with the vptr of the
object. If the addresses are equal, then the cast is legal, otherwise it is illegal. In
case the range has more elements than one, then a range check will be inserted.
The steps for building and inserting the final range check are as follows. First,
the value of the start address of the range is subtracted from the vptr value by
CAsTSAN. Further, if the pointer value was lower than the start address of the
vtable, then the result is negative and the cast is illegal. Second, the result of
the subtraction is next rotated by three bits to the right to remove the empty
bits that define the pointer length. If the result of the subtraction was negative,
this rotation shifts the sign of the result to the right, making it the most sig-
nificant bit. Therefore, if the cast is illegal, then the result of the bit rotation
is a large number. More specifically, the number is then larger than any result
of a valid cast. This holds because the most significant bit, where the sign was
shifted due to the rotation, would have been shifted to the right. This would
make the number smaller than the illegal case. The result is either the distance
of the destination type from the runtime type within the vtable hierarchy or an
invalid large number. Finally, the value is compared to the number of vtables in
the range. If the value is less than or equal to the count, then the cast is legal
and program execution can continue, otherwise an illegal cast is reported. By
using these instructions, the range check can ensure three preconditions for a
legal cast using only one branch. If any of the following preconditions do not
hold, CasTSAN will report an illegal cast. This is the case if the value of the vptr
is: (1) higher than the last address in the range (i.e., the type of the object is
not directly related to the destination type), (2) lower than the first value of
the vtable address range (i.e., the runtime type of the object is an ancestor of
the destination type), resulting in the negative bit being shifted to a significant

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 15

bit of the subtraction result, or (3) not aligned to the pointer length (i.e., the
pointer is corrupted). Note that in (3) the unaligned bit is rotated to one of
the significant bits or to the signing bit. Since the comparison is unsigned, the
number would then again be larger than the last address in the vtable range.

Further, note that the vptr of an object can always be used to perform the
check in the primary inheritance tree of the object source type. Finally, the
primary inheritance tree, represents the tree which contains the virtual table of
the object types as primary parent.

1Ba0otco ud2
2[0k400zcb mov $0x401080, Yecx

1X *x=new W(Q); 3Pkaooses mov rax,

5 1/0x400fe0 mov %ri15,%rdi 4[0ka00fd1 sub Yrex.

2Y xy=static_cast<¥>(x); o . %mm o

3y->x0); 2@x400fa3 callg *(%rax) AT
TBa00tde ja Oxa00tco
(@) (b) oy ————

9aootes callq *Crax)

()

Fig. 5. Instrumented polymorphic C++ object type cast.

Figure 5 depicts a C++ object type cast at line number two in Fig.5(a), the
un-instrumented assembly code in Fig. 5(b), and the assembly code instrumen-
tation added by CasTSaN in Fig.5(c) (the range check is highlighted in gray
shaded color). In Fig.5(a), without line number three the compiler generates
does not generate code since the Clang/LLVM compiler is designed to not gen-
erate specific code for object casts. Only for the object dispatch (see line number
three), assembly code is generated. The assembly code in Fig. 5(b) corresponds
to the object dispatch depicted in Fig.5(a) at line number 3. Finally, we assume
that the OS provides an W @& X protection mechanism (e.g., data execution
prevention (DEP)) and thus the assembly code depicted in Fig.5(c) cannot be
modified (rewritten) by an attacker.

Next, we present the operations performed by the instructions contained in
the range check (gray shaded code in Fig.5) in order to better understand how
the check operates. First, the vtable address of type X (corresponding to line
number one in Fig.5(a)) 0x401080 is loaded. In line number two, in Fig.5(c),
the fixed value of the address is moved to the register %rcx. This is done in
order to load the first value of the range. Second, the vptr of the object x is
moved to register %rdx depicted in line number three. This is done in order to
provide the second value of the subtraction of the range check. Note that the
object pointer itself was already loaded in register %rax. This is not depicted in
Fig. 5 for reasons of brevity. Third, the sub instruction performs the subtraction
of the vtable address (stored in %rcx) from the vptr (stored in %rdx). At line
number five, depicted in Fig.5(c), the pointer alignment is removed from the
result by using a rotation (i.e., rol) instruction. This is done to obtain the
distance of the vptr from the vtable address of the destination type located in
the vtable hierarchy. Note that if the number of all types inheriting from the
destination type is higher or equal to the distance, the cast is legal. Finally,

16 P. Muntean et al.

the result is compared to the constant $0x2, which is the number of all types
inheriting from the destination type Y, specifically these are Y and W. Then, the
program execution either jumps to the address of the instruction ud2 located at
line number one in Fig. 5(c) (address 0x400£c0), which terminates the program;
otherwise, the object dispatch (line number three in Fig. 5(c)) will be performed
similar as in Fig. 5(b) and the program continues its execution.

4.4 Implementation

Components. CasTSAN is implemented as two module passes for the Clang/L-
LVM compiler [24] infrastructure by extending LLVM (v.3.7) and relies on the
Gold plug-in [23]. CasTSAN is based on the virtual table interleaving algorithm
presented by Bounov et al. [5] from which it reuses its interleaved vtable meta-
data, by transporting it from the Clang compiler front-end to the LT O phase via
new metadata nodes inserted into LLVM’s IR code. More specifically, CASTSAN’s
implementation is split between the Clang compiler front-end, and a new link-
time pass used for analysis and generating the final intrinsic based compiler cast
checks. CASTSAN’s transformations operate on LLVM’s intermediate represen-
tation (IR), which retains sufficient programming language semantic information
at link time to perform whole program analysis and identify all possible types
of polymorphic C++ casts in order to instrument them.

Usage Modes. CASTSAN’s implementation provides three operation modes
with corresponding compiler flags. First, attack prevention mode can be used
in shipped program binaries to customers. This mode can be used, if desired,
to terminate program execution when an illegal cast is detected, thus provid-
ing an effective mechanism for avoiding undefined behavior which may lead to
vulnerability based CRAs. Second, software testing mode can be used during
program testing in order to detect type confusion errors and to help fix them
before the software is shipped by subjecting the analyzed program to a test suite
with different possible goals (i.e., program path coverage, etc.). Finally, relaxzed
mode can be used to detect and log illegal casts detected during development or
deployment. This last mode is mainly intended as a replacement for the situa-
tion that it is not safe to stop program execution which is mainly the case for
real-world programs.

5 Evaluation

We evaluated CasTSAN by instrumenting various open source programs and con-
ducting a thorough analysis with the goal to show its effectiveness and practical-
ity. The experiments were performed using the open source benchmarks Type-
San [18], IVT [5], Google’s Chrome (v.33.0.1750.112) web browser, and SPEC
CPU2006 benchmark (only for the C++ based programs), which were also used
by HexType [19]. If not otherwise stated, we used the Clang -02 compiler flag
for all our experiments. In our evaluation, we addressed the following research
questions (RQs).

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 17

RQ1: What is the runtime overhead of CasTSan (Sect.5.1)

RQ2: How precise is CAsTSAN? (Sect. 5.2)

RQ3: How effective is CasTSAN? (Sect. 5.3)

RQ4: How can CasTSAN assist a programmer during a bug bounty? (Sect. 5.4)

Comparison Method. In addition to the runtime overhead and binary blow-
up, the coverage and precision of HexType is compared to that of CasTSAN.
For benchmarking SPEC CPU2006, the benchmark script of TypeSan, and the
micro-benchmark of ShrinkWrap [17] was used.

Preliminaries. The script of TypeSan (approx. 606 Bash LOC) sets up a full
environment consisting of: Binutils, Bash, Coreutils, CMake, Pearl. These are
used for instrumenting the SPEC CPU2006, and UBench (consisting of 10 intri-
cate C++ testcases). After the benchmark is set up, the script compiles the pro-
grams and checks each program by starting it and checking it to see if it executed
successfully.

The script of IVT (approx. 200 Python LOC) is used to compile up to 50
C++ programs. Some of the programs contain object type confusions. After each
instrumented program execution, the script checks if the program executed suc-
cessfully or not.

Experimental Setup. We evaluated CastSan on an AMD Ryzen R7 1800x
CPU using 8 cores with 16 GB of RAM running the Debian 8 Jessie OS. All
benchmarks were executed 10 times to obtain reliable mean values.

Table 3. Benchmark results of running various C++ programs contained in the SPEC
CPU2006 benchmark with CASTSAN enabled and disabled (vanilla). The values repre-
sent the mean time needed to finish running the benchmark program over 10 runs.

Benchmark| Vanilla| CastSan|Overhead
soplex 207.14| 211.43 2.07%
povray 123.34| 125.28 1.57%
omnetpp 269.14| 270.06 0.34%
astar 334.96| 335.96 0.30%
dealll 186.71| 188.47 0.94%
xalanckbmk | 413.67| 421.03 1.78%
namd 266.42| 266.43 0.00%
average 1.0%
geomean 0.92%

5.1 Performance Overhead (RQ1)

Table 3 depicts the overall runtime overhead on only the relevant C++ programs
contained in the SPEC CPU2006 benchmark. The geomean value of the overhead

18 P. Muntean et al.

in these benchmarks is under 1% (0.92%). As an outlier, soplex showed an
overhead of 2.07%. For most benchmarks, the overhead is lower than 1.0%. Some
SPEC CPU2006 benchmarks like astar do not contain static casts and thus no
check is performed. These results show that the overhead is within the margin
of error. This is to be expected as CasTSAN does not need to execute additional
code on execution when no checkable casts are present in the code.

Table 4. Runtime overhead on Chrome with CASTSAN enabled and disabled (vanilla).

Benchmark High/Low| Vanilla| CastSan|Overhead
ge-sunspider [32] <| 1234 124.1 0.57%
gc-octane [27] >| 29885| 29889 -0.01%
gc-drom-js [14] >|1987.21| 1991.58| -2.18%
ge-balls [4] > 216 215 0.47%
gc-kraken [21] <| 933.1| 9412 0.87%
gc-jetstream [20] <| 184.06| 184.44 0.21%
average -0.01%
geomean 0.31%

Table 4 depicts the average and geomean runtime overheads of CASTSAN in
seven of the most popular JavaScript benchmarks. The greater/less symbols (in
High/Low) next to the name describe if higher (>) or lower (<) values are
better in the benchmark. More precisely, higher is better for jetstream, octane,
balls and dromaeo benchmarks; lower is better in sunspider and kraken. The
numbers in columns Vanilla and CASTSAN represent aggregate benchmark scores
and have no particular intrinsic meaning. The average value of the overhead of
CASTSAN in these benchmarks is —0.01%, which is in the margin of error. The
low overhead obtained when running JavaScript benchmarks in the instrumented
Chrome demonstrates that CasTSan can efficiently scale to large code bases with
complex class hierarchies.

k=

S ’ Clang-CFTIRCASTSAN ‘

= 4

[

>

@)

2 207

g 2 178 1.57

5 0.94 I I 1 0.92
034 03

® oo l -

¢! an
(\g{%\c‘o‘“\‘ 66"’\“%09\6%0"(?6\“6‘@ agxa;qeta%eo‘“ea

Fig. 6. Clang-CFI (gray) vs. CASTSAN (black) SPEC CPU2006 benchmark overhead.

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 19

Figure 6 depicts the average and geomean runtime overheads of CASTSAN
in comparison with the Clang-CFI cast checker when ran on several C++ pro-
grams contained in the SPEC CPU2006 benchmark with the following com-
piler flags: -fsanitize=cfi-cast-strict, -fsanitize=cfi-derived-cast,
and -fsanitize=cfi-unrela-ted-cast. Note that the Clang-CFI cast checker
instruments the same set of static object casts as CasTSAN. We compared the
Clang-CFI and CasTSaN runtime overhead w.r.t. the baseline LLVM 3.7 compi-
lations. Note that for the baseline compilation no additional compiler flags and
no LTO support (we compiled without the Clang’s -flto compiler flag) was
used. Finally, it can be observed that the overhead of CAsSTSAN is about two
times lower on average than the overhead of Clang-CFI when running on the
SPEC CPU2006 programs.

Clang-CFIIE CASTSAN

—_
(=]

021 057 047 0-87 031

|
. —0.01 —0.01

=218

“Aet AS < S
'Setsxxe’dg\ww\geo&aeo LRSS 00\@(\6 \gg‘a\@“@we‘a%%eo‘“ea

(e
I
I
[
|

% Runtime Overhead
i

Fig. 7. Clang-CFI (gray) vs. CASTSAN (black) Chrome runtime overhead.

Figure7 depicts the runtime overhead of Chrome when ran on sev-
eral JavaScript benchmarks. First, we compiled with Clang-CFI, and sec-
ond, with CAsTSAN enabled and with the following compiler flags enabled:
-fsanitize=cfi-cast-strict, and -fsanitize=cfi-derived-cast. We did
not use the -fsanitize=cfi-unrelated-cast compiler flag, since Chrome was
not able to start (crashed during start) after applying this flag. In total, the same
amount of object casts where instrumented by each of the tools. However, we
can observe that compared to Clang-CFI, the geomean and average overheads of
CASTSAN are better on large code bases such as the Chrome browser. The low-
est runtime overhead value, —2.18%, was obtained with CASTSAN when running
the Dromaeo-js benchmark, while the lowest overhead, —1.17%, was obtained
by Clang-CFI when running the Sunspider JavaScript benchmark. Overall, we
observed a 54 times speed-up on average and 8.9 times speed-up in geomean for
CasTSAN when compared to Clang-CFI cast checker.

5.2 Precision (RQ2)

We evaluated the precision of CasTSAN by using complex class hierarchies of
programs contained in the open-source micro-benchmark of TypeSan [18] and
the benchmark programs (in total more than 50 programs) provided by the IVT

20 P. Muntean et al.

tool. This benchmark includes: (1) casts to secondary parents, (2) casts within
a diamond inheritance, and (3) casts from unrelated trees.

The results indicate that each cast that is covered by CAsSTSAN can be pre-
cisely checked and the implementation leaves no room for unmitigated cor-
ner cases. Moreover, CAsTSAN did not show the imprecisions described in the
ShrinkWrap paper. There, the authors show specific cases of class inheritances
(e.g., diamond inheritance) where vtable based function call sanitizers allow
calls to illegitimate functions of sibling classes. Finally, CASTSAN was able to
cope with all complex class hierarchies contained in these benchmarks and no

false negatives or false positives were reported. Thus, we conclude that CasTSAN
is precise and leaves no space for untreated corner cases.

5.3 Effectiveness (RQ3)

We evaluated the effectiveness of CasTSaN by selecting the last ten type con-
fusions reported in Google Chrome which had common weakness enumeration
(CVE) reports associated. All these type confusions have been reported and par-
tially fixed in the current Chrome browser version. The goal of this experiment
is to show that CAsTSAN can find object type confusions in real-world software.

We recompiled the Chrome web browser with the CasTSAN checks in place
and ran all JavaScript benchmarks, which we also used to check the performance
of Chrome (see Fig.7 for more details). In total, out of the ten object type
confusions, CASTSAN was able to report three type confusions at the correct
location. We further investigated the other undetected type confusions and found
out that these were not detected since the used JS benchmarks do not interact
with the code of Chrome which contains these bugs. As such, this is an issue
which can be addressed with more extensive test suites which reach the other
bugs not previously detected. Finally, we conclude that CasTtSan is effective in
detecting real-world type confusions.

5.4 Programmer Assistance (RQ4)

./Illegal Cast Detected. Printing Backtrace:

We evaluated hOW ./Xalan_base [0x5a3de8]

1
2
3 3 3. Xalan_base(_ZNKlixercesc_2_511DDMTextImp113getParentNodeEv+0/(3) [ox b
useful CASTSAN I8 11§ e o i rorrece 5. 51300Mparanthde 1 Sinerepefor BPNS. 700 .
;

./Xalan_base(_ZN1lxercesc_2_511DOMAttrImpl8setValueEPKt+0xb0) [0x59e6a0]

) [0x5bae2a]

helping a program-

mer to find and fix a
type confusion bug.
For this reason, we

./Xalan_base(_ZN11xercesc_2_512XSDDOMParser12startElementERKNS_14XMLElementDeclEjPKtRKNS_

11RefVectorOf INS_7XMLAttrEEEjbb+0x520) [0x6e15e0]

./Xalan_base(_ZN1ixercesc_2_512IGXMLScanneri4scanStartTagNSERb+0x1a0f) [0x61134f]
./Xalan_base(_ZN1lxercesc_2_512IGXMLScannerllscanContentEv+0x171) [0x60e451]

./Xalan_base(_ZN1lxercesc_2_512IGXMLScanneri2scanDocumentERKNS_11InputSourceE+0x67) [0x60e0c7]
./Xalan_base (_ZN1lxercesc_2_517AbstractDOMParserSparseERKNS_11InputSourceE+0x22)
./Xalan_base(_ZN1lxercesc_2_512IGXMLScanner20resolveSchemaGrammarEPKtS2_+0x685)
./Xalan_base(_ZN11xercesc_2_512IGXMLScanneri9parseSchemaLocationEPKt+0xe0) [0x61b1a0]

used a Weu—known 14 ./Xalan_base(_ZN1lxercesc_2_512IGXMLScanner: ttrListfor x4b7) [0x61ad47]
. 15 ./Xalan_base(_ZN1lxercesc_2_512IGXMLScanneri4scanStartTagNSERb+0x3b2) [0x6 2]

type COnfU.SlOn bug 16 ./Xalan_base(_ZNilxercesc_2_512IGXMLScanneriiscanContentEv+0x171) [0x60e451]
17 ./Xalan_base (_ZN1lxercesc_2_512IGXMLScanneri2scanDocumentERKNS_11InputSourceE+0x67) [0x60e0c7]

and deplCt the @ITOr I8 ./Xalan base(_ZNiixercesc_2_517SAX2XMLReaderImpl5parseERKNS_11InputSourceE+0x25) [0x6537£5]
19 ./Xalan_base(_ZN1Oxalanc_1_828XalanSourceTreeParserLiaisonl4parseXMLStreamERKN11xercesc_2_

3 20 511InputSourceERKNS_14XalanDOMStringE+0x120) [0x7c8070]

lOg mn OI'dGI' to ShOW 21 ./Xalan_base(_ZN10xalanc_1_824XalanDefaultParsedSourceC1ERKN11xercesc_2_511InputSourceEbPNS1_
22 12ErrorHandlerEPNS1_14EntityResolverEPKtSA_+0x1da) [0x7cb8eal

hOW the progra’mmer 23 ./Xalan_base(_ZN10Oxalanc_1_816XalanTransformerilparseSourceERKNS_15XSLTInputSourceERPKNS_

: : 24 17XalanParsedSourceEb+0x303) [0x7cc983]

1S gulded When ﬁX- 25 ./Xalan_base(_ZN10xalanc_1_816XalanTransformer9transformERKNS_15XSLTInputSourceES3_RKNS_

. 26 16XSLTResultTargetE+0x2a) [0x7ccaea]

ing a type confu- % i meeraciion

sion bug. The goal of
this experiment is to

Fig. 8. Type confusion back-trace for the xalancbmk program.

CAsTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 21

show that CasTSan can effectively help a programmer to pinpoint the exact
bug location. Figure 8 depicts the backtrace that CasTSAN prints out when run-
ning the xalancbmk program contained in the SPEC CPU2006 benchmark. The
SPEC CPU2006 xalancbmk has a known type confusion vulnerability, as men-
tioned in [5], which CasTSAN is able to detect. Thus, on execution, it prints the
back-trace leading to the illegal cast. Line numbers 1 to 27 are the verbose output
of CASTSAN, notifying the user that an illegal cast happened during execution. In
lines 25, 26 and 27 the mangled name of the exact function containing the illegal
object cast is printed. Using the offset printed in the square brackets at the end
of the line, a developer can find the line in the code where the illegal object
cast was defined. The error log depicted in Fig.8 demonstrates that CASTSAN is
able to detect real type confusion bugs in applications by running a program in
backtrace-mode. Finally, we conclude that CasTSaN can help developers during
bug bounties [34], and can protect against exploitable type confusions.

6 Discussion

In this section, we present CASTSAN’s limitations and discuss how to address
these.

Non-polymorphic Classes. CasTSAN provides type safety for objects stem-
ming from polymorphic classes and low runtime overhead. Further, CasTSAN
cannot check casts between non-polymorphic objects. This is because only poly-
morphic objects have a virtual pointer (vptr). The vptr is an integral requirement
for checking object type casts using CasTSAN. This means CASTSAN cannot miti-
gate all types of object type confusion vulnerabilities. A possible way to address
this limitation is to construct for static classes an artificial virtual-table-like
metadata on which CASTSAN’s technique can be based such that our technique
becomes usable for non-polymorphic object type casts.

Reinterpret-Cast. In C++, not only static_cast can lead to object type
confusion. The misusage of reinterpret_cast can also pose threats. HexType
addresses this threat by extending its type cast checking to reinterpret_cast
in addition to static_cast. While this can effectively hinder a type confusion
vulnerability from occurring, it is debatable if checking reinterpret_cast is
viable. This question arises, as reinterpret_cast can be used as a legitimate
way of breaking class hierarchy boundaries, if the memory layout of the cast
types match. In this case, a type cast check based on class hierarchy information
cannot be made. Therefore, if reinterpret_cast is checked for type safety, its
purpose can potentially be circumvented. Similarly, as other object type confu-
sion detection tools handle reinterpret_cast, we could use compiler runtime
checking support for checking for this type of confusions.

Increasing Tool Coverage. The incremental research work between TypeSan
and HexType shows that the main path for increasing object type confusion
detection coverage is to support more types of memory allocators (i.e., jmalloc,

22 P. Muntean et al.

temalloc, ete.) or other more exotic ones. Further, the coverage of CASTSAN can
be increased by supporting all types of C++ program locations (i.e., statement
types) where such vulnerabilities could manifest. Thus, CASTSAN’s coverage can
be consistently increased by instrumenting all these source code locations with
the needed checks in place in order to check during runtime for object type
confusions.

Finding New Vulnerabilities. Finding new object type confusion vulnerabil-
ities is directly linked to increasing the tool coverage and is mainly driven by
three lines of research. These are: (1) check new program locations which were
previously not possible to be instrumented, (2) support new memory allocators
(e.g., object pool allocators, etc.), and (3) reduce the runtime overhead of an
object type detection technique such that the technique becomes applicable in
real-world deployment. Thus, in future work we want to increase the coverage
of CasTSAN by addressing the above mentioned points.

7 Related Work

Virtual Table Pointer-Based Tools. Clang-CF1I [7,9] (cast checker) is similar
to CAsTSAN in that it uses no runtime library and all cast check detection meta-
data is computed during compile time. However, there are no publicly available
evaluation results of Clang-CFI, and therefore we evaluated Clang-CFI in Sect. 5
independently. Clang-CFT relies on bitsets in order to model the class hierarchy
of a program. Clang-CFT uses these bitsets to encode the valid virtual table start
addresses for each class. Compared to CasTSAN, Clang-CFT has a higher runtime
overhead, as the bit-set checking technique on which it relies apparently is less
efficient than our virtual table based technique.

C++ Object Type Runtime Tracking. All currently available polymorphic
and non-polymorphic object type confusion detection tools (except Clang-CFI)
rely on dynamic checks (i.e., LLVM’s Compiler-RT is mostly used) for several
key reasons, as follows. First, the object type has to be tracked during runtime.
Second, this is due to the limited precision of static analysis techniques, which
cannot recuperate the object type or a set of possible types before program
runtime, Third, the object type confusions manifest only during runtime. Finally,
object type confusions are hard to replicate statically (i.e., compile time or
through symbolic execution, without running the program).

However, the most significant reason is the fact that the types of casted
objects, referenced by pointers, may be program input dependent and thus only
precisely obtainable during runtime. On the one hand, in the best case the
allocation of the object being cast can be tracked during compile time (e.g., if
the runtime path from allocation to cast is linear). On the other hand, in the
worst case the object type cannot be approximated (e.g., the object was given
via a void-pointer from an external function previously).

Compiler-Based Tools. UBsan [15], CaVer [22], TypeSan [18], and Hex-
Type [19] are compiler based tools that perform object type confusion detection

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 23

at runtime for C++ based programs. Since HexType is the successor of TypeSan,
the tools are very similar to each other from a technical perspective. These two
tools and CaVer rely on a runtime metadata service and can reach a high cover-
age while imposing a considerable performance overhead. CASTSAN, on the other
hand, uses metadata that is statically created at compile-time and can therefore
apply very performant checks at runtime. CASTSAN can protect against poly-
morphic casts by using vtable hierarchy based ranges and without using a black
list. Compared to TypeSan, CasTSAN partially shares the instrumentation layer,
which is unavoidable, but it uses completely different metadata without stor-
ing data at runtime. More precisely, CASTSAN uses the vtables of polymorphic
classes. These tables, that need to be in memory at runtime anyways, already
provide a view on the class hierarchy. That is enough for CasTSAN to perform
runtime checks without relying on further metadata as maintained by HexType.
HexType, on the other hand, reaches a higher coverage, as it can check non-
polymorphic objects as well. CasTSAN is more runtime-efficient than CaVer and
HexType, which both require a red-black tree to be traversed (only for the slow
path) during each check.

Binary-Based Tools. Dewey et al. [13] were able to recuperate vtables from
program binaries and detect object type confusions indirectly by checking the
bounds of a virtual function call. This was achieved by enforcing a policy to check
if the vptr lies inside some legitimate bounds. As suggested by the authors, their
analysis is imprecise because for example—as also demonstrated by Prakash
et al. [29]—determining the end of a vtable in binaries without RTTI information
is not trivial. Thus, false positives and false negatives are raised, and as such
this type of tool is in the best case usable before system deployment.

8 Conclusion and Future Work

C++ object type casting confusions have an important role in modern exploits as
demonstrated by recent attacks against Mozilla’s Firefox and Google’s Chrome
web browsers.

In this paper, we presented CASTSAN, a new polymorphic only object type
confusion detection tool. CASTSAN’s novel technique is based on an efficient and
time constant virtual pointer range check which is possible by extracting virtual
table inheritance trees out of a previously constructed virtual table inheritance
hierarchy. CasTSAN constructs linear projections out of virtual table inheritance
trees, which are subsequently used do build runtime object cast checks. Our
evaluation results show that CasTSAN is more efficient than state-of-the-art tools
(i.e., Clang-CF1I cast checker), and has comparable checking coverage with other
state-of-the-art tools, which—in contrast—rely on runtime intensive type track-
ing for checking type confusions for both polymorphic and non-polymorphic
objects.

In future work, we want to use our static meta-data based technique to
extended existing purely runtime based object type confusion detection tools

24 P. Muntean et al.

such as TypeSan and HexType. These tools use for both polymorphic and non-
polymorphic object type checking a runtime library which adds considerable
runtime overhead due to updates, search, and deletion of object type meta-
data. We think that our approach can be used to avoid the tracking of meta-
data for polymorphic objects. Further, a complementary artificial virtual table
like meta-data class hierarchy can be built for non-polymorphic objects as well.
Finally, in this way our technique becomes usable also in this context, thus avoid-
ing or considerable reducing the overhead introduced by the runtime compiler
checking support.

Acknowledgements. We thank Mathias Payer from EPFL, CH; for insights which
helped to improve paper quality. We thank Dimitar Bounov from the University of
California, San Diego, USA; and Benjamin Johnson from the Technical University of
Munich, Germany for reviewing an early version of this paper. Jens Grossklags’ research
is supported by the German Institute for Trust and Safety on the Internet (DIVSI).
Further, we thank the anonymous reviewers for their rich feedback.

References

1. 2016 Working Draft, Standard for Programming Language C++ N4618. https://
goo.gl/PPJ5QC

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control flow integrity. In: CCS
(2005)

3. Abadi, M., Budiu, M., Erlingsson, U.7 Ligatti, J.: Control flow integrity principles,
implementations, and applications. In: TISSEC (2009)

4. Balls Browser Benchmark (2017). http://bubblemark.com/

5. Bounov, D., Kici, R.G., Lerner, S.: Protecting C++ dynamic dispatch through
VTable interleaving. In: NDSS (2016)

6. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: CCS (2008)

7. Clang. Clang 3.9 Documentation - Control Flow Integrity. https://goo.gl/gnmoHU

8. Clang. Clang 5 Documentation - Control Flow Integrity (2017). https://goo.gl/
bW4DyS

9. Clang-CFI Cast Checker Metadata. https://goo.gl/JkGDjL

10. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-
reuse attacks. In: CCS (2015)

11. CVE-2016-1612: Bug Description and reward (2016). https://goo.gl/9SxjEA

12. CVE-2017-3106: Object Type Confusion in Adobe F. Player v. 26.0.0.137 (2017).
https://goo.gl/gakD25

13. Dewey, D., Giffin, J.: Static detection of C++4 VTable escape vulnerabilities in
binary code. In: NDSS (2012)

14. Dromaeo Browser Benchmark (2017). http://dromaeo.com/?v8

15. Google. Undefined Behavior Sanitizer (2017). https://goo.gl/ELrNKj

16. Google. The Chromium Projects, Chromium (2017). https://goo.gl/uE486n

17. Haller, I., Goktas, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap:
VTable protection without loose ends. In: ACSAC (2015)

18. Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C.: TypeSan: practical type
confusion detection. In: CCS (2016)

https://goo.gl/PPJ5QC
https://goo.gl/PPJ5QC
http://bubblemark.com/
https://goo.gl/gnmoHU
https://goo.gl/bW4DyS
https://goo.gl/bW4DyS
https://goo.gl/JkGDjL
https://goo.gl/9SxjEA
https://goo.gl/gakD25
http://dromaeo.com/?v8
https://goo.gl/ELrNKj
https://goo.gl/uE486n

CASTSAN: Efficient Detection of Polymorphic C++ Object Type Confusions 25

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

34.

Jeon, Y., Biswas, P., Carr, S., Lee, B., Payer, M.: HexType: efficient detection of
type confusion errors for C++. In: CCS (2017)

JetStream Browser Benchmark (2017). http://browserbench.org/JetStream/
Kraken JavaScript Benchmark (2017). https://krakenbenchmark.mozilla.org/
Lee, B., Song, C., Kim, T., Lee, W.: Type casting verification: stopping an emerging
attack vector. In: USENIX Security (2015)

LLVM. The LLVM Gold Plugin (2017). https://goo.gl/UjFxih

LLVM. LLVM Team, The LLVM compiler infrastructure project. http://llvm.org/
LLVM. LLVM link time optimization: design and implementation. https://goo.gl/
r3RH2U

Microsoft. Changes to Functionality in Microsoft Windows XP SP 2. https://goo.
gl/928ihY

Octane Browser Benchmark (2017). https://chromium.github.io/octane/

PaX Team: Address Space Layout Randomization (2001). https://goo.gl/Sab9YE
Prakash, A., Hu, X., Yin, H.: Strict protection for virtual function calls in COTS
C++ binaries. In: NDSS (2015)

Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R.., Holz, T.: Coun-
terfeit object-oriented programming. In: S&P (2015)

Standard Performance Evaluation Corporation. SPEC CPU 2006 (2017). https://
£00.gl/NtmYy8

SunSpider 1.0.2 JavaScript Benchmark (2017). https://goo.gl/qk9uqg

Zhang, C., et al.: Practical control flow integrity & randomization for binary exe-
cutables. In: S&P (2013)

Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery
ecosystems. In: CCS (2015)

http://browserbench.org/JetStream/
https://krakenbenchmark.mozilla.org/
https://goo.gl/UjFxih
http://llvm.org/
https://goo.gl/r3RH2U
https://goo.gl/r3RH2U
https://goo.gl/928ihY
https://goo.gl/928ihY
https://chromium.github.io/octane/
https://goo.gl/Sab9YE
https://goo.gl/NtmYy8
https://goo.gl/NtmYy8
https://goo.gl/qk9uqg

l‘)

Check for
updates

On Leveraging Coding Habits
for Effective Binary Authorship
Attribution

Saed Alrabaee®™) | Paria Shirani, Lingyu Wang, Mourad Debbabi,
and Aiman Hanna

Security Research Center, Concordia University, Montreal, Canada
s_alraba@encs.concordia.ca

Abstract. We propose BinAuthor, a novel and the first compiler-
agnostic method for identifying the authors of program binaries. Hav-
ing filtered out unrelated functions (compiler and library) to detect
user-related functions, it converts user-related functions into a canon-
ical form to eliminate compiler/compilation effects. Then, it leverages a
set of features based on collections of authors’ choices made during cod-
ing. These features capture an author’s coding habits. Our evaluation
demonstrated that BinAuthor outperforms existing methods in several
respects. First, when tested on large datasets extracted from selected
open-source C/C++ projects in GitHub, Google Code Jam events, and
Planet Source Code contests, it successfully attributed a larger num-
ber of authors with a significantly higher accuracy: around 90% when
the number of authors is 1000. Second, when the code was subjected to
refactoring techniques, code transformation, or processing using different
compilers or compilation settings, there was no significant drop in accu-
racy, indicating that BinAuthor is more robust than previous methods.

1 Introduction

Binary authorship attribution refers to the process of discovering information
related to the author(s) of anonymous binary code on the basis of stylomet-
ric characteristics extracted from the code. It is especially relevant to security
applications, such as digital forensic analysis of malicious code [30] and copyright
infringement detection [33] because the source code is seldom available in these
cases. However, in practice, authorship attribution for binary code still requires
considerable manual and error-prone reverse engineering analysis, which can be
a daunting task given the sheer volume and complexity of today’s malware.
Although significant efforts have been made to develop automated approaches
for authorship attribution for source code [19,25,37], such techniques typically
rely on features that will likely be lost in the binary code after the compilation
process, for example, variable and function naming, original control and data

© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 26-47, 2018.
https://doi.org/10.1007/978-3-319-99073-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_2&domain=pdf

On Leveraging Coding Habits for Effective Binary Authorship Attribution 27

flow structures, comments, and space layout. Nonetheless, at the recent Black-
Hat conference, the feasibility of authorship attribution for malware binaries was
confirmed [5], though the process still requires considerable human intervention.

Most existing approaches to binary authorship attribution employ machine
learning methods to extract unique features for each author and subsequently
match the features of a given binary to identify the authors [15,19,32]. These
approaches were studied and analyzed in our previous work [16], and we uncov-
ered several issues that affect them all. Notably, a considerable percentage of the
extracted features are related to compiler functions rather than to author styles,
which causes a high false positive rate. Moreover, the extracted features are not
resilient to code transformation methods, refactoring techniques, changes in the
compilation settings, and the use of different compilers. We implemented a sys-
tem that improved the accuracy obtained by Caliskan et al. [19] in attributing
600 authors from 83% to 90%, and then we scaled the results to 86% accuracy
for 1500 authors.

Key Idea: We present BinAuthor, a system designed to recognize author cod-
ing habits by extracting author’s choices from binary code. BinAuthor' per-
forms a series of steps in order to capture coding habits. First, it filters unre-
lated functions such as compiler-related functions by proposing a method that is
discussed in Sect.2.1. Second, it labels library-related functions and free open-
source related functions using our previous works, BinShape [35], SIGMA [17],
and FOSSIL [18], respectively. The results of filtering process would be a set of
user-related functions. Third, to eliminate the effects of changes in the compiler
or the compilation settings, code transformation, and refactoring tools, BinAu-
thor converts the code into a canonical form that is robust against heavy obfus-
cation [38]. However, conversion is extremely slow, so we apply it only to the set
of user-related functions remaining after filtering. Then we collect a set of author
choices frequently made during coding (e.g., preferring to use either memcopy or
becopy). To capture the choices, we examined a large collection of source code
and the corresponding assembly instructions to determine which coding habits
may be preserved in the binary. Next, we designed features based on these habits
and integrated them into BinAuthor. To verify that the features capture coding
habits, we investigated the ground truth source code in a controlled experiment
(using debug information) to determine if the choices are based on functionality
or habit.

Contributions: The main contributions of this study are described below.

1. To the best of our knowledge, BinAuthor is the first effort that leverages
author coding habits extracted from binary code for effective binary author-
ship attribution. This enables BinAuthor to work on programs with different
functionalities.

2. BinAuthor achieves higher accuracy and survives refactoring techniques and
code transformation techniques. This shows its potential for use as a practical
tool that can assist reverse engineers in many security-related tasks.

! The code is available at https://github.com/g4hsean/BinAuthor.

https://github.com/g4hsean/BinAuthor

28 S. Alrabaee et al.

3. BinAuthor is among the first approaches that performs automated author-
ship attribution on real-world malware binaries. When we applied it to Zeus-
Citadel, Stuxnet-Flame, and Bunny-Babar malware binaries, it automati-
cally generated evidence of coding habits shared by each malware pair, match-
ing the findings of antivirus vendors [3,12] and reverse engineering teams [5].

2 BinAuthor

We propose a system encompassing different components, each of which is meant
to achieve a particular purpose, as illustrated in Fig.1. The first component
(Filtration), isolates user functions from compiler functions, library functions,
and open-source software packages. For this purpose, we employ BinShape, and
FOSSIL tools developed by our team beside our proposed method to identify
compiler functions. Hence, additional outcome of this component could be con-
sidered as a choice (e.g., the preference in using specific compiler or open-source
software packages). The second component (Canonicalization), adapts the exist-
ing framework angr [36] for lifting function into LLVM-IR, then optimizes the
lifted LLVM-IR, and finally converts the optimized IR into a canonical form. The
third component (Choices), analyzes user-related functions to extract possible
features that represent stylistic choices and then converts the extracted choices
into vectors. The vector of choices are used by the attribution probability func-
tion in the last component (Classification). The aforementioned components are
explained in depth in the remainder of this section.

Input Filtration Functions Canonicalization ~ Choices Vectors Classification
Executable |4 [Fossi. [[Foss [tovvr || [Tceneral |IB A ([Attrbution
o I3 L
file 2 - £ Library L Qualitative 14 || Probability
o BinShape || ‘ Optimization ‘ S
[Assembly] ¥ || Compiler Embedded 2
) =] - o
file 2 Our method User [Canonical | Structure
(1] 2 3

Fig. 1. BinAuthor architecture

2.1 Filtration Process

An important initial step in most reverse engineering tasks is to distinguish
between user functions and library/compiler functions. This step saves consid-
erable time and helps shift the focus to more relevant functions. The filtration
process consists of three steps. First, Binshape [35] is used to label library func-
tions. Second, FOSSIL [18] is leveraged to label the functions that are related to
specific FOSS libraries, such as 1ibpng, z1ib, and openssl. The last step filters
compiler-related functions, which the details are given below.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 29

The idea is based on the hypothesis that compiler/helper functions can be
identified through a collection of static signatures that are created in the training
phase (e.g. opcode frequencies). We analyze a number of programs with different
functionalities, ranging from a simple “Hello World!” program to programs ful-
filling complex tasks. Through the intersection of these functions combined with
manual analysis, we collect about 240 functions as compiler/helper functions
related to two GCC and VS compilers. The opcode frequencies are extracted
from these functions, after which the mean and variance of each opcode are
calculated.

In other words, each disassembled program P, after passing IDA Pro, consists
of n functions {f1,---, f»}. Each function f is represented as m pairs of opcodes
0;, where m is the number of distinct opcodes in function fi. Each opcode o; € O
has a pair of values (u;, v;), which represents the mean and variance values of
that specific opcode. Each opcode in the target function is measured against the
same opcode of all compiler functions in the training set. If the measured distance
D; ; (i.e., i represents the training function and j represents the target function)
is less than a predefined threshold value o = 0.005, the opcode is considered as
a match. A function is labeled as compiler-related if the matched opcodes ratio
is greater than a predefined threshold value learned from experiments to be
~v = 0.75; otherwise, the target function is labeled as user-related. Dissimilarity
measurements are performed based on distance calculations as per the following
equation [39]:

—\2
(1 — 1)

(v2++)

where (ﬁj, 7;) represents the opcode mean and variance of the target function,
respectively. This dissimilarity metric detects functions, which are closer to each
other in terms of types of opcodes. For instance, logical opcodes are not available
in compiler-related functions. Finally, a score is given to every distance that is
below a predefined threshold «.

Di; =

2.2 Canonicalization

We use a strategy similar to that applied in the recent work by [21] when lifting
the resulting user-related functions.

Lifting Binaries to Intermediate Representation (IR): We adopt the
existing framework angr [36] for lifting function into LLVM-IR. We first convert
the disassembled binary to the VEX-IR [29] using angr, and then implement a
translator to convert the VEX-IR to LLVM-IR.

Optimizing Intermediate Representation to Optimized IR: To achieve
this goal, we employ the extended version of Peggy tool [38] to optimize LLVM-
IR. It performs the following tasks: dead code elimination, global value number-
ing, partial redundancy elimination, sparse conditional constant propagation,

30 S. Alrabaee et al.

loop-invariant code motion, loop deletion, loop unswitching, dead store elimina-
tion, constant propagation, and basic block placement. In this way, we prevent
such changes from affecting our extracted choices. For more details, we refer the
reader to [38].

Canonical Form: Canonicalization offers several benefits [21]. Lifting the
instructions according to LLVM may impose changes such as redundant loads,
but these changes will now be reverted. Moreover, in the case of writing depen-
dencies, canonicalization of the expression makes it possible to perform the addi-
tion with the constant first, and the result is put in the register before the
subtraction is performed. Furthermore, with canonicalization, the comparison
becomes simple addition with a positive constant, instead of subtraction with
a negative. Note that this last step serves to reoptimize code which might not
have been previously optimized [21].

2.3 Choices Categorization

Determining a set of characteristics that remain constant for a significant por-
tion of a program written by a particular author is analogous to discovering
human characteristics that can later be used to identify an individual. Accord-
ingly, our aim is to automate the identification of program characteristics, but
with a reasonable computational cost. To capture coding habits at different lev-
els of abstraction, we consider a spectrum of habits, assuming that an author’s
habits can be reflected in a preference for choosing certain keywords or compil-
ers, a reliance on the main function, or the use of an object-oriented program-
ming paradigm. The manner in which the code is organized may also reflect the
author’s habits. All possible choices are stored as a template in this step. We
provide a detailed description of each category of author choices in the following
subsections.

2.3.1 General Choices

General choices are designed to capture an author’s general programming pref-
erences, for example, preferences in organizing the code, terminating a function,
the use of particular keywords, or the use of specific resources.

(1) Code organization: We capture the way code is organized by measuring
the reliance on the main function using statistical features, since it is consid-
ered a starting part for managing user functions. We define a set of ratios,
shown in Table 1, that measures the actions used in the main function. We
thus capture the percentage usage of keywords, local variables, API calls,
and calling user functions, as well as the ratio of the number of basic blocks
in the main function to the number of basic blocks in other user functions.
These percentages are computed relative to the length of the main function,
where the length signifies the number of instructions in the function. The
results are represented as a vector of ratios, which is used by the detection
component.

3)

On Leveraging Coding Habits for Effective Binary Authorship Attribution 31

Table 1. Features extracted from the main function

Ratio equation Description

#push/l Ratio of accessing the stack to length

#push/#lea Ratio of accessing the stack to local variables

#lea/l Ratio of local variables to length

#calls/1 Ratio of function calls to length

#callees/1 Ratio of the calls to main function to length

#indirect calls/1 Ratio of API calls to length

#BBs/total # all BBs Ratio of the number of basic blocks of the main function
to that of other user functions

#calls/#user functions | Ratio of function calls to the number of user functions

length(l) represents number of instructions in the main function

Function termination: BinAuthor captures the way in which an author
terminates a function. This could help identify an author since programmers
may favor specific ways of terminating a function. BinAuthor considers not
just the last statement of a function as the terminating instruction; rather,
it identifies the last basic block of the function with its predecessor as the
terminating part. This is a realistic approach since various actions may be
required before a function terminates. With this in mind, BinAuthor not
only considers the usual terminating instructions, such as return and exit,
but also captures related actions that are taken prior to termination. For
instance, a function may be terminated with a display of messages, a call
to another function, the release of some resources, or communication over
networks. Table2 shows examples of what is captured in relation to the
termination of a function. Such features could be captured by extracting
the strings and opcodes. Each feature is set to 1 if it is used to terminate a
function; otherwise, it is set to 0. The output of this component is a binary
vector that is used by the detection component.

Table 2. Examples of actions taken in terminating a function

Features

Printing results to memory Printing results to file
Using system (“pause”) User action such as cin
Calling user functions Calling API functions
Closing files Closing resources
Freeing memory Flushing buffer

Using network communication | Printing clock time
Releasing semaphores or locks | Printing errors

Keyword and resource preferences: BinAuthor captures an author’s
preferences in the use of keywords or resources. We consider only groups of

32 S. Alrabaee et al.

preferences with equivalent or similar functionality to avoid functionality-
dependent features. These include keyword type preferences for inputs (e.g.,
using cin, scanf), preferences for particular resources or a specific compiler
(we identify the compiler by using PEiD?), operation system (e.g., Linux),
CPU architecture (e.g., ARM), and the manner in which certain keywords
are used, which can serve as further indications of an author’s habits. Some
of these features are identified through binary string matching, which tracks
the strings annotated to call and mov instructions. For instance, excessive
use of £flush will cause the string ¢ ‘fflush’’ to appear frequently in the
resulting binary.

2.3.2 Quality-Related Choices

We investigate code quality in terms of compliance with C/C++ coding stan-
dards and security concerns. The literature has established that code quality
can be measured using different indicators, such as testability, flexibility, and
adaptability [31]. BinAuthor defines rules for capturing code that exhibits either
relatively low or high quality. For any code that cannot be matched using such
rules, the code is labelled as having regular quality, which indicates that the code
quality feature is not applicable. Such rules are extracted by defining a set of
signatures (sequence of instructions) for each choice. An example is introduced
in Appendix A.

Examples of low-quality coding styles are reopening already opened files, leav-
ing files open when they are no longer in use, attempting to modify constants
through pointers, using float variables as loop counters, and declaring variables
inside a switch statement. Such declarations, which can be captured through
the structure matching of code, could be considered a structural choice, possibly
resulting in unexpected/undefined behavior due to jumped-over instructions. It
is for this reason that we put them in the low-quality category. Examples of
high-quality coding styles are handling errors generated by library calls (i.e.,
examining the value returned by fclose()); avoiding reliance on side effects
(e.g., the ++ operator) within calls such as sizeof or _Alignof; avoiding par-
ticular calls to some environments or using them with protective measures (since
invoking the system() in Linux may lead to shell command injection or privilege
escalation, using execve () instead is indicative of high-quality coding); and the
implementation of locks and semaphores around critical sections.

2.3.3 Embedded Choices

We define embedded choices as actions that are related to coding habits present
in the source code, which are not easily captured at the binary level by tradi-
tional features such as strings or graphs. Examples are initializing member vari-
ables in constructors and dynamically deleting allocated resources in destructors.
Since it is not feasible to list all possible features, BinAuthor relies on the fact
that opcodes reveal actions, expertise, habits, knowledge, and other author’s

2 https://www.aldeid.com/wiki/PEiD.

https://www.aldeid.com/wiki/PEiD

On Leveraging Coding Habits for Effective Binary Authorship Attribution 33

characteristics, and then analyzes the distribution of opcode frequencies. Our
experiments showed that this distribution can effectively capture the manner
in which an author manages code. Since every action in source code can affect
the frequency of opcodes, BinAuthor targets embedded choices by capturing the
distribution of opcode frequencies.

2.3.4 Structural Choices

Programmers usually develop their own structural design habits. They may pre-
fer to use a fully object-oriented design, or they may be more accustomed to
procedural programming. Structural choices can serve as features for author
identification. To avoid functionality, we consider the common subgraphs for
each user function and then intersect them among different user functions to
identify those subgraphs that are unique and those that are common. These
types of subgraphs are defined as k-graphs, where k is the number of nodes. The
common k-graphs form author’s signatures since they always appear, regardless
of the program functionality. In addition, we consider the longest path in each
user function because it reflects the way in which an author tends to use deep or
nested loops. An author may organize classes either ad hoc or hierarchically by
designing a driver class to contain several manager classes, where each manager
is responsible for different processes (collections of threads running in paral-
lel). Both ad hoc and hierarchical systems of organization can create a common
structure in an author’s programs.

2.4 Feature Vectors

General Choice Computation: To consider the reliance on the main func-
tion, a vector vy, representing related features, is constructed according to the
equations shown in Table 1. These equations indicate the author’s reliance on the
main function as well as the actions performed by the author. Function termina-
tion is represented as a binary vector, (vg2), which is determined by the absence
or existence of a set of features for function termination. Keyword and resource
preferences are identified through binary string matching. We extract a collec-
tion of strings from all user functions of a particular author, then intersect these
strings in order to derive a persistent vector (vg3) for that author. Consequently,
for each author, a set of vectors representing the author’s signature is stored in
our repository. Given a target binary, BinAuthor constructs the vectors from the
target and measures the distance/similarity between these vectors and those in
our repository. The vg; vector is compared using Euclidean distance, whereas
Vg2 vector is compared using the Jaccard similarity. For vg3, the similarity is
computed through string matching. Finally, the three derived similarity values
are averaged in order to obtain A4, which is later used in Sect.4.6 for author
classification.

Quality-Related Choice Computation: We build a set of idiom templates
to describe high or low quality habits. Idioms are sequences of instructions with
wild-card possibility [24]. We employ the idioms templates in [24] according to

34 S. Alrabaee et al.

our qualitative-related choice. In addition, such templates carry a meaningful
connection to the quality-related choices. Our experiments demonstrate that
such idiom templates may effectively capture quality-related habits. BinAuthor
uses the Levenshtein distance [40] for this computation due to it’s efficiency. The
similarity is represented by A, as follow:

L(Ci7 Cj)

Ag=1— ——Zod)
! maz(|Cy,|Cj])

where L(C;,C;) is the Levenshtein distance between the qualitative-related
choices C; (sequence of instructions) and Cj, max(|C;|, |C;|) returns the maxi-
mum length between two choices C; and C; in terms of characters.

Embedded Choice Computation: The Mahalanobis distance [26] is used to
measure the dissimilarity of opcode distributions among different user functions,
which is represented by A.. The Mahalanobis distance is chosen because it can
capture the correlation between opcode frequency distributions.

Structural Choice Computation: BinAuthor uses subgraphs of size k in
order to capture structural choices (k = 4, 5, and 6 through our experiments).
Given a k-graph, the graph is transformed into strings using Bliss open-source
toolkit [23]. Then, a similarity measurement is performed over these strings
using the normalized compression distance (NCD) [20]. The reason of our choice
for NCD is threefold: (i) it enhances the search performance; (ii) it allows to
concatenate all the common subgraphs that appear in author’s programs; and
(iii) it allows to perform inexact matching between the target subgraphs and the
training subgraphs. BinAuthor forms a signature based on these strings. The
similarity obtained from this choice is represented by A;.

2.5 Classification

As previously described, BinAuthor extracts different types of choices to char-
acterize different aspects of author coding habits. Such choices do not equally
contribute to the attribution process, since the significance of these indicators
are not identical. Consequently, a weight is assigned to each choice by applying
logistic regression to them in order to predict class probabilities (e.g., the proba-
bility of identifying an author). For this purpose, we use the introduced dataset
in Sect. 3.2; to prevent the overfitting, we test each dataset separately and then
compute the average of weights. The weights are calculated as follows:

w; = md((pi/ps)/i(pi/ps))

where p; is the smallest probability value (e.g. 0.39 in Table 3), p; is the prob-
ability outcome from logistic regression of each choice, and the rnd function
rounds the final value. The probability outcomes of logistic regression prediction
is illustrated in Table 3.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 35

Table 3. Logistic regression weights for choices

Choice Probability (P;) | P;/(Ps = 0.39) | Weight w; =
rd((pi/ps)/ Xy (0 /ps))
General 0.83 2.128205 0.35
Qualitative | 0.63 1.615385 0.27
Structural |0.52 1.333333 0.22
Embedded | 0.39 1 0.16
S (pifps) =
6.076923

After extracting features, we define a probability value P based on obtained
weights. The attribution probability is defined as follows:

4
P(A) = Z w; * \i
i=1

where w; represents the weight assigned to each choice, as shown in Table 3, and
A; is the distance metric value obtained from each choice (Ag, Ay, Ae, and A;) as
described in Sect. 2.4. We normalize the probabilities of all authors, and if P> (,
where (represents predefined threshold values, then the author is labeled as a
matched author. Through our experiments, we find that the best value of { is
0.87. If more than one author has probability larger than the threshold value,
then BinAuthor returns the set of those authors.

3 Evaluation

3.1 Implementation Setup

The described stylistic choices are implemented using separate Python scripts
for modularity purposes, which altogether form our analytical system. A subset
of the python scripts in the BinAuthor system is used in tandem with IDA
Pro disassembler. The final set of the framework scripts perform the bulk of the
choice analysis functions that compute and display critical information about an
author’s coding style. With the analysis framework completed, a graph database
is utilized to perform complex graph operations such as k-graph extraction. The
graph database chosen for this task is Neo4j. Gephi [8] is employed for all graph
analysis functions, which are not provided by Neo4j. MongoDB database is used
to store our features for efficiency and scalability purposes.

3.2 Dataset

Our dataset is consisted of several C/C++ applications from different sources,
as described below: (i) GitHub [2]; (ii) Google Code Jam [1], an international

36 S. Alrabaee et al.

programming competition; (iii) Planet Source Code [9]; (iv) Graduate Student
Projects at our institution. Statistics about the dataset are provided in Table 4.
In total, we test 800 authors from different sets in which each author has two
to five software applications, resulting in a total of 3150 programs. To compile
these datasets, we use GNU Compiler Collection (version 4.8.5) with different
optimization levels, as well as Microsoft Visual Studio (VS) 2010.

3.3 Experimental Setup

In our experimental setup, we split the collected program binaries into ten sets,
reserving one as a testing set and using the remaining nine sets as the training set.
We repeat this process 100 times. In order to evaluate BinAuthor and to compare
it with existing methods, the precision (P) and recall (R) metrics are applied as
Precision = %, Recall = TPTJF%, where the true positive (T'P) indicates
number of relevant authors that are correctly retrieved; true negative (T'N)
returns the number of irrelevant authors that are not detected; false positive
(FP) indicates the number of irrelevant authors that are incorrectly detected;
and false negative (F'N) presents the number of relevant authors that are not

detected.

3.4 Accuracy

The main purpose of this experiment is to evaluate the accuracy of author identi-
fication in binaries. The evaluation of BinAuthor is conducted using the datasets
described in Sect. 3.2.

Results Comparison. We compare BinAuthor with the existing authorship
attribution methods [15,19,32]. The source code and dataset of our previous
work, OBA2 [15], is available which performs authorship attribution on a small
scale of 5 authors with 10 programs for each. The source code of the two other
approaches presented by Caliskan-Islam et al. [19] and Rosenblum et al. [32] are
available at [7] and [4], respectively. Both Caliskan-Islam et al. and Rosenblum
et al. present a largest-scale evaluation of binary authorship attribution, which
contains 600 authors with 8 training programs per author, and 190 authors
with at least 8 training programs, respectively. However, since the corresponding

Table 4. Statistics about the dataset used in the evaluation of BinAuthor

Source # of authors | # of programs | # of functions
GitHub 150 600 110000
Google Code Jam 500 2000 23650
Planet Source Code 100 300 12080
Graduate Student Projects| 50 250 9823

On Leveraging Coding Habits for Effective Binary Authorship Attribution 37

1 1 1

¢ b A= T
] S o =x
084 o TA--A-_A o8 2 S N 0'95‘?‘ ~A
5 o g S 0B 0 “AL
2 - Sos b 5} S - 2 8\\ TA--A
(] ~ p @ - 3 7] np .2 -,
gos6 N g [iy 2 5085 8.
S ‘ S o4 e @ &g . ~5 £ o
—O— BinAuthor ~"§_ —%BinAutﬁ\o‘r\. n —6— BinAuthor V'~ 0.8 [BinAuthor - 9~
0.4 1 — A - caliskan = 0.2 |- A~ Caliskan Y 0.4 1 — A - Caliskan) —A-Caliskan . 9
O Rosenblum b @ Rosenblum s O+ Rosenblum 0.75 1.3 Rosenblum i}
02 —-4-— OBA2 0 —-&- OBA2 02 —-{-— OBA2 . --$-— OBA2
100 150 “20 40 6 0 100 10 2 30 40 50
Number of Authors 100 Nzgr?lbe?%of Alft?\%rs 500 Number o? Aut?\ors Num%er of Authors
(a) (b) () (d)
1
088 TR -A
- =N
Sose N
@ AN
Boa %
N
& | —o—BinAuthor ..
02}—A-caliskan 0.
O+ Rosenblum ~
—-&-— OBA2

200, 400 600
Number of Authors

()

800

Fig. 2. Precision results of authorship attribution obtained by BinAuthor, Caliskan-
Islam et al., Rosenblum et al., and OBA2, on (a) Github, (b) Google Code Jam, (c)
Planet Source Code, (d) Graduate Student Projects, and (e) All datasets

datasets are not available, we compare BinAuthor with these methods by using
the datasets mentioned in Table 4.

Figure 2 details the results of comparing the precision between BinAuthor
and the aforementioned methods. It shows the relationship between the pre-
cision and the number of authors present in all datasets, where the precision
decreases as the size of author population increases. The results show that Bin-
Author achieves better precision in determining the author of binaries. Taking
all four approaches into consideration, the highest precision of authorship attri-
bution is close to 99% on the Google Code Jam with less than 150 authors, while
the lowest precision is 17% when 800 authors are involved on all dataset together.
We believe the reason behind Caliskan-Islam et al. approach that achieves high
precision on Google Jam Code is that this dataset is simple and can be eas-
ily decompiled to source code. BinAuthor also identifies the authors of Github
dataset with an average precision of 92%. The main reason for this is due to
the fact that the authors of projects in Github have no restrictions when devel-
oping projects. In addition, the advanced programmers of such projects usually
design their own class or template to be used in the projects. The lowest pre-
cision obtained by BinAuthor is approximately 86% on all datasets together.
We have observed that BinAuthor achieves lower precision when it is applied on
Graduate student projects. When the number of authors is 400 on the mixed
dataset, the precision of Rosenblum et al. and OBA2 approaches drop rapidly to
40% on all datasets, whereas our system’s precision remains greater than 86%
while Caliskan-Islam et al. approach remains greater than 73%. This provides
evidence for the stability of using coding habits in identifying authors. In total,

38 S. Alrabaee et al.

the different categories of choices achieve an average precision of 98% for ten
distinct authors and 86% when discriminating among 800 authors. These results
show that author habits may survive the compilation process.

Observations. Through our experiments, we have noticed the following obser-
vations:

(1) Feature Pre-processing. We have encountered that in the existing methods, the
top-ranked features are related to the compiler (e.g., stack frame setup opera-
tion). It is thus necessary to filter irrelevant functions (e.g., compiler functions)
in order to better identify author-related portions of code. To this end, we uti-
lize a more elaborate method for filtration to eliminate the compiler effects and
to label library, compiler, and open-source software related functions. Success-
ful distinction between these functions leads to considerable time savings and
helps shift the focus of analysis to more relevant functions.

(2) Source of Features. Existing methods use disassembler and decompilers to
extract features from binaries. Caliskan-Islam et al. use a decompiler to
translate the program into C-like pseudo code via Hex-Ray [6]. They pass the
code to a fuzzy parser for C, thus obtain an abstract syntax tree from which
features can be extracted. In addition to Hex-Ray limitations [6], the C-like
pseudo code is different from the original code to the extent that the vari-
ables, branches, and keywords are different. For instance, we find that a func-
tion in the source code consists of the following keywords: (1-do, 1-switch,
3-case, 3-break, 2-while, 1-if) and the number of variables is 2. Once
we check the same function after decompiling its binary, we find that the
function consists of the following keywords: (1-do, 1-else/if, 2-goto,
2-while, 4-if) and the number of variables is 4. This will evidently lead
to misleading features, thus increasing the rate of false positives.

3.5 Scalability

Security analysts or reverse engineers may be interested in performing large-scale
author identification, and in the case of malware, an analyst may deal with an
extremely large number of new samples on a daily basis. With this in mind, we
evaluate how well BinAuthor scales. To prepare the large dataset required for
large-scale authorship attribution, we obtain programs from three sources: Google

Number of Authors x10*

Fig. 3. Large-scale author attribution precision

On Leveraging Coding Habits for Effective Binary Authorship Attribution 39

Code Jam, GitHub, and Planet Source Code. We eliminate from the experiment
programs that could not be compiled because they contain bugs and those writ-
ten by authors who contributed only one or two programs. The resulting dataset
comprised 103,800 programs by 23,000 authors: 60% from Google Code Jam, 25%
from Planet source code, and 15% from GitHub. We modified the script® used
in [19] to download all the code submitted to the Google Code Jam competition.
The programs from the other two sources were downloaded manually. All the pro-
grams were compiled with the Visual Studio and GCC compilers, using the same
settings as those in our previous investigations (Sect. 3). The experiment evaluate
how well the top-weighted choices represent author habits.

The large-scale author identification results are shown in Fig.3. Figure3
shows the precision with which BinAuthor identifies the author, and its scal-
ing behavior as the number of authors increases is satisfactory. Among almost
4000 authors, an author is identified with 72% precision. When the number of
authors is doubled to 8000, the precision is close to 65%, and it remains nearly
constant (49%) after the number of authors reaches 19,000. Additionally, we test
BinAuthor on the programs obtained from each of the sources. The precision was
high for samples from the GitHub dataset (88%) and also for samples from the
Planet dataset (82%), however it was low for samples from Google Code Jam
(51%). The results suggest that it is easier to perform attribution for authors
who wrote code for difficult tasks than for those addressing easier tasks.

We have also investigated the impact of false positives (Appendix B), and
impact of code transformation techniques (Appendix C).

3.6 Applying BinAuthor to Real Malware Binaries

The malware binary authorship attribution is very challenging due to the follow-
ing main reason: the lack of ground truth concerning the attribution of author-
ship due to the nature of malware. Such limitation explains the fact that few
research efforts have been seen on manual malware authorship attribution. In
fact, to the best of our knowledge, BinAuthor is the first attempt to apply auto-
mated authorship attribution to real malware. We describe the application of
BinAuthor to some well-known malware binaries. Details of malware dataset are
shown in Table 5. Given a set of functions, BinAuthor clusters them based on
the number of common choices.

A. Applying BinAuthor to Bunny and Babar: We apply BinAuthor to Bunny
and Babar malware samples and cluster the functions based on the choices. Bin-
Author is able to find the following coding habits automatically: the preference
for using Visual Studio 2008 and the use of a common approach to managing
functions (general choices); the use of one variable over a long chain (struc-
tural choice); the choice of methods for accessing freed memory, dynamically
deallocating allocated resources, and reopening resources more than once in the
same function (quality choices). As shown in Table6, BinAuthor found func-
tions common to Bunny and Babar that share the aforementioned coding habits:

3 https://github.com/calaylin/CodeStylometry /tree/master.

https://github.com/calaylin/CodeStylometry/tree/master

40 S. Alrabaee et al.

Table 5. Characteristics of malware dataset

Malware | Packed | Obfuscated | Source | Binary | Type | # Source of
code code binary sample
function

Zeus X X v v PE 557 Our security
lab

Citadel | X X v v PE 794 Our security
lab

Flame |X 4 X v ELF | 1434 Contagio [13]

Stuxnet | X v X v ELF | 2154 Contagio [13]

Bunny |V X X v/ PE 854 VirusSign [14]

Babar v/ X X v PE 1025 VirusSign [14]

494 functions share qualitative choices; 450 functions share embedded choices;
372 functions share general choices; and 127 functions share structural choices.
Among these, BinAuthor found 340 functions that share 4 choices, 478 functions
that share 3 choices, 150 functions that share 2 choices, and 290 functions that
share 1 choice. Considering the 854 and 1025 functions in Bunny and Babar,
respectively, BinAuthor found that 44% ((340 + 478)/(854 + 1025)) are likely to
have been written by a single author (same common choices), and 23% are likely
to have been written by multiple authors (contradictive different choices inside
the same function). No common choices were identified in the remaining 33%,
likely because different segments or code lines within the same function were
written by different authors, a common practice in writing complex software.

Table 6. Statistics of applying BinAuthor to malware binaries

Malware Number of functions with common choices |Number of common functions with

General | Qualitative | Structural | Embedded | 1 choice |2 choices |3 choices |4 choices

Bunny and Babar |372 494 127 450 290 150 478 340
Stuxnet and Flame | 725 528 189 300 689 515 294 180
Zeus and Citadel |655 452 289 370 600 588 194 258

B. Applying BinAuthor to Stuxnet and Flame: BinAuthor found the fol-
lowing coding habits automatically: the use of global variables, Lua scripting
language, a specific open-source package SQLite, and heap sort rather than
other sorting methods (general choices); the choice of opening and terminating
processes (qualitative choices); the presence of recursion patterns and the use
of POSIX socket APT rather than BSD socket APT (structural choices); and the
use of functions that are close in terms of the Mahalanobis distance, with dis-
tance close to 0.1. As shown in Table 6, BinAuthor identified functions common
to Stuxnet and Flame that share the aforementioned coding habits. BinAuthor
clustered the functions and found that 13% ((180 + 294)/(1434 + 2154)) were

On Leveraging Coding Habits for Effective Binary Authorship Attribution 41

written by one author, while 34% ((515 + 689)/(1434 + 2154)) were written by
multiple authors. No common choices were found in the remaining 53% of the
functions. The fact that these malware packages follow the same rules and set the
same targets suggests that Stuxnet and Flame are written by an organization.

C. Applying BinAuthor to Zeus and Citadel: BinAuthor identified the
following coding habits: the use of network resources rather than file resources,
creating configurations using mostly config files, the use of specific packages
such as webph and ultraVNC (general choices); the use of switch statements
rather than if statements (structural choices); the use of semaphores and locks
(qualitative choices); and the presence of functions that are close in terms of the
Mahalanobis distance, with distance = 0.0004 (embedded choices). As listed in
Table 6, BinAuthor found functions common to Zeus and Citadel that share
the aforementioned coding habits. After BinAuthor clustered the functions, it
appears that 33% were written by a single author, while 53% were written by the
same team of multiple authors. No common choices were found for the remaining
14% of the functions. Our findings clearly support the common belief that Zeus
and Citadel were written by the same team of authors.

D. Comparison with Technical Reports: We compare BinAuthor’s findings
with those made by human experts in technical reports.

— For Bunny and Babar, our results match the technical report published by the
Citizen Lab [5], which demonstrates that both malware packages were writ-
ten by a set of authors according to common implementation traits (general
and qualitative choices) and infrastructure usage (general choices). The corre-
spondence between the BinAuthor findings and those in the technical report
is the following: 60% of the choices matched those mentioned in the report,
and 40% did not; 10% of the choices found in the technical report were not
flagged by BinAuthor as they require dynamic extraction of features, while
BinAuthor uses a static process.

— For Stuxnet and Flame, our results corroborate the technical report pub-
lished by Kaspersky [12], which shows that both malware packages use similar
infrastructure (e.g., Lua) and are associated with an organization. In addition,
BinAuthor’s findings suggest that both malware packages originated from the
same organization. The frequent use of particular qualitative choices, such as
the way the code is secured, indicates the use of certain programming stan-
dards and strict adherence to the same rules. Moreover, BinAuthor’s findings
provide much more information concerning the authorship of these malware
packages. The correspondence between BinAuthor’s findings and those in the
technical report is as follows: all the choices found in the report [12] were found
by BinAuthor, but they represent only 10% of our findings. The remaining
90% of BinAuthor’s findings were not flagged by the report.

— For Zeus and Citadel, our results match the findings of the technical report
published by McAfee [3], indicating that Zeus and Citadel were written
by the same team of authors. The correspondence between the findings of
BinAuthor and those of McAfee are as follows: 45% of the choices matched

42 S. Alrabaee et al.

those in the report, while 55% did not, and 8% of the technical report findings
were not flagged by BinAuthor.

4 Related Work

Binary Authorship Attribution: Binary code has drawn significantly less
attention with respect to authorship attribution. This is mainly due to the fact
that many salient features that may identify an author’s style are lost during
the compilation process. In [15,19,32], the authors show that certain stylistic
features can indeed survive the compilation process and remain intact in binary
code, thus showing that authorship attribution for binary code should be feasi-
ble. The methodology developed by Rosenblum et al. [32] is the first attempt to
automatically identify authors of software binaries. The main concept employed
by this method is to extract syntax-based features using predefined templates
such as idioms, n-grams, and graphlets. A subsequent approach (OBA2) to auto-
matically identify the authorship of software binaries is proposed by Alrabaee
et al. [15]. The main concept employed by this method is to extract a sequence
of instructions with specific semantics and to construct a graph based on register
manipulation. A more recent approach to automatically identify the authorship
of software binaries is proposed by Caliskan-Islam et al. [19]. The authors extract
syntactical features present in source code from decompiled executable binaries.
Most recently, Meng et al. [27] introduce new fine-grained techniques to address
the problem of identifying the multiple authors of binary code by determining the
author of each basic block. The authors extract syntactic and semantic features
at a basic level, such as constant values in instructions, backward slices of vari-
ables, and width and depth of a function control flow graph (CFG). Table 7 com-
pares our approach with the aforesaid approaches. Please note that the results of
code transformation (CT) section are based on conducted experiment. When we
found the accuracy is dropped by 1-3%, we considered as “Not affected”, while
4-14% gives “Partially affected”, and finally if it was above 15%, we considered
as “Affected”.

Malware Authorship Attribution: Most existing work on malware author-
ship attribution relies on manual analysis. In 2013, a technical report published
by FireEye [28] discovered that malware binaries share the same digital infras-
tructure and code, such as the use of certificates, executable resources, and
development tools. More recently, the team at Citizen Lab attributed malware
authors according to the manual analysis exploit type found in binaries and the
manner by which actions are performed, such as connecting to a command and
control server. The authors in [5] presented a novel approach to creating cred-
ible links between binaries originating from the same group of authors. Their
goal aimed to add transparency in attribution and to supply analysts with a
tool that emphasizes or denies vendor statements. The technique is based on
features derived from different domains, such as implementation details, applied
evasion techniques, classical malware traits, or infrastructure attributes, which
are leveraged to compare the handwriting among binaries.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 43

Table 7. Comparing different existing solutions with BinAuthor.

Effort Features Compiler CcT Binaries
Syntax | Semantic | Structural | Statistical | VS| GCC | Clang | ICC | DCI|IR |IRO | RT | ELF | PE
OBA2 X v X X voX X X O © |O ® X v
Caliskan X v v v X |V X X O O |0 o |V X
Rosenblum | v/ v v X X |V X X [] [K) o v X
Meng X v v v X |V X X © O © o |V v
BinAuthor | v v v v v v v v O O |O o |v '

Note: The (v') symbol indicates that the proposal solution offers the correspond-
ing feature. (CT) stands for code transformation. (DCI) stands for dead code inser-
tion. (IR) stands for instruction replacement. (IRO) stands for instruction reordering.
(RT) stands for refactoring techniques. (O): Not affected by the code transformation
method. (@): Affected by the code transformation method. (©): Partially affected by
the code transformation method.

5 Limitations

Our work has a few important limitations.

Advanced Obfuscation: Our tool fails to handle most of the advanced obfus-
cation techniques, such as virtualization and jitting, since our system does not
deal with bytecode.

IR: Through our experiments, we notice that optimizing IR would remove some
author styles, e.g., loop deletion. We left this issue for future work by leveraging
some existing work [34].

Functionality: There are some choices appear when an author implements a
specific functionality. For instance, if the functionality does not have a multiple-
branch logic, there is no choice between if and switch.

6 Conclusion

To conclude, we have presented the first known effort on decoupling coding habits
from functionality. Previous research has applied machine learning techniques to
extract stylometry styles and can distinguish between 5-50 authors, whereas we
can handle up to 150 authors. In addition, existing works have only employed
artificial datasets, whereas we included more realistic datasets. Our findings indi-
cated that the precision of these techniques drops dramatically to approximately
45% at a scale of more than 50 authors. We also applied our system to known
malware samples (e.g., Zeus and Citadel) as a case study. We realized that
authors with advanced expertise are easier to attribute than authors who have
less expertise. Authors of realistic datasets are easier to attribute than authors
of artificial datasets. Specifically, in the GitHub dataset, the authors of a sam-
ple can be identified with greater than 90% precision. In summary, our system
demonstrates superior results on more realistic datasets.

44 S. Alrabaee et al.

Acknowledgements. The authors thank the anonymous reviewers for their valuable
comments. We also appreciate the help we received from Perry Jones in implementing
BinAuthor. This research is the result of a fruitful collaboration between the Security
Research Center (SRC) of Concordia University, Defence Research and Development
Canada (DRDC) and Google under a National Defence/NSERC Research Program.

Appendix
A Example of Qualitative Choices

Consider a template of dynamic memory allocation presented in Listing 1.1. As
shown in, we have a call to malloc, followed by checking whether or not it is
Null.

Listing 1.1. A fragment of assembly instruction that captures a bad habit of dynamic
memory allocation

call ds:malloc

or eax, OFFFFFFFF // -1 4if texzt_buffer is Null

xor eax, eax // 0 if text_buffer is not Null

The Listing 1.2 shows how the bad habit in Listing 1.1 could be considered
as a good habit at the assembly level.

Listing 1.2. A fragment of assembly instruction that captures a good habit of dynamic
memory allocation

call ds:malloc
or eax, OFFFFFFFF // -1 4if texzt_buffer 4s Null

push eax // memory address of text_buffer
call ds:free

xor eax, eax // 0 if text_buffer is not Null

B False Positives

We investigate the false positives in order to understand the situations where
BinAuthor is likely to make incorrect attribution decisions. For this experiment,
we consider 5 programs for each author. For instance, when we have 500 authors
(5 % 500 = 2500 programs), BinAuthor misclassifies 49 programs. Also, when
the number of authors is 2000 (2000 * 4 = 8000 programs), the number of false
positives is 336. We have 2000 authors from dataset used in Sect.3.2. After

On Leveraging Coding Habits for Effective Binary Authorship Attribution 45

investigation, we have found that the false positives rate for student dataset is
the highest rate and we believe the reason behind this is that the students should
follow the standard coding instructions which restrict them to have their own
habits.

C Impact of Code Transformation Techniques

Refactoring Techniques. We consider a random set of 50 files from our dataset
which we use for the C++ refactoring process [10,11]. We ignore the variable
renaming since it will have no effect in binary code, we consider the following
techniques of, (i) moving a method from a superclass to its subclasses, and (ii)
extracting a few statements and placing them into a new method. We obtain
a Precision of 91.5% in correctly classifying authors, which is only a mild drop
in comparison to the 95% precision observed without applying refactoring tech-
niques.

Impact of Obfuscation. We are interested in determining how BinAuthor
handles simple binary obfuscation techniques intended for evading detection, as
implemented by tools such as Obfuscator-LLVM [22]. These obfuscators replace
instructions by other semantically equivalent instructions, introduce spurious
control flow, and can even completely flatten control flow graphs. Obfuscation
techniques implemented by Obfuscator-LLVM are applied to the samples prior to
classifying the authors. We proceed to extract features from obfuscated samples.
We obtain a precision of 92.9% in correctly classifying authors, which is only a
slight drop in comparison to the 95% precision observed without obfuscation.

Impact of Compilers and Compilation Settings. We are further interested
to study the impact of different compilers and compilation settings on the pre-
cision of our proposed system. We perform the following tasks: (i) testing the
ability of BinAuthor when identifying the author from binaries compiled with
the same compiler, but different compiler optimization levels. Specifically, we
use binaries that were compiled with GCC/VS on x86 architecture using opti-
mization levels O2 and O3. In this test, the precision remains same (95%). (ii)
We use a different configuration to identify the author of program compiled with
both a different compiler and different compiler optimization levels. Specifically,
we use programs compiled for x86 with VS -O2 and GCC -0O3. In this test, the
precision slightly drops to 93.9%. We also redo the test for the same binaries
compiled with ICC and Clang compilers. The precision remains almost the same
93.8%. This stability in the accuracy is due to the canonicalization process.

References

1. The Google Code Jam (2008-2015). http://code.google.com/codejam/

GitHub-Build software better (2011). https://github.com/trending?l=cpp

3. Technical report: McAfee (2011). www.mcafee.com/ca/resources/wp-citadel-
trojan-summary.pdf

N

http://code.google.com/codejam/
https://github.com/trending?l=cpp
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf
www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf

46

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. Alrabaee et al.

. The materials supplement for the paper. Who Wrote This Code? Identifying
the Authors of Program Binaries (2011). http://pages.cs.wisc.edu/~nater/esorics-
supp/

Big Game Hunting: Nation-state malware research, BlackHat (2015). https://www.
blackhat.com/docs/us-15/materials/us-15- MarquisBoire- Big- Game- Hunting-The
-Peculiarities- Of-Nation-State- Malware- Research.pdf

Hex-Ray decompiler (2015). https://www.hex-rays.com/products/decompiler/
Programmer De-anonymization from Binary Executables (2015). https://github.
com/calaylin/bda

The Gephi plugin for neo4j (2015). https://marketplace.gephi.org/plugin/neo4j-
graph-database-support/

The planet source code (2015). http://www.planet-source-code.com/vb/default.
asp?lngWId=3#Content Winners

C++ refactoring tools for visual studio (2016). http://www.wholetomato.com/
Refactoring tool (2016). https://www.devexpress.com/Products/CodeRush/
Technical report, Resource 207: Kaspersky Lab Research proves that Stuxnet and
Flame developers are connected, May 2012. http://www.kaspersky.com/about/
news/virus/2012/

Contagio: malware dump, May 2016. http://contagiodump.blogspot.ca
VirusSign: Malware Research & Data Center, Virus Free, May 2016. http://www.
virussign.com/

Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M.: OBA2: an onion app-
roach to binary code authorship attribution. Digit. Investig. 11, S94-S103 (2014)
Alrabaee, S., Shirani, P., Debbabi, M., Wang, L.: On the feasibility of malware
authorship attribution. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi,
N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 256-272. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-51966-1_17

Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: SIGMA: a semantic integrated
graph matching approach for identifying reused functions in binary code. Digit.
Investig. 12, S61-S71 (2015)

Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: FOSSIL: a resilient and efficient
system for identifying FOSS functions in malware binaries. ACM Trans. Priv.
Secur. (TOPS) 21(2), 8 (2018)

Caliskan-Islam, A., et al.: When coding style survives compilation: de-anonymizing
programmers from executable binaries. Netw. Distrib. Syst. Secur. Symp. (NDSS)
(2018)

Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory
51(4), 1523-1545 (2005)

David, Y., Partush, N., Yahav, E.: Similarity of binaries through re-optimization.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 79-94. ACM (2017)

Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM: software pro-
tection for the masses. In: Proceedings of the 1st International Workshop on Soft-
ware Protection, pp. 3-9. IEEE Press (2015)

Junttila, T.A., Kaski, P.: Engineering an efficient canonical labeling tool for large
and sparse graphs. In: ALENEX, vol. 7, pp. 135-149. SIAM (2007)

Knuth, D.E.: Backus normal form vs. Backus Naur form. Commun. ACM 7(12),
735-736 (1964)

Krsul, 1., Spafford, E.H.: Authorship analysis: identifying the author of a program.
Comput. Secur. 16(3), 233-257 (1997)

http://pages.cs.wisc.edu/~nater/esorics-supp/
http://pages.cs.wisc.edu/~nater/esorics-supp/
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.hex-rays.com/products/decompiler/
https://github.com/calaylin/bda
https://github.com/calaylin/bda
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.planet-source-code.com/vb/default.asp?lngWId=3#ContentWinners
http://www.wholetomato.com/
https://www.devexpress.com/Products/CodeRush/
http://www.kaspersky.com/about/news/virus/2012/
http://www.kaspersky.com/about/news/virus/2012/
http://contagiodump.blogspot.ca
http://www.virussign.com/
http://www.virussign.com/
https://doi.org/10.1007/978-3-319-51966-1_17

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

On Leveraging Coding Habits for Effective Binary Authorship Attribution 47

Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci.
(Calcutta) 2, 49-55 (1936)

Meng, X., Miller, B.P., Jun, K.-S.: Identifying multiple authors in a binary pro-
gram. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10493, pp. 286-304. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66399-9_16

Moran, N., Bennett, J.: Supply Chain Analysis: From Quartermaster to Sunshop,
vol. 11. FireEye Labs, Milpitas (2013)

Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN Notices, vol. 42, pp. 89-100. ACM (2007)
Palmer, G., et al.: A road map for digital forensic research. In: First Digital Forensic
Research Workshop, Utica, New York, pp. 27-30 (2001)

Rajlich, V.: Software evolution and maintenance. In: Proceedings of the Future of
Software Engineering, pp. 133-144. ACM (2014)

Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? Identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 172-189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2_10

Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76-85. ACM (2003)

Shirani, P., et al.. BINARM: scalable and efficient detection of vulnerabilities
in firmware images of intelligent electronic devices. In: Giuffrida, C., Bardin, S.,
Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 114-138. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93411-2_6

Shirani, P., Wang, L., Debbabi, M.: BinShape: scalable and robust binary library
function identification using function shape. In: Polychronakis, M., Meier, M. (eds.)
DIMVA 2017. LNCS, vol. 10327, pp. 301-324. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60876-1_14

Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy, SP, pp. 138-
157. IEEE (2016)

Spafford, E.H., Weeber, S.A.: Software forensics: can we track code to its authors?
Comput. Secur. 12(6), 585-595 (1993)

Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. ACM SIGPLAN Not. 46(6), 295-305 (2011)

Wang, J.T.-L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting fea-
tures from protein sequences. IBM Syst. J. 40(2), 426-441 (2001)

Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern
Anal. Mach. Intell. 29(6), 1091-1095 (2007)

https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-319-93411-2_6
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1007/978-3-319-60876-1_14

l‘)

Check for
updates

Synthesis of a Permissive Security
Monitor

Narges Khakpour®™) and Charilaos Skandylas

Linnaeus University, Vaxjo, Sweden
narges.khakpour@lnu.se

Abstract. In this paper, we propose a new sound method to synthesize
a permissive monitor using boolean supervisory controller synthesis that
observes a Java program at certain checkpoints, predicts information flow
violations and applies suitable countermeasures to prevent violations. To
improve the permissiveness, we train the monitor and remove false pos-
itives by executing the program along with its executable model. If a
security violation is detected, the user can define sound countermeasures,
including declassification to apply in the checkpoints. We implement a
tool that automates the whole process and generates a monitor. We eval-
uate our method by applying it on the Droidbench benchmark and one
real-life Android application.

1 Introduction

Confidentiality of secret information manipulated by a program is usually formal-
ized as a noninterference baseline policy [13], which demands that low-sensitive
outputs should not be influenced by high-sensitive inputs. Several methods and
tools (e.g., JFlow JIF [19], Caml-based FlowCaml [25]) have been developed in
the last decades to analyze or enforce confidentiality. Information flow monitors
are a technique to enforce noninterference dynamically [4,7,11,14,15,22]. The
idea is to monitor the executions of a program at runtime and control its com-
pliance to security policies. As dynamic monitors only decide about the current
execution, for which more information is available at runtime, they enable us to
do a more precise analysis, and are usually more permissive compared to static
methods [18], e.g. [21] proved that dynamic monitors are more permissive in
the flow-insensitive case, where variables are assigned the security levels at the
beginning of the execution and the security levels don’t change during the execu-
tion. Hybrid monitors [14,20,24] are a class of dynamic monitors that combine
static and dynamic analysis.

Consider the following program where h is secret and the rest of variables
and objects are public:

objl.x=h;
if (a>0)
while(b>0){0bj1.x=0;b=b—1;}
else objl.x=1;
£(1); 1l=objl.x; obj2.att=1l; print(obj2);

© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 48-65, 2018.
https://doi.org/10.1007/978-3-319-99073-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_3&domain=pdf

Synthesis of a Permissive Security Monitor 49

If a > 0 Ab <0 holds, then the value of h will flow to 1 through obj1.x and
the program is insecure, otherwise the program is secure. Security type systems,
one of the main techniques for static analysis, reject this program completely,
while dynamic monitors allow the secure executions, i.e., if a > 0 Ab < 0 does
not hold, the program is secure and executes normally, otherwise, the program
is permitted to run and a certain strategy is designed to protect the system.
The existing strategies either (a) manipulate the attacker’s observation as soon
as a violation is detected, i.e. at the observation point (e.g. print(obj2) in the
above example) [14,20], (b) run several instances of the program simultaneously
with various inputs to ensure that the program does not reach an insecure state
[5,11], or (c) control assignment of low sensitive data in high contexts (i.e. a
branch on high sensitive data) [4,26]. The approaches in category (b) are expen-
sive and have a huge overhead, due to running several instances of the program
simultaneously [12]. The methods in the categories (a) and (c) detect security
violations one-step before their occurrence [20], and as a result, it becomes com-
plicated and expensive, if possible at all, to apply a proper countermeasure to
avoid information leakage.

In the above example, if executing £(1) results in modifying the database
or sending data over a network and we detect the violation immediately before
print(obj2), then a suitable countermeasure to fix the violation might require us
to recover the system to a state where a proper countermeasure can be applied,
which is difficult, if possible at all. On the other hand if we know that the
condition a > 0 A b < 0 leads to a violation before executing the program, then
we are able to apply a countermeasure before £(1).

Although, dynamic monitors are usually more permissive than static meth-
ods, they still can produce false positives and are not always the most permissive
monitor. Hence, it is crucial to construct sound dynamic and hybrid monitors
that allow as many paths as possible. In addition, to the best of our knowledge,
there is no dynamic monitor that can predict confidentiality violations at runtime
before the violation points and allows applying user-defined countermeasures, in
particular declassification, to avoid security violations.

To tackle the above challenges, we propose a new approach based on boolean
supervisory controller synthesis [6] to synthesize a hybrid monitor that monitors
a program written in a subset of Java at certain checkpoints, predicts security
violations and applies suitable countermeasures in checkpoints to avoid future
leakages. Given a program, a set of checkpoints from where the program can
be observed by the monitor, a set of observation points where the attacker can
observe the application in (See Fig.2), we use the controller synthesis method
proposed in [6] to synthesize a set of security guards for the checkpoints that
guarantee no information leakage in future, up to the next checkpoint.

To improve the permissiveness of the monitor, we construct an executable
model of the monitored program that contains only observation points and check-
points. In the training phase, we run the program along with its executable model
to train the monitor and improve its permissiveness; if a violation is predicted
at runtime in a checkpoint, we execute the program model to check whether the

50 N. Khakpour and C. Skandylas

security guard of the current checkpoint is restrictive or not. If it is restrictive,
we learn and relax the security guard to allow the current (symbolic) execution
path in future. After the monitor training, we construct a more lightweight mon-
itor that controls and predicts information flow using the learnt security guards
in the checkpoints to protect the program.

Furthermore, we design a set of secure countermeasures to be applied in the
checkpoints in case of security violations that prevent the program from reaching
an insecure state. A user-defined countermeasure can be applied at runtime,
provided that it satisfies certain conditions. One of the main countermeasures
that can be applied is to declassify information, i.e. degrade the security level
of variables. In [16], we proved that the method is sound and enforces localized
delimited release [2]. If the monitor does not perform any declassification, it
enforces termination-insensitive noninterference. Furthermore, we implement a
tool-set to support our method and conduct some experiments to evaluate the
method. Our contributions are the following:

— Permissive Sound Monitor. We propose a new approach using boolean con-
troller synthesis to efficiently construct a hybrid flow-sensitive security moni-
tor that predicts future information flow at a few predefined checkpoints in a
Java program. To improve the monitor permissiveness, we train the monitor
in a testing environment and eliminate false positives as far as possible.

— Supporting User-Defined Countermeasures. In contrast to the existing
dynamic monitors that apply a few fixed countermeasures, detecting a vio-
lation multiple steps ahead of its occurrence enables the user to design and
apply various countermeasures in the checkpoints, provided that they intro-
duce no information leakage. Our method is the first method that allows
dynamic correct-by-construction information disclosure, even though the
declassification policies are simple. While existing approaches enforce a vari-
ation of noninterference, our method guarantees localized delimited release,
and enforces termination-insensitive noninterference in case of no information
release.

— Tool Support. Our method is supported by a tool-set to control information
flow in programs written in a sub-language of Java. We also conducted exper-
iments to evaluate the effectiveness of the method.

This paper is organized as follows. We briefly introduce the controller synthe-
sis problem in Sect. 2, and give an overview of the approach in Sect. 3. Section 4
presents the program syntax, the security control flow model and the program
executable model. We introduce our monitor construction approach in Sect. 5. In
Sect. 6, we present the toolset and evaluate the approach. In Sect. 7, we discuss
related work and Sect. 8 concludes the paper.

2 Preliminaries

In this section, we briefly review the symbolic supervisory controller synthesis
method proposed in [6], the goal of which is to construct a controller to control a

Synthesis of a Permissive Security Monitor 51

system behavior, so that the bad states are avoided. In this method, the system
behavior is represented by a symbolic control flow graph. Let V = (vq,...,v,)
be a tuple of variables, D,, be the (infinite) domain of a variable v;, and Dy =
[ic1,n Doi- A valuation v of V is a tuple (v1,...,v,) € Dy, and we show the
value of v; in v by v(v;), 1 < ¢ < n. A predicate P over a tuple V is defined as a
subset P C Dy (a state set for which the predicate holds). We show the union
of two vectors V4 and V5 by Vi W V5.

Definition 1 (Symbolic Control Flow Graphs). A symbolic control flow
graph (SCFG) is a tuple G = (L,V,1,l,,v9,A) where L is a finite non-empty
set of locations, V = (vy,...,v,) is a tuple of variables, I is a vector of inputs,
lo is the initial location, vg € Dy shows the initial valuation of the variables,
and A is a finite set of symbolic transitions 6 = (Gs, As) where Gs C Dy is
a predicate on V W I, which guards the transition, and Ags : Dy — Dywy is the
update function of 6, defined as a set of assignments.

Initially, G is in its initial state. A transition can only be fired if its guard
is satisfied and when fired, the variables are updated according to its update

function. Let | and I’ be two locations. We use the notation [LR I to
represent a symbolic transition (Gg, As) with the source [and target I’. The
semantics of a SCFG G is defined in terms of a deterministic finite state machine.

In this method, the inputs are partitioned into two sets of controllable and
uncontrollable inputs: an input is uncontrollable if it can not be prevented from
occurring in a system, while controllable inputs are issued by the controller to
control the system behaviour. Let ¢ : L — Dy be the invariants defined for
the locations (i.e. an invariant () is a condition on the valuation of variables
that must always hold when the system enters the location [), and I, C I be
the set of controllable inputs. Given an invariant ¥ and a SCFG G, a controller
C : L — Dywy, is synthesized to observe the system and allow or prohibit the
controllable inputs, so that the system G avoids entering a bad state, i.e. a state
that does not satisfy its invariant.

3 The Method Overview

Figure 1 shows an overview of our method. The Java program is annotated with
checkpoints, observations points (can be avoided), initial security labels and
entry points (See Fig.2 and Sect.4). A checkpoint is essentially a method call
in which we monitor the program, and can apply a countermeasure if needed.
The checkpoints are not permitted to exist under branch statements. An obser-
vation point is a point that leads to an observation by the attacker, that is
either a method call or the exit point of a branch of a conditional/loop whose
other branch contains a method call observation point. We construct a boolean
symbolic control flow graph that describes the program control flow enriched
with security typing information (See Sect. 4) which is fed to the Reax controller
synthesis tool [6]. For each checkpoint, the tool generates the abstract security
guards in terms of program paths and security types that in principle show the

52

N. Khakpour and C. Skandylas

Static Analysis

Annotated Program

construct

construct

>

construct

Security Control Flow Model
(Boolean SCFG)
Security Semantics (SCFG))

Program Model (SCFG) »<J-----,

soyeIouad

Security Guards

Reax Synthesis Tool

Runtime Analysis

£0 to next checkpoint

apply countermeasure

evaluate the guard of
current checkpoint

yes

no

secure

no,

learning on

12351

Learning Yodule

check the permissiveness

sapepdn

reads

relax security guard

Application }

Fig. 1. The method overview

paths that do not lead to insecure states (See Sect. 5). We also express the (secu-
rity) semantics of the program in terms of a symbolic control flow graph that
includes both the program behaviour and the security typing information. Given
the security semantics, we construct a model called program model that includes
only observation points in addition to checkpoints (See Sect.4). We propose a
framework to construct a secure monitor in Sect. 5 that applies the countermea-
sures either in the checkpoints and/or in the observation points, depending on
the user preferences.

The program is observed by the monitor in the checkpoints (e.g. the run
method in Fig. 2) at runtime. The monitor checks the security guards of the cur-
rent checkpoint to determine whether the program will reach an insecure state
(e.g. in the println method in Fig.2) or not. If not, the program will continue
its execution. Otherwise, if the learning feature is enabled (e.g. in the training
phase), the monitor executes its program model using a model execution engine
to ensure that the generated security guard is not restrictive. If the generated
security guard of the current checkpoint is restrictive, it is relaxed to allow this
secure path henceforth, i.e. the security guards are learned and improved over
time. Afterwards, the program continues its execution by applying a countermea-
sure. This monitor will be the most permissive monitor, if we train it sufficiently,
as it will never block a secure path.

4 Security Control Flow Model

We consider a sub-language of Java whose simplified syntax of statements is
shown in Fig. 3, that includes loop statements, conditional statements, assign-
ments, a return command, constructors and method calls. In this figure, v is
a variable of primitive type, e is an expression, stm is a statement, o is an

Synthesis of a Permissive Security Monitor 53

/* @EntryPoint */
/* @CheckPoint */
public void run(/*@SecurityInit(securitylLevel="H", policyType="IC")*/
int ah, int ad){ int ares = @; Classl objectl = new Classl(ad);
int aw = objectl.attr + 3;
while (@ < aw) {
ares = objectl.attr + 10;
objectl.attr = ah + 1;
ah = ares - 1;
aw = aw - 3;}
objectl.attr = objectl.attr * ad;
/* @0bservationPoint (default="System.out.println(3000)")*/
System.out.println(/* @SecurityPolicy(securitylLevel="L", policyType="IC")
*/objectl.attr);

Fig. 2. Java code snippet

object, stms is a sequence of statements, o.m(g) is a method call with arguments

€ =eé1...6m, and / shows an empty sequence of statements. The statements
in a bracket are optional and € shows no argument.

We follow a type-based flow-sensitive method and assign a security type to
each variable, i.e. the security type of a variable may change during the program
execution. A variable is either a primitive variable or an instance variable of a
user-defined type. We consider a two-level security lattice (£,C,) where £ =
{H, L} is the set of security types, C is a partial order defined over £ and U is an
operator that gives the least upper bound of two elements in £ (i.e. disjunction).
The function var(e) returns the variables that appear in the expression e, and if
e is an object, it returns the object itself along with all its accessible attributes
(i.e. its own attributes, the attributes of its attributes, etc). The notation e

represents the security type of an expression e, defined as L ()T), i.e. the
vevar(e

security type of an instance variable is defined based on the security types of all
its attributes.

We define an abstract security semantics for our language in terms of boolean
symbolic control flow graphs partially shown in Fig.4. We abstract away the
program variables in this semantics and only consider the program control flow
in addition to the variables’ security types. We assign a unique abstract boolean
variable called a branch variable to each branch that denotes if that branch is
enabled or not. A loop body might change the loop guard, and subsequently, the
value of its branch variable might change in each iteration. Since, we don’t model
the program variables and consequently the loop body behaviour, we consider an
uncontrollable boolean input called uncontrollable loop guard for each loop and
each of its internal branches that non-deterministically takes a boolean value in
each state and is assigned to the corresponding branch variable after execution
of the loop body.

Let G = (L,V,1,l,,v0,A) represent a SCFG that shows the security seman-
tics of a program where A is defined using the rules in Fig. 4. The locations L are
the set of configurations where a configuration is defined as a stack og : ...: o,
of currently active contexts. A context o, 0 < k < n shows the statements of
a method body that remain to be executed or a block of instructions (e.g. loop
body), and pc,,, shows the security type of the context 0. The state variables V/
include the branch variables, the security types assigned to the program variables

54 N. Khakpour and C. Skandylas

¢ u==o|newm(e)]|om(e)
stmu=v=c|o=c|om(e)|if (¢) stms [else stms] | while (¢) stms | return [¢] | \/
stms == stm; stms | stm;

Fig. 3. The statements syntax

and the set of variables representing whether two instance variables point to the
same object or not. The uncontrollable inputs of I include the uncontrollable
loop guards and 7 that is a boolean variable associated with the non-checkpoint
transitions, and its controllable inputs are boolean inputs associated with each
checkpoint transition.

The rule ASSIGNL defines the semantics of a variable of primitive type where
e is a method call free expression. The security type of v is modified to the
upper bound of e’s security level (€) and the security level of current context
pc,, - To handle object aliasing in our pure boolean SCFG, for each two arbitrary
object instance variables of the same type, we consider a boolean variable called
points-to variable to indicate whether they point to the same object or not. The
function alias returns a boolean variable to show if two instance variables are
in aliasing relation or not, where for all o, ¢’, alias(o,0’) = alias(0’, 0). When an
instance variable is updated, the points-to variables in addition to the security
types of the associated instance variables are updated. The rule ASSIGNO defines
the semantics of an assignment where the assignee is not an attribute instance
variable. This rule relates the assignee to the assigner and all the instance vari-
ables related to the assigner (i.e. UpdatePointsToVars sets their corresponding
points-to variables), and changes the type of assignee to the upper bound of the
assigner’s type and pc, . It will update the security types of the attributes of
instance variables newly related to the assigner (UpdateAttributesLabels) (more
details in [16]).

The rule COND defines the semantics of conditional statements, and the rule
WHILEL defines the semantics of loops. In these rules, the function mc(stms)
shows the variables that might be modified by stms and basically returns all
left-hand side variables of the assignments in stms, and [stms] indicates that the
code stms is executing under a branch. When the program enters a branch, a new
context 0,11 is created whose security type is defined as the upper bound of the
current context security label (pc,) and the security label of e. In addition, the
security labels of all variables of the unexecuted branch in the new context are
updated in order to detect indirect implicit flows. The function x(og : ... : 0,)
returns two unique branch variables, assigned to each branch from a configu-
ration og : ... : 0,. When a program exits a branch or finishes the execution
of the loop body, the latest context is removed (the rule EXIT and the rule
WHILE2). In addition, the branch variables of a loop body (bv(c)) are updated
to their corresponding uncontrollable loop guard variables (LoopGuard the rule
WHILE2).

Synthesis of a Permissive Security Monitor 55

U={v=¢eUpc,, }
(co:...ion={v=0c¢;)l(dniu»i”n:{\/})

ASSIGNL

—Attribute(o0),
U ={o=0 Upc,,,alias(o,0) = T} U UpdatePointsToVars(o, o') U UpdateAttributesLabels(o, ')

ASSIGNO e
(o0:...:on={o=03}) ——{(o0:...:0n ={V})
Ut = {pcy(e,; = €Upc,, T U U():?:i PC,
zeme(co
Uy := {PC([CQ]):EUPC%}U Z=zUpc, , (¢1,¢2) =x(00:...:00n)
COND zeme(er) .
(00t ... on = {if (¢) c1 else e}) 22T (o0 ... {y/} : {[e]})
(00 :...:0n = {if (€) c1 else ca}) RN (00t ..t {/}: {[e2]})
U = {pc”n+1 =eélUpc, }, U:= U @=zUpc,, , (¢1,02) =x(00:...:00)
WHILEL d) ILETYIL(C)
(00 :...: 0, = {while (e) ¢;}) =5 <0‘n tooot{V} ot = {[c; while (e) c]})
(00:...:0n ={while (¢) ¢;}) — 220, oV
U:= |J ¢ = LoopGuard(¢:)
WHILE2 fuctolc) =
(00 :...: {stms} : {[while (e) c]}) — (o0 :...: {while (e) ¢;})
EXIT ST
i {stms} {[V]}) — (o0 : ... : {stms})
NonThirdParty(m),U := {pc, . =pc, },
CALLNT — 3//() {peo, 1y =P} —
(oo:...:0n ={v=0m(e)}) —— (o0 :...: {return v} : ony1 = {body[e /pr(m)|})
RETURN
(00 :...: {return v; } : {return z; }) (ag L Av=m})
ThirdParty(m) , | = é& U...UepUolUpe, , U= {o=0u U &=
0<i<m
CALLT

(00:...:0n={v=0m(e)}) =L (oo:...:0n ={V})
(00:...: 00 ={v=0m(e)}) === <rr oron={V}

Fig. 4. The security control flow semantics

The rule CALLNT describes the security semantics of a non-third party pub-
lic method invocation defined for a class of type ¢ that creates a new context
with the statements body[e /pr(m)] that is obtained by substituting the method
parameters pr(m) in the method body with the arguments ‘e. The return state-
ment pops the context and populates the variable v with the return value x
(the rule RETURN) where z is a variable. For third-party methods, we set the
security labels of all pass-by-reference arguments and the caller to high, if the
method is invoked with a high-sensitive argument or the caller is high-sensitive
(rule cALLT). We assume that the caller has no static attribute.

Ezample 1. Figure5(a) shows the simplified security control flow model of the
while loop in Fig. 2 generated by our tool. In this figure, the conditions WA41 and
NA41 are branch variables and EWA41 and ENA41 are uncontrollable loop guards.

56 N. Khakpour and C. Skandylas

(Application
State SpaceDy,

Program
! Model
Transitions
.Checkpoin(s

.~ Observation
- points

<NA41 and not woracle41, US>

-

<true, LPC=LPC1;WA41=EWA41;
woracle4| =EWA41;NA41=ENA41;>

<WA41 and woracle4 1 LPC1=LPC;
LPC~false or L_pack_Class2_run_w5 or LPC;>

— Controllable
transition
-> Uncontrollable
transition

<true, U4>

Fig. 5. (a) Security control flow model example; (b) Insecure state avoidance

Program Model. From the program semantics that is obtained by adding pro-
gram variables to the security control flow semantics, we construct a program
model that contains only the checkpoints and the observation points by merging
the transitions (See Fig.5(b)). We remove an unmonitorable transition t (i.e.
its source is not a checkpoint or an observation point) by first propagating the
transitions’ guard and updates backwards to its incoming transitions, and then
eliminating it. If there is no other transition from the source location of t, we
remove the source location as well. The propagation continues until there is no
further unmonitorable transition to process. We proved the soundness of the
propagation algorithm [16].

5 Monitor Synthesis

The monitor synthesis process consists of two steps discussed in this section.

Step 1 - Generating Checkpoint Security Guards

A program is in an insecure state if it is in an observation point whose security
policies have been violated, i.e. leaks information. An observation point is either a
third-party method call, or the exit point of the unexecuted branch of a branch
statement where the executed branch contains an observation point that is a
method call. We consider the latter to be able to detect indirect information
flows. For example, consider the following program where print is an observation
point:

if (h>0) print(10) else h=1;

If h>0, then the attacker observes 10 in output and will know that h was
greater than 0. If the else branch executes, since nothing is printed out, the
attacker will know that h<=0 holds. It is obvious that executing either of the
branches causes information leakage. To prevent any leakage, we consider two

Synthesis of a Permissive Security Monitor 57

points in this program that must be avoided: print (1) that should always be
called with low-sensitive data, and the outgoing transition of the else branch
that should be in a low-sensitive context. Insecure states are formally specified
as boolean expressions defined over security labels for the locations, e.g. — 10 in
the configuration print (10) in the above example.

Given the (boolean) security control flow semantics described in Sect. 4 and
the specification of insecure states, we use the boolean controller synthesis
method described in Sect. 2 to obtain the abstract security guards (See Fig. 5(b)).
An abstract security guard describes the execution paths and security types that
lead to an insecure state. The guard of a checkpoint’s transition is restricted to
allow only execution paths that do not cause a security violation, and the insecure
paths are controlled by applying countermeasures to avoid a violation. Observe
that in the security control flow model, all the transitions from the checkpoints
are considered controllable and the rest of the transitions are uncontrollable
(Fig. 5(b)).

To obtain the security guards in terms of program variables, we propagate
each branch guard along its path to its controlling checkpoint. For instance, in
our example, the simplified generated guard for the checkpoint run is — ad A
—WA41. To be able to evaluate this condition in the checkpoint, we propagate
WA41 to the checkpoint run that results in 0<(d+3).

If there is a conditional statement after the loop in our example, we cannot
propagate its conditions to the checkpoint run, as we need to propagate the
conditions through the loop which is not always possible. To solve this problem,
we assume a dummy checkpoint after the loop body, called loop checkpoint that
is used to propagate the conditions to, instead of the controlling checkpoint (e.g.
the transition from 46 to 41 in Fig.5(a)).

Step 2 - Monitor Construction

In the second step, we design a monitor to observe a program in the checkpoints
and control the information flow. In the checkpoints, if the security guard of
the current checkpoint, produced in the first step, allows the execution, the
program will continue its execution and the monitor state will also be updated
and evolved to the next checkpoint. Otherwise, a countermeasure will be applied
to protect the program. One of the main countermeasures that the user can apply
is to declassify the high-sensitive information to prevent reaching insecure states.
Declassifying a variable leads to downgrading its security label.

We represent a program state by (c,rv) where ¢ is the configuration and v
indicates the program variables valuation. A monitor state is represented by
(p, mode, I, pc, I') where p is the current checkpoint of the monitor, mode is a
variable that shows the monitoring mode (will be discussed later), I is the set of
variables declassified so far, pc is the stack of security contexts, and the function
I" shows the valuation of security type variables. We represent the state of the
monitored program by (c,v) || (p, mode, I, pc,).

Let C be the set of checkpoint configurations, I be the set of observation

. G,A
point configurations, P be the set of security policies and p —— p’ represent

58 N. Khakpour and C. Skandylas

(c,v) = (', V), cgC,cgL

NCP-SEC
(c,v) || {p, mode, I,pc,I") — (', v') || {p, mode, I,pc,I")

Ne LA o wEG, (v,) I Guard(c) , —Restrictive(c, v, I',C, P) ,
Iy, I =T | (I'\I) , secure(cmeasure)
)

¢, mode, I,pc,I") — (c,v") || (¢, mode, I’, pc, ")

(c,v) — (c/,v
cmeasure(v, I)

CP-INSEC1
(c,v

3

(e,v) — (¢ vy, e 22 5 v E G, (v, T) i Guard(c) , —Restrictive(c, v, I',C,P) , pc’ = A(pc) , I = A(T')

JP-INSEC2
CrIREe {e;0) || (e, mode, I,pe, T — (&, 0} | (o, T, 1, pe’, I7)

(c,v) — (", V), e G4, p,vEG, (v,I') ¥ Guard(c) , Restrictive(c,v, I',C,P) , pc’ = A(pc) , I'" = A(I")

(e, v) || (e, mode, I,pe, I') — (', v) || {p, mode, I", pc’, I'")
Guard(c) = Guard(c) A ~path(c, p, v)

CP-INSEC3

(c,v) = (d,v), pc=pcy:...:pc, , pe, =L, c#p,cgC,cel

oP- SEC
P-LINSE (c,v) | {p, T, I,pc, Iy — (" ,v) || {p, T, I,pc, T’)

pc=pc; :...:pc, ,pc, =H,c#p,cgC,cel
ev) [(o, T, Lpe, I') = (V,v) || {p, T, I, pe, I')
(c,v) — (', V'), (3;‘4,/," viEG, (v,I') | Guard(c) , pc’ = A(pc) , I'" = A(I')
(c,v) || {c, mode, I, pc, I') — (c', ") || (¢, L, I, pc’, ")

OP-HINSEC

CP-SEC

Fig. 6. The behaviour of a monitored program

a symbolic transition from a checkpoint p to p’ of the program model. The
behavior of the monitored program is described by the rules in Fig. 6. The first
rule states that if ¢ is neither a checkpoint nor an observation point, then the
program continues its normal execution. When a security violation is predicted
in a checkpoint, we propose three general strategies for protection and the system
administrator should apply the proper one to react to a security violation. We
say a security violation is predicted in a checkpoint c in a state, if the propagated
security guard generated for that checkpoint (Guard(c)) is not satisfied in that
state.

The guards generated in the first step can sometimes be restrictive. To check
if a violation prediction is restrictive or not, we execute the program model up to
the next checkpoint and check if the security policies have been violated along
the path or not. If there is a violated security policy along the path, it means
that the prediction is correct, otherwise, the security guard is restrictive for this
specific path and must be relaxed. The predicate Restrictive(c,v, I, C,P) states
that no security policy of P is violated in the states along the path from the
program state (¢,) to the next checkpoint.

When a violation is predicted, the monitor can apply a user-defined counter-
measure cmeasure provided that this countermeasure is secure and the prediction
is not restrictive (the rule cp-insecl in Fig. 6). Let I" | V be a typing environment
that degrades the security level of the variables of V in I'. The countermeasure
cmeasure should not change the value of the low-variables. In addition, it can
only declassify variables that have not been modified by the program so far, i.e.
I'\INnv(mv) = 0 where I'\I is the set of declassified variables and mv is the set
of variables modified so far. For instance, consider the following program:

Synthesis of a Permissive Security Monitor 59

hi=h2; £(); if (11<10) {12=h1;} else 12=11; print(12);

where 11 and 12 are low-sensitive, and hl and h2 are high-sensitive. Let £ ()
be the checkpoint and initially I'(h1) = I'(h2) = H. If we declassify h1 in the
checkpoint, it also reveals h2. The reason is that the value of h1l is set to h2
before the checkpoint and if the if branch executes, hl (and h2) will be copied
to 12 that will be printed and revealed. Hence, we only allow declassification of
variables that have not been modified. In addition, the variables declassified by
applying a countermeasure shouldn’t depend on the program state except for
the program location. For instance, consider the following program

if (h3) { h1=5;} else h2=11; f£(); 1=hl; print(1l1);

If h3 is true, h1 becomes modified and we cannot declassify it. If h3 is false, even
though h1 does not change, we do not allow it to be declassified, as it leads to
the disclosure of h3 as well. Furthermore, the countermeasure should not lead
the program into an insecure state again. Consider the program

£(); 1if(11<10) {12=h;} else 12=11; print(12);

If 11<10 A I'(h) = H holds in the checkpoint, the program is insecure, oth-
erwise it’s secure. As mentioned above, cmeasure cannot change any low-
sensitive variable such as 11. Hence, a countermeasure that prevents the program
from reaching an insecure state should include declassification of h, otherwise,
11<10 A I'(h) = H holds infinitely and this leads to a live lock situation where
the program makes no progress and keeps constantly applying the same coun-
termeasure. To avoid this situation, applying a countermeasure should lead to
triggering a permissible transition, i.e. after applying the countermeasure, there
should be a transition in the monitor that can be triggered.

Based on the above issues, a countermeasure cmeasure is secure, if for all v
that cmeasure(v,I) = (v, I’), (i) applying cmeasure does not lead the program
into an insecure state, i.e. a transition from the location ¢ in the monitor with
a guard G’ exists such that v/ = G’, (ii) the condition v =p v/ A I' N
V/(mv) = () holds, and (iii) for all vy and vo, if cmeasure(vy,I) = (v}, 1])
and cmeasure(vy, I) = (vh, I4), then I1 = I,. We say two memories v and v/
are low-equal w.r.t. I', denoted by v =y v/, if their low variables according to
the security typing function I' are identical, i.e. v(v) = v'(v) where I'(v) = L,
Vv € V and V is the set of program variables.

If a prediction about a violation is incorrect in a checkpoint ¢, the program
will be allowed to execute and the security guard of the checkpoint (Guard(c))
will be weakened (the rule cp-insec3). The function path(c, p,v) returns the
conditions in the state v that enable the path from ¢ to p.

If the violation is predicted correctly but there is no countermeasure to apply
in that checkpoint and all the future observation points up to the next check-
points are side-effect free (i.e. return void), the execution mode is changed to
secure (mode = T) and a countermeasure is applied in the observation points,
as done in [20] (the rule cp-insec2). The rule cp-sec states that if the program is

60 N. Khakpour and C. Skandylas

in a checkpoint, and the monitor allows its transition (v | G), then the monitor
and the program evolve into their new states, and the monitoring mode changes
to normal (L). In the secure mode execution, if the context is low and execut-
ing a statement in an observation point leads to a security policy violation, a
default side-effect-free action ¢’ is performed, e.g. sending default data (the rule
op-linsec), otherwise nothing happens (the rule op-hinsec). We assume that the
observation points are side-effect free so that the countermeasures do not change
the program semantics. The rules for the case that the learning feature is inactive
are defined similarly.

In [16], we proved that a monitored program satisfies localized delimited
release property [2], which states that, for any initial memory states s and s’
whose secret parts may only differ, if the value of all declassified variables is the
same in both s and s’, then the observation sequence of the program running in
state s and s’ will be the same, or one is a prefix of the other. The reason for
the latter case is that our method guarantees a termination-insensitive property.
This notion disallows data release before it is declassified but allows release after
declassification. In the case of no information release, it satisfies termination-
insensitive non-interference.

6 Implementation and Evaluation

The Tool Set. We have implemented a tool to demonstrate the proposed method
targeting Java applications. The tool consists of two main components: the static
analysis component and the model execution engine. The static analysis requires
the annotated Java application as input and (i) generates security guards for
the checkpoints by employing the Reax [6] synthesis tool, (ii) automatically
constructs the program model, and (iii) instruments the code for the monitoring
purpose. The model execution engine executes symbolic control flow graphs and
is used to run the program models.

Two versions of the monitor have been implemented. In the first version, we
use the aforementioned engine to run the program model and train the monitor
to eliminate false positives. In the entry point, the monitor initiates its state and
loads the required information for it to function. On each of the checkpoints, the
engine executes the program model until the next checkpoint, and checks if
a violation has been predicted correctly. If the security guards of the current
checkpoint are restrictive, it then relaxes the security guards.

In the second version, called model-execution free monitor, the program
model is not executed and subsequently the monitor cannot learn new security
guards. In this monitor, the security guards are checked at the checkpoints and
the proper follow-up is executed if needed. If there is no violation, the security
labels are updated to their values in the next checkpoint.

To assess the permissiveness of our method and the performance of tool, we
applied it to a real world android application as well as multiple test cases of the
Droidbench test suite. The application used is pedometer [1] with 1483 lines of
code. The static experiments were performed on a Intel i7-6700 at 3.4 GHz and

Synthesis of a Permissive Security Monitor 61

32GB of DDR4 Ram running a 64bit version of Ubuntu Linux. The dynamic
experiments were performed on a Galaxy Tab S3 running android version 7.0.

We used 70 test cases from the Droidbench benchmark to evaluate the permis-
siveness of our method. We have achieved a precision of 100% and had 4(5%) false
positives. The static analysis performance depends on the size of code, number
of variables, the number of checkpoints and the average distance between them.
The more checkpoints the program contains, the shorter the distance between
the checkpoints and the more performant the static analysis usually should be.
Figure 7(a) shows the performance results for static analysis of pedometer. That
is mainly due to the guards being propagated along shorter paths when con-
structing the program model. The analysis of test cases in the Droidbench
benchmark takes a fraction of second, as they are very small programs. Due to
the small size of test cases in the Droidbench benchmark, it was not possible to
have more than one checkpoint in a test case to evaluate the affect of number
of checkpoints on the performance. In general, since we use boolean controller
synthesis and state space partitioning to tackle complexity, we believe that static
analysis should not be expensive, as confirmed by our current experiments so
far.

The performance of the runtime monitor with learning feature is dependent
on the number of the lines of code of the original program (See Fig.7(b) for
pedometer). For each instruction in the original program the monitor has to
execute that instruction and update the security labels. Additionally the check-
point guards have to be checked. As a result, we expect the runtime monitor
to incur a significant performance overhead compared to the program with no
monitor.

The monitor-execution free instance only checks the guards at each check-
point and usually outperforms the runtime monitor. Its performance depends on
the number of checkpoints; it sounds that the more the checkpoints the program
has, the fewer checks have to be run at each one which improves performance.
Note that the guards are propagated and simplified statically. An outside factor
that seems to impact the monitor’s performance is the JVM’s optimization; when
the checkpoints run many times, we noticed that the performance increases by
at least an order of magnitude, e.g. from a 30% monitor running time to <1%.

Discussion. We believe that the results of static analysis are promising, mainly
because the method uses boolean analysis and state partitioning. However, the
performance overhead of dynamic monitor for our current test cases is scat-
tered in quite a wide interval, e.g. from less than 1% to 40% for the model-
execution free monitoring. We believe that we need to conduct many more
experiments on different programs with various sizes, number of checkpoints,
number of branches, number of variables etc, to be able to make a valid con-
clusion about the performance of the dynamic monitor. To this end, we should
extend the method and tool to support exceptions, to be able to apply it on more
real-life case studies. Furthermore, we are working on a new solution to run the
monitor concurrently with the original program that is expected to improve the
performance.

62 N. Khakpour and C. Skandylas

Dynamic Analysis Performance

"

o
. = —8— No Execution
gt Siatie Analysis Performance s Execution
2.2 0.8

:
el
2
=l
2
$
—_ =

< £ 04 B‘B\E‘
P 2
: pt
& 5]
1 &

:2 0.2
5}
s
°
5t
&
0.4 : 5
6 90 150 200 1 2 5 11
Average Distance Between Checkpoints Number of checkpoints
(a) (b)

Fig. 7. Performance results

7 Related Work

There is a large body of work on verification and enforcement of noninterference
as a policy to enforce confidentiality [13]. We have compared our approach with
the related work in [16]. In this section, we discuss some related work.

The authors in [8] present a taxonomy of existing dynamic and hybrid
monitors: no-sensitive-upgrade (NSU), permissive-upgrade (PU), hybrid monitor
(HM), secure multi-execution (SME), and multiple facets (MF). The NSU [3,26]
approach generates a purely dynamic monitor, that controls only one execution
and disallows any upgrade of a low sensitive variable in a high context. This app-
roach is improved in [4] by using a less-restrictive strategy in upgrading low vari-
ables in a high context, called permissive upgrade. In SME [11,17] and MF [5],
multiple versions of a program are executed simultaneously, one for each secu-
rity level, and the variable updates are controlled in a way that there will be no
information leakage. These two categories of approaches introduce no information
flow, however, they suffer from high performance overhead at runtime [5,12] that
increases with the number of used security levels. Moreover, some repairable exe-
cutions get blocked and the only applicable countermeasure is replacing the value
of violating variables with some low-secure and safe constants.

In [9,14], the authors apply a flow-sensitive type system to instrument seman-
tics of a program and consider unexecuted paths to detect indirect flows. Then,
they statically construct a monitoring automaton that is traversed at runtime
to detect security violations and apply countermeasures. In [20], the authors
proposed a framework for hybrid monitors that is proven to be sound and guar-
antees termination insensitive noninterference for a simple language with output.
It uses the countermeasures stop, suppress, or rewrite to react to a violation in
output points. We extended their flow-sensitive type system with objects and
method calls to instrument the program semantics. We predict violations at cer-
tain checkpoints which allows us to enforce a wider range of countermeasures
at runtime to handle and resolve a security violation. Our “monitor mode” is

Synthesis of a Permissive Security Monitor 63

inspired from this work as well. Taint checking is another dynamic mechanism
to control information flow, by tracking data dependencies as data is propa-
gated in the system, that is well-surveyed in [23]. However, as it only tracks
explicit flows [10] and ignores implicit flows, it enforces a weaker property than
noninterference.

In contrast to the existing hybrid and dynamic monitors (e.g. [3,9,11,12,14,
14,17,20,24,26]), (i) our framework provides a learning feature that enables us
to train the monitor and improve its permissiveness, (ii) it supports declassifica-
tion and enforces localized delimited declassification while the existing monitors
usually enforce a noninterference property, and (iii) we detect a violation in the
checkpoints, in several steps before its occurrence, that allows us to enforce a
wider range of countermeasures at runtime to protect against leakages. The main
drawback of our method is its performance overhead that we are currently trying
to improve by providing concurrent versions and optimizing the security guards.

8 Concluding Remarks

In this paper, we proposed an approach and its supporting tool for generating
a hybrid security monitor for a subset of Java programs. This method syn-
thesizes a sound symbolic monitor to predict undesired information flows and
apply secure (user-defined) countermeasures to prevent information leakage and
enforce localized delimited declassification. Given an annotated Java program,
we implemented a tool-set to automatically generate a monitor. We also carried
out some preliminary experiments to assess the method.

The results of our static analysis technique are promising in terms of both
performance and the number of false positives. Hence, it can be used by the users
to re-design their programs to fix information leakage problems at design time. In
general, dynamic and hybrid monitors suffer from performance overhead [5,12],
and so does our method. To improve its performance overhead, we are working
on extending the method to support concurrent execution of monitors with the
program, as well as simplifying the generated guards. We will also extend the
supported sub-language of Java and conduct more experiments to evaluate the
effectiveness of the tool properly.

References

1. Pedometer. https://f-droid.org/packages/name.bagi.levente.pedometer/

2. Askarov, A., Sabelfeld, A.: Localized delimited release: combining the what and
where dimensions of information release. In: Proceedings of the 2007 Workshop
on Programming Languages and Analysis for Security, PLAS 2007, San Diego,
California, USA, 14 June 2007, pp. 53-60 (2007)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages
and Analysis for Security, PLAS 2009, New York, NY, USA, pp. 113-124 (2009)

https://f-droid.org/packages/name.bagi.levente.pedometer/

64

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

N. Khakpour and C. Skandylas

. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS 2010, New York, NY, USA, pp. 3:1-3:12. ACM, New
York (2010)

Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, New York, NY, USA, pp. 165-178. ACM,
New York (2012)

Berthier, N., Marchand, H.: Discrete controller synthesis for infinite state systems
with ReaX. In: 12th International Workshop on Discrete Event Systems, WODES
2014, Cachan, France, 14-16 May 2014, pp. 46-53 (2014)

Besson, F., Bielova, N., Jensen, T.P.: Hybrid information flow monitoring against
web tracking. In: 2013 IEEE 26th Computer Security Foundations Symposium,
New Orleans, LA, USA, 26-28 June 2013, pp. 240-254 (2013)

Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Vigano, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46-67. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49635-0_3

Dam, M., Le Guernic, G., Lundblad, A.: TreeDroid: a tree automaton based app-
roach to enforcing data processing policies. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS 2012, New York, NY,
USA, pp. 894-905. ACM, New York (2012)

Denning, D.E.; Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504-513 (1977)

Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: 31st
IEEE Symposium on Security and Privacy, S&P 2010, Berleley /Oakland, Califor-
nia, USA, 16-19 May 2010, pp. 109-124 (2010)

Desharnais, J., Kozyri, E., Tawbi, N.: Block-safe information flow control. Techni-
cal report, Cornell University (2016)

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 TEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26-28 April 1982, pp.
11-20 (1982)

Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 75-89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
77505-8_7

Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In:
25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, 25-27 June 2012, pp. 3-18 (2012)

Khakpour, N., Skandylas, C.: Symbolic synthesis of a permissive security monitor:
the extended version. Technical report, Linnaeus University (2018)

Kwon, Y., et al.: LDX: causality inference by lightweight dual execution. In: Pro-
ceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2016, New York,
NY, USA, pp. 503-515. ACM, New York (2016)

Le Guernic, G.: Confidentiality enforcement using dynamic information flow anal-
yses. Ph.D. thesis, Manhattan, KS, USA (2007)

Pullicino, K.: Jif: language-based information-flow security in Java. CoRR,
abs/1412.8639 (2014)

Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, 17-19 July 2010, pp. 186-199 (2010)

https://doi.org/10.1007/978-3-662-49635-0_3
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7

21.

22.

23.

24.

25.

26.

Synthesis of a Permissive Security Monitor 65

Sabelfeld, A., Russo, A.: From dynamic to static and back: riding the roller coaster
of information-flow control research. In: Pnueli, A., Virbitskaite, I., Voronkov,
A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 352-365. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11486-1_30

Santos, J.F., Rezk, T.: An information flow monitor-inlining compiler for securing
a core of JavaScript. In: Proceedings of the ICT Systems Security and Privacy
Protection - 29th IFIP TC 11 International Conference, SEC 2014, Marrakech,
Morocco, 2—4 June 2014, pp. 278-292 (2014)

Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: a policy for
taint tracking. In: IEEE European Symposium on Security and Privacy, Euro S&P
2016, Saarbriicken, Germany, 21-24 March 2016, pp. 15-30 (2016)

Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: 20th IEEE Computer Security Foundations Symposium (CSF
2007), Venice, Italy, 6-8 July 2007, pp. 203-217, July 2007

Simonet, V.: The flow caml system. Software release, vol. 116, pp. 119-156 (2003).
http://cristal.inria.fr/~simonet/soft /flowcaml

Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Ithaca, NY, USA (2002)

https://doi.org/10.1007/978-3-642-11486-1_30
http://cristal.inria.fr/~simonet/soft/flowcaml

q

Check for
updates

MobileFindr: Function Similarity
Identification for Reversing Mobile
Binaries

Yibin Liao®™), Ruoyan Cai®™, Guodong Zhu®™, Yue Yin®™ and Kang Li®)

University of Georgia, Athens, GA, USA
{liao,ruoyan,guodong,yin,kangli}@cs.uga.edu

Abstract. Identifying binary code at function level has been applied
to a broad range of software security applications and reverse engineer-
ing tasks, including patch analysis, vulnerability assessment, code pla-
giarism detection, malware analysis, etc. However, various anti-reverse
engineering techniques (e.g., obfuscation, anti-emulator, etc.) employed
by the mobile apps make existing approaches ineffective when perform-
ing function identification. In this paper, we propose MobileFindr, an
on-device trace-based function similarity identification framework on the
mobile platform. MobileFindr runs on real mobile devices and mitigates
many prevalent anti-reversing techniques by extracting function execu-
tion behaviors via dynamic instrumentation, then characterizing func-
tions with collected behaviors and performing function matching via dis-
tance calculation. We have evaluated MobileFindr using real-world top-
ranked mobile frameworks and applications. The experimental results
showed that MobileFindr outperforms existing state-of-the-art tools in
terms of better obfuscation resilience and accuracy.

Keywords: Reverse engineering - Similarity identification
Dynamic instrumentation

1 Introduction

With the general availability of closed-source applications, there is a need to
identify function similarity among binary executables. For instance, in the auto-
matic patch-based exploit generation, detecting the function similarity /differ-
ence between a pre-patch binary and post-patch binary reveals the patched
vulnerability [22-24,41], and such information can be explored automatically
within a few minutes [19], and generate 1-day exploits [39]. Performing func-
tion similarity measurement between intellectual property protected software
binaries and suspicious binaries indicate potential cases of software plagia-
rism [26,32,34,43,44]. Detecting similar malicious functionality between different
binary malware samples is another appealing application emerged in malware
analysis, since the majority of malware samples are not brand new program but
rather repacks or evolutions of previous known malicious function code [31,35].

© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 66-83, 2018.
https://doi.org/10.1007/978-3-319-99073-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_4&domain=pdf

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 67

An inherent challenge shared by the above applications is the absence of
source code. Binary executable becomes the only available resource to be ana-
lyzed. A number of semantics-aware binary differencing or function similarity
detecting methods have been proposed. One category is to use static analysis,
which is usually based on control-flow graph (CFG) comparison [22-24,46]. At
a high level, the CFG based approach extracts various robust features for a
node in the control flow graph [22,24], or learns higher-level numeric feature
representations from the control flow graph [23], or converts the control flow
graph into embeddings [46], then perform similarity searching for the target
functions. Although these studies have demonstrated that CFG based methods
can be effective and scalable, all of these methods exclude obfuscated binaries,
which appeared in a large number of mobile apps. Basic block semantics model-
ing is another approach for similarity measurement [25,34,41]. It represents the
input-output relations of a basic block as a set of formulas, and then use the-
orem prover to perform the equivalence checking. However, the theorem prover
is computationally expensive and impractical for large code bases of many real
world mobile apps [22].

Another category relies on dynamic analysis, which is usually based on
runtime execution behavior comparison. For example, previous work by Ming
et al. achieves this by collecting system or API calls to slice out corresponding
code segments and then check their equivalence with symbolic execution and
constraint solving [35]. However, their trace logging component is an emulator
based system, which cannot handle the environment-sensitive mobile apps that
can detect sandbox environment. Egele et al. built a system called BLEX to
capture the side effects of functions during execution [21]. Xu et al. built a tool
called CryptoHunt to capture the specific features of cryptography functions
with boolean formula [45]. All of their implementation are based on Intel’s Pin
framework [33], which is not work on mobile platforms generally with ARM
instruction set architecture.

In this paper, we aim at improving the state of the art by proposing trace-
based function similarity mapping, a hybrid method to efficiently search for sim-
ilar functions in mobile binaries. Regardless of the optimization and obfuscation
difference, similar code must still have semantically similar execution behavior,
whereas different code must behave differently [21]. Our key idea is to capture
the dynamic behavior features during the execution of a function along a run-
time trace. More precisely, we propose to record a variety of dynamic runtime
information as dynamic behavior features via dynamic instrumentation, and use
stack backtrace information to locate corresponding functions that can be rep-
resented with these features. Then we calculate the similarity distance based
on such features and return a list of similar functions ranked by the score of
distance.

We have designed and implemented a system called MobileFindr, and eval-
uated it with a set of mobile examples under different obfuscation scheme com-
binations. Our experimental results show that our system can successfully iden-
tify fine-grained function similarities between mobile binaries, and outperform

68 Y. Liao et al.

existing state-of-the-art approaches in terms of better obfuscation resilience and
accuracy. Our evaluation with top-ranked real-world mobile apps also demon-
strated the effectiveness of our system.

Correspondingly, our contributions in this paper are:

— We have proposed a novel approach, trace-based function similarity mapping,
to perform function similarity measurement on mobile platforms. Our key
solution is to capture observable dynamic behaviors along an execution trace
via dynamic instrumentation, and characterize functions with such behaviors.
Our approach exhibits stronger resilience to various anti-reverse engineering
techniques for mobile apps. To best of our knowledge, this is the first work
having such ability on mobile platforms.

— We have proposed a variety of dynamic features to record during the function
execution, which allow us to approximate the semantics of a function without
relying on the source code access.

— We have implemented a system called MobileFindr and source code is publicly
available at GitHub: https://github.com/tigerlyb/MobileFindr.

— We have demonstrated the viability of our approach for top-ranked real-world
mobile frameworks and apps.

The rest of this paper is organized as following. Section 2 introduces back-
ground and challenges. Section 3 presents the details of our system design and
implementation. Section4 presents our evaluation and results. Discussion and
limitations are presented in Sect. 5. Then we present related work in Sect. 6, and
conclude the paper in Sect. 7.

2 Background

This section introduces the background of reverse engineering, presents the pop-
ular tools that help for reverse engineering mobile apps, including various debug-
gers, disassemblers, decompilers, etc. Then we demonstrate motivating examples
and describe possible reverse engineering challenges that can affect the state of
the art function identification methods.

2.1 Reverse Engineering Mobile Apps

Reverse engineering is the process of taking a program’s binary code and recre-
ating it so as to trace it back to the original source code. It is being widely used
in computer software security to enhance product features without knowing the
source: find security flaws, test code compatibility, add new features or redesign
the product, understand the design of malicious code, etc. In this section, we
present popular reverse engineering tools for mobile apps as follows:

— Debugger: helps developer to understand how the program behaves at run-
time without modifying the code, and allows the user to view and change the
running state of a program. With the release of Xcode 5, the LLDB debug-
ger [12], which is part of the LLVM compiler development suite, becomes

https://github.com/tigerlyb/MobileFindr

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 69

the foundation for the debugging experience on Apple platforms. LLDB is
fully integrated with Xcode and provides deep capabilities in a user-friendly
environment. For Android platform, both LLDB and JDB (Java debugger)
are integrated in the Android Studio debugger [1]. By default, Android Stu-
dio automatically choose the best option for the code you are debugging.
For example, if you have any C or C++ code in the project, Android studio
debugger select LLDB to debug your code. Otherwise, Android Studio uses
the Java debug type.

— Disassembler: a software tool which transforms binary code into a human
readable mnemonic representation called assembly language. Many disassem-
blers are available on the market, both free and commercial. Apktools [2]
and baksmali [15] are free tools that can disassemble the dex format used by
Dalvik, Android’s Java VM implementation. The most powerful commercial
disassembler is IDA Pro [9], published by Hex-Rays. It can handle binary
code for a huge number of processors and has open architecture that allows
developers to write add-on analytic modules.

— Decompiler: a software tool used to revert the process of compilation.
Decompilers are different from disassemblers in one very important aspect.
While both generate human readable text, decompilers generate much higher
level text, which is more concise and much easier to read. For example,
Android developer can use Dex2jar [5] to convert dex file to class file, and
then open it in JD-GUI [10] to display Java source code. Hex-Rays Decompiler
[8] is a IDA Pro extension that converts native processor code into human
readable C-like pseudocode text.

2.2 Challenges

The software security community relies on such reverse engineering tools to ana-
lyze and validate programs. However, various anti-reverse engineering techniques
employed by the latest mobile apps make existing reverse engineering tools inef-
fective. For instance, the anti-debugging and anti-emulator techniques employed
by mobile apps limit the usage of many dynamic analysis tools [28,30,40]. Code
obfuscation scheme provide strong protection against automated static reverse
engineering tools. Moreover, different mobile apps tend to use different obfusca-
tion techniques and even same app changes obfuscation options when updating
its version. In this paper, we focus on analyzing iOS apps. Nowadays iOS develop-
ers heavily rely on code obfuscation to evade detection since iOS is a close-source
platform. Therefore, in this section, we introduce different code obfuscation fea-
tures as well as motivating examples for understanding each features.

Code Obfuscation. Obfuscation aims at creating obfuscated code that is diffi-
cult for humans to understand. Obfuscation techniques include modifying names
of classes, fields, and methods, reordering control flow graphs, encrypting con-
stant strings, inserting junk code, etc. To obfuscate mobile apps, we rely on a
state-of-the-art open-source obfuscation tool, Obfuscator-LLVM 4.0 [29], which
supports popular obfuscation transformations as follows.

70 Y. Liao et al.

— Control Flow Flattening: The purpose of this pass is to completely flatten
the control flow graph of a program. The flag option -split activates basic
block splitting, which improve the flattening when applied together.

— Instructions Substitution: The goal of this obfuscation technique sim-
ply consists in replacing standard binary operators (like addition, subtrac-
tion or boolean operators) by functionally equivalent, but more complicated
sequences of instructions.

— Bogus Control Flow: This method modifies a function call graph by adding
a basic block before the current basic block. This new basic block contains
an opaque predicate and then makes a conditional jump to the original basic
block. The original basic block is also cloned and filled up with junk instruc-
tions chosen at random.

- (NSString *)encrypt1:(NSString *)message {
if ([message length] == 0) {
return @"NULL";

NSString *key = [self makeKey1];

NSString *encryptedMsg = [self xorWithString:key
withMessage:message];

0 0

NSLog(@"encryptl: %@", encryptedMsg);
10. return encryptedMsg;
11. }

Fig. 1. A motivating example: Code

Obfuscation Example. We use the example in Fig. 2 to illustrate code obfus-
cation on iOS platform. Figure 1 shows the Objective-C source code of a function
called encryptl. It takes a string message as input and xor the message with a
key, then return the encrypted message. Figure 2a shows the original control flow
graph without any obfuscation, which only contains 4 basic blocks. While Fig. 2b
is the obfuscated version (combined all three obfuscation options above) of that
function. As mentioned in Sect. 1, existing static approaches that rely on control
flow graph similarity and basic block level comparison will likely not be able to
make a meaningful distinction in this scenario. Alternative approaches, such as
dynamic approaches, either rely on Pin tool or emulator-based system to capture
execution behavior. Pin tool is not able to work on analyzing most mobile apps,
since ARM processors dominate mobile platforms. The anti-emulator techniques

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 71

R0, A0V
RL

M

Fig. 2. A motivating example: CFG

employed by mobile apps also limit the usage of such emulator-based analysis
system. To address the above mentioned challenges in the scope of matching
function for mobile binaries, we design a novel on-device dynamic instrumenta-
tion system.

3 Design and Implementation

In this section, we first illustrate the design of our approach, and then detail the
implementation of our system.

3.1 Overview

We present trace-based function similarity mapping, a hybrid method to effi-
ciently search for similar functions in mobile binaries. More precisely, we pro-
pose to record a variety of dynamic behavior features during the execution of a
function along an execution trace. We define the concept of “dynamic behavior
features” broadly to include any information that can be derived from observa-
tions made during execution. Our approach works as the following: given two
mobile apps A, B and a function of interest F from A. Both F and any exe-
cuted functions from B are characterized with dynamic behavior features. Then
we compute similarity scores between F and each function f from B, to identify
which functions in B are similar to F. The novelty of our approach lies in the
follows.

72 Y. Liao et al.

Static Analysis Static Analysis

Dynamic Feature

App 1—> Preprocessing Instrumentation Extraction |=—p . . . | Similar
Similarity 1, Function

|
| Binary Addresses Backt Searching || candidates
Apb 2) £ acktrace | SN
Pp —r’ Extraction Extraction Temlemi Analysis |
|
|
|
|

Fig. 3. Schematic overview of trace-based function similarity mapping system

— What features are useful for semantic similarity comparisons?
— How these features are captured on mobile platforms?
— How to characterize a function with such features?

Figure 3 illustrates the architecture of our system, which comprises four stages:
preprocessing, on-device dynamic analysis, feature extraction and similarity
searching. The preprocessing stage, as shown in the left side of Fig. 3, involves
two parts: binary extraction and address extraction. It dumps the mobiles bina-
ries from the app and extract addresses for all functions and imported libraries
and frameworks. All the extracted addresses are passed to the on-device dynamic
analysis stage for instrumentation and trace logging usage. The recorded traces
will be analyzed by the feature extraction stage. Then we perform the similarity
searching based on the function features obtained from feature extraction stage.
Next, we will present each step of our system in the following sections.

3.2 Preprocessing

Binary Extraction. When you download an iOS app from the App Store,
Apple injects a special 4196 byte long header into the signed binary encrypted
with the public key associated with your iTunes account. For this step we choose
Clutch [4], to decrypt and dump app binary. Then we disable the ASLR (Address
Space Layout Randomization) to get the correct function addresses. ASLR makes
the remote exploitation of memory corruption vulnerabilities significantly more
difficult by randomizing the application objects location in the memory. By
default i0S apps are compiled with -pie flag (Generate Position-Dependent
Code). This flag is automatically checked in the latest version of Xcode in order
to use ASLR. We leverage the tool removePIE [6] to disable the ASLR by flip-
ping the PIE flag. After that, we put the binary back to the app and re-sign it
with Idid [11].

Address Extraction. We utilize IDA Pro [9] to disassemble the binary
obtained from previous step, extract function addresses as well as imported
library addresses and framework addresses through IDAPython API. This com-
ponent is implemented with 155 lines of Python code. Listing 1.1 shows an

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 73

example of a function address table extracted from the iOS app binary. Each
line consists of starting address (e.g., 0x11834), ending address (e.g., 0x11980)
and function name (e.g., prepareToRecord from the class MovieRecorder). List-
ing 1.2 shows an example of library addresses, which only consist the starting
addresses and library names.

Listing 1.1. Function addresses

0xb7ea ,0xb964 ,-[VideoSnakeViewController
toggleRecording:]

Oxe2cc ,0xeblc ,-[VideoSnakeSessionManager
startRecording]

0x111d8,0x1128c ,-[MovieRecorder initWithURL:]

0x1161c ,0x116a8 ,-[MovieRecorder delegate]

0x11834,0x11980,-[MovieRecorder prepareToRecord]

0x11d48 ,0x1lebc,-[MovieRecorder finishRecording]

Listing 1.2. Library addresses

0x1606c, __Block_copy
0x1607c,__Block_object_assign
0x1608c ,__Block_object_dispose
0x1609c, __Unwind_SjLj_Register
0x160ac, __Unwind_SjLj_Resume
0x160bc, __Unwind_SjLj_Unregister

3.3 On-Device Dynamic Analysis

The on-device dynamic analysis stage performs dynamic instrumentation and
trace logging in order to record the needed information.

Dynamic Instrumentation. We utilize Frida [7], a dynamic instrumentation
toolkit, to inject scripts in app process that monitor the dynamic behavior during
execution. Frida lets you inject snippets of JavaScript or your own library into
native apps. Frida’s core is written in C and injects Google’s V8 engine into the
target processes, where the JavaScript gets executed with full access to memory,
hooking functions and even calling native functions inside the process.

Trace Logging. In our implementation we chose features that capture a variety
of system level information (e.g., system calls), as well as higher level attributes,
such as libc calls, objc calls, framework API invocations as follows.

74 Y. Liao et al.

— System Calls: e.g., read, write, open, etc. defined in libsystem_kernel.dylib

— Library Calls: e.g., memset, memcpy, free, etc. defined in libSystem. B.dylib,
_objc_getClass, _objc_getProtocol, etc. defined in libobjc. A.dylib

— Framework APIs: e.g., OpenGLES, CoreMedia, UIKit, etc.

We leverage the Frida API to inject JavaScript at the library addresses and
framework addresses to record the invocations of such features above, and gen-
erate a backtrace for the current thread, returned as an array of native pointer
addresses for the subsequent steps.

3.4 Feature Extraction

Listing 1.3 illustrates the logged trace data, which consists of arrays of addresses.
Each line indicates an invocation of library call or framework API call, fol-
lowed by its stack backtrace information. First, we transform the addresses to
function names according to the address table obtained from the preprocessing
stage. For instance, 0x1609c is the starting address of __Unwind_SjLj_Register,
0x11892 is in the range of 0x11834 and 0x11980, which indicate the library
__Unwind_SjLj_Register is called by function prepareToRecord. The rest can be
done in the same manner. Listing 1.4 illustrates a full translated results from
Listing 1.3.

Listing 1.3. Stack backtrace: address

0x1609c ,0x11892 ,0xe498 ,0xb92e ,0xb15a
0x1621c ,0x118c0,0xe498 ,0xb92e ,0xb1l5a
0x1620c ,0x118fc ,0xe498 ,0xb1lb5a

Listing 1.4. Stack backtrace: name

__Unwind_SjLj_Register ,-[MovieRecorder
prepareToRecord] ,-[VideoSnakeSessionManager
startRecording],-[VideoSnakeViewController
toggleRecording:],sub_B120

_dispatch_get_global_queue ,-[MovieRecorder
prepareToRecord] ,-[VideoSnakeSessionManager
startRecording] ,-[VideoSnakeViewController
toggleRecording:],sub_B120

_dispatch_async ,-[MovieRecorder prepareToRecord],-[
VideoSnakeSessionManager startRecordingl,-[
VideoSnakeViewController toggleRecording:],
sub_B120

Next, we match these library calls or framework API calls to its corresponding
caller functions as features. Listing 1.5 represents features of function prepare-

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 75

ToRecord, in JSON format. The feature extraction component is implemented
with 280 lines of Python code.

3.5 Similarity Searching

The function feature representation is a length-N feature list. We chose Jaccard
index to measure the similarity between lists. We define sim(f, g) to be the
similarity score between function f and g. We perform similarity searching as the
following: starting with a known reference function in a trace, we are searching
for mobile binaries containing similar functions by calculating similarity score
and listing top K similar function candidates.

Listing 1.5. Function features

{
"name" : "-[MovieRecorder prepareToRecord]",
"features" : [
[
" __Unwind_SjLj_Register",
"_dispatch_get_global_queue",
" _dispatch_async",
"__Block_object_assign",
" __Unwind_SjLj_Unregister"
]
]
}
Function Mapping Accuracy
0.9
0.8
5 07
]
§ 0.6
g 05
oo
£ 04
S
= 0.3
z 0
« 1L L I LI I L
0 mam mm _D_ m . [11| [| I maE =
\Y X AN
& & & o & & & &
& & < & & & & &
\?\Q\’b o e P 0&9 G

Mobile Samples

W MobileFindr ™ BinGrep ™ BinDiff M Genius

Fig. 4. Function mapping between obfuscated version and non-obfuscated version

76 Y. Liao et al.

4 FEvaluation

In this section, we evaluate our system from several objectives. Particularly, we
conduct our experiments to evaluate whether our system outperforms existing
binary similarity detection tools in terms of better obfuscation resilience and
accuracy. We designed two controlled datasets so that we have a ground truth
to assess comparison results accurately. We also evaluate the effectiveness of our
system in analyzing real world top-ranked iOS apps from Apple App Store.

4.1 Experiment Setup

Our on-device dynamic analysis is performed on a 32 GB Apple Jailbroken iPad
(4th Generation) running iOS 8.3. The configuration of our testbed machine for
feature extraction and similarity searching is shown as follows.

CPU: Intel Core i7-6700K Processor (Eight-core with 4.00 GHz)
— Memory: 64 GB

— OS: Ubuntu Linux 14.04 LTS

Python Version: 2.7.12

— IDA Pro Version: 6.6.

4.2 Ground Truth Dataset

Data 1. First, we collect 8 sample codes with different functionalities from
official Apple developer website. For each sample we build both non-obfuscated
version and obfuscated version. The obfuscated version combines all three set-
tings in Table 1.

Data 2. Then we test our system with third-party frameworks or libraries that
are commonly used by popular mobile apps. In practice, programmers usually
take advantage of existing frameworks or libraries to speed up their develop-
ments. In our evaluation, we choose AFNetworking and SDWebImage, top-two
ranked open source frameworks [16] as the reference implementation. Our pur-
pose is to detect such frameworks or libraries that commonly used in different
mobile apps. To this end, we collect 8 open source projects from GitHub, and
reuse the provided APIs from two libraries above. We built sample apps with
non-obfuscated version and 7 different combinations of the obfuscation settings,
which results in 64 apps in 8 different types. We kept the debug symbols as they
provide a ground truth and enable us to verify the correctness of matching using
the functions symbolic names.

Table 1. Different obfuscation types and flag settings

Type Flag setting
1| Control flow flattening | -fla, -split, -split_num=3
2 | Instruction substitution | -sub, -sub_loop=3
3 | Bogus control flow -bcef, -befloop=3, -bcf_prob=40

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 7

4.3 Obfuscation Options

As mentioned in Sect. 2, we use Obfuscator-LLVM to obfuscate our ground truth
mobile samples. Table 1 lists specific obfuscation settings that we use to build
our ground truth iOS samples. We integrate Obfuscator-LLVM into Xcode, and
enable the three obfuscation features described in Sect.2, and apply different
settings as shown in Table 1.

4.4 Peer Tools

We compare our tools with other state-of-the-art similarity detection or diffing
tools that open to public: BinDiff, BinGrap, Genies. BinDiff [17] is a compari-
son tool for binary files, that assists vulnerability researchers and engineers to
quickly find differences and similarities in disassembled code. BinGrap [3] is also
a static analysis tool that perform function similarity searching, but it can out-
put a list of functions in order of similarity. Genius is a bug search engine that
performs function similarity detection based on mapping raw features of a func-
tion into a higher-level numeric vector where each dimension of the vector is the
similarity distance to a categorization in the codebook. However, only partial
code is available, including raw feature extraction and search. Therefore, we re-
implement Genius’ two core steps, codebook generation and feature encoding in
python. We utilized Hungarian algorithm for calculating bipartite graph match-
ing cost and normalized spectral clustering [38] for ACFGs (Attributed Control
Flow Graph) clustering. In evaluation phrase, we adopt Nearpy [14] for LSH
(Locality Sensitive Hashing) [18] and search. We used SQLite to store function
information and encoded vectors. As mentioned in Sect.1l, BLEX [21], BinSim
[35] and CryptoHunt [45] are not able to work on iOS platforms. To the best
of our knowledge, we are the first to propose a dynamic strategy for comparing
mobile binary code. This is the reason why we did not compare our evaluation
to these dynamic approaches.

4.5 Evaluation Results

The first evaluation for data 1 is shown in Fig.4. For each sample, We ran-
domly select functions from non-obfuscated version as reference functions, then
perform our trace-based function similarity mapping to see if we can locate the
same function in obfuscated version. The second evaluation for data 2 is shown
in Fig. 5. We randomly select one app from each type of apps as reference known
app, and select commonly used APIs in AFNetworking and SDWebImage from
that app as query functions. Then we perform trace-based function similarity
mapping for searching the given functions in the rest apps, and list top K candi-
dates for each app based on the similarity score. We only compare with Genius
and BinGrep since BinDiff is a one-to-one mapping tool, which cannot list more
than 1 candidate.

78 Y. Liao et al.

Function Mapping Accuracy

1
0.9
0.8
0.7
3 0.6
o
5 05
3
< 04
0.3
0.2
0
Top 3 Top 5 Top 10 Top 15
Top K Candidates
® MobileFindr ® BinGrep ™ Genius
Fig. 5. Function mapping evaluation for popular third-party frameworks
Function Mapping Accuracy in Top 10
100.00%
90.00% 84% 88.90%
-00% 83.70% %
81.13% 81.25%
80.00% 78%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
Baidu Weibo NetEase Tencent Video Youku Qunar
NewsBoard

M mapping accuracy
Fig. 6. Function mapping evaluation in real-world apps
Our evaluation results show that MobileFindr can achieve more than 80%

accuracy in average from top 3 to top 15 similar functions, which outperforms
other tools in terms of much more better accuracy and obfuscation resilience.

MobileFindr: Function Similarity Identification for Reversing Mobile Binaries 79

4.6 Real-World App Case Study

We tested MobileFindr using real-world apps to evaluate its efficiency. We eval-
uated 6 top-ranked iOS apps in different types, such as search engine, social net-
working, etc. For instance, Baidu is the world’s largest Chinese search engine.
We downloaded two different versions of Baidu app, version 930 and version
935. We chose version 930 as reference app and performed a simple web search-
ing with key words: “security” for trace logging. We collected 430 functions in
this trace, and then perform trace-based function similarity mapping to search
similarity functions in the new version 935, and listed top 10 similar function
candidates. MobileFindr achieve 81.13% accuracy with less than 10 min. While
matching the same 430 functions in Genius, it only achieved 59.7% accuracy,
but spent around 2h in training, more than 40 h when handling function graph
embeddings. Figure6 shows the function mapping results for the 6 real-world
apps.

5 Discussion

In this section, we discuss the limitations of our system and potential solutions
to be investigated in future work.

First, a challenge that we already touched upon in Sect.4 is the fact that
our approach needs manual verification efforts for real world iOS apps, since
we don’t have access to their source code. The candidate similarity ranking
produced by our system gives an ordered list of matched functions that have to be
manually inspected by an analyst to verify if those functions are actually similar.
Some of the existing dynamic approaches [35,45] rely on symbolic execution to
generate a set of symbolic formula, and then use theorem prover to perform the
equivalence checking. However, the theorem prover is computationally expensive
and impractical for large code bases of many real world mobile apps. Such an
automatic verification would be ideal, but surely is a research topic in itself and
is outside the scope of this work.

Second, the incomplete path coverage is a concern for all dynamic analy-
sis system, including ours. The possible solutions are to explore more paths by
automatic input generation [27,36]. To trigger as many dynamic behaviors as
possible for trace logging, we can leverage the idea of Malton [47], which pro-
posed an efficient path exploration technique that employs in-memory concolic
execution with an offloading mechanism and direct execution engine. We leave
it as future work.

Third, the functions considered by us need to have a certain amount of com-
plexity for the approach to work effectively. Otherwise, the relatively low com-
bination n