
Chapter 3
Modelling Ion Channels

K. C. A. Wedgwood, J. Tabak, and K. Tsaneva-Atanasova

Abstract Plant adaption and survival relies on signalling, much of which is
achieved through concentration changes in ions. Furthermore, plants can influence
their growth and shape via changes in hydraulic pressure which in turn can be
modulated by changes in ionic concentrations that drive osmosis. We present
an introduction to mathematical modelling of ionic currents and transmembrane
voltages, both intracellular and intercellular. We introduce the modelling techniques
used to describe the physical processes involved in ion channel dynamics and illus-
trate their application using generic examples. We begin by discussing modelling of
individual ion channels. Next, we present computational algorithms most commonly
employed in simulating ionic currents passing via a single as well as an ensemble of
the same ion channel type. We then discuss modelling of ionic current flow across
cellular membrane that could involve different ion channel species. We end with
an overview of modelling action potentials and their propagation resulting from
interactions between different ion channels within as well as between cells. We
illustrate this using a simplified example of plant action potential.

3.1 Introduction

One of the most interesting aspects of ion channel dynamics is that local opening
and closing events can be organised into complex spatio-temporal patterns such as
action potentials that can propagate from cell to cell. Not only are these phenomena
physiologically important, they are also mathematically interesting, and challenging
to grasp. Like in all living systems, ion channels in plants are involved in signal
transduction and are vital for normal plant function, being associated with rapid
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responses to environmental stimuli [9, 26]. Reviews of the experimental literature
on ion channels in plants are given by Tester [24], Gradmann [11], and Hedrich
[14]. The mathematics behind ion channel modelling has a lot in common with
the study of action potential propagation in excitable models such as the Hodgkin-
Huxley or FitzHugh-Nagumo models [7, 18, 19]. However, useful insights into the
mechanisms of plants signal propagation would require the use of more than simple
generic excitable models. Therefore, the biophysical framework described in this
chapter could be used a starting point for construction of models that are tailor-made
to the particular type of cell or electrical activity under consideration.

3.2 Modelling Single Ion Channel Dynamics

Single ion channels are proteins that make a (intra)cellular membrane permeable to
specific ions by allowing them to pass through a transmembrane pore. By changing
conformation, or other mechanisms, the pore is able to ‘open’ or ‘close’
in each case permitting, or not, the passage of ions [17]. Under voltage-clamp
conditions, when permeable ions are present in solution surrounding the channel,
steps in current amplitude can be seen as the channel opens or closes [17]. In this
section, we introduce the modelling steps involved in mathematically describing
single ion channel currents.

3.2.1 Diffusion of Ionic Species

The movement of charged ionic particles down a concentration gradient creates
an electric current. The cellular membrane provides a barrier to the movement
of charged ionic particles and thus induces a charge separation and establishes
a transmembrane potential difference. Along the cellular membrane, there exist
ion channels that facilitate the diffusion of ionic species across the membrane. In
addition to these channels are pumps that actively move ionic species against the
concentration gradient to maintain a transmembrane concentration difference.

We can model the average movement across the cellular membranes through
passive diffusion. The general form describing the passive diffusion of a particular
ionic species, Y , obeys the Fickian flux rules:

∂Y

∂t
= −D

∂Y

∂x
, (3.1)

where x ∈ R represents the distance across the membrane and D > 0 is the diffusion
coefficient, which describes how easily the particles move across the membrane.
If we assume that the cellular membranes are thin compared to the cell and its
surroundings, we can replace (3.1) with
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dYi

dt
= −D[Yi − Yo], (3.2)

where Yi and Yo, respectively, represent the ionic concentrations on the inside and
outside of the membrane. The diffusion coefficient is dependent on the permeability
of the membrane to that particular ionic species, the surface area of the cell, the
density of channels, and the thickness of the cellular membranes. The membrane
permeability is then controlled in a dynamic fashion through the opening and closing
of ion channels, which we refer to as the gating. It is the aim of this chapter to
mathematically describe this gating and its impact on the transmembrane potential
difference.

3.2.2 Channel Dynamics

Ion channels are transmembrane proteins that connect the intracellular as well
as intercellular compartments. These proteins can exist in conformations which
either allow or prevent the diffusion of particles across cellular membranes.
Conformational changes that switch between these states depend on a variety of
factors, including the transmembrane potential difference, hereby referred to as the
voltage, the binding to specific ligands, temperature or mechanical force. We will
first describe the scenario in which transitions between states are purely random,
that is, they depend on no external factors. We note that the modelling paradigm we
describe is applicable to all types of channels, but that care must be taken to ensure
that the correct dependencies on extrinsic factors are included when modelling
specific ion channels.

Consider a generic ion channel that can exist in one of two states: an open
state (O) in which ions are free to pass through; and a closed state (C) in which
they are not. Transitions between these states are random in nature, though the
probabilities of moving from open to closed states and vice versa do not have to be
the same. Stable conformations of proteins representing the closed and open states
are achieved by minimising the Gibb’s free energy. The open and closed states thus
correspond to minima of the free energy landscape. Conformational changes are
then represented as transitions between these minima induced by noise caused by
thermal fluctuations.

Given the considerations above, our two state channel can be represented by the
stochastic differential equation:

dx

dt
= −Ux(x) + ξ(t), x ∈ R, (3.3)

where x is a coordinate that represents the conformational state of the channel, ξ is
a Gaussian noise process with mean 〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t ′)〉 =
2kBT δ(t − t ′), where kB is the Boltzmann constant and T is the temperature in
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Kelvin. The function U(x) represents the energy landscape, and for exposition, we
will here choose this to be a quartic of the form

U(x) = 1

4
x4 − μ

2
x2 − ηx. (3.4)

This energy landscape has two minima, located at x±, separated by a maximum at
x0. Associated with the two minima are ‘wells’, which are separated by the ‘barrier’
at x0. When x(t) is in the well corresponding to x−, we say that the channel is in
the closed conformation, and when it is in the well associated with x+, it is in the
open conformation. The parameters μ > 0 and η ∈ R, respectively, control the
height of the barrier at x0 and the difference between the depths of the two wells.
Thus, increasing μ makes transitions between states harder, whilst varying η alters
the relative probabilities of transition.

If the barrier separating the two minima is sufficiently high compared to the
thermal fluctuations, transitions between states will be rare, and we here consider
the expected transition times between them. The magnitude of the energy barrier
relative to the closed (open) state is equal to �U± = U(x0) − U(x±). Writing
σ = (kBT )−1, the expected transition time, τ±, from the closed (open) state is then

τ± = eσ�U±

ν±
. (3.5)

We note that the functional form of the transition rate, (3.5) was derived first by
Arrhenius [1], who left ν± as undetermined parameters. The specific forms for ν±
was later derived using a number of different methods; our presentation here is based
on the exposition by Eyring [4, 5].

As a representative example, we show in Fig. 3.1 the double-well potential
system according to (3.3)–(3.4). The energy landscape is depicted in Fig. 3.1a, with
an example trajectory shown in Fig. 3.1b. Superimposed on this trajectory is an
indicator showing the state of the channel at time t .

3.2.3 Markov Processes

Whilst the potential well system defined by (3.3) is a good descriptor of channel
dynamics, it is impractical for large scale channel modelling, since it requires
computation of sample paths. Instead of considering the full system, considerable
simplification can be made by noting that trajectories will spend most of the time
near the minima of the system, making infrequent excursions over the barrier and
transitioning into the well associated with the other minima. This leads us to think
of simplifying the system to only consider these transition times, which are formally
known as passage times or escape times.
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Fig. 3.1 (a) Double well potential landscape given by (3.4) with μ = 10 and η = −2. (b)
A sample path of (3.3)–(3.4) with σ = 0.05. Superimposed on this sample path is a bold line
indicating which state the channel is in

We can take the reciprocal of the transition times given in (3.5) to provide rate
constants that describe the probability per unit time of transitioning to the other
state. In what follows, we shall denote the probability per unit time of transitioning
from the closed state to the open state by α = 1/τ−, and the probability per unit
time of making the opposite transition as β = 1/τ+. Schematically, the system can
now be represented as

C
α−⇀↽−
β

O. (3.6)

This system is Markovian in nature, meaning that the evolution of the state is
dependent only on the current state of the system and not on previous states. This
system can then be easily simulated as follows. Initialise the system with the channel
being either in the closed or the open state and pick a time discretisation dt � 1. At
each time point, draw a random number ξ from the standard uniform distribution.
If the channel is closed, transition to the open state if ξ < α dt , else remain closed.
If the channel is open, transition to the closed state if ξ < βdt , else remain open.
After completing this step, advance time by dt and repeat as much as necessary.

3.3 Modelling the Dynamics of an Ensemble of Ion Channels

For a single channel, the method described in the previous section is a simple and
convenient way to simulate its gating dynamics. However, cells may have many
channels of the same type. Using this method to describe a cell with N channels thus
requires drawing N samples per time step. Furthermore, many of these samplings
will ultimately result in no transition being made, particularly if α and β are small.
An alternative way to simulate the system is offered by the Gillespie algorithm [10],
which exactly simulates a network of Markov processes under the assumption that
all channels act independently of one another and are identical in nature.
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3.3.1 Gillespie Algorithm

Instead of assessing at each step whether each channel in the system has transi-
tioned, the Gillespie algorithm estimates a time over which an event has occurred,
then computes which event has occurred and updates the system as appropriate.
Thus, the Gillespie algorithm only requires drawing two random numbers per time
step and only considers times at which events have occurred. In our network of N

channels, let us assume that Nc(t) of these are closed and that No(t) are open at
time t , so that Nc(t) + No(t) = N .

Each step of the Gillespie algorithm then involves drawing ξ1,2. The probability
density function describing the time to the next transition, τ , is given by

P(τ = t) = λe−λt , (3.7)

where λ = Ncα+Noβ is the average rate of the next transition. The time to the next
transition is then sampled as

τ = − ln ξ1

λ
. (3.8)

Between times t and t + τ , we then know that a transition must have occurred.
If λξ2 < Nc(t)α, we say that one of the channels has opened, and we thus set
Nc(t + τ) = Nc(t) − 1 and No(t + τ) = No(t) + 1. Otherwise, if λξ2 > Nc(t)α,
then one of the channels has closed and we thus set Nc(t + τ) = Nc(t) + 1 and
No(t + τ) = No(t)− 1. Time is then updated by setting t = t + τ and the process is
continued. We can see the rationale behind these choices by noting that Nc(t)α/λ is
the probability that a channel opening has occurred and No(t)β/λ is the probability
that a channel closing has occurred, conditioned on the fact that one of these events
has happened. Note that during the simulation of the system, the Gillespie algorithm
automatically selects the timestep τ over which to evolve the system. Whilst this is
an advantage in terms of computational efficiency, since the system is only sampled
at event times, one must take care that any extrinsic factors that affect the transition
probabilities α and β are approximately constant over the interval [t, t + τ).

3.3.2 Transition Probabilities

Thus far, we have considered the case where transition probabilities are constant.
In general, however, the gating of ion channels may be dependent on a variety of
factors, including the transmembrane voltage, see, e.g., [14] in plants; ligands such
as intracellular Ca2+ and nucleotides, see, e.g., [3, 13, 15] in plants. We can capture
this dependence by making the transition probabilities depend on one or more of
these factors. For example, for voltage-gated ion channels, we can write α = α(V ),
β = β(V ), where
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α(V ) = Aekα(V −Vα), β(V ) = Bekβ(V −Vβ), (3.9)

is an often used functional form.
A simple way to incorporate Ca2+ dependence is via the following schematic

C
α [Ca2+]−−−−−⇀↽−−−−−

β
O (3.10)

so that the transition rate from the closed to the open state has a linear dependence
on the intracellular Ca2+ concentration. Modelling the dependence on other factors,
such as ligands and nucleotides, follows in a similar fashion, with functional forms
chosen to either match the physiology of the channel, or more commonly, fitted to
empirical data.

Making transition probabilities depend explicitly on factors such as voltage does
not significantly alter the approach to simulating channel dynamics; the transition
probabilities α and β are simply altered to reflect this dependence. However, as
we shall later see, the movement of ions across cellular membranes impacts upon
the transmembrane voltage. In addition, this can induce further downstream effects,
for example by opening Ca2+ channels so that intracellular Ca2+ concentrations
vary. As such, channel gating dynamics are tightly coupled to such factors and
the approximation in the Gillespie algorithm that these are unaltered in the interval
[t, t + τ) may not hold. In this case, however, a simple fix is to impose a maximum
timestep that can be taken by the algorithm.

3.3.3 Many Gates

We have thus far considered channels with only one (activating) gate. However,
many ion channels have a multitude of these gates and the channel will only be
permeable to ions if all gates are in the open state. In this case, there exist a number
of closed states that correspond to the case where at least one of the gates is closed.
In addition to the so-called ‘activating gates’ that we have thus far discussed, ion
channels may also possess ‘inactivating gates’. Inactivating gates can close ion
channels through mechanisms independent of the closing of activating gates and
thus a channel will only allow particles to pass through when the activating gates
are open and the channel is not inactivated. This gives rise to the four mechanisms
that govern channel gating: activation, inactivation, deactivation and reactivation.

Activation describes the process whereby channels move from closed to open
states; inactivation occurs when the inactivating gates close; deactivation arises
when activating gates close; and reactivation (or recovery from inactivation)
describes the process by which inactivating gates open. Consider the simplified
model of Cl− channel in the plasmalemma of cells of C. corallina., which has
three activating gates and one inactivating gate [21]. The schematic for this channel
can be represented aswhere mi, i = 0, 1, 2, 3, is the number of channels with i
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open activating gates and hj , j = 0, 1 is the number of channels with j closed
inactivated gates. Recall that the only state in which the channel is permeable is
the one in which the inactivating gate and all three activating gates are open, which
is indicated by the asterisk. Also note the transitions between the different closed
and open states are now scaled by a factor that captures how many gates must be
open/closed in that state and that this factor assumes that the opening and closing of
gates are independent of the state of the other gates.

The inclusion of multiple activating and inactivating gates does not affect the
method of simulation, as long as the assumption that the opening and closing of
channels are independent events. In cases where channels have ‘memory’, that is,
that transition probabilities are dependent on the history of the channel, or the length
of time the channel has been in a certain state, this does not hold. In the latter case,
where transition probabilities are dependent on the ‘dwell times’ in specific states, a
modified Markov chain description that respects this behaviour can be constructed,
so that the Gillespie algorithm can be used [20].

3.3.4 Master Equation

Since the processes that we are describing are Markovian, we can instead represent
the dynamics of the system through evolution of the probability, P(S, t) of being in
state S at time t . For the simple two state system represented by (3.6), the evolution
of P is given by:

d

dt
P (C, t) = −αP (C, t) + βP (O, t) (3.11)

d

dt
P (O, t) = αP (C, t) − βP (O, t). (3.12)

The linear equation (3.12) is known as the master equation, and is often the starting
point for many considerations of biochemical reactions. General schema describing
the states of channels with M states can be written in the form

Si

qij−⇀↽−
qji

Sj (3.13)
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where Si and Sj , (i, j = 1, . . . , M), are two distinct states of the system and qij

represents the probability (which may be zero) of entering state Sj from Si . The
master equation for system (3.13) can then be written as

d

dt
P (Si, t) =

M∑

j=1

P(Sj , t)qji −
M∑

j=1

P(Si, t)qij , i = 1, . . . M. (3.14)

The term on the left represents a source term describing all the routes to state
Si , whilst the right-hand sink term captures all the transition away from state Si .
Since (3.14) is linear, we can write it in matrix form as

d

dt
P = PQ, P ∈ [0, 1]M, (3.15)

where the M × M matrix Q contains all of the transition probabilities between the
distinct states.

Whilst the master equation is a succinct way to describe the probability density
function of the system, it is often impractical when simulating a system since
it captures dynamics in a distributional sense, and does not provide a stochastic
representation of a specific realisation of the process. However, when the number
of channels becomes large, we can use a similar density based representation to
describe the average behaviour across the whole cell.

3.3.5 Averaging

When the number of channels is large, instead of considering the probability of
the system being in state Si at time t , we can instead construct an equation to
describe the fraction of channels in state Si , which we shall denote si . Under this
approximation, we replace (3.14) with

dsi

dt
=

M∑

j=1

sj rji −
M∑

j=1

sirij , i = 1, . . . M, (3.16)

where rij now represents the rate at which channels transition from state Si to
state Sj . Since channels are only permeable when the channel is open, we can
simplify (3.16) by only considering the fraction of channels that are in the open
state. Letting m represent the fraction of open channels, we replace (3.16) with

dm

dt
= αm(1 − m) − βmm, m ∈ [0, 1], (3.17)
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where αm is the rate of channels entering the open state and βm is the rate of channels
exiting the open state. Note that these rates are the same as the probabilities of tran-
sitioning to the open state that we considered earlier. Thus, in the limit of infinitely
many channels, transition probabilities are replaced with transition rates. Of course,
cells do not have infinitely many channels and since (3.17) is deterministic, one may
wonder how we are supposed to reflect the fluctuations arising from having finitely
many channels. One way to incorporate these fluctuations, for example in a system
with Nm channels, is to add an additive noise term to (3.17) [8]

dm

dt
= αm(1 − m) − βmm + ξm(t), (3.18)

where ξ(t) is a Gaussian noise term with moments given by 〈ξm(t)〉 = 0 and

〈
ξm(t)ξm(t ′)

〉 = αm(1 − m) + βmm

Nm

δ(t − t ′).

When incorporating this noise term in, care must be taken to ensure that m remains
in the interval [0, 1]. For practical reasons, these finite size fluctuations are very
often ignored in most ion channel based models of cell electrophysiology.

It is very common to see (3.17) written in the form

τm

dm

dt
= m∞ − m, (3.19)

where

τm = 1

αm + βm

, m∞ = αm

αm + βm

. (3.20)

If α and β are given as in (3.9), with A = B, then we can write

m∞(V ) = 1

1 + e−(V −V0)/S0
, (3.21)

where

S0 = 1

kβ − kα

, V0 = kβdβ − kαdα

kβ − kα

. (3.22)

Thus, according to (3.19), m evolves towards m∞ at a rate determined by τm. The
form of m∞ given by (3.21) suggests that as the cell depolarises, the fraction of open
channels increases or decreases in a sigmoidal fashion, which is often observed in
experiments. In particular, the form given in (3.19) is often preferred over (3.17)
since the parameters V0 and S0 in (3.21) can be fit directly to electrophysiological
recordings.
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3.4 Modelling Cellular Membrane Excitability

Now that we have arrived at a deterministic description for the channel dynamics,
we are ready to start describing the currents that flow into and out of the cellular
compartments as a result of channel opening.

3.4.1 Nernst Potential

In order to understand the current flow induced by the movement of ions across
a cellular membrane, we need to first provide an equation that describes the
electrochemical gradient across it. This can be done by equating the chemical
potentials across the membrane. For space reasons, we here omit the derivation and
simply state that, at equilibrium, the voltage across the cell membrane for ionic
species X independent of all other species is given by the Nernst potential:

VX = RT

zXF
ln

( [X]o

[X]i

)
, (3.23)

where R is the ideal gas constant, T is the temperature in Kelvin, zX is the valence
of species X, F is the Faraday constant and [X]i,o are the concentrations of species
X on the inside and outside of the membrane, respectively. Similar calculations can
be used to find the voltage across cellular compartments at equilibrium accounting
for all ionic species of interest.

3.4.2 Membrane Currents

We are now in a position to describe current flow across the cellular membranes,
such as plasma, vacuolar or nuclear envelope membranes. Under the assumption
that the concentrations of ions in the outside and inside of the membrane remain
constant, the opening of channels permeable to ionic species X will push the
transmembrane voltage towards the Nernst potential VX. The current IX induced
by the flow of this species across cellular membranes is then given by Ohm’s law,
which can be written as

IX = gX(V − VX), (3.24)

where gX is the summed channel conductance over the whole cell.
This conductance is proportional to the fraction of open channels, and thus we

can rewrite (3.24) as

IX = gXmahb(V − VX), (3.25)
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Fig. 3.2 (a) Sample paths representing the fraction of open channels for different values of the
total channel number N . At t = 50, the transition rates for the channels are instantaneously
changed as per the text. (b) Prototypical steady state currents under variation of voltage. The bold
line represents the deterministic I −V curve in the limit as N → ∞. The shaded regions represent
the mean ± standard error corresponding to the indicated number of channels. For further details,
please refer to the text

in which there are a activating gates and b inactivating gates per channel, m and h,
respectively, represent the fraction of open activating gates and inactivating gates
and gX is the total conductance when all channels are open. The dynamics of m

and h obey the equation given by (3.19), though we note that the sigmoid for h∞ is
reversed compared to m∞.

In Fig. 3.2, we demonstrate how the number of channels in the cell impacts the
variability of the cell response. Figure 3.2a illustrates how the fraction of open
activating channels varies as the transition rates are instantaneously changed from
α0 = 0.1, β0 = 0.5 to α1 = 0.2, β1 = 0.4 at t = 50. In this subfigure, we also vary
the total number of channels, N , in the cell and observe a reduction in the variability
around the steady states, which are at mi = αi/(αi + βi), i = 0, 1. The lowermost
plot shows the system in the thermodynamic limit as N → ∞, and we observe that
as N is increased, the sample paths approach this deterministic limit.

To assess the variability of channel opening and closing on current flow, we
illustrate in Fig. 3.2b a prototypical I − V curve, relating the steady-state current to
the transmembrane voltage, assuming that the channels exhibit voltage dependence.
The bold line indicates the current flow in the limit as N → ∞, and we clearly
see that as N increases, the variability around the deterministic profile decreases.
In this example, we assume that the current is modelled according to (3.25), with
gX = 10, a = 3, b = 1, Vx = 50 using steady state representations for m and
h in the form given by (3.20) with α and β in the form (3.9). Specific parameters
used are A = B = 1, km

α = 0.1, V m
α = −30, km

β = −0.4, V m
β = −25, kh

α = 0.1,

V h
α = −40, kh

β = 0.3 and V h
β = −40.
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In the following, we assume that the number of channels in plant cells is always
high, so that we can use the deterministic limit to describe the ionic currents flowing
through the channels.

3.4.3 Action Potentials

Equation (3.24) reflects the notion that we can represent the electrophysiology of
the cell by making comparisons to electrical circuits. The Nernst potential provides
an electromotive force similar to that produced by an electrical battery (cell), whilst
the ion channels collectively behave as a variable conductance obeying nonlinear
dynamics. By extending the equivalence of the biological system with an electrical
circuit, and considering the evolution of currents associated with all ionic species to
which a cellular membrane is permeable, we can now describe the evolution of the
voltage across such a cell membrane.

By providing a barrier to the movement of ions across it, the cell membrane
effectively separates charge between the inside and outside of the cell and thus
acts as a capacitor. This capacitor is in parallel with all the ion channels on
the membrane. Upon applying Kirchoff’s second law, we can thus describe the
evolution of the transmembrane voltage via

CV̇ = −
∑

X

IX, (3.26)

where C = 2 × 10−2 F/cm2 is the capacitance of the cell and CV̇ is the current
flowing through the capacitance. This equation, together with the equations that
describe how the gating variables of each channel type vary with V and time (3.17),
constitutes the Hodgkin-Huxley formalism for modelling action potentials [18].

As an example, we present a simple model of action potential in guard cells [11,
12]. This model incorporates three types of ion channels: one chloride channel that
provides a fast activating and slowly inactivating inward current driving the action
potential ICl = gClmClhCl(V − VCl) with a Nernst potential at VCl = 100 mV, one
slowly activity outward rectifier potassium channel that provides an outward current
that helps terminate action potentials IKo = gKomKo(V − VK), and one inward
rectifier potassium channel responsible for potassium influx into the cytoplasm at
negative resting membrane potential IKi = gKihKi(V − VK). Both K+ currents
have Nernst potentials at VK = −100 mV. Two other ion transporters also create
ionic currents. One is the proton pump, extruding H+ ions at negative membrane
potentials and thus generating an outward current Ipu = gpuhpu(V − Vpu) with
Nernst potential Vpu = −400 mV, which is responsible for the resting membrane
potential being more negative than VK . The second one is a 2H+/Cl− symporter that
brings in chloride at negative membrane potentials and creates a net inward current
Isy = gsyhsy(V − Vsy) that reverses at Vsy = 20 mV. Note that this model assumes
there is no long-term change in ionic concentration that would be large enough to
affect the Nernst potentials.
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The steady state value of each current, i.e. the current observed at any given
membrane potential V when the gating variables have reached their steady state
values, is shown in Fig. 3.3a. The bottom panel shows the sum of all the currents,
revealing three membrane potential values for which the total steady state current
is 0. The lowest (leftmost) and highest (rightmost) values are stable steady states
of V . This bistability provides a simple explanation for the observation that steady
state membrane potential of many plant cells can be either at a hyperpolarised level
well below VK or at a level above VK. The middle value acts as a threshold, if V is
above/below that value it will converge toward the high/low steady state.

To simulate the variations of V with time, we numerically integrate the differ-
ential equations for V (3.26) together with the equation for each gating variable
(3.17). Results of several simulations are displayed in Fig. 3.3b. For each simulation
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Fig. 3.3 (a) Steady state current of each ionic current. Bottom panel shows the sum of all the
currents. Values for each conductance are: gpu = gKo = gKi = gsy = gCl = 1 S/m2. Other
parameter values are given in text or in [12]. (b) Action potential are generated in response
to a stimulating current if the current is larger than a threshold value. All parameters as in A,
except gCl = 0.9 S/m2. Stimulating current of 2.8, 2.9, 3 (subthreshold), 3.1, 3.2, 3.4 mA/m2 is
applied for one second (inset). (c) Propagation of an action potential wave. The Cl− conductance
is increased by 0.1 S/m2 between 10 and 11 s in the top cell. This triggers an action potential in
this cell, which triggers an action potential in the next cell, and so on. The conductance of each
plasmodesma is gp = 0.05 S/m2



3 Modelling Ion Channels 51

we inject a brief (one second) stimulating current to the model cell, which creates
a rapid rise in membrane potential. This results in a rapid return of membrane
potential towards its equilibrium value, or in a large amplitude action potential
before going back to equilibrium. The action potential is triggered only if the
depolarizing current is sufficiently large, illustrating the threshold behaviour. Once
the current is above its threshold value, a full action potential occurs. The shape of
the action potential varies little with further increases in stimulating current, but the
latency between stimulus and action potential onset decreases. Thus, this simple
model of plant action potential exhibits features also found in action potentials
produced by animal cells.

Plant action potentials can also propagate from cell to cell, thanks to plasmodes-
mata that create electrical connections between cells and allow exchange of ions
[6]. To illustrate this action potential propagation [16], we model the electrical
connection, which is similar to gap junctions that electrically connect excitable cells
in animals [2, 25]. Thus, the current Ip ab flowing through a plasmodesma from
cell a with membrane potential Va to cell b with membrane potential Vb is simply
given by

Ip ab = gp(Va − Vb) (3.27)

where gp is the conductance of the plasmodesma [22, 23]. In Fig. 3.3c, an action
potential is initiated in the first cell by a brief increase in the Cl− conductance. This
sequentially triggers action potentials in the neighbouring cells, thus propagating a
wave of electrical excitation.

3.5 Conclusions

Plants (and animals) very effectively use concentration differences of ions across
membranes (inside vs outside the cell and between cellular compartments) to
regulate numerous processes. Calcium ions, for instance, are key information
carriers in plants that regulate responses to abiotic and biotic stresses from their
environment. In this chapter, we have introduced the fundamental physical princi-
ples that underpin ionic changes via the function of ion channels and provided some
useful mathematical and computational approaches for modelling such systems.
Many exciting questions in plant biology converge on ion channels and transporters
and we hope that the tools offered here will provide a foundation on which interested
researchers can build to develop specific biophysical models to address specific
questions.

Acknowledgements KW was generously supported by the Wellcome Trust Institutional Strategic
Support Award (WT105618MA). KT-A gratefully acknowledges the financial support of the
EPSRC via grant EP/N014391/1.



52 K. C. A. Wedgwood et al.

References

1. Arrhenius SA (1889) Über die dissociationswärme und den einfluß der temperatur auf den
dissociationsgrad der elektrolyte. Zeitschrift für Physikalische Chemie 4:96–116

2. Brink PR, Cronin K, Ramanan S (1996) Gap junctions in excitable cells. J Bioenerg Biomembr
28(4):351–358

3. Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-
gated ion channels. Plant Biol 12(s1):80–93

4. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev
17:65–77

5. Eyrin H (1935) The activated complex in chemical reactions. Chem Rev 3:107–115
6. Faulkner C (2013) Receptor-mediated signaling at plasmodesmata. Front Plant Sci 4:521
7. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane.

Biophys J 1(6):445–466
8. Fox R (1997) Stochastic versions of the hodgkin-huxley equations. Biophys J 72:2068–2074
9. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants.

Plant Cell Environ 30(3):249–257
10. Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem

81:2340–2361
11. Gradmann D (2001) Models for oscillations in plants. Funct Plant Biol 28(7):577–590
12. Gradmann D, Blatt M, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr

Biol 136(3):327–332
13. Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Vaz Martins T,

Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ (2012) Buffering capacity
explains signal variation in symbiotic calcium oscillations. Plant Physiol 160(4):2300–2310

14. Hedrich R (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811
15. Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in

plant vacuoles. Nature 329(6142):833–836
16. Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant

communication. Trends Plant Sci 21(5):376–387
17. Hille B et al. (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland
18. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its

application to conduction and excitation in nerve. J Physiol 117(4):500
19. Keener JP, Sneyd J (2009) Mathematical physiology, vol 1. Springer, Berlin
20. Lowen SB, Liebovitch LS, White JA (1999) Fractal ion-channel behavior generates fractal

firing patterns in neuronal models. Phys Rev E 59(5):5970–5980
21. Spalding EP, Slayman CL, Goldsmith MHM, Gradmann D, Bertl A (1992) Ion channels

in arabidopsis plasma membrane transport characteristics and involvement in light-induced
voltage changes. Plant Physiol 99(1):96–102

22. Sukhov V, Nerush V, Orlova L, Vodeneev V (2011) Simulation of action potential propagation
in plants. J Theor Biol 291:47–55

23. Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular
plants. J Membr Biol 232(1–3):59

24. Tester M (1990) Tansley review no. 21 plant ion channels: whole-cell and single channel
studies. New Phytol 114(3):305–340

25. Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron
3(6):665–676

26. Ward JM, Schroeder J (1997) Roles of ion channels in initiation of signal transduction in higher
plants. In: Signal transduction in plants. Springer, Berlin, pp 1–22


	3 Modelling Ion Channels
	3.1 Introduction
	3.2 Modelling Single Ion Channel Dynamics
	3.2.1 Diffusion of Ionic Species
	3.2.2 Channel Dynamics
	3.2.3 Markov Processes

	3.3 Modelling the Dynamics of an Ensemble of Ion Channels
	3.3.1 Gillespie Algorithm
	3.3.2 Transition Probabilities
	3.3.3 Many Gates
	3.3.4 Master Equation
	3.3.5 Averaging

	3.4 Modelling Cellular Membrane Excitability
	3.4.1 Nernst Potential
	3.4.2 Membrane Currents
	3.4.3 Action Potentials

	3.5 Conclusions
	References


