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Preface

Plant biology is a rich, fascinating and rewarding playground for those with an
interest in modelling and simulation.

Plants are constantly processing information, computing and adapting to their
surroundings. This notion of information processing is becoming increasingly
important in biology as is the appreciation of physical and engineering approaches
for understanding these processes and how they are manifested in form and function.
Our basic premise is that whatever plants are doing, they are doing within the laws
of physics. Physical approaches using the established language of mathematics
and computation are therefore key research tools for unravelling the biology of
plants. For instance, plant growth can be viewed as a mechanical problem in
which plants exploit hydraulics and material properties to determine their shape.
Photosynthesis can be treated as a quantum mechanical problem, whereby photons
are captured and their energy used to catalyse chemical processes that convert
carbon dioxide to sugar. Plants use diffusible particles and electrical waves for
transmitting information. Plants generate pressure gradients that drive fluid flow
through small elastic tubes to transport nutrients. The list goes on.

Perhaps with the exception of the theory of evolution, biology may seem to
currently lack the unifying laws of physics, the axiomatic nature of mathematics
or the abstractions of computer science, thus giving rise to the usual clichés.
The ‘hard’ sciences are typically viewed as abstract, reductionist, mathematical
and quantitative. For some theories, such as quantum electrodynamics or special
relativity, astonishing levels of precision have been reported, achieving better than
ten significant digits. Such precision (and accuracy) can induce the idea of these
theories being ‘exact’. On the other hand, ‘soft’ sciences have a reputation of being
more descriptive and qualitative. Biological systems perform tasks such as self-
repair and reproduction that fit less readily within existing physical and engineering
frameworks. The science of living systems can appear ‘messy’ and therein lies
the challenge. It is ‘easy’ to achieve robust computation using well-characterised,
virtually error-free components, but how does biology with its noisy, fluctuating
systems manage to carry out tasks such as reproducing cells and whole organisms
so robustly? Biology is full of such ‘hard’ problems.
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vi Preface

More important than this artificial division into disciplines is the approach.
Unlike in physics where the question of ‘function’ or ‘utility’ of something (why
questions) makes little sense, in biology thinking about function can help place
observations in an evolutionary context and enhance our understanding. Thinking
about problems in terms of cause and effect (how questions) is what leads to
mechanistic insights which in turn helps understand evolutionary innovation, and
this is the spirit of the chapters presented in this book. Modelling and simulation
have a key role to play in unravelling mechanism and trying to discern cause
and effect but also in making sense of evolutionary changes. Efficient models can
compress a lot of data and knowledge into a few rules or equations. Despite all
models being wrong at some level, they offer powerful tools to synthesise data and
ideas, to generate and evaluate hypotheses and to make predictions. Importantly,
useful models are falsifiable (which is when we learn the most about a system).
Predictions can be used to guide new experiments and to validate, falsify or define
the application boundaries of a model.

This book aims to provide a mix of introductory chapters and latest state-
of-the-art research overviews that place key questions in plant biology within a
cause-and-effect framework, thereby drawing on relevant physical, mathematical
and computational approaches. Modern plant biology requires an increasing and
diverse set of skills and seamlessly blends them into an integrative, interdisciplinary
approach. All chapters are written by leading experts who are driving such
interdisciplinary developments. The chapters are not meant to be exhaustive but to
give a flavour of some of the current problems and to provide some background upon
which can be built to develop a solid foundation for research in the area. The book
is aimed at physicists, mathematicians, computer scientists and engineers, whom
we hope to excite with the challenges and opportunities in plant biology but also the
increasing number of mathematically skilled biologists with an interest in modelling
and simulation as a means to understand biology. For others there are likely better
and more suitable introductions.

For those without much biology background, there are many truly excellent
text books. A fantastic and stimulating up-to-date classic is Molecular Biology of
the Cell by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts and Peter Walter. Some basic understanding of DNA, genes and proteins can
readily be developed from online resources. For the current book, the prerequisites
in terms of plant biology are limited, many of which are explained in the individual
chapters. Important concepts include the following: plants consist of cells that
are surrounded by a cell wall and are therefore not mobile; plant cells can build
substantial pressures within them through osmosis, which is the exchange of water
driven by the chemical potential that arises from the concentration difference on
solutes; plant cells have various components (proteins) that can transport ions
across membranes, giving rise to concentration differences and therefore voltages
which can be exploited for signalling. Personal favourites for more in-depth studies
include Plant Biomechanics by Karl Niklas, An Introduction to Systems Biology
by Uri Alon and Information Theory, Inference and Learning Algorithms by David
MacKay.



Preface vii

Given that human life is sustained by plants in that they influence our atmospheric
composition, providing us with oxygen to breath, form important ecosystems,
contribute a substantial part of our diet and calorific intake and provide natural
products and medicines, understanding the biology, physics and computation of
plants is perhaps one of the most relevant challenges of our time.

As I hope will become apparent from this book, plant biology is a ‘hard’
science. It extensively uses quantitative data, physical theories and mathematical
and computational modelling and is becoming increasingly predictive. Furthermore,
plant biology is great fun.

Chapter 1 introduces physical models of plant morphogenesis. The theory
of forces, stress and strain is explained with selected case studies. Chapter 2
summarises the basic mathematical approaches to fluid transport in plants. Fluid
dynamics plays an important role in the transport of nutrients, growth and long-
distance signalling. Chapter 3 describes how we can use physical models to
understand ion channels. Much of the information processing carried out by plants
uses changes in ionic concentrations to transmit signals that activate responses to
environmental challenges. Chapter 4 introduces plant microtubules and mathemat-
ical and computational techniques for modelling their behaviour. Microtubules are
dynamic entities that play a key role in determining plant cell shape and function.
From here onwards we are exposed to problems of organisation over multiple
spatial and temporal scales—a reoccurring theme and challenge in approaches to
modelling in biology. Chapter 5 takes a closer look at how cell shape changes as a
function of ion channel activity on the example of guard cells, thereby integrating
transport processes with macroscopic function. In Chap. 6, an overview is provided
of the most recent developments in single-cell approaches for understanding
morphogenesis, particularly in terms of image processing, quantitative data analysis
and computational modelling techniques. Chapter 7 goes beyond single cells and
tackles approaches for describing collections of cells, tissues, their interactions,
growth and division. Chapter 8 takes an abstract computational approach to plant
development with the development of L-systems. L-systems offer powerful tools
for studying plant development at different levels from reactions to whole plant
behaviour. Chapter 9 describes recent results on the important trait of flowering
time to move up further in scales of synthesising knowledge. This chapter considers
gene networks, phenology and evolution. Chapter 10 takes the scale of modelling
one important step further and investigates the lifestyle strategy of plants in natural
environment on the example of seed banks. Together these chapters are exemplars
of how plant science is developing and the inherent challenges of bridging scales
between micro-mechanisms through cells to whole plant behaviour and populations
of plants in a changing environment. There is clearly no shortage of really exciting
and highly relevant challenges ahead for which computational approaches will have
a key role to play.

http://dx.doi.org/10.1007/978-3-319-99070-5_1
http://dx.doi.org/10.1007/978-3-319-99070-5_2
http://dx.doi.org/10.1007/978-3-319-99070-5_3
http://dx.doi.org/10.1007/978-3-319-99070-5_4
http://dx.doi.org/10.1007/978-3-319-99070-5_5
http://dx.doi.org/10.1007/978-3-319-99070-5_6
http://dx.doi.org/10.1007/978-3-319-99070-5_7
http://dx.doi.org/10.1007/978-3-319-99070-5_8
http://dx.doi.org/10.1007/978-3-319-99070-5_9
http://dx.doi.org/10.1007/978-3-319-99070-5_10
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There are many exciting computational developments in plant biology, and
hopefully future editions of this book can be extended to include further chapters
that display the power of interdisciplinary journeys into the processes and
mechanisms of plants.

Norwich, UK Richard J. Morris
April 2018
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Chapter 1
Physical Models of Plant Morphogenesis

Mathilde Dumond and Arezki Boudaoud

Abstract Biological form is closely associated with function. Yet, despite much
progress in developmental biology, we are still far from understanding how organs
grow and reach their final size and shape, through a process known as morpho-
genesis. Morphogenesis is associated with a variety of cellular scale phenomena
such as cell expansion, cell proliferation, and cell differentiation. These processes
occur within the thousands to billions of cells that yield a well-defined organ. How
these phenomena are coordinated over time and space to shape a consistent and
reproducible organ or organism is still an open question. In this chapter, we focus
on physical models of morphogenesis. We first introduce quantitative descriptions
of growth. We then expand on mechanical models of growth; we review types of
models and we discuss case studies where such models were used.

1.1 Describing Morphogenesis

To better understand morphogenesis and reliably compare models to experiments,
qualitative observations are not sufficient and quantitative measurements are nec-
essary. From an analytical viewpoint, morphogenesis can be dissected as the
combination of a small set of elementary transformations. The final shape of
an organ results from the integration throughout time of growth. Growth can be
decomposed into three parameters: growth rate (differential of area over time),
growth anisotropy (ratio between the maximal and the minimal principal directions
of growth), and maximal growth direction (see Fig. 1.1) [12, 18, 27, 65]. Formally,
growth is a tensor that can be defined similarly to the strain tensor in continuum
mechanics. Consider a generic material point of coordinates (x1, x2, x3); it is dis-
placed by growth to (x1 +u1, x2 +u2, x3 +u3), (u1, u2, u3) being the displacement
field. The growth tensor is then:

M. Dumond · A. Boudaoud (�)
Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1,
CNRS, INRA, Lyon, France
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2 M. Dumond and A. Boudaoud

Fig. 1.1 Quantifying morphogenesis. (a) Growth can be assessed by monitoring a circle drawn on
the tissue (a sphere in 3D): (i) if the circle remains a circle, growth is isotropic; (ii) if the circle
becomes an ellipse, growth is anisotropic (growth rate can be deduced from the ratio of surfaces
between the two time points; growth anisotropy derives from the ratio in length of the ellipse axes);
(iii) growth direction corresponds to the direction of the great axis of the ellipse. (b) Example of
a software package developed to quantify growth: (i) image of an Arabidopsis thaliana sepal with
the membrane tagged with a fluorescent molecule; (ii) growth rates quantified over each cell for a
24h interval using MorphoGraphX [5] (the color scale corresponds to the ratio in cell area between
the two time points)

gij = 1

2

(
∂ui

∂xj

+ ∂ui

∂xj

+
∑
m

∂ui

∂xm

∂uj

∂xm

)
. (1.1)

Note that this definition implicitly assumes that the elastic strain tensor (due to
internal or external forces exerted on the growing body) is negligible. Other slightly
different definitions, or sometimes rates (time derivatives), are also used. Such quan-
tifications enable the conversion of successive images of organs into quantitative
data to perform statistical analyses and to compare models to experiments in a
systematic manner.

1.1.1 Quantifying Cell Growth

The starting point is two- or three-dimensional images of tissues or organs showing
cell contours, for instance tagged with a fluorescent protein when using confocal
microscopy. Quantitative measurements have been facilitated by the development of
software that segment cells from such images and measure their growth parameters
semi-automatically, in 2D [5], or in 3D [29]. Such software has been used to extract
and characterize cell shapes [47, 53, 64], cell growth [15, 37, 42, 66], and to compare
mutants to wild-type growth [40, 69]. These cell-based quantifications have been
performed so far for rather small organs (less than a thousand of cells). The growth
patterns of bigger organs such as older leafs and flowers are often measured at the
supracellular level using a continuous description.
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1.1.2 Quantifying Organ Growth

The growth patterns of large organs are measured with methods such as landmark
analysis and clonal analysis. It is possible to use landmarks on an organ, and
measure the relative displacements of the landmarks over time. Early studies
considered either natural landmarks such as the vein intersections in leaves [48]
or ink-drawn landmarks—grids [3] or set of points [33, 55]—restricting these
approaches to relatively older leaves. More recent studies used fluorescent micropar-
ticles deposited on leaves [57, 60].

It is also possible to perform clonal analysis, which consists in labelling groups
of cells or single cells by expressing a specific heritable marker, and observing
their descendants. When a notable fraction of the cells is labelled without any
neighbor marked, this enables to define growth rate, anisotropy, and direction at the
supracellular level [56]. Because the tissue deforms during growth, the interpretation
of clonal analysis requires the use of a model to account for the advection of material
points by growth [59].

Finally, two studies have shown that measuring the leaf contour change over time
was sufficient to use conformal maps to roughly predict the displacement field of all
points inside the leaf [1, 52], because the leaf remains flat all over its development,
and because its growth is roughly isotropic at later stages of leaf morphogenesis.

1.2 Forces in Plants

Plant cells are surrounded by a stiff extracellular matrix called the cell wall, put
under tension by the internal hydrostatic pressure known as turgor that typically
ranges from 0.1 to 1 MPa [8]. Growth is achieved by modulating turgor pressure and
cell wall mechanical properties. How can we relate growth to cell mechanics? What
is the mechanical status of plant tissues? We here focus on the evidence for forces,
as measurements of mechanical properties were reviewed elsewhere [8, 51, 62, 68].

1.2.1 Forces in Tissues and Cells

It has been observed that when peeling a stem, the outer tissue shrinks whereas the
internal tissue expands, suggesting that internal cell layers are in compression while
the outer layers are under tension [67]. Similarly, cutting a plant tissue leads to a
deformation—the cut opens or remains closed according to whether the tissue is in
tension or not. Measuring such deformations thus yields information on mechanical
stress patterns. For instance, the epidermis of the early sunflower capitulum is under
tension in its center and under circumferential compression in the concave region
that surrounds the center [23].
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Turgor pressure results from osmotic pressure, and so is determined by the
difference in osmolyte concentration between the cell and the outer medium. Hence,
it is possible to plasmolyze cells by increasing the outer concentration of osmolytes,
removing turgor pressure and the tension in the cell wall. Comparing plasmolyzed
and turgid cells yields the elastic strain in turgid cell walls and gives information on
the stress pattern in cell walls [63].

1.2.2 Forces and Growth

The interplay between turgor pressure and cell wall mechanical properties is at the
core of our current understanding of plant cell growth. The growth of the plant cell
is due to the yielding of the cell wall under the tension generated by turgor pressure,
in addition to the synthesis and export of new wall materials by the cell. From the
mechanical point of view, cell wall tension induces deformations that depend on cell
wall rheology.

In the simplest rheological model, the cell wall is considered purely elastic: it
behaves like a spring. In this case, the deformation, or strain ε, depends only on the
stress σ applied on the spring, or the cell wall:

ε = σ/E (1.2)

where E the stiffness modulus of the cell wall. The principal limitation of this model
is that the spring reverts to its rest shape when the force is released: such a cell wall
does not grow. This issue is dealt with within the framework of incremental growth:
The spring is loaded and the equilibrium length is taken as the next rest length of the
spring. This new rest length initiates the next loading step. Thus growth is modeled
as a succession of steps of loading and updating of the rest length.

A more realistic representation of the cell wall is a viscoelastic material. In this
case, it behaves like the association of a spring and a damper (see Fig. 1.2):

dε

dt
= σ/μ + dσ

dt
/E (1.3)

where μ is the dynamic viscosity. In a few models of growth [16], elasticity is fully
neglected and only the damper is accounted for. Note that the incremental approach
to growth is equivalent to a viscoelastic model if a timescale is associated with step
increments [11]. Here, when the force is released, the material does not revert to its
original configuration: this rheology allows cell wall growth.

One of the most elaborate rheological models of the cell wall behavior was
introduced in [54], and proposes that the cell wall behaves as a visco-elasto-plastic
material (see Fig. 1.2): the cell wall behaves as an elastic material when the stress
is lower than a threshold σ0, but as a viscoelastic material if the stress is larger
(|f |(+) = 0 if f < 0 and else |f |(+) = f ):
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Fig. 1.2 Simple rheological behaviors and plant growth. (a) A purely elastic material behaves like
a spring: it returns to its original state when applied stress is released. (b) A viscoelastic material
(of Maxwell type) behaves like the association of a spring and a damper; rate of damper elongation
depends on the applied stress. (c) The behavior of a visco-elasto-plastic material depends on the
value of the force applied: if the stress is smaller than the material-specific threshold σ0, it behaves
elastically, otherwise it behaves viscoelastically. The bottom plots show strain as a function of time,
with force applied during the period highlighted in yellow

dε

dt
= |σ − σ0|(+) /μ + dσ

dt
/E (1.4)

Cell wall rheological parameters can be measured, using techniques reviewed in [51,
63, 68]. Depending on the question addressed, one can use one or the other of these
rheological models. Note that the rheological parameters of the cell wall can be
heterogeneous and/or anisotropic. Full models require the generalization of these
simple rheological models to 2 or 3 dimensions and the assembly of simple bricks
to account for cell and/or tissue geometry and for links between cellular processes
and cell wall mechanics.

1.3 Modeling Morphogenesis

1.3.1 Different Types of Models

Models of morphogenesis fall into two main categories: models considering a
continuous growing medium and models individualizing each cell.

Continuous models are usually used for large organs, comprising thousands of
cells, where cell size is very small compared to organ size. Most studies considered
flat organs such as leaves, petals, or sepals (see, e.g., [40, 41]). The surface of the
organ is modeled as a 2D surface embedded in 3D space, assuming the thickness is
small with respect to other dimensions. 3D models are less common, one example
being the morphogenesis of fruits [17]. A widespread assumption for other organs
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Fig. 1.3 Main types of models: Examples in two dimensions. (a) Continuous model: the surface of
the organ is continuous, for instance represented by a triangulated mesh. (b) Cellular Potts model,
where cells are defined on a non-deformable grid. (c) Vertex-based model, the cells are defined by
vertices (circles) and their edges with the neighboring cells

such as stems is that the epidermis is dominant in the control of growth, because
the surface cell wall is thicker and stiffer than internal walls (see, e.g., [9] for a
discussion). This enables modeling the dynamics of the surface of the organ [39].
Formally, these models come in the form of partial differential equations, often
obtained by accounting for cell wall rheology and mechanical equilibrium. The
finite element method is often used to solve them because the triangular meshes
are well-suited to domains of arbitrary geometry.

Cells are individualized in other types of models, such as cellular Potts models
or vertex-based models (see Fig. 1.3). In the cellular Potts model, cells are defined
on a discrete fine grid, and the status of each point of the grid is updated depending
on a set of rules, leading to the movement of the edges of the cells. This framework
was originally developed for physical systems such as foams. It is widely used in
the animal field, and can have a finer subcellular resolution than the vertex-based
models discussed hereafter. Nevertheless, the cellular Potts model seems to have
been used only once for plants, in the context of auxin concentration dynamics in a
growing root [35]. Indeed, this framework is not well-suited for an elastic material
and is commonly used to model purely viscous materials such as animal cells.

Vertex models are broadly used to investigate plant development [25, 49]. Cells
are often assumed to be polygonal, so that cell shape is defined by the position of
vertices and their dynamics in space. Sometimes, edges are allowed to be curved,
for instance assumed to be arc of circles [20]. The mechanical elements can be
placed at cell edges (e.g. spring-damper systems) accounting for anticlinal cell
walls [20, 25], or on the whole surface of the cell accounting for periclinal cell
walls [22, 49, 61]. Such models can also incorporate gene regulatory networks, cell–
cell communication, or cell division [25].

More recently, 2D models started to combine vertex-based and continuous
approaches, with cells individualized and their cell walls represented as continuous
structures [14, 30]. This enables to simultaneously model cell scale behavior (cell
division, cell shape) and consider the mechanical properties of the periclinal cell
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wall at a subcellular resolution. This approach was extended to 3D, enabling for
the first time to model morphogenesis a 3D tissue at cellular resolution [12]: by
accounting for epidermis and for internal layers, the authors investigated the relative
role of cell layers in the outgrowth of organ primordia in the shoot apical meristem.

1.3.2 Implementation of Growth

So far, growth has been modeled using two different approaches. In the first type
of description, growth rate, direction, and anisotropy are specified or inferred from
a gene regulatory network at each point in time and space of the simulation. The
tissue is assumed to be elastic and the equilibrium state is computed from force
balance [41]. This amounts to prescribing the rest length of an assembly of springs
and computing their equilibrium lengths.

In the second type of description, the cell wall’s mechanical properties such as
elastic modulus or viscosity (these properties may be anisotropic) are specified or
inferred from regulatory networks, and the mechanical equilibrium under loading
by turgor pressure defines the current growth rate. In this framework, the tissue
deformation depends on the tissue rheology, which can be one of the types
previously presented: elastic, viscoelastic, or visco-elasto-plastic.

1.4 Case Studies: The Use of Models to Understand
Plant Morphogenesis

We now illustrate the concepts outlined above by discussing representative physical
models of morphogenesis.

1.4.1 Morphogenesis of an Isolated Plant Cell

A first step towards understanding organ morphogenesis is to study cell morpho-
genesis. A classical system of interest is the pollen tube, which is one of the model
systems for tip growth: elongation of the tube by expansion of the cell wall localized
at the cap of the cylinder. During pollination, the pollen grain lands on the summit
of the carpel and germinates. The pollen tube emerges and subsequently grows into
the carpel reaching the ovule. How a cell can grow in such directional manner has
been extensively investigated.

Considering the cell wall as a hyperelastic (extension of linear elasticity to
large deformation) membrane and using an incremental approach to growth, [32]
showed that a lower elastic modulus at the tip of the tube was sufficient to produce
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self-similar tip growth. A fully viscous model led to similar conclusions [16]. In
the visco-elasto-plastic model developed in [24], the authors also needed a softer
tip; they found, however, that the cell wall anisotropy was required to retrieve
self-similar tip growth, except in very few specific cases. In these three studies,
the equations were numerically solved based on the circumferential symmetry
of the pollen tube, making this modeling framework difficult to extend to other
systems. The study in [28] released this assumption of axisymmetry and used the
finite element method for numerical solutions. They implemented an incremental
approach to growth, considering the cell wall as an elastic material. The influence of
anisotropy and of the steepness of the gradient of stiffness over the edges of the tube
were tested, and the interaction between these two quantities allowed self-similar
growth depending on the parameters: a steeper cell wall stiffness gradient was
associated with a more isotropic cell wall to produce self-similar growth. Finally,
[58] introduced a model coupling cell wall chemistry with mechanics, assuming a
viscoelastic rheology in which the viscosity depends on the concentration of cross-
links in the wall. In addition to self-similar tip growth, they retrieved the oscillations
in growth rate and tube diameter observed in fast growing tubes.

1.4.2 Growth Motion of an Elongated Organ

Plants cannot move, but they react to their environment: for instance, the main shoot
and the main root bend towards the gravity vector. The molecular mechanisms
involved are relatively well described, and the integration of these mechanisms
during growth has been investigated using models coupling biomechanical and
biochemical processes [31, 70]. The differential localization of auxin transporters
from the PIN-FORMED family leads to differential concentrations of auxin, which
in turn cause differential growth rates along the transverse axis of roots and
hypocotyl, ultimately inducing a bending of the organ. These studies focused on
the relationship between auxin, cell differential growth, and bending initiation, but
they did not fully investigate how the vertical orientation of the organ is reached.
Actually, when only gravity-sensing is taken into account, the shoot oscillates
around the axis of gravity whereas real shoots reach this orientation [6]. Sensing
the local curvature (proprioception) needs to be included to reproduce the observed
dynamics of stem curving, in the case of both gravitropism [6] and phototropism [7].

1.4.3 Shaping a Sheet-Like Organ

Volvox is a green algae in the form of a spherical sheet of cells with an aperture. One
major even in the morphogenesis of Volvox is its inversion: the organism turns inside
out. The inversion of the sheet of cells is associated with a sequence of deformations
where cells firstly circularly invaginate at the equator, accompanied by the posterior
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hemisphere which moves into the anterior and inverts as well [38]. Finally, the
aperture stretches out over the posterior hemisphere. The deformation of the sheet
is associated with cell shape changes, but their role in the sheet inversion remained
poorly understood. Modeling the sheet as an elastic material in which the rest state
is actively controlled (this is formally similar to the models prescribing growth),
the authors showed that the shift in the sheet curvature at the equator combined
with the contraction of the posterior hemisphere were sufficient to trigger this major
morphogenetic event [38].

In angiosperms, the main sheet-like organs are leaves and petals. The shapes of
such organs are very diverse and can change drastically from one species to another.
The underlying regulatory networks are very intricate and it is difficult to relate them
to final organ shapes. The Snapdragon corolla, in particular, has a very elaborated,
asymmetric shape. The wild-type and several morphogenetic mutants have been
successfully modeled using a continuous approach based on incremental elastic
growth [34]. This model removes mechanical stress at each step when using the
equilibrium configuration to define the following rest configuration. This stress is
induced by spatial gradients in growth rates (e.g. fast growing regions exert pressure
on other regions) and is called residual stress.

Models prescribing mechanical properties instead of growth rates generally
account for residual stress [12]. Such residual stress may have significant effect
on morphogenesis, for instance in the case of thin organs. Larger growth rates at the
edge of these organs induces compressive stress there, which leads to the buckling
of the edges of the organ into a wavy shape [2]. Such waviness of edges is observed
in leaves and petals of many species, such as in Lily [44, 45]. Based on this, it is
likely that a specific regulation of growth rates is required for leaves or petals to
remain flat [1, 52].

1.4.4 Feedback Through Mechanical Signals

Mechanics are at the core of morphogenesis: growing cells interact mechanically
during morphogenesis, relaxing and generating residual stress. Can this mechanical
stress have an impact on cell behavior? It has been shown that plant cells can
sense and react to mechanical stress by orientating cortical microtubule networks
in the direction of maximal principal stress [36], leading to the synthesis of
cellulose microfibrils in this direction and to the mechanical reinforcement of the
cell wall along mechanical stress. The consequences on organ morphogenesis were
investigated in Arabidopsis thaliana sepals [37]. The authors used an incremental
model, with a prescribed elastic modulus, and a mechanical anisotropy imposed by
the anisotropy of stress and following the same orientation. They obtained a gradient
in growth rates with a slowly growing tip and a fast growing base, leading to a
transverse tension in the tip and a mechanical reinforcement there. By comparing
simulations with mutants affected in sensing mechanical stress, they showed that
this mechanical feedback enabled the modulation of organ shape. Similarly, a vertex
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model accounting for cell divisions and viscoelastic periclinal cell walls helped
showing that cell divisions follow the direction of maximal stress in the shoot apical
meristem [46]. In all these studies, it was assumed that cells sensed mechanical
stress.

However, cells could sense either stress or strain. The two are usually correlated,
but the direction of maximal strain and maximal stress may differ when the material
is mechanically anisotropic. [13] investigated which of the two sensing mechanisms
was more plausible in the case of microtubule orientation and cellulose synthesis.
They modeled the plant epidermis as an elastic 2D surface embedded in 3D and
pressurized from inside by turgor, increasing elastic modulus along the direction
of the maximal stress or along maximal strain, and they examined the subsequent
elastic strain, considered as a proxy for growth. Simulations where the cellulose
orientation followed stress were in accordance with experimental observations,
whereas simulations where cellulose oriented depending on strain were less stable
and disagreed with observations.

Mechanical cues can also guide differentiation [26]. Models have started address-
ing how this may pattern growing organs. For instance, the epidermis of leaves is
stiffer than internal tissues, so that the effect of turgor is tension in the epidermis
and compression in internal tissues. Models assumed that such compression, when
above a threshold, leads to the differentiation of ground cells into pro-vascular
cells [21, 43]. This mechanism is sufficient to produce venation patterns that are
similar to the patterns observed in dicotyledon leaves [21, 43]. However, it also
established that biochemical patterning by auxin flow is crucial for venation [10]. It
may well be that the combination chemical signals and mechanical signals provides
robustness to vascular patterning.

1.4.5 Variability and Morphogenesis

All the models discussed so far are deterministic: They describe the expected
average behavior of the system. However, cells in an organ are variable [50]. We
here consider three examples of mechanical variability in flat organs.

Modeling the wheat leaf using a cell-based model which takes turgor pressure
and water movements into account, [71] showed that turgor pressure was variable
between the cells of the wheat leaf, and that this variability correlated with cell
identity.

In Arabidopsis sepals, a mutant showing more variability of shape was less
heterogenous spatially than wild-type concerning growth rates and mechanical
properties [40]. An incremental organ growth model with random mechanical
properties showed that increasing the correlation length of elastic modulus allowed
to retrieve the observed changes from wild type to mutant [40].

The growth of a leaf depends on its venation pattern, because veins are stiffer
than ground tissue. Areas surrounded by veins (areoles) grow at different rates,
depending on their geometry and on the thickness of neighboring veins, which
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likely determines their stiffness [19]. In order to disentangle the links between
global leaf growth and venation, [4] investigated the effect of external stress on
venation networks. They found that the venation network reorients towards the
direction of the applied stress. Using a vein-based model with veins represented
as viscoelastic rods and growth driven by turgor, they showed that external stress
increased the variability in growth, opposite to experimental observations. In order
to reconcile model with experiments, they needed to include randomness in vein
thickness and a threshold in tension for growth to occur, considering an elasto-visco-
plastic rheology for veins.

1.5 Conclusion

As developmental biology is becoming more and more quantitative, mechanical
models are increasingly used to test hypotheses and help understand the mechanisms
behind morphogenesis. Many approaches and types of models are now available.
However, a number of questions remain open. For instance, is there a unifying
framework to model growth in plants? What is the exact rheology of plant cells?
These issues are exemplified by models for pollen tubes: 4 different types of
rheology all yield self-similar growth. A continuous dialogue between experiments
and theory will be instrumental in future progress.
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Chapter 2
Fluid Transport in Plants

M. G. Blyth and R. J. Morris

Abstract Fluid motion is of fundamental importance for plant survival, growth and
development. This distribution of water and nutrients is achieved by hydraulics.
Fluid flow also plays a key role in long-distance signalling, allowing plants to
adapt to environmental challenges. Fluid dynamics thus maintains plant vitality and
health. In this chapter we derive the basic governing equations for fluid motion from
first principles and describe the pertinent boundary conditions. Pressure-driven flow
in a tube is discussed as a conceptualised model of fluid transport in the plant’s
vasculature system. We also discuss solute transport with particular reference to the
individual roles played by convection and diffusion and the enhanced dispersive
effect that can be achieved when these two effects work in unison.

2.1 An Overview of Plant Hydraulics

Typically around 70% of a plant cell is water. Water pressure within cells is required
for plants to maintain their mechanical properties, as described in other chapters
in this book. Water influx into cells is achieved by osmosis. Osmosis is the flow
of a solvent across a semipermeable membrane, such as the plasma membrane
which surrounds a cell, driven by the chemical potential arising from a solute
concentration gradient. Water influx is key for cell expansion and growth. Most
of the water used by land plants is absorbed from the soil by the roots. Plants
thus need a water distribution system to supply water to other tissues. Likewise,
numerous micronutrients are taken up from the soil by roots and need to be
transported throughout the plant. Water is also used for temperature control by
cooling through vapour loss to the surrounding air. Water transport from root to
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shoot is enabled by the xylem. The process of photosynthesis, in which carbon
dioxide is converted to sugars using light energy, also requires water. The carbon
that is taken from atmospheric gas and placed within biologically accessible sugar
molecules is termed fixed. This fixed carbon is a key building block for numerous
complex biological molecules and as such needs to be transported to those cells
that cannot photosynthesise to provide their own source material. The transport
of sugars occurs in the phloem. The main transport routes for fluids are depicted
in Fig. 2.1. These structures have complex geometries that hinder mathematical
analysis and, for this reason, it is traditional to model them as cylindrical tubes.
The fluids themselves are complex solutions of water, ions, small molecules and
biological polymers. In the interest of simplicity, we will assume that they can be
treated as Newtonian fluids, meaning that the internal stress is a linear function of
the strain rate, as will be discussed in more detail below.

Plant shoot

Plant root
Phloem

Xylem

Xylem

Phloem

Fig. 2.1 Main hydraulic transport routes within a plant. Plants use waterways for long-distance
transport: sugars are transported from where they are produced in mature leaves to other tissues
through the phloem; water and minerals are transported from root to shoot through the xylem.
These waterways operate through different dedicated transport networks using distinct physical
processes to drive them. Flow through the phloem is driven by osmolarity-induced pressure
differences, whereas flow through the xylem is driven by transpiration. In addition to resource
allocation, effective communication is key for the success of multicellular organisms and plants
use their long-distance transport streams to coordinate their activities, for instance to inform distal
tissues of locally perceived challenges. Xylem and phloem are known to play important roles in
signalling. In particular the phloem has been shown to contain a wide range of signalling molecules.
So, not only does the phloem play a key role in delivering nutrients but also in transporting
messages over long distances and thus coordinating growth, development and various physiological
responses
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2.2 Physical Principles and Basic Equations

In this section we introduce the fundamental physical principles and mathematical
equations describing the motion of a Newtonian fluid. A Newtonian fluid repre-
sents an idealisation in which the shear stress within the fluid is assumed to be
proportional to the rate of strain, the constant of proportionality being the fluid
viscosity. This is known as Newton’s law of viscosity. So-called non-Newtonian
fluids obey different laws and may change their viscosity under stress. The following
derivations proceed on the tacit assumption that we can treat a fluid as being
effectively infinitely divisible such that at any point we can unambiguously ascribe
a unique value to physical quantities such as density, mass, pressure and so on. This
assumption is known as the continuum hypothesis.

2.2.1 Conservation of Mass

Consider an infinite fluid in motion in three-dimensional space, and imagine within
the fluid an arbitrary closed volume V with surface S which is fixed in both space
and time, and which has a unit outward-pointing surface normal vector n, as is
illustrated in Fig. 2.2. It should be emphasised that the volume V is purely notional
and its surface is not a physical boundary; the fluid is free to flow into and out of the
volume unhindered. Our aim is to write down a statement expressing the idea that,
in the absence of any source of fluid within V , the total fluid mass inside V changes
at a rate equal to the net inflow (or outflow) of fluid particles across S. If u(x, t) and
ρ(x, t) are, respectively, the fluid velocity and density at a general point in space x

at time t , then this statement takes the form,

d

dt

∫∫∫
V

ρ dV = −
∫∫

S

ρu · n dS. (2.1)

The first term on the left-hand side of (2.1) represents the rate of change of the
total fluid mass within V . The term on the right-hand side represents the rate at
which fluid mass is leaving V by passing through the surface S (note that the dot
product of u with n is taken since it is only motion normal to the boundary S which

Fig. 2.2 Sketch of a notional,
closed volume of fluid V with
surface S and unit
outward-pointing normal n
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is relevant). If the term on the right-hand side is positive/negative, then the total
mass in V increases/decreases.

Since V is fixed we can shift the time derivative on the left-hand side inside the
integral. Moving the term on the right-hand side across the equals sign, and making
use of the divergence theorem (e.g. Schey et al. [19]), we obtain

∫∫∫
V

(
ρt + ∇ · (ρu)

)
dV = 0. (2.2)

Appealing to the fact that the choice of volume V was arbitrary, we conclude that
the integrand in (2.2) must itself vanish, and therefore

ρt + ∇ · (ρu) = 0. (2.3)

This is the equation of conservation of mass.

2.2.2 The Navier-Stokes Equation

Consider now the momentum balance within the fixed volume V . Newton’s second
law of motion (e.g. Goldstein et al. [6]) requires that the total force acting on the
volume must be equal to the rate of change of momentum within the volume. We
express this idea mathematically by writing the balance

d

dt

∫∫∫
V

ρu dV +
∫∫

S

(ρu)(u · n) dS =
∫∫∫

V

ρF dV +
∫∫

S

σ · n dS. (2.4)

The first term on the left-hand side of (2.4) represents the rate of change of the
total momentum within V . The second term on the left-hand side expresses the
rate of departure of momentum, carried by fluid particles, out of the fixed volume
V through the surface S. The first term on the right-hand side is the total body
force acting on the fluid inside V , for example due to gravity; here, F is the body
force per unit mass. The second term on the right-hand side represents the viscous
stress imposed on the surface S by the surrounding fluid; here, σ is the stress tensor,
which for a Newtonian fluid may be written in the form (e.g. Batchelor [2]), σ =
−pI + μ(∇u + (∇u)T ), where p is the fluid pressure, I is the identity matrix and
μ is the dynamic viscosity of the fluid.

Applying the divergence theorem to the second term on the left-hand side of (2.4)
and to the second term on the right-hand side of (2.4), moving the time derivative on
the first term on the left-hand side into the integrand, making use of the statement
of conservation of mass (2.3), and finally appealing to the fact that the volume V is
arbitrary, we arrive at the Navier-Stokes equation,

ρ(ut + u · ∇u) = −∇p + ρF + μ∇2u. (2.5)
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This equation is named after Claude-Louis Navier (1785–1836) and George Gabriel
Stokes (1819–1903). It is complemented by the statement of conservation of mass
(2.3), which, as has been already noted, was also used to derive it. In the case of
an incompressible flow, which occurs, for example, when the fluid density ρ is
constant, the latter reduces to the requirement that the velocity field be solenoidal,
namely

∇ · u = 0. (2.6)

Equations (2.5) and (2.6) govern the motion of an incompressible Newtonian
viscous fluid, and will be used in this chapter as the basic model equations for
studying fluid motion in plants.

2.2.3 Boundary Conditions

To complete the mathematical description, boundary conditions must be appended
to the momentum equation (2.5) and the conservation of mass equation (2.6). Most
flows of practical interest are confined, or partially confined, by physical boundaries.
For example, from a simplistic viewpoint, flow in the interior of a plant cell is
confined by the cell wall and by the surface of the vacuole. It is therefore appropriate
to consider what conditions should be imposed on a fluid motion at a solid surface.

One such condition follows from the intuitively obvious statement that a fluid
cannot penetrate a solid, impermeable surface. Referring to a boundary � which is
moving at velocity U(x, t), where x is a point on the boundary and t is time, this
condition is expressed mathematically as

u · n = U · n on �, (2.7)

where n is a unit normal to �. Physically it stipulates that the fluid particles located
on � move in a direction normal to � with the normal component of velocity of �.
This is usually referred to as the no penetration or no normal flow condition.

A second boundary condition requires that the tangential velocity of the fluid
particles on � should match the tangential velocity of � itself. This demands that

P · u = P · U on �, (2.8)

where P = I − nn is a projection matrix,1 which has the effect of removing the
normal component of the vector on which it is operating. This is usually referred to

1In the definition of P , the term nn is a dyadic product. This can be thought of as a matrix so that
in index notation nn is interpreted as the matrix with elements ninj . Note that some authors write
this product as n ⊗ n.
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as the no-slip condition. In the case of two-dimensional flow, (2.8) simplifies to the
requirement that u · t = U · t on �, where t is a vector tangent to �. The boundary
condition (2.8) is less intuitive than the no penetration condition; nevertheless, it
is appropriate for most fluid motions and is supported by a wealth of experimental
observations (e.g. Lauga et al. [12]).

Taken together, conditions (2.7) and (2.8) demand that the fluid velocity at a
solid boundary � matches the velocity of � itself. If U = 0, so that the boundary is
stationary, these conditions require that u = 0 on �. Solving the flow problem (2.5),
(2.6) in an arbitrary geometry with boundary conditions (2.7), (2.8) is in general a
formidable task. Much of the difficulty stems from the presence of the nonlinear
term, u · ∇u, in the Navier-Stokes equation. Fortunately, substantial simplifications
occur in particular geometries or under certain flow conditions. A classical example
of considerable interest in the fluid mechanics of plants is the flow in a straight tube
to be considered in Sect. 2.3.1.

2.2.4 The Reynolds Number

In the cgs system of units the fluid density, viscosity, and velocity have units of
g cm−3, g cm−1s−1, and cm s−1, respectively. In the flow of a fluid of density ρ and
dynamic viscosity μ, which has a characteristic speed U and a characteristic length
scale L, the dimensionless grouping known as the Reynolds number, named after
Osborne Reynolds (1842–1912),

Re = ρUL

μ
, (2.9)

is free of units and, consequently, provides a very convenient means of categorising
the flow. A flow with a particular value of Re is dynamically similar to another flow
at the same Reynolds number, and information about the one may be inferred from
information about the other via a simple rescaling. For example, the velocity on
the axis of a straight tube of radius 1μm carrying a purely axial flow at Reynolds
number Re = 0.1 is exactly twice the axial velocity in a purely axial flow of a fluid
of the same density and dynamic viscosity in a straight tube of radius 2μm at the
same Reynolds number.

Physically speaking, the Reynolds number indicates the relative importance of
inertia to viscous forces. If Re is large, as is typical in aerodynamics for example,
inertia tends to dominate over viscous effects. If Re is small, then viscous effects
are predominant and inertia may be neglected to a leading order approximation. In
fact, assuming steady flow, so that ut = 0, and formally taking the limit Re → 0,
the inertia term, u · ∇u, on the left-hand side of the Navier-Stokes equation (2.5)
disappears, and we are left with the linear form

0 = −∇p + ρF + μ∇2u. (2.10)
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Equation (2.10) is formally valid when Re = 0 and the flow it describes is
sometimes referred to as zero Reynolds number flow or, more commonly, as Stokes
flow, or occasionally as creeping flow.

2.3 Plant Hydraulics: Flow in Tubes

The rise of water through a plant from root to leaf, against gravity, occurs as a
result of transpiration (see, for example, Niklas [15, chapter 4]). Evaporation in the
photosynthetic leaf tissues lowers the local water potential, defined as the chemical
potential per unit volume, and thereby essentially establishes a pressure gradient to
draw water up through the xylem. The transportation of food products, namely the
outputs of photosynthesis, occurs in the phloem. The Münch hypothesis proposed
in 1930 has been the traditionally accepted explanation for the driving transport
mechanism here, and support for this hypothesis has recently been bolstered by
strong experimental evidence (Knoblauch et al. [9]). The hypothesis asserts that the
motion is pressure-driven from, say, leaf to root, with the pressures at the leaf and
root being set by the local osmotic movement of water from the xylem into the
phloem cells; furthermore, no additional motive force between the two locations is
required.

The water-conducting chambers in the xylem consist of tracheary elements
comprising elongated cells known as tracheids and vessels (e.g. Evert [4, chapter
10]). Generally speaking, vessels are joined end to end to form extended tubes, and
perforation plates at the end-to-end connections permit relatively easy progress of
water from one vessel to another. Water may move from one tracheid cell to another
at so-called pits, where the secondary cell wall comes away exposing the primary
wall. Water can pass through this part of the primary cell wall, which is known
as the pit membrane, but does so under heavy resistance (e.g. Niklas [15, chapter
4]). Further geometrical complications which may arise include helical thickenings,
which manifest as spiralling ridges along the inside of the cell wall (e.g. Evert [4,
chapter 10]).

Despite the complex morphology, water transport has traditionally been modelled
by unidirectional fluid motion in a straight tube, and this topic forms the focus of
the remainder of this chapter.

2.3.1 Flow in a Straight Tube

To describe the flow, we assume that the tube centreline coincides with the x axis
of a Cartesian or other suitable coordinate system, and seek a description in which
the fluid velocity u = uex , where ex is the unit vector in the x direction, so that the
flow is unidirectional and purely parallel to the tube centreline. Keeping in mind the
application to flow in a vertically-oriented xylem tube, we assume that the x axis
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is vertical and aligned with the direction of gravitational acceleration. Accordingly
we assume that the body force in the momentum equation (2.5) takes the form F =
−gex , where g = 9.8 m s−2. In what follows it is convenient to effectively eliminate
the body force term from the momentum equation by defining the modified pressure
p̃ = p + ρgx.

The Navier-Stokes equation (2.5) is considerably simplified in the case of
unidirectional flow. The conservation of mass equation (2.6) implies that ux = 0
so that u is independent of the axial coordinate, x. It follows that u · ∇u = 0 and so
the problematic nonlinear term on the left-hand side of Eq. (2.5) vanishes identically.
Assuming steady flow, Eq. (2.5) reduces to the linear form,

0 = −∇p̃ + μ∇2u, (2.11)

which we observe to coincide with Eq. (2.10), which governs steady Stokes flow.
Since u = uex , taking the dot product of (2.11) with any vector ν which is
orthogonal to ex , we deduce that ν · ∇p̃ = 0 meaning that the pressure gradient
in the direction of ν is zero. Consequently the tube pressure is a function of x and t

only so that p̃ = p̃(x, t) = p(x, t) + ρgx.
We assume that the flow is driven by a constant axial pressure gradient −G,

where G > 0. For vertical xylem transport the pressure gradient must be sufficiently
large to overcome the force of gravity. For a tube of length L with entrance and exit
pressures p1 and p2, respectively (see Fig. 2.3a), the pressure gradient along the
tube is

− G = p̃2 − p̃1

L
= p2 − p1

L
+ ρg. (2.12)

L

p2

p1

x

(a)

r

u0

a

Ga2

4μ

(b)

Fig. 2.3 (a) A pressure gradient drives flow through a tube in the positive x direction if the exit
pressure is less than the entrance pressure, p2 < p1. (b) The Poiseuille velocity profile (2.15) in a
straight circular tube. The arrows indicate the direction of flow
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To ensure that −G < 0 and so that a flow is driven through the tube in the positive
x direction, we need p2 < p1 − ρgL. For a tree of height, say, L = 10 m, taking
ρ = 103 kg m−3 as the density of water, assuming normal atmospheric pressure
at the root, so that p1 = 1atm, we find that an exit pressure of p2 < 0.02 atm
is required for water to be drawn upwards through the tube, that is 1

50 th normal
atmospheric pressure. Kramer and Boyer [10] demonstrate that the water potentials
measured in tall trees are sufficient for the water to rise to substantial heights.

To compute the flow itself it remains to solve the x component of (2.11), namely

0 = G + μ∇2u, (2.13)

subject to the no-slip condition that u = 0 at the tube wall (see Sect. 2.2.3). Since
the flow is everywhere parallel to the wall, the no normal flow condition (2.7) is
automatically satisfied. We start with a discussion of flow in a tube of circular cross-
section of radius a.

2.3.1.1 Circular Tube Flow

Cylindrical polar coordinates (x, r, θ) are the most natural coordinate system to use
to describe flow in a circular tube. We take the axis of the tube to be located at r = 0.
Assuming axisymmetry, so that the velocity field does not depend on θ , Eq. (2.13)
takes the form

0 = G + μ
(
urr + ur

r

)
. (2.14)

Noting that the term in brackets can be expressed more succinctly in the form
(rur)r/r , it is straightforward to integrate twice to obtain the velocity field in terms
of two arbitrary constants. These constants are determined by enforcing the no-slip
condition at the wall, u(r = a) = 0, as well as a regularity condition ur(r = 0) = 0
at the tube axis.2 Ultimately, we obtain

u(r) = G

4μ
(a2 − r2). (2.15)

The motion described by this velocity field is usually referred to as Poiseuille flow,
or sometimes Hagen-Poiseuille flow, after Gotthilf Hagen (1797–1884) and Jean
Léonard Marie Poiseuille (1797–1869). The axial velocity profile (2.15) is sketched
in Fig. 2.3b.

The volumetric flow rate Q through the tube is obtained by integrating (2.15)
over the tube’s cross section, yielding

2This condition is required to avoid a coordinate singularity at r = 0 which would otherwise result
in an unphysical, infinite velocity at the tube axis.
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Q =
∫ 2π

0

∫ a

0
u(r) r dr dθ = σG, σ = a4π

8μ
. (2.16)

Here σ is the hydraulic conductivity of the tube, which provides a measure of the
difficulty of driving fluid through the tube against viscous resistance. It is notable
that σ scales with the fourth power of the tube radius, so that increasing the radius
of a tube rapidly increases its conductivity. The maximum speed occurs on the pipe
centreline and is given by umax ≡ u(r = 0) = Ga2/4 μ. The average speed over a
cross-section is

u = 1

πa2

∫ 2π

0

∫ a

0
u(r) r dr dθ = Q

πa2 = Ga2

8μ
. (2.17)

Evidently u = umax/2 so that the average flow speed is equal to one half the
maximum flow speed.

In the present case it makes sense to base the Reynolds number on the mean flow
speed and the radius of the tube, and to set U = u and L = a in (2.9) so that

Re = ρau

μ
. (2.18)

In the xylem the tube diameter is around 50 μm. A typical measured flow speed
is around 0.1 cm s−1 [3]. Assuming that the fluid in the xylem is essentially water
with dynamic viscosity μ = 0.01 g cm−1 s−1 = 1cP and density ρ = 1 g cm−3,
we obtain Re = 0.1, suggesting that we are in the regime of low Reynolds number
Stokes flow discussed in Sect. 2.2.4.

2.3.1.2 Non-Circular Tube Flow

As has been noted by Tyree and Ewers [21], the tracheary elements are rarely
circular in cross-section and, in fact, a rectangular or elliptical cross-sectional shape
is more appropriate. For an elliptical tube whose cross-sectional boundary C is
described by the equation y2/a2 + z2/b2 = 1, where a is the semi-major axis
and b is the semi-minor axis of the ellipse, we obtain the solution to (2.13),

u(y, z) = Ga2b2

2μ(a2 + b2)

(
1 − y2

a2
− z2

b2

)
, (2.19)

which satisfies the requirement that u = 0 on C. The maximum flow speed umax =
Ga2b2/2μ(a2 + b2) occurs on the tube axis, and the hydraulic conductivity is

σ = Q

G
= a3b3π

4μ(a2 + b2)
. (2.20)



2 Fluid Transport in Plants 25

Notice that these results reduce to those for circular tube flow when b = a. If the
cross-section is only a slight elliptical deviation from a circle, we may set b =
a(1 + ε), where ε � 1, and expand the hydraulic conductivity formula as a Taylor
series to obtain3

σ = a4π

8μ

(
1 + 2ε + O(ε2)

)
. (2.21)

Note that the term preceding the bracket coincides with the hydraulic conductivity
for a circular tube given in (2.16).

For a tube of rectangular cross-section, the solution for the axial velocity may
be found in the form of an infinite series (e.g. Batchelor [2]). The hydraulic
conductivity for such a tube with sides of length 2a and 2b is calculated to be

σ = Q

G
= 4ab3

3μ

[
1 − 6b

a

∞∑
k=1

1

βk

tanh

(
aβk

b

)]
, (2.22)

where βn = (k − 1/2)π .
Analytic expressions for Poiseuille flow in a tube may be obtained for a few other

cross-sectional shapes, including an equilateral triangle (see, for example, Batchelor
[2]), or a small deviation from a regular shape such as a rectangle or a trapezium
(Navardi et al. [14]). For an arbitrary cross-section the solution can be computed
numerically via a complex variable formulation (e.g. Langlois & Deville [11]), or
using the boundary element method (e.g. Pozrikidis [17]).

2.3.1.3 Tube Collapse and Cavitation

Since the water pressure decreases in the direction of the flow, a potentially large
difference can develop between the interior and exterior pressures, creating a
substantial transmural pressure across the tube wall. If this transmural pressure
exceeds a critical value, the tube will tend to buckle and collapse4; and, at
the cellular level, the tracheids and vessels need to be strong enough to resist
this. Furthermore, if the pressure is lowered significantly below the water vapour
pressure, then the formation of cavitation bubbles is expected (e.g. Batchelor [2]).
Such bubbles, which in plants are known as embolisms, have the potential to cause
a blockage and obstruct the flow of water. The architecture of the tracheid cells
helps to mitigate against this since it is difficult for vapour or air bubbles to squeeze
through the small pores in the pit membrane (see Evert [4, chapter 10]).

3The O(ε2) term in (2.21) may be interpreted to mean “terms of typical size ε2 and smaller”.
4This has been demonstrated for elastic tubes by Flaherty et al. [5], who also calculated the buckled
tube states.
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2.3.2 Flow in a Tube with Varying Diameter

The diameter of the lumen aperture in mature tracheary vessels is not expected to
be uniform throughout a given plant. Vessel diameter may tend to decrease with
stem height, for example, and vessel cross-section may change due to cell wall
thickening. In this section we account for these effects in a simplified manner
by considering flow in a tube whose radius is a slowly-varying function of axial
distance. Since we expect the Reynolds number to be small in the xylem (see
Sect. 2.3.1.1), it is reasonable to neglect the inertia terms in the Navier-Stokes
equation and work instead with the linear equation of Stokes flow (2.10).

As before, we assume that the flow is driven by a constant axial pressure gradient
−G, with G > 0. Suppose that L and a∗ are typical length scales in the axial and
radial directions, respectively. Our analysis will be predicated on the assumption
that L is much larger than a∗ so that the tube slenderness parameter δ ≡ a∗/L is
small. Given the separation of scales, it is appropriate to introduce the new variables

X ≡ x/L, R ≡ r/a∗, ũ ≡
(
a∗2

G/μ
)−1

u, p̃ ≡ (LG)−1δ2p.

Writing the Stokes equation (2.10) and the conservation of mass equation (2.6) in
component form, we have

0 = −p̃X +
(
ũRR + ũR/R + δ2ũXX

)
,

0 = −δ−2p̃R +
(
ṽRR + ṽR/R − ṽ/R2 + δ2ṽXX

)
, (2.23)

0 = δũX + ṽR + ṽ/R,

where we have taken ũ = ũex + ṽer , where er is the unit vector in the radial
direction.

At this stage we drop the tilde decorations to simplify the notation. Considering
the limit δ → 0, to leading order approximation the second equation in (2.23) yields
pR = 0 so that the pressure does not vary over a cross-section, and therefore p =
p(X). This simplification means that the first equation in (2.23) can be integrated
directly (having dropped the small δ2uXX term). Integrating twice with respect to
R, and applying the no-slip condition u(R = a) = 0 at the wall, where a(X) is the
local tube radius, and the regularising condition5 uR(R = 0) = 0, we obtain

u = −1

4

dp

dX

(
a2(X) − R2

)
. (2.24)

5This is required to avoid a singularity on the pipe axis. Compare with the calculation for Poiseuille
flow in a circular tube in Sect. 2.3.1.1.



2 Fluid Transport in Plants 27

Integrating (2.24) over the tube cross-section, we compute the volumetric flow rate,
Q = −(πa4/8)dp/dX.

The third equation in (2.23), which represents conservation of mass, suggests that
v = O(δ) so that the flow is almost unidirectional. Integrating this third equation
and applying the physically intuitive condition v(R = 0) = 0, we find that the no
penetration condition at the tube wall, v(R = a) = 0, can only be satisfied if the
pressure satisfies the ordinary differential equation

d2p

dX2
+

(
4

a

da

dX

)
dp

dX
= 0, (2.25)

where we have assumed that a 	= 0 so that the tube does not become completely
constricted at any point. Integrating this equation once, we may deduce that

dp

dX
= − 8Q

πa4
. (2.26)

Thus the pressure gradient along the tube decreases as the inverse fourth power of
the tube radius, a(X).

Integrating (2.26) we obtain the following formula for the tube pressure at any
axial position for a given tube shape a(X),

p(X) = p0 − 8Q0

π
I (X), I (X) =

∫ X

0

1

a4(ξ)
dξ, (2.27)

where p0 is the pressure at the tube entrance at X = 0. For a general choice of shape
function a(X), the integral in (2.27) can be calculated using a suitable numerical
quadrature (e.g. Hildebrand [7]). Figure 2.4 shows how p varies according to (2.27)
for a tube whose radius is decreasing according to one of the two forms:

(i) a(X) = 1 − εX, (ii) a(X) = 1 + ε cos(X), (2.28)

for constant ε. Option (i) might be considered as a simple model designed to capture
the trend of decreasing vessel diameter with stem height, while option (ii) works as
a simple model to capture the fact that water flowing from tracheid to tracheid must
pass through narrow constrictions at the pits. For both options in (2.28), the integral
I in (2.27) can be calculated exactly to obtain a closed formula for the pressure.
Assuming ε � 1, we obtain the following approximations:

(i) I (X) = X + 2εX2 + O(ε2), (ii) I (X) = X − 4ε sin X + O(ε2). (2.29)

The pressures p(X) computed using these approximations are shown in the plots in
Fig. 2.4 with broken lines. Evidently the approximations become less accurate with
distance along the tube.
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Fig. 2.4 Pressure p versus X according to (2.27) for the tube with radius (a) a(X) = 1−0.1X, and
(b) a(X) = 1 + 0.1 cos X, corresponding, respectively, to choices (i) and (ii) in (2.28), both with
ε = 0.1 and with Q0 = 1 and p0 = 0. The broken lines indicate the approximations computed
using (2.29)

If the assumption of a slowly-varying tube radius is relaxed, the analysis
required to determine the flow velocity and the tube pressure is substantially more
involved. Numerical calculations of pressure-driven flow at zero Reynolds number
through a channel with sinusoidal walls were carried out by Pozrikidis [16]. These
computations revealed that recirculating eddies are present in the wall troughs
provided that the amplitude of the wall is sufficiently large; and, indeed, this is
expected on the basis of the corner-flow analysis of Moffatt [13]. Roth [18] provided
an axisymmetric model of flow in a tracheary vessel with helical wall thickenings,
and also observed the presence of near-wall eddies. Such thickenings may result in
a highly contorted flow, which provides an efficient environment for mixing. This
has knock-on benefits for the transport of solutes. This topic forms the focus of the
next section.

2.4 Solute Transport

The transport of solutes is of considerable interest in the fluid mechanics of plants.
In this section, the fundamentals of solute transport by convection or diffusion are
discussed, and the enhanced mixing effect obtained when these two effects act in
unison, usually referred to as Taylor-Aris dispersion, is examined.

2.4.1 The Transport Equation

To derive the governing equation for solute transport, we return to the notional
volume V which is fixed in time and space within an infinite fluid envisaged
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in the derivation of the basic equations in Sects. 2.2.1 and 2.2.2. Consider now
the transport of a passive solute, such as a nutrient or a chemical, through this
volume due to the dual processes of convection by the carrier fluid and molecular
diffusion. If c(x, t) is the solute concentration at a point x at time t , then we may
write, assuming that there is no continuous production of the solute from a source
within V ,

d

dt

∫∫∫
V

c dV = −
∫∫

S

cu · n dS −
∫∫

S

q · n dS, (2.30)

where S is the surface of V , u is the velocity of the fluid, n is the outward-pointing
normal to S, and q is the diffusive flux. The first term in (2.30) expresses the rate
of change of the total amount of solute contained within V . The first term on the
right-hand side represents the rate of transport of solute through the surface S by
convection. The second term on the right-hand side quantifies the rate of transport
of solute across S by diffusion.

According to Fick’s law, solute is spread by diffusion down its concentration
gradient, so that q = −D∇c, where D is the diffusivity. Substituting this form for
q into (2.30), applying the divergence theorem to both terms on the right-hand side,
and moving the time derivative on the first term into the integrand on the basis that
V is fixed, and finally moving all terms to the left-hand side, we have

∫∫∫
V

(
ct + ∇ · (cu) − ∇ · (D∇c)

)
dV = 0. (2.31)

Appealing to the fact that the volume V is arbitrary, we conclude that the integrand
in (2.31) must vanish, yielding a partial differential equation governing the dispersal
of the solute. If the flow is incompressible, so that the solenoidal velocity field
condition (2.6) holds, we may expand and simplify the second term in the integrand
of (2.31) using the product rule of differentiation. If we also assume that the
diffusivity D is constant, we arrive at the convection-diffusion equation,

ct + u · ∇c = D∇2c. (2.32)

Prior to considering the combined effects of convection and diffusion, it is informa-
tive to first discuss the effect of each in isolation.

2.4.2 Transport by Diffusion

In the absence of convection, the transport equation (2.32) reduces to the diffusion
equation,

ct = D∇2c. (2.33)
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To illustrate the basic process of diffusion, it is convenient to work in one spatial
dimension and assume that c = c(x, t). In this case (2.33) takes the simpler form
ct = Dcxx . It has the fundamental solution,

c(x, t) = c0

(4πD t)1/2 e−x2/4D t , −∞ < x < ∞. (2.34)

This solution has been constructed so that the total mass of solute, c0 say, remains
the same for all time t , ∫ ∞

−∞
c(x, t) dx = c0. (2.35)

Figure 2.5a shows how the solute profile given by (2.34) spreads out along the x axis
as time increases. Formally, at t = 0 the solute is all concentrated at the single point
x = 0, where c takes an infinite value. In any case, it is clear that a concentration of
solute will spread outwards over time under the action of diffusion.

The question of how rapidly the solute spreads is of fundamental importance.
Suppose that x = χ(t) marks the boundary such that half of the solute is contained
in the region |x| < χ . Using (2.34) and (2.35), the mass of solute in the bounded
zone is ∫ χ

−χ

c(x, t) dx = c0

(4πD t)1/2

∫ χ

−χ

e−x2/4D t dx = c0

2
. (2.36)
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Fig. 2.5 (a) Solute dispersal under pure diffusion: profiles c(x, t) versus x according to the funda-
mental solution (2.34) with c0 = D = 1 at times t = 0.5 (0.40), 2.0 (0.20), 3.5 (0.15), 5.0 (0.13),
with the values of c(0, t) in brackets. The area under each curve is equal to c0 according to (2.35).
(b) Deformation of an initially rectangular distribution of solute of axial length x under pure
convection in circular Poiseuille flow in a tube of radius a
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Making the change of variable x = (4Dt)1/2ξ in the integral, we have that

∫ χ∗

−χ∗
e−ξ2

dξ = π1/2

2
, (2.37)

where χ∗ = χ/(4Dt)1/2. Although we cannot obtain an analytic formula for the
value of χ∗ which satisfies (2.37), it is clear that χ∗ must be constant, and hence
χ(t) ∝ (D t)1/2. So the boundary in question advances along the x axis as the
square root of time, that is to say rather slowly. Indeed, its speed dχ/dt ∝ (D/t)1/2

decreases with time and so the rate of advance slows as time progresses.
We conclude that diffusion is a slow process and, therefore, taken on its own it

offers a poor mechanism for transport when a relatively fast delivery is required.
Also of note is that diffusion acts to smear out spatial gradients, preferring a more
uniformly-distributed concentration profile.

2.4.3 Transport by Convection

In the absence of diffusion, the transport of solute is dictated purely by convection
and (2.32) reduces to the form

ct + u · ∇c = 0. (2.38)

Suppose that an individual fluid particle moving in a three-dimensional flow has
time-dependent position x(t) = x(t)ex + y(t)ey + z(t)ez. Since the particle is
moving at the local fluid velocity, we must have

dx

dt
= u(x, t), (2.39)

where u(x, t) = uex + vey + wez is the fluid velocity. Consider now the solute
concentration associated with this particular fluid particle, c(x(t), t). Applying the
chain rule, the rate of change of the concentration following this particle is given by

dc

dt
= ct + ucx + vcy + wcz = ct + u · ∇c. (2.40)

It follows that the diffusion-free transport equation (2.38) can be rewritten simply
as dc/dt = 0, meaning that the concentration associated with an individual fluid
particle does not change as the particle moves with the flow.

By way of example, consider the transport of solute by pure convection in the
pressure-driven Poiseuille flow in a circular tube described in Sect. 2.3.1.1. The axial
velocity is given by formula (2.15). Following the preceding observation that the
solute is simply carried with the flow, it is necessary only to describe the motion of
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the fluid particles. We therefore aim to solve (2.39) for the time-dependent position
x(t) of a general fluid particle. Splitting the equation into components, we have

dx

dt
= λ(a2 − r2),

dr

dt
= 0, (2.41)

where λ = G/4μ, and where x measures axial distance along the tube and r =
(y2 + z2)1/2. The second equation in (2.41) implies that the radial distance of a
particle from the tube axis does not change during the motion. Integrating the two
equations in (2.41), we obtain

x(t) = λ(a2 − r2
0 ) t + x0, r(t) = r0, (2.42)

assuming that the particle started at x = x0 and r = r0 at t = 0. Notice that particles
on the tube axis, r = 0, move the fastest and particles on the wall r = a do not move
at all, in accordance with the no-slip condition (see Sect. 2.2.3).

Labelling individual fluid particles by their initial position (x0, r0), we can infer
knowledge of the solute concentration at any time t > 0 from knowledge of the
concentration profile at t = 0 since we know the trajectories of the fluid particles.
For example, a distribution of solute which is initially shaped like a flat circular disk
will deform into a parachute-type shape, as is illustrated in Fig. 2.5b. This distortion
in the concentration profile in convective transport underscores the importance of
shear, which results from a spatially-dependent velocity field. If the convection
velocity in this example were constant, the disk-shaped region at t = 0 would
simply move downstream like a rigid body, maintaining its original shape, size and
orientation.

2.4.4 Shear-Enhanced Diffusion

When both convection and diffusion are in play, the situation is considerably
more complicated. While analytical progress is difficult, there exist numerous
computational algorithms for solving the convection-diffusion equation (see, for
example, Hoffman [8]). Broadly speaking, convection carries solute along with fluid
particles while diffusion acts to smear it out across fluid particles. Shear tends to
distort the solute profile, creating potentially strong spatial concentration gradients,
as we saw in the previous subsection. But diffusion dislikes spatial gradients, and
it tries to smooth them out. This competition between convective distortion and
diffusive smoothing can produce an efficient mechanism for solute dispersal.

In a celebrated piece of analysis, Taylor [20], and later Aris [1] demonstrated
how streamwise diffusion in a circular tube flow, driven by a constant pressure
gradient, is substantially enhanced by the shear in the basic velocity profile. The
analysis is predicated on the following two assumptions following the release of a
solute into the flow: (i) sufficient time has passed for the solute to have diffused
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radially outwards a distance equal to the tube radius, so that any deviation in
concentration in a cross-sectional plane from its average value across this plane
is small; and, moreover, this time scale is short compared to that over which
appreciable changes due to convective transport are observed; and (ii) the radial
diffusion of this deviation dominates over its axial diffusion.

In following this analysis, our goal is to derive an approximate evolution equation
for the cross-sectional average of the concentration field. To achieve this aim, it
will be convenient to decompose the concentration field by writing c = c(x, t) +
C(x, r, t), where c is the cross-sectional average,

c(x, t) = 1

πa2

∫ 2π

0

∫ a

0
c(x, r, t) r dr dθ, (2.43)

and C is the deviation from this average; note that the deviation has zero mean, so
that C = 0. From the discussion in Sect. 2.4.2 we can infer that assumption (i) will
broadly hold true when t is on the order of the radial diffusion timescale tD , where
tD = a2/D, and where a is the tube radius and D is the diffusivity. Accordingly we
introduce the new variables

X ≡ x/L, R ≡ r/a, τ ≡ t/tD, U(R) ≡ u(r, t)/u,

where L is a representative axial length scale. We rewrite the circular Poiseuille
velocity profile (2.15) in the form u = uU(R), where U = 2(1 − R2), and where
the cross-sectional average speed u = Ga2/8μ was given in (2.17). The convection-
diffusion equation (2.32) then takes the form

cτ + Cτ + (δ Pe) U(cX + CX) = δ2cXX +
(

δ2CXX + CRR + CR

R

)
, (2.44)

where δ = a/L and the Péclet number is defined as Pe = ua/D = Ga3/(8μD).
We assume that the solute cannot escape through the tube wall. Appealing to

Fick’s law (see Sect. 2.4.1), this requires that

cR(R = 1) = 0. (2.45)

Taking the cross-sectional average of (2.44), and enforcing the condition (2.45), we
obtain

cτ + (δ Pe)
(

U cX + UCX

)
= δ2cXX. (2.46)

Subtracting (2.46) from (2.44), we arrive at the evolution equation for the deviation,

Cτ + (δ Pe)
((

U − U
)
cX + UCX − UCX

)
= δ2CXX + CRR + CR

R
. (2.47)
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Up to this point our analysis is exact. To proceed we now take the limit δ → 0. In
this limit it is clear from the right-hand side of (2.47) that the axial diffusion of the
deviation concentration is much smaller than its radial diffusion; this corresponds
to assumption (ii). Invoking assumption (i), namely that c � C, and retaining
the leading order terms on the left and right-hand sides of (2.47), we arrive at the
approximate equation,

δ Pe
(
U − U

)
cX = CRR + CR

R
, (2.48)

where we have assumed that δ Pe � 1. This latter condition ensures that the
time scale for radial diffusion is much shorter than that for convective transport,
in accordance with assumption (i). Substituting the form for U given above, (2.48)
can be integrated directly. Demanding that C be finite on the tube axis, and enforcing
the condition that C = 0, we find that

C = 1

4
δ Pe cX

(
R2 − R4

2
− 1

3

)
. (2.49)

It is now straightforward to compute the term UCX. Substituting the result into
(2.44), and rearranging terms, we arrive at the desired evolution equation for the
cross-sectional mean concentration. To aid physical interpretation, it is convenient
to restore the original variables, whereupon the equation takes the form

ct + u cx = De cxx, (2.50)

where De is an effective diffusivity given by

De = D + κ

D
, κ = a2u2

48
. (2.51)

Equation (2.50) can be simplified by making the Galilean transformation x �→
x + u t to remove the second term on the left-hand side, leaving the pure diffusion
equation, ct = De cxx . Physically, this means that in a frame of reference which is
travelling in the x direction at speed u, the averaged concentration field c spreads
out purely under the action of axial diffusion with effective diffusivity De. Referring
to Sect. 2.4.2, we can then say that after a time t the solute will have spread axially
in this moving frame of reference over a distance on the order of (De t)1/2; this is
illustrated in Fig. 2.6a.

The tracheary vessels in the xylem, and the conduits in the phloem, tend to
be long and thin, and consequently the assumption that δ is small is reasonable.
Mastro et al. (1984) have estimated that D ≈ 10−6 cm2 s−1 for small molecules in
cellular environments. Using this value for the diffusivity, and taking a ≈ 25 μm
as a reasonable value for the tube radius, we find that tD = 6.25 s. Assuming that
the mean convection speed u ≈ 0.1 cm s−1 [3], after time tD the solute has been
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Fig. 2.6 (a) Solute dispersal in a circular tube, radius a, after time t ≈ tD = a2/D. Convection
has carried a solute bolus (shaded) a distance u t along the tube, radial diffusion has smeared it out
across the tube, and enhanced axial diffusion has spread it out over a distance O(

√
De t) along the

tube axis. (b) Variation of the effective diffusivity with D according to formula (2.51). The filled
circle shows the data point for D = 10−6cm2 s−1

convected through a distance of roughly u tD = 0.63 cm. This distance is likely to
be substantially shorter than the total distance to be travelled along a plant stem.
Computing the Péclet number using these values, we obtain the fairly large value
Pe = 250. Nevertheless if L = 10 cm, say, then δ Pe = 0.063. We therefore expect
both of the conditions (i) and (ii) to be fulfilled in a plant flow.

Figure 2.6b shows the dependence of De on D according to formula (2.51). The
curve has a minimum at D = √

κ , and De increases sharply as D falls below value.
Using the preceding physical estimates, we compute

√
κ ≈ 3.6×10−5 cm2 s−1. The

filled circle in the figure corresponds to the value D = 10−6 cm2 s−1 suggested by
Mastro et al. (1984). According to the graph, the effective diffusivity at this value is
given by De = 1.3 × 10−3 cm2 s−1, which is about a thousand times larger than D!
This strongly suggests that shear-enhanced dispersion will be an active mechanism
in the transport of solutes in plant hydraulics.

2.5 Conclusions

Plant water relationships are critical for plant growth and survival. Plant hydraulics
is of fundamental importance both to plant form and to plant function, and is the
subject of ongoing and active research. Such research demands a solid understand-
ing both of the plant biology and of the underlying physics. In this chapter we
have discussed some of the elementary principles underlying fluid motion in plants.
We have introduced the basic mathematical equations and discussed some simple
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model solutions, and presented an elementary description of solute transport. Much
remains to be done to understand the intricacies of fluid motion in the complex
geometry of a real plant. It is hoped that this chapter has provided a suitable
introduction for scientists looking to delve into this fascinating interdisciplinary area
of research.
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Chapter 3
Modelling Ion Channels

K. C. A. Wedgwood, J. Tabak, and K. Tsaneva-Atanasova

Abstract Plant adaption and survival relies on signalling, much of which is
achieved through concentration changes in ions. Furthermore, plants can influence
their growth and shape via changes in hydraulic pressure which in turn can be
modulated by changes in ionic concentrations that drive osmosis. We present
an introduction to mathematical modelling of ionic currents and transmembrane
voltages, both intracellular and intercellular. We introduce the modelling techniques
used to describe the physical processes involved in ion channel dynamics and illus-
trate their application using generic examples. We begin by discussing modelling of
individual ion channels. Next, we present computational algorithms most commonly
employed in simulating ionic currents passing via a single as well as an ensemble of
the same ion channel type. We then discuss modelling of ionic current flow across
cellular membrane that could involve different ion channel species. We end with
an overview of modelling action potentials and their propagation resulting from
interactions between different ion channels within as well as between cells. We
illustrate this using a simplified example of plant action potential.

3.1 Introduction

One of the most interesting aspects of ion channel dynamics is that local opening
and closing events can be organised into complex spatio-temporal patterns such as
action potentials that can propagate from cell to cell. Not only are these phenomena
physiologically important, they are also mathematically interesting, and challenging
to grasp. Like in all living systems, ion channels in plants are involved in signal
transduction and are vital for normal plant function, being associated with rapid
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responses to environmental stimuli [9, 26]. Reviews of the experimental literature
on ion channels in plants are given by Tester [24], Gradmann [11], and Hedrich
[14]. The mathematics behind ion channel modelling has a lot in common with
the study of action potential propagation in excitable models such as the Hodgkin-
Huxley or FitzHugh-Nagumo models [7, 18, 19]. However, useful insights into the
mechanisms of plants signal propagation would require the use of more than simple
generic excitable models. Therefore, the biophysical framework described in this
chapter could be used a starting point for construction of models that are tailor-made
to the particular type of cell or electrical activity under consideration.

3.2 Modelling Single Ion Channel Dynamics

Single ion channels are proteins that make a (intra)cellular membrane permeable to
specific ions by allowing them to pass through a transmembrane pore. By changing
conformation, or other mechanisms, the pore is able to ‘open’ or ‘close’
in each case permitting, or not, the passage of ions [17]. Under voltage-clamp
conditions, when permeable ions are present in solution surrounding the channel,
steps in current amplitude can be seen as the channel opens or closes [17]. In this
section, we introduce the modelling steps involved in mathematically describing
single ion channel currents.

3.2.1 Diffusion of Ionic Species

The movement of charged ionic particles down a concentration gradient creates
an electric current. The cellular membrane provides a barrier to the movement
of charged ionic particles and thus induces a charge separation and establishes
a transmembrane potential difference. Along the cellular membrane, there exist
ion channels that facilitate the diffusion of ionic species across the membrane. In
addition to these channels are pumps that actively move ionic species against the
concentration gradient to maintain a transmembrane concentration difference.

We can model the average movement across the cellular membranes through
passive diffusion. The general form describing the passive diffusion of a particular
ionic species, Y , obeys the Fickian flux rules:

∂Y

∂t
= −D

∂Y

∂x
, (3.1)

where x ∈ R represents the distance across the membrane and D > 0 is the diffusion
coefficient, which describes how easily the particles move across the membrane.
If we assume that the cellular membranes are thin compared to the cell and its
surroundings, we can replace (3.1) with
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dYi

dt
= −D[Yi − Yo], (3.2)

where Yi and Yo, respectively, represent the ionic concentrations on the inside and
outside of the membrane. The diffusion coefficient is dependent on the permeability
of the membrane to that particular ionic species, the surface area of the cell, the
density of channels, and the thickness of the cellular membranes. The membrane
permeability is then controlled in a dynamic fashion through the opening and closing
of ion channels, which we refer to as the gating. It is the aim of this chapter to
mathematically describe this gating and its impact on the transmembrane potential
difference.

3.2.2 Channel Dynamics

Ion channels are transmembrane proteins that connect the intracellular as well
as intercellular compartments. These proteins can exist in conformations which
either allow or prevent the diffusion of particles across cellular membranes.
Conformational changes that switch between these states depend on a variety of
factors, including the transmembrane potential difference, hereby referred to as the
voltage, the binding to specific ligands, temperature or mechanical force. We will
first describe the scenario in which transitions between states are purely random,
that is, they depend on no external factors. We note that the modelling paradigm we
describe is applicable to all types of channels, but that care must be taken to ensure
that the correct dependencies on extrinsic factors are included when modelling
specific ion channels.

Consider a generic ion channel that can exist in one of two states: an open
state (O) in which ions are free to pass through; and a closed state (C) in which
they are not. Transitions between these states are random in nature, though the
probabilities of moving from open to closed states and vice versa do not have to be
the same. Stable conformations of proteins representing the closed and open states
are achieved by minimising the Gibb’s free energy. The open and closed states thus
correspond to minima of the free energy landscape. Conformational changes are
then represented as transitions between these minima induced by noise caused by
thermal fluctuations.

Given the considerations above, our two state channel can be represented by the
stochastic differential equation:

dx

dt
= −Ux(x) + ξ(t), x ∈ R, (3.3)

where x is a coordinate that represents the conformational state of the channel, ξ is
a Gaussian noise process with mean 〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t ′)〉 =
2kBT δ(t − t ′), where kB is the Boltzmann constant and T is the temperature in
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Kelvin. The function U(x) represents the energy landscape, and for exposition, we
will here choose this to be a quartic of the form

U(x) = 1

4
x4 − μ

2
x2 − ηx. (3.4)

This energy landscape has two minima, located at x±, separated by a maximum at
x0. Associated with the two minima are ‘wells’, which are separated by the ‘barrier’
at x0. When x(t) is in the well corresponding to x−, we say that the channel is in
the closed conformation, and when it is in the well associated with x+, it is in the
open conformation. The parameters μ > 0 and η ∈ R, respectively, control the
height of the barrier at x0 and the difference between the depths of the two wells.
Thus, increasing μ makes transitions between states harder, whilst varying η alters
the relative probabilities of transition.

If the barrier separating the two minima is sufficiently high compared to the
thermal fluctuations, transitions between states will be rare, and we here consider
the expected transition times between them. The magnitude of the energy barrier
relative to the closed (open) state is equal to U± = U(x0) − U(x±). Writing
σ = (kBT )−1, the expected transition time, τ±, from the closed (open) state is then

τ± = eσU±

ν±
. (3.5)

We note that the functional form of the transition rate, (3.5) was derived first by
Arrhenius [1], who left ν± as undetermined parameters. The specific forms for ν±
was later derived using a number of different methods; our presentation here is based
on the exposition by Eyring [4, 5].

As a representative example, we show in Fig. 3.1 the double-well potential
system according to (3.3)–(3.4). The energy landscape is depicted in Fig. 3.1a, with
an example trajectory shown in Fig. 3.1b. Superimposed on this trajectory is an
indicator showing the state of the channel at time t .

3.2.3 Markov Processes

Whilst the potential well system defined by (3.3) is a good descriptor of channel
dynamics, it is impractical for large scale channel modelling, since it requires
computation of sample paths. Instead of considering the full system, considerable
simplification can be made by noting that trajectories will spend most of the time
near the minima of the system, making infrequent excursions over the barrier and
transitioning into the well associated with the other minima. This leads us to think
of simplifying the system to only consider these transition times, which are formally
known as passage times or escape times.
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Fig. 3.1 (a) Double well potential landscape given by (3.4) with μ = 10 and η = −2. (b)
A sample path of (3.3)–(3.4) with σ = 0.05. Superimposed on this sample path is a bold line
indicating which state the channel is in

We can take the reciprocal of the transition times given in (3.5) to provide rate
constants that describe the probability per unit time of transitioning to the other
state. In what follows, we shall denote the probability per unit time of transitioning
from the closed state to the open state by α = 1/τ−, and the probability per unit
time of making the opposite transition as β = 1/τ+. Schematically, the system can
now be represented as

C
α−⇀↽−
β

O. (3.6)

This system is Markovian in nature, meaning that the evolution of the state is
dependent only on the current state of the system and not on previous states. This
system can then be easily simulated as follows. Initialise the system with the channel
being either in the closed or the open state and pick a time discretisation dt � 1. At
each time point, draw a random number ξ from the standard uniform distribution.
If the channel is closed, transition to the open state if ξ < α dt , else remain closed.
If the channel is open, transition to the closed state if ξ < βdt , else remain open.
After completing this step, advance time by dt and repeat as much as necessary.

3.3 Modelling the Dynamics of an Ensemble of Ion Channels

For a single channel, the method described in the previous section is a simple and
convenient way to simulate its gating dynamics. However, cells may have many
channels of the same type. Using this method to describe a cell with N channels thus
requires drawing N samples per time step. Furthermore, many of these samplings
will ultimately result in no transition being made, particularly if α and β are small.
An alternative way to simulate the system is offered by the Gillespie algorithm [10],
which exactly simulates a network of Markov processes under the assumption that
all channels act independently of one another and are identical in nature.
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3.3.1 Gillespie Algorithm

Instead of assessing at each step whether each channel in the system has transi-
tioned, the Gillespie algorithm estimates a time over which an event has occurred,
then computes which event has occurred and updates the system as appropriate.
Thus, the Gillespie algorithm only requires drawing two random numbers per time
step and only considers times at which events have occurred. In our network of N

channels, let us assume that Nc(t) of these are closed and that No(t) are open at
time t , so that Nc(t) + No(t) = N .

Each step of the Gillespie algorithm then involves drawing ξ1,2. The probability
density function describing the time to the next transition, τ , is given by

P(τ = t) = λe−λt , (3.7)

where λ = Ncα+Noβ is the average rate of the next transition. The time to the next
transition is then sampled as

τ = − ln ξ1

λ
. (3.8)

Between times t and t + τ , we then know that a transition must have occurred.
If λξ2 < Nc(t)α, we say that one of the channels has opened, and we thus set
Nc(t + τ) = Nc(t) − 1 and No(t + τ) = No(t) + 1. Otherwise, if λξ2 > Nc(t)α,
then one of the channels has closed and we thus set Nc(t + τ) = Nc(t) + 1 and
No(t + τ) = No(t)− 1. Time is then updated by setting t = t + τ and the process is
continued. We can see the rationale behind these choices by noting that Nc(t)α/λ is
the probability that a channel opening has occurred and No(t)β/λ is the probability
that a channel closing has occurred, conditioned on the fact that one of these events
has happened. Note that during the simulation of the system, the Gillespie algorithm
automatically selects the timestep τ over which to evolve the system. Whilst this is
an advantage in terms of computational efficiency, since the system is only sampled
at event times, one must take care that any extrinsic factors that affect the transition
probabilities α and β are approximately constant over the interval [t, t + τ).

3.3.2 Transition Probabilities

Thus far, we have considered the case where transition probabilities are constant.
In general, however, the gating of ion channels may be dependent on a variety of
factors, including the transmembrane voltage, see, e.g., [14] in plants; ligands such
as intracellular Ca2+ and nucleotides, see, e.g., [3, 13, 15] in plants. We can capture
this dependence by making the transition probabilities depend on one or more of
these factors. For example, for voltage-gated ion channels, we can write α = α(V ),
β = β(V ), where
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α(V ) = Aekα(V −Vα), β(V ) = Bekβ(V −Vβ), (3.9)

is an often used functional form.
A simple way to incorporate Ca2+ dependence is via the following schematic

C
α [Ca2+]−−−−−⇀↽−−−−−

β
O (3.10)

so that the transition rate from the closed to the open state has a linear dependence
on the intracellular Ca2+ concentration. Modelling the dependence on other factors,
such as ligands and nucleotides, follows in a similar fashion, with functional forms
chosen to either match the physiology of the channel, or more commonly, fitted to
empirical data.

Making transition probabilities depend explicitly on factors such as voltage does
not significantly alter the approach to simulating channel dynamics; the transition
probabilities α and β are simply altered to reflect this dependence. However, as
we shall later see, the movement of ions across cellular membranes impacts upon
the transmembrane voltage. In addition, this can induce further downstream effects,
for example by opening Ca2+ channels so that intracellular Ca2+ concentrations
vary. As such, channel gating dynamics are tightly coupled to such factors and
the approximation in the Gillespie algorithm that these are unaltered in the interval
[t, t + τ) may not hold. In this case, however, a simple fix is to impose a maximum
timestep that can be taken by the algorithm.

3.3.3 Many Gates

We have thus far considered channels with only one (activating) gate. However,
many ion channels have a multitude of these gates and the channel will only be
permeable to ions if all gates are in the open state. In this case, there exist a number
of closed states that correspond to the case where at least one of the gates is closed.
In addition to the so-called ‘activating gates’ that we have thus far discussed, ion
channels may also possess ‘inactivating gates’. Inactivating gates can close ion
channels through mechanisms independent of the closing of activating gates and
thus a channel will only allow particles to pass through when the activating gates
are open and the channel is not inactivated. This gives rise to the four mechanisms
that govern channel gating: activation, inactivation, deactivation and reactivation.

Activation describes the process whereby channels move from closed to open
states; inactivation occurs when the inactivating gates close; deactivation arises
when activating gates close; and reactivation (or recovery from inactivation)
describes the process by which inactivating gates open. Consider the simplified
model of Cl− channel in the plasmalemma of cells of C. corallina., which has
three activating gates and one inactivating gate [21]. The schematic for this channel
can be represented aswhere mi, i = 0, 1, 2, 3, is the number of channels with i
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open activating gates and hj , j = 0, 1 is the number of channels with j closed
inactivated gates. Recall that the only state in which the channel is permeable is
the one in which the inactivating gate and all three activating gates are open, which
is indicated by the asterisk. Also note the transitions between the different closed
and open states are now scaled by a factor that captures how many gates must be
open/closed in that state and that this factor assumes that the opening and closing of
gates are independent of the state of the other gates.

The inclusion of multiple activating and inactivating gates does not affect the
method of simulation, as long as the assumption that the opening and closing of
channels are independent events. In cases where channels have ‘memory’, that is,
that transition probabilities are dependent on the history of the channel, or the length
of time the channel has been in a certain state, this does not hold. In the latter case,
where transition probabilities are dependent on the ‘dwell times’ in specific states, a
modified Markov chain description that respects this behaviour can be constructed,
so that the Gillespie algorithm can be used [20].

3.3.4 Master Equation

Since the processes that we are describing are Markovian, we can instead represent
the dynamics of the system through evolution of the probability, P(S, t) of being in
state S at time t . For the simple two state system represented by (3.6), the evolution
of P is given by:

d

dt
P (C, t) = −αP (C, t) + βP (O, t) (3.11)

d

dt
P (O, t) = αP (C, t) − βP (O, t). (3.12)

The linear equation (3.12) is known as the master equation, and is often the starting
point for many considerations of biochemical reactions. General schema describing
the states of channels with M states can be written in the form

Si

qij−⇀↽−
qji

Sj (3.13)
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where Si and Sj , (i, j = 1, . . . ,M), are two distinct states of the system and qij

represents the probability (which may be zero) of entering state Sj from Si . The
master equation for system (3.13) can then be written as

d

dt
P (Si, t) =

M∑
j=1

P(Sj , t)qji −
M∑

j=1

P(Si, t)qij , i = 1, . . . M. (3.14)

The term on the left represents a source term describing all the routes to state
Si , whilst the right-hand sink term captures all the transition away from state Si .
Since (3.14) is linear, we can write it in matrix form as

d

dt
P = PQ, P ∈ [0, 1]M, (3.15)

where the M × M matrix Q contains all of the transition probabilities between the
distinct states.

Whilst the master equation is a succinct way to describe the probability density
function of the system, it is often impractical when simulating a system since
it captures dynamics in a distributional sense, and does not provide a stochastic
representation of a specific realisation of the process. However, when the number
of channels becomes large, we can use a similar density based representation to
describe the average behaviour across the whole cell.

3.3.5 Averaging

When the number of channels is large, instead of considering the probability of
the system being in state Si at time t , we can instead construct an equation to
describe the fraction of channels in state Si , which we shall denote si . Under this
approximation, we replace (3.14) with

dsi

dt
=

M∑
j=1

sj rji −
M∑

j=1

sirij , i = 1, . . . M, (3.16)

where rij now represents the rate at which channels transition from state Si to
state Sj . Since channels are only permeable when the channel is open, we can
simplify (3.16) by only considering the fraction of channels that are in the open
state. Letting m represent the fraction of open channels, we replace (3.16) with

dm

dt
= αm(1 − m) − βmm, m ∈ [0, 1], (3.17)
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where αm is the rate of channels entering the open state and βm is the rate of channels
exiting the open state. Note that these rates are the same as the probabilities of tran-
sitioning to the open state that we considered earlier. Thus, in the limit of infinitely
many channels, transition probabilities are replaced with transition rates. Of course,
cells do not have infinitely many channels and since (3.17) is deterministic, one may
wonder how we are supposed to reflect the fluctuations arising from having finitely
many channels. One way to incorporate these fluctuations, for example in a system
with Nm channels, is to add an additive noise term to (3.17) [8]

dm

dt
= αm(1 − m) − βmm + ξm(t), (3.18)

where ξ(t) is a Gaussian noise term with moments given by 〈ξm(t)〉 = 0 and

〈
ξm(t)ξm(t ′)

〉 = αm(1 − m) + βmm

Nm

δ(t − t ′).

When incorporating this noise term in, care must be taken to ensure that m remains
in the interval [0, 1]. For practical reasons, these finite size fluctuations are very
often ignored in most ion channel based models of cell electrophysiology.

It is very common to see (3.17) written in the form

τm

dm

dt
= m∞ − m, (3.19)

where

τm = 1

αm + βm

, m∞ = αm

αm + βm

. (3.20)

If α and β are given as in (3.9), with A = B, then we can write

m∞(V ) = 1

1 + e−(V −V0)/S0
, (3.21)

where

S0 = 1

kβ − kα

, V0 = kβdβ − kαdα

kβ − kα

. (3.22)

Thus, according to (3.19), m evolves towards m∞ at a rate determined by τm. The
form of m∞ given by (3.21) suggests that as the cell depolarises, the fraction of open
channels increases or decreases in a sigmoidal fashion, which is often observed in
experiments. In particular, the form given in (3.19) is often preferred over (3.17)
since the parameters V0 and S0 in (3.21) can be fit directly to electrophysiological
recordings.
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3.4 Modelling Cellular Membrane Excitability

Now that we have arrived at a deterministic description for the channel dynamics,
we are ready to start describing the currents that flow into and out of the cellular
compartments as a result of channel opening.

3.4.1 Nernst Potential

In order to understand the current flow induced by the movement of ions across
a cellular membrane, we need to first provide an equation that describes the
electrochemical gradient across it. This can be done by equating the chemical
potentials across the membrane. For space reasons, we here omit the derivation and
simply state that, at equilibrium, the voltage across the cell membrane for ionic
species X independent of all other species is given by the Nernst potential:

VX = RT

zXF
ln

( [X]o

[X]i

)
, (3.23)

where R is the ideal gas constant, T is the temperature in Kelvin, zX is the valence
of species X, F is the Faraday constant and [X]i,o are the concentrations of species
X on the inside and outside of the membrane, respectively. Similar calculations can
be used to find the voltage across cellular compartments at equilibrium accounting
for all ionic species of interest.

3.4.2 Membrane Currents

We are now in a position to describe current flow across the cellular membranes,
such as plasma, vacuolar or nuclear envelope membranes. Under the assumption
that the concentrations of ions in the outside and inside of the membrane remain
constant, the opening of channels permeable to ionic species X will push the
transmembrane voltage towards the Nernst potential VX. The current IX induced
by the flow of this species across cellular membranes is then given by Ohm’s law,
which can be written as

IX = gX(V − VX), (3.24)

where gX is the summed channel conductance over the whole cell.
This conductance is proportional to the fraction of open channels, and thus we

can rewrite (3.24) as

IX = gXmahb(V − VX), (3.25)
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Fig. 3.2 (a) Sample paths representing the fraction of open channels for different values of the
total channel number N . At t = 50, the transition rates for the channels are instantaneously
changed as per the text. (b) Prototypical steady state currents under variation of voltage. The bold
line represents the deterministic I −V curve in the limit as N → ∞. The shaded regions represent
the mean ± standard error corresponding to the indicated number of channels. For further details,
please refer to the text

in which there are a activating gates and b inactivating gates per channel, m and h,
respectively, represent the fraction of open activating gates and inactivating gates
and gX is the total conductance when all channels are open. The dynamics of m

and h obey the equation given by (3.19), though we note that the sigmoid for h∞ is
reversed compared to m∞.

In Fig. 3.2, we demonstrate how the number of channels in the cell impacts the
variability of the cell response. Figure 3.2a illustrates how the fraction of open
activating channels varies as the transition rates are instantaneously changed from
α0 = 0.1, β0 = 0.5 to α1 = 0.2, β1 = 0.4 at t = 50. In this subfigure, we also vary
the total number of channels, N , in the cell and observe a reduction in the variability
around the steady states, which are at mi = αi/(αi + βi), i = 0, 1. The lowermost
plot shows the system in the thermodynamic limit as N → ∞, and we observe that
as N is increased, the sample paths approach this deterministic limit.

To assess the variability of channel opening and closing on current flow, we
illustrate in Fig. 3.2b a prototypical I − V curve, relating the steady-state current to
the transmembrane voltage, assuming that the channels exhibit voltage dependence.
The bold line indicates the current flow in the limit as N → ∞, and we clearly
see that as N increases, the variability around the deterministic profile decreases.
In this example, we assume that the current is modelled according to (3.25), with
gX = 10, a = 3, b = 1, Vx = 50 using steady state representations for m and
h in the form given by (3.20) with α and β in the form (3.9). Specific parameters
used are A = B = 1, km

α = 0.1, V m
α = −30, km

β = −0.4, V m
β = −25, kh

α = 0.1,

V h
α = −40, kh

β = 0.3 and V h
β = −40.
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In the following, we assume that the number of channels in plant cells is always
high, so that we can use the deterministic limit to describe the ionic currents flowing
through the channels.

3.4.3 Action Potentials

Equation (3.24) reflects the notion that we can represent the electrophysiology of
the cell by making comparisons to electrical circuits. The Nernst potential provides
an electromotive force similar to that produced by an electrical battery (cell), whilst
the ion channels collectively behave as a variable conductance obeying nonlinear
dynamics. By extending the equivalence of the biological system with an electrical
circuit, and considering the evolution of currents associated with all ionic species to
which a cellular membrane is permeable, we can now describe the evolution of the
voltage across such a cell membrane.

By providing a barrier to the movement of ions across it, the cell membrane
effectively separates charge between the inside and outside of the cell and thus
acts as a capacitor. This capacitor is in parallel with all the ion channels on
the membrane. Upon applying Kirchoff’s second law, we can thus describe the
evolution of the transmembrane voltage via

CV̇ = −
∑
X

IX, (3.26)

where C = 2 × 10−2 F/cm2 is the capacitance of the cell and CV̇ is the current
flowing through the capacitance. This equation, together with the equations that
describe how the gating variables of each channel type vary with V and time (3.17),
constitutes the Hodgkin-Huxley formalism for modelling action potentials [18].

As an example, we present a simple model of action potential in guard cells [11,
12]. This model incorporates three types of ion channels: one chloride channel that
provides a fast activating and slowly inactivating inward current driving the action
potential ICl = gClmClhCl(V − VCl) with a Nernst potential at VCl = 100 mV, one
slowly activity outward rectifier potassium channel that provides an outward current
that helps terminate action potentials IKo = gKomKo(V − VK), and one inward
rectifier potassium channel responsible for potassium influx into the cytoplasm at
negative resting membrane potential IKi = gKihKi(V − VK). Both K+ currents
have Nernst potentials at VK = −100 mV. Two other ion transporters also create
ionic currents. One is the proton pump, extruding H+ ions at negative membrane
potentials and thus generating an outward current Ipu = gpuhpu(V − Vpu) with
Nernst potential Vpu = −400 mV, which is responsible for the resting membrane
potential being more negative than VK . The second one is a 2H+/Cl− symporter that
brings in chloride at negative membrane potentials and creates a net inward current
Isy = gsyhsy(V − Vsy) that reverses at Vsy = 20 mV. Note that this model assumes
there is no long-term change in ionic concentration that would be large enough to
affect the Nernst potentials.
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The steady state value of each current, i.e. the current observed at any given
membrane potential V when the gating variables have reached their steady state
values, is shown in Fig. 3.3a. The bottom panel shows the sum of all the currents,
revealing three membrane potential values for which the total steady state current
is 0. The lowest (leftmost) and highest (rightmost) values are stable steady states
of V . This bistability provides a simple explanation for the observation that steady
state membrane potential of many plant cells can be either at a hyperpolarised level
well below VK or at a level above VK. The middle value acts as a threshold, if V is
above/below that value it will converge toward the high/low steady state.

To simulate the variations of V with time, we numerically integrate the differ-
ential equations for V (3.26) together with the equation for each gating variable
(3.17). Results of several simulations are displayed in Fig. 3.3b. For each simulation
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Fig. 3.3 (a) Steady state current of each ionic current. Bottom panel shows the sum of all the
currents. Values for each conductance are: gpu = gKo = gKi = gsy = gCl = 1 S/m2. Other
parameter values are given in text or in [12]. (b) Action potential are generated in response
to a stimulating current if the current is larger than a threshold value. All parameters as in A,
except gCl = 0.9 S/m2. Stimulating current of 2.8, 2.9, 3 (subthreshold), 3.1, 3.2, 3.4 mA/m2 is
applied for one second (inset). (c) Propagation of an action potential wave. The Cl− conductance
is increased by 0.1 S/m2 between 10 and 11 s in the top cell. This triggers an action potential in
this cell, which triggers an action potential in the next cell, and so on. The conductance of each
plasmodesma is gp = 0.05 S/m2
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we inject a brief (one second) stimulating current to the model cell, which creates
a rapid rise in membrane potential. This results in a rapid return of membrane
potential towards its equilibrium value, or in a large amplitude action potential
before going back to equilibrium. The action potential is triggered only if the
depolarizing current is sufficiently large, illustrating the threshold behaviour. Once
the current is above its threshold value, a full action potential occurs. The shape of
the action potential varies little with further increases in stimulating current, but the
latency between stimulus and action potential onset decreases. Thus, this simple
model of plant action potential exhibits features also found in action potentials
produced by animal cells.

Plant action potentials can also propagate from cell to cell, thanks to plasmodes-
mata that create electrical connections between cells and allow exchange of ions
[6]. To illustrate this action potential propagation [16], we model the electrical
connection, which is similar to gap junctions that electrically connect excitable cells
in animals [2, 25]. Thus, the current Ip ab flowing through a plasmodesma from
cell a with membrane potential Va to cell b with membrane potential Vb is simply
given by

Ip ab = gp(Va − Vb) (3.27)

where gp is the conductance of the plasmodesma [22, 23]. In Fig. 3.3c, an action
potential is initiated in the first cell by a brief increase in the Cl− conductance. This
sequentially triggers action potentials in the neighbouring cells, thus propagating a
wave of electrical excitation.

3.5 Conclusions

Plants (and animals) very effectively use concentration differences of ions across
membranes (inside vs outside the cell and between cellular compartments) to
regulate numerous processes. Calcium ions, for instance, are key information
carriers in plants that regulate responses to abiotic and biotic stresses from their
environment. In this chapter, we have introduced the fundamental physical princi-
ples that underpin ionic changes via the function of ion channels and provided some
useful mathematical and computational approaches for modelling such systems.
Many exciting questions in plant biology converge on ion channels and transporters
and we hope that the tools offered here will provide a foundation on which interested
researchers can build to develop specific biophysical models to address specific
questions.
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Chapter 4
Modelling the Plant Microtubule
Cytoskeleton

Eva E. Deinum and Bela M. Mulder

Abstract The physical shape and structure of plants are manifestations of the
actions of gene products and their concerted responses to their environment. In
this chapter we introduce the plant cortical microtubule array. This structure is both
a nexus in the control of plant cell shape and function, and a fascinating out-of-
equilibrium system for state-of-the-art physics research. We describe how analytical
and computational approaches complement each other in the study of the array, and
highlight some recent results and open research questions.

4.1 Microtubules: Dynamic Controllers of Plant Cell Growth
and Development

Plant cells distinguish themselves from other eukaryotic cells by being encased
in a rigid cell wall. These walls are composed of long cellulose microfibrils
embedded in a matrix consisting of a complex mixture of other polysaccharides
[1]. The cells typically adopt strongly anisotropic shapes requiring a significant
degree of control over the way they grow. Moreover, the typical dimensions of
plant cells in the range of 10–100 μm exceed those of most mammalian cells. This
implies that plant cells require the means to sense and control their geometry on
the scale of 10s of μm’s. A major molecular workhorse in providing these key
services is the microtubule (MT) cytoskeleton. It is composed of long and highly
dynamic filamentous protein polymers [2] that, aided-and-abetted by a class of
microtubule associated proteins (MAPs) [3], are able to self-organize into a number
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of cell-scale functional structures. In order of appearance during the cell cycle
they are the cortical array (CA), the pre-prophase band, the mitotic spindle and
the phragmoplast. Of these four, the CA [4], the pre-prophase band [5] and the
phragmoplast [6] are plant specific. Even the plant mitotic spindle, although overall
similar in shape to its mammalian counterpart, does have significant structural
differences to the latter [7]. MTs in mammalian cells are associated to so-called
centrosomes [8], which act as hubs for their nucleation and typically dictate a
radial organization. Plant cells do not have centrosomes, which implies that other
organizational principles must be at play [9]. Of the four MT structures mentioned
above, the CA has to date received the most interest. The CA invariably appears in
growing plant cells and is composed of MTs roughly homogeneously dispersed over
the entire cell cortex, which are oriented in a direction transverse to the growth axis
of the cell.

4.2 Dynamic Self-organization: Exciting Biology
and Challenging Physics/Mathematics

What makes structures like the CA doubly interesting is that they are apparently self-
organizing [10]. In root epidermal cells, the CA develops in approximately 1 h after
cytokinesis from an initial state in which the cortex which is devoid of any MTs.
More strikingly, while a fully developed CA can be totally disrupted by adding MT-
depolymerizing drugs such as oryzalin, it returns to its original state within an hour
after these drugs are washed out are washed out [30]. This obviously speaks for
their robustness from the point of view of biological functionality. At the same time
this means that the CA poses the challenging question of which mechanism(s) drive
and control its formation. The CA is composed of 102 − 104 of MTs, each of which
is a stochastic dynamical system in its own right. Somehow, through interactions
between these dynamical actors a state is reached which has well-defined and stable
global properties, in spite of the unceasing stochastic activity of its elements. From
the point of view of statistical physics, this characterizes the CA as a far out of
equilibrium steady state of an ensemble of interacting spatially extended particles.
Such systems represent the cutting edge of our physical understanding [11].

4.3 MT Behaviour at Different Levels of Description

4.3.1 At the MT Level: Dynamic Instability

Individual MTs are highly dynamic protein structures. They are long (up to many
μm), thin (about 25 nm in diameter) and polar. Growth and shrinkage of MTs
occurs at their ends, which are called “plus” and “minus”. MT behaviour can be
described at many different levels, with consequences for the kinds of questions
that can be tackled with a certain description. The basic building blocks of MTs
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are α, β-tubulin heterodimers. These subunits form chains, and typically 13 of
these so-called protofilaments together form an MT. The plus end of the MT is
highly dynamic: it may grow through polymerization, the incorporation of new
subunits, shrink through depolymerization or pause. Switches between growth and
shrinkage are called catastrophes and rescues. The minus end is also dynamic,
but with different kinetic parameters, and typically has a tendency towards net
depolymerization.

If you are interested in understanding or predicting the parameters that describe
this so-called dynamic instability, you have to consider many molecular details.
Tubulin subunits are incorporated in a GTP-bound state, and stochastically get
hydrolyzed into a GDP-state. Protofilaments of GTP-tubulin are almost straight,
but GDP-tubulin protofilaments have a tendency to curve. Consequently, a growing
MT is stabilized by a cap of GTP-tubulin. If this cap disappears, however, due
to depletion of free subunits, delayed growth caused by some obstruction, or
whatever other reason, the protofilaments start curving outward and the plus end
starts shrinking fast: a catastrophe [12]. To understand the process of a rescue,
you moreover have to consider the many kinds of proteins that interact with MTs.
Detailed molecular models may help predict how mutations in tubulin or other
relevant proteins affect MT dynamics.

4.3.2 At the Cell Level: Interactions

Understanding the behaviour of the entire cortical array, on the other hand, is
easier with a much simplified model of MT dynamics (Fig. 4.1). Disregarding
all molecular detail, growth and shrinkage may be described with one constant
(average) velocity each, and the transitions may be described with constant rates.
For many questions, we may entirely forget about the pause state and map
a 3-state (growth/shrinkage/pause) description onto a 2-state (growth/shrinkage
description) [13].

Similarly, nucleation of new MTs occurs mostly from existing MTs and with
specific distributions of relative angles between parent and child [14]. These
distributions, in turn, can be tuned by the plant. Nucleation complexes, moreover,
are about 10 times more active when associated with an MT than when not [15].
Depending on the questions you are interested in, it may be important to incorporate
many details of the nucleation process, a caricature of the process that can be
described with one or few parameters, or simple isotropic nucleation may even
suffice.

And what about the cell itself? Is it sufficient to describe the cell cortex as a
simple periodic surface of an appropriate size, is it essential to approximate the
shape of real plant cells as close as possible, or would some simple geometry like a
box or cylinder be better? That, too, depends on the question.

The MTs comprising the CA are attached to the cell membrane. This essentially
reduces the CA to an (almost) two-dimensional system. Consequently, growing
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Fig. 4.1 (a) Cortical array in an A. thaliana hypocotyl cell (confocal microscope image courtesy
J.J. Lindeboom, Stanford). (b) Interaction between MTs. Depending on the relative angle θ , a
collision may result in bundling (grey B), or an induced catastrophe (grey IC, with probability Pc)
or crossover (grey X). (c) Dynamic instability at the MT plus end

MTs will frequently collide into other, obstructing, MTs. Modelling studies of the
CA were sparked by the observations by Dixit and Cyr [16] that the outcomes of
such collisions strongly depend on the relative angle (θ ) between incoming and
obstructing MT (Fig. 4.1). For shallow angle interactions (θ � 40◦), the incoming
MT will typically continue growing along the obstructing MT, a process referred
to as bundling (or sometimes as zippering or entrainment). For larger angle interac-
tions, the MT may either continue growing in its original direction (“crossover”) or,
typically after a short pause, start shrinking (“induced catastrophe”).

The observation of these angle dependent collision outcomes immediately raised
the question: are these interactions, combined with the standard MT dynamic
instability, sufficient for spontaneous self-organization of the CA? Several groups
approached this question using models, both analytical [17–19] and computational
[13, 20–22].These approaches complement each other, for example, see Sect. 4.6.

4.3.3 At the Tissue Level: Coarse Graining

Going up to the tissue level, cell expansion properties must be coordinated to ensure
tissue coherence, especially during growth. Such coordination may be achieved
through simultaneous responses to the same external cue, for example in blue light
induced reorientation of the array [23], with mobile developmental signals such as a
plant hormones [24], or in response to tissue spanning stresses [25]. With regard to
the latter: a correlation between stresses in the cell wall and the net orientation of the
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CA is observed in certain cell types [26, 27]. Current models of this phenomenon
ignore the mechanistic basis of this correlation and explore its consequences in
mechanical models which describe the entire CA with just two numbers per cell
[26, 28, 29].

4.4 The Consensus Model of MT Dynamics

Following the discussion in 4.3.2, we focus on what has become the generally
accepted model for describing MT dynamics in the CA. In this model MTs live
and die in a two-dimensional domain which represents (part of the) the cell cortex.
They are born through nucleation events that can occur either at random locations
within this domain, in which case their initial growth direction is also random, or
from a random position on the body of an existing MT, in which case their initial
orientation may depend on that of the parent MT. MTs are taken to be composed of
straight line segments, where on curved surfaces “straight” should be interpreted as
following a geodetic path. The plus-end tip of a growing MT moves with the growth
speed v+, while if applicable the minus-end retracts with the treadmilling speed
vt . A growing MT can switch to the shrinking state with the constant catastrophe
rate rc. The plus-end of a shrinking MT retracts with a speed v− and can switch to
the growing with the rescue rate rr . When the tip of a growing MT collides with
another MT, the outcome depends on the angle of incidence θ . Whenever this angle
is below the critical angle θc = 40◦, a bundling event occurs. At a bundling event, a
new segment of the colliding MT is created along the obstructing MT. In this way,
an MT can consist of multiple segments, each with its own orientation and length.
Only the front segment is active and either in the growing or the shrinking state. The
remaining segments are inactive, except in the case of minus-end retraction in which
the rear segment is always shrinking. Inactive segments can thus be reactivated
when they start shrinking either at their plus- or their minus-end. When at a collision
the incidence angle is above θc, the MT undergoes an induced catastrophe with
probability 0 < Pc < 1, where Pc = 0.5 is here chosen as default. Finally, when an
MT shrinks to length 0 it simply disappears.

4.5 Simulations: Time Steps Versus Event Driven

As described above, simulation studies addressing the question of array alignment
model individual MTs as connected sets of line segments that switch between
growth, shrinkage and possibly pausing at the plus end, and have either stable or
steadily retracting minus ends. There are essentially two ways of implementing
these phenomena in a simulation: using discrete time steps or with an event-driven
algorithm.
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With discrete time steps, all plus (and minus) ends are updated every time step
(t). Simple cases are when they grow a certain length (v+t) without obstruction,
or shrink (v−t) during the whole time step: the tip’s is propagated by the specified
length and that’s it. Additionally, tips may switch state during the time step with
certain probability (rc, rr , . . . ). This may sound simple enough, but you have to
think carefully about the length change of the MT during this time step: depending
on when during the time step it presumptively has switched, it may show net growth,
shrinkage, or no change of length. The difference between (the extremes of) these
options, of course, decreases with shorter time steps, but that has a computational
cost.

When the length increase of a growing MT brings it across an obstructing MT,
the resulting interaction must be handled: for example, if this resulted in a bundling
event, the new position of the plus tip will be along the obstructing MT, at a distance
beyond the intersection the length of its initial overshoot.

Handling these interactions one by one works as long as it is safe to assume that
they are all independent. With increasing t , however, the probability increases
that MT changes become interdependent. For example, an early updated plus end
may undergo bundling onto an MT that itself undergoes a (spontaneous or induced)
catastrophe in the same time step—effectively resulting in bundling onto empty
space. As you can see, this method requires a lot of careful thinking and bookkeep-
ing that is not apparent from the simple idea behind the algorithm. The problem
of interdependent interactions/state changes not only aggravates with longer time
steps, but also with increasing array density. Consequently, the maximum allowable
time step size may turn out to be so small that it becomes hard to obtain good
simulation statistics of large or high density arrays.

In event-driven simulations, the problems of event interdependence and the
uncertainty of MT length after a state switch are solved. The essence of event-driven
simulations is that events (interactions among MTs, spontaneous state changes,
and even measurements) are scheduled against a continuous wall clock. These
events are handled one by one and, where necessary, the probabilities of particular
event types are adjusted after each event. Calculating future event times requires
forward integrating the equations of tip motion (for growth and shrinkage, which are
deterministic events), or drawing random numbers based on the probability density
of stochastic events.

If done in a smart way, such event-driven simulations can be very computation-
ally efficient. We review some concepts that help keep the simulations efficient
[13, 30]. First of all, as MT are modelled using straight line segments, it is
possible to compute exactly when a growing MT may interact with another one
by extrapolating MT paths. The intersections between such lines (“trajectories” in
[13]) can be precomputed and will be the same for all MTs within a bundle. To
keep the computational cost of computing trajectory intersections sufficiently low,
the simulation domain may be subdivided into smaller parts.

For stochastic events (rescues, spontaneous catastrophes, MT nucleation, . . . ),
we only need to know the event time of the first event. If the first stochastic
event is scheduled before the first deterministic event, it is executed, and the first
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deterministic event otherwise. In the former case, the type of stochastic event and
its specifics are selected proportional to the respective rates.

In general, the time interval ts until the next stochastic event can be calculated
from

∫ t+ts

t

R(τ)dτ = − log u (4.1)

with R(t) the sum of all instantaneous rates ri(t) for all different stochastic event
types and u a uniform random variate on the interval (0,1). If all event types have
constant rates between two events, then

R(t) = R =
∑

i

ri (4.2)

and

ts = − log u

R
. (4.3)

For examples of non-constant rates, we refer to [13].
After an event, it is likely that the rates of some event types have changed slightly,

for example, because the number of growing MTs has changed. This shows that
one must only calculate a single stochastic event in advance, as the waiting time
distributions may change at every time step.

Scheduling events with a constant rate is easy, as their waiting times all follow
exponential distributions. Some rates, however, may not be constant over time. In
that case there are two major options. The first is to calculate the correct waiting
time distribution of the variable rate and sample according to that. The second is
to use a rejection method: schedule events with a constant rate corresponding to
the highest possible instantaneous rate and if the event is selected for execution,
only execute it with probability instantaneous rate / maximum rate. The validity of
the latter option depends on the Markov property of the model: the behaviour of
the system is fully determined by its current state. Which of these two options is
best depends on how hard it is to compute the exact waiting time distribution—
mathematically but also computationally—and the difference between maximum
rate and average instantaneous rate.

Finally, considerable computational savings are possible by only updating the
necessary information. The positions of all MT ends must be known exactly for
measuring the state of the array, but not for the correct scheduling and execution
of events. The number of growing and shrinking MTs is enough to calculate, for
example, how the total MT length and density change between events, which in turn
is sufficient to correctly schedule all events that depend on these quantities.
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4.6 Understanding Order

Before discussing how order comes about, we first need to define a quantitative
measure of the degree of order. To that end we employ the notion of an order
parameter. Order parameters have a long history in physics [31], and are widely
used to distinguish different macroscopic states of physical systems. The one
appropriate to describe the orientational order of line-like objects independent of
their polarity is

S2 =
√

〈cos(2θ)〉2 + 〈sin(2θ)〉2 (4.4)

where θ is the angle of the MT segments with respect to an arbitrary, but fixed, axis
in the plane, and the angle brackets 〈· · · 〉 denote taking the length weighted average
over many microstates in the system. If all the directions are equally abundant,
we find 〈cos(2θ)〉 = 〈sin(2θ)〉 = 0 and hence S2 = 0, which characterizes the
disordered state. On the other hand, if all segments have exactly the same orientation
θ0, then S2 =

√
cos2(2θ0) + sin2(2θ0) = 1, which marks the fully ordered state. In

this way S2 creates a natural scale measuring the degree of order between the limits
0 and 1.

In order to understand how ordering could in principle arise in a system of
dynamical MTs interacting in the manner described in Sect. 4.4, an analytical
approach is indispensable. First of all, such a theory allows one to establish a
direct link between the assumptions of the underlying model and the outcomes.
Moreover, through a combination of structural and dimensional analysis of the
formulated equations the “true” parameters that determine the behaviour of the
system are revealed. Finally, the results of theory can be used to provide an
independent validation of simulation results. In our analytical approach we forgo
the description of individual MTs, but rather focus on probability densities per unit
of their properties in a large statistical ensemble of equivalent systems. The basic
dependent variables we consider are m+

i (l, θ, t), m−
i (l, θ, t) and m0

i (l, θ, t) being
respectively the density of growing, shrinking and dormant segments of length
l, orientation θ at time t that were created after their parent MT underwent the
bundling event. The evolution equations for these densities are schematically of the
form

∂

∂t
m+

i (l, θ, t) = �growth + �rescue − �cat − �indcat − �bundle (4.5)

∂

∂t
m−

i (l, θ, t) = �shrink − �rescue + �cat + �indcat + �reactivate (4.6)

∂

∂t
m0

i (l, θ, t) = �bundle − �reactivate (4.7)
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The fluxes on the right denote the effects of the different process that contribute
to the changes of the densities, with the sign indicative of whether it is effectively
a gain or a loss term. In addition there is a boundary condition that describes the
nucleation of new MTs, which in the simplest case of uniform MT-independent
nucleation is v+m+

0 (0, θ, t) = rn/2π , where rn is the nucleation rate per unit
area. The set of Eqs. (4.5)–(4.7) unfortunately is intractable in the general case.
However, if we assume that a steady is reached, things simplify enormously. The
first observation is that the length dependence of all densities is exponential, with a
single orientation dependent length scale

m+
i (l, θ) = m+

i (θ)e−l/ l(θ) (4.8)

m−
i (l, θ) = v−

v+ m+
i (l, θ) (4.9)

m0
i (l, θ) = (1 + v−

v+ )Q(θ)m+
i (l, θ) (4.10)

The mean length of segments l(θ) in a given direction depends on the total intensity
of collisions that lead to either an induced catastrophe or a bundling event

1

l(θ)
= 1

l̄
+

∫
dθ ′ sin(|θ −θ ′|){H(θc −|θ −θ ′|)+PcH(|θ −θ ′|−θc)}k(θ ′) (4.11)

Here k(θ ′′) is the total length density of segments with orientation θ ′′ that forms
the “target” which growing segments can hit, l̄ is the mean length of an MT in
the absence of any collisions, and H(x) is the Heaviside step function. Clearly, the
more collisions in a certain direction the shorter the filaments in that direction will
become. This reveals the basic mechanism by which an ordered state can maintain
itself: an MT segment aligned with the majority will suffer fewer state changing
collisions and is therefore likely to be longer than less fortunate segments who
are oriented differently from the majority. Without going into the details, there
are three more equations needed for the full description, which together fix, next
to the average segment length l(θ) and total segment length density k(θ) already
mentioned, the ratio between active and passive segments Q(θ), which already
appeared in (4.10), and t (θ) the density of active tips. While in principle the nature
of the steady states depends on all five MT dynamical parameters rn,v+,v−,rc and
rr , an appropriate choice of the units length shows that only the ratio

G = − l0

l̄
= −

(
2v+v−

rn(v+ + v−)

) 1
3 ( rr

v− − rc

v+
)

(4.12)

is important [17]. The perhaps surprising choice of the minus sign ensures that the
larger G, the larger the average length of the MTs. In fact, we limit ourselves
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to the regime G < 0, where the MTs are in the bounded growth regime. For
G > 0 MTs could in principle grow unbounded in length, and a steady state is
no longer possible. The utility of the control parameter G extends far beyond the
theory itself. As we have also validated by simulation, it predicts that systems that
have very different dynamical parameters will still show the same self-organization
if their G value is the same. The strategy to deal with this still arguably complex
set of coupled equations is the following. One can show that the assumption that
all four unknowns l(θ),k(θ),Q(θ) and t (θ) do not depend on θ , works for any
value G. This yields the so-called isotropic solution to the equations. However,
because the equations are non-linear this need not be the only solution. To probe for
the existence other non-isotropic solutions, we use an approach called bifurcation
theory. In bifurcation theory one perturbs the original isotropic solution with an
appropriate small anisotropic component, e.g.

l(θ) = l0 + εl2 cos(2θ) (4.13)

where l0 is the isotropic value of the mean segment length and ε << 1 a small
quantity. Note that at the outset we assume that although MTs are polarized
structures, the collisions between them do not depend on the relative polarity. We
therefore expect that inverting the direction of all MTs, i.e. letting θ go to π − θ

should not change the solution, hence the choice of perturbation with period π . The
perturbed values of the unknowns are then entered into the equations, which are
subsequently expanded in orders of ε. Requiring that the perturbed functions are a
solution to first order in ε leads to a soluble set of linear equations in the amplitudes
l2, k2, Q2 and t2. This set of so-called bifurcation equations only has a solution
for a specific value of the control parameter, which identifies the bifurcation points
G∗. Thus, for all values of G > G∗ the isotropic solution is no longer stable, and
an ordered state will spontaneously develop. If we work out G∗ for the consensus
model, we find

G∗ =
(

2

π
2Pc sin(2θc)

)1/3 (
π − θc

sin(2θc)
− 1

)
(4.14)

The most surprising aspect of this result is that if the probability of induced
catastrophes vanishes (Pc = 0), the critical control parameter goes to the effectively
unattainable value G∗ = 0, implying that you need either infinitely long MTs or
infinitely many (rn → ∞) to achieve ordering. It also implies that bundling by itself
cannot be responsible for the ordering process. Thus the induced catastrophes are the
driver of the ordering process. How can this be understood? The answer is what we
have dubbed the “survival of the aligned” principle. When MTs are (almost) aligned
they have few collisions among themselves, and if they do these are likely to lead
to bundling rather than induced catastrophes. These aligned MTs will therefore be
likely to live for their full lifetime. On the other hand, a discordant MT segment that
encounters a set of aligned MTs will suffer many collisions. If at these collisions it
has a finite probability of suffering an induced catastrophe, it will likely be switched
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Fig. 4.2 Understanding order in the CA. (a) Theoretically predicted bifurcation diagram. Order
arises if G > G∗. (b) Simulation results: the same G-value can be reached in many different
ways. The transition between order and disorder always occurs around the same G-value. (c)–
(e) representative snapshots of two simulated CAs per parameter combination as indicated with
arrows in B along the curve with “Default” parameters, rn = 0.001 s−1, rr = 0.007 s−1, vt =
0.01 μm s−1, v− = 0.16 μm s−1, v+ = 0.08 μm s−1 and rc = 0.0075 s−1 (C), 0.006 s−1 (D) and
0.0045 s−1 (E)

into the shrinking state. A shrinking MT has a significantly shorter expected lifetime
than a growing MT. Hence a discordant MT will likely disappear more quickly from
the system than the aligned ones, leaving the latter as the stable majority. Likewise
an MT nucleated in the majority direction survives longer than one that is nucleated
in another direction, hence the name of the principle.

Armed with these results, we can show the generic behavior our theory of CA
ordering predicted as a function of the control parameter G, and how this compares
to the results of simulations described in Sect. 4.5 (Fig. 4.2).

4.7 Understanding Orientation

The orientation of the CA changes in response to environmental signals [23] as well
as internal cues, such as mechanical stresses [26]. How this orientation is controlled
is still an open area of research. In fact, two different processes play a role: first the
de novo establishment of the array and the concurrent “first” choice of orientation,
and second the reorientation of the array.

As stated, the CA is newly established after cell division and also after washout
of MT depolymerizing drugs. During both processes a transient population of
obliquely oriented MTs is observed, which disappears when the CA adopts its final
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Fig. 4.3 Cell geometry favours certain orientations. The oblique orientations (arrows and arrow
heads) only appear when the penalties for crossing edges (induced catastrophe probabilities Pac

and Ppc) are 0 or very low. Differences between Pac and Ppc may help select between transverse
(C2 = 1) and longitudinal (C2 = −0.5) orientations. Cubes are 15 × 15 × 15 μm. n = 500
simulations per parameter combination. Simulated time T = 40000 s. R2: order parameter between
0 (isotropic) and 1 (perfectly aligned) [13]

transverse orientation [30]. The functional importance of this population remains
unclear. The current hypothesis is that the oblique MTs disappear because the
cell favours only certain orientations. It has been suggested that the sharp corners
between cell faces—particularly those to the cell face that was formed during the
last cell division—are hard to cross for growing MTs, and that this crossing may
be facilitated by the protein CLASP [32]. This suggests a mechanism in which the
cell selects a particular orientation through selective facilitation of edge crossing
(Fig. 4.3). Even without (controllable) edge crossing penalties, the geometry of the
cell itself typically allows only a few orientations [33].

The different orientations allowed by the cell geometry could be seen as local
minima in a potential energy landscape. On simple geometries such as rectangular
boxes and cylinders, these potential wells correspond to closed paths on the
geometry surface that minimize curvature along the path because MTs are stiff.
In this interpretation, the establishment of the initial orientation is like finding one
of the potential wells and if the difference between different wells is large, most
cells are expected to find the global minimum (deepest well). To change orientation,
then, would require that the CA is actively “pushed out” of its current well.
Making another state more favourable (deeper well) alone would be insufficient
for reorienting the array. Such active reorientation has indeed been observed in
hypocotyl cells that change from transverse to longitudinal CA orientation in
response to blue light [23]. During the initial stages of this reorientation process,
severing of discordant (oblique and longitudinal) MTs followed by immediate
rescues quickly amplifies the population of longitudinal MTs [23].
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4.8 The Role of Severing

Various experiments have indicated the MT severing enzyme katanin as a key player
in inducing alignment in the CA as well as enabling rapid reorientation of the CA in
response to environmental signals and cell wall stresses [23, 26] At first sight, this
poses a theoretical problem: by the “survival of the aligned” principle, alignment
critically depends on having sufficient interactions per MT life time to effectively
“weed out” discordant MTs. Random severing along the MT lattice—with new
MT plus ends starting in the shrinking state—results in shorter MTs, and hence
fewer interactions per MT life time and less alignment [19]. Severing, however,
preferentially occurs at MT crossovers and predominantly affects the crossing MT
[23, 34]. As the crossing MT is more likely to be a discordant one, this makes
crossover severing a delayed punishment of such MTs, effectively contributing to
alignment like a weaker form of induced catastrophes [35]. Notably, severing at
crossovers only contributes to alignment if shallow angle interactions are protected
from severing. Bundling normally offers this protection, because it prevents the
formation of crossovers with small relative angles. This for the first time indicates
that bundling is important for alignment in planta [35]. Understanding how severing
can boost alignment also gives a foundation for understanding how severing is
important for changes in orientation. Reorientation requires the breakdown of MTs
following the old orientation as well as amplification of MTs following the new
orientation. The latter can be achieved if part of the novel plus ends start in
the growing rather than the shrinking state, turning a suppression of the deviant
orientation into an amplification [23].

4.9 Outlook

The CA is a very important structure that bridges developmental signaling and the
mechanical execution of growth responses in plants. Modelling studies have played
a key role in understanding how the CA self-organizes and will continue to play
an important role in understanding CA behaviour. The relative simplicity of the
system allows for a high degree of similarity between models and experimental
observations, making it possible to quantitatively assess the impact of experimental
findings. Currently pressing issues about CA behaviour include its reorientation in
response to various internal and external cues. There might be different mechanisms
at play in the different reorientation processes, although it seems that katanin often
plays a key role [23, 29]. Here, progress in modelling will strongly depend on
additional mechanistic insights from cellular observations.

In addition, CA modelling studies so far have focused on homogeneous arrays.
For several critical functions and cell types, the array must form inhomogeneous
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patterns. Striking examples are the condensation of the array into the pre-prophase
band prior to cell division [36], and the range of patterns found in xylem—where
complex CA patterns translate to structured cell walls along a trade-off between
element extensibility and resistance against vessel collapse [37].
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Chapter 5
Bridging Scales from Protein Function
to Whole-Plant Water Relations
with the OnGuard Platform

Maria Papanatsiou, Adrian Hills, and Michael R. Blatt

Abstract The characteristics of transport across plant membranes, like all eukary-
otic membranes, is highly non-linear. The complexity inherent to such charac-
teristics defies intuitive understanding and, in these circumstances, quantitative
mathematical modelling is essential as a tool, both to integrate the detailed knowl-
edge of individual transporters and to extract the properties emerging from their
interactions. As the first, fully-integrated and quantitative modelling environment
for the study of ion transport dynamics in a plant cell, the OnGuard platform offers
a unique tool for examining such emergent properties associated with guard cell
metabolism and ion transport at the plasma membrane and tonoplast. The OnGuard
platform has already yielded details guiding phenotypic and mutational studies.
These advances represent key steps towards ‘reverse-engineering’ of stomatal
physiology to improve water use efficiency and carbon assimilation, based on
rational design and testing in simulation. The newly expanded platform, OnGuard2,
bridges the micro-macro gap in stomatal models, coupling whole-plant transpiration
to the molecular functionalities of the guard cell. Here we set out guidelines for use
of OnGuard2 and outline a standardized approach that will enable users to advance
quickly in applying the platform in classroom and laboratory situations.

5.1 Introduction

Though it often goes unacknowledged, the network of interactions between
metabolism, ion transport, and solute partitioning among cellular compartments
poses a major barrier to a quantitative understanding of guard cell physiology and
of stomatal regulation mediated by gas exchange of the leaf. Cellular physiology
is dictated by the characteristics intrinsic to each process, whether of ion transport,
organic solute synthesis, or its catabolism. Each of these processes incorporates
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kinetics that are highly non-linear, often with respect to multiple parameter
inputs, including substrate concentrations and membrane voltage, as well as
regulatory inputs that engage ligand and other post-translational controls. Such
non-linearities underpin much of physiology that is seemingly counterintuitive, that
is the ‘emergent’ behaviours of the guard cells. Thus, even without considering
transcriptional and translational regulation, addressing how guard cells respond
to environmental inputs, and their coupling to the macroscopic properties of the
whole leaf, demands a full and quantitative accounting of the characteristics for
each transport, metabolic and buffering reaction.

Understanding and predicting stomatal behaviour will inform agricultural prac-
tices and potentially anticipate plant responses to climatic changes [1]. Stomata are
pores found on the leaf epidermis that form between pairs of specialized cells, the
guard cells. Stomata allow the uptake of CO2, required for photosynthesis at the
expense of water loss via transpiration from the tissues within the leaf. Gas exchange
is regulated by exogenous signals, such as CO2, water availability, and light [2–14],
each of which affects stomatal pore size. Changes in the size and shape of stomatal
pores arise from water fluxes that are driven by the accumulation and depletion of
osmotically-active ions in guard cells [10]. Therefore, guard cell solute transport
and metabolism have a substantial impact on plant fitness as they feed directly into
the photosynthetic and water status of the plant. To better predict and engineer plant
physiology, one has to consider the changes occurring at the guard cell level and
how these relate to the tissue-wide responses of the leaf. In other words, there is a
need to bridge the gap between the microscopic events of cellular ion transport and
metabolism to the macroscopic properties of gas exchange and its regulation in the
leaf and whole plant.

5.2 Modelling Stomata

A wealth of information exists to address mechanism of guard cell physiology and
stomatal function, both in relation to solute transport [10] and metabolism [15].
Many of the molecular components are known and their kinetic properties defined
with quantitative detail. Additionally, their cellular interactions have been identified
in many cases, establishing the associations if not the detail of their dependencies.
There is also a very large body of information that relates stomatal behaviour,
as expressed in gas exchange of the whole leaf, with environmental inputs of
temperature, relative atmospheric humidity, and light and the consequences for
photosynthetic carbon assimilation. With this information in hand, it is possible
to expand our knowledge through holistic approaches that use mathematical tech-
niques to simulate stomatal behaviour at the systems level. Effective modelling
efforts rely on the interactions between component elements of the system to yield
information on the system as a whole, information which may then be validated
through experiment.
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Of guard cells, for which stomatal function impacts directly on gas exchange
and thereby on plant water relations and photosynthesis, in general two different
approaches have been pursued that divide across scales. At the macroscopic
scale, the first approach has been to treat stomata as discrete, phenomenological
components, each stoma serving as a pathway for transpirational water loss and CO2
uptake [16–20]. These macroscopic approaches consider stomatal gas exchange in
the context of discrete conductance units that add up to yield stomatal conductance
of the whole plant (gs). These conductance units vary in quasi-linear fashion in
response to environmental inputs of light, water availability, and atmospheric water
vapour and CO2. Indeed, robust models of gas exchange have been used to scale
stomatal transpiration and CO2 exchange from leaf to canopy [21–24]. However,
such phenomenological models do not capture the cellular components needed
to translate gs to the molecular mechanics of the guard cell and its functioning.
In short, these models lack the necessary links essential to translate the outputs
through ‘reverse-engineering’ to the molecular processes of the guard cell, the key
connections needed for predictive in silico modelling.

At the microscopic level, efforts to model stomata have focused on the sub-
cellular components, notably the transporters and their associated signal cascades
in the guard cells, that facilitate ion, solute and water flux for stomatal opening
and closing [10, 12, 25]. Here, one approach, borrowed from the methods of logic
circuit design, describes the guard cell in terms of Boolean nodes and links that
connect these nodes. The power of Boolean models lies in its use as a tool to
analyse networks for which there are a large number of components and possible
connections between them, but little quantitative information [26–28]. Its most
common application is to identify critical nodes and their relative connections to
one another, effectively mapping the predominant causalities within a network.
Boolean models are defined through logic gates that can only be ‘on’ or ‘off’,
which simplifies analysis but precludes kinetics relationships that are essential
to understanding dynamic interactions and their temporal associations. Li et al.
[29] and Sun et al. [30] have applied pseudo-temporal characteristics to Boolean
networks of guard cell signalling, but these outputs are disconnected from any
meaningful physiological mechanisms or their kinetics.

True mechanistic models allow the kinetic properties of the individual compo-
nents within the model to be encoded with parameters defining their operation as
functions of the relevant physiological inputs [16, 25]. A so-called hydromechanical
model [17] represented a step in this direction; it proposed a simple hyperbolic
relation between the ATP concentration of the guard cells and their osmotic content.
Even so, the model lacked explicit detail for the mechanics of guard cell solute
transport and, thus, the intrinsic regulatory processes that are known to determine
much of stomatal function [10]. It is important to note, too, that the hydromechanical
model and almost all other modelling efforts have sought analytic solutions for
endpoint or stationary states only. They fail to address the wealth of information
available relating to the temporal kinetics for stomatal movements and transpiration.

To date, only the OnGuard platform [31–33] has encapsulated the mechanistic
components and their parameters for solute transport and metabolism sufficient
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to accurately simulate guard cell physiology and the stomatal movements that it
engenders. The latest revision of the OnGuard platform, OnGuard2, now bridges
the gap between the macroscopic characteristics of transpirational water relations
in the whole plant and the microscopic behaviour of guard cells in solute and
water transport that drives stomatal movements. Most important to modelling guard
cells, the OnGuard platform incorporates the biophysical and kinetic features of
each of the transporters that drive solute flux at the two membranes underpinning
stomatal movements, the guard cell plasma membrane and tonoplast. Furthermore,
it connects the activities of these transporters, as in vivo, through the essential
kinetic variables of membrane voltage as well as substrate and regulatory ligand
concentrations. The importance of membrane voltage, especially, lies in its role in
feedback between transporters and even with respect to a single transporter.

Consider K+ transport out of the guard cell. The guard cell outward-rectifying
K+ channel—in Arabidopsis, the GORK channel—is strongly voltage-dependent,
activating only at voltages positive of the prevailing K+ equilibrium voltage, EK
[10, 34–36]. Depolarizing the membrane activates the channel for K+ efflux from
the cell, but this activity is countered by the K+ flux itself. As K+ passes outward
through the channel, across the plasma membrane, it carries charge to repolarize the
membrane. In other words, even without any effects from other regulatory processes,
the activity of the channel counteracts its own flux as determined by intrinsic kinetic
relations of the channel gate.

Of course, the membrane voltage will be affected by every other transporter that
moves a net charge across the membrane which, in turn, will also affect the channel-
mediated K+ flux. The consequence is that, in the steady-state, ion transport is a
highly non-linear process that is not solely determined by the gating characteristics
of an individual transporter such as GORK per se, but by the balance of ion and
charge transport across the membrane as a whole. There are platforms available,
such as the Virtual Cell [37], E-Cell [38], and the Cellerator [39] with which similar
reaction-diffusion processes can be modelled. These platforms are less flexible in
enabling parameter modifications during simulations, however. Most important,
however, they are poorly adapted to accommodating the feedback that arises from
the parallel activities of membrane transporters and the associated variable of
membrane voltage.

5.3 The Elements of the OnGuard Platform

Stomatal movement arises from changes in cell volume and turgor driven by the
transport, accumulation and release of osmotically-active solutes, primarily K+,
Cl−, sucrose and the organic anion malate2− (Mal) [10, 40, 41]. Such movements
are ideally suited to a ‘bottom-up’ approach in mathematical modelling. They are
governed by quantitative relations that describe mass and charge conservation,
ion and water flux. The voltage across each membrane, in turn, is linked to the
relevant ion gradients and permeabilities across the membrane. Together, these
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physico-chemical relations are easy to incorporate mathematically and they con-
strain all homeostatic interactions within any model. For plant cells, and especially
for the guard cell, the important output variables are the cell volume and osmolality,
water potential and turgor, the voltages across each membrane, the predominant
ion concentrations, especially K+ and Cl−, as well as the total and free Ca2+
and H+ concentrations, and the corresponding ion fluxes through each transporter.
These variables are subject to buffering for intracellular H+ and Ca2+, the osmotic
contributions from impermeant solutes, mostly of protein, their charge and pH
dependencies, all of which are available or can be estimated from experimental data
[42–45].

For membrane transport, the biophysical relations are all well-defined and for
several plant cell types, including the guard cell, have been studied in depth
sufficient for quantitative mathematical description. For example, H+ transport via
ATP-driven pumps and coupled transporters as well as the transport of other ions via
channels at the plasma membrane has been characterized, with detailed information
on stoichiometry and mechanism [10]. Thus, their operation can be described
quantitatively within sets of kinetic equations fully constrained by experimental
results. Even if our knowledge of individual transporters at the tonoplast is less well
developed, in these circumstances there is ample data from experiments to define the
vacuolar ion contents and fluxes [10, 46–50], so constraining any modelling effort
by minimizing the range of parameters needed to comply with experimental results.
Essential kinetic data are available also for transport regulation, notably its control
by cytosolic-free [Ca2+] ([Ca2+]i) and pH, and in many cases by reactive oxygen
species (ROS), and protein phosphorylation [10, 51–53].

Of course, there are gaps in our knowledge of many of these transporters, at
least their molecular identities and some details of their regulation. However, in
general it is sufficient to know the kinetic relationships that describe a process, even
if the structural gene products are not known or the precise mechanisms of their
regulation have not been resolved. For the modeller seeking to understand how a
system responds to physiological or experimental perturbation, the only relevant
biology is encapsulated in how one model variable is connected to another. For
example, we do not know the proportions of inward-rectifying K+ channels that are
composed of KAT1 and of KAT2 subunits in Arabidopsis, nor whether KC1 might
also assemble together with these subunits to form the functional channels [54, 55].
Nevertheless, we know how the ensemble K+ current is gated by voltage and that its
amplitude depends on extracellular [K+], and we can describe these dependencies
in quantitative terms [56–59]; so we are able to describe both dependencies with
sufficient detail to model the behaviour of the current in vivo. This description can
be expanded to incorporate the different subunits when their unique characteristics
are known and these become the focus of the modelling effort. Similarly, we
know that [Ca2+]i inactivates the inward-rectifying K+ channels of the guard cell
[60, 61], and surmise that this may occur via phosphorylation by one or more
Ca2+-dependent protein kinases [53, 62–64]. Quantitative kinetic information is
still lacking to model the steps between Ca2+ binding, the kinase cascades and
their ultimate phosphorylation of the K+ channels. Nevertheless, we know the
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relationship between [Ca2+]i and K+ channel activity, and we can safely place the
mechanistic details in a mathematical description that subsumes the intermediate
kinetics. In effect, such a phenomenological approach introduces modules with
adjustable levels of resolution that may be expanded if, and when, studies come
to focus on a specific module [65].

5.4 Expanding the OnGuard Platform to Define and Model
Plant Water Relations

To bridge scales from the guard cell to whole-plant water relations in OnGuard2,
we integrate three additional sets of variables and parameters associated with the
water relations of the leaf [14]. First, we note that water in the guard cell wall must
equilibrate with water vapour in the substomatal cavity. Water vapour equilibration
affects the osmotic potential of the guard cell wall and, hence, the microscopic
variables of the effective ionic activities in the apoplast and the ion and water
flux across the guard cell plasma membrane. We calculate the partial pressure of
water vapour in the substomatal cavity from the gradient in its partial pressures
between the sites of evaporation in the leaf and the atmosphere outside. Second, to
accommodate water delivery to the leaf, we define water flux through the xylem
with a pseudo-linear relationship that describes the evaporative surface area within
the leaf in relation to the area of the stomatal pore. Finally, we introduce a finite
hydraulic permeability of the guard cell plasma membrane in order to place water
flux under control of relevant cellular signal cascades, notably [Ca2+]i and pH
[66–69]. These descriptors are sufficient to simulate the behaviour of stomata with
changes in atmospheric relative humidity (%RH) and with temperature, which will
also affect the rate of evaporation within the leaf. They lead to models that accurately
predict the effects of transpiration on guard cell membrane transport as well as the
effects of manipulating membrane transport on stomatal transpiration in the whole
leaf [14].

While iterative computational modelling, such as used by the OnGuard platform,
does not pre-define a final endpoint, it does require a starting point—a reference
state—from which time increments may be calculated and the dynamics of the
model can evolve base on the constraining physical laws, the equations and their
parameters that define the components of the model and, most importantly, the
interactions that arise from their functioning over time. The best place to start in
any modelling effort of this kind is a state in which no net change in solute flux
or content occurs, for example that of the guard cell of the closed stoma in the
dark. To aid in resolving such a starting (or reference) state, the OnGuard platform
incorporates a Reference State Wizard. The Wizard allows the user to specify the
underlying biophysical status of the system and then query the model for solute
and metabolic fluxes in total and through each of the model processes. With little
practice, the user should be able to balance each of component flux, starting with
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H+ transport and concluding with sucrose and Mal metabolism, by adjusting the
populations of transporters and, if necessary, their underlying kinetic descriptors in
order to comply with the requirements for a starting reference state.

Obviously establishing a Reference State implies prior knowledge of the prob-
able unit densities, or at least the typical amplitudes of each current, and the
characteristic parameters defining the kinetics for each transporter. The biological
validity of a model is first judged by this knowledge, and such knowledge is critical
if a model is to avoid indetermination and yield true predictive power. There is no
absolute rule that will ensure predictive power in a model, but with experience the
user will come to recognize some basic guidelines. Critically, there must exist at
least two pathways for flux of each solute species if flux balance is to be achieved
across a membrane. For example, any model with a pathway for the influx of
cation M+ across the plasma membrane must include at least one other pathway
for its efflux, otherwise flux balance within the model as a whole over time is
not possible. Similarly, to ensure charge balance, complementary pathways for
oppositely charged species must exist across each membrane. If these conditions
are met, and kinetic detail is available to define quantitatively at least 80–85% of
the total flux of all species in both directions and between all compartments, then
parameters for the remaining fluxes generally will be constrained sufficiently to
render a model with true predictive power.

Models based on Reference States and diurnal Reference Cycles for guard cells
of Vicia [31, 32] and Arabidopsis [14, 33, 70] are available for download with the
OnGuard platform (www.psrg.org.uk; note that to access full functionality users
must register to obtain and install a passcode). Full descriptions of transporters
and their parameter sets will be found in these publications and in Jezek and
Blatt [10]. These models offer good starting points for users new to the OnGuard
platform, as they circumvent the tasks of defining the reference state. Of course,
each of these ‘pre-packaged’ models come with the standard proviso of all working
systems: the models offer good approximations to experimental data within the
bounds of the conditions and data used for their validation. As new experimental
data becomes available for one or more of the processes within a model, corre-
sponding refinements to the model parameters are likely to be needed. We welcome
communication with users, and we are always open to suggestions for refinements
and new implementations to the OnGuard platform.

5.5 Simulating Stomatal Responses to Humidity

In practice, simulating stomatal physiology and its response to experimental
challenges is straightforward using the OnGuard platform. A 20-min video is
available for viewing at the software download site. The video introduces the basic
operation of the platform and describes the first-generation OnGuard software.
Nonetheless, it covers material relevant to OnGuard2, including how to access and
adjust user controls for iteration and sampling frequencies, how to modify transport

http://www.psrg.org.uk
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Fig. 5.1 A software map of the OnGuard platform highlighting the general platform options and
logic flow. Once a model (*.ogb) file is loaded, key operations are to edit model parameters and
transporter display options (orange and green boxes), accessed through the ‘Edit’ and ‘Modelling’
dropdowns, and to run the model (‘Begin simulation’ and ‘Run in batch mode’), accessed through
the ‘Modelling’ dropdown. Platform runtime ‘Preferences’ are accessed through both the ‘View’
and ‘Options’ dropdowns. The ‘Text Summary’ option exports the full set of model parameters
specified in a model file. The ‘Dump I:V curve to text file’ option exports all current-voltage
curves visible in the main window currently active at the time. The current-voltage curves export in
a format compatible with all spreadsheet software. The ‘Chart Recorder’ window is also available
with the ‘Run in batch mode’ option, but the user has access to tab through the displays only after
exiting from a batch operation cycle. A ‘Cartoon’ display is available from the ‘View’ dropdown
for real-time visualization of ion transport across the plasma membrane and tonoplast as well
as the observation of dynamic changes in physiological outputs such as stomatal aperture and
conductance. The ‘Cartoon’ display does not operate with the batch operation mode

and metabolic parameters, how to set ion and solute concentrations, and how to
interrogate and log platform outputs. OnGuard2 has expanded on these controls,
as noted above, to incorporate parameters defining aquaporins at the guard cell
plasma membrane, xylem water feed to the leaf, stoma and leaf geometries, and
ambient temperature and atmospheric humidity relevant to transpiration. Figure 5.1
summarizes OnGuard2 in a platform map with logic flow. We focus here on the
newer elements of OnGuard2 and direct the reader to a previous guide on the use of
OnGuard for examples of manipulations relevant to the guard cell in isolation [71].
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Before starting OnGuard2 for the first time, select ‘View’ in the main window
and choose ‘Preferences’ in the drop-down list. Access the ‘Run-Time Limits’ tab
and check that the ‘Minimum T-inc’ and ‘Maximum T-inc’ values are set to 0.001
and 20 s, respectively. We recommend that the ‘Max %age change’ is set to 2 or
3%, the ‘Max Iterns’ is set to 1000, the ‘Default dV’ is 1 × 10−9, and finally the ‘I
tolerance’ is set to 1 × 10−21. These parameters determine the variable time interval
limits, the range of permissible variable changes per time interval, and the tolerances
for free-running voltage and current estimates. Additionally, you can adjust the ‘O/P
Efficiency’ settings for the best compromise between speed and quality in graphical
display: increasing the number of points plotted in each curve adds to the display
burden on the processor; increasing the ‘Wait-sleep time’ slows the computational
cycle and allows time for display functions. You need only add to the ‘Wait-sleep
time’ if values in the flux window fail to update regularly during a run. Note that
‘O/P Efficiency’ and ‘Wait-sleep time’ have no effect on platform operation when a
model is run in the much faster, batch mode (see below).

Once a model is loaded, you have access to ‘Edit Model Parameters’ from
the ‘Modelling’ tab in the main window. The ‘Edit Model Parameters’ gives you
access to define parameters for the various ion concentrations, transporters, sugar
and malate metabolism, and their regulatory characteristics. You can even add
new transporters and remove existing ones. For now, we recommend using the
preset parameter settings that come with the published models. Later, when you
are comfortable running the software and interrogating its outputs, you may want
to explore the effects of eliminating one or more transporters, such as has been
described before [71], and we describe below how to examine the effects of changes
in atmospheric relative humidity.

From the ‘Modelling’ tab, you also have access to ‘Begin Simulation’, and to
‘Run in Batch-Mode’. The second of these options will generate outputs rapidly,
but does not provide the depth of display and control during simulations. You may
find this rapid simulation mode useful once you become familiar with the platform,
and we recommend you explore its operation only then. Use the ‘Begin Simulation’
option to open the chart recorder, with tabs for many of the major outputs of the
model which can be followed during a simulation, and to open a flux window which
reports details of the various ion fluxes and membrane voltages (Fig. 5.2). The flux
window provides run-time controls, including those for spreadsheet data logging.
Within the flux window, we recommend activating the ‘Auto-increment’ tickbox at
the lower left, and setting the ‘Min Log Interval’ to 20 s for a suitable temporal
resolution in the data logged for spreadsheet access and in the chart recorder. For
comparative purposes, run one of the models supplied with the software through
three diurnal cycles (72 h) as a control by activating the ‘Stop at Time’ tick box and
entering 0003:00:00:00 (days:hours:minutes:seconds) in the time window below
and then clicking on ‘Run’. You may minimize windows, but do not close any
windows, as this will terminate the simulation and close the data log.

After this first 3-day period is complete, use the ‘Modelling’ drop-down menu
at the top of the main window to ‘Edit Model Parameters’ and then select the
‘Transpiration’ tab to access the plant water relations (Fig. 5.3). Ensure the radio
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Fig. 5.2 OnGuard2 with the Modelling dropdown activated to show access for editing model
parameters and running models. Also visible are the main and flux windows, and the chart recorder.
Within the main window, two graphic windows are visible showing the current-voltage curves all
of the transporters at the plasma membrane (left) and the tonoplast (right)

button for ‘Use Ws/Wp to calculate Ciso’ is selected. Here you have a readout of
the external relative humidity and the calculated internal relative humidity. You can
set the relative water feed (RWF, see Wang et al. [14]), defined as the ratio of the
evaporative surface inside the leaf to the cross-sectional area of the open stomatal
pore. Reducing the RWF leads to stomata that are more sensitive to changes in
external relative humidity and simulates water stress conditions. Set the RWF to 5
or 10, then Click on the ‘Edit Humidity Protocol’ button to call up an editable, 24-h
protocol. A window displaying the external relative humidity opens with hooks and
connectors that can be moved, added, or removed to set the relative humidity time
sequence. Use these hooks to create a protocol with a step to 30%RH for a period of
2 h during the daylight period (Fig. 5.3). Also shown on the ‘Transpiration’ tab are
settings to define the leaf geometry, including the stomatal pore length, depth and
density, as well as the mesophyll depth and percentage of air space within the leaf.
These latter parameters are editable but are species-specific and act as scalars in the
calculations of stomatal conductance and foliar transpiration.

Again, we recommend that OnGuard2 run with these new settings for three
diurnal cycles. For this purpose, simply ensure the ‘Stop at Time’ tick box is active
and enter 0006:00:00:00 (days:hours:minutes:seconds) in the time window below.
Once you are finished, terminate the simulation by clicking the ‘Stop’ button, if still
running, then close the flux window. Closing the flux window closes the *.csv file
log. If you wish to save your model with any new parameter settings that have been
entered, first call up ‘Edit Model Parameters’ in the ‘Modelling’ tab of the main
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Fig. 5.3 OnGuard2 popup window (above) with tabbed access to all of the model parameters.
Shown active is the tab for Transpiration control with the button activating (arrow) the Relative
Humidity Protocol window (below) as described in the text

window, choose the ‘Review &c’ tab, and reset the ‘Time of day (hh:mm:ss:ms)’
to 00:00:00:00 to reset the start time of the simulation, then use the ‘File’ tab in
the main window to access the ‘Save as . . . ’ option and give the model (*.ogb) file
a new name to avoid overwriting the original model. Note that you can continue
running the model at any time, also without saving a file, but if you have reset the
start time you must close the flux and chart recorder windows and then re-open them
by clicking on the ‘Modelling’ tab and selecting ‘Begin Simulation’.

OnGuard2 normally logs the apoplast, cytosol, and vacuole contents and the net
fluxes across the plasma membrane and tonoplast for each ion and solute. It will also
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log the fluxes through the individual transporters, [Ca2+]i, cytosolic and vacuolar
pH, the rates of sucrose and malic acid synthesis, the membrane voltages, and a
number of derived variables such as stomatal conductance and transpiration rate.
Many of these variables are displayed during simulations in one of the tabs of the
on-screen chart recorder. You may choose to log the fluxes of each ionic species by
activating the ‘Flux Log?’ tick box and selecting one or more of the outputs from
the ‘Flux Opts’ button. These data are saved in *.csv format readable by almost all
spreadsheet programs. For a first review, you may plot the outputs using Microsoft
Exel, but for a more detailed review of platform outputs, we recommend using a
publication-quality graphics package such as SigmaPlot (Systat).

5.6 Interrogating OnGuard Platform Outputs

Interpreting the output of an OnGuard2 simulation requires interrogating the model
variables. Changes in each of these variables—for example, solute concentration,
the associated rates of ion and solute flux through each of the transporters, the mem-
brane voltages, cytosolic-free [Ca2+] and pH—depend on interactions between the
transporters, cytosolic and vacuolar buffering for pH and [Ca2+]i, and metabolism,
just as they do in vivo. So, in general, the task of interpretation reduces to one of
tracing the sequence of events following a trigger, or change in a specific model
parameter, and then tracing the consequences through the network of interrelated
homeostatic processes. Here, the output variables, their kinetics, flux, and metabolic
origins are most useful and will help in identifying emergent behaviours of the
system that are often the most informative aspects of any modelling effort.

A review of the OnGuard2 output in this case shows that it predicts stomatal
aperture and gs changes that reproduce experiments as reported in the literature
(Fig. 5.4; see also Wang, et al. [14]), with step decreases in %RH outside reducing
aperture and gs. As Wang et al. [14] demonstrated, when RWF is set below 40,
the stomatal sensitivity to %RH is strongly enhanced much as it is in vivo when
soil water content is reduced. The OnGuard2 outputs, both the online chart recorder
and the logged data, show that decreasing aperture is accompanied by an increase in
osmotic solute concentration as water is drawn from the guard cells and their volume
decreases. The concentrations of K+, Cl− and other solutes rises in proportion but,
after an initial rise, cytosolic and vacuolar Cl− decline to values near those in the
absence of the %RH step. Other features of the response include oscillations in
[Ca2+]I, which are associated with stomatal closure and facilitate solute efflux [60,
70] as well as an alkaline shift in cytosolic pH, both of which are known to affect
many of the transporters at both the plasma membrane and tonoplast.

How are the connections made between transport in the guard cell and transpira-
tion in the whole leaf? The key to the effects on transport with the step decrease in
%RH outside is reduction in the partial pressure of water vapour in the substomatal
cavity. Over subsequent time increments, the rate of transpiration through the pore
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Fig. 5.4 OnGuard2 simulation windows with the Chart Recorder tab for stomatal conductance
(gs) active and showing the result of the 2-h step to 30%RH programmed Fig. 5.3. Note that the
red trace for gs uses the driving force for water vapour diffusion assuming 100%RH in the leaf;
the blue trace shows gs calculated assuming a driving force across the stomatal pore alone with a
reduction in water vapour pressure just inside the substomatal cavity resulting from transpiration
to the outer atmosphere (see Wang et al. [14])

rises with the increase in the driving force for water vapour diffusion. This decline
in substomatal water vapour leads to an increase in osmotic potential of the guard
cell wall and, consequently, a decrease in total guard cell volume as water is drawn
out of the guard cell. As the guard cell volume decreases, there is a corresponding
increase in solute concentration, including that of [Ca2+]i, which leads to [Ca2+]i
oscillations as the change in the concentration of Ca2+ in the vacuole enhances the
driving force for Ca2+ influx across the tonoplast [14].

Just focusing on Ca2+ for now, the rise in [Ca2+]i will act on all fluxes mediated
by [Ca2+]i-sensitive transporters—some 70% of the transport activities at the two
membranes [72]—including the several pumps, K+, Cl− and Mal channels at both
the plasma membrane and tonoplast, and, consequently, on the total osmotic solute
content of the guard cell. The rise in [Ca2+]i also affects water flux through its
regulation of water transport [14]. Finally, as [Ca2+]i reduces the rate of water flux,
it also affects the rate at which the stoma closes and, hence, stomatal conductance,
transpiration, and the partial pressure of water vapour within the leaf.

Most important, the connections above complete the circle with feedback
between macro- and microscopic processes: The macroscopic effects of external
%RH, transpiration and changes in substomatal water vapour influence the micro-
scopic processes of ion and water flux, and the guard cell volume and osmotic solute
content. In turn, guard cell volume and osmotic content determine the macroscopic
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variables of stomatal aperture and conductance, the rate of transpiration and, hence,
the water vapour pressure within the air space internal to the leaf. Of course, all of
the fluxes are rooted in time, so the system evolves governed only by the equations
and parameters that define the ensemble of underlying processes, microscopic and
macroscopic. In short, the computational approach of the OnGuard platform bridges
scales through an evolution of the temporal behaviours encapsulated within the
ensemble of flux equations, their relationships to osmotic water and solute content,
and the exchange between water in the cell wall and the partial pressure of water
vapour within the leaf.

Of course, no model is useful unless it has the capacity to yield predictions that
can be tested experimentally, not simply to reproduce known behaviours. There are
a number of predictions that can be drawn from OnGuard2 simulations, several of
which have been validated experimentally as outlined by Wang et al. [14]. Of these,
the OnGuard2 Arabidopsis model predicted a substantial retention of Mal relative to
Cl−, consistent with observations that Mal is retained under osmotic stress [73, 74].
It also predicted transient enhancements in the activity of the inward-rectifying K+
channels that arose from suppressions in [Ca2+]i on recovery from %RH steps, a
slowing in the rates of stomatal closure and of gs decreases in the slac1 Cl− channel
and ost2 H+-ATPase mutants, an acceleration in aperture and gs recovery in the
slac1 mutant following %RH steps, and a slowing in these rates for the ost2 mutant.
Each of these predictions was confirmed in vivo. Other predictions still remain to be
tested experimentally, notably the effects of changes in %RH on anion channel and
Ca2+ activities as well as selected transport across the tonoplast. You may well find
some other outputs that are worth pursuing through experiments; we have no doubt
that there are further revelations to come.

5.7 Conclusion and Outlook

OnGuard2 offers users an unprecedented tool with which to explore the mechanics
of stomatal transpiration across scales from the molecule to the whole plant. Until
now, research into stomatal physiology and efforts to model stomatal behaviours
have been divided across scales. The mechanics of guard cell membrane transport
and metabolism are defined by a wealth of knowledge, including the identities of
the key transporters, their biophysical properties and regulation, and have been
modelled successfully with quantitative kinetic detail at the cellular level. By
contrast, foliar transpiration has been described empirically through quasi-linear
relations with atmospheric humidity, CO2, and light, but without connection to
guard cell mechanics. OnGuard2 bridges this historic and conceptual gap seamlessly
with a systems platform that defines foliar water relations and transpiration in
the context of the molecular mechanics of guard cell ion transport, metabolism
and signalling. To date, it has been shown to reproduce faithfully the kinetics of
whole plant transpiration with stomatal conductance, its dependence on VPD, and
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water feed to the leaf as integral components of OnGuard2 models. We encourage
researchers and educators alike to adopt OnGuard2 for their own applications as they
relate to guard cell homeostasis, stomatal dynamics and transpiration from plants.
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Chapter 6
Single-Cell Approaches for
Understanding Morphogenesis Using
Computational Morphodynamics

Pau Formosa-Jordan, José Teles, and Henrik Jönsson

Abstract In multicellular organisms cells grow, divide and adopt different fates,
resulting in tissues and organs with specific functions. In recent years, a number of
studies have brought quantitative knowledge about how these processes are orches-
trated, shedding new light on cells as active and central players in morphogenesis.
We explore recent advances in understanding plant morphogenesis from a quantita-
tive perspective, defining the research field of Computational Morphodynamics. The
focus is on studies combining theoretical and experimental approaches integrating
hypotheses of how molecular and mechanical regulation at the cellular level lead to
tissue behaviour. Finally, we discuss some of the main challenges for future work.

6.1 Introduction

Morphogenesis, the spatial development of tissues with specialized structure and
function from populations of undifferentiated cells, is one of the most fascinating
and complex problems in nature. Formation of functional tissues requires a strict
spatiotemporal control of cellular morphology and gene expression. To achieve
this, individual cells can read a multitude of microenvironmental cues, respond
via their gene regulatory networks, and ultimately, undertake the appropriate fate
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decisions and morphological changes [1]. A detailed characterisation of the factors
influencing cellular fate decision, the mechanisms by which they are executed at the
cellular level, and how they are coordinated in multicellular tissues, is paramount to
understanding the dynamic pattern formation driving development.

Single cell studies in unicellular organisms and cell cultures have made great
progress in providing a quantitative description of the signalling and gene regulatory
mechanisms that underlie cell fate decisions [2–5]. These experiments typically
involve time-lapse microscopy methods, in which the cells of interest can be
tracked as they grow in controlled microenvironments. Expression dynamics of
key regulators can be characterised by computational quantification of fluorescent
reporters [6, 7] and correlated to cellular variables such as size, division and
death [8].

Progress in the development of reporters, microscopy technologies and com-
putational methods now allows for expanding these approaches to the study of
developing tissues in multicellular organisms in vivo. In plant biology in particular,
morphogenesis has been the object of multiple studies over the years and the role
of short-range biochemical signals, long-range hormone transport, and mechanical
forces in shaping tissue formation is well documented [9–11]. The ability to quantify
the spatiotemporal dynamics of gene expression and cellular behaviour at high
resolution in single cells enables a finer quantitative appreciation of how signalling
factors ultimately lead to specialised three-dimensional patterns. This level of
detailed analysis requires powerful experimental and computational tools in order to
identify, track and quantify variables of individual cells in a three-dimensional tissue
as it grows in vivo. As these tools become increasingly available, it has been possible
to combine high-resolution time-lapse microscopy, image processing, quantification
tools and computational models in multidisciplinary efforts to better understand
plant development. This integrative approach is the cornerstone of the emerging
field of Computational Morphodynamics [12–14] (or Systems Morphodynamics
[15]), which, by iterating between experimental design, quantitative data analysis
and computer simulations, aims to understand the factors that shape tissues and
how they affect individual cells (Fig. 6.1).

In this chapter, we will provide an overview of the most recent developments in
the Computational Morphodynamics field in plants, particularly in terms of image
processing, quantitative data analysis, and computational modelling techniques.
We will review recent studies that applied these methods and technologies, with
strong emphasis on work performed at the single-cell level in plant systems,
taking advantage of plant-specific properties such as lack of cell migration and
relatively slow growth. To illustrate some of the techniques, we will refer to several
examples using Arabidopsis thaliana as biological model, particularly where single
cell descriptions lead to behaviour at the scale of small tissues. We will also
discuss the main hurdles and challenges in the field, as well as new methods and
technologies that open new and exciting avenues for further understanding the
dynamical principles and mechanisms underlying tissue formation in plants.
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Imaging 
- Static (destructive sampling)

Sample fixation

- Dynamic (live imaging)
Microfluidics
Automated confocal setups Quantification 

- Preprocessing
Deconvolution, denoising, 
edge detection, binarisation

- Segmentation
Watershed, steepest ascent

- Tracking
Block matching

Analysis
- Quantitative analysis

- Machine learning
Classification
Feature selection

- Spatial structure 
Pattern formation
Tissue order

Modelling
- Deterministic dynamics

Rate equations

- Stochastic dynamics
Gillespie algorithm
Chemical Langevin equation

- Tissue growth
Spring interactions 
Finite element models

Fig. 6.1 Typical Computational Morphodynamics workflow. An integrative approach iterating
between image collection, signal quantification, quantitative analysis and computational mod-
elling. For each step, representative examples for methods and techniques are given and further
detailed in the text. Note, this is not meant to be an exhaustive list of all available possibilities

6.2 Capturing Single Cell Dynamics in Space and Time

The accurate characterisation of how single cells are affected by microenviron-
mental signals and respond in accordance during plant development requires a
detailed spatiotemporal description of the tissue as it grows. This description is
typically based on time-lapse confocal microscopy of plant tissue in vivo, or
live imaging, which allows the non-destructive sampling of the tissue in three
dimensions over time. This approach, particularly in combination with other cell
and molecular biology tools such as fluorescently tagged reporters, can allow for the
quantification of a wealth of variables related to the dynamics of tissue mechanics,
cell geometry and cell division, as well as gene expression. Such experiments
require high resolution imaging data both spatially and temporally. Ideally, the
number of confocal slices spanning the tissue should be as high as possible (thus
covering as small a distance as possible) for individual time points, with time
intervals being kept to a period as small as possible. A limiting factor in both cases
is the phototoxicity that arrives from prolonged and repeated exposure of the tissue
to the laser, and so a suitable compromise needs to be found. Sampling times may
also need to be adjusted depending on tissue growth rates, such that individual cells
can be unequivocally tracked.

The questions of how and when cells divide in plant tissues have attracted
much attention. The first studies discussing cell division rules date back to the late
1800s, in which it was proposed that the geometry of the cell would determine the
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orientation of the cell division plane (more details on this topic in [16, 17]). In the
last decades, improvements of microscopy technologies connected to fluorescent
markers have enabled revisiting these questions in more detail. In a pioneering
study, Laufs et al. used propidium iodide to stain DNA and visualise individual
nuclei in Arabidopsis thaliana inflorescence shoot apical meristems (SAMs) [18].
This method allowed for a detailed morphometric analysis that included the
quantification of size, spatial distribution and mitotic index of individual cells in
wild-type and mutant lines. Propidium iodide staining effectively arrests growth,
making it impossible to collect dynamical data. Reddy et al. circumvented this issue
by using fluorescent reporters for components of the plasma membrane, histone
markers and mitotic cyclins, thus being able to observe the dynamics of cell and
nuclear division events, as well as to capture cells about to or in the process of
division [19].

As imaging technologies and computational power increase, higher resolution
data can be generated which affords automated identification and tracking of
individual cells, as well as higher precision in the quantification of variables of
interest [20–25]. The implementation of a powerful automated 4D imaging pipeline
allowed Willis et al. to observe in great detail the dynamics of cell growth and
division in Arabidopsis SAMs [20]. By sampling meristematic growth every 4 h
over the course of 2–3 days, and tracing each individual epidermal cell in space and
time, the authors could show that cell size regulation does not strictly follow the so-
called sizer nor adder models that had been previously described [26], but instead
is an intermediate between these two paradigms. Jones et al. also approached this
question with single-cell quantification of cell division coupled with a mechanistic
model of cyclin-dependent kinase (CDK) activity [22]. The study pointed to the
existence of regulatory mechanisms that dynamically regulate cell size as a function
of a number of factors including growth rates. Both these studies suggest that
cell size in the meristem is not an intrinsically defined (or measured) property.
Beyond the timing of division, it is also of interest to understand how cells define
the orientation of division planes and localisation of new cell walls. Factors such
as cell size, geometry and mechanical forces have all been deemed of potential
relevance over the years. Recent quantitative studies have supported the view that
cells divide along local minima of plane area leading to equal-sized daughter cells
[23], and the alternative view that new division planes establish along directions of
maximal tensile stress [24]. Shapiro et al. implemented a quantitative model that
predicts the localisation of new division planes at minima of a potential function
that incorporates these and other division rules [25].

Despite all its potential, quantitative image analysis at the single cell level is
experimentally and computationally demanding and requires careful planning in
order to avoid misleading conclusions due to technical artefacts at all stages, from
image capture to quantification and analysis [27]. Continuous collection of 4D data
in vivo is extremely challenging in plants, due to plant growth and movement,
particularly in tissues such as the SAM where plants have to be kept in light- and
temperature-controlled chambers between sampling times, and where the imaging is
usually done with water-dipping lenses [19, 20]. These challenges can in themselves
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be the source of artefacts, and the development of imaging technologies that
circumvent them by allowing automated image capture with minimal disturbance
can be of paramount importance. To this end, von Wangenheim et al. developed a
confocal microscope setup that allows vertical imaging of plant root tip growth with
automated adjustment of sampling positions between time points, facilitating the
tracking of objects of interest [28]. This platform allowed continuous observation
of root growth even when inducing rapid changes in gravity or light, and was
successfully tested in zebrafish embryos, showing its general applicability.

The integration of microfluidic technologies for tissue live imaging holds great
potential and, indeed, has already proved of importance in different tissues [29].
One prominent example is the RootChip [30], which allows continuous imaging
of different growing plant tissues while being exposed to different environmental
perturbations [30–32]. This system has been used for studying, for instance,
gibberellin response in growing hypocotyls [31] and root–bacteria interactions [32].
Microfluidic technologies afford working in very small volumes as well as the
minute control over cellular microenvironment, and hence they have also become
an attractive system to observe and manipulate plant cell cultures, either maintained
in stable cultures [33] or freshly extracted from the tissue by cell wall digestion [34].
Recently, microfluidic chips have been used to explore mechanisms of regulation of
cellular geometry by applying directional auxin gradients to single BY-2 tobacco
cells [35]. In the same cell system, optical tweezers had previously been used to
create cytoplasmic protrusions in single cells, thus allowing the characterisation of
actin and myosin dynamics and their impact on cytoplasm stiffness [36].

For some tissues, it is technically very challenging to perform single-cell
quantification while maintaining the plant alive, in which case fixing tissues can be
a suitable option [37–39]. Although this makes it impossible to collect dynamical
data, it allows for detailed imaging, and statistical methods can then be applied
to extract information on growth and division properties from these well-defined
cell patterns (Fig. 6.4c, d) [37]. By design, confocal microscopy limits the size of
the biological tissue that can be imaged at high resolution. In that regard, whole
tissue and even whole organism techniques have been deployed to quantitatively
characterize 3D large-scale phenomena in plant development [40, 41].

While the challenges of imaging multicellular and slow growing tissues are
many, several of these challenges have recently been overcome and plant devel-
opment is now approaching a stage where it can be studied with live imaging tools
similar to those used for bacteria and yeast, both in vivo and in cell cultures.

6.3 Quantitative Image Analysis

Once image acquisition has been achieved, ideally resulting in a high spatiotemporal
resolution time lapse of tissue growth, quantification of cellular variables of interest
is performed by deploying a set of computational methods that broadly allow the
identification and tracking of each individual cell in space and time. It should be
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stressed, however, that image capture and analysis are not independent steps and
that particular requirements of image processing should be taken into account when
planning time-lapse experiments. Microscopy parameters such as laser intensity,
voxel size (in particular, defining the thickness of each confocal slice) and resolution
can be optimised by iterating with the image analysis software in single images
before performing the full time course. Time sampling should also be carefully
defined such that cell tracking can be performed with maximal efficiency. A number
of preprocessing steps can also be crucial to improve image quality for the purpose
of quantification. Deconvolution may be of importance when processing 3D images,
in order to circumvent artificial stretching in the Z-direction caused by the point-
spread function [42, 43]. Another relevant factor is plant growth that occurs during
image acquisition outside the region of interest. In this case, a fast confocal scan
with few slices covering the whole tissue may be acquired first, and used to correct
potential growth effects in the longer acquisition, by correcting z-direction slice
thickness [20]. In addition to this, other operations may be beneficial such as
denoising, edge detection or binarisation of the images to facilitate computational
identification of regions of interest (Fig. 6.2a).

The identification of individual cells in a tissue is achieved by applying computa-
tional algorithms that make use of specific features of the imaging data to delimitate
each region of interest (e.g. a cell, nucleus or other cellular subcompartment)
in a process called segmentation. One of the most popular algorithms for cell
segmentation is the watershed algorithm [48]. This is particularly true for cases
where fluorescence intensities are maximal at the cell membrane, with the inside of
each cell having intensity close to zero. Different variants of the watershed algorithm
have been successfully applied to the identification of single cells in plant tissues,
from embryos [37], to SAMs [45, 49] (Fig. 6.2b), and root meristems [45]. When
the fluorescent signal accumulates in a subcellular compartment such as the nucleus,
other algorithms may be more suitable. An implementation of the steepest gradient
ascent in particular has been used to segment individual meristem cells [50, 51], and
nuclei in time lapses of sepal growth [44] (Fig. 6.2a). Once a region of interest has
been segmented, its size and morphological parameters can be quantified. The same
is true for fluorescence intensity within each region, which is normally used as a
proxy for mRNA or protein levels for each cell (Fig. 6.2c). Although this is often
not the case, ideal experimental design should include a second fluorescent reporter
for a constitutive gene, which can be used to normalise fluorescence intensities in
individual cells.

Once individual cells are identified, characterised and computationally cata-
logued for each time point, temporal correspondence must be resolved by tracking
each cell, as well as their progeny, through the time course. This process thus
needs to consider cell divisions as well as tissue growth and orientation changes
between time points. Due to the existence of rigid cell walls, cell movement is
not as much of a factor in plants as it can be in animal tissues. Optimal cell–
cell pairing between consecutive time points can be achieved through a process
of registration, where one of the images is linearly or non-linearly transformed to
maximise matching with the other image of the pair [52]. Different registration
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Fig. 6.2 Quantitative image analysis at the single cell level. (a) Image analysis pipeline for
3D nuclear segmentation from confocal images of developing sepals in a plant expressing the
mCitrine-ATML1 fluorescent reporter [44]. (b) 3D visualisation of a shoot apical meristem (SAM)
segmented using the watershed algorithm as implemented by Fernandez et al. [45]. (c) Single cell
quantification of gene expression in the Arabidopsis root [46]. Left: DII-VENUS (yellow) and
cell geometries given by propidium iodide staining (red). Right: measured DII-VENUS levels
quantified from the raw intensity image. (d) Single cell tracking of a SAM, using the block
matching algorithm [20]. Red lines represent newly formed walls within a period of 24 h of
meristematic growth. (e) Classification analysis of live imaging mCitrine-ATML1 expression data
from sepal growth experiments (Fig. 6.2a) [44]. Top left: ATML1 concentration time course of a
small cell lineage. Top right: ATML1 concentration time course of a giant cell lineage. In both
cases, coloured circles represent ploidy: yellow – 2C; blue – 4C; red – 8C and above, and the grey
lines show all cell linages. Bottom left: each circle represents the ATML1 concentration maximum
recorded in 4C cells (i.e. during the G2 stage of the cell cycle) separately for small and giant
cell lineages. Bottom right: performance of classification of cells (as either small or giant) based
exclusively on ATML1 concentration maxima in 4C cells evaluated by area under the ROC curve
(AUC). The red line is the ROC curve; diagonal dashed line represents AUC = 0.5 for comparison.
An AUC of 0.8 suggests a good classifier (AUC = 0.5 corresponds to a random classifier; AUC = 1
to perfect classification) and led to the hypothesis that a threshold-based mechanism for cell fate
decision is at play involving a combination of high ATML1 concentration during a specific stage of
the cell cycle. Horizontal black dashed lines in the top panels as well as bottom left panel represent
the inferred ideal ATML1 concentration threshold. (f) quantification of topological features of
Arabidopsis hypocotyls in different ecotypes [47]. Top panel: tissue segmentation meshes with
single cell segmentations; heatmap represents scale of betweenness centrality values. Bottom
panel: virtual cross and longitudinal sections of extracted cellular networks for each ecotype.
Heatmap represents scale of edge betweenness centrality values. Panels A,E have been extracted
from [44], panel B from [45], panel C from [46], panel D from [20] and panel F from [47]. Panels
(a, e and f) are subject to the CC BY license (https://creativecommons.org/licenses/by/4.0/). Panels
(b and c) have been added with permission, copyright by Springer Nature and the American Society
of Plant Biologists, respectively

https://creativecommons.org/licenses/by/4.0/
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methods can be applied with reasonable success, particularly when taking into
account the specificities of the tissue and objects of interest. These algorithms are
available through implementations in different image analysis packages, often with
convenient graphical user interfaces and the possibility for manual correction of
segmentation and tracking errors [49, 53–56]. In plant tissues specifically, block
matching registration algorithms [57–59] have recently been used to successfully
perform tracking of individual cells in growing SAMs (Fig. 6.2d) [20], and
individual nuclei in growing sepals [44].

The current multitude of image processing tools provide a large pool of options
that in principle should cover the exploration of a wide range of biological questions.
On the other hand, such diversity also brings about the fragmentation of the
community regarding tools of choice and, more importantly, file and data formats.
Advances in the state of the art allow us to observe biological phenomena at different
scales and complexities from single molecule to whole organs [60, 61]. It is of
paramount importance to agree on file and data standards within the community
that maximise transferability of both raw image and processed data, such that we
can increase power, accuracy and efficiency of quantification protocols.

The vast volumes of spatiotemporal single cell data collected through quantifi-
cation of time-lapse microscopy experiments can be explored by computational
methods in a considerable number of ways. An increasingly used approach is
the application of machine learning methods to extract interesting features or
behaviours [62]. In supervised machine learning, objects of interest (e.g. cells) can
be manually classified within a set of classes a priori (e.g. cell types) given a set of
variables (e.g. size or morphological parameters). This dataset is then used to train a
model that, once applied to a new dataset, can be able to predict with high accuracy
the class of a given object by taking into account its set of variables. There are a
number of models that can be used for classification such as regression methods,
support vector machines, artificial neural networks, decision trees or random forests
[62, 63]. In all these methods, training involves minimizing a function that quantifies
the error between prediction and known outcome. A good model should be able
to learn from the known data structure and successfully generalise to large sets
of new data without overfitting. During the image processing stages, classification
methods that take into account cellular morphology and tissue growth can be used
to automatically perform and improve segmentation and tracking [63, 64]. Cellular
size and morphology parameters have indeed been used for classifying cells in a
number of ways, from cell cycle stage [65] to cancer activity [66]. Gene expression
data are also a fertile ground for the application of classification methods in order
to gain biological insight. Single cell gene expression differences between related
cellular populations have been used to predict the identity of genes [67] or the
expression thresholds for a specific gene [68] likely to be involved in the decision to
choose a particular cellular fate. In plants, a similar approach was recently followed
to infer a mechanism by which expression maxima of the transcription factor
ATML1 above a certain threshold during the G2 but not the G1 stage of the cell cycle
predicts with high accuracy the giant cell fate in growing sepals (Fig. 6.2e) [44].
Unsupervised machine learning methods allow exploring features of interest in the
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data structure itself without having to a priori determine the different classes. These
include clustering as well as dimensionality reduction methods such as principal
component analysis or multidimensional scaling [62].

Beyond gene expression and single cell morphologies, it is of great interest
to quantify spatial cellular patterns within a specialised tissue, as a means to
further understand its morphodynamics. Methods that allow quantification of tissue
order as a function of the spatial distribution of the cells that compose it can
be of interest to understand its development and function [69]. In plants, this
approach has been followed to understand pattern formation in leafs, in particular
the variability of trichome patterns on its surface [70]. More generally, a recent
study provided a topological characterisation of complex plant organs by applying
quantitative network analysis methods to high resolution descriptions of cellular
interactions (Fig. 6.2f) [47]. As the volume of data accumulates, it becomes crucial
to integrate these measurements in order to understand how spatial cellular patterns
correlate with the underlying gene expression and cellular division patterns during
morphogenesis [39].

Great progress has recently been made in the ability to segment, track and quan-
tify single cell information from 3D live imaging data. The continuous development
of imaging technologies will predictably lead to data with higher spatiotemporal
resolution gathered at quicker rates. The expected magnitude of data produced by
these technologies will benefit from current and improved computational methods,
but will also require more automatised (and preferably standardised) analysis and
storage protocols in order not to become a major bottleneck in future studies.

6.4 Modelling Tissue Morphogenesis from the Bottom-Up

Tissue patterning results from the interplay of intracellular regulatory networks,
cell-to-cell interactions, cell growth and division, and mechanical forces [1]. How
can mathematical and computational models take these different processes into
account? And how can models integrate and be compared with experimental data?

Regulatory networks have mostly been modelled using deterministic rate equa-
tions of cellular concentrations of key components. In this context, it can be assumed
that, for a given set of model parameter values, the dynamics of regulatory networks
will achieve certain steady states, which can be associated with different cell states
or fates [50, 71–75]. For example, different regulatory networks have been modelled
for understanding epidermal patterning of hair and non-hair fates in both roots
and leaves [71, 72]. Also, a model for brassinosteroids signalling in the root has
proposed two alternative states that would represent a quiescent and a division state
of the quiescent centre cells [74].

In different plant developing tissues, stochasticity in the key regulators has been
proposed to play a role in cell fate decisions [76, 77]. In multicellular models,
stochasticity has mostly been implemented as small initial cell-to-cell differences
in the signalling regulators, which are deterministically propagated through the
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regulatory network. Though, due to the probabilistic nature of chemical reactions
within cells, certain regulatory networks can show stochastic effects throughout
time, and hence, stochasticity needs to be modelled in a dynamic manner. The
Gillespie algorithm is an exact and discrete method that can be used for modelling
the stochastic nature of regulatory networks [78, 79]. Yet, in the context of
multicellular modelling, discrete methods that simulate the number of molecules
can become computationally very expensive, and the chemical Langevin equation,
which is a continuous concentration-based approach, seems more applicable [80,
81] (Fig. 6.3). Although not being exact, this approach can give quite good
approximations to the exact Gillespie method when the number of molecules is not
too low [80]. The chemical Langevin equation contains a deterministic contribution
and a stochastic contribution, and the stochastic contribution becomes smaller when
both the number of molecules and the compartment volume where reactions happen
tend to be high [80]. This model formulation facilitates the possibility to use
different analytical tools that are used in deterministic systems, as nullcline and
bifurcation analyses [82].

Throughout a developmental process, both deterministic and stochastic processes
may simultaneously take place. Hence, to model this, hybrid algorithms are
necessary, in which both stochastic and deterministic variables are integrated.
In the context of giant cell fate commitment in the developing sepal, ATML1
fluctuations were simulated using chemical Langevin equations for ATML1 itself
and its downstream target together with a timer variable, while cell growth was
modelled deterministically [44].

Often, the patterning process happens while cells are growing and dividing. In
the root, the cellular growth and division patterns seem deterministically controlled,
leading to stereotypical files of cells that robustly conform the root (Fig. 6.2c) [46,
74]. The root shows a distinct behaviour; growth is mainly anisotropic, cell divisions
are most importantly happening in a single dimension along the length of the root.
In contrast, the SAM epidermis undergoes isotropic growth and cell divisions are
occurring in multiple, but anticlinal, directions, preserving the 2D layer (Fig. 6.2d)
[20]. In the case of the developing sepal, a pattern of giant cells gradually forms
while cells anisotropically grow and divide [44]. Also, in leaves, the stomata pattern
emerges as a result of an interplay of growth, cell divisions and cell fate decisions
[83]. Therefore, incorporating cell growth and cell division in the gene regulatory
network models becomes fundamental for reproducing the different behaviours and
spatial organisations found during morphogenesis of different tissues.

How can we incorporate growth into the models? Cell growth is the result of
the internal turgor pressure and mechanical cues [9, 84]. In turn, signalling — and
hence, regulatory networks — can modify cell wall properties, which feed back into
how cells respond to mechanical cues. Turgor pressure can be effectively included
into models in different ways; for instance, by imposing exponential tissue growth
[44] (Fig. 6.3), or it can be included in the equations accounting for mechanical
cues [84, 85]. In simulations, mechanical cues can be effectively included between
vertices through spring interactions acting according to effective potentials [16]
or through energies that need to be minimised [86]. Alternatively, stress-strain
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Fig. 6.3 Modelling cell fate decisions in a growing tissue. (Left) Cartoon illustrating a growing
tissue. A regulatory network is represented just in the central cell i for simplicity, in which
a gene x autoactivates itself and activates a downstream target y. (Right) Possible schematic
modelling pipeline. Top: Regulatory networks can be modelled either deterministically or stochas-
tically, depending on the nature of the studied problem. In this scheme, a chemical Langevin
equation is shown describing the x and y gene dynamics in cell i. Vi(t) is the volume of the
cell i, f(xi) and g(xi) are generic functions describing the autoregulation of gene xi and the
activation of yi by xi, respectively. ξz,i is a Gaussian random number with zero mean fulfilling
〈ξ zi(t) · ξ z ′ j(t

′
)〉 = δ(t − t

′
)δzz′δij, where i and j are cell indices, z and z′ the modelled variables

(x and y), δzz
′ and δij are Kronecker deltas and δ(t−t′) is the Dirac delta [44]. Tissue growth

can be implemented by displacing the vertices out the tissue centre of mass, e.g., by following
the proposed growth rule, where rj,k refers to the k-th coordinate of the j-th vertex in the tissue,
and αk is the exponential growing rate along k-th direction. On top of the exponential growth,
other mechanical cues can be implemented. In this case, we exemplify the mechanical contribution
using a strain energy, S, which is a function of the strain (ε) and stress (σ ) tensors. The integration
of the growth rule explained above with the mechanical cues results into a more complex tissue
growth, ui(t), where i refers to the i-th cell. This resulting growth needs to be taken into account
when computing the rate of change of each concentration variable over time. When the resulting
growth is more complex than an exponential, its dilution effects can be easily computed given the
volumetric changes after each integration step. Finally, different cell division rules can be taken
into account to determine the moment at which a cell divides and how the cell division plane will
be positioned. Willis et al. [20] showed that the shoot apical meristem (SAM) divides using a rule
that is in between the cell adder and sizer paradigms. The division plane can be set with the use of
different algorithms [16]

relations (Fig. 6.3) can be included in triangulated cell walls, using finite element
method based approaches in 3D [87]. The inclusion of mechanical cues in the
models and interactions between joint walls will lead to different growth rates for
different cells. Indeed, heterogeneity in cellular growth rates due to mechanical
factors and in asymmetric cell divisions have recently been reported [20, 86].
Incorporation of cell growth in the models should drive dilution effects in the
different modelled concentrations, and distribution of individual molecules between
daughters at cell division. If cell growth is exponential, dilution can be included as
effective degradation rates of the modelled concentrations (Fig. 6.3). Though, given
the heterogeneity and time-dependent cellular growth rates due to mechanical cues,
it becomes more convenient to compute dilution effects given the actual volumetric
change [44] (Fig. 6.3).
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Taking into account the multitude of cell division patterns found in plants,
another challenge is to include cell division in plant tissues models. As previously
mentioned, a recent study showed cells in the SAM seemingly divide following a
rule that is in between the sizer and adder paradigms [20]. However, in many cases,
assumptions and simplifications of the division process will need to be made due to
lack of data. Most of the works for plant tissue modelling have made use of sizers
(see, e.g., [16, 17, 51, 88]), but there are several models that use timers as well
[21, 44]. Although a timer will not allow cell size homeostasis over time and might
trigger cell instabilities in the growing tissue [26], it can work as a mechanism for
determining cell division times in a differentiating tissue with a countable number
of cell cycles before cell division arrests.

In plant tissues, cell-to-cell interactions underpin the transport of key regulators
and hormones that are fundamental at the tissue or at the whole plant scale. This
includes, for instance, the directed transport of the phytohormone auxin. There are
different theoretical proposals of how auxin is transported [89–92], and current
studies are still evaluating through a combination of experiments and modelling
whether such different competing existing models can explain patterning arising in
different tissues [87, 90, 93]. Other diffusible factors including cytokinins, proteins
like the stem cell activator WUSCHEL, and microRNAs seem to be fundamental
for patterning [94]. Hence, in the study of certain patterning process, diffusible and
directed transport between cells may need to be included into the models.

Modelling morphogenetic processes as a whole requires the simultaneous inte-
gration of growth, cell division, and signalling. An example where growth, cell
division and intercellular signalling are important is the stem cell regulation in
shoot meristems. In the SAM, a central pool of cells grows exponentially and the
cells undergo division while the stem cell marker CLAVATA3 and WUSCHEL
expression domains are continuously maintained. In this context, deterministic
models including cell division have been able to predict the different expression
domains and could also explain the variability seen following variability in tissue
size [95].

Ideally, a good (i.e. useful) model should at a first instance be sufficient to
robustly describe the already existing data, and then, it should have some predictive
power [14] (Fig. 6.4). To achieve the first stage, one should define equivalent
descriptors or observables in both experimental and modelled datasets that can
easily be compared. A possible descriptor could be the expression pattern of a
fluorescent reporter, or the time series of a certain variable of interest (Fig. 6.4). A
more quantitative comparison can be performed by comparing experimental and the-
oretical concentration histograms and statistical properties of the different datasets.
Classification analyses applied to both experimental and theoretical datasets can also
bring quantitative ways to execute these comparisons (Fig. 6.4a, b, cf. Fig. 6.4e).
Ideally, models should present explorations in the parameter space to establish
whether the model can recapitulate the experimental data in a significant region of
the parameter space, either by investigating large parameter regions [44, 72, 96, 97]
or, if the model is more complex, by performing multiple optimisation runs [75, 95].
This will determine whether the model hypotheses are sufficient to robustly describe
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Fig. 6.4 Bridging simulated data with experimental data. (a and b) Giant cell formation as a case
study [44]. (a) (Left) Scanning electron microscope image of a wild-type adult sepal, where giant
cells are coloured in red. Scale bar: 100 μm. (Right) Simulation example of a developing sepal
emulating the experimental data (cf. Fig. 6.2e). The tissue grows anisotropically, while the ATML1
transcription factor dynamically fluctuates. Cells having ATML1 above a certain threshold at the
4C stage (i.e. being in G2) are likely to endoreduplicate and become giant. AU refers to arbitrary
units. (b) Data analysis of simulation shown in (a) (cf. Fig. 6.2e). Data analysis is performed on
lower time resolution than the simulated time resolution in order to facilitate comparisons with
the experimental data. (Top) Example of ATML1 simulated time-courses for a (top left) normally
dividing cell and (top right) a cell becoming a giant cell. Colour refers to the ploidy of the cells as
in panel (a) on the right. The red dashed horizontal lines refer to the soft threshold for giant cell
fate commitment. (Bottom left) Spread plot showing the ATML1 maxima at 4C and the predicted
ATML1 threshold. (Bottom right) ROC curve. (c and d) Mechanical study of the Arabidopsis
embryo during seed germination [37]. (c) Experimental data showing the relative cell expansion
in the seed. (d) Mechanical growth simulations through finite element methods. Cell colours in
top panels in c and d show relative cell expansions. Growth rates depend on a combination of
gene expression input and cell sizes [37]. (e and f) Auxin patterning in the Arabidopsis root
[46]. (e) Auxin transporter localisations extracted from data. (Left) PIN auxin efflux exporters
are shown in red. (Right) AUX1 (green and purple), LAX2 (blue), and LAX3 (purple) auxin
influx importers. (Right) Scale bars = 50 μm. (f) Simulated DII-Venus levels (compare it with
experimental data shown in Fig. 6.2c) given the auxin transporter localisations shown in (e). Panels
(a and b) have been adapted from [44], panels (c and d) from [37], and panels (e and f) from
[46]. See corresponding papers for further details. Panels (a and b) are subject to the CC BY
license (https://creativecommons.org/licenses/by/4.0/). Panels (c and d) have been adapted with
permission from the National Academy of Sciences USA. Panels (e and f) have been added with
permission, copyright by the American Society of Plant Biologists

https://creativecommons.org/licenses/by/4.0/
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the experimental data. Still, several competing models can explain specific data sets
equally well, and further tests of the model are required. Hence, in a second and
more difficult stage, the model should be able to predict the outcome of experimental
perturbations. Examples from the models we have discussed include the ability to
predict an adaptive scaling of the stem cell domain to the size of the meristem, later
confirmed in experiments [95], and a weak feedback component in the ATML1
sepal model that could later be experimentally verified [44]. Other examples are the
predicted growth patterns combining cell size and molecular input in the epidermal
root tip (Fig. 6.4c, d) [37], and the prediction of auxin levels given the distributions
of auxin transporters extracted from experiments (Fig. 6.4e, f) [46]. Note that
sometimes the theoretical parameter explorations can provide predictions of key
experimental perturbations. For instance, in a recent study, a mathematical model
predicted that the modulation of auxin influx transport would drive a change of
vascular spacing in the Arabidopsis shoot, and this was experimentally corroborated
in influx mutants [93].

As described, several examples of models of tissue morphogenesis exist where a
robust simulated behaviour can explain data, and where novel predictions have come
from the models. Still, the use of single parameter value explorations is dominating,
in part due to the complexity of running models combining molecular regulation
with growth. Hence, more efforts will have to be made in this direction. Also,
comparisons between data and experiments can be further developed, and probably
can be improved with the use of machine learning techniques.

6.5 Conclusion and Outlook

In recent years, several efforts have been made for understanding morphogenesis
in plants in a more quantitative manner. Many advances have been produced in
both experimental and theoretical methods and applications, and these advances are
enabling us to see the potential of cell-centred approaches to better understand tissue
morphogenesis. Still, we need to further enhance and promote multidisciplinary
efforts to get tangible and significant advances in the field of Computational
Morphodynamics in plants. It will be essential to improve the ability to build on and
directly compare published experiments and models from several groups to generate
a coherent quantitative understanding of plant development.

Alternative experimental approaches, such as the use of plant cell strains, might
still have an additional value to shed light into different puzzling phenomena that
cannot be disentangled in planta. Indeed, single cell approaches, through the use of
plant cell strains, have already brought very valuable knowledge into fundamental
questions, including how auxin is transported in plants, and how cell shape and cell
polarity are generated [98].

A great challenge is to further automate experimental pipelines that can offer
quantitative information in a systematic and high-throughput manner. The devel-
opment of open source and user-friendly platforms for quantitative image analysis,
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and the creation of standards between such platforms for elaborating more com-
plex pipelines will be pivotal for the establishment and consolidation of the
Computational Morphodynamics field. Furthermore, the development of models
with predictive power, close to the experimental data, will be key for a deeper
understanding of plant morphogenesis. Such models might need to incorporate and
integrate several mechanisms that can be present in different development scenarios,
such as integration of mechanics and molecular regulation, dynamic stochasticity,
alternative cell division rules, or even time-dependent parameters [68, 99–101], to
emulate the evolving and the adaptable nature of regulatory networks in plants.

Finally, the success of the Computational Morphodynamics field will rely on
keeping on bridging the gaps between experimental and theoretical approaches
(Figs. 6.1 and 6.4) through strengthening the communication between experimen-
talists and theorists, and through the development of new interdisciplinary scientists
and laboratories.
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Chapter 7
Modeling Plant Tissue Growth
and Cell Division

Gabriella Mosca, Milad Adibi, Soeren Strauss, Adam Runions,
Aleksandra Sapala, and Richard S. Smith

Abstract Morphogenesis is the creation of form, a complex process requiring the
integration of genetics, mechanics, and geometry. Patterning processes driven by
molecular regulatory and signaling networks interact with growth to create organ
shape, often in unintuitive ways. Computer simulation modeling is becoming an
increasingly important tool to aid our understanding of these complex interactions.
In this chapter we introduce computational approaches for studying these processes
on spatial, multicellular domains. For some problems, such as the exploration
of many patterning processes, simulation can be done on static (non-growing)
templates. These can range from abstract idealized cells, such as rectangular
or hex grids, to more realistic shapes such as Voronoi regions, or even shapes
extracted from bio-imaging data. More dynamic processes like phyllotaxis involve
the interaction of growth and patterning, and require the simulation of growing
domains. In the simplest case growth can be modeled descriptively, provided as an
input to the model. Growth is specified globally, and must be designed carefully to
avoid conflicts (growing cells must fit together). We present several methods for this
that can be applied to shoots, roots, leaves, and other plant organs. However when
shape is an emergent property of the model, different cells or areas of the tissue
need to specify their growth locally, and physically-based methods (mechanics)
are required to resolve conflicts. Among these are mass-spring, finite element, and
Hamiltonian-based approaches.
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7.1 Modeling Plant Morphogenesis

Plants regulate their form through interactions between genetic processes, cell–
cell signalling, and mechanics. Since plant cells are attached to each other by a
rigid cell wall, emergent shape is controlled almost entirely by regulating the rates
and directions of growth and proliferation of individual cells. Genetic programs
operating at the cellular level must be integrated over the tissue via signalling
mechanisms, to result in reproducible organs, shapes, and sizes. To explore these
interactions, which can be complex and result in unintuitive behavior, computer
simulation modeling has emerged as an important tool.

Although much modeling work in biology has focused on genetic networks that
operate within single cells [39], many processes in morphogenesis require models
with a spatial component. One example is models of pattern formation, exploring
the differentiation of cells into different cell types within a plant organ. Typical
mechanisms include Turing patterns [79] such as reaction-diffusion [52] and auxin-
transport feedback based patterning [76]. Although some aspects of patterning can
be analyzed with purely mathematical models [71, 79], this is only possible in
cases with very simple geometry and interactions involving only a few interacting
components.

Spatial models can be represented at different scales. Entire plants are often
modeled at the organ level, with model elements representing individual leaves or
sections of stem [62]. Organs may be discretized into pieces that represent groups
of many cells [44], whereas portions of organs can often be represented directly
at the cellular level [38]. In some cases, such as modeling involving proteins that
transport auxin to and from the cell to extracellular space, it is necessary to explicitly
include compartments for the wall between cells [1, 9, 42, 71]. Both the cell and cell
wall themselves may be discretized into compartments, if it is required to represent
gradients of morphogens or signaling molecules at a sub-cellular level in the model
[28, 43].

7.2 Fixed Templates

Fixed templates are useful to explore patterning aspects of plant development when
the explicit simulation of growth is not required. Patterning mechanisms can depend
on mass-action reactions, cell–cell communication via diffusion or active transport,
mechanical forces, or any combination of these. Boundary conditions can also be
important, as can environmental inputs, as they might form pre-patterns or direct
patterning in some other way.

Perhaps the most widely used model of pattern formation in developmental
biology is the Turing mechanism [52, 59, 79], which is often referred to as reaction-
diffusion or diffusion driven instability. Turing proposed the idea to answer a
fundamental question in developmental biology: given a field of identical cells, how
can a pattern emerge when all cells follow the same reactions and have the same
molecular components? In terms of genetic networks one can ask how different cell
types emerge if they all have the same genes.
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Fig. 7.1 Activator-inhibitor system. The activator is shown in blue, the inhibitor is shown in red
(a) The activator enhances its own production as well as the production of the inhibitor. The
inhibitor inhibits production of the activator. (b–c) A line of cells with the height of the blue and
red bars indicating activator and inhibitor concentration. (b) A slight increase in the concentration
of the activator in one cell due to random fluctuations causes an increase in production of both
the activator and the inhibitor in that cell. (c) The inhibitor diffuses away more quickly than the
activator, allowing local activation to escalate, while simultaneously suppressing neighbor cells.
Adapted from [76]

Gierer and Meinhardt [25] proposed a Turing system with equations that are
easier to relate to molecular regulatory networks than those in Turing’s original
work. Their formulations have since been used to model many patterning processes
in biology [52], mostly on fixed templates. The simplest of these is based on two
substances and is called an activator-inhibitor system. The activator a enhances
its own production, as well as that of another substance h, termed the inhibitor
(Hemmstoff in German), whereas the inhibitor inhibits production of the activator.
Figure 7.1a shows the interaction in the format typically used to display genetic or
molecular regulatory networks.

To demonstrate the mechanism’s pattern forming ability, it is instructive to use
the same template as that originally proposed by Turing, a line of identical cells
connected at the ends to form a ring. In this case all cells have the same equations
and the same boundary conditions. The following equations are used to model the
change in concentration of the activator and inhibitor in the cells over time:

dai

dt
= ρa0 + ρa

a2
i

1 + hi

− μaai − Da

∑
j∈Ni

(
ai − aj

)
(7.1)

dhi

dt
= ρh0 + ρha

2
i − μhhi − Dh

∑
j∈Ni

(
hi − hj

)
(7.2)
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where ai and hi are the concentrations of activator and inhibitor in cell i, ρa0 and
ρh0 control a small amount of background production, ρa and ρh control activator-
enhanced production, μa and μh control decay, Da and Dh control the rates of cell
to cell diffusion. Diffusion is summed over all of the neighboring cells Ni . Each
cell is modeled as a single compartment with a single value for the concentration
of the activator and inhibitor (i.e. no gradient within the cell). Extracellular space
is ignored, with diffusion occurring directly between cells. Meinhardt notes that for
stable peaks to form, the rate of activator diffusion must be much smaller than that
of the inhibitor.

If the system started with uniform initial conditions, the derivatives will be
the same for all cells and no pattern will emerge. The steady state concentrations
of the activator and inhibitor will be the same in all cells. If a small amount of
noise is added to the system, for example in the initial activator concentration,
the system can destabilize, depending on parameter values. Small local maxima
in activator concentration lead to a local increase in production of both the activator
and the inhibitor (see Fig. 7.1b, c). The inhibitor diffuses away more quickly than the
activator, reducing its effect on local activator self-enhancement, while suppressing
activator self-enhancement nearby. This can lead to a spatial pattern of peaks in
activator concentration (Fig. 7.2), which can trigger selective differentiation and
patterning. Parameters in Eqs. (7.1) and (7.2) control the size and spacing between
peaks.

Many patterning problems in development require at least a 2D template for
simulation. One example is the canalization hypothesis proposed by Sachs for leaf
venation patterning [55, 70]. Sachs’ canalization mechanism is based on the idea
that a cell’s ability to transport a morphogen (auxin) increases with the flux of

Fig. 7.2 Reaction-diffusion
patterning on a line of cells
using an activator-inhibitor
system. The ends of the line
are connected to give the
topology of a ring. The
activator is in green, and the
inhibitor in red, with the
height of the bars
representing the
concentration of the
morphogens. Starting from
uniform initial conditions
with a small amount of noise,
peaks in concentration
emerge. Note that both the
activator and inhibitor have
high concentrations in the
activated cells. Adapted
from [76]
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the morphogen through the cell. He proposed that this mechanism is analogous
to the process by which water carves preferred routes when running over even
terrain. Random variations cause a slight preference for a certain path, which is
then enhanced by the flow causing it to attract even more flux. Mitchison showed
that this mechanism is capable of pattern formation on a 2D grid of cells [55]. The
following equations are from Mitchison’s polar transport model, as re-formulated
by Rolland-Lagan [66].

The net flux of auxin φi→j from cell i to cell j is given by:

φi→j = T
(
aici→j − aj cj→i

) + D
(
ai − aj

)
(7.3)

where T is the transport coefficient, ai is the concentration of auxin in cell i, ci→j

is the amount of carriers allocated to the membrane in cell i facing cell j , and D is
the diffusion coefficient.

The change in carriers at the membrane of cell i facing cell j is given by:

dci→j

dt
= αφ2

i→j + β − γ ci→j if φi→j > 0 (7.4)

dci→j

dt
= β − γ ci→j if φi→j ≤ 0 (7.5)

where α is the carrier allocation coefficient based on flux, β is the flux independent
(background) carrier allocation coefficient, and γ is the coefficient representing
carrier decay (release) from the cell membrane. If the net flux is less than or equal
to zero, only the background carrier allocation and decay are used.

The change in concentration of auxin with respect to time is modeled as:

dai

dt
= ρ − μai −

∑
j∈Ni

φi→j (7.6)

where ρ is the auxin production coefficient in the cells, μ is the auxin decay
coefficient, with the summation is taken over all of the neighbors Ni of cell i.

The canalization model is capable of de novo pattern formation, and is able to
select strands of cells from a tissue of undifferentiated cells. The grid in Fig. 7.3
has a row of source cells at the top (non-zero ρ) and sink cells at the bottom whose
auxin concentration a is fixed at zero. The grid is connected at the sides to give the
topology of a cylinder. Initially auxin flows via diffusion uniformly from source to
sink cells. Like the activator-inhibitor model, without noise no pattern is formed. By
adding a small amount of noise to auxin levels, some paths are very slightly favored.
The feedback of auxin on its own transport causes the reinforcement of these paths
due to the non-linear production of carriers based on auxin flux [55]. This causes
the uniform gradient to destabilize into discreet strands of high auxin flux. It is the
cells in these strands which are hypothesized to then differentiate into veins.
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Fig. 7.3 The canalization hypothesis proposed for leaf venation is an example of a patterning
mechanism that requires a two-dimensional template. The concentration of the morphogen auxin
is shown in blue, with transporters that move auxin from cell to cell localized at the cell boundaries
shown in red. The short lines from the center of each cell represent directions of flux through the
cell, and their width represents flux strength. The top row of cells are auxin sources, and the bottom
row are auxin sinks. The grid is connected at the sides to give the topology of a cylinder. Starting
from uniform initial conditions with a small amount of noise to break symmetry, auxin is canalized
into discrete strands by the feedback of auxin on its own transport. The exact location of the strands
depends on the initial noise and is different for each simulation run, however the spacing is similar.
Note that some cells in the top row have low auxin even though they are sources, because of the
strong efflux due to transport. Simulations after [66]

Fig. 7.4 Examples of simple cellular templates made from rectangular, hex and Voronoi regions.
Color represents an arbitrary cell labeling

In addition to rectangular grids of cells, other geometric shapes such as hexagonal
arrays are also commonly used in plant developmental models [21]. Voronoi regions
have also been used for modeling [35, 36] because of their cell-like appearance (see
Fig. 7.4). Increasingly more realistic templates are being employed, with geometric
idealizations that more accurately capture the cell topology (Fig. 7.5a), or templates
based on images taken from biological samples (Fig. 7.5b, c).
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Fig. 7.5 More realistic cellular templates. (a) A geometric template model of the root apex of
Arabidopsis thaliana that more accurately captures root meristem topology. Color shows auxin
level, with blue cells having lower concentration and red cells having higher concentration.
Adapted from [17]. (b) An Arabidopsis embryo template extracted from a segmented section taken
from a confocal microscopy image stack. Color represents cell labeling. Adapted from [80]. (c) An
Arabidopsis hypocotyl template extracted from a physical cross-section of the hypocotyl. Color
represents cell labeling. Adapted from [82]

7.3 Growth and Cell Division

Although fixed domains can be useful to explore patterning mechanisms, many
questions in development require the simulation of growing domains [5, 14, 16, 37,
77]. In the one-dimensional case, L-systems are a particularly convenient formalism.
Originally developed to describe the development of filamentous organisms [47, 48],
they have been widely used to model the branching structures of whole plants
[6, 62]. L-systems are rewriting systems based on strings made up of modules or
letters from a given alphabet. Modules can have parameters to hold data values such
as the size of a cell or stem segment, or the concentration of a morphogen. Beginning
with an initial string called the axiom, rules are defined that map each module to
one or more new modules. A module may be replaced by the same module with a
different state, for example a different size or morphogen concentration, or by two
or more new modules, when cells divide. Context sensitive rules can be used to
simulate inter-module communication [62].

Figure 7.6 shows an example of an L-system model of the cyanobacterium
Anabaena, that contains two cell types. The heterocyst cells fix nitrogen, which
requires an anaerobic environment that must be isolated from the vegetative cells
that perform photosynthesis. Between the heterocysts there are approximately ten
vegetative cells [29]. The L-system rules define growth of the vegetative cells, which
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Fig. 7.6 Model of development of the filamentous blue-green algae Anabaena. Specialized
heterocyst cells (red) are capable of fixing nitrogen, and are separated by vegetative cells. The
heterocysts emit a diffusible signal, and when it drops below a threshold in a vegetative, they
differentiate into heterocysts. As the filament grows, new heterocysts form as the space between
them increases. Both the height of the bars and the color of the cells show the amount of diffusible
inhibitor. The model is simulated with L-systems, and was adapted from [60]

divide when they reach a threshold size. Superimposed on this growing template
is a morphogen simulation that controls cell identity. The heterocysts produce
a morphogen that diffuses out to the vegetative cells and decays. As it diffuses
down the line of cells, the concentration falls, and when it gets below a threshold
concentration the vegetative cells differentiate into heterocysts.

The simulation is a simple example of a dynamic system with dynamic structure
[24]. In models like this, where the underlying topology is one dimensional, it is
straightforward to specify growth at the cellular level. Each cell is free to grow at its
own rate without causing conflicts. This is not true in two or more dimensions [10].
For higher dimensions, growth must be specified globally to explicitly avoid spatial
conflicts, or if defined locally at the cellular level, conflicts must be reconciled
through a physically-based simulation [40, 44]. The important distinction between
these two possibilities is that in the former, growth and shape is an input into the
model, whereas in the latter shape becomes an emergent property of the model.

A simple method to model cell division in a growing tissue is to model only cell
centers and use Voronoi regions to represent the cell boundaries. This is not ideal for
modeling symplastic growth in plants since the rearrangement of regions that occurs
during cell division creates unrealistic motions of cells (Fig. 7.7). Nonetheless, this
can be an efficient method to create a growing cellular template when only the cell
centers are needed to be stored [37], and the rearrangements are not likely to affect
the outcome.

Models that have an explicit representation of the cell wall are better suited for
modeling symplastic growth. In the simplest case, cells are defined as polygons
with the vertex positions scaled to simulate uniform growth. The cells expand until
a threshold area is reached and the cells divide. There are several possibilities for
cell division rules. The most common is based on the division rule by Errera [18],
who proposed that cells divide like soap bubbles, to find the surface of minimal
energy. In 2D this is often simplified to the “shortest wall” rule (Fig. 7.8), although
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Fig. 7.7 Cell division in a tissue with cells represented by Voronoi regions. Unrealistic changes
in the cells’ geometry are introduced during cell division. Cell before division (left), and the new
Voronoi regions after division (right). Note the shortening and stretching of some of the neighbor
cell walls, and the occupation of some of the space of the neighbor cells by the newly created
daughter cells

Fig. 7.8 Model of cell division. Dividing a cell through the shortest wall. (a) The cell before
division. (b) Dotted line shows the shortest line passing through the center of the cell. (c) If an
endpoint of the new wall is too close to an existing junction, it is displaced in order to avoid 4-way
junctions. (d) The cell is “pinched” by shortening the dividing wall. This gives the daughter cells
a more realistic shape. Adapted from [78]

a better approximation is a curved wall that joins existing walls at 90◦ [4]. Other
rules include dividing the cell along the principal directions of growth [32] or along
the directions of maximal stress [49, 51]. Nakielski [56] proposed that cells could be
“pinched” after division, shortening the dividing wall to give the cells more realistic
shapes. When pinching is included, the shapes of cells become very close to those
of meristematic cells (Fig. 7.9).
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Fig. 7.9 Growing cell disk with dividing cells. Uniform growth displaces cell junctions outward,
and the cells divide when they reach a threshold area. The shortest wall through the center of the
cell is chosen for division. Color represent the cell label (unique identifier). (a) The algorithm
without pinching. (b) The algorithm when the new cell wall is pinched (shortened up to 80% of its
original length)

7.4 Polar Coordinates for Radially Symmetric Organs

For complicated shapes, modeling growth in more than one dimension is more
difficult. In general, locally specified growth causes spatial tissue conflicts that
require physically-based simulations to reconcile them [10]. Nevertheless, in some
cases it is still possible to model growth descriptively. A common technique
involves creating organ-centric coordinate systems, that are designed to simplify the
specification of growth [32, 56, 77]. In this section the technique is used to model
the plant apical meristem at the tip of growing shoots.

The plant shoot apex has a dome-like shape and consists of a group of stem cells
at the tip, surrounded by rapidly growing and dividing cells in the peripheral zone
where new organs form. The study of the shoot meristem has a long history, as the
placement of organs initiating there determines the phyllotaxis of the plant, giving
rise to striking geometrical patterns [45]. Since the molecular processes leading to
the positioning of new organs are thought to occur largely in the surface layer of
cells [64, 77], the simulation of patterning in the shoot apex can be simplified to a
cellular surface.

An organ-centric coordinate system is defined for the shoot apex as a surface
of revolution, generated by rotating a profile curve around a longitudinal axis
(Fig. 7.10a, b). In addition to its three-dimensional coordinates, a point on the apex
surface is defined by two local coordinates (θ, a) in this polar coordinate system. θ

is the angle of rotation about the longitudinal axis of the apex, and a is the distance
from the apex tip along the apex surface. A mapping function is defined to map the
polar coordinates S(θ, a) to Cartesian coordinates (x, y, z):

S(θ, a) = (x(a) cos(θ), y(a), x(a) sin(θ)). (7.7)
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Fig. 7.10 A descriptive model of a growing shoot apex based on polar coordinates. (a) The shoot
apex surface is defined as a surface of revolution from the generating curve (b). A material point
P embedded in the surface with local coordinates (θ, a) moves away from the apex tip with the
velocity v(a). (c) The Relative Elemental Rate of Growth (RERG) is specified as a function of the
distance from the tip. Adapted from [78]

Growth is simulated by moving points down the surface away from the tip
by “growing” the local coordinate a. The growth function, RERG(a), defines the
relative elemental rate of growth [32, 56] on the surface away from the tip as a
function of the distance from the tip (Fig. 7.10c). The velocity v(a) with which a
point P = S(θ, a) moves away from the apex tip is used to displace points during a
simulation step of growth. This velocity along the generating curve is given by:

v(a) =
∫ a

0
RERG(a)da. (7.8)

In this coordinate system, growth occurs in only one dimension, the local
coordinate a. The shape of the generating curve and the angle θ determines the
growth in Cartesian coordinates. Note there is no change in angular position due
to growth. The coordinate system provides a means to model growth that allows
for its local specification, although it has the restriction that the growth rate must
be radially symmetric. In the Arabidopsis shoot apex the growth rate has the shape
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Fig. 7.11 A reaction-diffusion model of phyllotaxis on a growing shoot apex. As the surface
grows, cells are displaced away from the tip, opening up space for new organs to form. (a)
Side view with peaks in activator concentration (bright green) marking the locations where organ
primordia would initiate. (b) Top view showing spiral pattern that appears when more than one
previous primordium affects the location of the newly forming one

shown in Fig. 7.10c, with reduced growth in the central zone at the tip, and increased
growth in surrounding peripheral zone.

Phyllotactic patterning is thought to rely on existing organs preventing the
formation of new ones nearby [34]. Although molecular work points to a transport-
feedback patterning mechanism related to that used for vein formation [37, 77],
reaction-diffusion models have also been proposed [53]. In principle, any spacing
mechanism on a growing shoot tip would suffice [30], with spiral phyllotaxis
appearing when more than one previous primordium influences the position of the
newly forming one. Figure 7.11 shows a simulation using the activator-inhibitor
system defined in Sect. 7.2 with the same cell division model as described in
Sect. 7.3. Activator peak formation is suppressed in the central zone by eliminating
background production there. As the apex grows and cells move down the surface
structure, space opens up allowing new peaks to form.

7.5 The Hejnowicz Coordinate System for the Root Apex

Another plant organ for which an organ-centric coordinate system has been
proposed is the apical meristem in the root tip [31]. The root apex has a highly
organized structure in many plant species. In Arabidopsis thaliana it is composed of
a quiescent center near the root tip, with the adjacent stem cells that divide slowly
and create a layered structure. Near the root tip the cells in the different layers divide,
before switching to an endoreduplication cycle in the elongation zone where the bulk
of cell expansion driving root growth occurs. In a longitudinal section of the root
apex, cells are arranged in files that converge towards the quiescent center [31, 57].
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This property is conserved as the root matures, although there are changes in root
width and length of the meristematic area as the root matures during development.

The organization of the cell files results from the cells growing along the cell file
direction and dividing parallel or orthogonal to it [58], with the principal directions
of growth (PDGs) aligning with the cell files. This led Hejnowicz [31] to propose
an organ centric system that he called a Natural Coordinate System for the root.
Similar to the polar coordinate system for the shoot (Sect. 7.4), the system maps the
parametric coordinates (u, v) to Cartesian coordinates (x, y). The function for this
mapping is as follows:

x = 2 arctan(tanh(u) tan(v)) (7.9)

y = ln(cosh2(u) − sin2(v)) (7.10)

Figure 7.12a shows the parametric coordinates plotted in the (x, y) plane, with
the anticlines and periclines representing lines with fixed u or v in this mapping. The
anticlines and periclines approximately align with the PDGs and the directions of
cell division. Equations (7.9) and (7.10) can be scaled with a suitable multiplicative
factor in order to adapt the coordinate system to the physical dimensions of a given
root apex.

Growth is implemented by specifying the growth rates in the parametric coor-
dinates (u, v). Hejnowicz [31] proposed dividing the root apex into 4 zones that
have different growth rates although care must be taken that the growth functions
make a continuous displacement field, preferably with continuous derivatives, at
zone boundaries. In the simulation model shown in Fig. 7.12b, growth only occurs
along the longitudinal direction (u coordinate) in the area above the green line in
Fig. 7.12a. Note that this still results in displacement of points in both the x and y

directions, due to the curvilinear coordinate system.
As with the previous templates, cells are represented as polygons, enlarge due

to growth, and divide when they reach a threshold area. Hejnowicz proposed
that cells in the root divide along one of the principal directions of growth [31],
which can be determined by taking the derivatives of Eqs. (7.9) and (7.10). In
the simulation shown in Fig. 7.12b the shortest of the two directions was chosen
for the dividing wall, although this choice in the Arabidopsis thaliana root apex
is thought to largely depend on cell type [8]. Once the new intersection points
are found in Cartesian coordinates, a numerical inversion is required to evaluate
their parametric counterparts. In the simulation in Fig. 7.12b a multidimensional
root finding algorithm from the GNU Scientific Library [23] was used to obtain
values for the parametric coordinates for newly inserted vertices. The Jacobian of
the coordinates transformation is singular at the origin and along the line u = 0, so
special care is required during the root search. To address this point, the symmetry
about the y-axis of the parametric coordinates was exploited so that only positive
solutions for v are computed.
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Fig. 7.12 A Natural Coordinate System for the Arabidopsis thaliana root apex. (a) The mapping
of the parametric coordinates (u,v) plotted in the (x, y) plane. The lines are the anticlines and
periclines that represent fixed values of the parametric coordinates u and v. The red line (v = π/4
and v = −π/4) defines the area of the system used for the simulation. The quiescent center
is located approximately at the origin. After Hejnowicz [31]. (b) A simulation model of the root
meristem with growth and cell division. Growth is implemented by growing the u coordinate in the
area above the green line in (a). Cells divide along the shortest wall of the two principal directions
of growth (PDG). At a specified distance from the root tip, cells stop dividing, separating the
meristem from the elongation zone

Similar to the polar apex surface described in Sect. 7.4, the parametric coordinate
system makes it straightforward to define a velocity field to model descriptive
growth of the root apex. The model in Fig. 7.12 uses an explicit growth function
for the u coordinate, but it is possible to determine the growth from a morphogen
concentration determined by a molecular process in the cells in the same simulation.
This provides a framework for the local specification of growth in a 2D tissue
without conflicts, because the growth becomes essentially 1D, although it would
require a single longitudinal growth rate for all cell files for a given u position.
Possibilities include using a single cell file to control growth, such as the epidermis,
or using an average value from multiple cell files.
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7.6 A Key-Frame Approach Using B-Splines

The previous sections described organ-centric coordinate systems that simplify
growth modeling by transforming Cartesian coordinates so that the principal direc-
tions of growth are axis aligned in the parametric coordinates. Another approach
using coordinate system transformations is to leave the parametric coordinates
fixed, and change the coordinate system itself over time [76]. The mapping from
parametric coordinates to Cartesian changes over time causing growth, rather than
changes in the parametric coordinates themselves (see Fig. 7.13b). Input for the
method is provided as exemplar shapes of the organ at important time points, or key
frames, in development. Intermediate time points are determined by interpolation.
From this perspective, these methods can be considered as a form of key-frame
animation of the evolving tissue geometry.

The leaf structure in Fig. 7.13 uses B-splines to represent the leaf shape at
different time points (key frames) during the simulation[68]. The surfaces were
defined interactively using the splineEdit surface editor provided with the Virtual
Laboratory (vlab) simulation environment [19]. B-spline surfaces were specified
by a set of control points describing the overall shape of the surface. Linear
interpolation of the control points was used to produce the leaf shape at any desired
point between the key frames. By advancing time in small steps, a smoothly growing
leaf surface is produced. Key-frame surfaces for leaf one of Arabidopsis thaliana
are shown in Fig. 7.13c. These key-frames were constructed based on the leaf-
shapes and data reported in [15, 73, 74]. Internal growth was interpreted by manually
tracking landmarks, such as veins and convergence points, throughout development.

The B-spline surfaces used to model the leaf are two-dimensional parametric
surfaces embedded in three-dimensional space (Fig. 7.13b). Points on the surface are
represented by parametric coordinates (u, v) which are mapped by B-spline surface
evaluators to positions in Cartesian space (x, y, z). As the simulation progresses and
the leaf changes shape, a (u, v) coordinate at the tip of the leaf will remain at the tip
even though its actual position in space may change considerably.

The same cellular structure described in Sect. 7.3 was implemented on the
growing leaf in Fig. 7.13a, along with the shortest-wall rule for cell division.
Beginning with a single cell that covers the entire initial shape, cell division
proceeds until there are no cells left above the threshold area. As the simulation
proceeds, the size and shape of the leaf changes, causing the polygons that define
the cells to enlarge. When cells reach the threshold area, they are divided. The
gradual division of cells creates more space in which the reaction-diffusion system
can organize additional activator peaks.

The library that implements the B-spline surface has two main functions: one
to compute the (x, y, z) coordinates of a point on the surface given its (u, v)

coordinates, and the other to perform the inverse operation. As with the shoot
and root apex models in Sects. 7.4 and 7.5, there is in general no closed formula
to compute the (u, v) coordinate given a particular (x, y, z) position that may or
may not be on the surface. This inverse operation is required whenever new points
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Fig. 7.13 Simulating growth using key framing with B-spline surfaces. (a) A reaction-diffusion
model on a growing-leaf. Activator concentration is shown in red and is set to zero in cells
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are added to the model (e.g., when cells divide) and is implemented by using a
steepest decent search algorithm on the evaluator function. Steepest decent requires
a set of parameter values, an initial guess from which to begin the search. For
points introduced during cell-division, the (u, v) positions of neighboring points
provide a good initial value for the descent. Although B-splines are employed here,
the method is compatible with most control point based surfaces, such as Bezier
surfaces[76].

This method has also been used for the geometric vascular patterning algorithm
described in Runions et al. [68, 69]. This model nicely illustrates how growth
can feed back on the emergent pattern formation of the vascular network (see
Fig. 7.13d). Growth causes space to appear, that results in new sources of a
morphogen that attracts the growing veins, reproducing the events seen in vivo
during initiation of the midvein and primary loops [74]. The iterative formation
of prominent secondary loops at the base of the leaf blade results from increased
growth of this region relative to the leaf tip. Although the model requires a relatively
precise spatial representation of growth in the leaf to reproduce the correct patterns
of venation, the growth itself is not an emergent property of the model.

7.7 Data Driven Growth

Another approach to descriptively model tissue growth is to extract growth rates
directly from experimental data. By imaging the same plant organ or tissue at
consecutive time points, time-lapse data can be obtained and used to calculate
growth rates [2, 41, 46, 67], which are then used to drive the tissue growth in a
simulation model. As with the B-spline methods a parametric coordinate system is
created, which then evolves to simulate growth, rather than changing the parametric
coordinates themselves.

The model input begins with a time-lapse data series, in this case from a section
on Arabidopsis thaliana cotyledon, the initial leaf-like organ that is present in the
embryo. Figure 7.14a shows the segmentation of the cells on a 2D surface of the
cotyledon made using the MorphoGraphX [13] software from 3D confocal image
stacks. After this process is performed for 2 time points and the lineage tracking of
the cells is created, the growth rates of the cells are computed (Fig. 7.14b).

�
Fig. 7.13 (continued) at the leaf base. As space opens up in the leaf blade due to growth, new
peaks in activator concentration appear. (b) Growth occurs due to the mapping of coordinates in
the parameter-space (u, v) to three-dimensional space (x, y, z) as shown. Positions at time steps
between key frames are found by linear interpolation. (c) Multiple key-frames can be used for
simulations depicting more complicated growth sequences. (d) A geometric model of leaf venation.
The pattern of emerging veins depends on how the growth is distributed in the leaf blade, with
secondary loops forming at the base of the growing-leaf where the growth rates are higher
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Fig. 7.14 Modeling data-driven tissue growth. (a) Surface mesh of the initial timepoint of
experimental data of an Arabidopsis thaliana cotyledon segmented into cells. (b) Later time point
with heat map according to the area increase of individual cells. (c) Surface mesh with cell contours
(blue) of (a) with material points and their Delaunay triangulation (red). Growth parameters
are assigned to the material points and the growth of the remaining tissue is interpolated using
barycentric coordinates. (d) The principle of barycentric coordinates: Given a triangle and one of
its corners as origin, a coordinate system can be created using the adjacent edges as axis vectors.
Any point p then has unique coordinates within this system. (e) The Delaunay triangulation of the
modeled tissue in the initial time step with an example cell in black. (f) This tissue and all its cells
are grown to the final time step (only one example cell shown)

The next step is to create a coordinate system to map model vertex positions from
one time point to another. This is done by selecting material points in the surface
that mark identical positions on the plant tissue at different time points. Between
these time points the values are interpolated, as models typically require a finer
time resolution than is practical experimentally. Often one point is fixed and the
remaining points rotated to remove rigid body translations and rotations.

The material points can be taken from any landmark on the organ surface, how-
ever if the surface is already segmented and lineage tracked, then the correspondence
between cell centers or cell junctions is known. Since plants have symplastic growth,
cell movement and sliding cannot occur, and the cell junctions represent material
points. Here a few cell junction points have been selected in the first time point as
material points. The next step is to create a triangulation of the material points. If the
sample is reasonably flat, it can be projected into 2D and the Delaunay triangulation
can be used (Fig. 7.14c). This triangulation is then used for both time points.

As with the previous models of descriptive growth defined in Sects. 7.4–7.6, a
coordinate system is defined for each point on the surface. This coordinate system
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is defined for each triangle, using barycentric coordinates. One of the points of
the triangle is selected as the origin and the other two points define the axis of
the coordinate system. Each point inside (or outside) the triangle can be defined
by a unique coordinate (u, v). For the triangle (a, b, c), let a be the origin of
the barycentric coordinate system, with b − a and c − a representing the axes
(Fig. 7.14d). Any point p can be represented as:

p = a + u(b − a) + v(c − a). (7.11)

To use the coordinate system in a simulation, each model point in Cartesian
coordinates is mapped to the barycentric coordinate of the triangle t to which it
belongs (t, u, v). If the point lies outside the domain, the closest triangle is used.
Note the representation is not unique, since the coordinates are defined for all points
for each triangle. However since the growth rates and direction are determined at the
triangle level, it is important that each point be assigned to the triangle that contains
it or the closest one possible. As the simulation proceeds, the triangle positions
(a, b, c) are interpolated linearly between the time points. As with the B-spline
simulation in Sect. 7.6 the parametric coordinates (t, u, v) remain the same, and
the mapping to Cartesian coordinates evolves, simulating growth.

The triangulation of the surface represents a piecewise linear mapping of the
space from the first time point to the second, with a single growth rate for all the
points in each triangle. Therefore, the number and density of material points in
relation to the homogeneity of growth is important. Areas with a high variance in
growth rates will require more material points. Resolution in time is a consideration
as well, with more time points better capturing the temporal variability in growth.
In addition to linear mappings, higher order methods such as splines can be used,
which can provide a smooth transition in growth rates over the tissue.

7.8 Mass Spring Models

Descriptive growth models are useful to explore patterning mechanisms on growing
domains, where the growth and changing shape is provided as an input to the model.
However many questions in morphogenesis aim to understand how genes control
shape, with the shape of organ becoming an emergent property of the model [33, 44,
72]. Gradients of morphogens created by patterning processes control the expression
of growth factors that drive the expansion of tissue locally, resulting in the final
shape of the organ. The requirement to specify growth locally presents problems
when simulating growth in more than one dimension, as conflicts will develop if
the growth is not carefully coordinated across the tissue [40, 63]. To reconcile these
conflicts, a mechanical model of the tissue is required [65].

There are several methods to simulate physically-based growth, the simplest
of which are mass-spring systems [12]. In a mass-spring model the tissue is
discretized into vertices that represent mass particles, often assumed to have uniform
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Fig. 7.15 Schematic representation of a mass-spring system approximating a tissue of cells. The
system is comprised of vertices that represent mass particles coinciding with cell wall junctions
(blue circles) connected to each other by springs that represent cell wall segments. Cell turgor
pressure within the cells is applied to the cell walls generating force that is transferred to the
vertices. This causes the springs to stretch, exerting force on the vertices (red arrows). An
equilibrium is reached when the forces from the springs balance the forces from turgor pressure

mass. These particles are connected by springs, creating a mass-spring network.
The discretization can be an arbitrary triangulation of the plant organ, or may
explicitly represent the structure of cells. Since the internal structure of plant cells
(cytoskeleton) is very weak compared to the cell wall, a cellular discretization
typically only includes springs along the walls, and not the interior (see Fig. 7.15).
The state of the system is defined by the position of each vertex and the force acting
on it. The force Fv acting on a vertex v at position pv due to springs is calculated
by adding forces exerted by the springs connected to it:

Fv =
∑
n∈Nv

k

(‖pn − pv‖
lv→n

− 1

)
pn − pv

‖pn − pv‖ (7.12)

where Nv is the neighbors of vertex v, pn is the position of a neighbor vertex n, k

is the spring constant per unit length, and lv→n is the rest length of spring joining
vertex v to neighboring vertex n. The expression within the brackets is positive
when the distance between v and its neighbor n is greater than the rest length, and
negative if it is smaller. Note that for a given difference from the rest length, the
magnitude of the force is reduced as the rest length of the spring increases. This
magnitude is multiplied by the normalized vector (pn − pv)/ ‖pn − pv‖ and by k,
which represents the spring stiffness, to give the forces.
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In addition to the forces on a vertex due to springs, other forces can be added
to the mass-spring model, such as boundary forces or gravity. In plant cells internal
turgor pressure generated internally by the cells is usually included, and acts as a
uniform force perpendicular to the cell walls. Once all the forces on the vertices are
calculated, the steady-state of the system is determined. There are several methods
to do this. One option is to calculate the velocity c and position p of vertex v based
on the total force Fv acting upon it:

dcv

dt
= (Fv − ςcv)/m (7.13)

dpv

dt
= cv (7.14)

where ς is the damping constant and m is the mass of vertex v. The damping
constant is required or the system will oscillate indefinitely and never reach
equilibrium.

Equations (7.13) and (7.14) are solved for the steady state, which is indicated
when the maximum total force acting on any of the vertices is zero. Note that the
steady state does not depend on the damping coefficient ς , or the mass m if there
is no gravity. In this case a system of equations can be constructed directly from
Eq. (7.12) and solved for Fv = 0 for all vertices. Since Eq. (7.12) is non-linear this
typically requires an iterative approach, such as Newton-Raphson.

After finding the steady-state of the system, a step of growth is performed. One
approach is to directly increase the rest lengths of the springs, depending on how
much the cell walls should grow. However this method can become problematic,
as there is no way to release residual stresses that tend to accumulate over time.
A better approach comes from the theory of plant cell wall growth proposed by
Lockhart [50]. In Lockhart’s model growth depends both on growth factors and
turgor pressure that induces strain in the cell wall. Thus the increase in rest length
of the springs depends both on the amount of growth factor, combined with the
strain in the spring representing the cell wall due to turgor:

lt+t
v→n = ltv→n + Gt

(∥∥pt
n − pt

v

∥∥ − ltv→n

)
(7.15)

where lt+t
v→n denotes the new rest length of the spring connecting vertices v and n,

ltv→n is the current rest length, G is the growth factor, and t is the time step. Since
plant cell walls normally do not shrink, growth is usually set to zero if the second
term on the right-hand side of Eq. (7.15) is negative. Sometimes a yield threshold
is also used as in the original Lockhart formulation. After growth is applied a new
steady state is found and the simulation proceeds. The simulation loop may include
patterning processes to direct the growth, or these may be specified as morphogen
gradients at the start of the simulation.

Figure 7.16 shows a mass-spring system starting from the disk of cells presented
in Sect. 7.2. The same Meinhardt activator-inhibitor system is used to drive growth,
with the activator concentration in each cell used as the growth factor G in
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Fig. 7.16 Reaction-diffusion on a growing domain simulated with a mass-spring system. (a) In the
initial configuration there is enough space for the activator-inhibitor system to create two activator
peaks (shown in bright green). (b) Model after a period of growth. Growth is implemented by
relaxing springs based on activator concentration. This causes increased growth in the areas of
high activator, causing them to grow out from the structure. As more space is produced by growth,
new peaks form. (c) When the structure becomes large enough, peaks form in the interior as well

Fig. 7.17 The effect of spring orientation on tissue stiffness. (a) In a grid of springs, the stiffness
in the directions parallel to the springs is the same. (b) In an oblique direction, the stiffness can be
much lower

Eq. (7.15). Walls between cells use the average of the concentrations from their
adjacent cells. The activator-inhibitor system initially makes two peaks on the
domain, which drive increased growth in these areas. As the structure expands,
more peaks form in the available space. Note that shape is an emergent property
of the model, and it depends on where the peaks form.
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Mass-spring systems suffer from an intrinsic short-coming that limits their ability
to model growing plant tissues. In general the properties of the material modeled
depend on the discretization. For example, consider an array of squares with uniform
spring length and stiffness. When stretched in either direction parallel to the springs,
the tissue has uniform stiffness. However, stretched in an oblique direction the
stiffness is much lower (see Fig. 7.17). This dependence on spring geometry also
appears when modeling growth, especially if it is anisotropic.

7.9 Modeling Growth with the Finite Element Method

A more general and mechanically accurate approach to physically-based plant tissue
modeling is based on continuum mechanics solved numerically with the Finite
Element Method (FEM) [83]. With FEM modeling the solution does not depend on
the discretization of the domain, giving an accurate representation of both isotropic
and anisotropic materials. It is also much more suitable for modeling continuum
formulations of growth [27, 65], which are required for whole organ modeling.

Given a body with a known reference configuration and an infinitesimal specified
growth amount, it is possible to decompose the total deformation gradient F into a
pure growth tensor G and an elastic tensor A, that may be required to ensure that
the body grows in a symplastic and continuous manner. In general it is necessary to
describe the finite growth process as the composition of many smaller growth steps:

F = (An · Gn) · (An−1 · Gn−1) · · · (A1 · G1) (7.16)

The initial configuration is an input to the mechanical model, whereas the growth
tensor Gi may be specified upfront, or be calculated from a morphogen gradient or
patterning simulation [40]. Ai is computed for each step of the simulation.

It is possible to implement growth by applying the growth tensor directly to the
reference configuration of the elements. This “grows” the individual elements as if
they were not connected to surrounding tissue. Kennaway et al. [40] refer to this as
specified growth, the amount a small portion of tissue would grow if not constrained
by neighbor tissue. After the specified growth has been applied, the equilibrium
for the tissue is computed using the newly grown reference configuration. This
resultant growth [40] in general does not match the specified growth, but includes
residual stresses within the tissue to account for spatial differences in growth rates.
In simulations where mechanical feedback is not required, these stresses are often
released, reflecting a remodeling process that relaxes the cell wall. This is done by
simply updating the reference configuration to the newly deformed configuration.

The growth tensor G can specify different growth amounts for different direc-
tions in order to model growth anisotropy. It can also vary depending on the position
in the tissue (growth inhomogeneity), integrating morphogen gradients that specify
the growth rates and directions of anisotropy [33, 40, 44]. These gradients may
be fixed at the start of the simulation and follow the material points during their
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Fig. 7.18 A simple growing canvas controlled by gradients of morphogens. (a) The gradient of a
morphogen determining the tissue polarity. (red high, blue low). (b) The gradient of a morphogen
that promotes growth in the direction parallel to the polarizer gradient. (c) The simulation after
many steps of growth. Since the morphogens are fixed to material points at the beginning of the
simulation, the growth factor gradients deform with the tissue as it grows

deformation or they may be computed at each time point, allowing the shape of the
tissue to feed back on the growth [40]. This approach has been used to model the
development of whole plant organs, such as the leaf or petal of Arabidopsis thaliana
[44, 72].

In order for a plant tissue to grow anisotropically, there must be a mechanism to
determine a reference direction or polarity to orient preferred direction of growth
[11]. Kennaway et al. [40] propose the existence of morphogens that act as tissue
polarizers, to determine this direction. Other morphogens then act as growth factors
that enhance growth either parallel or perpendicular to this direction. Figure 7.18
demonstrates this idea on a simple rectangular template. The morphogens that
determine the tissue polarity and growth rates are assigned at the beginning of the
simulation and deform with the template as it grows. The polarizer is assigned as a
linear gradient from left to right (Fig. 7.18a). The growth factor drives anisotropic
growth in the orientation of the polarizer, with no growth in the perpendicular
direction. A gradient of growth factor is specified from top to bottom (Fig. 7.18b).
As the simulation proceeds, the increase growth at the top causes the rectangle to
grow into a curved arch.

Figure 7.19 shows a simulation of a finite element model of growing leaf similar
to that proposed by Kuchen et al. [44] with a few simplifications. At the beginning
of the simulation, a polarizer morphogen diffuses from a source at the base of the
leaf primordium to a sink at the tip (Fig. 7.19a). The gradient of the concentration
of the polarizer determines the polarity of the leaf. Two more gradients determine
how much the leaf grows parallel to the polarizer (Fig. 7.19b) and perpendicular
to it (Fig. 7.19c). The growth simulation is then performed in a series of small
growth steps. Since the gradients are set at the start of the simulation, the gradient
follows the material points as the tissue deforms. Over time the shape of the initial
primordium develops into the shape of a mature leaf (Fig. 7.19d).
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Fig. 7.19 A simple finite element model of a growing leaf controlled by morphogens. (a)
Visualization of the polarizer gradient on the initial leaf primordium shape (white low, gray high).
The arrows indicate the direction of the gradient of the polarization field. (b) Gradient of the growth
factor that determines growth parallel to the polarizer field (white low, magenta high). (c) Gradient
of the growth factor that determines growth perpendicular to the polarizer field (white low, cyan
high). (d) Simulation of the growing leaf over time. The color represents the areal strain from the
previous time point (blue low, red high)

7.10 Hamiltonian-Based Methods

Hamiltonian based methods implement cellular behaviors based on a generalized
energy function. The most prominent among these is the Cellular Potts Model
(CPM) developed for the simulation of animal cells where cell movement and
adhesion are important factors. CPM is a grid-based method that differs from all the
previous models in that space itself is discretized (Eulerian approach) rather than the
model elements (Lagrangian approach). In the CPM each grid point has a label and
cells are defined as regions on the grid with the same label (see Fig. 7.20). Changes
in cell geometry that occur through growth or cell movement are implemented with
a Metropolis algorithm that attempts to copy the label of a given grid point to a
randomly chosen adjacent grid point [26]. This change occurs with some probability
that depends on the value of the global Hamiltonian energy function. This function
contains terms that control individual aspects of the cells’ geometry, state, and
interdependence with neighbors. In the basic CPM formulation the Hamiltonian is
a function of cell area and the boundary length for a 2D model, corresponding to
volume and surface area in a 3D model:

H = λV

∑
σ

(vσ − Vσ )2 + λB

∑
i

∑
j∈Ni

τ (i, j) (7.17)

where H is the total energy of the system, σ is a biological cell (set of grid points
with the same label), vσ is the volume of cell σ , Vσ is the target volume, λV is
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Fig. 7.20 Overview of
typical interactions in a
Cellular Potts Model. Grid
squares at the border of cells
interact with different
neighboring cell types as well
as the extra cellular matrix

a coefficient determining the strength of the volume constraint, i is a grid point,
j ∈ Ni are the neighboring grid points of i, τ(i, j) determines the boundary cost
(reduced for adhesion, zero if i = j ), and λB is a coefficient determining the
strength of the boundary constraint. Note that the volume constraint is determined
at the cell level, represented by all the grid points that share a label, whereas
the boundary constraint is specified on pairs of adjacent grid points belonging
to different cells. The boundary energy τ(i, j) may depend on the cell type, as
adhesion can be different between different cell types.

When the target volume is constant, cell growth is driven by cell division,
as daughter cells try to reach their target volume. Alternatively, growth can be
implemented by incrementally increasing the target volume, with the cells dividing
at a threshold volume. Various other cell behaviors can be implemented in a CPM
model by the addition of extra terms to the Hamiltonian. For example, chemotaxis
can be modeled by adding a terms in that couples the system to an external
concentration field.

The simulation loop proceeds by randomly selecting a grid point and attempting
to change its label to that of one of its neighbors, again randomly selected. The label
transition is accepted if it reduces the total energy, or if it increases the energy, with
a probability that depends on a Boltzmann distribution on the change in energy of
the Hamiltonian. The exponential nature of the distribution makes large increases
in energy very unlikely to be accepted. Nevertheless, this behavior helps to prevent
simulations from becoming trapped in local minima.

The probability of a change being accepted P is defined as:

P =
{

1 H ≤ 0

e−H/T H > 0
(7.18)
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where H is the change in value of Hamiltonian resulting from the label transition
and T specifies the intrinsic cell motility. If more than one cell type is implemented,
T can depend on cell type as T (σi). The resulting CPM simulations are inherently
stochastic and characterized by fluctuating cell borders, which is often the case in
vivo for animal systems.

While the Hamiltonian-based CPM methods have been extensively applied in
modeling animal development, the method has also been adapted to vertex-based
modeling for plant development [14, 54]. A vertex model is better suited for the
symplastic growth of plant cells, since it enables a more accurate description of cell
walls and their physical properties. Cell wall yielding is captured in the model by
insertion of new nodes once a cell wall element is stretched beyond a threshold.
The notion of a target area is preserved, along with the idea of a cost for the
boundary. Points are randomly chosen and displaced in random direction, and the
update is accepted with the same probabilistic function as used for CPM models.
The Hamiltonian for the system is defined as:

H = λA

∑
i

(ai − Ai)
2 + λM

∑
j

(
lj − L

)2 (7.19)

where indices i and j are summed over all cells and walls, respectively, ai is area
of cell i, Ai is the target area of cell i, λA is a coefficient determining the strength
of the area constraint. li is the length of cell wall segment i, L is the target length
of cell wall segments, and λL is a coefficient determining the strength of the wall
length constraint. Growth is achieved through iterative updating of the target area of
each cell based on its growth rate (Fig. 7.21).

The Hamiltonian-based approach is very general. For example, a mass-spring
system can be formulated as an energy minimization problem and solved with sim-
ilar methods. The approach also simplifies the modeling of diverse cell behaviors,
that can be implemented by modifying terms in the energy function. With a fixed
target area, cell division becomes the driver of growth, and the orientation of the

Fig. 7.21 A cellular plant tissue model using a Hamiltonian-based vertex model in the VirtualLeaf
simulation environment [54]. Cells grow uniformly and divide according to the shortest wall rule
once they double their area following a division
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division wall will then control growth anisotropy [22]. Growth anisotropy could
also be controlled by favoring cell elongation in a preferred direction, which could
be specified by a morphogen gradient. A potential drawback, however, is that it is not
difficult to create an energy function that does not relate directly to the underlying
cellular biophysics. Nevertheless, Hamiltonian based methods do allow for the local
specification of growth, with tissue shape an emergent property of the model.

7.11 Conclusion

Simulation modeling has become an increasingly important tool to understand
questions in plant morphogenesis. At the heart of these processes are patterning
mechanisms, that direct the differentiation of cells and the local control of growth
and growth anisotropy. Often there is a tight connection between growth and the
emerging patterns, as in the case of phyllotaxis [37, 77] or leaf vein formation [69].
Because of this, considerable work has been put into modeling patterning mecha-
nisms on growing structures, which present challenges over static representations of
plant tissues.

For many questions, the interaction of growth and patterning can be explored
by using descriptive models of growth, which are easy to implement and compu-
tationally efficient. However the study of morphogenesis is ultimately about the
creation of form, requiring shape to be an emergent property of the model. This
requires the use of physically-based models such as mass-spring systems or finite
element methods. Models for several plant organs have been developed by using
FEM models operating on sheets of continuous tissue [33, 40, 44, 72], however
these models do not include cells. This makes it difficult to integrate the models
with patterning mechanisms that are specified at the cellular level, such as auxin
transport-feedback processes [30, 76].

Improvements in microscopy methods are pushing towards more realistic mod-
els, with full-3D time-lapse data now possible in some tissues [20]. Although initial
progress has been made on physically-based simulation of full-3D plant tissues with
finite element models [3, 7], cell division remains a problem. Recent work on cell
complexes [61, 81] looks like a promising framework for dynamic systems with
dynamic structure in full 3D.
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Chapter 8
Modeling Plant Development with
L-Systems

Przemyslaw Prusinkiewicz, Mikolaj Cieslak, Pascal Ferraro, and Jim Hanan

Abstract Since their inception in 1968, L-systems have become a key concep-
tual, mathematical and software tool for modeling plant development at different
levels of plant organization spanning molecular genetics, plant physiology, whole
plant architecture and plant communities. The models can be descriptive, directly
recapitulating observations and measurements of plants; mechanistic, explaining
higher-level processes in terms of lower-level ones; or they may combine features
of both classes. We present the basic idea of L-systems, motivate and outline
some of their most useful extensions, and give a taste of current techniques for
modeling with L-systems. The sample models progress in the scale of organization
from a bacterium to a herbaceous plant to a tree, and simulate different forms
of information transfer during the development, from communication between
adjacent cells to bidirectional information exchange with the environment.

8.1 Genesis of the Idea

The discovery of the structure and functioning of DNA placed molecular genetics in
the centre of modern biology, and opened the door for reducing diverse biological
processes to their biochemical (and, ultimately, physical) basis. However, the
sequencing of the genome of numerous organisms, including humans, has also high-
lighted the gap between knowing the genome and understanding how it regulates
the development and form of an organism. This regulation is not direct; instead,
genes and molecular-level processes establish local rules for the spatially distributed
dynamic processes of morphogenesis from which the developing forms arise. The
emergence of global patterns, forms or behaviours through the local interaction
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of their components is the defining feature of self-organization and highlights the
inherent difficulty in studying and understanding development: properties of self-
organizing systems are often non-intuitive and difficult to analyse. Computational
models and simulations facilitate studies of self-organizing phenomena by revealing
the consequences of different hypothetical rules, explicitly specified by the modeler.
A series of computational experiments, in which the model is modified and refined
until the emerging developmental dynamics approximates reality with sufficient
accuracy, leads to insights into the plausible processes underlying the analysed
processes, patterns and forms.

The use of computational models raises the question of how they should
be conceptualized, specified and executed to effectively support the process of
scientific discovery. Similar questions appear in any application of computing, but
in the case of morphogenesis the answers are particularly elusive. This is due to the
discrepancy between the standard view of computation that underlies commonly
used programming languages on the one hand, and the nature of the problems of
morphogenesis on the other.

The standard view of computation is related to the classical (von Neumann)
model of computer architecture. According to this model, computation is organized
around a central processing unit (CPU), which executes a sequence of operations on
a set of numbers in a well-defined order. The geometric concept of space is not part
of this model. In contrast, morphogenesis involves multiple processes taking place
in parallel, and it is an inherently geometric phenomenon. Spatial relations between
components of the developing organism play a key role in defining which specific
processes take place in each component at each point of time. Further complicating
the matter, the number of components and processes may change as the organism
grows. Because of these changes, the standard mathematical framework of dynami-
cal systems, in which temporal evolution of a system is described using a predefined
set of variables and equations, becomes too limiting [20].

In view of these discrepancies, nonstandard models of computation, program-
ming languages and computational devices have been proposed to specify morpho-
genetic processes and implement simulations effectively. A well-known example
is that of cellular automata (also called cellular spaces), invented in the 1950s by
von Neumann and Ulam. Their early applications included a biologically-inspired
model of self-replication [70], and—of particular importance to the history of com-
putational studies of morphogenesis—the first simulations of growing branching
structures [68, 69].

With cellular automata, space is represented as an array of cells, each of which
houses an automaton that indicates, depending on its state, whether the cell is empty
or occupied by a component of the modeled structure. The automata change their
states in parallel (synchronously) to simulate a uniform progress of time within the
entire structure. Transition functions governing state changes can be conveniently
specified using declarative statements (rules), which characterize the next state of
each automaton/cell as a function of its current state and the state of its neighbours.
An example of such a rule for a one-dimensional cellular automaton defined over
the set of states {0,1} might be “a cell in state 1, situated between cells in state 0 to
the left and state 1 to the right, will change its state to 0."
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L-systems [35] were inspired by cellular automata, and in some simple cases
are indistinguishable from them. Using the terminology of L-systems, the above
rule would be termed a production that replaces the strict predecessor, symbol 1,
occurring in the context of symbol 0 to the left and symbol 1 to the right, with the
successor 0. Such a production can be written as 0 < 1 > 1 → 0 (here symbols
< and > do not denote inequalities, but simply separate the strict predecessor from
the left and right contexts). Four sample L-systems inspired by cellular automata are
specified in Table 8.1, and the first 32 steps of their operation are shown in Fig. 8.1.

The L-system in Fig. 8.1a most closely mimics the operation of a cellular
automaton, in the sense that the space in which it operates—a row of 65 cells—
is given in advance. In the course of the simulation, the states of individual cells
may change, but their number and spatial configuration are fixed. In contrast, the
L-systems in Fig. 8.1b–d employ productions A → A0 and B → 0B operating
on additional symbols A and B (colours used for emphasis) to gradually expand
the strings of symbols that grow from the short L-system axiom (initial string)
A00100B. The ability to expand (or contract) the modeled structure over time is a
distinctive feature of L-systems.

There is also a more subtle distinction between cellular automata and L-systems.
Cellular automata describe a quantity (state) associated with (discrete) points of
space. This space-centred perspective is known as Eulerian. In contrast, L-systems
focus on the developing structure itself, a perspective known as Lagrangian. The
difference between these perspectives comes to light when the modeled structure
grows over time, and is particularly evident when new components are added
not only at the structure boundary, but in its interior as well. Some components
then change their position and “flow" through space as they are pushed by other

Table 8.1 Sample L-systems inspired by cellular automata. L-system a rewrites symbols of the
initial string (axiom) without changing its length, as typical of cellular automata (the power
notation 032 denotes a string of 32 zeroes)

Figure a b c d
Axiom 0321032 A00100B

Predecessor Successor

0 < 0 > 0 0 0 0 0

0 < 0 > 1 1 1 1 1

0 < 1 > 0 0 0 1 1

0 < 1 > 1 0 0 0 1

1 < 0 > 0 1 1 1 1

1 < 0 > 1 0 0 1 0

1 < 1 > 0 0 0 0 0

1 < 1 > 1 0 0 0 0

A – A0 A0 A0

B – 0B 0B 0B

In L-systems b–d, productions operating on symbols A and B gradually extend the generated
strings.
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a b

c d

Fig. 8.1 Operation of L-systems from Table 8.1. White cells represent the symbol 0, black cells
the symbol 1. In each simulation, the top row represents the initial state, and the subsequent rows
represent the results of each simulation step. The space in which simulations operate is fixed in
model (a) and gradually expands in models (b)–(d), in which coloured cells produce new white
cells. These examples also show that small differences in productions may result in qualitatively
different patterns, including self-similar (a), (b), repetitive (c) and chaotic (d) patterns [73, 74].
These differences highlight the need for the modeling and simulations in the studies of self-
organization. The rules used in the above examples are commonly referred to as Rule 18 (a),
(b), Rule 54 (c) and Rule 30 (d). These names result from interpreting the list of successors in the
respective columns of Table 8.1, read from the bottom up, as binary numbers, e.g. binary 00010010
equals 30 in common decimal notation

components that need room to fit. It makes a difference whether this process is
described from the perspective of points of space or individual components [56].
The latter perspective, afforded by L-systems, is often natural and convenient in the
description of development.

8.2 Modeling Cell Division Patterns

A model of vegetative segments of the filamentous blue-green bacterium Anabaena
catenula provides a simple example illustrating the capability of L-systems to
simulate growth and cell division patterns in one dimension. A vegetative Anabaena
segment consists of sequences of longer and shorter cells that appear to be arranged
at random, but in fact divide deterministically [42]. During the development, short
cells elongate, and long cells divide asymmetrically into a short and long cell. A
short daughter cell is always produced on the side of the older wall separating the
mother cell from its neighbours. The following L-system captures these principles,
with symbols S and L denoting a short and a long cell, respectively, and symbols W

denoting cell walls that delimit cells within the filament:
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Table 8.2 L-system
modeling the development of
a vegetative segment of
Anabaena

Axiom W(0)LW(1)

Productions:

p1 W(a) → W(a + 1)

p2 W(al) < L > W(ar ) : al ≥ ar → SW(0)L

p3 W(al) < L > W(ar ) : al < ar → LW(0)S

p4 S → L

S

S

S S

S S S

SSSSS

L

L

L L

L LL

L L L L L

L L L L L L L L

Fig. 8.2 The first five steps of the simulation of the development of a vegetative filament of
Anabaena, simulated using the L-system in Table 8.2. The size and colour of bars between the
cells and on the outside of the filament indicates the age of the walls (0, 1, or ≥ 2). Arrows indicate
how the walls propagate from one simulation step to the next

Compared to the L-systems in Table 8.1, this L-system incorporates two exten-
sions. The first one is the introduction of a numerical parameter a representing
wall age. It is incremented in every derivation step by production p1. The second
extension is the introduction of conditions that guard production application
according to the parameter values. Specifically, conditions al ≥ ar and al < ar

determine whether a long cell L will divide into a short cell S followed by a long
cell L (production p2) or into a long cell L followed by a short cell S (production
p3). The choice depends on the age of the walls surrounding L. The remaining
production, p4, represents the growth of a short cell S into a long cell L. The first
five simulation steps, beginning with a single long cell bound by walls with the
age set arbitrarily to 0 and 1 in the axiom, are shown in Fig. 8.2. As this example
illustrates, numerical parameters and conditional application of productions are very
useful in modeling practice. They first appeared as a programming construct in the
L-system-based simulator CELIA [4, 5, 37] and were subsequently formalized by
Prusinkiewicz and Hanan [53], Prusinkiewicz and Lindenmayer [55], Hanan [23].

Experimenting with the L-system in Table 8.2 provides insights beyond the
original objective of simulating the development of the vegetative segment of
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Fig. 8.3 Two developmental sequences generated by modifying the L-system for the vegetative
segment of Anabaena. The size and colour of bars between the cells and on the outside of the
filament indicates the age of the walls (0, 1, or ≥ 2), as in Fig. 8.2. As the long cell divides, the
daughter short cell is positioned on the side of the older (a) or younger (b ) wall of the mother cell.
Numbers and colours of the short cell indicate their age

Anabaena. For instance, Fig. 8.3a shows the developmental sequence obtained by
removing production p4. Cell L, present in the axiom, is then the only cell that
divides. Cells S, created by L in consecutive derivation steps, appear on both of sides
of L and “internalize" it near the filament centre. A similar mechanism, operating
in two dimensions, explains the distribution of stomata in the leaf epidermis. As in
the linear case, a dividing cell—precursor of a stoma—produces new cells towards
its older walls. This process results in the internalization of the precursor cell and,
consequently, the separation of one stoma from another by non-stomatal cells: a
fundamental feature of stomata distribution [62].

A further modification reverts conditions in productions p2 and p3 as follows
(colour added for emphasis):

p′
2 : W(al) < L > W(ar) : al ≤ ar → SW(0)L

p′
3 : W(al) < L > W(ar) : al > ar → LW(0)S

The resulting L-system creates a drastically different developmental sequence, in
which the dividing cell L is positioned at the end of a growing structure, extending it
in one direction only (Fig. 8.3b). A similar process is commonly observed in plants,
from filamentous algae to mosses, ferns and higher plants, where an apical cell (or
multicellular apical meristem) creates an axis of plant development. The contrast
between the development of a filament with multiple dividing cells, the division of
a single cell leading to its internalization, and the maintenance of an axis with the
dividing cell situated at an apex shows that even very simple L-systems can shed
light on nontrivial relations between the local rules of development and the global
characteristics of the resulting structures.
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8.3 Programming with L-Systems

The L-system in Table 8.2 has been specified using a syntax inspired by the notion of
rewriting, as studied in mathematics and theoretical computer science (in particular,
formal language theory, where it underpins the concept of formal grammars). The
relation of L-systems to rewriting systems was first recognized by Lindenmayer
[36]. With the subsequent extensions to parametric L-systems, productions such as
those shown in Table 8.2 are written as:

left context < strict predecessor > right context : condition → successor

for instance

A(u) < B(x, y) > C(v)D : u < v → E(x + sin(u), y + cos(v))

For simple L-systems, this mathematically-inspired syntax works well; in particular,
its conciseness makes it easy to specify and modify productions, an inherent
component of developing models in an interactive computing setting. Unfortunately,
it does not easily scale up to more complex L-systems [51]. For instance, sequences
of single-letter symbols associated with multiple parameters look cryptic, making
model specifications difficult to read and maintain, and there are no constructs for
evaluating conditions and parameter values programmatically. Extensions to the
mathematical notation addressing some of these limitations have been proposed and
are useful [55], but a fundamental solution is to combine L-system constructs with
a programming language. Existing systems include binding L-systems with C/C++
[29, 61], Java [30, 31] and Python [10]. For instance, the basic format of productions
in the L+C language [29, 61] is:

left context < strict predecessor > right context : {statement block}.

The statement block is (relatively unrestricted) C++ code, allowing for the spec-
ification of arbitrarily complex computations involving module parameters, and
extended with produce statements, which precede the specification of a successor.
A single production may include several produce statements, which provides a
means of specifying alternative outcomes to production execution, depending on the
evaluation of conditions. Furthermore, modules may have parameters of different
types, including entire data structures. This use of structures improves the clarity
of L-system specification if numerous parameters are involved, and implies that in
L+C modules are declared.
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8.4 Incorporating a Genetic Regulatory Network into an
L-System Model

The next model illustrates L+C language constructs and provides an example of
an L-system incorporating a genetic regulatory network (GRN). This example
returns to Anabaena, but focuses on an additional element of its development: the
differentiation of a special type of cell, the heterocyst.

In an Anabaena filament grown in an environment without nitrogenous com-
pounds there is a division of functions: vegetative cells assimilate carbon from the
atmosphere in the process of photosynthesis, while heterocysts fix nitrogen [2, 26].
These functions are performed by different cells because the enzyme involved
in nitrogen fixation, the nitrogenase, disintegrates in the presence of the oxygen
produced during photosynthesis. On the average, heterocysts are separated by
approximately ten vegetative cells [25]. New heterocysts differentiate as the distance
between existing heterocysts increases due to the division of the vegetative cells in-
between. The mechanism controlling this differentiation has been of interest for a
long time, and has included the construction of L-system models both to address the
biological problem itself and to illustrate model construction with L-systems (e.g.,
[4, 5, 13, 14, 20, 37, 54, 55]).

It was initially thought that heterocyst differentiation is triggered by low concen-
tration of nitrogenous compounds [16], which are synthesized in the heterocyst and
diffuse into vegetative segments, where they are used. The concentration of these
compounds would decrease as the length of a vegetative segments increases, and
eventually would fall below a threshold near the centre of the vegetative segment,
triggering the differentiation of a new heterocyst [18]. Advances in molecular
biology have shown that, while the general idea of a diffusing substance controlling
the differentiation of heterocysts is correct, the morphogenetically active diffusing
substance is a small protein, PatS, acting as a proxy for the nitrogenous compounds
[75]. The production of PatS is regulated by another protein, HetR, which is present
in high concentration in heterocysts and defines their identity [11]. The interaction
between PatS and HetR is qualitatively depicted in Fig. 8.4.

HetR

PatS

HetR

PatS

HetR

PatS

HetR

PatS

HetR

PatS

Fig. 8.4 Interaction between HetR and PatS in an Anabaena filament. Arcs with arrows denote
upregulation, arcs with bars downregulation, and horizontal arcs diffusion of the respective
proteins. Colour intensity indicates concentration of HetR and PatS in the heterocyst (circular cell)
and the neighbouring vegetative cells. Adapted from [13]



8 Modeling Plant Development with L-Systems 147

To incorporate these interactions into an L-system model it is necessary to give
them a mathematical form. Following [20, 22, 72], we cast it as an activator-inhibitor
model [21, 41]: a type of reaction-diffusion model in which the interaction between
the intervening substances is qualitatively consistent with the interaction between
PatS and HetR [2]. The equations for an arbitrary cell in the filament then have the
form:

d[HetR]
dt

= ρ
[HetR]2

[PatS] + ρ0 − μ[HetR], (8.1)

d[PatS]
dt

= ρ[HetR]2 + ρ0 − ν[PatS] + �. (8.2)

Symbols [HetR] and [PatS] denote the concentration of the corresponding proteins,
μ and ν control their turnover (use and decay), ρ and ρ0 control production
rates, and � represents the flux of PatS into the cell under consideration from its
neighbouring cells (for simplicity, we assume that all cells have a unit volume,
and the walls between them have a unit area). Given the diffusive character of
PatS transport, this flux is proportional to the difference in concentration of PatS
in the cell under consideration and its left and right neighbours, here identified by
subscripts l and r (Fick’s law):

� = D (([PatS]l − [PatS]) + ([PatS]r − [PatS])) . (8.3)

The coefficient of proportionality D controls the rate of diffusion through cell walls.
The specification of an L+C model corresponding to these equations begins with

definitions of the simulation parameter values. These definitions are given in the
standard C/C++ format:

3 /* Definition of constants used in simulation */
4 #define rho 1.0 // controls rate of the production of HetR and PatS
5 #define rho0 0.01 // controls basic production of HetR and PatS
6 #define mu 0.1 // turnover rate of HetR
7 #define nu 1.0 // turnover rate of PatS
8 #define D 2.0 // diffusion constant for PatS
9 #define thr 20 // threshold HetR concentration defining a heterocyst

10 #define dt 0.05 // time step

In addition to parameters controlling the biochemical aspects of the simulation,
the parameter list includes geometric parameters that control the dimensions and
growth rates of the cells:

12 #define gr1 0.004 // relative elementary growth rate of vegetative cells
13 #define MAX 1.0 // threshold length at which a vegetative cell divides
14 #define L 0.61804 // length of the longer daughter cell after division
15 #define S 0.38196 // length of the shorter daughter cell after division
16 #define TW 0.5 // target width of vegetative cells
17 #define TD 0.7 // target diameter of heterocysts
18 #define gr2 0.015 // rate of cell dimension adjustment towards target

The genetic regulatory network is then specified as a system of two functions
that determine the rates of expression (production) of proteins HetR and PatS, given
their concentrations in the cell:
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20 /* Functions defining the genetic regulatory network */
21 float hetR(float HetR, float PatS) // HetR production rate
22 {
23 return rho*HetR*HetR/PatS + rho0;
24 }
25
26 float patS(float HetR) // PatS production rate
27 {
28 return rho*HetR*HetR + rho0;
29 }

The data structures involved in the simulation are specified next, following
standard C/C++ syntax:

31 /* Declaration of data structures characterizing cells and walls */
32 struct CellData
33 {
34 float HetR, PatS; // concentration of HetR and PatS
35 float l, w; // cell length and width
36 };
37
38 struct WallData
39 {
40 float flux; // PatS flux through the well
41 float age; // wall age
42 };

The L+C-specific code begins with the declaration of module types and the initial
state (axiom) of the simulation:

44 /* Initial values */
45 CellData icd1 = {0.02, 100, S, TW}; // HetR, PatS, length, width
46 CellData icd2 = {0.01, 100, L, TW}; // HetR, PatS, length, width
47 WallData iwd = {0, 0}; // flux, age
48
49 /* Declaration of module types used in the model */
50 module Cell(CellData);
51 module Wall(WallData);
52
53 /* Defintion of the initial structure and state of the simulation */
54 axiom: Right(90) Wall(iwd) Cell(icd1) Wall(iwd) Cell(icd2) Wall (iwd);

Module Right orients the filament horizontally on the screen, cf. Sect. 8.5. The
key part of the model is specified using two type of rules. Ordinary productions
are associated with the progress of time by interval dt. The production for walls
simply advances the age of walls, as in the L-system in Table 8.2:

58 production:
59 Wall(wd) : // advance wall’s age in each simulation step
60 {
61 wd.age += dt;
62 produce Wall(wd);
63 }

The production for cells has two components. The first component (lines 67–76)
represents a numerical solution to the initial value problem given by Eqs. (8.1)
and (8.2) using the forward Euler method. For clarity, different components of
this solution (protein diffusion, production, and turnover of proteins) are split [39]
into separate statements. The second component (lines 78–86) uses ad-hoc rules



8 Modeling Plant Development with L-Systems 149

to simulate cell growth. A vegetative cells elongates with the relative elementary
growth rate gr1, while its width tends to target TW. A heterocyst asymptotically
tends to a rounded shape with diameter TD.

65 Wall(wdl) < Cell(cd) > Wall(wdr) : // update cell state
66 {
67 // Diffusion of patS
68 cd.PatS += (wdl.flux - wdr.flux) * dt;
69
70 // Gene expression
71 cd.HetR += hetR(cd.HetR,cd.PatS) * dt;
72 cd.PatS += patS(cd.HetR) * dt;
73
74 // Decay of proteins
75 cd.HetR -= mu*cd.HetR * dt;
76 cd.PatS -= nu*cd.PatS * dt;
77
78 // Growth
79 if (cd.HetR < thr) { // vegetative cell...
80 cd.l += cd.l * gr1 * dt; // grows in length;
81 cd.w += gr2 * (TW - cd.w) * dt; // width is adjusted towards target
82 }
83 else { // heterocyst...
84 cd.l += gr2 * (TD - cd.l) * dt; // grows towards target in length
85 cd.w += gr2 * (TD - cd.w) * dt; // and in width
86 }
87 produce Cell(cd);
88 }

These productions are followed by decomposition rules [29, 60], which are
applied immediately after the productions (in the same derivation step) and perform
computations that do not involve advancing time. The decomposition rule for walls
computes the flux of PatS through each wall according to Eq. (8.3):

93 /* Determine the flux of PatS through the wall */
94 Cell(cdl) < Wall(wd) > Cell(cdr) :
95 {
96 wd.flux = D * (cdl.PatS - cdr.PatS); // Fick’s law
97 produce Wall(wd);
98 }

The decomposition rule for cells specifies asymmetric division of vegetative cells
according to the age of the incident walls in a manner similar to the L-system in
Table 8.2, except that the rule is applied when the mother cell reaches the threshold
length rather than threshold age. Cell division is assumed to be instantaneous,
because in the context of a continuous-time simulation it represents a somewhat
arbitrarily chosen moment of the completion of the division process. Note that both
patterns of division, with the shorter cell located on the left or on the right side of the
mother cell, are specified within the same production, using alternative produce
statements (lines 107 and 109).
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100 /* Cell division (assumed to be instantaneous in the model) */
101 Wall(wdl) < Cell(cd) > Wall(wdr) :
102 {
103 if (cd.l > MAX) { // if cell length exceeds limit
104 CellData shorter = cd, longer = cd; // daughters inherit mother’s state
105 shorter.l = S; longer.l = L; // ... except for length
106 if (wdl.age > wdr.age) // wall age sets division polarity
107 produce Cell(shorter) Wall(iwd) Cell(longer);
108 else
109 produce Cell(longer) Wall(iwd) Cell(shorter);
110 }
111 }

The model is completed by interpretation rules that specify the visual output of the
simulations. Snapshots of the simulation are shown in Fig. 8.5.

a b c d e f

g h i

j

Fig. 8.5 Simulation of the development of an Anabaena filament with vegetative cells (green) and
heterocysts (red). Bars above cells indicate the concentrations of HetR, and bars below indicate the
concentrations of PatS, both on a logarithmic scale. The simulation begins with a short assembly
of vegetative cells (a), in which a heterocyst quickly differentiates (b). As the filament grows and
vegetative cells further divide (c), the concentration of PatS decreases away from this heterocyst
(d), which eventually triggers the differentiation of the second heterocyst (e). This process repeats,
producing a growing filament in which the average distance between heterocysts is approximately
ten cells (f)–(j). Note that vegetative cells distant to previously formed heterocysts may compete to
become a heterocyst (g), (h), until one of them eventually wins (i). This competition increases the
robustness of heterocyst patterning by reducing the likelihood of heterocysts differentiating next to
each other [72]
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Fig. 8.6 Response of a single Anabaena cell to changing concentration of external PatS. Arrows
indicate directions of changes. As the concentrations of external PatS decrease, the cell switches
from the vegetative state characterized by low concentration of HetR (a) and PatS (b) to the
heterocyst state characterized by high concentration of both proteins. It then remains in the
heterocyst state in spite of the subsequent increases in [PatS]ext

An intriguing aspect of the development of an Anabaena filament, highlighted
by the simulation, is that the concentration of PatS—an inhibitor of heterocyst
differentiation—is highest in the heterocysts themselves. This observation leads to
the question of why heterocysts do not inhibit themselves from being heterocysts: a
problem known as the refractory behaviour of heterocysts [2, 19]. An explanation is
given in Fig. 8.6, which shows how concentrations of HetR and PatS change within
a single cell when the concentrations of PatS external to it ([PatS]ext ) decrease or
increase. The plot reveals a bistable region in which the concentrations of HetR
and PatS can both be low or high for the same value of [PatS]ext , depending on
the history of the system. This form of bistable behaviour (hysteresis) is the key
to maintaining the heterocyst state: once the switch from the vegetative to the
heterocyst state has occurred, the cell remains in the heterocyst state in spite of
subsequent increases in [PatS]ext .

8.5 Geometric Interpretation of L-Systems

In the examples considered so far we have not discussed the geometric aspects of
generated structures. This follows the spirit of the original definition of L-systems,
which was focused on the topology of organisms—the pattern of connections
between cells or larger modules—rather than their size and shape. Nevertheless,
the incorporation of geometry greatly extends the modeling power of L-systems.
Different geometric interpretations of L-system-generated strings have been pro-



152 P. Prusinkiewicz et al.

posed. Among them, an interpretation based on the notion of turtle geometry [1, 49]
turned out to be particularly useful in diverse implications, including developmental
modeling of plants [50, 55]. In this interpretation, a number of predefined L-system
symbols act as commands that control a three-dimensional cursor—conceptualized
as a “turtle"—that moves in space and traces the skeleton of a branching structure.
The key commands to which the turtle responds are listed in Table 8.3 and further
illustrated in Fig. 8.7. Many other operations are also useful in plant modeling [3].

For example, the following L-system with turtle interpretation generates the
developmental sequence of branching structures shown in Fig. 8.8.

Table 8.3 Basic turtle commands in a symbolic notation and in the L+C language

Turtle command Symbol L+C keyword

Draw line segment F F

Move without drawing a line f f

Turn left | right + − Left Right

Bend up | down ∧ & Up Down

Roll to the left | right \ / RollL RollR

Start | end branch [ ] SB EB

Set line width # SetWidth

Set line colour , SetColor

Fig. 8.7 Specification of
turtle rotations in three
dimensions

RightLeft
DownUp

RollL RollR

+ −
∧ &

/\

Table 8.4 L-system
modeling the development of
the branching structure in
Fig. 8.8

Axiom #(0.4)A

Productions:

p1 A → I (1)[+A][−A]I (1)A

p2 I (s) → I (2 ∗ s)

Interpretation rules:

h1 A → , (1)f (0.2)F (0.8)

h2 I (s) → , (2)f (0.2)F (s − 0.2)
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In this example, all branching angles are assumed to have a globally specified
magnitude of 45◦. In contrast, the length of internode segments I is specified as a
numerical parameter s. Production p1 sets its initial value to 1, whereas production
p2 multiplies it in each simulation step by 2, thus simulating the growth (exponential
elongation) of the internodes.

The L-system in Table 8.4 also includes two interpretation rules, h1 and h2.
Interpretation rules [29, 32, 60] are similar to decomposition rules, discussed
previously, in that they are applied immediately after ordinary productions, in
the same simulation step. In contrast to decomposition, however, the successor of
an interpretation rule is substituted for the predecessor only temporarily, for the
purpose of calculating the geometric, graphical representation of the predecessor
symbol. In Table 8.4, the interpretation rules state that both the apices A and
internodes I are visualized as line segments F preceded by short invisible segments
f . The invisible segments highlight the composition of the branching structure by
separating its individual components. The modules A and I continue to exist as the
predecessor of productions p1 and p2 in the subsequent simulation steps.
An L+C program equivalent to the symbolic notation in Table 8.4 is shown
below:

1 module A; // apex
2 module I(float); // internode (length)
3
4 Axiom: SetWidth(0.4) A;
5
6 A : produce I(1) SB Left(45) A EB SB Right(45) A EB I(1) A;
7
8 I(s) : produce I(2*s);
9

10 interpretation:
11 A : produce SetColor(1) f(0.2) F(0.8);
12 I(s) : produce SetColor(2) f(0.2) F(s-0.2);

8.6 Descriptive Modeling of Plant Architecture

Bracketed parametric L-systems with turtle interpretation are well suited to model
plant development at the architectural level. In this case, L-system modules do
not correspond to individual cells, but represent higher-level plant components,
such as apices (apical meristems), internodes, leaves, flowers and fruits [63].
Architectural models include both descriptive and mechanistic models. Descriptive
models recreate plant development according to direct observations and measure-
ments of growth, whereas mechanistic models aim at simulating and explaining
development in terms of the underlying lower-level biological processes. In both
cases, hypothetical parameter values can be used to test predictions, fill gaps in
data, or explore the range of forms that the model can theoretically generate. Below
we present a model of the perennial herbaceous plant Lychnis coronaria as an
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Fig. 8.8 Five stages of the developmental of a simple branching structure modeled using the L-
system in Table 8.4. The inset shows a graphical representation of the productions

Fig. 8.9 A photograph of a
mature Lychnis coronaria
plant. The inset shows the
characteristic sympodial
branching pattern. The
architecture of the whole
plant results from iterating
this motif

example of a descriptive model. The appeal of Lychnis stems from the contrast
between the apparent complexity of the mature plant (Fig. 8.9) and the simplicity
of its architectural development. Its key feature is repetitive sympodial branching,
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in which each axis is terminated by a flower, and the main thrust of development is
transferred to a pair of lateral branches (Fig. 8.9, inset).

The entire model has approximately 160 lines of L+C code, thus we limit the
model description to the key constructs. The main modules are declared as follows:

1
2
3
4
5

module A(float); // apex (age)
module I(float,float,float); // internode (target length, width, age)
module L(float); // leaf (age)
module K(float); // bud/flower/fruit (age)
module B(float); // branching point (age)

The first four modules represent components of the plant. The fifth one, B, represents
branching points, and is introduced to specify time-varying branching angles. All
modules are parametrized by age t, measured with respect to the time of their
creation.

In each simulation step the age of each module is advanced by increment dt,
which can be made arbitrarily small (as in the model of Anabaena with heterocysts)
to simulate development in continuous time. The age of apices, leaves, flowers and
branching points is advanced by simple productions:

82
83
84
85

A(t) : produce A(t+dt);
L(t) : produce L(t+dt);
K(t) : produce K(t+dt);
B(t) : produce B(t+dt);

The age of internodes is advanced by more complex productions that also update
the width of internodes and are discussed later.

The sympodial branching structure results from the activity of shoot apices,
which give rise to a flower in the terminal position and create a pair of new lateral
apices. This process is modeled by the following decomposition rule:

95
96
97
98
99

100
101
102
103

decomposition:
A(t):
{

if (t > 0 && T < BRANCHING_ENDS) produce
I(LEN1,0,t)
SB RollR(PHI) B(t) SB L(t) EB A(D1+t) EB
SB RollL(PHI) B(t) SB L(t) EB A(D2+t) EB
I(LEN2,0,t) K(t);

}

According to this production, an apex reaching the threshold age of zero creates
an internode I, a pair of lateral apices A in the axils of leaves L, and a flower bud
K subtended by another internode I. The age values t associated with the active
apices are always negative: they indicate the time leading to the production of
lateral branches. The branches are initiated after unequal delays D2 < D1 < 0,
resulting in an asymmetric branching structure (cf. Fig. 8.9, inset). The pattern of
repetitive production of lateral apices and branches repeats until the overall plant
age represented by a global variable T (also incremented by dt, statement not
shown) reaches the threshold age BRANCHING_ENDS.

The apex also creates two modules B, which specify the magnitude of the
branching angles via the interpretation rule:
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105
106

interpretation:
B(t) : produce Down(br_angle(t)); // branching angle changes over time

According to this rule, in each simulation step module Bwill turn a lateral branch
down by the modeler-specified function of time br_angle(t). Meanwhile,
module B will continue to exist as the object of the time-advancing production in
line 85. The development of leaves, flowers and fruits (pods) is modeled in a similar
way. For example, leaves are modeled using the production:

120
121
122
123
124

L(t) :
{

produce Down(leaf_angle(t)) RollToVert() CurrentTexture(LEAF_TEXTURE)
SetColor(leaf_color(t)) Surface(LEAF_SURFACE, leaf_length(t));

}

The turtle command Surface(LEAF_SURFACE, leaf_length(t))
visualizes a leaf as the surface identified by its name. The shape of this surface is
predefined by the modeler using an interactive editor, and the size is determined by
the scaling function leaf_length(t), which allows for a coarse approximation
of growth over time. (More powerful techniques for modeling organ growth
include anisotropic scaling capable of capturing allometric dependencies of organ
proportions on size [27, 28, 45, 46], and interpolation between shapes modeled
at key developmental stages [23, 47, 57]). The remaining modules specify the
orientation, texture and colour of the leaf.

The above description highlights the need for defining numerous constants and
functions as a part of the model. In principle, the constants could be defined
directly in the L-system code, as in lines 1–18 of the Anabaena example, and the
functions could be given by mathematical expressions, for example resulting from
statistical data analysis. For the sake of model conceptualization, presentation and
manipulation it is useful, however, to organize and describe its input graphically. A
timeline editor—a concept borrowed from computer animation—can be applied for
this purpose. A screenshot of a timeline editor open on the Lychnis model is shown
in Fig. 8.10. A modeler can use it to interactively modify all time points and function
domains, and invoke the graphical editor of specific functions.

The last element of the model is a set of the productions characterizing the
internodes:

89 I(l,w,t) >> SB I(l1,w1,t1) EB SB I(l2,w2,t2) EB I(l3,w3,t3) :
90 produce I(l, w1+w2+w3, t+dt);
91 I(l,w,t) >> SB I(l1,w1,t1) EB I(l2,w2,t2) : produce I(l, w1+w2, t+dt);
92 I(l,w,t) >> I(l1,w1,t1) : produce I(l, w1, t+dt);
93 I(l,w,t) >> K(t1) : produce I(l, width(t), t+dt);

The complicated form of these productions, compared to those describing the aging
of the other modules (lines 82–85), stems from the need to determine the internode
diameter, which is not simply a function of age. We follow [38] by assuming that,
at every branching point, the diameter d0 of the parent internode is related to the
diameters d1, d2 and d3 of the child internodes by equation

d
η
0 = d

η
1 + d

η
2 + d

η
3 . (8.4)
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Fig. 8.10 A snapshot of the timeline editor controlling the Lychnis model. In addition to the
function domains (green lines with blue labels above) and time points (black squares with red
labels below) related to branching and leaf development discussed in the text, the editor controls
the development of the flowers, fruits (pods) and internodes. The timeline editor also makes it
possible to invoke a function editor, here open on three sample functions shown at the bottom.
The default domain [0, 1] of each function is mapped onto the domain indicated by its timeline,
e.g. [0, 30] in the case of BRANCHING_ANGLE. Outside their default domains the functions are
assumed to be constant: f (x) = f (0) for x < 0, and f (x) = f (1) for x > 1. Note that, within
the Lychnis L-system, the AGING and BRANCH_COLOR timelines and their associated time points
are defined over the whole lifetime T of the plant, whereas the remaining timelines and points are
defined relative to the age t of the modules they describe. This difference is not visualized by the
editor
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To satisfy this equation, we assume that the diameter of the terminal internodes
(supporting a bud, flower or fruit K) is determined directly as a function of their age
(line 93), whereas the diameter of the remaining internodes is calculated by setting
the width measure w = dη in the parent internode to the sum of measures wi in the
supported internodes. The productions in lines 89–92 capture this propagation in the
case of three, two and one supported internodes. The symbol >> in the production
predecessors indicates fast information transfer, a variant of context sensitivity that
makes it possible to propagate information in one direction (from the extremities
of a branching structure towards the base or vice versa) in a single derivation step
[29]. The basipetal propagation of width information is a version of the pipe model
[65], which relates the diameter of each branch in a tree to the number of leaves it
supports. The specification of internodes is complemented by the interpretation rule:

111
112
113
114
115
116
117

I(l,w,t) :
{

nproduce SetColor(br_color(T)) SetWidth(pow(w, 1/eta));
for (int i=0; i < N_SEG; i++)

nproduce F(l*int_length(t) / N_SEG);
produce;

}

The loop in lines 114 and 115 divides the internode into N_SEG segments of length
l*int_length(t). This division makes it possible to simulate gravitropism
by slightly reorienting the turtle towards the vertical at each junction between
consecutive segments [55]. (A more advanced model of tropisms is presented by
Bastien et al. [6], commented on by Dumais [15] and expanded by Bastien et al. [7],
and Chelakkot and Mahadevan [12]). The nproduce statement used in lines 113
and 115 differs from the produce statement introduced previously in that it does
not terminate the production application, making it possible to successively append
modules to the successor [29]. The productions in line 113 sets the internode colour
according to plant age T (a global variable) and determines the internode diameter
as a function of the width measure w using the equation d = w1/η.

The operation of the complete Lychnis model is illustrated in Fig. 8.11. A
comparison with Fig. 8.9 shows that the model correctly captures the architecture
of Lychnis coronaria plants, although it does not reach branch density of a plant
grown over many seasons. Modeling of dense plant structures requires incorporating
collisions between plant organs and is a topic of current research [47].

Descriptive models have many applications. For example, they can be used
as a synthetic representation of our knowledge of plant form and development
[17, 43, 59], as a vehicle for exploring the range of forms that plants in a given
class can potentially attain [40] (such explorations may find practical applications
in plant breeding), or as the source of ground truth for training artificial intelligence
programs intended to automatically recognize plant traits from images [67]. A
distinctive feature of plant development is, however, their phenotypic plasticity: the
ability of plants with the same genotype to assume different forms depending on the
environment in which they grow. We describe the incorporation of environment into
L-system plant models next.
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Fig. 8.11 Selected steps in the development of a Lychnis coronaria shoot. In the initial shoot axis
(a), (b), (c), lateral apices supported by leaves initiate first one (d), then another (e) lateral branch.
In the meantime, the apex terminating the main axis undergoes a transition from the vegetative to
the flowering stage, producing a flowering bud (b) that gives rise to an open flower (c)–(e) and,
eventually, matures into a seed pod (f)–(k). This branching pattern repeats, producing branches of
increasingly high order (e)–(h). Upon reaching a threshold age (simulating the end of the growing
season), further branching stops (i), and the plant gradually reaches maturity (j), (k). Its seeds give
rise to the next generation of plants (a)

8.7 Modeling Phenotypic Plasticity

Irrespective of the diversity of environmental factors that affect plant development,
including space, light, water, nutrients and pathogens, a unified method for modeling
plants in the context of their environment is available. The idea is to model the
plant and its environment as separate programs that run concurrently and com-
municate using standardized programming constructs [44] (Fig. 8.12). In general,
this communication is bilateral—the environment affects the plant while the plant
reciprocally affects the environment—but simple models may focus on the unilateral
influence of the environment on the plant.

An example of such influence is the dependence of the growth rate on temper-
ature. Within some range, this rate is known to be proportional to the difference
between the actual temperature τ and a base temperature τbase characteristic of
a given plant species, below which growth does not occur [24, 71]. For instance,
Fig. 8.13 shows forms created by the Lychnis model extended to include the
influence of temperature, under the assumption that the temperature of each organ
is determined by its position within the canopy. The plant shape is affected by
temperature distribution in the environment in which it grows.
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Fig. 8.12 Information flow in a simulation of a plant interacting with its environment. The plant
and the environment are modeled by separate communicating programs

Fig. 8.13 A model of phenotypic plasticity. The simulated Lychnis plant grows relatively faster in
regions with higher temperatures. Temperature distribution in the plant canopy is defined by the
heat map laid on the ground, where yellow indicates warmer regions and blue indicates colder

Specifically, the environmental program returns temperature as defined by an
image (texture map): points above yellow regions are warmer than points above blue
regions (Fig. 8.13). Information between the plant and its environment is exchanged
using predefined communication modules [44, 58]. In the L+C language, these
modules are named E1, E2, E3, etc., depending on the number of parameters they
carry. In the Lychnis model only the E1 module is used. First, it is inserted into the
L-system string at the locations at which the temperature will be queried. This is
accomplished by modifying the decomposition rule that controls Lychnis branching
(lines 95–103 in the original Lychnis model) as follows:
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95
96
97
98
99

100
101
102
103

decomposition:
A(t):
{

if (t > 0 && T < BRANCHING_ENDS) produce
E1(0) I(LEN1,0,t)
SB RollR(PHI) E1(0) B(t) SB E1(0) L(t) EB E1(0) A(D1+t) EB
SB RollL(PHI) E1(0) B(t) SB E1(0) L(t) EB E1(0) A(D2+t) EB
E1(0) I(LEN2,0,t) E1(0) K(t);

}

The value (0) of the parameter passed to the communication modules E1 is here
irrelevant: there is no information transferred from the plant to the environment
other than the location of each module E1, which is passed on automatically. This
parameter is needed, however, as a placeholder for the temperature information that
the environmental program returns to the plant model. With the local temperatures
known, the dependence of plant growth on temperature is captured by replacing
constant time increments dt with the increments DD(temp)*dt, a product of the
temperature above the threshold measured in Degree Days, and the time increment.
For instance, for apices and leaves this dependence is simulated by replacing lines
82 and 83 in the original Lychnis model with productions:

82
83

E1(temp) < A(t) : produce A(t+DD(temp)*dt);
E1(temp) < L(t) : produce L(t+DD(temp)*dt);

The advancement of time in the remaining modules is controlled in a similar
manner, resulting in the simulation of plastic behaviour shown in Fig. 8.13.

8.8 Modeling the Development of Trees

In a recursive branching pattern with all internodes of approximately the same
length, the number of branches increases exponentially, while the canopy radius—
the reach of branches—grows only linearly with time. Eventually, there is not
enough room in the canopy for all these branches [9, 52]. The shortage of space is a
critical factor in the development of trees due to the high number of branches they
could potentially produce during their long life. Borchert and Honda [8] and Sachs
and Novoplansky [64] proposed that the necessary limitation of branch proliferation
in trees results from their competition for space or light. This competition is
not merely a manifestation of tree plasticity, but an essential component of the
development in most trees (we exclude here non-branching palms and tree ferns,
for example) [48]. Below we show how such competition can be implemented
with L-systems, by simulating bilateral communication between the plant and its
environment.

The key components of the model and the initial state of the simulation are
specified as follows:
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25
26
27
28
29
30
31
32
33
34
35
36

struct internode_data {
float l; // internode length
float w; // internode width
int age; // needed to know when to shed

};

module A(int); // apex (0: dead, 1: alive)
module I(internode_data); // internode

internode_data trunk_init = {1.0, w_init, 0};

Axiom: I(trunk_init) A(1) E1(1) GetHead(0,0,0);

The axiom describes the initial configuration of the simulated structure as an apex
A supported by an internode I. The apex is followed by two modules, E1 and
GetHead. The predefined module GetHead, inserted with arbitrary parameter
values—here (0, 0, 0)—returns the current direction of the turtle. Its role in the
model is described further down. The communication module E1 provides an
interface between the plant model and the environmental program, which in this
case tests whether the apex is in proximity of other apices. (Obviously, there is
no other apex at the beginning of simulation, but the same sequence of modules
is produced as the plant develops and new apices are formed.) The parameter
passed to module E1—in the axiom, it is a 1—represents apex vigor, and is an
input to the environmental program. If the distance of a given apex to all other
apices (or environmental modules indicating the presence of branches) is greater
than a predefined threshold d, the same module E1 will return 1, indicating that
this apex is not dominated by any other tree component. On the other hand, if this
distance is less than d, the environmental program will return 1 or 0, depending on
whether the given apex has the highest vigour among all the nearby apices or not.
A given apex is thus not dominated if there is enough free space around it, or it has
higher vigor than all the modules with which it competes for space (if two or more
colliding apices have the same high vigor, all of them are considered dominated).
This environmental information affects the development of the simulated tree via
the following production:

57
58
59
60
61
62
63
64
65
66
67

I(sl) < A(alive) E1(not_colliding) GetHead(x,y,z) : {
internode_data s1 = {sl.l*r1, w_init, 0};
internode_data s2 = {sl.l*r2, w_init, 0};
if (alive && not_colliding && y > GrowDown) {

produce E1(1)
SB Left(a1) RollL(phi) I(s1) A(1) E1(v1) GetHead(0,0,0) EB
SB Right(a2) RollL(phi-180) I(s2) A(1) E1(v2) GetHead(0,0,0) EB;

}
else

produce A(0);
}

According to Line 57, the production predecessor consists of three modules, A, E1
and GetHead, in the context of a supporting internode I. Line 60 states that the
fate of an apex depends qualitatively on three factors: whether it is “alive" (i.e.,
was never dominated), whether it is dominated now, and what orientation it has.
An apex that has never been dominated and is not oriented too steeply down gives
rise to two branches (lines 62 and 63). Their length is reduced with respect to that
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of the supporting internode (sl.l) by predefined factors r1 and r2 (lines 58 and
59). The apices of the new branches are followed by modules E1 and GetHead,
allowing for the application of the same production and repetition of the same
decision process in the next simulation step. The vigor values 0 < v1 < v2 < 1
are predefined constants. The additional environmental module with argument 1
(maximum vigor), introduced in line 61, marks the branching point itself to assure
that no apex will ever grow into a previously formed branch. The modules specified
in lines 61–63 are not produced, however, if the condition in line 60 is not satisfied.
In that case, the apex changes its state to “dead" (A(0) in line 66), and it will
produce no further branches.

The effect of the detection and response to overcrowding is illustrated by
Fig. 8.14. The branching structure in Fig. 8.14a was generated by a model in which
detection of overcrowding was disabled (the condition in line 60 was replaced by the
always-true statement if(1)). The produced structure is then exceedingly dense,
with apices and branches running into each other and overlapping. In contrast,
the structure in Fig. 8.14b was generated with the condition in line 60 present.
Predictably, it is much more sparse: overcrowding has been prevented.

In nature, branches that have ceased growing are often shed by the tree. A simple
instance of this process is illustrated in Fig. 8.14c. The shedding criterion used here
is the age of a non-growing branch: the time since the last apex supported by it
has become dominated. Shedding is implemented by the following production and
decomposition rules:

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

production:
I(s) >> A(alive) : // advance branch age if apex is dead
{

if (!alive)
s.age += 1 ;

produce I(s);
}

I(s) >> SB I(sr) EB SB I(srr) EB : // propagate girth and age
{

s.w = sr.w + srr.w;
s.age = min(sr.age, srr.age);
produce I(s);

}

decomposition:
I(s) : // tag branch for shedding if too old
{

if(s.age >= ShedAge)
produce I(s) Cut();

}

The first production (lines 78–83) increments the age of an internode followed
by a dominated apex. The second production (lines 85–90) propagates the age
information basipetally. When branches that meet at a given branching point have
different age values, the supporting internode is assigned the smaller value of
the two (line 88); consequently, each internode “knows" the age of the youngest
internode it supports. The actual shedding is implemented by the decomposition
rule in lines 93–97. When the age of an internode exceeds threshold ShedAge, this
rule inserts a predefined module Cut, which (in the next simulation step) removes
the entire branch that follows it.
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Fig. 8.14 Elements of tree modeling. (a) A planar structure developing with branch proliferation
unchecked. The “tree" crown is clearly overcrowded. (b) A modification of the tree from Figure
(a), in which dominated branches die. Dead apices and internodes are shown in grey. The structure
is no longer overcrowded. (c) A modification of the model from Figure (b), in which older dead
branches are shed. (d) A three-dimensional modification of the model from Figure (c), in which
phyllotaxis has been changed from distichous (ϕ = 0) to decussate (ϕ = 90◦), and leaves grow
at the tips of branches. The difference in the diameter of branches results from the application of
the pipe model. (e) The tree from panel (d) seen from the bottom. Note the plausible architecture
resulting from the competition of branches for space. (f) A variant of the model from Figure (d),
in which the environmental program simulates competition for light rather than for space. A light
source is positioned above and to the left of the tree, resulting in an asymmetric crown, leaning to
the left
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The production in lines 85–90 also includes the assignment in line 87 that
propagates a measure of the internode diameter according to the pipe model as
discussed for Lychnis. Proper modeling of the girth of branches is an important
element of the visually realistic modeling of trees. Remarkably, the inclusion of
these two principles, the competition for space combined with shedding (extended
from two to three dimensions by changing the phyllotaxis-defining parameter phi
from 0 to 90◦ in lines 62 and 63) and the assignment of branch width according to
the pipe model, suffice to generate a visually plausible tree architecture (Fig. 8.14d,
e) resembling Dracaena draco (the dragon tree).

The use of separate programs to model the plant and its environment (Fig. 8.12)
facilitates simulation of different plants in the same environment or, conversely, the
same plant in different environments. For instance, Fig. 8.14f shows the result of
substituting competition for light for competition for space in the simulation of tree
development. The required modification of the tree model itself was limited to a
single production in lines 57–67 (compare the original listing with the code below):

57
58
59
60
61
62
63
64
65
66
67

I(sl) < A(alive) E1(light) GetHead(x,y,z) : {
internode_data s1 = {sl.l*r1, w_init, 0};
internode_data s2 = {sl.l*r2, w_init, 0};
if (alive && light>Th && y > GrowDown) {

produce
SB Left(a1) RollL(phi) I(s1) A(1) E1(R) GetHead(0,0,0) EB
SB Right(a2) RollL(phi-180) I(s2) A(1) E1(R) GetHead(0,0,0) EB;

}
else

produce A(0);
}

The module E1 passes the size of leaf clusters to the environment (predefined
constant R in lines 63 and 64) and receives information about the intensity of
light reaching each cluster in return (variable light in line 57). An apex is not
dominated and can produce new branches (provided that the remaining conditions
in line 60 are satisfied) if this intensity is greater than a predefined threshold Th
(condition light>Th). Note the absence of module E1 at the branching point of
the light-driven model (compare lines 61 in both listings): this module is now not
needed, because there are no leaf clusters at the branching points. A comparison of
Fig. 8.14d, f shows that the tree forms generated assuming competition for space or
competition for light may substantially differ, even though the underlying tree model
is basically the same. Not surprisingly, the environment has a significant impact
on tree development and must be modeled carefully when a faithful simulation of
developmental processes in nature is sought.

8.9 Conclusion

In the 50 years since its inception, the formalism of L-systems has become a
powerful research tool in developmental biology. Remarkably, it was not imported
from another discipline, but created specifically for developmental biology. With
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their many extensions, L-systems can be and have been applied to an ever-increasing
variety of problems spanning a wide range of scales, from sub-cellular to whole
plants and plant ecosystems [34], as well as modeling styles, from descriptive to
mechanistic. The key limitation of L-systems is their restriction to linear (filamen-
tous) and branching structures. Nevertheless, the topological approach to modeling
development, inherent in L-systems has also inspired research and the establishment
of practical methods for modeling growing cellular layers and volumetric structures
[33, 55, 66]. L-systems, their extensions and applications continue to be an active
and fascinating area of research.
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Chapter 9
Flowering Time as a Model Trait
to Bridge Proximate and Evolutionary
Questions

Akiko Satake

Abstract The transition from vegetative to reproductive growth is a key develop-
mental event that is directly linked to reproductive success in plants. To understand
this developmental trait in the context of evolution, the synthesis of molecu-
lar/genetic studies and ecology/evolutionary studies is necessary. In this chapter,
we present a mathematical approach for synthesizing this body of knowledge
to consider different flowering strategies. We model plant life history based on
molecular mechanisms of the underlying gene regulatory network of flowering.
We then extend the model to predict future flowering phenology under a changing
climate and end with conclusions and perspectives.

9.1 Introduction

Almost 50 years ago, Niko Tinbergen, one of the founders of ethology, suggested
that four fundamentally different types of problems need to be answered to fully
understand the behavior of animals [1]. This is now well known as “Tinbergen’s four
questions.” Four questions about any feature of an organism can be expressed as:
what is it for (adaptive significance)? How did it develop during the lifetime of the
individual (ontogeny)? How did it evolve over the history of the species (evolution)?
And, how does it work (causation)? Two of Tinbergen’s four questions (ontogeny
and causation) address the proximate causes of behavior and emphasize mechanisms
within an organism that are responsible for the behavior. The other two questions
(adaptive significance and evolution) address the ultimate causes of behavior and
focus on why a living organism has evolved the aforementioned mechanisms to
produce behavior.

Tinbergen’s four questions apply broadly to any characteristic of living organ-
isms including plants. In plant biology, the proximate mechanisms underlying
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plant development and environmental responses have been unraveled by remarkable
progress in molecular and genetic studies over the past decade. A number of genes
and their regulatory networks involved in stress response, metabolism, growth,
and reproduction have been identified given the genetic blueprints of two model
organisms Arabidopsis thaliana [2] and rice Oryza Sativa [3, 4]. Ultimate causes
of plant behavior in diverse species have been studied in ecology and evolutionary
biology considering the environmental response of plants as an adaptive trait that
facilitates efficient survival and reproduction in a given environment [5].

After 50 years of Tinbergen’s seminal paper, the real question now is how to
best integrate the four questions. The integration of the two different aspects of
biology would offer great potential to understand the molecular mechanisms by
which plants respond to environmental signals but also to address the evolutionary
significance of the underlying molecular basis that should have benefit plants to cope
with environmental fluctuation and heterogeneity across the globe [6]. However,
relatively few cases have had all four questions answered for a single characteristic
[7], probably because researchers are focused on a particular aspect of biological
problem rather than integration. This chapter aims to show that studies about
flowering time, one of critical reproductive traits in angiosperm, is a model trait
to show the usefulness of this integrated approach.

9.2 Flowering Time as a Model Trait for Integration
of Proximate and Ultimate Causes

The transition from vegetative to reproductive growth is a key developmental event
that is directly linked to reproductive success in plants. Flowering behaviors vary
widely among taxa. Some plants are annuals that flower only once and complete
their life cycle after reproduction in a year. Other plants are perennials that live for
many years and flower repeatedly. Many woody plants exhibit a highly variable
flowering effort between years. Understanding why and how such variations in
flowering behavior arise is a major challenge in ecology and evolutionary biology.
In ecology and evolutionary biology, since the 1970s, the growth and reproductive
schedule of terrestrial plants has been studied as an adaptive strategy that maximizes
lifetime reproductive success by applying optimal control theory or game theory
that has been exploited in the fields of engineering and economics. For example,
the evolution of the reproductive schedule of annual and perennial plants has
been discussed theoretically based on the optimal resource allocation between
vegetative and reproductive tissues throughout the plant lifecycle [8–12], and these
mathematical models had been extended to explain how plant–animal interaction
drives the evolution of reproductive timing [13, 14]. Moreover, how plant size
and age influence flowering time have been studied in the framework of adaptive
dynamics or integral projection model [15, 16].
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In the 1970s, little was known about molecular mechanisms that underlie the
diversification of flowering behavior. Meanwhile, in the 1980s, rapid progress in
genetic and molecular analyses has been made in model plants, providing the genetic
description of well-established flowering pathways. Studies of floral homeotic
mutants of Arabidopsis and Antirrhinum led to the proposal of the ABC model
of flower development, in which the spatially localized activity of homeotic gene
products specifies the identities of floral organs such as sepal, petal stamen, and
carpel [17–19]. Genes involved in controlling the timing of the floral transition have
been identified through mutagenesis and analysis of natural variation ([20, 21]),
uncovering the genetic pathways that integrate environmental cues and developing
the state of plants particularly well in A. thaliana [22–25].

Now it is time to synthesize the body of knowledge from molecular/genetic stud-
ies and ecology/evolutionary studies to draw the history of evolutionary alterations
of the underlying molecular bases of plant’s flowering behavior in geographically
diverse environments [6, 26]. Plants’ environments have changed continuously in
the past, and will change more rapidly under the influence of climate change
in the future. Adaptive responses to local climate in the past may no longer be
optimal in the future [27]. Forecasting future changes in plant flowering behavior
and understanding how natural selection will lead to the further evolution of the
gene regulatory mechanisms of flowering time in future environments would offer
advantages for systematic conservation planning of natural ecosystems and also
will benefit the vulnerability assessment of an important ecosystem service, food
production, on which human societies depend. Based on these perspectives, in
this chapter, two topics, a genetic-physiological model for plant life history and
a predictive model of flowering phenology, will be introduced.

9.3 Modeling Life History Evolution Based
on Molecular Mechanisms

9.3.1 Natural Variations in the Vernalization Responses

Many plants that inhabit seasonally changing environments synchronize their flow-
ering time to coincide with appropriate seasons by monitoring and responding to
environmental cues. Photoperiod and temperature are two of the main environmental
signals used as cues to interpret seasons. Despite an accurate and predictable change
in photoperiod, temperature fluctuates day-by-day in a very noisy manner, and
the short-term trend in temperature is not foreseeable. To cope with unpredictable
fluctuations of temperature, the plant has evolved to utilize a long-term trend in
temperature, especially a prolonged period of cold. The ability to respond to a
prolonged winter season of cold, but not to a short spell of cold, prevents flowering
prior to (or during) winter and permits flowering in the favorable conditions in spring
because it effectively filters out daily variations and extract a reliable long-term
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trend in seasonal changes of temperature. The process that promotes flowering after
exposure to prolonged period of winter cold is known as vernalization (reviewed in
[28, 29]).

Arabidopsis thaliana, an annual herb, provides an opportunity to determine the
genetic basis that contributes to natural variations in the vernalization response [30–
34]. A. thaliana consists of winter annuals, in which flowering is strongly delayed
unless plants experience a prolonged period of cold (i.e., become vernalized),
as well as summer annuals that complete flowering and seed production before
winter comes [35, 36]. Analysis of a large number of accessions across multiple
environments showed that two genes, FRIGIDA (FRI) and FLOWERING LOCUS C
(FLC), are key factors in the vernalization pathway [37–39].

FRI delays flowering by maintaining high expression levels of FLC, which
encodes a MADS domain protein that represses flowering [40–42]. Vernalization
represses this repressor to accelerate flowering time by activating floral pathway
integrators, which include FLOWERING LOCUS T (FT; [43, 44]), known as a
universal factor of floral transition that functions as a long-distance signal of floral
transition and is transported from leaves to the shoot meristem where flowers are
formed. Floral pathway integrators activate target genes promoting floral organ
identity, including LEAFY (LFY; [45, 46]), FRUITFULL (FUL; [45, 47]), and
APETALA 1(AP1; [45]), which results in the initiation of flowering. Molecular
analysis of FRI revealed that loss-of-function mutations at this locus promote
flowering without vernalization by reducing expression levels of FLC, which allows
the evolution of summer annuals from winter annuals. FLC has been shown
to interact epistatically with FRI [48], and summer annuals can occur when a
nonfunctional FRI is present and FLC is weak or defective [49, 50].

In addition to natural variations in the timing of flowering in annuals, the
vernalization response in perennials, such as Arabis alpina and Arabidopsis halleri
subsp. Gemmifera—a close relative of Arabidopsis—has been studied [51, 52]. In A.
thaliana, the expression of FLC is reduced during cold and epigenetic modifications
are acquired at the FLC locus, which maintain low levels of expression even
after a return to warm conditions. Stable maintenance of FLC silencing even after
the arrival of spring is called winter memory [29]. In contrast, the ortholog of
FLC in A. alpina and A. halleri is not stably repressed after winter cold. It is
instead reactivated once the temperature increases both in laboratory [52] and in
natural conditions [51]. This reversible expression of FLC facilitates a reversion
from reproductive to vegetative development and promotes the perennial life cycle
[51, 52]. Thus, regulation of FLC is considered one of the key factors explaining
natural variation in flowering timing both in annuals and perennials, and variations
in FLC regulation result in different fitness consequences, providing a basis for
adaptation to local temperature environments. Mathematical models that describe
genetic-physiological processes of the plant life cycle will be useful to understand
how plants adjust their vernalization pathways to adapt to local environmental
conditions.
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Fig. 9.1 Schematic diagram of the genetic-physiological model for flowering. In the genetic
component, different environmental signals transmitted in different pathways are integrated
by floral pathway integrators such as FT and SOC1. In the physiological component, plants
are assumed to allocate the h fraction of photoassimilates to vegetative growth, and rest of
photoassimilates (1-h) are stored for reproduction

9.3.2 Genetic-Physiological Model for Flowering

Signal transmission in the vernalization pathway and the physiological process
regarding growth and resource partitioning between vegetative and reproduc-
tive growth have been modeled previously ([53]; Fig. 9.1). In the signal trans-
mission process, the model focused on the key temperature-dependent pathway
to flowering—the transcriptional regulation of two vernalization-specific genes
(VERNALIZATION-INSENSITIVE 3: VIN3 and FLC) and one floral integrator gene
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(FT). VIN3 is one of the initial repressors of FLC during cold treatment. VIN3
expression is induced after several weeks of cold treatment [36]. Dynamics of VIN3
transcript level per unit leaf biomass can be formalized as

dxV IN3

dt
= βV θ (T < KT ) − αV xV IN3, (9.1a)

where

θ (T < KT ) =
{

1
0

if T < KT

otherwise
. (9.1b)

βV and αV in Eq. (9.1a) describe the production and degradation rates of the VIN3
transcript, and KT is the threshold temperature below which transcription of VIN3
is activated. θ is the step function that satisfies Eq. (9.1b)—if the temperature (T) is
below the threshold temperature (KT ), θ equals 1; otherwise, it is 0.

Activation of VIN3 triggers chromatin remodeling and leads to an increase in
the levels of repressive histone modifications at FLC chromatin, such as histone
H3 lysine 27 di- and trimethylation (H3K27me2, H3K27me3), as well as the loss
of histone modifications associated with active transcription, such as histone H3
acetylation and histone H3 lysine 4 di- and trimethylation (H3K4me2, H3K4me3)
[36, 54–57]. This chromatin remodeling results in a stable silencing of FLC,
which functions as a stable epigenetic memory of winter. Although the quantitative
relationship between FLC repression and the chromatin modifications at the cellular
level is still unclear because of the difficulty to measure FLC histone modification
levels at the cellular level, mathematical models suggest that FLC expression
level at the cellular level should take binary states either in fully active or fully
repressed to realize resistance to high noise due to random gain or loss of histone
modifications and to random partitioning upon DNA replication [58, 59]. FLC
expression patterns under continuous and interrupted cold exposure has been best
explained by the model assuming digital response of cells to cold signal [60].
Moreover, the importance of bistability of cellular systems for robust response to
noisy signals has also been demonstrated in other eukaryotic system [61]. Thus, in
a model, it is reasonable to assume that a single cell can be in two states, repressed
or active. Let RFLC be the fraction of cells that are in the repressed state. We assume
that RFLC changes according to

dRFLC

dt
= qθ (xV IN3 > KV IN3) (1 − RFLC) − pRFLC. (9.2)

q represents the transition rate from the active to the repressive state. I call it the
“repression rate” of FLC activity. When VIN3 transcripts are accumulated and
the transcript level exceeds the threshold KVIN3, repressive histone modification
is initiated, and active cells change to the repressed state at a rate q. Repressed
cells change to the active state at a rate p. The second term on the right-hand side
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of Eq. (9.2) describes the fraction of cells that lose repressive chromatin marks.
The difference in q represents the differential duration of winter memory between
annuals and perennials [59]. FLC transcript level per unit leaf biomass (xFLC) is
given by

xFLC(t) = r (1 − RFLC(t)) , (9.3)

where r is the maximum transcript level. A large r represents a genetic background
with functional FRI, while a small r corresponds to that of nonfunctional FRI. FLC
transcript levels linearly decrease as the fraction of repressed cells increases.

The repression of FLC in turn activates transcription of FT and production of FT
protein is initiated in the vascular tissue of leaves. The concentration of FT protein
per unit leaf biomass (xFT) changes according to

dxFT

dt
= βFT θ (xFLC < KFLC) − αFT xFT, (9.4)

in which βFT and αFT describe the production and degradation rates of FT protein,
and KFLC represents the threshold FLC transcript level below which production of
FT protein is initiated. Because strong correlation between FT expression level and
the onset of flowering has been reported in many plant species [62–65], we assumed
that plants start bolting when the total amount of FT protein is above the threshold
KFT :

xFTB > KFT , (9.5)

where x represents the size of total leaf biomass.
The growth of total leaf biomass (B) was formalized based on carbon partitioning

between vegetative to reproductive growth (Fig. 9.1). Plants gain carbohydrates
by photosynthesis and allocate some fraction of carbon gain to vegetative growth.
B changes according to

dB

dt
= h [1 − θ (xFTB > KFT )]

aB

1 + bB
− dBB, (9.6)

where h describes the fraction of carbon gain allocated to vegetative growth.
aB/(1 + bB) indicates the gain of carbohydrates after deducing maintenance costs
of plant organs, and it saturates with an increase in leaf biomass B because of self-
shading. a and b are parameters that determine the function of carbon gain. This
formulation is built on the classic optimization model of plant life history studied
by Iwasa and Cohen [11]. dB represents the loss of leaf biomass due to natural
damages such as herbivory. When floral transition occurs, resource allocation
switches from vegetative to reproductive growth, and entire carbon gains (remained
after maintenance costs of plant organs are deduced) are used to produce flowers
and seeds.
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Before the floral transition, the residual of the resource gain, denoted as
(1 − h)aB/(1 + bB), is allocated to storage that will be used to produce flowers,
fruits, and seeds. The amount of stored resource (S) changes as follows:

dS

dt
= (1 − h [1 − θ (xFTB > KFT )])

aB

1 + bB
− cf θ (xFTB > KFT ) − cSy − dSS.

(9.7)

The first term on the right-hand side describes a resource increment by photosyn-
thesis, and the second and the third terms represent the cost to produce reproductive
organs. cf indicates the rate of resource investment for flowers. Flowers are fertilized
and fruits and seeds are developed. The rate of resource investment to produce a set
of fruit and seeds per fertilized flower is represented as cS. When the number of
fertilized flowers is y, the total rate of resource investment for fruits and seeds is
cSy. Stored resources are consumed for respiration within the storage compartment
itself at a constant rate dS. y changes according to

dy

dt
= cf θ (xFT > KFT )

uf

− dyy, (9.8)

where uf describes the unit cost to produce a single flower. Produced flowers
are degraded and transfer to mature fruit and seeds at a constant rate dy. Thus
resource investment for fruit and seeds stops when development of fruit and seeds
is completed. The plant dies when all of stored resource is consumed.

Similarly, the level of resource investment to develop fruits and seeds changes
according to

dz

dt
= cSy. (9.9)

The number of fruits and seeds produced is assumed to be in proportion to the
amount of resources invested in fruits and seeds. Given this assumption, lifetime
reproductive success of the plant is given by

ϕ(m) = cS

∫
e−mty(t)dt, (9.10)

where m indicates the instantaneous mortality rate. The optimal flowering strategy
can be calculated by maximizing Eq. (9.10). Maximizing lifetime reproductive
success is equivalent to maximization of intrinsic rate of population growth (r)
when a population is at a steady state [66]. Allelic variations among genotypes
and inter-specific genetic variations associated with environmental sensitivities are
represented by different parameter values of the model. Which genotypes or species
will be selected under given environments is analyzed by searching for a parameter
set that maximizes the lifetime reproductive success.
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9.3.3 Differential Regulation of FLC Generates Diversity
in Flowering Behaviors

Based on the genetic-physiological model, Satake [53] numerically calculated
the transcript and resource dynamics associated with flowering using temperature
profiles monitored in central Japan from 1998 to 2008. For this calculation,
germination date is fixed to July 1st. The model predicted four flowering behaviors
depending on the repression and activation rate of FLC activity (q and p in Eq. (9.2),
respectively). Detailed parameter values are given in Satake [53].

1. Monocarpic annuals (Fig. 9.2a, b): When repressive histone modification is
stable (i.e., p ∼= 0), FLC is stably repressed even after low temperature signals dis-
appear in spring. This allows a prolonged production of the flowering signal, FT
protein. The plant produces flowers and fruits continuously by allocating stored
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resources. Finally, stored resources are completely depleted, and eventually, the
plant dies. This is the monocarpic annual life cycle.

2. Monocarpic perennials (Fig. 9.2c, d): When repressive histone modification is
stable and when the repression rate of FLC activity is small (i.e., p ∼= 0 and q ∼= 0),
FLC is repressed very slowly. Experience of winter cold in a year is not sufficient
to suppress FLC transcript levels below the threshold, and the plant waits for
years to accumulate sufficiently high levels of repressive histone modification
marks to effectively repress FLC to induce production of FT protein. This results
in a monocarpic perennial life cycle.

3. Polycarpic-yearly flowering (Fig. 9.2e, f): When repressive histone modification
is unstable (i.e., activation rate of FLC activity (p) is not negligibly small),
FLC transcript levels recover once low temperature signals disappear in spring.
When FLC transcript levels recover and exceed the threshold, FT expression
is suppressed, and production of FT protein stops. Concentration of FT protein
declines to below the level required for flowering, which causes a reversion from
reproductive to vegetative growth. The reversion occurs before stored resources
are completely depleted. This enables the plant to grow and further accumulate
photosynthates and flower again in the next year. This is polycarpic-yearly
flowering.

4. Polycarpic-intermittent flowering (Fig. 9.2g, h): When the activation rate of
FLC activity (p) is close to the boundary separating flowering and no-flowering
conditions (Appendix B in [53]), plants flower once in several years. If the low
temperature signal is weak in a warm winter, FLC is not effectively repressed
to initiate flowering, while FLC is fully repressed in a cold winter. This causes
intermittent flowering.

In summary, the genetic–physiological model predicts a diverse flowering pattern
ranging from monocarpic annuals to polycarpic-intermittent flowering, and the
activation rate (p) and repression rate (q) of FLC activity is a critical factor that
separate monocarpic and polycarpic life cycles.

9.3.4 Evolution of Flowering Strategies

The optimal flowering strategy can be analyzed by searching for a parameter set
that maximizes the lifetime reproductive success defined in Eq. (9.10). Important
parameters that influence the plant response to low temperature signals in a
vernalization pathway are the temperature threshold (KT ), which triggers expression
of VIN3, and the repression and activation rate of FLC activity (q and p). Thus, it was
assumed that the plant adapts to given temperature environments by adjusting the
magnitude of these three parameters. Because the fraction of carbon gain allocated
to vegetative growth (h) and mortality (m) are also important parameters, a search
for parameter values (KT , q, and p) that maximizes lifetime reproductive success
was performed under various magnitude of h and m.
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When 90% of resources were allocated to storage (i.e., h = 0.1), polycarpic-
yearly flowering always attained the highest lifetime reproductive success
(Fig. 9.3a). When the fraction of resource allocation to growth was larger than
or equal to 20% (i.e., h ≥ 0.2), the mortality rate was the major determinant of
the selected phenotype. Polycarpic-intermittent or polycarpic-yearly flowering was
evolutionarily favored under environments with low mortality rates. When the
mortality rate was intermediate (i.e., m = 0.005, h = 0.2 or 0.3), evolution favored
a winter annual habit in which the plant flowered after winter and then died. As
the mortality rate increased further, the winter annual was replaced by the summer
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annual, whereby the plant finished flowering before winter. Flowering early is
beneficial to minimize the risk of dying before seed production, but flowering with
a small size is disadvantageous. In contrast, flowering later faces a greater risk to
die, but the plant is large enough to produce a large number of seeds. Regardless
of temperature profiles, a slow growth strategy, in which most of the resources
were allocated for storage, was evolutionarily favored under environments with low
mortality, while a strategy of relatively fast growth is adaptive in environments with
high mortality [53].

The plant-tuned temperature threshold (KT ) is high when resource allocation
to growth and mortality are large (Fig. 9.3b). When mortality (m) is 0.02, the
monocarpic phenotype that employs a rapid cycling habit uses a temperature
threshold close to the daily maximum, which enables the plant to initiate flowering
without cold signals. In contrast, when m = 0.002, the temperature threshold was
low (e.g., 6 ◦C) generating polycarpic phenotypes (Fig. 9.3a, b). Except when
h = 0.1, the polycarpic phenotype employed a small repression rate of FLC activity
(q) than the monocarpic phenotype (Fig. 9.3c). No clear difference was observed in
the activation rate of FLC activity (p), except for very large h (Fig. 9.3d).

Analysis of lifetime reproductive success estimated by the genetic-physiological
model for flowering permits investigation of how parameters that describe environ-
mental sensitivity evolve under given environments to produce adaptive phenotypes.
This modeling approach can be extended to understand the evolution of other
signaling pathways associated with flowering. In the next section, the model that
integrates the vernalization and photoperiod pathways will be presented. The model
will be parameterized using gene expression data monitored in the controlled
laboratory conditions and will be used to predict changes in seasonal responses to
future climate change in natural conditions.

9.4 Forecasting Flowering Phenology in Natural
Environments Based on Genetic Information

9.4.1 Flowering Phenology and Climate Change

The timing of recurring seasonal activities of animals and plants, or phenology, has
been shifting under the influence of climate change [67–70, 81]. In contemporary
environments, flowering time and seed maturation timing are becoming earlier than
before, owing to warming temperature and elevated atmospheric CO2 concentra-
tions [71–75]. The trend for advancing flowering in contemporary environments
may drive directional selection for earlier flowering, which could potentially deplete
populations of the genetic variation needed for continued adaptation [71]. Yet, little
is known about the molecular genetic basis for the shifts occurring in nature, which
hampers the genetically informed prediction of future phenology changes. Satake
et al. [65] developed a model that predicts flowering phenology based on seasonal
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Fig. 9.4 (a) Flowering and reversion of A. halleri. (b) A kinetic model for FLC and FT regulatory
dynamics proposed for A. halleri. The model integrates temperature and photoperiod signals into
the network of floral regulatory genes. Regulatory dynamics ω represents the critical photoperiod
above which FT is activated

expression dynamics of FLC and FT in A. halleri, a perennial relative of the annual
A. thaliana. A. halleri is characterized by the formation of aerial rosettes on apical
and lateral meristems following flowering (Fig. 9.4a). This perennial life cycle adds
interesting complexity to the study of flowering phenology. In monocarpic plants,
flowering is irreversible, leading to fruiting and plant death. However, perennials
are characterized by a reversion to vegetative growth (hereafter, “reversion”) after
a period of flower development. Thus, studying perennials permit investigation of
when to return to vegetative state in addition to when to start flowering. This enables
the vulnerability assessment of flowering period in response to rising temperature.
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9.4.2 Model Construction and Parameterization

A kinetic model for FLC and FT regulatory dynamics has been proposed for A.
halleri ([65]; Fig. 9.4b). The dynamics of FLC and FT expression levels were
formalized as follows:

dxFLC

dt
= αFLC(T )f (xFLC) − βFLC(T )xFLC, (9.11)

dxFT

dt
= αFT (T )g (xFLC) h (ω) − βFT (T )xFT . (9.12)

αFLC(T) and βFLC(T) in Eq. (9.11) describe the production and degradation rates
of FLC transcripts at the cell population level in leaves that are functions of
temperature (T). f (xFLC) represent the suppression of FLC activation at an initial
stage after vernalization:

f (xFLC) =
{

1 before and during vernalization
xFLC/ (mFLC + xFLC) after vernalization

, (9.13)

where mFLC is the constant that determines the irreversibility of FLC activation.
αFLC(T) and βFLC(T) represent the combined effects of VIN3 and other components
involved in chromatin modifications at the FLC locus. αFT (T) and βFT (T) in Eq.
(9.12) indicate the production and degradation rates of FT transcript and they
are assumed to be functions of temperature. The regulation of FT by FLC was
formalized using the Hill function g(xFLC), which is defined as

g (xFLC) = 1

1 + (xFLC/mFT (T ))H
, (9.14)

where mFT (T) is the dissociation constant of FT suppression by FLC (which is
temperature dependent) and H is the Hill constant. The photoperiod effect on FT
activation was incorporated by h(ω), defined as

h (ω) =
{

1 if ω > ω

0 otherwise
, (9.15)

where ω (min) is the photoperiod and ω is the critical photoperiod above which FT
is activated.

To parameterize the model, Satake et al. [65] obtained long-term gene expression
data by using plants from two natural populations (Hyogo (HG) and Hakodate
(HK) in Japan) for controlled laboratory experiments. In the experiments, two
seasonal transitions in temperature—autumn to winter and winter to spring—
were imitated under long-day conditions and the transcriptional levels of two
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vernalization-specific genes (AhgVIN3 and AhgFLC) and one floral integrator gene
(AhgFT) were monitored in A. halleri in each experimental condition. In the autumn
to winter experiment, plants were exposed to temperature changes from warm
(22 ◦C) to three different levels of cold (5 ◦C, 10 ◦C, and 12.5 ◦C) and control
(20 ◦C) conditions. In the winter to spring experiment, plants were exposed to
temperature changes from prolonged cold (10 weeks of 5 ◦C) to two warmer (10 ◦C
and 20 ◦C) and one control (5 ◦C) conditions.

The gene expression data obtained in the controlled laboratory conditions
were used to parameterize the model [65]. The model successfully explained the
dynamics of AhgFLC and AhgFT expression under various temperature conditions
manipulated in the laboratory (Fig. 9.5a). The AhgFLC expression level declined
gradually, with a greater rate at lower temperatures (Fig. 9.5a). AhgFT was not
activated in both populations irrespective of temperature conditions (Fig. 9.5a). In
the winter to spring experiment, AhgFLC expression recovered gradually with a
greater rate at warmer temperature (10 ◦C and 20 ◦C; Fig. 9.1b). AhgFT expression
was induced immediately after prolonged cold, but it was suppressed again earlier
at warmer temperatures, resulting in a transient expression peak (10 ◦C and 20 ◦C;
Fig. 9.5b). At 5 ◦C, AhgFLC expression levels remained low, and AhgFT expression
levels increased continuously (Fig. 9.5b). Gene specific functions of temperature
response were also estimated from the data. Production rate of AhgFLC increases,
whereas degradation rate decreases as temperature rises (Fig. 9.6a), which allows
elevated accumulation of AhgFLC transcript as temperature increases. By contrast
both production and degradation rates of AhgFT increase with rising temperature
(Fig. 9.6b), maintaining the levels of AhgFT transcript almost constant under
most of temperature range. This difference could play a critical role in regulating
flowering phenology under climate warming.

9.4.3 Predicting Flowering Phenology in Natural
Environments

The model parameterized by the data in laboratory conditions facilitates the
prediction of expression dynamics of FLC and FT under arbitrary temperature
conditions in natural conditions. When the model was applied to the plants under
natural temperature and photoperiod conditions planted in the common garden in
central Japan, AhgFLC expression levels were predicted to decrease gradually from
December in response to temperature decline and start recovering in spring as the
temperature increased in both populations ([65]; Fig. 9.7a, b). These predictions
accurately accounted for observations from common garden experiments (R2 = 0.87
for HG and 0.90 for HK plants). The model also reproduced the observed dynamics
of AhgFT expression, showing a transient peak in April, with exceptional accuracy
(Fig. 9.7a, b; R2 = 0.76 for HG and 0.92 for HK plants). Moreover the timings
of bolting and reversion predicted based on the AhgFT expression level were in
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good agreement with the observed phenology (Fig. 9.7a, b). This study shows that
a seemingly complex trait, flowering phenology, can be modeled successfully based
on the regulatory dynamics of a surprisingly small number of genes.

The model can be used to assess the impact of climate change on the flowering
phenology. Under warming conditions, the level of AhgFLC expression declined
slower in winter, and recovery occurred earlier in spring in both populations (Fig.
9.7c, d). In response to the early recovery of AhgFLC, the timing of AhgFT
suppression was significantly advanced, while the timing of AhgFT activation was
less affected by warming (Fig. 9.7c, d). Warming of 4 ◦C advanced the timing of
AhgFT suppression by 31 days, while it advanced the activation timing of AhgFT
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by only 7 days. Given the simulated dynamics of AhgFT expression, flowering
phenology under wide range of temperatures can be forecasted. As the temperature
increased, both bolting and reversion time advanced, but the shift in reversion time
was significantly greater (Fig. 9.8a, b). Because of the asymmetric response, the
duration of flowering decreased gradually with warming. Besides, the HG plants
were expected to lose the opportunity to flower when the temperature increased
by 4.5 ◦C (Fig. 9.8a). The HK plants were more robust, but they were also
expected to be flowerless at 5.3 ◦C warming (Fig. 9.8b). A recent study confirmed
the model predictions by demonstrating that increased temperature decreased the
flowering duration in A. halleri [83]. This striking result implies the potentially high
vulnerability of natural populations of A. halleri under climate warming.

The model to describe FLC and FT expression dynamics for perennial herb
highlights that the timing to return to vegetative growth is more sensitive to
changing temperature than the timing of floral initiation. This asymmetric temper-
ature response in bolting and reversion was caused by the different temperature
sensitivity between AhgFLC and AhgFT (Fig. 9.6). Despite its simplicity, the
model accurately predicted complex phenological responses to climate warming
in a dynamically changing natural environment, which would offer advantages for
systematic conservation planning.
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the medians of observed (solid) and predicted (dashed) timings of bolting and reversion. Gray
squares represent the predicted range (95% CI of median). Given the uncertainty in the relationship
between AhgFT expression and phenotypic output, the 95% CI of median was calculated by
bootstrapping based on 1000 replications. The predicted transcript levels under warming in the
Hyogo population (c) and in the Hakodate population (d)

9.5 Conclusion and Perspectives

Synthesizing the body of knowledge from molecular/genetic and ecology/evolu-
tionary studies will be increasingly required to understand the molecular bases
for the evolution of flowering behaviors and to draw genetically informed pre-
dictions for alteration of future phenology under climate change. The use of
mathematical models that can connect the genetic base for flowering and its
evolutionary consequence is an effective tool for this synthesis, contributing to
advance our understanding of adaptive significance of genetic variations associated
with flowering responses to environmental cues. The physiological mechanism
of floral initiation for diverse plant species can be more accurately modeled by
combining molecular and ecological data. Given increased molecular data in non-
model plant species, comparison of genetic pathways for flowering between diverse
plant species will become possible which provides the opportunity to identify the
evolutionary footprint in the regulatory pathways controlling flowering responses to
environmental cues.

A molecular phenology approach that monitors seasonal recurring gene expres-
sion patterns in natura, reviewed by Kudoh [76], has been used for a wide range
of species including herbs [51, 65, 82] and trees [63, 77, 84]. This approach was
successful in identifying differential environmental cues required for flowering in
different species. For example, Miyazaki et al. [63] monitored expression levels of
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Fig. 9.8 Forecasted timing of bolting and reversion in the Hyogo (a) and Hakodate populations
(b). 0 ◦C corresponds to the daily surface soil temperature monitored at Otsu from Oct 2011 to Sep
2012

key flowering genes including FT for 5 years in the field using Fagus crenata, a
deciduous tree that shows intermittent and synchronized flowering at the population
level. They demonstrated that these flowering genes were activated every other
year, leading to an alternate flowering pattern. They showed that the between-year
fluctuation in gene expression levels was coincided with the change in nitrogen
content in current-year shoots, and identified that nitrogen is a key regulator for
the floral transition in this species by nitrogen fertilization experiments [63].

The molecular phenology approach has shown to be useful to unravel the
mechanism of general flowering, a spectacular phenomenon in tropical rain forests
in Southeast Asia. In general flowering, hundreds of plant species reproduce
synchronously and their synchronous reproduction occurs at irregular, multi-year
intervals [78, 79]. General flowering is limited to the least seasonal lowland tropical
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rainforests of Southeast Asia. Trees of the family Dipterocarpaceae dominate these
forests, and most dipterocarps join species from at least 41 other families in
general flowering events [80]. Yeho et al. [84] applied a molecular phenology
approach to tropical trees in the genus Shorea section Mutica to identify proximate
environmental cues for flowering. The activation of flowering genes including FT
was observed twice over 4 years, which was followed by anthesis in these species.
The observed flowering gene expression pattern in Shorea was precisely explained
by the model that assumed the interplay between drought and cool temperature
signals to activate the flowering gene, suggesting the synergistic effect of drought
and cool temperature is the major driving factor of flowering in these tropical trees.

The molecular studies for flowering time have been advanced using plants
inhabiting seasonal environments. Seasonal variation in day length and temperature
decline towards the equator. Even in aseasonal environments, most tropical plants
can sense the subtle climatic fluctuation as a cue for flowering and still produce
flowers and fruits at specific times of year. As explained in this chapter, an integrated
approach of ecology, molecular biology, and mathematical modeling is useful to
dissect proximate and ultimate factors of flowering traits of plants in different
climate zones. We will be able to draw the history of evolutionary alterations of the
underlying molecular bases of plant’s flowering behavior in geographically diverse
environments in near future, and global ecosystem response to climate change.
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Chapter 10
All But Sleeping? Consequences of Soil
Seed Banks on Neutral and Selective
Diversity in Plant Species

Daniel Živković and Aurélien Tellier

Abstract An axiom of modern evolutionary theory is that intra-species genetic
diversity determines the adaptive potential of any species. This diversity results
from the interaction between three factors: the effective population size, natural
selection and the rate of recombination. All three factors are influenced by the
occurrence of long dormant stages (seed banking or seed persistence), which is an
evolutionary bet hedging strategy and a key characteristic of many angiosperms, but
also bacteria, fungi or invertebrates. Perhaps surprisingly, this ecological trait has
so far been almost ignored in evolutionary genomics. Seed banking is expected to
have a fundamental influence on neutral and selective evolutionary processes, and is
therefore a key factor to comprehend angiosperm genomic evolution. Theoretical
modeling aims to predict the effect of seed banking on patterns of nucleotide
diversity. We first adapt for seed banks the two classical mathematical frameworks
of population genetics: (1) the backward in time process of the Kingman n-
coalescent, and (2) the forward in time diffusion approach. This allows us to
derive population genetics quantities and statistics that can be obtained from DNA
sequence data. Second, we generate new predictions on neutral diversity and past
demographic inference for single and multiple populations under seed banks. Third,
we compute the expected effect of seed banks on unlinked (genome wide selection)
and linked (gene level selection) sites. Finally, we conclude by suggesting three
hypotheses, which can be tested by contrasting polymorphism data in seed banking
and non-seed banking species.

10.1 Introduction

The amount of genetic diversity and polymorphism at the molecular level (in DNA)
between individuals is a cornerstone of modern evolutionary theory because it
determines the phenotypic diversity on which selection acts, and it is thus key
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Fig. 10.1 Overview of the determinants of genetic diversity in plant species (adapted from [13]).
In black the key evolutionary factors, in green the key ecological factors, and in blue the effects of
seed banking. The sign on the arrows indicates the direction of correlation to genetic diversity

for predicting the adaptive potential of any species [7, 13, 40]. Our ability to
predict evolutionary changes has implications for conservation biology, disease
management in medicine and agriculture, plant breeding and future ecosystems
management in response to global change [1, 35, 40]. Theoretical and empirical
evolutionary genetics describe three main factors controlling the amount of neutral
and selective genetic diversity: the species effective population size, mutation and
linked selection (Fig. 10.1).

The effective population size is determined directly by species characteristics
such as spatial structure, past demographic events (population increase or decrease,
[35, 40]) and life span (longevity), as well as the census size, i.e. the number of
observed individuals (Fig. 10.1). Several life history traits affect directly the census
size, such as the size of propagules in animals [45], or in plants crucial ecological
factors such as the geographic range, ecological habitat, density and abundance [47]
and seed production [17].

The mutation rate is a characteristic of the species which may vary with latitude
and longitude, e.g., due to exposure to UV light. It is also important to quantify if
mutations occurs in the resting or dormant stages of some species: seeds for plants,
eggs for insects and crustaceans (e.g. Daphnia), spores in bacteria and fungi [12, 26,
37, 38, 42].

Linked selection is a function of the strength of selection and the recombination
rate (Fig. 10.1, [59, 60]). The strength of selection depends on the trait affected by
selection and the advantage (or disadvantage) in a given environment compared to
other genotypes. By linkage disequilibrium (LD, e.g. [8]) between genomic sites,
natural selection affects (1) neutral genomic diversity around the targets of selection,
and (2) the efficiency of selection at other neighbouring sites (or loci), the latter is
termed the Hill-Robertson effect [25]. The extent of LD depends on the recombi-
nation rate with higher rates decreasing the effect of linked selection on diversity
(Fig. 10.1, [11, 13]). In flowering plants recombination rate has been primarily
studied as determined by the mode of reproduction (selfing, outcrossing) and the
reproductive characteristics (Hermaphrodite, Dioecy or Monoecy) [9, 19, 20, 46].
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Higher mutation rates and larger effective population size increase genetic
diversity, while increased linked selection has the opposite effect (Fig. 10.1). The
joint action of these three factors explains the occurrence of the so-called Lewontin
paradox [39], stating that the census size of a species, N , defined as the number of
individuals observed, does counterintuitively not correlate with genetic diversity.
Census sizes can vary over several orders of magnitude between species, e.g.
between elephants, humans and crustaceans, while genetic diversity varies only by
two to three orders of magnitude in animals [11, 13, 36, 39, 45]. Recent studies
show that such a discrepancy between expected and observed genetic diversity arises
because selection counteracts the effect of a large population size on diversity: in
large populations, positive and purifying selection are more efficient thus increasing
the effect of linked selection and the Hill-Robertson effect [11, 13]. Resolving this
paradox is instrumental to understand the adaptability of species in the current age
of global climatic and anthropogenic changes [1, 36].

In plants, in particular in angiosperms (flowering plants), despite the recent
progress in sequencing and the large amount of available genome data, we still
do not know the relative importance of the several ecological and life history traits
highlighted in Fig. 10.1 in shaping genetic diversity [11, 13, 36]. A key characteristic
of many plant species is generally ignored: the ability of forming persistent seed
banks with seeds remaining in the soil for many years. It is classically observed
as plant adaptation to unpredictable semi-arid to desertic habitats, but is found
also in many species in temperate climate in Eurasia and North-America [17, 52].
As an ecological adaptation, seed persistence has major consequences on the
genomic evolution by increasing genetic diversity and also by buffering against fast
ecological changes in population sizes and preventing population extinction. Seed
persistence is therefore a key life-history trait linking the ecology of a species with
its abundance, the production and survival of seeds over years, and consequently
defining the census size above ground and the available genetic diversity (effective
population size). To give a first general idea of its potential importance (see details
below), let us define the germination rate, b, as the probability (0 < b ≤ 1) that
a seed will germinate on average in the next year. Theory predicts that persistent
seed banks increase genetic diversity by a factor 1/b2 and the recombination rate
by a factor 1/b. If the germination rate is realistically small (b < 0.5), the effect
of seed banking becomes prominent on genetic diversity and recombination rates
[10, 14, 34, 62].

In this chapter we describe the effect of seed banking on shaping genetic diversity
in plant species. We first build here backward and forward population genetics
models which allow us to derive statistics as the expected time of coalescence, the
time of fixation and the site frequency spectrum (SFS) of a sample (Sect. 10.2). We
then derive a set of predictions that should be observable in polymorphism data
from diverse plant species for neutral diversity (Sect. 10.3) and for natural selection
(including footprints of selection in the genome, Sect. 10.4).
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10.2 Model Description

Seed banking is an evolutionary strategy termed as bet hedging because it consists in
reducing short-term reproductive success in favour of longer-term risk reduction to
maximize individual fitness over time in variable and unpredictable environments
[10, 14, 15, 54, 55]. It is also commonly found in bacteria, fungi, protozoans
(including human parasites) [27, 37] and invertebrates (e.g. Daphnia, [42]), thus
our predictions can be extended to these species. This ecological trait is classically
observed as plant adaptation to unpredictable semi-arid to desertic habitats [55], but
is found also in many species in temperate climate in Eurasia and North-America
[2, 17]. A non-persistent seed bank is defined as seeds remaining in the soil for up
to 5 years (hereafter defining non-seed banking, non-SB species), while persistent
seed bank is longer (defining seed banking, SB species, [2, 17]). Note that seed bank
persistence is independent of dormancy [17]. While dormancy is defined as the best
timing for germination within a year, seed banking occurs over many years and
seeds may alternate between periods of dormancy and non-dormant stages when in
the soil.

In population genetics, it is common practice to either model an entire population
forwards in time within a diffusion framework [16] or to trace a sample of a
population backwards in time by applying coalescent theory [30]. In both cases
a population of large and finite size N is initially assumed that evolves on a discrete
generation-wise time scale and whose reproduction mechanism will basically follow
a Wright–Fisher model throughout this chapter. In the backwards formulation of
the usual non-SB version of this model, the entire population is replaced after
reproduction and descendants pick their ancestors by random sampling from the
foregoing generation, while in its SB version, ancestors can be chosen from the
previous and up to m generations according to the probabilities b1, . . . , bm. In the
dual prospective perception of time, these probabilities determine when ancestors
give rise to their descendants within the subsequent m generations. We focus
throughout on the average germination rate b, which is the inverse of the mean
time a seed will spend in the bank, i.e. b = 1/

∑m
i=1 i bi . In practice, the seed bank

age distribution is often assumed to follow a geometric distribution, so that seeds
are more likely to germinate at earlier than later ages.

Since it is mathematically favourable to treat the ancestral (or the equivalent
reproductive) process on a continuous time-scale, time is scaled in units of N

generations (in a haploid model as assumed throughout) while N → ∞. In the
retrospective setting, for instance, the waiting times until two sampled individuals
coalesce into a common ancestor can be geometrically distributed in the discrete,
and exponentially distributed in the continuous model. Mutations are the main
source of variation among the individuals of a population. As rare events these are
assumed throughout to follow a Poisson distribution with a scaled mutation rate,
θ = limN→∞ 2Nμ/b2, and that each of them arises on a previously unmutated
(or monomorphic) site according to the infinitely-many sites model of Kimura [33].
In other words, the effective population size, Ne, consists of all plants and seeds,
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while the census size is only consisting of living plants, so that we obtain the
relation Ne = N/b2 [28, 43]. In other words, mutations are assumed to arise in
seeds and living plants [12, 58]. Alternatively, mutations may not arise in seeds,
so that the scaled mutation rate reduces by a factor b [52, 62]. Except in the case
of linked selection, all polymorphic sites will be assumed to be unlinked (due to
recombination in between them) and therefore independent of each other.

10.2.1 The Retrospective Coalescent View for Neutrally
Evolving Sites

Kaj et al. [28] introduced an urn model to describe neutral seed bank dynamics
for a population of a constant size, where the population of a new generation
is formed via multinomial sampling from the m previous generations in this
initially discrete setting. A sample represented as balls and consisting of n balls at
present is repeatedly relocated across the previous generations by sliding a window
comprising the m consecutive generations as cells in a stepwise manner. Sliding
the window one generation backwards, all balls from the first cell of the previous
window are relocated into one of the m cells of the actual window according to
the probabilities b1, . . . , bm. More precisely, each ball is relocated into one of the
N slots of a given cell, each representing an individual of the population in the
respective generation. Thereby, two types of coalescent events may occur in the
sample’s history: either two balls are placed into the same slot of the same cell or
a ball is placed into a previously occupied slot. The probability of one coalescent
event at a time is O(1/N), while more than one coalescent event at a time occur with
the negligible probability of O(1/N2). Therefore, coalescences occur on a ‘slow’
timescale of O(N) steps, while the relocation process runs on a ‘fast’ time scale
making the separation of time scales possible.

The ancestral process of the discrete seed bank model is denoted by (AN
n (k))k≥0,

where AN
n (k) is the number of ancestors at step k with population size N and initial

sample size n. It has been shown [28] that the continuous seed bank model is the
n-coalescent [30] run on a slower time-scale by proofing that the time-rescaled
ancestral process (AN

n ([Nt]))t≥0 converges as N → ∞ to the continuous-time
Markov chain (An(t))t≥0 with infinitesimal generator matrix Q = (qij )i,j∈{1,...,n}
defined by

qii = −b2
(
i
2

)
, 2 ≤ i ≤ n,

qii−1 = b2
(
i
2

)
, 2 ≤ i ≤ n,

qij = 0, otherwise.
(10.1)

From Eq. (10.1) one can derive the probability that the process An(t) is in the
state of j = n, . . . , 2 ancestors at time t via a matrix decomposition (e.g. [61]) to
obtain
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P(An(t) = j) =
n∑

k=j

cnkrkj exp

(
−b2

(
k

2

)
t

)
, (10.2)

where cnk = (
n
k

)
k(k)/n(k) and rkj = (−1)k−j

(
k
j

)
j(k−1)/k(k−1) are the elements of

the matrices of column and row eigenvectors of Q, respectively, and a(b) = a(a +
1) · · · (a + b − 1), a(0) = 1. The mean waiting times between coalescent events are
given by

E(Tj ) =
∫ ∞

0
P(An(t) = j)dt. (10.3)

as the inverse of the coalescent rate.

10.2.2 The Prospective Diffusion Framework for Neutral and
Selected Sites

Following allele frequencies in the limit N → ∞ forward in time leads to
diffusion approximations with time and allele frequencies being again measured
on a continuous scale (i.e. in units of N generations). We assume two allelic types
A and a with frequencies x and 1 − x. The advantage of the diffusion framework
over the coalescent setting is that selection can be more straightforwardly taken
into account. The effect of weak selection on the fertility of plants and on the
fraction of surviving seeds can be summarized into a coefficient s, so that the
scaled coefficient in the haploid model is given by σ = N s. By making use of a
perturbation approach, it has been shown [34] that in the diffusion limit, as N → ∞,
the probability f (y, t)dy that the type-A genotype has a frequency in (y, y + dy) is
determined by the following forward equation (see [31] for the non-SB model):

∂

∂t
f (y, t) = − ∂

∂y
{μ(y) f (y, t)} + 1

2

∂2

∂y2

{
σ 2(y) f (y, t)

}
, (10.4)

where the drift and the diffusion terms are, respectively, given by μ(y) =
σ b y(1 − y) and σ 2(y) = b2y(1 − y). For neutrality, μ(y) = 0 so that the
exclusive consequence of genetic drift is characterized by the diffusion term. For
the derivation of the time to fixation and the SFS we require the following measures.
The scale density of the diffusion process is given by

ξ(y) = exp

(
−

∫ y

0

2μ(z)

σ 2(z)
dz

)
.

The speed density is obtained (up to a constant) as π(y) = [σ 2(y)ξ(y)]−1 and the
probability of absorption at y = 0 is given by



10 All But Sleeping? 201

u0(x) =
∫ 1
x

ξ(z)dz∫ 1
0 ξ(z)dz

and u1(x) = 1 − u0(x) gives the probability of absorption at y = 1.
Assuming that both y = 0 and y = 1 are absorbing states the mean time t̄ until

one of these states is reached is given by [16]

t̄ (x) =
1∫

0

t (x, y)dy, (10.5)

where

t (x, y) = 2 u0(x)[σ 2(y)ξ(y)]−1

y∫
0

ξ(z)dz, 0 ≤ y ≤ x,

t (x, y) = 2 u1(x)[σ 2(y)ξ(y)]−1

1∫
y

ξ(z)dz, x ≤ y ≤ 1.

The time until a mutant allele is fixed conditional on fixation can be evaluated as

¯t∗(x) =
∫ 1

0
t∗(x, y)dy, (10.6)

where t∗(x, y) = t (x, y)u1(y)/u1(x).

10.2.3 Statistical Measures for the Analysis of Genomic Data

The SFS is one of the most commonly used statistics for the analysis of genomewide
distributed SNPs. It is defined as the distribution of the number of times i a mutation
is observed in a population or a sample of n sequences conditional on segregation.
In the coalescent setting the SFS is (either theoretically or empirically) evaluated for
a sample at the present time. In the diffusion framework, the SFS of a population
or a sample can often even be derived in dependence of a time variable t and an
equilibrium solution can either be implied by letting t → ∞ or by making use of
the measures from the foregoing section. Although the forward version of the SFS
has interesting applications on time-series data (i.e. DNA sequences sampled over
time), we will, for convenience, focus throughout on coalescent formulations and
results and only mention equilibrium solutions with reference to diffusions.
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Let the site frequencies be denoted as fn,i (1 ≤ i ≤ n − 1), where the index
n shall indicate that the SFS depends on the sample size (except in the case of
neutrality and a constant population size). It has been shown [22, 63] that the
following equation holds for general binary coalescent trees, i.e. ancestral trees
with pairwise coalescences at a time with arbitrary continuous waiting times and
following the mutation model given above:

fn,i = θ

2

n−i+1∑
k=2

k

(
n−i−1
k−2

)
(
n−1
k−1

) E(Tk). (10.7)

Two related measures of the SFS are the expected number of segregating sites Sn

equalling the total number of mutations in the infinitely-many sites model and the
average number of pairwise differences �n. The relationships are

Sn =
n−1∑
j=1

fn,j ,

�n = 1(
n
2

) n−1∑
j=1

j (n − j)fn,j ,

and the expectations of both quantities can be easily obtained via Eq. (10.7). One
can also derive the normalized version of the SFS as rn,i = fn,i/Sn.

In the diffusion framework the equilibrium version of the SFS as the proportion
of sites where the mutant frequency is in (y, y + dy) is given by [21]

f̂ (y) = θ π(y) u0(y), (10.8)

and the finite version can be immediately obtained via binomial sampling as

f̂n,i =
1∫

0

(
n

i

)
yi(1 − y)n−1f̂ (y)dy. (10.9)

10.3 Effect of Seed Banking on Neutral Evolutionary
Processes

The major effect of seed persistence is to increase genetic diversity by a storage
effect of seeds in the soil. In coalescent theory terms, seed banks increase the time
for two lineages to coalesce by a factor 1/b2 under any neutral model.
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10.3.1 Constant Population Size

The expected time to coalescence is simply given by

E(Tj ) =
(

b2
(

j

2

))−1

,

which can, e.g., be derived by applying Eq. (10.2) to (10.3). The consideration of
the average germination rate b diminishes the rate of genetic drift (Fig. 10.3, [28])
and is bounded as 1/m ≤ b ≤ 1. The lower and upper bounds result from the
scenarios, where all seeds, respectively, rest m and one generation in the bank. So
the expected coalescent tree can be up to m2 generations longer in the SB model
compared to the usual non-SB Wright–Fisher model. Persistent seed banks, acting
as a genetic storage, increase diversity by a factor 1/b2. For a neutral model of a
constant population size, Eq. (10.7) simply yields fn,i = θ/(b2 i).

Applying diffusion theory, the population and the sample SFS can be, respec-
tively, obtained as f̂ (y) = θ/(b2 y) and f̂n,i = θ/(b2 i) by applying Eqs. (10.8)
and (10.9), which are equivalent to the coalescent results. The mean time to
absorption and the time to fixation can be, respectively, derived via Eqs. (10.5)
and (10.6) as t̄ (x) = −2/b2 (x log(x) + (1 − x) log(1 − x)) and ¯t∗(x) =
−2/b2(1 − x)/x log(1 − x). Therefore, the mean time to absorption/loss and the
time to fixation are both slowed down in the SB model by a factor of 1/b2 compared
to the non-SB model.

10.3.2 Estimation of Past Demographic Events

The change in coalescent rate due to SB decreases the strength of genetic drift,
lengthens the time of fixation of neutral alleles and thus diminishes the genetic
differentiation between populations [56]. This consequently affects the inference
of past demography of a population or a species [62]. In the following, we
present a simplified demographic setting that allows us to make the results of
Sects. 10.2.1 and 10.2.3 applicable via a simple time rescaling argument. We assume
that plants and seeds of all age classes are equivalently affected by changes in
the population size such that the relative proportions of all type of seeds, and
therefore the seed bank age distribution b1, . . . , bm and its average germination
rate b remain constant over time. Furthermore, the population size changes are
assumed to occur on a coalescent time scale so that the relocation process can reach
an equilibrium between coalescent events as in the case of a constant population
size. This particularly implies that the population size is approximately constant
over any given time window, i.e. for a given m-window k0 the relative population
size function (as scaled by the population size N at present time) at the i-th cell
ρN(i + k0 − 1) = N(i + k0 − 1)/N ≈ ρN(k0). This simplification holds for a
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geometrically growing population, if the growth rate and m are chosen realistically
small. In the case of an instantaneous population decline, this relationship is
violated, but only for m − 1 generations, so that for small m instantaneous changes
within a window can be neglected due to the small corresponding coalescence
probability for large population sizes.

In continuous time, let ρ(t), which arises from ρN([Nt]) as N → ∞ and time
being measured in units of N generations, be piecewise continuous, bounded and
follow the conventions in discrete time. The time-rescaling argument (in terms of
the harmonic mean of the relative population sizes) for the coalescent approximation
of the non-SB Wright–Fisher model [32], t → ∫ t

0 ρ(s)−1ds, can then be applied to
the ancestral process (An(t))t≥0 to obtain the process with time-varying population
size (A

ρ
n(t))t≥0. Therefore, the corresponding results to Eqs. (10.2) and (10.3) are,

respectively, given by Živković and Tellier [62]

P(Aρ
n(t) = j) =

n∑
k=j

cnkrkj exp

(
−b2

(
k

2

) ∫ t

0
ρ(s)−1ds

)
(10.10)

and

E(T
ρ
j ) =

∫ ∞

0
P(Aρ

n(t) = j)dt. (10.11)

The SFS can be simply obtained by applying Eq. (10.11) to (10.7) and applied
for the estimation of demographic parameters, which is only feasible to some extent
with prior knowledge on the average germination rate b [62]. The SFS can also
be obtained within the diffusion framework (e.g. via a moment based approach)
to solve a time inhomogeneous-version of Eq. (10.4) with the diffusion term given
by σ 2(y, t) = b2y(1 − y)/ρ(t) and the drift term μ(y) = 0 (see [61] for non-SB
models). As an application of these results, it has been shown in a seminal study [52]
that b can be estimated by applying an Approximate Bayesian Computation (ABC)
method to polymorphism data with prior knowledge on metapopulation structure
and N using ecological data.

10.3.3 Seed Banks Decrease the Rate of Divergence Between
Populations/Species

As the coalescent tree is longer by a factor 1/b2, we also predict that the inference of
recent splits between populations (or species) is affected (Fig. 10.2). Seed banking
decreases the genetic differentiation, measured as Fst , in spatially structured
populations [49]. Note that the population migration rate should be multiplied by b

if pollen only disperse, and not if pollen and seeds disperse. Ignoring seed banking
thus influences the estimation of migration rates if the appropriate dispersal scaling
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Fig. 10.2 In a model of
speciation (without gene
flow) from an ancestor into
two incipient species,
persistent seed banks increase
the amount of incomplete
lineage sorting due to the
lower rate of genetic drift in
species 2 (SB) compared to
species 1 (non-SB). The
number of shared alleles (red
mutations) between species
with and without seed bank is
increased by seed banking
compared to private alleles
(black and grey crosses)

is not taken into account. On a longer time scale, species with persistent seed banks
may exhibit higher rates of shared alleles between divergent species, the so-called
Incomplete Lineage Sorting (ILS), which is obscuring the phylogenetic signal of
speciation (red mutations in Fig. 10.2). For example, several species in the tomato
clade show evidence for seed banking [43], and high rates of ILS are found [44].

10.3.4 Seed Banks Increase the Rate of Recombination

Seed banking decreases the recombination rate per year because only seeds
germinating with probability b can undergo recombination upon gamete production.
However, as the overall coalescent tree is longer by a factor 1/b2, the net effect of
longer seed persistence is to increase the amount of recombination events per locus
by a factor 1/b (Fig. 10.3). We can thus predict that at equal census size SB species
compared to non-SB species should exhibit (1) a higher genetic diversity (number
of SNPs), and (2) a higher recombination rate per locus (Fig. 10.3). Using prior
information on N , nucleotide diversity and recombination rate per gene, it should
thus be possible to estimate b for any given species with persistent seed bank.

10.4 Effect of Seed Banking on Selective Processes

Seed banks slow down natural selection, and decrease the Hill-Robertson effect.
Persistent seed banking slows down the action of positive (and purifying) selection,
so that it takes longer for a selected allele to get fixed in a population [23, 34, 49].
However, we have recently demonstrated that even though selection is slower under
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Fig. 10.3 Effect of a persistent seed bank on the length of the coalescent tree, diversity and
recombination rate per gene. The comparison is made for two species of equal census size:
one without (b = 1, left panel) and one with seed banking (b = 0.5, right panel). The
number of segregating sites S3 is increased by the seed bank (grey crosses). The per gene scaled
recombination (ρ) and mutation (θ) rates are exemplarily given. The branches in grey are generated
by recombination events
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Fig. 10.4 Effect of a persistent seed bank on signatures of selection. (left panel) An increase of
the strength of positive selection (σ = 2) among independent SNPs is illustrated in terms of the
normalized SFS, r̂n,i = fn,i/Sn; for species without (black) and with (white, b = 0.5) seed bank.
(right panel) Persistent seed banks increase the strength of selection and recombination rates, so
that narrower but deeper selective sweep signatures are expected around the target of selection in
SB versus non-SB species

more persistent seed banks, the strength of selection is enhanced when observed at
equilibrium (Fig. 10.4 for positive selection, [34]). This is explained by selection
acting on every lineage germinating from the seed bank at rate b, whereas genetic
drift acts on the time scale of b2.
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10.4.1 Selection on Unlinked Sites

As already mentioned above, it is more straightforward to model selection within
the diffusion framework than via coalescent theory. For non-SB models, a partly
numerical and partly explicit solution of Eq. (10.4) can be obtained by finding a
spectral representation of f (y, t) for a constant population size [48] and even for
piecewise population size changes [64]. Since the average germination rate b is
included as a linear factor in Eq. (10.4), the underlying method can even be extended
to SB models. For convenience, we will only present the equilibrium solution of the
SFS for a constant population size, which anyway demonstrates the main affect of
selection on seed banks.

The population and the sample SFS are, respectively, given via Eqs. (10.8)
and (10.9) as

f̂ (y) = θ

b2y(1 − y)

1 − exp(−2σ(1 − y)/b)

1 − exp(−2σ/b)

and

f̂n,i = θn

b2i(n − i)

1 − 1F1(i; n; 2σ/b)e−2σ/b

1 − e−2σ/b
.

For the mean time to absorption and the time to fixation one can only obtain
onerous equations [34], which as well as the results for the SFS show that seed
banks enhance the effect of selection (Fig. 10.4, left panel) while the considered
allele takes longer to reach that equilibrium state.

10.4.2 Selection on Linked Sites

Here we propose four novel theoretical predictions which have not yet been tested
with experimental data.

1. As selection is strong and recombination rates are higher in SB species, classic
selective sweeps[8, 29] will exhibit a strong but reduced extent hitchhiking
signature [41] around the target site (Fig. 10.4, right panel).

2. As seed banking generates higher nucleotide diversity and slows down positive
selection, it is also expected that positive selection acts on standing genetic
variation and incomplete sweeps (in which the selected allele has not reached
fixation) should be observed (the so-called soft sweeps, [24, 57]).

3. Seed banks also favour the maintenance of polymorphism and enhance the
strength of balancing selection [49, 51, 53], which should thus be more observ-
able in SB species.
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Fig. 10.5 Effect of a persistent seed bank on increasing pervasive purifying selection and
decreasing the effect of background selection in the genome when comparing SB (black line) and
non-SB (grey line) species. Genes with similar recombination rates are binned (see [4]). Nucleotide
diversity at synonymous sites increases faster for increasing recombination rates in SB than non-
SB (left panel), diversity at non-synonymous sites is driven by more efficient selection in SB versus
non-SB (middle panel) predicting the ratio �A/�S to differ across recombination rates between
SB and non-SB species (right panel)

4. The Hill-Robertson effect [25] should be reduced in outcrossing SB compared to
outcrossing non-SB species. Purifying selection is also predicted to be efficient
and narrow around the target sites (decreasing the extent of background selection,
[5, 6]) in SB species (Fig. 10.5). This yields from the enhanced recombination
rate compared to the coalescent rate and the increased strength of selection under
seed banking.

Positive and purifying selection are thus predicted to be more efficient and show a
reduced LD signature in SB than in non-SB species. In SB species, positive selection
should be pervasive across the genome, signatures of classic selective sweeps would
be narrow around the target site (Fig. 10.4), and the extent of purifying linked
(background) selection should be limited (Fig. 10.5). More selective sweeps are
also expected to arise from standing genetic variation and/or be incomplete in SB
compared to non-SB species.

10.5 Conclusions

We have built here a model of a so-called weak seed bank for plants species, but
also applicable to fungi or invertebrate species producing dormant resting stages.
An assumption that we have used in both of our models is namely that the maximum
time seeds can spend in the bank, m, is bounded and small compared to the time of
coalescence of lineages. This condition ensures that our coalescent model converges
to the n-Kingman coalescent [28], and that the separation of time scale and the
Markovian property can be used to analyse the diffusion model. Seed banking is
thus a unique life-history trait which links ecology and genetic diversity defining the
Lewontin paradox in angiosperms. Following the hypotheses and predictions above
(summarized in Table 10.1), we predict that SB species exhibit smaller census sizes,
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Table 10.1 Summary of hypotheses and predictions

Hypothesis Predictions

Seed banking increases neutral diversity and
the rate of recombination

Seed banking species exhibit more diversity
and higher recombination rates per locus

Seed banking enhances the efficiency of
selection and decreases the Hill-Robertson
effect

Signatures of selection are enhanced, selec-
tion is more pervasive, and footprints of
selection narrower in genomes of SB species

Seed banking enhances the time of allele
fixation and decreases genetic differentiation

Seed banking decreases the accuracy of
past demographic inference and increases the
amount of Incomplete Lineage Sorting and
incongruence in phylogenies

i.e. species abundance, but much higher genetic diversity than non-SB species. This
could be termed as an inverse Lewontin paradox for plant species when comparing
SB and non-SB species, which generates the opposite pattern of diversity versus
census size than found in animals. As a corollary, we predict that selfing non-SB
species exhibit large census sizes but show the lowest genetic diversity compared to
SB species.

An alternative model has been proposed, the so-called strong seed bank, where
the time m can be infinite or at least very large compared to coalescent times [3].
These models produce very different predictions regarding the SFS and the effect of
recombination, because they do not consist in a rescaled version of the Kingman n-
coalescent. Strong seed banks can generate so-called multiple merger coalescents [3,
50] with signatures differing from our classic results for neutral sites. It is suggested
that these models may be better adapted to bacteria species with resting stages that
can survive for many years (especially for soil bacteria [37]), which is a much larger
amount of time compared to their generation time [18]. As more and more full
genome intra-species polymorphism data are becoming available in bacteria, fungi,
invertebrates (Daphnia, Mosquito) and plants, it is a fascinating prospect to test the
derived predictions and to assess which of the weak or strong seed bank models
applies to a given species.
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62. Živković D, Tellier A (2012) Germ banks affect the inference of past demographic events. Mol
Ecol 21:5434–5446
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