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From Numerical Weather Prediction
Outputs to Accurate Local Surface Wind
Speed: Statistical Modeling and Forecasts
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Aurore Dupré and Philippe Drobinski

Abstract Downscaling ameteorological quantity at a specific location from outputs
of Numerical Weather Prediction models is a vast field of research with continuous
improvement. The need to provide accurate forecasts of the surface wind speed at
specific locations of wind farms has become critical for wind energy application.
While classical statistical methods like multiple linear regression have been often
used in order to reconstruct wind speed from Numerical Weather Prediction model
outputs, machine learning methods, like Random Forests, are not as widespread in
this field of research. In this paper, we compare the performances of two downscaling
statisticalmethods for reconstructing and forecastingwind speed at a specific location
from the European Center of Medium-range Weather Forecasts (ECMWF) model
outputs. The assessment of ECMWFshows for 10mwind speed displays a systematic
bias, while at 100m, the wind speed is better represented. Our study shows that both
classical andmachine learningmethods lead to comparable results.However, the time
needed to pre-process and to calibrate the models is very different in both cases. The
multiple linear model associated with a wise pre-processing and variable selection
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shows performances that are slightly better, compared to Random Forest models.
Finally, we highlight the added value of using past observed local information for
forecasting the wind speed on the short term.

Keywords Local wind speed · Downscaling · Statistical modeling · Numerical
weather prediction model · Wind speed forecasts

2.1 Introduction

The wind energy sector has seen a very sharp growth in recent years. According
to the Global Wind Energy Council (GWEC), 54GW has been installed in 2016,
corresponding to an increase of 12.6% of the total installed capacity [11]. World-
wide, the number of wind farms increases each year and feeds the electrical network
with a larger amount of energy. For instance, in 2016, France has seen its highest
capacity growth rate ever recorded. This sharp increase of connected wind power
has for instance allowed the network to receive 8.6GW from wind power plants, on
November 20th, corresponding to 17.9% of the energy produced this day [19]. The
need to have access to accurate wind forecasts on several timescales is thus becom-
ing crucial for the wind energy producer and grid operator, in order to anticipate the
energy production, to plan maintenance operations and to handle balance between
energy production and consumption. Changing regulations of the energymarket with
the end of feeding-in tariffs make this anticipation vital for wind energy producers.
Finally, a related but different topic consists in the estimation of the wind resource
of its long-term (multi-year) variability and trends mainly for prospecting purposes.

The increasing need for accurate forecasts of the surface wind speed fortunately
comes with the improvement of the Numerical Weather Prediction models (NWP)
describing and forecasting atmospheric motions. Indeed, they constitute a key source
of information for surface wind speed forecasts all the more so as their realism,
accuracy and resolution have increased steadily over the years [2].

Nevertheless, these models are not necessarily performing uniformly well for all
atmospheric variables. Their astonishing performances are evaluated on variables
such as mid-tropospheric pressure which reflect the large-scale mass distribution,
which is effectively well understood physically (see, e.g., [23]) and efficiently mod-
eled numerically. Variables tied to phenomena occurring on smaller scales (such as
cloud-cover or near-surface winds) depend much more directly on processes that
are parameterized (e.g, not resolved). In contrast to large-scale motions (governed
by the Navier–Stokes equations), parameterizations are generally partly rooted in
physical arguments, but also in large part empirical. When comparing output from
a numerical model to a local measurement, there will therefore always be several
sources of error: representativity error (contrast between the value over a grid-box
and the value at a specific point), numerical error (even if we were describing only
processes governed bywell-established physical laws, discretization is unavoidable),
and error tied to the physics described (because processes, especially parameterized
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ones, are not well modeled). To reduce representativity error and to better represent
small-scale processes, in particular those tied to topography and surface roughness,
one strategy consists in downscaling with models that describe the atmospheric flow
on finer scales (see, e.g., [24]). One disadvantage of this approach is the numerical
cost, and one limitation is the need for finer observations to initialize the state of the
atmosphere, if details of the flow other than those directly implied by the topography
and surface condition are sought for.

Strategies to estimate surface winds, or other meteorological variables, from the
output of NumericalWeather Prediction models (NWP) or climate models have been
developed in several contexts, with different motivations, and leading to different
methodologies and applications.

Model Output Statistics (MOS) has been developed in weather forecasting for
several decades to estimate the weather related variability of a physical quantity,
based on NWPmodel output [10]. NWPmodels perform now very well in predicting
large-scale systems. Relations thus can be derived to link the latters to local variables
at an observation site. Linear models are generally used, with the outcome now
expanded over a wider area than only the location of stations where observations are
available [27].

In the context of climate change, downscaling ameteorological quantity at a given
location in order to produce time serieswhich have plausible statistical characteristics
under climate change has for long been investigated [26]. The challenge is here to
capture appropriately the relation between large-scale flow (as it can be described
by a model with a moderate or low resolution) and a variable at a specific location
(e.g. wind, temperature, precipitation) and then use climate models to provide a
description of the large-scale atmospheric state under climate change. Local time
series with appropriate variability and consistent with this large-scale state of the
atmosphere are then generated, e.g. [17, 20, 25].

Wind energy domain is nowadays a very active branch in downscaling techniques
because of the need for accurate forecasts at specific location of a wind farm. For
describing winds close to the surface, 10m wind speed is often a convenient variable
as it has been for decades a reference observed variable and also now a reference
NWP model output. In the case of wind energy, the wind speed then needs to be
extrapolated at the hub height to have access to wind power, leading to an increase of
the error on the predicted power [13, 16, 18]. Wind speed at the hub height (typically
100m) is a variable of interest as it allows to avoid vertical extrapolation errors [4],
but it is rarely available in observations. Different outputs of NWP models can be
used as explanatory variables of the near surface wind speed. It seems that there
is no strong consensus on the predictors to use, mainly because relations between
predictors and predictand should differ from one location to the other. However,
different studies have shown the importance of a certain set of variables to predict
surface wind speed. Amongst them, markers of large-scale systems (geopotential
height, pressure fields) and boundary layer stability drivers (surface temperature,
boundary layer height, wind and temperature gradient) can be cited [5, 6, 20]. In
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terms of methodology, several models have already been studied, including Lin-
ear regression, Support Vector Models (SVM) or Artificial Neural Network (ANN)
[14, 21].

The model of the European Center for Medium-range Weather Forecasts
(ECMWF) has reached a resolution of about 9km in the horizontal. In addition,
ECMWF analyses and forecasts now give access to 100m wind speed output, devel-
oped mainly for wind energy applications. If we can be very confident in the ability
of NWP models to represent several variables, some others may not be so reliable.
This is especially the case for surface variables such as 10 and 100m wind speed.
Consequently, using the robust information given by some variables to correct sur-
face wind speed is straightforward.We have access to surface wind speed observed at
10, 100m over a long period of 5 years at SIRTA observation platform [12]. The aim
of this project is, in particular, to explore how different statistical models perform
in forecasting the 10 and 100m wind speed using informations of ECMWF analy-
ses and forecasts outputs at different horizons. We choose multiple linear regression
because it is a widely used technique, and Random Forests which have not been, to
our knowledge, deeply studied in the framework of downscaling surface wind speed.
For multiple linear regression, variable selection is a very important step for calibrat-
ing the statistical models, whereas Random Forests handle variables automatically.
Moreover, Random Forests can handle nonlinear relations very well. Therefore, the
comparison of those very different statistical models, as well as the information used
by each of them, should be very instructive.

The paper is organized in 5 parts. The next section describes together the data and
the statistical models to be used. In Sect. 2.3, the training dataset is explored, and
used to calibrate the statistical models. In Sect. 2.4, forecasts of 10 and 100m wind
speed are run to downscale wind speed at the observation site. In the last section, we
discuss the results, conclude and give perspectives to this work.

2.2 Data and Methodology

2.2.1 Data

Observed Wind Speed

In this paper, we use observations of the wind speed at the SIRTA observation plat-
form [12]. Surfacewind speed at 10m height from anemometer recording is available
at the 5-min frequency. Thewind speed at 100m height fromLidar recording is avail-
able at 10-min frequency. Both data span for 5 years from 2011 to 2015. We filter
observations by a sinusoidal function over a 6-h window centered at 00, 06, 12 and
18h to obtain a 6-h observed wind speed to be compared to the NWP model outputs
available at this time frequency. We found that the resulting time series are not sen-
sitive to the filter function. We also try different filtering windows, concluding that
6-h is the best to compare to the NWP model outputs. Due to some missing data,
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Fig. 2.1 Map of the SIRTA observation platform and its surroundings

two final time series of 5049 filtered observations are computed (over 7304 if all data
were available).

SIRTA observatory is based 20Km in the South of Paris on the Saclay plateau
(48.7◦N and 2.2◦E). Figure2.1 shows the SIRTA observation platform location,
marked by the red point on the map, and its close environment. Regarding the relief
near SIRTA, observe that a forest is located at about 50m north to the measurement
devices. South, buildings can be found at about 300m from the SIRTA observatory.
In the East-West axis, no close obstacle are encountered. Further south, the edge of
the Saclay plateau shows a vertical drop of about 70m, from 160m on top to 90m
at the bottom.

NWP Model Outputs - ECMWF Analyses

Variables are retrieved fromECMWFanalyses at 4 points around theSIRTAplatform.
The spatial resolution of ECMWF analyses is of about 16km (0.125◦ in latitude and
longitude). Topography is thus smoothed compared to the real one. As the surface
wind speed is very influenced by the terrain, the modeled surface wind speed is not
necessarily close to the observed wind speed. The data spans from the 01/01/2011 to
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Table 2.1 Surface variables

Altitude (m) Variable Unit Name

10/100m Norm of the wind speed m·s−1 F

10/100m Zonal wind speed m·s−1 U

10/100m Meridional wind speed m·s−1 V

2m Temperature K T

2m Dew point temperature K Dp

Surface Skin temperature K skt

Surface Mean sea level pressure Pa msl

Surface Surface pressure Pa sp

– Boundary layer height m blh

– Boundary layer dissipation J·m−2 bld

Surface Surface latent heat flux J·m−2 slhf

Surface Surface sensible heat flux J·m−2 sshf

31/12/2015 at the 6-h frequency. It is sampled at each date where a filtered sampled
observation is available.

The near surface wind speed at a given location can be linked to different phe-
nomena. The large-scale circulation brings the flow to the given location explaining
the slowly varying wind speed. The wind speed in altitude, the geopotential height,
the vorticity, the flow divergence, sometimes the temperature can be markers of large
systems like depressions, fronts, storms, or high pressure systems explaining a large
part of the low frequency variations of the surface wind speed (Table2.2). At a finer
scale, what is happening in the boundary layer is very important to explain the intra-
day variations of the wind speed. The state and stability of the boundary layer can be
derived from surface variables describing the exchanges inside the layer. Exchanges
are driven mostly by temperature gradient and wind shear that develop turbulent flow
(Table2.3). Thermodynamical variables like surface, skin, and dew point tempera-
tures and surface heat fluxes can also inform on the stability of the boundary layer, as
well as its height and dissipation on its state (Table2.1). In the end, 20 output variables
are retrieved from ECMWF analyses at the 4 points around the SIRTA observatory
and at different pressure levels. Note that we restrict the study to local variables (at
the location of measurements or in the column above). It might also be possible to
take advantage from larger scale information [5, 27]. The choice of taking 4 points
around the SIRTA platform has the advantage of being simple and straightforward.
Providing instead the explanatory variables by their interpolated value at SIRTA and
the two components of their gradient does not lead to significantly different results.

ECMWF Deterministic Forecasts

The year 2015 of deterministic forecasts is retrieved fromECMWFmodel. A forecast
is launched every day at 00:00:00 UTC. The time resolution retained is of 3h and the
maximum lead-time is 5 days. The same variables as for the analyses are retrieved
at the same points around the SIRTA platform.
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Table 2.2 Altitude variables

Pressure level (hPa) Variable Unit Name

1000hPa/925hPa/850hPa/700hPa/500hPa Zonal wind speed m·s−1 U

1000hPa/925hPa/850hPa/700hPa/500hPa Meridional wind speed m·s−1 V

1000hPa/925hPa/850hPa/700hPa/500hPa Geopotential height m2·s−2 Z

1000hPa/925hPa/850hPa/700hPa/500hPa Divergence s−1 Di

1000hPa/925hPa/850hPa/700hPa/500hPa Vorticity s−1 Vo

1000hPa/925hPa/850hPa/700hPa/500hPa Temperature K T

Table 2.3 Computed variables

Pressure level (hPa) Variable Unit Name

10m to 925hPa Wind shear m·s−1 ΔF

10m to 925hPa Temperature gradient K ΔT

2.2.2 Methodology

Our aim is to model the real observed wind speed from outputs of NWP model
described above. More specifically, we use ECMWF analyses i.e the best estimate
of the atmospheric state at a given time using a model and observations [15]. In
what follows, the observed wind speed is the target and the analysed variables are
potential explanatory features. Because of the complexity of meteorological phe-
nomena, statistical modeling provides an appropriate framework for corrections of
representativity errors and the modeling of site dependent variability. In this context,
two main directions may be as usual investigated, parametric and nonparametric
models.

Parametric models assume that the underlying relation between the target variable
and the explanatory variables has, relatively to a certain noise, a particular analytical
shape depending on some parameters, which need to be estimated through the data.
Among this family of models, the linear model with a Gaussian noise is widely used,
mostly thanks to its simplicity [8]. Associated to an adequate variable selection, it
may be very effective.

Nonparametric models do not suppose in advance a specific relation between the
variables: instead, they try to learn this complex link directly from the data itself.
As such, they are very flexible, but their performance usually strongly depends on
regularization parameters. The family of nonparametric models is quite large: among
others, one may cite the nearest neighbors rule, the kernel rule, neural networks,
support vector machines, regression trees, random forests... Regression trees, which
have the advantage of being easily interpretable, show to be particularly effective
when associated to a procedure allowing to reduce their variance as for the Random
Forest Algorithm.
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Let us describe the linear model and random forests in our context with more
details. The linear model supposes a relation between the target Yt , observed wind
speed at time t , and explanatory variables X1

t , . . . , X
d
t , available from the ECMWF,

at this time t . For lightening the notation, we omit the index t in the next equation.
The linear model is given by

Y = β0 +
d∑

j=1

β j X j + ε,

where the β j ’s are coefficients to be estimated using least-square criterion minimiza-
tion method, and ε ∼ N (0, σ 2) represents the noise. Among the meteorological
variables X1, . . . , Xd , some of them provide more important information linked to
the target than others, and some of them may be correlated. In this case, the stepwise
variable selection method is useful to keep only the most important uncorrelated
variables [8]. Denoting by β0, . . . , βd the final coefficients obtained this way (some
of them are zero), the estimated wind Ŷ is then given by

Ŷ = β0 +
d∑

j=1

β j X j . (2.1)

An alternative approach to perform variable selection and regularization is to use
the Lasso method (see for instance [22]), relying on minimization of the least square
criterion penalized by the �1 norm of the coefficients β1, . . . , βd . More specifically,
for this model, the predicted wind speed at time t is a linear combination of all the
previous variables as in Eq. (2.1), the coefficients β1, . . . , β̂d being estimated using
the least square procedure, under the constraint

∑d
j=1 |β j | ≤ κ for some constant

κ > 0.
Regression trees are binary trees built by choosing at each step the cut minimizing

the intra-node variance, over all explanatory variables X1, . . . , Xd and all possible
thresholds (denoted by Sj hereafter). More specifically, the intra-node variance, usu-
ally called deviance, is defined by

D(X j , Sj ) =
∑

X j<Sj

(Ys − Y
−
)2 +

∑

X j≥Sj

(Ys − Y
+
)2,

where Y
−
(respectively Y

+
) denotes the average of the observed wind speed in

the area {X j < Sj } (respectively {X j ≥ Sj }). Then, the selected j0 variable and
associated threshold is given by (X j0 , Sj0) = argmin j,Sj D(X j , Sj ). The prediction
is provided by the value associated to the leaf in which the observation falls.

To reduce variance and avoid over-fitting, it may be interesting to generate several
bootstrap samples, fitting then a tree on every sample and averaging the predictions,
which leads to the so-called Bagging procedure [3]. More precisely, for B bootstrap
samples, the predicted power is given by
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Ŷ = 1

B

B∑

b=1

Ŷ b, (2.2)

where Ŷ b denotes the wind speed predicted by the regression tree associated with
the bth bootstrap sample. To produce more diversity in the trees to be averaged,
an additional random step may be introduced in the previous procedure, leading to
Random Forests, where the best cut is chosen among a smaller subset of randomly
chosen variables. The predicted value is the mean of the predictions of the trees, as
in Eq. (2.2).

2.3 The Relationship Between Analysed and Observed
Winds

2.3.1 10/100m Wind Speed Variability Comparison

In this section we compare the observed wind speed at 10 and 100m with the 10
and 100m wind speed output of the ECMWF analyses at the closest grid point,
respectively. No significant difference can be found when using other grid points, or
the mean of the four surrounding locations.

Figure2.2 shows the Probability Density Function (PDF) of the wind speed com-
ing from ECMWF analyses and observations, and also for illustration an example of
a time series of corresponding wind speeds. It appears that the 10mwind speed from
ECMWF analyses displays a systematic bias by overestimating the 10m observed
wind speed (Fig. 2.2a, b). The wind at 100m is comparatively well modeled in terms
of variations in the time series, but also in terms of distribution (Fig. 2.2c, d). It seems
that the errors mainly come from the overestimation of peaked wind speeds and the
underestimation of low wind speeds (Fig. 2.2c, d). As 10m wind speed is very influ-
enced by even low topography and surrounding obstacles, which are smoothed or
not represented in ECMWF analyses, some of its variations are not well described,
and even a quite systematic bias is displayed. The effect of the topography and ter-
rain specificity have less impact on the 100m wind speed, so that it is much better
represented in ECMWF analyses.

The ability of the model to represent the observed wind speed is quantified in
Table2.4 by the deviation, the Root Mean Square Error (RMSE), and the Pearson
correlation which formula are given by Eqs. (2.3), (2.5), and (6.8) respectively.

Deviation for the i th observation = (yi − xi ) (2.3)

RMSE =
√∑n

i=1 (xi − yi )2

n
(2.4)

http://dx.doi.org/10.1007/978-3-319-99052-1_6
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(a) (b)

(c) (d)

Fig. 2.2 10m (top) and 100m (bottom) wind speed time series in summer 2011 (panels a and c,
respectively) and the respective probability density function estimated over the 5 years sample wind
speed (panels b and d)

Table 2.4 MeanDeviation, RMSE, and correlation performed by ECMWF analyses for modeling
the 10 and 100m wind speed

Periods Deviation RMSE Correlation

F10 F100 F10 F100 F10 F100

2011–2015 −1.00 0.14 1.41 1.01 0.82 0.93

2011 −1.19 0.04 1.59 1.06 0.80 0.91

2012 −0.94 0.23 1.31 1.03 0.85 0.92

2013 −1.13 0.06 1.52 0.93 0.82 0.94

2014 −0.88 0.26 1.30 1.00 0.80 0.93

2015 −0.87 0.14 1.30 0.97 0.82 0.94

Winter −0.97 0.04 1.41 0.97 0.83 0.94

Spring −1.11 0.27 1.56 1.02 0.71 0.90

Summer −0.92 0.33 1.31 1.04 0.80 0.91

Fall −1.04 −0.10 1.36 1.00 0.87 0.93
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Correlation =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

, (2.5)

where xi is the wind speed from the NWPmodel and yi the observed wind speed; n is

the number of samples (xi , yi ) and x̄ = 1

n

n∑

i=1

xi (the sample mean) and analogously

for ȳ.
No clear improvement of the ECMWF analyses over the years from 2011 to 2015

can be detected in Table2.4. The correlation stays quite constant over the years for
both 10 and 100m wind speeds. The Deviation and RMSE seem to decrease for the
10m wind speed but it cannot be confirmed because of the good score performed
in 2012. The variations of performance may only come from changes in the pre-
dictability of the weather over Europe [7]. Seasonal variations of the performance of
ECMWF analyses can be seen, especially on the correlation between the observed
and modeled wind speed. At both 10 and 100m, the analysed wind speed is better
correlated with the observations in winter and fall than in spring and summer. In all
cases, the scores shown are better for the 100m wind speed than for the 10m wind
speed.

Variations of the performance of the ECMWF analyses in representing the
observed wind speed are evidenced by Fig. 2.3. The figure shows the 10m wind
speed from ECMWF analyses as a function of the 10m observed wind speed for

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.3 10m wind speed from ECMWF analyses as function of the 10m observed wind speed
given cardinal directions. Panels correspond to a direction modeled by ECMWF analyses; the wind
blows from a West, b Southwest, c South, d Southeast, e East, f Northeast, g North, h Northwest
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.4 Same as Fig. 2.3 but for 100m wind speed

different directions of the analysed wind. It is obvious that the errors made by the
numerical model differ regarding the direction of the wind. For instance, when the
wind comes from the West (Fig. 2.3a), the correlation is very close to one, but for a
wind coming from the North/Northeast (Fig. 2.3f, g), it is very low, and the model
highly overestimates the 10m wind speed. It can be easily linked to the specificity
of the terrain. Indeed, when a northerly wind is recorded, it has been blocked by
the forest north of the anemometer. The same happened for southerlies with the
building situated further and which influence is thus not as substantial as the forest.
Figure2.4 displays the same as Fig. 2.3 but for the 100m wind speed. It seems that
there is no more dependence of the performance of the ECMWF analyses regarding
the direction of the 100m wind speed; it appears to be not significantly impacted by
the surrounding forests and buildings.

2.3.2 Reconstruction of the 10/100m Observed Wind Speed
Using NWP Outputs

In the sequel, a k-fold cross validation is performed over 10 different periods taken
within the 5-years of analyses and observation. Each time, statistical downscaling
models are trained on a given period of about 4500 data points and applied over
the remaining period of about 500 data points to reconstruct the 10 and 100m wind
speed, so that it results in 10 reconstructions that span the 5 years of data. Table2.5
enumerates the statistical downscaling models assessed in this study. Models differ
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Table 2.5 Statistical models used to downscale 10 and 100m wind speed

Model type Explanatory variables Direction dependance Name

Linear F10 No LRF

Linear All No LRA

Linear Stepwise No LRSW

Linear Lasso No LRLa

Linear F10 Yes LRdir
F

Linear All Yes LRdir
A

Linear Stepwise Yes LRdir
SW

Random forest All No RFA

Random forest All Yes RFdir
A

by their types (Linear Regression and Random Forests), the explanatory variable
selection, and whether a model is conditionally fitted regarding the direction of the
wind speed or not. We evaluate the different statistical models in terms of RMSE
and Correlation with the observed wind speed on the reconstruction period.

10m Wind Speed Reconstruction

Figure2.5 shows results for the reconstruction of the 10m wind speed. Each box
contains the 10th reconstructed k-fold periods. First, by using only wind speed with
a linear model LRF , RMSE is reduced by about 40%, but the correlation stays con-
stant. Adding other variables to linear model (i.e. LRA, LRSW and LRLa) allows
to reduce the RMSE by 60%, and to significantly improve correlation from 0.80 to
0.91 between reconstructed wind speed and observed one. Using stepwise selection
of variables, the Lasso penalization or all variables does not change results in this
case, showing that only a part of the information is useful. Using variable selection
as stepwise or �1 penalization (Lasso) avoids over-fitting. Random Forests models
perform slightly better than linear models without defining one given model per car-
dinal wind directions. Variables selected stepwise are very diverse (wind speed, large
scale variables, boundary layer state drivers), while Lasso technique mainly selects
wind speed and wind component, thus using redundant information. Analyzing the
main variables used by Random Forests shows that this methods seems to put much
weight on wind component first, highlighting the dependence of the error on the 10m
wind speed regarding its direction.

By fitting a linear model in each direction (noted with ‘dir ’) we manually intro-
duce a relevant information, especially for 10m wind speed (Fig. 2.3). The model
is however more exposed to under-fitting as the sample size of the training data in
one direction can be low. Nevertheless, LRdir

SW performs better than all other mod-
els. Indeed, stepwise choice is made for each direction so that the model is deeply
adapted to each direction. This method results in a significant improvement of the
RMSE and correlation scores. As expected regarding Fig. 2.3g, the best improve-
ment is retrieved for northerly wind speed and is of more than 0.1m·s−1 compared
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Fig. 2.5 RMSE and
correlation results when
reconstructing 10m wind
speed with models described
in Table2.5. The first boxes
stand for the ECMWF
analyses 10m wind speed

(a)

(b)

to LRSW . No improvement is found for easterlies, surely because the number of
data is too small. Fitting a Random Forest in each direction does not improve results,
maybe because the direction is already well handled by this model by using the zonal
and meridional component of the wind. So one big advantage of Random Forests
over linear regression is that it does not require to explore previously deeply the data
for extracting appropriate and relevant features as inputs to the model. Figure2.6
shows time series of 10m observed wind speed, NWPmodel wind speed output over
summer period of 2011 (panel a) and the probability density function corresponding
to the entire period, 2011–2015 (panel b). Panels c and e show respectively time
series of the reconstructed 10m wind speed by LRdir

SW (red line) and LRSW (blue
line), and by RFdir

A (magenta line) and RFA (cyan line). Panels d and f show the
corresponding probability density functions. All statistical models allow for a good
bias correction. All models underestimate the small quantiles of the distribution and
give a distribution very peaked around the mean observed wind speed. High per-
centiles are however well reconstructed. This is encouraging because this part of the
distribution is important in terms of energy production. We can nevertheless expect
an overestimation of the wind energy production with those models because of the
underestimation of small percentiles.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.6 Timeseries (left) and PDF (right) of the observed 10m wind speed (straight black line),
and 10m wind speed from ECMWF (dotted black line) (a and b), Linear models (LRSW (blue) and
LRdir

SW (red)) (c and d), Random Forest models (RFA (cyan) and RFdir
A (magenta)) (e and f)

100m Wind Speed Reconstruction

Figure2.7 shows results of the reconstruction of 100m wind speed with statistical
models described in Table2.5. LRF allows a reduction of the RMSE of about 15%
corresponding to 0.14m·s−1 and the best model LRdir

SW reduces the RMSE by 23%
corresponding to 0.23m·s−1. The correlation is improved from 0.92 to 0.94. Adding
the direction dependence to linear model with only 100m wind speed (i.e. LRdir

F )
does not improve results regarding LRF . Indeed, the error on the 100m wind speed
does not depend on the direction. Using all explanatory variables (i.e. LRdir

A ) leads
to a strong over-fitting. Surprisingly, the linear model using stepwise selection of
explanatory variables in each direction (i.e. LRdir

SW ) recovers an important information
as it performs significantly better than the other. Again, its adaptability may be the
cause of its good performance. In the case of 100mwind speed, the best improvement
is found for easterlywind speeds. The information on the direction inRandomForests
does not improve the results like for 10m wind speed reconstruction. The more
important variables for Random forests and stepwise choice are mainly the 100m
wind speed, but also the wind shear in the boundary layer. Lasso technique selects
mainly 100m wind speed.
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Fig. 2.7 Same as Fig. 2.7,
for 100m wind speed

(a)

(b)

Figure2.8 shows time series of 100m observed wind speed, NWP model wind
speed output over summer period of 2011 (panel a) and the probability density
function corresponding to the entire period from 2011 to 2015 (panel b). panel c
and e show respectively time series of the reconstructed 100m wind speed by LRdir

SW
(red line) and LRSW (blue line), and by RFdir

A (magenta line) and RFA (cyan line).
Panels d and f show the corresponding probability density functions. Some peaked
wind speeds are less overestimated after statistical downscaling. As for the 10m
wind speed, statistical models underestimate the small quantiles of the distribution
and give a distribution peaked around the mean observed wind speed.

To conclude, we built different statistical models to improve the representation
of the 10 and 100m wind speed of the ECMWF analyses. It has been shown that
the 100m wind speed in ECMWF analyses is already well represented as it displays
no systematic bias and a good correlation. Nevertheless the RMSE computed for
the period 2011–2015 is still of 1.0m·s−1. Statistical models reduces the RMSE on
the 10m wind speed between 40 and 65%, and between 15 and 23% for the 100m
wind speed. They improve at the same time the correlation between the observed
wind speed and the reconstructed one. For linear models, the variables selection is
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.8 Same as Fig. 2.6, for 100m wind speed

of great importance to avoid over-fitting, and an exploration step allows to improves
results significantly. Random Forests give quite comparable results as the best linear
models, without needing variable selection and a preliminary exploration of the data.

2.4 Forecasts of Surface Winds

In this section we use the previous statistical models based on the knowledge of the
observed wind speed and the outputs of ECMWF analyses to forecast wind speed at
five days horizon with a frequency of 3h. We have access to 1 year of forecasts in
2015. We train these statistical models on ECMWF analyses from 2011 to 2014, and
apply the resulting model to the forecasts. Figures2.9 and 2.10 show respectively
the RMSE averaged over the 365 forecasts for the 10 and 100m wind speed. A
strong diurnal cycle of the performances of both ECMWF forecasts and downscaled
statistical predictions of the 10mwind speed is evidenced. This diurnal cycle seems to
be observed also for 100mwind speed forecasts, but with a less important amplitude.
As the dataset is trained on the ECMWF analyses, we can affirm that diurnal cycle
is better represented in the ECMWF analyses than in ECMWF forecasts. This could
be indeed explained by the data assimilation system that may help to correct errors
coming from NWP model parameterizations.
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Fig. 2.9 RMSE, computed between the 10m observed wind speed, and the 10m forecast wind
speed, averaged over the entire set of forecasts

Fig. 2.10 RMSE, computed between the 100m observed wind speed, and the 100m forecast wind
speed, averaged over the entire set of forecasts

An interesting result shown in Fig. 2.9 is that performance of the LRF statistical
model which is comparable to linear model LRSW , showing that the added value
of other explanatory variables is valuable mainly for small lead-times in this case.
Adding the dependence with the direction (i.e. LRdir

SW ) allows for a significant reduc-
tion of the RMSE. Random Forests RFA shows the best performance. In addition to
the simplicity to fit this model, its robustness seems to overcome linear regression
models. For 100mwind speed forecasts (Fig. 2.10), Linear models LRF , LRSW , and
LRdir

SW and Random Forest RFA are comparable.
For both 10 and 100m wind speed forecasts, statistical downscaling models

allow for significant improvements regarding ECMWF predicted wind speed, at any
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lead-time from 3h to 5 days. Training dataset on the analyses of ECMWF may not
be optimal. Indeed, training a statistical model for each lead-time separately should
deeply improve results. First, this could help to remove the displayed diurnal cycle,
but may also let the increase in RMSE with the lead-time be less sharp.

2.5 Summary and Concluding Remarks

We have used statistical models to evaluate 10 and 100m wind speed at a given
location from output of a NWP model. Comparison of the observed wind speed
and ECMWF wind speed output at 10 and 100m within the 5 years of data show
that ECMWF analyses well represent 100m wind speed. The computed RMSE is
of 1.0m·s−1 (the mean wind speed being of 5.8m·s−1) and no systematic bias is
displayed. On the contrary, 10m wind speed output from ECMWF analyses displays
a systematic overestimation the observed wind speed. The computed RMSE is of
1.4m·s−1 (the mean wind speed being of 2.4m·s−1).

By applying linear regression between a certain amount of selected variables and
observed wind speed, we reduce the RMSE for the 10 and 100m reconstructed wind
speed up to 65 and 23%, respectively. Those good results have been achieved by
fitting a linear model in 8 directions and by automatic selection of valuable variables
in those directions. Building such a model thus requires a special treatment and a
good knowledge of the specific site so that it cannot be systematically applied to
another site. Very interestingly, using Random Forests to reconstruct 10 and 100m
wind speed gives comparable results as the best linear models (about 57 and 20%,
respectively), while their performance is not sensitive to any preparation of the data.
Computing time is a bit longer than simple linear models, but it is quite similar when
a linear model is fitted in each direction.

In a second step, we applied the statistical models to forecast up to 5 days. Note
that statistical models are trained on past analyses. Applying it on forecasts will work
‘aswell’ only if the relationship betweenNWPoutputs and observedwind speed does
not change with lead-time. This is not a-priori guaranteed as the analyses incorporate
information fromobservation via data assimilation. Results are encouraging, because
the RMSE between forecast wind speed and observed wind speed is significantly
reduced compared to ECMWF forecasts whatever the lead-time, and for both 10 and
100m wind speeds. Interestingly, Random Forests perform the same or better than
linear models when applied to forecast 10m or 100m wind speed.

The results obtained for the forecasts are very encouraging: even though the
training only involved analyses, the reduction in RMSE persisted for lead-times
up to 5 days. Promisingly, there are evident changes to be tried which should lead to
improvements of the performances. As a first, training statistical downscaling mod-
els directly on ECMWF forecasts makes sense as a transfer function adapted to each
lead-time should take into account the reduced performance of ECMWF forecasts
around 15 pm and thus correct systematic errors in the representation of the diurnal
cycle. Moreover, training dataset for each lead-time separately should also help to
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reduce the increase of RMSE with lead-time by adapting the explanatory variables
to forecasts performance. For instance, for short lead-time, statistical models may
find out that surface wind speed in ECMWF forecasts gather valuable information
so that this information would be used. It may nevertheless not be the case at longer
timescales, so that statistical models would prefer using information from large-scale
circulation (e.g. pressure) which is well modeled by ECMWF forecasts, even at lead-
time up to 5 days. Secondly, the good performance of Random Forests together with
linear regression models denotes that it is possible to reconstruct the wind speed
with very different relations. Model aggregation may thus be a path to retrieve more
information than when using a single statistical model. It also seems that using statis-
tical downscaling techniques results in a more peaked distribution around the mean,
whereas the ECMWF forecasted 100m wind speed overestimates the extremes. As a
consequence, a properly weighted mean of the two different forecasts could improve
results as well.

In this study, we choose to use only local informations coming fromNWPoutputs.
Additive valuable informationsmay be retrieved from larger-scaleNWPoutputs such
as large-scale horizontal gradients of the pressure. However, the discussion on the
added value of any other NWP outputs is site dependent, and is already part of
research matters. For instance, it has been proved that large scale circulation patterns
give valuable information at timescales up to months in some regions of France [1].

A wind farm is often equipped with many anemometers situated at 10m and
at the hub height, so that local intime observations are easily available as well as
wind power output. Forecasting wind speed using only NWP outputs is a good way
to improve forecasts, but local past observations may also be used as explanatory
variable. Indeed, at very short lead-time (3-h), we can assume that the error the NWP
model make at t0h (corresponding to the analyses) may be correlated to the future
error at time t3h . We could also imagine to create a direct link between NWP outputs
and wind energy production as in [9], using in addition the information on the close
past wind energy production at the considered wind farm.

As a preliminary illustration of the benefit of such an approach, we train Random
Forests and Linear Regression with stepwise selection of variables to forecast 10
and 100m wind speed at time t3h only, and add the error on the wind speed at time
t0h as an explanatory variable of the future wind speed at time t3h . We perform a
k-fold of 10 forecasts over the year 2015. Results are represented in Fig. 2.11. When
forecasting 10m wind speed at t3h , using the error at time t0h allows for a reduction
of the RMSE of 5% with Random Forests and of 10% with linear model compared
to Random Forest without the observation at time t0h . When forecasting 100m wind
speed at t3h , using the information on the 10m wind speed observed at t0h allows for
an improvement of 2 – 6%. Adding the information on the 100m wind speed at time
t0h spectacularly improves results by 18% with linear regression model.

In addition of the good results obtained when reconstructing 10 and 100m wind
speed, we also showed encouraging results when forecasting wind speed up to 5
days. By using very different statistical models, we highlight advantages of Random
Forests over multiple linear regression, e.g. simplicity and robustness. Finally, very
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(a) (b)

Fig. 2.11 RMSE computed over 10k-fold forecasts of 10m (a) and 100m (b) wind speed at 3h
lead-time, using the error on the 10 and 100m wind speed at time t0h (denoted by Δ10 and Δ100,
respectively) as an explanatory variable. The dashed line represent the averaged RMSE of Random
Forest without using observations at t0h , and boxes represents the RMSE over 10k-fold forecasts

promising perspective for improving downscaling at short-term horizon is exposed; it
involves a pseudo-assimilation of a local past observed information into the statistical
downscaling model.
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