
Chapter 12
Optimal Management of a Wind Power
Plant with Storage Capacity

Jérôme Collet, Olivier Féron and Peter Tankov

Abstract Weconsider the problemof awind producerwho has access to the spot and
intraday electricity markets and has the possibility of partially storing the produced
energy using a battery storage facility. The aim of the producer is to maximize the
expected gain of selling in the market the energy produced during a 24-h period. We
propose and calibrate statistical models for the power production and the intraday
electricity price, and compute the optimal strategy of the producer via dynamic
programming.

Keywords Wind power generation · Battery storage · Intraday electricity market ·
Stochastic control

12.1 Introduction

Wind power is now widely recognized as an important part of the global energy
mix, and the actors of the energy industry must cope with the intermittent and to a
large extent unpredictable nature of the wind power production. To deal with this
intermittency, various economic and physical tools are available to the agents. On
the one hand, intraday markets, where wind power may be traded up to 30min prior
to delivery, allow the wind power producers to adjust their delivery volume estimates
as the forecast becomes more precise. On the other hand, physical storage facilities
whose cost is constantly declining, may be used to smooth out the production peaks
and store the extra power until it can be sold at a profit.
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In this paper, we therefore consider the problem of a (small) wind producer who
has access to the spot (day-ahead) and intraday electricity markets and has the pos-
sibility of partially storing the produced energy using a battery storage facility. The
role of battery storage is two-fold: on the one hand, it smoothes the variations of
wind power production, and on the other hand, it allows to exploit intertemporal
price discrepancies in the day-ahead market. The aim of the producer is to maximize
the expected gain of selling in the market the energy produced during a 24-h period.
The producer first makes a bid in the day-ahead electricity market for the following
day, and then, when the intraday markets for that day opens, may adjust her position
by trading in the intraday market. The strategy of the producer therefore consists of
a static part (position in the day-ahead market) and a dynamic part (trading strategy
in the intraday market). The deliveries in the spot and intraday market must be at
all times balanced by the wind production and battery injections/withdrawals. The
dynamic trading strategy is thus constrained by the finite capacity of the battery.
To determine the dynamic part of the strategy, we set up a stochastic model for the
intraday market price and the realized power production.

We mention that the majority of wind power producers in Europe still operate
within the framework of guaranteed purchase schemes whereby all the power they
produce is bought by the state-owned operator at a fixed price. However, as the
guaranteed purchase schemes are either phased out or replaced with more market-
oriented subsidies, the wind power producers face the need to sell the future power
production in the open markets in the absence of precise knowledge of the volume
to be produced.

In the literature, optimal operation of battery storage facilities has primarily been
considered in the context of microgrid control (see [11] for an up-to-date review
and, e.g., [8] for an example of using dynamic programming techniques similar in
spirit to the ones employed in the present paper). Another interesting reference in
this respect is [7], where the impact of forecast errors on optimal sizing of battery
storage in an isolated microgrid is evaluated. On the other hand, optimal bidding
strategies in intraday electricity markets for wind power producers who do not have
access to battery storage, have been studied in a number of papers, see e.g., [1, 2,
6, 10]. However, among wind power producers there is an interest towards investing
into battery storage to smooth out the intermittency of the renewable resource. More
recently, therefore, several authors have considered optimal bidding strategies for
systems consisting of a wind power plant and a storage capacity.

In [4, 5], optimal bidding strategies in the day-ahead market for wind-storage
systems are determined. The optimization is in this case static and the presence of
intradaymarket or the dynamic properties ofmarket prices are not taken into account.
However, a recent study [9] shows that intraday markets are increasingly used by
renewable energy producers to balance the forecasting errors in their production. It is
therefore important to evaluate the economic benefits of battery storage facilities for
renewable power producers and to determine optimal strategies for their operation
in the presence of intraday market. One study of bidding strategies in both day-
ahead and intraday markets is [3], where it is considered that market participants can
readjust their bids 6 times per day in the intraday market. The price are, however,
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assumed to be the same in the day-ahead in intraday market. Compared to these
references, our contribution is to introduce stochastic dynamic models for both the
wind power production and the intraday market price, calibrate them to market price
and wind production data, and find globally optimal dynamic bidding and operation
strategies for the wind producer using the stochastic control approach.

The paper is structured as follows. After describing the optimization problem
faced by the producer in Sect. 12.2, we introduce stochastic models for the intraday
price process and the realized production process. The methodology for calibrating
these models to real data is described in Sect. 12.3. Finally, in Sect. 12.4, we solve
the optimization problem of the agent within the framework of stochastic control and
optimal quantization and present numerical applications. The data used for model
calibration and numerical examples comes from a power plant in France consisting
of three 2MW wind turbines.

12.2 Description of the Model and the Optimization
Problem

In this section, we detail our assumptions concerning the structure of electricity
markets and formulate the optimization problem faced by the power producer and
the models we use for power production and the market prices.

Structure of the Intraday Market

Intraday electricity market is an electricity exchange where blocks of power for
delivery on a given day may be traded starting typically from 15h on the day before,
up to a very short time (e.g., 30 or 60min) before delivery. A block corresponds to
the delivery of a certain power throughout a fixed time period, such as an hour, a
half-hour or a quarter. The trading day in the intraday market is divided into N such
delivery periods of equal length.

Although the trading in the intraday market starts at 15h of the previous day, at
which point purchases/sales can bemade for any delivery period of the following day,
in practice liquidity becomes sufficient only 2–3h prior to delivery (see Fig. 12.1).
For this reason, and to simplify the analysis, we assume that the power producer
may trade in the intraday market only once for each delivery period, at a fixed time
interval δ (e.g., one hour) before delivery. There are thus N possible trading times,
and we shall denote these moments by T1, . . . , TN .

Strategy of the Producer

The producer makes a bid in the spot (day-ahead) market at time t = 0, by making
an engagement to deliver the amount Pk of electricity during the delivery period
[Tk + δ, Tk+1 + δ] for each k = 1, . . . , N . These deliveries will be paid at the spot
market price denoted by F(0, Tk + δ), k = 1, . . . , N .

At each time Tk , the producer knows the amount of power, whichwill be generated
during the delivery period [Tk + δ, Tk+1 + δ] (we neglect the forecast uncertainty
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Fig. 12.1 Left: French intraday electricity transaction prices for a fixed delivery hour (each point
corresponds to a single transaction). Right: bid-ask spread evolution in the German intraday market
for a fixed delivery hour. In both cases, we see a sharp increase in liquidity 2–3h prior to delivery

at such short time scales), and must decide how much power to buy/sell in the
intradaymarket, and howmuch power towithdraw from/inject into the battery during
this period, under the condition that injections/withdrawals must be balanced by
production and market purchases. This decision may be based on the known power
production for the upcoming delivery period, but also on the forecasts of power
production for future delivery times, as well as the current intraday prices for all
future delivery times.

The notation for various quantities is described (recalled) in the following table:

Qk Energy stored in the battery at the beginning of delivery
period k + 1 (at time Tk+1 + δ).

Qmin Minimal energy stored in the battery at all times.
Qmax Maximal battery capacity.
pk Energy purchased in the intraday market during kth delivery

period [Tk + δ, Tk+1 + δ].
Pk Energy produced during kth delivery period.
P(t, Tk), 0 ≤ t < Tk Forecast at time t of energy production during kth delivery

period.
Pk Energy delivered during kth delivery period according to the

engagements taken in the spot market.
Fk Intraday market price at time Tk for kth delivery period.
F(0, Tk) Spot market price for kth delivery period.
F(t, Tk), 0 < t < Tk Intraday market price at time t for kth delivery period.

Formulation of the Optimization Problem

The total gain from trading of the wind power producer is given by

G =
N∑

k=1

(Pk F(0, Tk) − Fk(pk + α|pk |)),
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where the termα|pk |models the bid-ask spread in the intradaymarket. The aim of the
producer is to maximize the expected value of this gain under the storage constraint

Qk ∈ [Qmin, Qmax ], k = 1, . . . , N .

The dynamics of the battery storage is described by

Qk = Qk−1 + Pk − Pk + pk .

The optimization problem of the producer thus writes:

max
P1,...,PN ,p1,...,pN

{
N∑

k=1

Pk F(0, Tk) − E

[
N∑

k=1

Fk(pk + α|pk |))
]}

,

where P1, . . . , PN are constants (determined at time 0), and (pk)1≤k≤N is a dynamic
strategy of trading in the intraday market, that is, a discrete-time stochastic process
adapted to the filtration generated by the production values (Pk), the price processes
in the intraday market (Fk) and (F(t, Tk))t<Tk and the process of forecast updates
(P(t, Tk))t<Tk .

Modeling the Dynamics of the Intraday Price Process

To understand how the intraday prices for the future delivery times and the power
production forecasts affect the strategyof the producer and formulate the optimization
problem for the power producer as a stochastic control problem,we need, in principle,
to model the dynamics of the intraday price process (F(t, Tk)t≥0,Tk>t ) and of the
forecast update process (P(t, Tk)t≥0,Tk>t ) as function of t . Since the dimension of
these processes is very large (24 or 48 depending on the number of delivery periods),
some form of dimension reduction is necessary. Figure12.2 shows that, for example,
the shape of the forecast curve does not change much in time, and therefore 2–3
stochastic factors should be sufficient to model the dynamics of the entire forecast
curve.

Inspired by the modeling approaches for the interest rate curve, and to allow
negative prices which are common in electricity markets with strong penetration of
renewables, we use a Gaussian factor-based model:

Ft = F(0, t) + ᾱ(t)
M ′∑

j=1

Y j
t .

Here we recall that Ft is the “last” intraday price, F(0, t) is the day-ahead price
(where the time 0 correspond to the gate closure time of the day-ahead market) and
(Y j )M

′
j=1 are independent Ornstein–Uhlenbeck processes:

dY j
t = −λ̄ j Y j

t dt + σ̄ j d B̂ j
t ,
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Fig. 12.2 Evolution of the
forecasts for all delivery
horizons on a single day, as
function of time remaining to
delivery day

where, (B̂ j )M
′

j=1 are Brownian motions under the risk-neutral measure Q. Note that
we have not included discounting because the effect of interest rates is negligible at
intraday time scales. Forward prices are computed by taking risk-neutral expectation:

F(t, T ) = E[FT |Ft ] = F(0, T ) +
M ′∑

j=1

ᾱ(T )e−λ̄ j (T−t)Y j
t . (12.1)

To obtain the dynamics of forward prices under the real-world measure, we make a
change of probability

dP

dQ

∣∣∣
F T

= exp

(
−

∫ T

0
φt d Bt − 1

2

∫ T

0
φ2
t dt

)
,

where the process φ is assumed to be deterministic. The process

Bt = B̂t +
∫ t

0
φsds

is then a Brownian motion under the historical measure and we can write

Y j
t = σ̄ j

∫ t

0
e−λ j (t−s)dB j

s + σ̄ j
∫ t

0
e−λ j (t−s)φ j

s ds := σ̄ j
∫ t

0
e−λ j (t−s)dB j

s + μ̄ j (t).

We can then write

Ft = F(0, t) + ᾱ(t)
M ′∑

j=1

(Y
j
t + μ̄ j (t)), (12.2)
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where Y
j
t = σ̄ j

∫ t
0 e

−λ j (t−s)dB j
s is a centered Gaussian factor process.

This model describes the dynamics of the intraday price over a single day. The
factors ᾱ and μ̄ describe the daily seasonality of the price. For estimating this model,

we shall assume that the random factors Y
j
for different days are independent and

compute averages over all trading days present in the data. Of course, intraday prices
for different days have different distributions due to the presence of the annual sea-
sonality pattern, but we assume that this pattern is fully taken into account by the
day-ahead market price.

The estimation of this model, as well as the one for the forecast dynamics, pre-
sented in the next paragraph, may be carried out in two different settings:

• The number of factors is smaller than the number of different delivery periods
for which the price is available in the market at the same time. In this case, one
can use the prices for different delivery periods to reconstruct the factors Y j

t from
the formula (12.1). In other words, the individual factors become observable. It
makes sense, then, to model separately the seasonality of each factor with the
corresponding mean function μ̄ j (t) as in formula (12.2).

• The number of factors is larger than the number of different delivery periods for
which the price is available at the same time. For instance, one may assume that
only the last intraday price is known and the number of factors is greater than one.
In this case, the individual factors are inobservable, and one cannot reconstruct
the mean function separately for each factor. In practice, we recommend to use
the number of factors which is less or equal to the number of delivery periods for
which prices are available.

More details on the estimation procedure are given in the following section, where
the estimation is based on the last intraday price only and the number of factors is
taken equal to one.

Modeling the Forecast Dynamics

Since the electricity price process in the intraday market and the wind power pro-
duction (forecast) may be negatively correlated, we propose a model for the wind
production process, which is of a similar structure to themodel for the price processes
and includes a possible correlation.

Pt = P(0, t) + α(t)(1 + γ P(0, t)δ)
M∑

j=1

(X j
t + μ j (t)),

where (X j )Mj=1 are independent centered Gaussian factors modeled as Ornstein–
Uhlenbeck processes:

dX j
t = −λ j X

j
t dt + σ j dW

j
t ,

α andμ j are deterministic functionsmodeling the daily seasonality of the production
process, P(0, t) is the forecast at the gate closure time of the intradaymarket, andW j

are Brownian motions possibly correlated with the Brownian motions B j driving the
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price process. Note that this model for the production process may allow for negative
production values, but such values may also be possible in practice when the wind
speed is very low due to nonzero power consumption of the wind turbine. The factor
1 + γ P(0, t)δ reflects the fact that forecast errors are larger in amplitude when the
forecast itself is large.

The forecast processes at other times are given by

P(t, T ) = E[PT |Ft ] = P(0, T ) + α(T )(1 + γ P(0, T )δ)

M∑

j=1

e−λ j (T−t)(X j
t + μ j (t)).

In other words, the forecast process follows a Gaussian dynamics and is completely
determined by the knowledge of the M factors X1, . . . , XM .

12.3 Model Calibration

In this section we explain how our models for the production (Pt ) and the intraday
market price (Ft ) are estimated from data. The estimation procedure will be different
in the one-factor case (one factor for the price and one for the forecast) and the
multifactor case, because in the one-factor case it is enough to observe only the
price/production to recover the risk factor. We describe the estimation procedure of
the model for the production, the one for the price being very similar.

Estimation in the One-Factor Case

We first focus on the estimation of the model for production. Since there is only
one factor, we may omit the index j and take σ = 1 without loss of generality.
We assume that the agent observes L realizations of the forecast (Pl(0, Tk))

l=1,...,L
k=1,...,N

and the production process (Pl
k )

l=1,...,L
1≤k≤N (each realization corresponds to a single

production day in the past), and we introduce the forecast error process (Zl
k)

1≤l≤L
1≤k≤N ,

where Zl
k = Pl

k − Pl(0, Tk).We assume that Zl
k is a Gaussian vector with parameters

E[Zl
k] := μ̃k := μkαk(1 + γ Pl(0, Tk)

δ), Cov[Zl
i , Z

m
j ] = 0 for l �= m

and Cov[Zl
i , Z

l
j ] = αiα j (1 + γ Pl(0, Ti )

δ)(1 + γ Pl(0, Tj )
δ)Ωi j (λ),

Ωi j (λ) := e−λ(Ti−Tj )
+ − e−λ(Ti+Tj )

2λ
,

where we denote αk := α(Tk) and μk = μ(Tk). The log-likelihood of (Zl
k)

l=1,...,L
k=1,...,N ,

omitting constant terms, is given by
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l(α, μ, λ, γ, δ) = − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl (0, Tj )
δ)

− 1

2

L∑

l=1

(
Zl

α(1 + γ Pl (0, T·)δ)
− μ

)�
Ω−1(λ)

(
Zl

α(1 + γ Pl (0, T·)δ)
− μ

)

= − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl (0, Tj )
δ)

− 1

2

L∑

l=1

(
Zlγ,δ

α
− μ

)�
Ω−1(λ)

(
Zlγ,δ

α
− μ

)
,

where we use the shorthand notation Zl
γ,δ = Zl/(1 + γ Pl(0, T )δ).

In an attempt to partiallymaximize the likelihood in explicit form,wefirst compute
the derivatives with respect to μ:

∂l

∂μi
= e�

i Ω−1(λ)

L∑

l=1

(
Zl

γ,δ

α
− μ

)
,

where ei is a vector with 1 at the i th position and 0 elsewhere. As a result,

μ = 1

Lα

L∑

l=1

Zl
γ,δ := 1

α
Zγ,δ,

and we can write the simplified form of the log-likelihood

l(α, λ, γ, δ) = − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl(0, Tj )
δ)

−1

2

L∑

l=1

(
Zl

γ,δ

α
− Zγ,δ

α

)�
Ω−1(λ)

(
Zl

γ,δ

α
− Zγ,δ

α

)
.

Differentiating now with respect to α, and making some straightforward simplifica-
tions, we find

∂l

∂αi
= − L

αi
+ 1

αi

L∑

l=1

Zl
γ,δ,i − Zγ,δ,i

αi
e�
i Ω−1(λ)

Zl
γ,δ − Zγ,δ

α

with the corresponding first-order condition
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1 = 1

L

L∑

l=1

Zl
γ,δ,i − Zγ,δ,i

αi
eTi Ω−1(λ)

Zl
γ,δ − Zγ,δ

α
. (12.3)

Summing up and substituting into the expression for the log-likelihood, we find that
the latter is given by (once again without constant terms):

l(λ, γ, δ) = − L

2
log(detΩ(λ)) −

∑

l

∑

j

log(1 + γ Pl(0, Tj )
δ) − L

N∑

j=1

logα∗
j (λ),

(12.4)

where α∗(λ) is the solution of (12.3). This equation can also be written as

1 = 1

αi

N∑

k=1

Ω−1(λ)ik
R̂ki

αk
, R̂ki = Zγ,δ,k Zγ,δ,i − Zγ,δ,k Zγ,δ,i ,

or, in vector notation, as

α = M̂α−1, (12.5)

where Mi j = Ω−1(λ)i j R̂i j .
We compute the maximum likelihood estimator by solving numerically the equa-

tion (12.5) and then minimizing the function l(λ, γ, δ) given by (12.4).

Estimation in the Multifactor Case

In the presence of M random factors we assume that the agent observes not only
the production process and the forecast at date zero, but also, at each trading
date (Tk)1≤k≤N−1, the forecast of production of the next M delivery periods, that
is, P(Tk, Tk+i ) for 1 ≤ i ≤ M ∧ (N − k). Let Zl

i,k = Pl(Tk, Tk+i ) − Pl(0, Tk+i ).
Then, the random vector {Zl

i,k, 1 ≤ l ≤ L , 1 ≤ k ≤ N , 0 ≤ i ≤ M ∧ (N − k)} is a
Gaussian random vector with parameters

E[Zl
i,k] := μ̃i,k =

M∑

j=1

α(Tk+i )(1 + γ P(0, Tk+i )
δ)e−λ j (Tk+i−Tk )μ

j
k

Cov[Zl
i,k, Z

m
j,n] = 0 for l �= m

Cov[Zl
i,k, Z

l
j,n] =

M∑

p=1

α(Ti+k)(1 + γ P(0, Tk+i )
δ)(1 + γ P(0, Tn+ j )

δ)

× α(Tj+n)e
−λp(Ti+k−Tk+Tj+n−Tn)σ 2

p

e−λ(Tk−Tn)+ − e−λ(Tk+Tn)

2λ
.
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Similarly to the one-factor case, one can then write down the explicit likelihood
of the model and estimate parameters by numerical maximization of the likelihood
function.

Numerical Illustration

In this paragraph we illustrate our estimation procedure on a real data set. For this
illustration we use a one-factor specification of the model. For estimating the produc-
tion model we use a time series of power production from Jan 1st, 2012 to Dec 31st,
2014 from a wind park in France provided by Engie Green/Maïa Eolis, together with
a time series of historical forecasts provided by the same producer. The production
data had a 10-min frequency and was averaged down to 1h frequency. The forecast
data had 15-min resolution, which was averaged down to 1h resolution. Every day,
4 forecasts are available, at 0, 6, 12 and 18h. In this study, we used only the forecast
at 12h, corresponding to the gate closure time of the day-ahead market.

Figure12.3, left graph illustrates the evolution of the day-ahead forecast and the
realized production on September 8, 2014. The right graph of this figure shows
the results of estimation. The estimated value of the mean reversion parameter is
λ∗ ≈ 3.85days−1; in other words the characteristic length of mean reversion is about
6.2h. The functionα(t) appears to have a slightly increasing profile reflecting the fact
that forecast uncertainty grows with time. The function μ(t) is small and negative,
which means that the forecasts in our data set may have a small but statistically
significant positive bias.

For estimating the intraday price model we use the day-ahead price for the
Germany-Austria region downloaded from the web site of EPEX Spot, and the aver-
age intraday price time series at 1h frequency for the same region, computed from
a high-frequency time series provided to us by EPEX Spot, from Jan 1st, 2014 to
Dec 31st, 2014. In this study, we construct a proxy for the ’last’ intraday price for
each delivery hour, by taking, for the delivery hour H, the average intraday price
for the hour H-1. The Germany Austria region was chosen for reasons of market
liquidity and data availability. Figure12.4, left graph, illustrates the evolution of the
day-ahead price and the corresponding intraday price on September 8, 2014.

Since our price and production data sets are fromdifferent regions and do not cover
the same period completely, we carry out the estimation procedure independently for
the two sets and assume that there is no correlation between the innovations of price
and production. In the same region, the two processes are likely to be correlated, and
our estimation procedure can be easily adapted to that case.

Figure12.4, right graph shows the results of the estimation of the intraday price
model. The estimated value of the mean reversion parameter is λ̄∗ ≈ 9.6, which
corresponds to the length of mean reversion of about 2.5h. The function ᾱ (price
volatility) appears to have peaks at 10th and 20th hours, which correspond, approx-
imately, to morning and evening peaks of electricity demand. The estimator of the
function μ̄ (bias) falls within the 5% confidence interval around zero for almost all
hours, which means that day-ahead prices are almost equal to expectations of the last
intraday prices under the historical measure.
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Fig. 12.3 Top: Evolution of the day-ahead forecast and the realized production on September 8,
2014 (left graph) and October 19, 2014 (right graph). Bottom: Results of estimation of the model
for realized production. Dashed lines show the 5% confidence interval around zero for the estimator
of μ

12.4 Solving the Optimization Problem by Dynamic
Programming and Optimal Quantization

The state variables of the problem are the battery charge state (Qk)1≤k≤N and the
factor processes for the wind production (X j

Tk
)
1≤ j≤M
1≤k≤N and the intraday market price

(Y j
Tk

)
1≤ j≤M ′
1≤k≤N . For our optimization problemwe consider all processes in discrete time.

Define the value function

vk(q, x1, . . . , xM ,y1, . . . , yM
′
)

= min
pk ,...,pN ,Qk−1=q

E
Tk ,x1,...,xM ,y1,...,yM

′
[

N∑

n=k

Fn(pn + α|pn|)
]

.

In the following, to save space, we write x for x1, . . . , xM and similarly for other
variables. The original optimization problem then writes
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Fig. 12.4 Top: evolutionof the day-aheadprice and the corresponding last intradayprice onSeptem-
ber 8, 2014 (left graph) and October 19, 2014 (right graph). Bottom: Results of estimation of the
intraday price model. Dashed green lines show the 5% confidence interval around zero for the
estimator of μ̄

max
P1,...,PN

{ N∑

k=1

Pk F(0, Tk) − E
t0,Xt0 ,Yt0 [v1(Q0, XT1 ,YT1)]

}
.

The dynamic programming principle for the value function writes

vk(q, x, y) = min
pk :q+Pk−Pk+pk∈[Qmin ,Qmax ]

{φk(y)(pk + α|pk |)

+ E
Tk ,x,y[vk+1(q + πk(x) − Pk + pk, XTk+1 ,YTk+1)}

with the terminal condition

vN = vN (q, x, y) = min
pN :q+PN−PN+pN∈[Qmin ,Qmax ]

φN (pN + α|pN |),

where
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φk(y) = F(0, Tk) + ᾱ(Tk)
M ′∑

j=1

(y j + μ̄ j (Tk)),

πk(x) = P(0, Tk) + α(Tk)(1 + γ P(0, Tk)
δ)

M∑

j=1

(x j + μ j (Tk)).

We may also impose a constraint on the state of charge of the battery at the terminal
date: QTN = QT0 . In this case, vN (q) = FN (pN + α|pN |) with pN = QT0 − q −
PN + PN .

To compute the value function and the optimal strategy numerically, we start by
discretizing the state of charge of the battery, introducing a uniform grid Qmin =
q1 < · · · < qJ = Qmax . This means that the control pk also takes a finite number of
values. We denote vk(q j , . . . ) by v j

k . Then,

v j
k (x, y) = min

i=1,...,J
{φk(y)η(qi − q j + Pk − πk(x)) + E

Tk ,x,y[vik+1(XTk+1 ,YTk+1)},

where we have used the notation η(p) = p + α|p| to simplify the formula.
The second step is to replace the discrete-time Ornstein–Uhlenbeck processes

(X,Y ) with a finite-state Markov chain. This will be achieved using the method of
optimal quantization. Let Pk be the unconditional distribution of Z := (XTk ,YTk ).
Note that it is a multivariate Gaussian distribution with zero mean. For every k =
1, . . . , N , we define the optimal grid of size Nq by solving

min
Ẑ

E
Pk [(Z − Ẑ)2],

where the minimum is taken over all random vectors supported by Nq points (and
the variable Z is M + M ′-dimensional in our setting). It is known (see e.g., [12] for
a review) that the solution is the so called optimal Voronoi quantization which is
obtained by nearest-neighbor projection of the vector Z on a set of Nq points. We
shall denote these points by ẑk1, . . . , ẑ

k
Nq

with ẑkj := (x̂ kj , ŷ
k
j ), the associated Voronoi

cells by Ck
1 , . . . ,C

k
Nq

and the associated probabilities by p̂k1, . . . , p̂
k
Nq
. To find the

points, one can simulate a large number of samples from Pk and use the randomized
Lloyd’s algorithm (also knownas theK-means clustering algorithm). In the numerical
illustration below, since the processes X andY are one-dimensional and uncorrelated,
we use the precomputed grids for themultivariate Gaussian distribution, downloaded
from the web site quantize.maths-fi.com.

Next, we replace the continuous process with a Markov chain (Ẑk)0≤k≤N with Nq

states. The transition probabilities of the chain are defined by

π̂0
i = P[Ẑ1 = ẑ1i ] = π̂1

i

and π̂ k
i j = P[Ẑk+1 = ẑk+1

j |Ẑk = ẑki ] = P[ZTk+1 ∈ Ck+1
j |ZTk ∈ Ck

i ].
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Fig. 12.5 Sample evolution of the modelled quantities. In the left graph, prices are in Euros per
MWh. In the right graph, all amounts are shown in KWh, and in the case of production and amount
sold correspond to the production and the amount sold during the specified hour

These transition probabilities are evaluated by Monte Carlo.
The value function can then be computed on the quantization grid using the

following formula:

v j
k (ẑ

k
m) = min

i=1,...,J
{φk(ŷ

k
m)η(qi − q j + Pk − πk(x̂

k
m)) +

Nq∑

l=1

π̂ k
mlv

i
k+1(z

k+1
l )}.

Numerical Illustration

We first illustrate the computation of the value function v1 and the corresponding
optimal strategy. For the numerical illustration we have taken Nq = 500 quantization
nodes, and the state of charge was discretized over J = 20 regularly spaced values.
The computation of the value function v1 takes about 10 s on a MacBookPro with
i5-2.90GHz processor and 8Gb physical memory (C++ implementation using only a
single processor core). The value function depends on the spot market engagements
Pk , and they have been taken equal to production forecasts for the corresponding
hour: Pk = P(0, Tk). Figure12.5 illustrates the evolution of various quantities in our
model. The forward price and forecast curves are taken from the market data on a
specific day (September 8, 2014); the intraday price and production were simulated
using our model estimated from market data, and the state of charge of the battery
(SOC) and the amount to be sold in the intraday market were computed from the
solution of the HJB equation. In the left graph, prices are in Euros per MWh and in
the right graph, all values are shown in KWh, and in the case of production (forecast
and realized) refer to the power generated during the specified hour. The model
parameters are Qmin = 0, Qmax = 1000 KWh, α = 0.2 (the intraday market spread)
and Q0 = 0 (initial state of charge).

We next illustrate the effect of the battery capacity Qmax and the intraday market
spread α. Still under the assumption that Pk = P(0, Tk) for every k, we show in
Fig. 12.6 the maximum expected gain of the power producer for different values of
the battery capacity Qmax and different values of α, that is, the value
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Table 12.1 Expected gain from adding a 1000KWh battery capacity, in euros per day

α = 10% α = 20% α = 30%

September 8, 2014 46.64 41.58 39.28

October 19, 2014 41.35 38.05 36.15

Fig. 12.6 Expected gain (en euros) of the wind power producer as function of the battery capacity
Qmax , for different values of the spread parameter α. The dotted line shows the theoretical profit
of the power producer if the power production were exactly equal to the day-ahead forecast. Left:
8 September 2014. Right: 19 October 2014

N∑

k=1

Pk F(0, Tk) − min
p1,...,pN

E

[
N∑

k=1

Fk(pk + α|pk |)
]

. (12.6)

The dotted line shows the theoretical profit of the power producer if the power
productionwere exactly equal to the day-ahead forecast and no trading in the intraday
market were allowed. We see that in the absence of battery storage the expected gain
is considerably reduced compared to perfect forecast owing to the intermittency
of wind power, but that sufficient storage capacity allows to attain the theoretical
value and even exceed since it allows both to smooth the variations of power output
and trade in the intraday market. Note that the overall expected gain of the power
producer depends on the production forecast and the day-ahead price, therefore it
will not be the same for different days (19 October 2014 was a day with relatively
strong wind, so the gain of the producer was higher than on 8 September 2014, even
though the prices were lower). The extra gain from adding battery capacity (defined
as the difference between the value function in the presence of a battery and the value
function with zero capacity) is more stable, as shown in Table12.1.

Finally we study the optimal bidding strategies for the producer in the day-ahead
market. These are obtained by maximizing the value function of the producer with
fixed bids Pk , with respect to Pk with a numerical optimization algorithm (BFGS).
Figure12.7 shows the optimal bids (quantity to be delivered in the intraday market),
together with the day-ahead production forecast, and the day-ahead price (thin line
with right scale). We see that the producer aims to exploit the intertemporal price
discrepancies in the day-ahead market using her battery storage capacity by selling
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Fig. 12.7 Optimal day-ahead bids for the power producer compared to production forecast (left
scale) and the day-ahead market price (right scale). Left graph: 8 September 2014. Right graph: 19
October 2014

more at times when the day-ahead price is high and buying more when the price is
low. However, the gain of the producer from this additional trading is limited: on 8
September 2014 the value function (expected gain) increases from 542.12 euros to
554.26 euros, and on 19 October it increases only from 1001.90 to 1009.07 euros.
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