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Preface

This book contains a selection of 12 papers presented at the workshop “Forecasting
and Risk Management for Renewable Energy”, which took place in Paris in June
2017, and was organized in the framework of the project FOREWER (Forecasting
and Risk Management of Wind Energy Production), funded by the French National
Research Agency (ANR).

For reasons of environment protection and energy security, the share of
renewable resources in the global energy supply is now rising at an overwhelming
rate. The European Commission has set the target to reach a 20% share of energy
from renewable sources by 2020 and further increases of this already ambitious
objective will follow. The production of electricity from renewable resources such
as wind and solar is both spatially distributed and highly dependent on atmospheric
conditions and thus intermittent in nature, leading to challenging planning and risk
management problems for the stakeholders of the wind energy industry.

These new challenges, in particular, those related to investment planning and
grid integration under the conditions of large-scale renewable generation, call for
better understanding of the spatial and temporal distribution of the renewable
resource and power production with the help of precise statistical and probabilistic
models. Besides, recent advances in climatology show that it may be possible to
develop medium and long-term (seasonal to decadal) probabilistic forecasts of the
renewable power output with a better performance than that of forecasts based on
climatological averages, leading to improved risk management tools for power
producers and grid operators.

The aim of the interdisciplinary workshop “Forecasting and Risk Management
for Renewable Energy” was thus to bring together statisticians, probabilists,
meteorologists, economists, and engineers working on various aspects of renewable
energy, from production forecasting to optimal storage management, to discuss
together quantitative methods for renewable energy risk management and fore-
casting. The specific focus was on wind energy with some talks addressing pho-
tovoltaic energy as well.
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This book contains a representative selection of papers discussed at the
workshop. It is loosely divided into two parts. The first part focuses on modeling
and forecasting for renewable energy, with mostly statistical tools. In addition to
wind forecasting, two papers focus on the forecasting of electric demand, which is
the second major source of randomness in electric systems. The second part, on the
other hand, adopts a “risk management” point of view and analyzes the issues such
as network security with high renewable penetration; management of energy stor-
age in the presence of renewable assets and the effect of renewable penetration on
electricity prices.

We hope that this selection of papers will give the readers a taste of the truly
multidisciplinary collaborations which are required to make progress on the key
scientific challenges of energy transition, and stimulate new projects and partner-
ships in this field.

Paris, France Philippe Drobinski
June 2018 Mathilde Mougeot

Dominique Picard
Riwal Plougonven

Peter Tankov
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Part I
Renewable Energy: Modeling

and Forecasting



Chapter 1
Marginal Weibull Diffusion Model
for Wind Speed Modeling
and Short-Term Forecasting

Alain Bensoussan and Alexandre Brouste

Abstract We propose a dynamical model for the wind speed which is a Markov
diffusion process with Weibull marginal distribution. It presents several advantages,
namely nicemodeling features both in terms of marginal probability density function
and temporal correlation. The characteristics can be interpreted in terms of shape and
scale parameters of a Weibull law which is convenient for practitioners to analyze
the results. We calibrate the parameters with the maximum quasi-likelihood method
and use the model to generate and forecast the wind speed. We have tested the model
on wind-speed datasets provided by the National Renewable Energy Laboratory.
The model fits well the data and we obtain a very good performance in point and
probabilistic forecasting in the short-term in comparison to the benchmark.

Keywords Statistical modeling · Ergodic diffusions · Wind speed forecasts

1.1 Introduction

The two-parameter Weibull probability density function has become widely used to
fit wind speed datasets in the literature of wind energy (see [5, 9] and the reference
therein). It has been included in regulations concerning wind energy and in most
popular software on wind modeling like HOMER and WAsP.1

1One can find more informations on software respectively at https://analysis.nrel.gov/homer/
and http://www.wasp.dk/.
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4 A. Bensoussan and A. Brouste

The energy production of a wind farm is related in particular to the wind speed on
the site through the power transfer function of wind turbines. Forecasting production
on timescales from minutes to days improves the operational management of a wind
farm. From seconds to minutes, this forecast allows an accurate indication to achieve
to control the turbine and to smooth the production on the electricity grid by storage.
From hours to half a day, it can be used to decide whether or not to store for efficient
trading on electricity markets. Finally, forecasting production on timescales of a day
to several days helps in scheduling maintenance operations. These problems belong
to the class of stochastic optimization problems due to the intermittent nature of the
production (or the wind) and the solutions depend mainly on the underlying model
used for the production (or the wind speed).

Several dynamical models such as classical time series (ARMA, FARIMA, . . .),
Markov chains [6, 13, 18, 20], semi-Markov chains [7, 8] and neural networks [17]
have been considered in the literature for both modeling and short-term forecasting.
Short-term forecasting corresponds in this paper to timescales of half an hour to half
a day and can be distinguished for long-term forecasting where numerical weather
prediction models are involved in addition to statistical methods.

We have considered the Cox–Ingersoll–Ross (CIR) diffusion in [2] to model the
square of the wind speed. Diffusion processes in general provide efficient point and
probabilistic forecasts obtained from transition probability density functions. For
instance, the CIR model outperforms the persistence benchmark (i.e. last measured
value as forecast value) in terms of one-step forecast mean square error (MSE).
Moreover, stochastic optimization problems with such continuousMarkov processes
are handled conveniently.

In this paper, we propose a diffusion process for the wind speed whose marginal
law is Weibull. Temporal correlation structure of the stochastic process is also
parametrized. We show that the model is interesting as a wind generator model.
Indeed, the fact that characteristics are understandable in terms of shape and scale
parameters of a Weibull law helps practitioners analyzing the results. This model
also shows good performances in short-term forecasting for a large class of datasets
provided by the National Renewable Energy Laboratory (NREL). The model is com-
pared to the persistence benchmark and the Ornstein–Uhlenbeck diffusion process
both in terms of MSE (for point forecasts) and continuous ranked probability score
(CRPS, for probabilistic forecasts) for short-term lead times (see also [12] for defini-
tions of other score and other benchmark for one-step ahead forecasting). Contrary
to the CIR process, the transition probability density function is no longer available
in closed form. Consequently, new calibration and forecast methods are presented in
this paper which differ from our previous work [2].

In Sect. 1.2, the dynamic marginal Weibull diffusion model is presented. Point
forecast and probabilistic forecast methods are developed in Sect. 1.3. In Sect. 1.4,
the estimation method of the parameters of the aforementioned model is presented
and the dynamic model is calibrated on NREL dataset. Forecasting performances of
the different models are also summarized.
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1.2 Dynamic Model for the Wind Speed

Let ϑ = (ϑ1, ϑ2, ϑ3) be a 3 dimensional parameter in (R+∗ )3. Practitioners consider
the wind speed as a Weibull law whose probability density function is

f (z, ϑ) = ϑ3

ϑ2

(
z

ϑ2

)ϑ3−1

exp

(
−

(
z

ϑ2

)ϑ3
)

, z ≥ 0. (1.1)

For this distribution, the mean is directly given by

μW = ϑ2Γ

(
1 + 1

ϑ3

)

and the standard deviation by

σW =
√

ϑ2
2Γ

(
1 + 2

ϑ3

)
− μ2

W .

In this section, we describe the model mentioned in the introduction. The three-
parameter marginal Weibull diffusion process (Zt, t ≥ 0) is the solution of the
stochastic differential equation (sde)

Zt = z0 +
∫ t

0
v0(Zs, ϑ)ds +

∫ t

0
v1(Zs, ϑ)dβs, t ≥ 0, (1.2)

where (βt, t ≥ 0) is a standardWiener process. Moreover the drift coefficient v0(·, ·)
and the diffusion coefficient v1(·, ·) are known functions that are described below.
The stochastic process (Zt, t ≥ 0) is an homogeneous Markov diffusion process
which can be characterized by its transition probability density function p(t, ·; x, ϑ)

representing the conditional probability density function of Zs+t given Zs = x (for
more information on Markov diffusion processes, see [1] or [11]). The long term
law of Zt (as t → ∞) is called the stationary distribution or invariant distribution.
It is denoted p(·;ϑ). If the initial condition z0 is random and follows the invariant
distribution, then the law of Zt is still the invariant distribution for all t ≥ 0. In this
setting, the stationary distribution of our model is Weibull with scale parameter ϑ2

and shape parameter ϑ3 (see Eq. (1.1)).
In this model, we fix the drift term equal to

v0(z, ϑ) = ϑ1

(
ϑ2Γ

(
1 + 1

ϑ3

)
− z

)
(1.3)

where Γ is the gamma function. Here, the parameter ϑ1 is the temporal correlation
parameter of the process. It can be shown, if the initial condition is the invariant
distribution, that the correlation structure is given by
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corr(Zs,Zt) = e−ϑ1(t−s). (1.4)

For more information, see Appendix 1. Also, the computation of the proper diffusion
coefficient v1(z, ϑ) to obtain Weibull probability density function as marginal distri-
bution given the previously fixed correlation structure is postponed to Appendix 2.
Namely, the diffusion coefficient is given by

v21(z, ϑ) =
2ϑ1ϑ2Γ

(
1 + 1

ϑ3

)
f (z, ϑ)

⎛
⎝

(
1 − e

−
(

z
ϑ2

)ϑ3
)

− 1

Γ
(
1 + 1

ϑ3

)
∫ (

z
ϑ2

)ϑ3

0
u

(
1+ 1

ϑ3

)
−1

e−udu

⎞
⎠ .

(1.5)

For the marginal Weibull diffusion model the transition probability density func-
tion p(t, y; x, ϑ) cannot be obtained in closed form. Fortunately, it is the solution of
the Fokker–Planck (FP) equation

∂

∂t
p(t, y; x, ϑ) = − ∂

∂y
(v0(y, ϑ)p(t, y; x, ϑ)) + 1

2

∂2

∂y2
(
v1(y, ϑ)2 p(t, y; x, ϑ)

)
(1.6)

with initial condition p(0, y; x, ϑ) = δx(y)where δx(y) represents aDirac distribution
at point x.

1.3 One-Step Forecasting

The operator of a wind farm is interested in forecasting the production in the next
hours to provide the information to the entity in charge of the electric grid and trade
on electricity markets. From the transfer function of the wind turbine, the production
is directly related to the wind speed. So the problem boils down to the short-term
forecasting of the wind speed.

1.3.1 Definitions

Suppose that we fix the present time at t = 0 and that the initial observed wind speed
is Z̃0. Let us denote Z̃t the true (random and unknown) value of the wind speed at
time t > 0 and ψ̃(t, ·) its (unknown) probability density function (see Fig. 1.1).

In this paper, a point forecast is an estimator of the wind speed Z̃t given the

knowledge of Z̃0. It is denoted by π(ZZ̃0
t ). We call persistence benchmark the current

knowledge

πper(Z
Z̃0
t ) = Z̃0. (1.7)
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Fig. 1.1 One-step ahead (short-term) forecasting error

Following the diffusion model, the forecast value is defined by

πd (Z
Z̃0
t ) = Eϑ (Zt)

where Zt is the solution of (1.2) with initial condition z0 = Z̃0.
But, a probabilistic forecast can also be proposed. It consists in defining an esti-

mator of the probability density function ψ̃(t, ·) of Z̃t given the knowledge of Z̃0. It
is denoted ψ̂(t, ·; Z̃0). It is worth mentioning that no probabilistic forecasts can be
specified in the basic persistence benchmark. In the diffusion model, it is natural to
define the probabilistic forecast as the transition probability density function, namely

ψ̂(t, ·; Z̃0) = p(t, .; Z̃0, ϑ)

where p is the solution of (1.6).

1.3.2 Point Forecasts and Mean-Square Error

1.3.2.1 Point Forecasts

For diffusion models, the point forecast is

πd (Z
Z̃0
t ) = Eϑ (Zt) =

∫
R

y p(t, y; Z̃0, ϑ)dy (1.8)
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where Zt is the solution of (1.2) with initial condition z0 = Z̃0. In the particular case
of diffusion processes with a linear drift v0(z, ϑ) = ϑ1(α − z), it can be shown (see
Appendix 1) that the point forecast has the following closed-form

πd (Z
Z̃0
t ) = α +

(
Z̃0 − α

)
e−ϑ1t . (1.9)

The parameter α is the mean value of the stationary distribution, namely

α =
∫
R

y p(y;ϑ)dy.

We recall that the parameter ϑ1 parametrizes the correlation structure and stands for
the mean-reverting speed. For the marginal Weibull diffusion model

α = ϑ2Γ

(
1 + 1

ϑ3

)
.

It is worth mentioning that the Ornstein–Uhlenbeck process with

v0(z, ϑ) = ϑ1(α − z) and v1(z, ϑ) = σ (1.10)

and the Cox–Ingersoll–Ross process with

v0(z, ϑ) = ϑ1(α − z) and v1(z, ϑ) = σ
√
z (1.11)

have also linear drift (see also [2]) and consequently generate similar point forecasts.

1.3.2.2 Mean-Square Error

Given a point forecast π(ZZ̃0
t ), the mean-square forecasting error is defined by

MSE(t) = E
((

π(ZZ̃0
t ) − Z̃t

)2
)

. (1.12)

This indicator makes it possible to compare persistence model and diffusion model
point forecasts. For the persistence model defined in (1.7),

MSEper(t) = E
((

Z̃0 − Z̃t
)2

)
.

Diffusion models (1.2) have the property that the well-specified MSE (namely MSE
(1.12) where Z̃t = Zt) can be written as
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MSE(t) = Eϑ

(
Z2
t

) − (Eϑ(Zt))
2 = u(t,Z0) − (Eϑ(Zt))

2

in which u(t, x) solves the Feynman–Kac pde, i.e.

∂u

∂t
= v0(x, ϑ)

∂u

∂x
+ v21(x, ϑ)

2

∂2u

∂x2

with

u(0, x) = x2.

For instance, the MSE can be obtained in closed form for the Ornstein–Uhlenbeck
process and the Cox–Ingersoll–Ross process (see [2]). Direct computations lead to

MSE(t) = σ 2(1 − e−2ϑ1t)

2ϑ1

for the Ornstein–Uhlenbeck process (1.10) with

lim
t→∞MSE(t) = σ 2

2ϑ1
and MSE(t) ∼0 σ 2t,

and, comparatively,

MSE(t) = Z0σ 2(e−ϑ1t − e−2ϑ1t)

ϑ1
+ ασ 2(1 − e−2ϑ1t)2

2ϑ1

for the Cox–Ingersoll–Ross process (1.11) with

lim
t→∞MSE(t) = ασ 2

2ϑ1
and MSE(t) ∼ σ 2Z0t as t → 0.

In the marginal Weibull setting, no closed form are available but numerical compu-
tations can be performed for the MSE with MSE(t) ∼ v21(Z0, ϑ)t as t → 0.

1.3.3 Probabilistic Forecasts and Continuous Ranked
Probability Score

1.3.3.1 Probabilistic Forecasts

For a diffusion model in general, the probabilistic forecast is given by its transition
probability density function

ψ̂(t, ·; Z̃0) = p(t, .; Z̃0, ϑ). (1.13)
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The corresponding forecasting empirical cumulative distribution function is defined
by

F̂(u) =
∫ u

−∞
p(t, y; Z̃0, ϑ)dy.

1.3.3.2 Continuous Ranked Probability Score

Different probabilistic forecasts can be compared in term of Continuous Ranked
Probability Score (CRPS). Let ψ̂(t, ·; Z̃0, ϑ) be a probabilistic forecast and F̂ its
corresponding cumulative distribution function. For any x ∈ R, continuous ranked
probability function can be defined by

CRP(F̂, x) =
∫
R

(
F̂(u) − 1{u≥x}

)2
du. (1.14)

The continuous ranked probability score (CRPS, see [10]) is defined by

CRPS(t) = E
(
CRP(F̂, Z̃t)

)
. (1.15)

For the Gaussian distribution, the previous function is explicitly computable, namely

CRP(N (μ, σ 2), x) = −σ

(
1√
π

− 2ϕ

(
x − μ

σ

)
− x − μ

σ

(
2Φ

(
x − μ

σ

)
− 1

))

(1.16)
where ϕ and Φ are respectively the probability distribution function and the cumu-
lative probability distribution function of a standard Gaussian random variable. For
a deterministic forecast,

CRP(δy, x) =
∫
R

(
1{u≥y} − 1{u≥x}

)2
du = |y − x|. (1.17)

It is worth mentioning that for deterministic forecast, thanks to (1.17) the CRPS is
reduced to the mean absolute error (MAE) defined by

MAE(t) = E
(∣∣∣π(ZZ̃0

t ) − Z̃t
∣∣∣) . (1.18)

Conversely to the CIR model [2], transition (forecast) probability density func-
tions are not in closed form. Consequently, computations of the CRPS requires using
the Fokker–Planck finite element numerical solving scheme which is sophisticated
(see Sect. 1.3.3.3). In the following,we propose probabilistic forecastsmethods based
on the approximation of the transition probability density function p(t, ·; x, ϑ).
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1.3.3.3 Finite-Element-Method Approximation of the Transition
Probability Densities

Finite-Element-Method (FEM) scheme (see Appendix 3) computes the numerical
approximation of the transition probability density p(t, ·; Z̃0, ϑ) on a regular grid on
a compact Ω ⊂ R (the distribution is supposed to be zero outside Ω).

1.3.3.4 Gaussian Approximations of the Transition Probability
Densities

For a very short lead time t > 0, the Gaussian approximation for transition proba-
bility density function is valid. Consequently, we use the Gaussian distribution as
the probabilistic forecast with the first order or second order Itò-Taylor expansion
characteristics. For the first order expansion, we recall that the mean is given by

mx = x + v0(x, ϑ)t

and variance by

σ 2
x = v21(x, ϑ)t.

Here v0 and v1 are given respectively by (1.3) and (1.5). For the second order expan-
sion, the mean is given by

mx = x + v0(x, ϑ)t +
(
v0(x, ϑ)

∂

∂x
v0(x, ϑ) + 1

2
v21(x, ϑ)

∂2

∂x2
v0(x, ϑ)

)
t2

2

and the variance (see [14]) by

σ 2
x = x2 + (

2v0(x, ϑ) + v21(x, ϑ)
)
t +

(
2v0(x, ϑ)

(
x

∂

∂x
v0(x, ϑ) + v0(x, ϑ)

v1(x, ϑ)
∂

∂x
v1(x, ϑ)

)
+ v21(x, ϑ2)

(
x

∂2

∂x2
v0(x, ϑ) + 2

∂

∂x
v0(x, ϑ)

+ ∂

∂x
v21(x, ϑ) + v1(x, ϑ)

∂2

∂x2
v1(x, ϑ)

))
t2

2
− m2

x .

For the marginal Weibull diffusion model and linear drift diffusion models,

∂2

∂x2
v0(x, ϑ) = 0

and corresponding terms in the previous equation disappear.
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1.4 Application to Wind Speed Modeling and Forecast

A large class of datasets is provided by the National Renewable Energy Laboratory
(NREL). It offers from http://wind.nrel.gov wind-speed datasets for several years for
more than 25000 locations.

The considered dataset is a time series that includes wind speeds at height (100m)
every hour from 2010 to 2012 in three different locations in the US (ID 24310
(Wyoming), ID 69759 (Nevada) and ID112269 (Oregon)). The dataset contains no
null wind. We consider NEG 2MW turbine manufacturer’s transfer function to com-
pute the production.

Firstly, we present the calibrationmethod of the three-parametermarginalWeibull
diffusion model with a quasi-likelihood estimation procedure in Sect. 1.4.1. Then,
we compare the three-parameter marginal Weibull diffusion with the (Gaussian)
Ornstein–Uhlenbeck process in terms ofmodeling usingCramer–vonMises statistics
on the three turbines for each year.

We also compare our model to the benchmark in terms of wind-speed forecast-
ing for the ID 69759 wind turbine on the whole period 2010–2012 in Sect. 1.4.3.
Finally, we compare our model in terms of production forecasts (with the transfer
function) against an Ornstein–Uhlenbeck process calibrated directly on production
in Sect. 1.4.4.

1.4.1 Calibration Method

Let Θ be a bounded open subset of (R+∗ )3. We present in this section the calibration
method for the parameter ϑ = (ϑ1, ϑ2, ϑ3) ∈ Θ in the marginal Weibull diffusion
model. In order to obtain the best estimate we use the maximum quasi-likelihood
estimator, that we describe now.

Let us consider an observation of the process (Zt, t ≥ 0) on a (regular) discrete
temporal grid

0 = t0 < t1 < · · · < tn.

The mesh is denoted Δn = tn
n . In the following, we denote Z (n) = (

Zt1 , . . . ,Ztn
)
the

observation sample. The sequence Z (n) is a Markov chain and the corresponding
loglikelihood is given by

L (ϑ,Z (n)) =
n∑

i=1

log p(Δn,Zti ;Zti−1 , ϑ) (1.19)

where the transition probability density p(t, y; x, ϑ) is given by the solution of the
Fokker–Planck equation (1.6).

http://wind.nrel.gov
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In the Ornstein–Uhlenbeck process or CIR model presented in [2], a closed form
of the transition probability density is known and maximum loglikelihood estimator

ϑ̂n = max
ϑ∈Θ

L (ϑ,Z (n))

can be computed numerically. But, for the three-parameter marginal Weibull diffu-
sion process, this is not the case anymore.

Several methods are available in this context depending on the discretization time
scheme. For a large observation horizon tn and large mesh size Δn, one can use an
approximation of the likelihood function (numerical approximation of the Fokker–
Planck equation in [15], Monte-Carlo simulation approximation [16], . . .). A recent
review of possible methods in this setting is proposed in [19].

When the mesh is relatively small (thereafterΔn will be equal to 1 hour), which is
the case we are considering, it is possible to use the quasi-likelihood approach. For
smallΔn, under proper assumptions, it is possible to approximate the transition prob-
ability density function (and consequently the likelihood) by a Gaussian probability
density function with the same mean and variance.

The simplest approximation is the Euler method,2 in which the transition proba-
bility density p(Δn, y; x, ϑ) is approximated by a Gaussian with mean

mx = x + v0(x, ϑ)Δn (1.20)

and variance
σ 2
x = v21(x, ϑ)Δn. (1.21)

Consequently, the quasi-loglikelihood is given by

L ∗(ϑ,Z(n)) = −n

2
log

(
2πv21(Zti−1 , ϑ)Δn

)
− 1

2

n∑
i=1

(
Zti − (

Zti−1 + v0(Zti−1 , ϑ)Δn
))2

v21(Zti−1 , ϑ)Δn
.

(1.22)

The maximum quasi-likelihood (or quasi-loglikelihood) estimator is obtained by

ϑ̂∗
n = max

ϑ∈Θ
L ∗(ϑ,Z (n)).

Although the estimator is not in a closed form, it can be computed numerically. This
approximation is valid for a “rapidly increasing experimental design” which means
Δn → 0, nΔn → ∞ and nΔ2

n → 0 (see [14] for details).

2The Gaussian approximation of the conditional density function p(Δ, y; x, ϑ) proposed in [14]
uses the higher order Itò-Taylor expansion to approximate the mean and the variance. It is worth
emphasizing that the Euler method is the one order Itò-Taylor expansion.
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1.4.2 Performance in Terms of Modeling

Contrary to the classical i.i.d. setting, classical goodness-of-fit tests (Kolmogorov–
Smirnov, Cramer–von Mises, etc.) do not apply directly to the diffusion (Markov)
setting. In order to evaluate the performance of the modeling, we propose the follow-
ing methodology inspired by [9]: (1) calibration of the dynamical model (marginal
distribution and correlation structure simultaneously as in Sect. 1.4.1 for the three-
parametermarginalWeibull diffusionmodel and the (Gaussian)Ornstein–Uhlenbeck
process on the one-year dataset, (2) computation of the Cramer–von Mises statistics

ω2
n = n

∫
R

(
Fn(x) − F(x, ϑ̂n)

)2
dF(x, ϑ̂n)

= 1

2n
+

n∑
i=1

(
F(xi, ϑ̂n) − i − 1/2

n

)2

,

with respect to the calibrated marginal distribution F (Weibull and Gaussian respec-
tively) and (3) selection of the distribution corresponding to the smallest value of the
computed statistic.

Stationary distribution for themarginalWeibull diffusionmodel and theOrnstein–
Uhlenbeck process (respectively Weibull and Gaussian) are illustrated in Fig. 1.2 for
the ID 24310 wind turbine in 2011. Correlation structure for the marginal Weibull
diffusion model is also illustrated in Fig. 1.2.

The result of the selection for all wind turbines and all the years are given in the
following Table1.1.

The previous table shows for instance that the marginal Weibull diffusion model
outperforms the (Gaussian) Ornstein–Uhlenbeck process in terms of wind-speed
generation in 2011 in Fig. 1.2. This is merely confirming common practice of using
the Weibull distribution rather than using a Gaussian to describe the distribution of
the wind speed.

1.4.3 Wind-Speed Forecasting

Time is considered in days. We denote Δn the time mesh (thereafter Δn = 1
24 ). We

consider rolling training datasets of 14 days (14 × 24 hourly measures) where the
model is calibrated.

Let us fix the first measure of the testing dataset at time 0 and the horizon time
τ = kΔn. In our dataset; for instance k = 1 (τ = 1 h), k = 2 (τ = 2 h), k = 3 (τ =
2 h) and k = 6 (τ = 6 h) are considered for short-term forecasting.

For successive times tj = jΔn, j = 0, . . . ,N − k, we want to compute the forecast
of Z̃tj+τ at time tj + τ . We denote
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Fig. 1.2 On the top, histogram of the training NREL wind speed dataset (see Sect. 1.4). Stationary
distribution for themarginalWeibull diffusionmodel (plain line) andGaussianOrnstein–Uhlenbeck
process (dashed line) fitted on the training dataset are superposed. On the bottom, empirical auto-
correlation of the training NREL wind speed dataset (plain black line) and calibrated correlation
structure of the marginal Weibull diffusion model (plain gray line)

π
(
Z
tj,zj
tj+τ

)

the forecast value knowing that Z̃tj = zj. The empirical mean square error (eMSE) is
given by
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Table 1.1 Selected model
(mW or OU) for different
wind turbines and different
years

ID/year 2010 2011 2012

24310 OU mW OU

69759 mW mW mW

112269 mW OU mW

eMSE(τ ) =

N−1−k∑
j=0

(
π

(
Z
tj,zj
tj+τ

)
− zj+k

)2

N − k
.

We compute the empirical MSE for all models described above. Namely,

1. For the persistence benchmark, π
(
Z
tj,zj
tj+τ

)
= zj;

2. For the dynamic 3 parameters marginal Weibull diffusion model with linear drift,
the point forecast is given by (1.9) or

π
(
Z
tj,zj
tj+τ

)
= ϑ2Γ

(
1 + 1

ϑ3

)
+

(
zj − ϑ2Γ

(
1 + 1

ϑ3

))
e−ϑ1τ

where, in practice, ϑ = ϑ̂∗ is the maximum quasi-likelihood estimator of ϑ

obtained as indicated in Sect. 1.4.1.

We summarize the results on bias andRSME (root square of theMSE) in the Table1.2
containing lead times of relevance (1, 2, 3 and 6h).

In term of RMSE, the results are comparable for forecast below one hour lead
time. Marginal Weibull diffusion model outperforms the persistence benchmark for
forecasting over 1h. Finally, on this data set, this bias is negligeable under 6h lead
time.

In the next Table1.3, we summarized the result of CRPS and MAE computed
on the Weibull diffusion model with 1st-order Itò probabilistic forecast and FEM
probabilistic forecast both presented in Sects. 1.3.3.3 and 1.3.3.4. The computation
has been done on a subset of the dataset (every 25 hourly measurements).

Here again we can notice similar results for the three-parameter Weibull diffusion
model in term of CRPS andMAE at very-short term. The marginal Weibull diffusion
model shows a better result at medium range lead times (from 3h to 6h). It is worth
emphasizing that the first order approximation is valid at lead times less than 3h.

Table 1.2 Bias and RMSE in parenthesis (all measures in m/s) for wind-speed forecasts for lead
times of relevance

τ = 1h τ = 2h τ = 3h τ = 6h

Weibull diffusion 0.00 (1.97) 0.00 (2.59) 0.00 (2.97) 0.00 (3.58)

Persistence
benchmark

0.00 (2.04) 0.00 (2.73) 0.00 (3.19) 0.00 (4.04)
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Table 1.3 CRPS and MAE in brackets for wind-speed forecasts for lead times of relevance

τ = 1h τ = 2h τ = 3h τ = 6h

FEM 0.25 [0.34] 0.36 [0.49] 0.41 [0.56] 0.51 [0.71]

1st order TI
Gaussian

0.25 [0.34] 0.36 [0.49] 0.44 [0.57] 0.61 [0.71]

Persistence
benchmark

[0.33] [0.50] [0.58] [0.78]

Table 1.4 Bias, RMSE in parenthesis, RMSE in % of the nominal power for production forecasts
(all measures in kWh) for lead times of relevance

τ = 1h τ = 2h τ = 3h τ = 6h

Weibull diffusion −10 (171) [9%] −13 (229) [11%] −20 (261) [13%] −29 (310) [16%]

Ornstein–
Uhlenbeck

−23 (192) [10%] −31 (253) [12%] −51 (289) [14%] −75 (339) [17%]

1.4.4 Production Forecasting

In this section, we compare the production forecast given, on the one hand, by the
three-parameter marginal Weibull diffusion model calibrated on the wind speed and
the computation of the corresponding production through the manufacturer power
function and, on the other hand, by an Ornstein–Uhlenbeck directly calibrated on
the production dataset. Production point forecasting (in kWh) performance is given
in terms of RSME in the following Table1.4. The computation has been done on a
subset of the dataset (every 25 hourly measurements).

It is worth emphasizing that, considering no errors on the manufacturer transfer
function and a transfer function only depending on the wind speed, forecasting using
the wind speed outperforms the Ornstein–Uhlenbeck model on production.

1.5 Conclusion

Cox–ingersoll–Ross process and marginal Weibull diffusion model, presented in [2]
and in this paper respectively, fit the wind speed data and are able to forecast at short
term. Considering some improvements, they could provide a wind generator. For
instance, it is possible to consider a model

Yt = f (t)Zt + g(t)

where f (·) and g(·) are periodic functions (see for instance [3] for a related work
where the diurnal cycle is taken into account). The characteristics of the marginal
Weibull diffusion model are understandable in terms of shape and scale parameter
of a Weibull law that is appreciated by practitioners to analyze the results.
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Properties of diffusion process are important to study the problem of optimal
storage, optimal trading and optimal maintenance where wind speed and energy
production are the stochastic entries.

It is possible to extend results on the diffusion models to any marginal distribution
(given a fixed drift term).Measurements errors of the anemometers behind the blades
can also be handled with non-linear filtering methods. Let us also mention the fact
that errors on the transfer function are not taken into account and should be addressed
for a better estimation of the production in the operational management problems.
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Appendix 1: Autocorrelation Structure of Homogeneous
Diffusion Processes with Linear Drift

Let (Zs, s ≥ 0) be the solution of Eq. (1.2). Let us denote m(t, z0) = E (Zs). Since
v0(z, ϑ) = ϑ1 (α − z) is linear in z with

α = ϑ2Γ

(
1 + 1

ϑ3

)
,

we have

dm(t, z0) = ϑ1 (α − m(t, z0)) dt

with m(z0, 0) = z0. Consequently,

m(z0, t) = α + (z0 − α) e−ϑ1t . (1.23)

The joint distribution f (y, z) of the pair (Zs,Zt), s ≤ t, is given by

f (y, z) = p(t − s, z; y, ϑ)p(s, y; z0, ϑ)

due to the Markov property. Consequently,

cov (Zs,Zt) =
∫
R2

(y − EZs)(z − EZt)f (y, z)dydz

=
∫
R

(y − EZs)p(s, z0, y)
(∫

R

(z − EZt)p(t − s, y, z)dz

)
︸ ︷︷ ︸

e−ϑ1(t−s)(y−EZs)

dy

= e−ϑ1(t−s)var(Zs)
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which proves the result. In the case of the stationary distribution,

corr(Zs,Zt) = e−ϑ1(t−s)

is obtained.

Appendix 2: Marginal Weibull Diffusion Coefficient

Following [4], it is possible to construct amarginalWeibull diffusionprocess, solution
of the stochastic differential equation

Zt = z0 +
∫ t

0
v0(Zs, ϑ)ds +

∫ t

0
v1(Zs, ϑ)dβs, t ≥ 0, (1.24)

where (βt, t ≥ 0) is a Wiener process. Fixing the drift coefficient

v0(z, ϑ) = ϑ1

(
ϑ2Γ

(
1 + 1

ϑ3

)
− z

)
,

the solution of Eq. (1.24) has an invariant density equals to the Weibull probability
density function

f (z, ϑ) = ϑ3

ϑ2

(
z

ϑ2

)ϑ3−1

exp

(
−

(
z

ϑ2

)ϑ3
)

, z ≥ 0.

If the diffusion coefficient satisfies

v21(z, ϑ) = 2ϑ1

f (z)

(
ϑ2Γ

(
1 + 1

ϑ3

)
F(z) −

∫ z

0
yf (y)dy

)
(1.25)

where F is the distribution function associated to the density f . Direct computations
lead to

F(z) = 1 − exp

(
−

(
z

ϑ2

)ϑ3
)

and

∫ z

0
yf (y)dy = ϑ2

∫ (
z

ϑ2

)ϑ3

0
u

1
ϑ3 e−udu

(
change of variable u =

(
y

ϑ2

)ϑ3
)

.
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Appendix 3: Finite Element Method for Fokker–Planck
Equation

Let us approximate the solution (p(t, y), t ≥ 0, y ∈ R) satisfying

∂p

∂t
= − ∂

∂y
(a(y)p) + 1

2

∂2

∂y2
(b(y)p) (1.26)

with the initial condition p(0, y) = δx(y), x ∈ R. For our problem a = v0 and b = v21.
By integrating (1.26) with respect to y, we get

∂

∂t

∫
R

p(t, y)dy =
∫
R

(
− ∂

∂y
(a(y)p) + 1

2

∂2

∂y2
(b(y)p)

)
dy

= −a(y)p(t, y) + 1

2

∂

∂y
(b(y)p)

∣∣∣∣
∞

−∞

=
(
1

2
b′(y) − a(y)

)
p(t, y)

∣∣∣∣
∞

−∞
+ 1

2
b(y)

∂

∂y
p(t, y)

∣∣∣∣
∞

−∞
.

Consequently, using boundary conditions

lim
y→±∞ p(t, y) = 0 and lim

y→±∞
∂

∂y
p(t, y) = 0

dominating possible growth of a(·) and b(·)we get that the solution is norm preserv-
ing, namely

∫
R

p(t, y)dy = 1, t ≥ 0.

Let us consider the approximation

û(t, y) =
N−1∑
j=1

λj(t)ϕj(y)

where ϕi are the sequence of finite elements. This approximation satisfies (1.26) on
the compactΩ = supp(̂u) ⊂ R. Computing the variational formulation with respect
to the test function ϕi(y), i = 1, . . . ,N − 1, we obtain

N−1∑
j=1

λ′
j(t)Ci,j − λj(t)Ki,j = 0 (1.27)
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with

Ci,j =
∫

Ω

ϕi(y)ϕj(y)dy

and

Ki,j =
∫

Ω

(
− ∂

∂y

(
a(y)ϕj(y)

) + 1

2

∂2

∂y2
(
b(y)ϕj(y)

))
ϕi(y)dy

= −a(y)ϕj(y)ϕi(y)

∣∣∣∣
∂Ω

+
∫

Ω

a(y)ϕ′
i(y)ϕj(y)dy

+1

2

∂

∂y

(
b(y)ϕj(y)

)
ϕi(y)

∣∣∣∣
∂Ω

− 1

2

∫
R

ϕ′
i(y)

∂

∂y

(
b(y)ϕj(y)

)
dy

=
∫
R

a(y)ϕ′
i(y)ϕj(y)dy − 1

2

∫
R

ϕ′
i(y)

∂

∂y

(
b(y)ϕj(y)

)
dy

=
∫
R

(
a(y) − 1

2
b′(y)

)
ϕ′
i(y)ϕj(y)dy − 1

2

∫
R

b(y)ϕ′
i(y)ϕ

′
j(y)dy (1.28)

considering that ϕi(y) = 0 for y ∈ ∂Ω . It is worth mentioning that the first derivative
of v1 is needed to compute (1.28).

Consequently, Eq. (1.27) can be rewritten as a multidimensional first order linear
EDO

Cλ′(t) − Kλ(t) = 0 (1.29)

with the proper initial condition λ(0). Namely, in order to mimic the true initial
condition δx, x ∈ R, we consider for i = 1, . . . ,N − 1

∫
Ω

û(0, y)ϕi(y)dy = ϕi(x).

This can be written as

N−1∑
j=1

λj(0)
∫

Ω

ϕj(y)ϕi(y)dy = ϕi(x)

or

Cλ(0) = Φx where Φx =
⎛
⎜⎝

ϕ1(x)
...

ϕN−1(x)

⎞
⎟⎠ .

Finally, fixing R ∈ N, we can apply an implicit Euler scheme to (1.29) on [0, τ ],
τ > 0 with the mesh size τ

R .
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Chapter 2
From Numerical Weather Prediction
Outputs to Accurate Local Surface Wind
Speed: Statistical Modeling and Forecasts

Bastien Alonzo, Riwal Plougonven, Mathilde Mougeot, Aurélie Fischer,
Aurore Dupré and Philippe Drobinski

Abstract Downscaling ameteorological quantity at a specific location from outputs
of Numerical Weather Prediction models is a vast field of research with continuous
improvement. The need to provide accurate forecasts of the surface wind speed at
specific locations of wind farms has become critical for wind energy application.
While classical statistical methods like multiple linear regression have been often
used in order to reconstruct wind speed from Numerical Weather Prediction model
outputs, machine learning methods, like Random Forests, are not as widespread in
this field of research. In this paper, we compare the performances of two downscaling
statisticalmethods for reconstructing and forecastingwind speed at a specific location
from the European Center of Medium-range Weather Forecasts (ECMWF) model
outputs. The assessment of ECMWFshows for 10mwind speed displays a systematic
bias, while at 100m, the wind speed is better represented. Our study shows that both
classical andmachine learningmethods lead to comparable results.However, the time
needed to pre-process and to calibrate the models is very different in both cases. The
multiple linear model associated with a wise pre-processing and variable selection
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shows performances that are slightly better, compared to Random Forest models.
Finally, we highlight the added value of using past observed local information for
forecasting the wind speed on the short term.

Keywords Local wind speed · Downscaling · Statistical modeling · Numerical
weather prediction model · Wind speed forecasts

2.1 Introduction

The wind energy sector has seen a very sharp growth in recent years. According
to the Global Wind Energy Council (GWEC), 54GW has been installed in 2016,
corresponding to an increase of 12.6% of the total installed capacity [11]. World-
wide, the number of wind farms increases each year and feeds the electrical network
with a larger amount of energy. For instance, in 2016, France has seen its highest
capacity growth rate ever recorded. This sharp increase of connected wind power
has for instance allowed the network to receive 8.6GW from wind power plants, on
November 20th, corresponding to 17.9% of the energy produced this day [19]. The
need to have access to accurate wind forecasts on several timescales is thus becom-
ing crucial for the wind energy producer and grid operator, in order to anticipate the
energy production, to plan maintenance operations and to handle balance between
energy production and consumption. Changing regulations of the energymarket with
the end of feeding-in tariffs make this anticipation vital for wind energy producers.
Finally, a related but different topic consists in the estimation of the wind resource
of its long-term (multi-year) variability and trends mainly for prospecting purposes.

The increasing need for accurate forecasts of the surface wind speed fortunately
comes with the improvement of the Numerical Weather Prediction models (NWP)
describing and forecasting atmospheric motions. Indeed, they constitute a key source
of information for surface wind speed forecasts all the more so as their realism,
accuracy and resolution have increased steadily over the years [2].

Nevertheless, these models are not necessarily performing uniformly well for all
atmospheric variables. Their astonishing performances are evaluated on variables
such as mid-tropospheric pressure which reflect the large-scale mass distribution,
which is effectively well understood physically (see, e.g., [23]) and efficiently mod-
eled numerically. Variables tied to phenomena occurring on smaller scales (such as
cloud-cover or near-surface winds) depend much more directly on processes that
are parameterized (e.g, not resolved). In contrast to large-scale motions (governed
by the Navier–Stokes equations), parameterizations are generally partly rooted in
physical arguments, but also in large part empirical. When comparing output from
a numerical model to a local measurement, there will therefore always be several
sources of error: representativity error (contrast between the value over a grid-box
and the value at a specific point), numerical error (even if we were describing only
processes governed bywell-established physical laws, discretization is unavoidable),
and error tied to the physics described (because processes, especially parameterized
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ones, are not well modeled). To reduce representativity error and to better represent
small-scale processes, in particular those tied to topography and surface roughness,
one strategy consists in downscaling with models that describe the atmospheric flow
on finer scales (see, e.g., [24]). One disadvantage of this approach is the numerical
cost, and one limitation is the need for finer observations to initialize the state of the
atmosphere, if details of the flow other than those directly implied by the topography
and surface condition are sought for.

Strategies to estimate surface winds, or other meteorological variables, from the
output of NumericalWeather Prediction models (NWP) or climate models have been
developed in several contexts, with different motivations, and leading to different
methodologies and applications.

Model Output Statistics (MOS) has been developed in weather forecasting for
several decades to estimate the weather related variability of a physical quantity,
based on NWPmodel output [10]. NWPmodels perform now very well in predicting
large-scale systems. Relations thus can be derived to link the latters to local variables
at an observation site. Linear models are generally used, with the outcome now
expanded over a wider area than only the location of stations where observations are
available [27].

In the context of climate change, downscaling ameteorological quantity at a given
location in order to produce time serieswhich have plausible statistical characteristics
under climate change has for long been investigated [26]. The challenge is here to
capture appropriately the relation between large-scale flow (as it can be described
by a model with a moderate or low resolution) and a variable at a specific location
(e.g. wind, temperature, precipitation) and then use climate models to provide a
description of the large-scale atmospheric state under climate change. Local time
series with appropriate variability and consistent with this large-scale state of the
atmosphere are then generated, e.g. [17, 20, 25].

Wind energy domain is nowadays a very active branch in downscaling techniques
because of the need for accurate forecasts at specific location of a wind farm. For
describing winds close to the surface, 10m wind speed is often a convenient variable
as it has been for decades a reference observed variable and also now a reference
NWP model output. In the case of wind energy, the wind speed then needs to be
extrapolated at the hub height to have access to wind power, leading to an increase of
the error on the predicted power [13, 16, 18]. Wind speed at the hub height (typically
100m) is a variable of interest as it allows to avoid vertical extrapolation errors [4],
but it is rarely available in observations. Different outputs of NWP models can be
used as explanatory variables of the near surface wind speed. It seems that there
is no strong consensus on the predictors to use, mainly because relations between
predictors and predictand should differ from one location to the other. However,
different studies have shown the importance of a certain set of variables to predict
surface wind speed. Amongst them, markers of large-scale systems (geopotential
height, pressure fields) and boundary layer stability drivers (surface temperature,
boundary layer height, wind and temperature gradient) can be cited [5, 6, 20]. In
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terms of methodology, several models have already been studied, including Lin-
ear regression, Support Vector Models (SVM) or Artificial Neural Network (ANN)
[14, 21].

The model of the European Center for Medium-range Weather Forecasts
(ECMWF) has reached a resolution of about 9km in the horizontal. In addition,
ECMWF analyses and forecasts now give access to 100m wind speed output, devel-
oped mainly for wind energy applications. If we can be very confident in the ability
of NWP models to represent several variables, some others may not be so reliable.
This is especially the case for surface variables such as 10 and 100m wind speed.
Consequently, using the robust information given by some variables to correct sur-
face wind speed is straightforward.We have access to surface wind speed observed at
10, 100m over a long period of 5 years at SIRTA observation platform [12]. The aim
of this project is, in particular, to explore how different statistical models perform
in forecasting the 10 and 100m wind speed using informations of ECMWF analy-
ses and forecasts outputs at different horizons. We choose multiple linear regression
because it is a widely used technique, and Random Forests which have not been, to
our knowledge, deeply studied in the framework of downscaling surface wind speed.
For multiple linear regression, variable selection is a very important step for calibrat-
ing the statistical models, whereas Random Forests handle variables automatically.
Moreover, Random Forests can handle nonlinear relations very well. Therefore, the
comparison of those very different statistical models, as well as the information used
by each of them, should be very instructive.

The paper is organized in 5 parts. The next section describes together the data and
the statistical models to be used. In Sect. 2.3, the training dataset is explored, and
used to calibrate the statistical models. In Sect. 2.4, forecasts of 10 and 100m wind
speed are run to downscale wind speed at the observation site. In the last section, we
discuss the results, conclude and give perspectives to this work.

2.2 Data and Methodology

2.2.1 Data

Observed Wind Speed

In this paper, we use observations of the wind speed at the SIRTA observation plat-
form [12]. Surfacewind speed at 10m height from anemometer recording is available
at the 5-min frequency. Thewind speed at 100m height fromLidar recording is avail-
able at 10-min frequency. Both data span for 5 years from 2011 to 2015. We filter
observations by a sinusoidal function over a 6-h window centered at 00, 06, 12 and
18h to obtain a 6-h observed wind speed to be compared to the NWP model outputs
available at this time frequency. We found that the resulting time series are not sen-
sitive to the filter function. We also try different filtering windows, concluding that
6-h is the best to compare to the NWP model outputs. Due to some missing data,
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Fig. 2.1 Map of the SIRTA observation platform and its surroundings

two final time series of 5049 filtered observations are computed (over 7304 if all data
were available).

SIRTA observatory is based 20Km in the South of Paris on the Saclay plateau
(48.7◦N and 2.2◦E). Figure2.1 shows the SIRTA observation platform location,
marked by the red point on the map, and its close environment. Regarding the relief
near SIRTA, observe that a forest is located at about 50m north to the measurement
devices. South, buildings can be found at about 300m from the SIRTA observatory.
In the East-West axis, no close obstacle are encountered. Further south, the edge of
the Saclay plateau shows a vertical drop of about 70m, from 160m on top to 90m
at the bottom.

NWP Model Outputs - ECMWF Analyses

Variables are retrieved fromECMWFanalyses at 4 points around theSIRTAplatform.
The spatial resolution of ECMWF analyses is of about 16km (0.125◦ in latitude and
longitude). Topography is thus smoothed compared to the real one. As the surface
wind speed is very influenced by the terrain, the modeled surface wind speed is not
necessarily close to the observed wind speed. The data spans from the 01/01/2011 to
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Table 2.1 Surface variables

Altitude (m) Variable Unit Name

10/100m Norm of the wind speed m·s−1 F

10/100m Zonal wind speed m·s−1 U

10/100m Meridional wind speed m·s−1 V

2m Temperature K T

2m Dew point temperature K Dp

Surface Skin temperature K skt

Surface Mean sea level pressure Pa msl

Surface Surface pressure Pa sp

– Boundary layer height m blh

– Boundary layer dissipation J·m−2 bld

Surface Surface latent heat flux J·m−2 slhf

Surface Surface sensible heat flux J·m−2 sshf

31/12/2015 at the 6-h frequency. It is sampled at each date where a filtered sampled
observation is available.

The near surface wind speed at a given location can be linked to different phe-
nomena. The large-scale circulation brings the flow to the given location explaining
the slowly varying wind speed. The wind speed in altitude, the geopotential height,
the vorticity, the flow divergence, sometimes the temperature can be markers of large
systems like depressions, fronts, storms, or high pressure systems explaining a large
part of the low frequency variations of the surface wind speed (Table2.2). At a finer
scale, what is happening in the boundary layer is very important to explain the intra-
day variations of the wind speed. The state and stability of the boundary layer can be
derived from surface variables describing the exchanges inside the layer. Exchanges
are driven mostly by temperature gradient and wind shear that develop turbulent flow
(Table2.3). Thermodynamical variables like surface, skin, and dew point tempera-
tures and surface heat fluxes can also inform on the stability of the boundary layer, as
well as its height and dissipation on its state (Table2.1). In the end, 20 output variables
are retrieved from ECMWF analyses at the 4 points around the SIRTA observatory
and at different pressure levels. Note that we restrict the study to local variables (at
the location of measurements or in the column above). It might also be possible to
take advantage from larger scale information [5, 27]. The choice of taking 4 points
around the SIRTA platform has the advantage of being simple and straightforward.
Providing instead the explanatory variables by their interpolated value at SIRTA and
the two components of their gradient does not lead to significantly different results.

ECMWF Deterministic Forecasts

The year 2015 of deterministic forecasts is retrieved fromECMWFmodel. A forecast
is launched every day at 00:00:00 UTC. The time resolution retained is of 3h and the
maximum lead-time is 5 days. The same variables as for the analyses are retrieved
at the same points around the SIRTA platform.
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Table 2.2 Altitude variables

Pressure level (hPa) Variable Unit Name

1000hPa/925hPa/850hPa/700hPa/500hPa Zonal wind speed m·s−1 U

1000hPa/925hPa/850hPa/700hPa/500hPa Meridional wind speed m·s−1 V

1000hPa/925hPa/850hPa/700hPa/500hPa Geopotential height m2·s−2 Z

1000hPa/925hPa/850hPa/700hPa/500hPa Divergence s−1 Di

1000hPa/925hPa/850hPa/700hPa/500hPa Vorticity s−1 Vo

1000hPa/925hPa/850hPa/700hPa/500hPa Temperature K T

Table 2.3 Computed variables

Pressure level (hPa) Variable Unit Name

10m to 925hPa Wind shear m·s−1 ΔF

10m to 925hPa Temperature gradient K ΔT

2.2.2 Methodology

Our aim is to model the real observed wind speed from outputs of NWP model
described above. More specifically, we use ECMWF analyses i.e the best estimate
of the atmospheric state at a given time using a model and observations [15]. In
what follows, the observed wind speed is the target and the analysed variables are
potential explanatory features. Because of the complexity of meteorological phe-
nomena, statistical modeling provides an appropriate framework for corrections of
representativity errors and the modeling of site dependent variability. In this context,
two main directions may be as usual investigated, parametric and nonparametric
models.

Parametric models assume that the underlying relation between the target variable
and the explanatory variables has, relatively to a certain noise, a particular analytical
shape depending on some parameters, which need to be estimated through the data.
Among this family of models, the linear model with a Gaussian noise is widely used,
mostly thanks to its simplicity [8]. Associated to an adequate variable selection, it
may be very effective.

Nonparametric models do not suppose in advance a specific relation between the
variables: instead, they try to learn this complex link directly from the data itself.
As such, they are very flexible, but their performance usually strongly depends on
regularization parameters. The family of nonparametric models is quite large: among
others, one may cite the nearest neighbors rule, the kernel rule, neural networks,
support vector machines, regression trees, random forests... Regression trees, which
have the advantage of being easily interpretable, show to be particularly effective
when associated to a procedure allowing to reduce their variance as for the Random
Forest Algorithm.
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Let us describe the linear model and random forests in our context with more
details. The linear model supposes a relation between the target Yt , observed wind
speed at time t , and explanatory variables X1

t , . . . , X
d
t , available from the ECMWF,

at this time t . For lightening the notation, we omit the index t in the next equation.
The linear model is given by

Y = β0 +
d∑

j=1

β j X j + ε,

where the β j ’s are coefficients to be estimated using least-square criterion minimiza-
tion method, and ε ∼ N (0, σ 2) represents the noise. Among the meteorological
variables X1, . . . , Xd , some of them provide more important information linked to
the target than others, and some of them may be correlated. In this case, the stepwise
variable selection method is useful to keep only the most important uncorrelated
variables [8]. Denoting by β0, . . . , βd the final coefficients obtained this way (some
of them are zero), the estimated wind Ŷ is then given by

Ŷ = β0 +
d∑

j=1

β j X j . (2.1)

An alternative approach to perform variable selection and regularization is to use
the Lasso method (see for instance [22]), relying on minimization of the least square
criterion penalized by the �1 norm of the coefficients β1, . . . , βd . More specifically,
for this model, the predicted wind speed at time t is a linear combination of all the
previous variables as in Eq. (2.1), the coefficients β1, . . . , β̂d being estimated using
the least square procedure, under the constraint

∑d
j=1 |β j | ≤ κ for some constant

κ > 0.
Regression trees are binary trees built by choosing at each step the cut minimizing

the intra-node variance, over all explanatory variables X1, . . . , Xd and all possible
thresholds (denoted by Sj hereafter). More specifically, the intra-node variance, usu-
ally called deviance, is defined by

D(X j , Sj ) =
∑

X j<Sj

(Ys − Y
−
)2 +

∑

X j≥Sj

(Ys − Y
+
)2,

where Y
−
(respectively Y

+
) denotes the average of the observed wind speed in

the area {X j < Sj } (respectively {X j ≥ Sj }). Then, the selected j0 variable and
associated threshold is given by (X j0 , Sj0) = argmin j,Sj D(X j , Sj ). The prediction
is provided by the value associated to the leaf in which the observation falls.

To reduce variance and avoid over-fitting, it may be interesting to generate several
bootstrap samples, fitting then a tree on every sample and averaging the predictions,
which leads to the so-called Bagging procedure [3]. More precisely, for B bootstrap
samples, the predicted power is given by
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Ŷ = 1

B

B∑

b=1

Ŷ b, (2.2)

where Ŷ b denotes the wind speed predicted by the regression tree associated with
the bth bootstrap sample. To produce more diversity in the trees to be averaged,
an additional random step may be introduced in the previous procedure, leading to
Random Forests, where the best cut is chosen among a smaller subset of randomly
chosen variables. The predicted value is the mean of the predictions of the trees, as
in Eq. (2.2).

2.3 The Relationship Between Analysed and Observed
Winds

2.3.1 10/100m Wind Speed Variability Comparison

In this section we compare the observed wind speed at 10 and 100m with the 10
and 100m wind speed output of the ECMWF analyses at the closest grid point,
respectively. No significant difference can be found when using other grid points, or
the mean of the four surrounding locations.

Figure2.2 shows the Probability Density Function (PDF) of the wind speed com-
ing from ECMWF analyses and observations, and also for illustration an example of
a time series of corresponding wind speeds. It appears that the 10mwind speed from
ECMWF analyses displays a systematic bias by overestimating the 10m observed
wind speed (Fig. 2.2a, b). The wind at 100m is comparatively well modeled in terms
of variations in the time series, but also in terms of distribution (Fig. 2.2c, d). It seems
that the errors mainly come from the overestimation of peaked wind speeds and the
underestimation of low wind speeds (Fig. 2.2c, d). As 10m wind speed is very influ-
enced by even low topography and surrounding obstacles, which are smoothed or
not represented in ECMWF analyses, some of its variations are not well described,
and even a quite systematic bias is displayed. The effect of the topography and ter-
rain specificity have less impact on the 100m wind speed, so that it is much better
represented in ECMWF analyses.

The ability of the model to represent the observed wind speed is quantified in
Table2.4 by the deviation, the Root Mean Square Error (RMSE), and the Pearson
correlation which formula are given by Eqs. (2.3), (2.5), and (6.8) respectively.

Deviation for the i th observation = (yi − xi ) (2.3)

RMSE =
√∑n

i=1 (xi − yi )2

n
(2.4)

http://dx.doi.org/10.1007/978-3-319-99052-1_6
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(a) (b)

(c) (d)

Fig. 2.2 10m (top) and 100m (bottom) wind speed time series in summer 2011 (panels a and c,
respectively) and the respective probability density function estimated over the 5 years sample wind
speed (panels b and d)

Table 2.4 MeanDeviation, RMSE, and correlation performed by ECMWF analyses for modeling
the 10 and 100m wind speed

Periods Deviation RMSE Correlation

F10 F100 F10 F100 F10 F100

2011–2015 −1.00 0.14 1.41 1.01 0.82 0.93

2011 −1.19 0.04 1.59 1.06 0.80 0.91

2012 −0.94 0.23 1.31 1.03 0.85 0.92

2013 −1.13 0.06 1.52 0.93 0.82 0.94

2014 −0.88 0.26 1.30 1.00 0.80 0.93

2015 −0.87 0.14 1.30 0.97 0.82 0.94

Winter −0.97 0.04 1.41 0.97 0.83 0.94

Spring −1.11 0.27 1.56 1.02 0.71 0.90

Summer −0.92 0.33 1.31 1.04 0.80 0.91

Fall −1.04 −0.10 1.36 1.00 0.87 0.93
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Correlation =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

, (2.5)

where xi is the wind speed from the NWPmodel and yi the observed wind speed; n is

the number of samples (xi , yi ) and x̄ = 1

n

n∑

i=1

xi (the sample mean) and analogously

for ȳ.
No clear improvement of the ECMWF analyses over the years from 2011 to 2015

can be detected in Table2.4. The correlation stays quite constant over the years for
both 10 and 100m wind speeds. The Deviation and RMSE seem to decrease for the
10m wind speed but it cannot be confirmed because of the good score performed
in 2012. The variations of performance may only come from changes in the pre-
dictability of the weather over Europe [7]. Seasonal variations of the performance of
ECMWF analyses can be seen, especially on the correlation between the observed
and modeled wind speed. At both 10 and 100m, the analysed wind speed is better
correlated with the observations in winter and fall than in spring and summer. In all
cases, the scores shown are better for the 100m wind speed than for the 10m wind
speed.

Variations of the performance of the ECMWF analyses in representing the
observed wind speed are evidenced by Fig. 2.3. The figure shows the 10m wind
speed from ECMWF analyses as a function of the 10m observed wind speed for

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.3 10m wind speed from ECMWF analyses as function of the 10m observed wind speed
given cardinal directions. Panels correspond to a direction modeled by ECMWF analyses; the wind
blows from a West, b Southwest, c South, d Southeast, e East, f Northeast, g North, h Northwest
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.4 Same as Fig. 2.3 but for 100m wind speed

different directions of the analysed wind. It is obvious that the errors made by the
numerical model differ regarding the direction of the wind. For instance, when the
wind comes from the West (Fig. 2.3a), the correlation is very close to one, but for a
wind coming from the North/Northeast (Fig. 2.3f, g), it is very low, and the model
highly overestimates the 10m wind speed. It can be easily linked to the specificity
of the terrain. Indeed, when a northerly wind is recorded, it has been blocked by
the forest north of the anemometer. The same happened for southerlies with the
building situated further and which influence is thus not as substantial as the forest.
Figure2.4 displays the same as Fig. 2.3 but for the 100m wind speed. It seems that
there is no more dependence of the performance of the ECMWF analyses regarding
the direction of the 100m wind speed; it appears to be not significantly impacted by
the surrounding forests and buildings.

2.3.2 Reconstruction of the 10/100m Observed Wind Speed
Using NWP Outputs

In the sequel, a k-fold cross validation is performed over 10 different periods taken
within the 5-years of analyses and observation. Each time, statistical downscaling
models are trained on a given period of about 4500 data points and applied over
the remaining period of about 500 data points to reconstruct the 10 and 100m wind
speed, so that it results in 10 reconstructions that span the 5 years of data. Table2.5
enumerates the statistical downscaling models assessed in this study. Models differ
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Table 2.5 Statistical models used to downscale 10 and 100m wind speed

Model type Explanatory variables Direction dependance Name

Linear F10 No LRF

Linear All No LRA

Linear Stepwise No LRSW

Linear Lasso No LRLa

Linear F10 Yes LRdir
F

Linear All Yes LRdir
A

Linear Stepwise Yes LRdir
SW

Random forest All No RFA

Random forest All Yes RFdir
A

by their types (Linear Regression and Random Forests), the explanatory variable
selection, and whether a model is conditionally fitted regarding the direction of the
wind speed or not. We evaluate the different statistical models in terms of RMSE
and Correlation with the observed wind speed on the reconstruction period.

10m Wind Speed Reconstruction

Figure2.5 shows results for the reconstruction of the 10m wind speed. Each box
contains the 10th reconstructed k-fold periods. First, by using only wind speed with
a linear model LRF , RMSE is reduced by about 40%, but the correlation stays con-
stant. Adding other variables to linear model (i.e. LRA, LRSW and LRLa) allows
to reduce the RMSE by 60%, and to significantly improve correlation from 0.80 to
0.91 between reconstructed wind speed and observed one. Using stepwise selection
of variables, the Lasso penalization or all variables does not change results in this
case, showing that only a part of the information is useful. Using variable selection
as stepwise or �1 penalization (Lasso) avoids over-fitting. Random Forests models
perform slightly better than linear models without defining one given model per car-
dinal wind directions. Variables selected stepwise are very diverse (wind speed, large
scale variables, boundary layer state drivers), while Lasso technique mainly selects
wind speed and wind component, thus using redundant information. Analyzing the
main variables used by Random Forests shows that this methods seems to put much
weight on wind component first, highlighting the dependence of the error on the 10m
wind speed regarding its direction.

By fitting a linear model in each direction (noted with ‘dir ’) we manually intro-
duce a relevant information, especially for 10m wind speed (Fig. 2.3). The model
is however more exposed to under-fitting as the sample size of the training data in
one direction can be low. Nevertheless, LRdir

SW performs better than all other mod-
els. Indeed, stepwise choice is made for each direction so that the model is deeply
adapted to each direction. This method results in a significant improvement of the
RMSE and correlation scores. As expected regarding Fig. 2.3g, the best improve-
ment is retrieved for northerly wind speed and is of more than 0.1m·s−1 compared
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Fig. 2.5 RMSE and
correlation results when
reconstructing 10m wind
speed with models described
in Table2.5. The first boxes
stand for the ECMWF
analyses 10m wind speed

(a)

(b)

to LRSW . No improvement is found for easterlies, surely because the number of
data is too small. Fitting a Random Forest in each direction does not improve results,
maybe because the direction is already well handled by this model by using the zonal
and meridional component of the wind. So one big advantage of Random Forests
over linear regression is that it does not require to explore previously deeply the data
for extracting appropriate and relevant features as inputs to the model. Figure2.6
shows time series of 10m observed wind speed, NWPmodel wind speed output over
summer period of 2011 (panel a) and the probability density function corresponding
to the entire period, 2011–2015 (panel b). Panels c and e show respectively time
series of the reconstructed 10m wind speed by LRdir

SW (red line) and LRSW (blue
line), and by RFdir

A (magenta line) and RFA (cyan line). Panels d and f show the
corresponding probability density functions. All statistical models allow for a good
bias correction. All models underestimate the small quantiles of the distribution and
give a distribution very peaked around the mean observed wind speed. High per-
centiles are however well reconstructed. This is encouraging because this part of the
distribution is important in terms of energy production. We can nevertheless expect
an overestimation of the wind energy production with those models because of the
underestimation of small percentiles.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.6 Timeseries (left) and PDF (right) of the observed 10m wind speed (straight black line),
and 10m wind speed from ECMWF (dotted black line) (a and b), Linear models (LRSW (blue) and
LRdir

SW (red)) (c and d), Random Forest models (RFA (cyan) and RFdir
A (magenta)) (e and f)

100m Wind Speed Reconstruction

Figure2.7 shows results of the reconstruction of 100m wind speed with statistical
models described in Table2.5. LRF allows a reduction of the RMSE of about 15%
corresponding to 0.14m·s−1 and the best model LRdir

SW reduces the RMSE by 23%
corresponding to 0.23m·s−1. The correlation is improved from 0.92 to 0.94. Adding
the direction dependence to linear model with only 100m wind speed (i.e. LRdir

F )
does not improve results regarding LRF . Indeed, the error on the 100m wind speed
does not depend on the direction. Using all explanatory variables (i.e. LRdir

A ) leads
to a strong over-fitting. Surprisingly, the linear model using stepwise selection of
explanatory variables in each direction (i.e. LRdir

SW ) recovers an important information
as it performs significantly better than the other. Again, its adaptability may be the
cause of its good performance. In the case of 100mwind speed, the best improvement
is found for easterlywind speeds. The information on the direction inRandomForests
does not improve the results like for 10m wind speed reconstruction. The more
important variables for Random forests and stepwise choice are mainly the 100m
wind speed, but also the wind shear in the boundary layer. Lasso technique selects
mainly 100m wind speed.
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Fig. 2.7 Same as Fig. 2.7,
for 100m wind speed

(a)

(b)

Figure2.8 shows time series of 100m observed wind speed, NWP model wind
speed output over summer period of 2011 (panel a) and the probability density
function corresponding to the entire period from 2011 to 2015 (panel b). panel c
and e show respectively time series of the reconstructed 100m wind speed by LRdir

SW
(red line) and LRSW (blue line), and by RFdir

A (magenta line) and RFA (cyan line).
Panels d and f show the corresponding probability density functions. Some peaked
wind speeds are less overestimated after statistical downscaling. As for the 10m
wind speed, statistical models underestimate the small quantiles of the distribution
and give a distribution peaked around the mean observed wind speed.

To conclude, we built different statistical models to improve the representation
of the 10 and 100m wind speed of the ECMWF analyses. It has been shown that
the 100m wind speed in ECMWF analyses is already well represented as it displays
no systematic bias and a good correlation. Nevertheless the RMSE computed for
the period 2011–2015 is still of 1.0m·s−1. Statistical models reduces the RMSE on
the 10m wind speed between 40 and 65%, and between 15 and 23% for the 100m
wind speed. They improve at the same time the correlation between the observed
wind speed and the reconstructed one. For linear models, the variables selection is
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.8 Same as Fig. 2.6, for 100m wind speed

of great importance to avoid over-fitting, and an exploration step allows to improves
results significantly. Random Forests give quite comparable results as the best linear
models, without needing variable selection and a preliminary exploration of the data.

2.4 Forecasts of Surface Winds

In this section we use the previous statistical models based on the knowledge of the
observed wind speed and the outputs of ECMWF analyses to forecast wind speed at
five days horizon with a frequency of 3h. We have access to 1 year of forecasts in
2015. We train these statistical models on ECMWF analyses from 2011 to 2014, and
apply the resulting model to the forecasts. Figures2.9 and 2.10 show respectively
the RMSE averaged over the 365 forecasts for the 10 and 100m wind speed. A
strong diurnal cycle of the performances of both ECMWF forecasts and downscaled
statistical predictions of the 10mwind speed is evidenced. This diurnal cycle seems to
be observed also for 100mwind speed forecasts, but with a less important amplitude.
As the dataset is trained on the ECMWF analyses, we can affirm that diurnal cycle
is better represented in the ECMWF analyses than in ECMWF forecasts. This could
be indeed explained by the data assimilation system that may help to correct errors
coming from NWP model parameterizations.
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Fig. 2.9 RMSE, computed between the 10m observed wind speed, and the 10m forecast wind
speed, averaged over the entire set of forecasts

Fig. 2.10 RMSE, computed between the 100m observed wind speed, and the 100m forecast wind
speed, averaged over the entire set of forecasts

An interesting result shown in Fig. 2.9 is that performance of the LRF statistical
model which is comparable to linear model LRSW , showing that the added value
of other explanatory variables is valuable mainly for small lead-times in this case.
Adding the dependence with the direction (i.e. LRdir

SW ) allows for a significant reduc-
tion of the RMSE. Random Forests RFA shows the best performance. In addition to
the simplicity to fit this model, its robustness seems to overcome linear regression
models. For 100mwind speed forecasts (Fig. 2.10), Linear models LRF , LRSW , and
LRdir

SW and Random Forest RFA are comparable.
For both 10 and 100m wind speed forecasts, statistical downscaling models

allow for significant improvements regarding ECMWF predicted wind speed, at any
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lead-time from 3h to 5 days. Training dataset on the analyses of ECMWF may not
be optimal. Indeed, training a statistical model for each lead-time separately should
deeply improve results. First, this could help to remove the displayed diurnal cycle,
but may also let the increase in RMSE with the lead-time be less sharp.

2.5 Summary and Concluding Remarks

We have used statistical models to evaluate 10 and 100m wind speed at a given
location from output of a NWP model. Comparison of the observed wind speed
and ECMWF wind speed output at 10 and 100m within the 5 years of data show
that ECMWF analyses well represent 100m wind speed. The computed RMSE is
of 1.0m·s−1 (the mean wind speed being of 5.8m·s−1) and no systematic bias is
displayed. On the contrary, 10m wind speed output from ECMWF analyses displays
a systematic overestimation the observed wind speed. The computed RMSE is of
1.4m·s−1 (the mean wind speed being of 2.4m·s−1).

By applying linear regression between a certain amount of selected variables and
observed wind speed, we reduce the RMSE for the 10 and 100m reconstructed wind
speed up to 65 and 23%, respectively. Those good results have been achieved by
fitting a linear model in 8 directions and by automatic selection of valuable variables
in those directions. Building such a model thus requires a special treatment and a
good knowledge of the specific site so that it cannot be systematically applied to
another site. Very interestingly, using Random Forests to reconstruct 10 and 100m
wind speed gives comparable results as the best linear models (about 57 and 20%,
respectively), while their performance is not sensitive to any preparation of the data.
Computing time is a bit longer than simple linear models, but it is quite similar when
a linear model is fitted in each direction.

In a second step, we applied the statistical models to forecast up to 5 days. Note
that statistical models are trained on past analyses. Applying it on forecasts will work
‘aswell’ only if the relationship betweenNWPoutputs and observedwind speed does
not change with lead-time. This is not a-priori guaranteed as the analyses incorporate
information fromobservation via data assimilation. Results are encouraging, because
the RMSE between forecast wind speed and observed wind speed is significantly
reduced compared to ECMWF forecasts whatever the lead-time, and for both 10 and
100m wind speeds. Interestingly, Random Forests perform the same or better than
linear models when applied to forecast 10m or 100m wind speed.

The results obtained for the forecasts are very encouraging: even though the
training only involved analyses, the reduction in RMSE persisted for lead-times
up to 5 days. Promisingly, there are evident changes to be tried which should lead to
improvements of the performances. As a first, training statistical downscaling mod-
els directly on ECMWF forecasts makes sense as a transfer function adapted to each
lead-time should take into account the reduced performance of ECMWF forecasts
around 15 pm and thus correct systematic errors in the representation of the diurnal
cycle. Moreover, training dataset for each lead-time separately should also help to
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reduce the increase of RMSE with lead-time by adapting the explanatory variables
to forecasts performance. For instance, for short lead-time, statistical models may
find out that surface wind speed in ECMWF forecasts gather valuable information
so that this information would be used. It may nevertheless not be the case at longer
timescales, so that statistical models would prefer using information from large-scale
circulation (e.g. pressure) which is well modeled by ECMWF forecasts, even at lead-
time up to 5 days. Secondly, the good performance of Random Forests together with
linear regression models denotes that it is possible to reconstruct the wind speed
with very different relations. Model aggregation may thus be a path to retrieve more
information than when using a single statistical model. It also seems that using statis-
tical downscaling techniques results in a more peaked distribution around the mean,
whereas the ECMWF forecasted 100m wind speed overestimates the extremes. As a
consequence, a properly weighted mean of the two different forecasts could improve
results as well.

In this study, we choose to use only local informations coming fromNWPoutputs.
Additive valuable informationsmay be retrieved from larger-scaleNWPoutputs such
as large-scale horizontal gradients of the pressure. However, the discussion on the
added value of any other NWP outputs is site dependent, and is already part of
research matters. For instance, it has been proved that large scale circulation patterns
give valuable information at timescales up to months in some regions of France [1].

A wind farm is often equipped with many anemometers situated at 10m and
at the hub height, so that local intime observations are easily available as well as
wind power output. Forecasting wind speed using only NWP outputs is a good way
to improve forecasts, but local past observations may also be used as explanatory
variable. Indeed, at very short lead-time (3-h), we can assume that the error the NWP
model make at t0h (corresponding to the analyses) may be correlated to the future
error at time t3h . We could also imagine to create a direct link between NWP outputs
and wind energy production as in [9], using in addition the information on the close
past wind energy production at the considered wind farm.

As a preliminary illustration of the benefit of such an approach, we train Random
Forests and Linear Regression with stepwise selection of variables to forecast 10
and 100m wind speed at time t3h only, and add the error on the wind speed at time
t0h as an explanatory variable of the future wind speed at time t3h . We perform a
k-fold of 10 forecasts over the year 2015. Results are represented in Fig. 2.11. When
forecasting 10m wind speed at t3h , using the error at time t0h allows for a reduction
of the RMSE of 5% with Random Forests and of 10% with linear model compared
to Random Forest without the observation at time t0h . When forecasting 100m wind
speed at t3h , using the information on the 10m wind speed observed at t0h allows for
an improvement of 2 – 6%. Adding the information on the 100m wind speed at time
t0h spectacularly improves results by 18% with linear regression model.

In addition of the good results obtained when reconstructing 10 and 100m wind
speed, we also showed encouraging results when forecasting wind speed up to 5
days. By using very different statistical models, we highlight advantages of Random
Forests over multiple linear regression, e.g. simplicity and robustness. Finally, very
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(a) (b)

Fig. 2.11 RMSE computed over 10k-fold forecasts of 10m (a) and 100m (b) wind speed at 3h
lead-time, using the error on the 10 and 100m wind speed at time t0h (denoted by Δ10 and Δ100,
respectively) as an explanatory variable. The dashed line represent the averaged RMSE of Random
Forest without using observations at t0h , and boxes represents the RMSE over 10k-fold forecasts

promising perspective for improving downscaling at short-term horizon is exposed; it
involves a pseudo-assimilation of a local past observed information into the statistical
downscaling model.
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Chapter 3
Stochastic Lagrangian Approach
for Wind Farm Simulation

Mireille Bossy, Aurore Dupré, Philippe Drobinski, Laurent Violeau
and Christian Briard

Abstract We present a stochastic Lagrangian approach for atmospheric boundary
layer simulation. Based on a turbulent-fluid-particle model, a stochastic Lagrangian
particle approach could be an advantageous alternative for some applications, in
particular in the context of down-scaling simulation and wind farm simulation. This
paper presents two recent advances in this direction, first the analysis of an optimal
rate of convergence result for the particle approximation method that grounds the
space discretisation of the Lagrangian model, and second a preliminary illustration
of our methodology based on the simulation of a Zephyr ENR wind farm of six
turbines.

Keywords Stochastic Lagrangian models · Numerical analysis · Wind farm
simulation

3.1 Introduction

The stakes of the simulation of wind farm production are growing with the develop-
ment of renewable energies. The various time scales involved (from wind potential
evaluation, to short-term production forecast), the mix of various constraints on
existing sites or on new projects are all issues where numerical simulations can bring
quantified answers.
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Although some computational fluid dynamics models, together with wind tur-
bine models, and software are already established in this sector of activity (see e.g.
Sørensen [17], Niayifar and Porté-Agel [11], and the references cited therein), the
question of how to enrich and refine a wind simulation (from a meteorological fore-
cast, or from a larger scale information, eventually combined with measurements)
remains largely open. This is particularly true at the scale of a wind farm, regard-
ing the production estimation of a given site, wind turbine by wind turbine. Among
various existing approaches for wind farm simulation we can distinguish

• wind extrapolation methods, and parametrization of wake effect for real-time sim-
ulation response,

• fluid and structure interaction models for wake computations, with often laminar
flow hypothesis and rather simple terrain description,

• Large eddy simulation (LES) models for turbulent flows, including turbine con-
tribution forces related to actuator disc modeling.

The turbulent nature of the atmospheric boundary layer (ABL) contributes to the
uncertainty of the wind energy estimation. This has to be taken into account in the
modeling approachwhen assessing thewind power production. This paper is devoted
to a downscaling approach that typically aims to compute thewind at a refined scale in
the ABL, from a coarse wind computation obtained with a mesoscale meteorological
solver. This is the purpose of the Stochastic Downscaling Model (SDM) presented
here.

The main features of SDM reside in the choice of a fully Lagrangian viewpoint
for the turbulent flow modeling. This is allowed by stochastic Lagrangian modeling
(SLM) approaches that adopt the viewpoint of a fluid-particle dynamics in a flow.
Such methods are computationally inexpensive when one need to refine the spatial
scale. This is a main advantage of the SDM approach, as particles methods are free of
numerical constraints (such as the Courant Friedrichs Lewy condition that imposes a
limit to the size of the time step for the convergence of many explicit time-marching
numerical methods).

The development of SDM is a collaborative long term task (see [1, 2, 5] for
detailed presentation), that addresses jointly mathematical and modeling issues with
the elaboration of a numerical solver. It is an interdisciplinary work involving dis-
ciplines such as stochastic analysis and numerical analysis for the design and the
optimal use of the Lagrangian particle solver, physics of the ABL for the calibration
and validation of SDM equations and boundary conditions, and engineering for the
Lagrangian adaptation of actuator disk model for the turbine wake effect.

This paper presents two recent advances in these directions:

• Section3.2 is dedicated to the convergence rate analysis of the stochastic particle
algorithm used in SDM. We analyse the convergence rate with numericals exper-
iments and check its adequacy with the theoretical optimal rate of convergence
result obtained in [4] for the particle approximation method that grounds the SDM
numerical algorithm.
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• Section3.3 presents some first SDM simulation, by computing the wind energy
production of an existing wind farm: the Parc de Bonneval operated by Zephyr
ENR.With the initial and boundary conditions generated from theMERRA reanal-
ysis, we evaluate SDM result against measurements collected at the wind farm.
This numerical experiment is representative of the SDM capabilities to refine the
spatial scale of the wind computation up to the scale of the wind farm: starting
from the MERRA wind profile computed on a horizontal grid of 60 by 60km,
SDM is refining the wind computation on a spatial grid of 40 by 60m, during a
computational time interval of 24h.

3.2 Stochastic Lagrangian Models

Lagrangian approaches for turbulent flow are already well established for turbulent
subgrid-scale modeling. This refers to the representation of the small-scales of the
flow that cannot be adequately resolved solely on a computational mesh. In the
context of atmospheric flow, the so-called Lagrangian Particle Dispersion Models
(LPDM) are widely used for the analysis of air pollutants dispersion (see e.g. Stohl
[18] and the references therein). Such method adopts perspective of a ’air parcel’ by
tracking a number of fictitious particles (with position Xt ) released into a flow field:

dXt = U (t, Xt )dt + u(t)dt (3.1)

whereu(t) is a randomfluctuationof themeanvelocityU , given for example by aLES
computation. Thevelocityfluctuation ismodeledwith stochastic differential equation
(SDE) of various degrees of complexity according to the involved representations,
but generally starting from the simplest Langevin model

du(t) = −u(t)

T
dt + √

C0ε(t, Xt )dWt (3.2)

where the stochastic (or fast) part of the motion is described by the 3-dimensional
Brownian motion W , amplified with the turbulent pseudo dissipation of the flow ε.
Stochastic description of particles in turbulent flows are also well established in the
case of disperse two-phase flows and may concern many other applications (see e.g.
Minier [9]).

The SDM methodology also makes use of the air parcel viewpoint. But now the
mean velocity (in the particle velocity dynamics (3.1)) is not given any more but has
to be computed as a statistical mean velocity 〈U 〉 by solving locally a Lagrangian
probability density function (PDF) model. This approach relies on the so-called fluid
particle approach developed in the seminal work of S. Pope ([12], see also [10] and
the references therein). In this approach, a fluid-particle, or virtual fluid parcel with a
position, an instantaneous velocity and a temperature state (Xt ,Ut , θt ) is described
as the solution of a stochastic differential equation (SDE), generically of the form
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dXt = Utdt,

dUt = − 1

ρ
∇x 〈P〉(t, Xt )dt − G(t, Xt ) (Ut − 〈U 〉(t, Xt )) dt

+ Ftdt + √
C(t, Xt )ε(t, Xt )dWt ,

dθt = D1(t, Xt , θt )dt + D2(t, Xt , θt )dW̃t .

(3.3)

(W, W̃ ) is a (3d × 1d)-Brownian motion. From a SDE like (3.3), it is always possi-
ble to write (at least formally) the partial differential equation (PDE) of its density
function, and from that to recover the dynamics of the associated velocity field.
Equation (3.3) is in the just enough detailed form that allows to recognize/intensify
the corresponding coefficients in a given targeted Navier Stokes equation combined
with a chosen turbulence modeling (we refer the reader to [2] for details). Except
for the mean gradient pressure term − 1

ρ
∇x 〈P〉, the choice of the coefficients in the

right-hand side of (3.3) corresponds to the choice of the turbulence closure. In par-
ticular, the chosen coefficients and forces in (3.3) for SDM in the ABL are described
in Sect. 3.3.1.

All computational approaches in turbulence modeling are focused on the com-
putation of the Eulerian statistical average of the velocity and of other associated
quantities. This averaging operator is classically represented by the 〈U 〉 in Reynolds-
averagedNavier–Stokes (RANS) approaches, by Ũ orU inLESapproaches. In SDM,
the Eulerian average is recovered as the probabilistic conditional expectation1 of the
particle velocity Ut , knowing that its position Xt is at point x . Denoting P the prob-
ability of the model (3.3), provided with expectation symbol E, the mathematical
definition of Eulerian average in SDM is

〈U 〉(t, x) := E [Ut |Xt = x] , (3.4)

More generally, for any integrable function f , we set

〈 f (U, θ)〉(t, x) := E [ f (Ut , θt )|Xt = x] . (3.5)

Equivalently, in term of PDF approach (see [15] for further details), denoting
γ (t, ·, ·, ·) the probability density law of the random variable (Xt ,Ut , θt ), and
ρ(t, x) = ∫

R3×R
γ (t, x, u, θ)dθdx the renormalizedmass, the statistical average also

writes

〈 f (U, θ)〉(x, t) =
∫
R3×R

f (u, θ)γ (t, x, u, θ)dudθ

ρ(t, x)
.

Thus, the coefficients of the stochastic equation (3.3) are (function of, or derivatives
of) statistical averages 〈u(i)〉, 〈u(i)u( j)〉, defined as in (3.5). Here and in the sequel,
we make use of the notation Ut = (u(1)

t , u(2)
t , u(3)

t ).

1We consider here only the case of constant mass density flow, for the sake of clarity.
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3.2.1 Numerical Analysis of SLM: Particle Approximation

Solution of nonlinear SDE, with coefficients depending on expectations of the
unknowns, can be constructed (under some appropriated regularity hypotheses) as
themeanfield limit of a linear systemof N -interacting particles, as N tends to infinity.
Such particle approximation principle is at the basis of the SDM numerical method.
(see e.g. [3] for an introductory review). We detail this principle in the simplified
prototype equation

Xt = X0 +
∫ t

0
Usds

Ut = U0 +
∫ t

0
E[b(Us)|Xs]ds + σWt ,

(3.6)

preferably to the complex model (3.3). In this section, we adopt a formal mathe-
matical viewpoint to analyze numerical algorithms, and u �→ b(u) in (3.6) is any
generic function that can play role of the mean velocity field (x �→ E[b(Ut )|Xt =
x] = 〈U 〉(t, x)), or turbulent kinetic energy, or more complex quantities appearing in
theSDMmodel in (3.20), but the resulting algorithm remains similar. Particle approx-
imation for the solution of (3.6) relies on a statistical estimator for the conditional
expectation function x �→ E[b(Ut )|Xt = x]. Typically, a conditional estimator uses
local averaging estimates on the N -particle set (Xi

t ,U
i
t , i = 1, . . . , N , t ∈ [0, T ]):

E[b(Ut )|Xt = x] is approximated by
N∑

i=1

WN ,i (x)b(U
i
t ). (3.7)

Propositions for the weightsWN ,i (x) are mainly of two kinds: the Nadaraya–Watson
kernel estimator relies on a choice of a kernel function Kε(x) = K ( x

ε
):

WN ,i (x) = Kε(x − Xi )
∑N

j=1 Kε(x − X j )
, (3.8)

while partitioning (or mesh) estimator relies on a given M-partition PM = {BM,1,

BM,2, . . . ,BM,M } (or a mesh) of the space domain:

WN ,i (x) = 1{Xi∈BM, j }
∑N

k=1 1{Xk∈BM, j }
, for x ∈ BM, j . (3.9)

It is worth noting that the algorithm complexity of a particle system based on
kernel estimator is up to O(N 2) whereas the partitioning estimator version is up to
O(N ) (see also Sect. 3.2.3). We retained this last solution for SDM together with
some refinement of Particle-in-cell (PIC) technics (see further details in [2]).
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The convergence and precision of a particle-based numerical algorithm for solving
(3.6) is driven by N the number of particles to simulate and ε the characteristic size of
the partition or the characteristic size of the support of the kernel K when it is applied
on particles. In [4], Bossy and Violeau prove the theoretical rate of convergence for
the particle approximation of the solution of (3.6). This result gives a relationship
between the two parameters N and ε in order to achieve the optimal reduction of
the error (or bias). This is the first mathematical result of this kind and to make
the difficulty of the mathematical analysis more affordable, the boundary conditions
are assumed periodic for simplicity. In a periodic box or torus domain equal to
D = [0, 1]d , the Lagrangian model in (3.6) becomes:

Xt =
[
X0 +

∫ t

0
Us ds

]
mod 1

Ut = U0 +
∫ t

0
B[Xs; ρs] ds + Wt , and ρt is the density law of (Xt ,Ut ),

(3.10)

where,we havewrittenE[b(Ut )|Xt ]with its equivalentmathematical form B[Xt ; ρt ],
for (x, γ ) �→ B[x; γ ] defined for all probability density function γ by

B[x; γ ] =
∫
Rd b(v)γ (x, v) dv
∫
Rd γ (x, y)dv

1{∫
Rd γ (x,y)dv>0}.

The associated particle approximation system ((Xi,N ,Ui,N ), N ≥ 1) is defined as
the solution to

Xi,N
t =

[
Xi
0 +

∫ t

0
Ui,N

s ds
]

mod 1,

Ui,N
t = Ui

0 +
∫ t

0
Bε[Xi,N

s ; μ̄N ,ε
s ] ds + Wi

t ,

μ̄N ,ε
t = 1

N

N∑

j=1

δ{(X j,N
t ,U j,N

t )} is the particles empirical measure

(3.11)

where the kernel regression version Bε of B, given by the approximation (3.7), (3.8),
is defined for all density γ by

Bε[x; γ ] :=
∫
[0,1]d×Rd b(v)Kε(x − y) γ (y, v)dy dv
∫
[0,1]d×Rd Kε(x − y) γ (y, v)dy dv

1{∫
Rd γ (x,y)dv>0}.

The (Wi
t , t ≤ T, 1 ≤ i ≤ N ) are independent Brownian motions valued in R

d , and
independent from the initial variables (Xi

0,U
i
0, 1 ≤ i ≤ N ), independent, identically

distributed with initial law ρ0. The nonlinear model (3.10) is thus approximated with
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the linear system (3.11) (of dimension 2dN ), easy to discretize in time with the help
of a time-discretisation Euler scheme (see below (3.16)). This algorithm is at the
basis of the so-called Stochastic Lagrangian numerical algorithm (see e.g. Pope [14]
and for the SDM method [2]).

The Theoretical Convergence Analysis

In the algorithm (3.11), conditional expectation E[ f (Ut )|Xt = x], for f = b, and
more generally for any f measurable bounded on D , is approximated by

x �→ Fε[x; μ̄ε,N
t ] :=

∑N
j=1 f (U j,N

t )Kε(x − X j,N
t )

∑N
j=1 Kε(x − X j,N

t )
,

the corresponding kernel approximation function, where μ̄
ε,N
t is the empirical mea-

sure of particles as in (3.11). A pertinent criterion for the evaluation of the algorithm
(3.11) is then the measure of the mean error on the conditional expectation used all
along the time loop:

E

∣∣∣E[ f (Ut )|Xt = x] − Fε[x; μ̄ε,N
t ]

∣∣∣. (3.12)

We reduce this error function by its L1-norm onD weighted by the particles position
distribution ρt ), by considering:

ErrorL1
ρt

(D ) :=
∫

D
E

∣∣∣E[ f (Ut )|Xt = x] − Fε[x; μ̄ε,N
t ]

∣∣∣ρt (x)dx . (3.13)

Theorem 3.1 (see Bossy Violeau [4]) Assume the following:

(i) f and b are smooth and bounded functions with bounded derivatives
(ii) the kernel K is positive and bounded, with compact support in {x; ‖x‖ ≤ 1}
(iii) the initial density law ρ0 is smooth and bounded below by a constant ζ > 0.

Then for any T > 0, 1 < p < 1 + 1
1+3d and c > 0, there exists a constant C such that

for all ε > 0 and N > 1 satisfying (ε(d+2)N
1
p )−1 ≤ c, we have for all 1 ≤ i ≤ N ,

ErrorL1
ρT

(D ) ≤ C
(
ε + 1

ε(d+1)N
+ 1

ε(d+1)pN
+ 1

(εd N )
1
p

+ 1

ε
dp
2

√
N

)
. (3.14)

The optimal rate of convergence is achieved for the choice N = ε−(d+2)p and

ErrorL1
ρT

(D ) ≤ CN− 1
(d+2)p . (3.15)

Notice that p can be chosen almost equal to one. The global error given in (3.14) is a
combination of several sources of approximations. First, the O(ε) term corresponds

to the smoothing error for F . The O(ε− dp
2

√
N

−1
) term is the Monte Carlo variance
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contribution to the error, next O((εd N )
− 1

p ) is the error due to the replacement of
the law ρt by the empirical measure μ̄

N ,ε
t . There is also the approximation due

to the replacement of the position of the exact process as the location where the
conditioned expectation is computed by the position of a numerical particle. This is
a part of the statistical error, (the use of the Nadaraya Watson estimator to compute
the expectation) in O(ε + 1

εd+1N + 1
ε(d+1)p N ).

3.2.2 Empirical Numerical Analysis

In this section, we measure and analyse the effective convergence of the algorithm
with numerical experiments in order to verify and illustrate that the claimed con-
vergence rate in Theorem3.1 is optimal. For both computational time reason and
clarity of the presented graphs, we limit our experiments to d = 2, (the wind farm
simulation presented in Sect. 3.3.1 is a fully 3 dimensional case).

Numerical experiments proceed using an Euler scheme. We decompose the time
interval [0, T ] into M time steps of length Δt := T

M and we introduce the time
discretization of the interacting particle process:

⎧
⎨

⎩
Xi,N ,Δt
t =

[
Xi
0 + ∫ t

0 U
i,N ,Δt
η(s) ds

]
mod 1,

Ui,N ,Δt
t = Ui

0 + ∫ t
0 Bε[Xi,N ,Δt

η(s) ; μ̄
N ,ε,Δt
η(s) ] ds + Wi

t , μ̄
N ,ε,Δt
t = 1

N

∑N
j=1 δ

(X j,N ,Δt
t ,U j,N ,Δt

t )
,

(3.16)

for all 1 ≤ i ≤ N and t ∈ [0, T ]where η(t) := Δt
⌊

t
Δt

⌋
is theΔt-step time function.

For all time step kΔt , 0 ≤ k ≤ M , each random variable (Xi,N ,Δt
(k+1)Δt ,U

i,N ,Δt
(k+1)Δt ) is

computed from the values of all the variables (X j,N ,Δt
kΔt ,U j,N ,Δt

kΔt ), 1 ≤ j ≤ N .
This algorithm has a total complexity of order O (M)O

(
N 2

)
. The major draw-

back of the kernel estimator method used here lies on the computation of the drift at
any point x that requires a loop over all the N particles, even if they do not contribute
to the final result. As we already mention, for this reason, we preferably use the
alternative particle-mesh algorithm for SDM.

The Test Case Description

We introduce some nontrival behavior in the model (3.10) by adding a potential
function P(x, y) that models an external, but static in time, pressure force as

P(x, y) = 1

2π
cos(2πx) sin(2πy) − 1

2
x, for all (x, y) in D = [0, 1]2.

The drift (x, u, γ ) �→ B[x, u; γ ] is a mean reverting term such that

B[x, u; γ ] =
∫
Rd (v − 2u)γ (x, v) dv

∫
Rd γ (x, v) dv

for all (x, u) in D × R
2 and all γ inP(D × R

2)
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Fig. 3.1 Some examples of normalized kernel functions K

with, for all (x, u) in D × R
d ,

B[x, u; ρt ] = E[Ut |Xt = x] − 2u, when ρt is the density of (Xt ,Ut ).

We solve for t ≤ T = 2,

{
Xt =

[
X0 + ∫ t

0 Usds
]

mod 1

Ut = U0 − ∫ t
0 ∇P(Xs) ds + ∫ t

0 B[Xs ,Us; ρs] ds + Wt , ρt is the density of (Xt ,Ut ).

The initial distribution ρ0 of (X0,U0) is such that X0 has a Gaussian distribution
on T

d with variance σ 2 (i.e. X0 = σ Z mod 1, σ 2 = 0.3) and U0 is a centered
Gaussian random variable independent from X0, with variance ν2 = 1. On Fig. 3.2,
we represent the time evolution of the particles mass density ρt (x) = ∫

R2 ρt (x, u)du
of the process Xt distributed in the torus (plot (a)), as well as the turbulent kinetic
tke(t, x) = 1

2E[(Ut − E[Ut |Xt = x])2|Xt = x] (plot (b)). We can observe that the
density is clearly non uniform in space, and we expect this should put some stress on
the estimation of the mean fields in low density areas. Moreover, although starting
from a Gaussian distribution, the density quickly converges in time to a stationary
state and this allows to fix the final time to T = 2 for all the error analysis simulations,
withM = 128 time steps. The kernel regression is performedwith the Epanechnikov
kernel (see Fig. 3.1c) and ε = 1

16 .

Expected L1 Error of the Kernel Method

We focus our attention on the expected L1 error defined in (3.13). In order to estimate
this quantity, we need to proceed with some approximations on the integral. In the
following, wewriteπΔx(g) for the spline-interpolated function g on a gridwithmesh
size Δx . The reference numerical solution for E[ f (UT )|XT = x] is approximated
by the splined mean fields defined by

Fε

[
x; μ̄

ε,N̄
T ]

Δx

:= πΔx (Fε

[·; μ̄
ε,N̄
T ])(x) (3.17)
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Fig. 3.2 Evolution of the density and TKE for (Xt ,Ut ), [N = 105, ε = 16−1]

for a large number of particles N̄ and a sufficiently small window parameter ε. The
numerical approximation is also splined to ease the integration step:

FΔx
ε [x; μ̄

ε,N
T ] := πΔx

(
Fε[·; μ̄

ε,N
T ](x)). (3.18)

The reference mass density ρT (x) is also estimated by using the Monte Carlo mean
of kernel density estimation:

ρ̄T (x) := 1

Nmc

Nmc∑

k=1

1

N̄

N̄∑

j=1

Kε(x − X j,ε,N̄
T (ωk)), and ρ̄Δx

T (x) := πΔx (ρ̄T )

(3.19)
where the ωk represent Nmc independent realizations of the simulation. The com-
putation of the integral of splined functions can be carried out very precisely over
regular grids with the help of numerical libraries. All that remains is to evaluate the
expected splined L1 error by means of a Monte Carlo simulation:

ErrorL1
ρT

(D ) ∼ 1

Nmc

Nmc∑

k=1

∫

D

∣∣Fε

[
x; μ̄

ε,N̄
T ]

Δx

− FΔx
ε [x; μ̄

ε,N
T (ωk)]

∣∣ρ̄Δx
T (x) dx .

In Fig. 3.3, we plot the expected L1 error calculated as above as a function of
the window parameter ε for different total number of particles N : for each choice
of N , we observe that the error is first decreasing with the value of ε (from right to
the left) toward a minimum value, but next start to increase with two small values
of ε: this is the effect of the competition between the terms ε and 1

εα in the bias
formula (3.14). This is effect is delayed by choosing larger values of N who reduces
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Fig. 3.3 L1 error as a
function of ε for different
number of particles N

the variance in the computation. We can also notice that the asymptotic slope of the
error when ε tends to zero is very close to −1 for a log-log scale (represented with
a blue dashed line). We expect the error to behave like O(ε + C

ε3N + C
ε
√
N

). Then, it

seems reasonable to infer that the term of order O( 1
ε
√
N

) related to the variance of

the stochastic integral in the model dominates the L1 error. Recall, however, that
our theoretical analysis of the error is valid under the constraint 1

εd+2N 1/p ≤ c, for
some positive constant c, so we cannot rigorously extend the bound to an asymptotic
analysis when ε decreases to zero. Finally, we can observe that the slope of L1 is
bounded by one when N is sufficiently large and ε becomes large. This is in complete
agreement with the bounds in Theorem3.1 although this figure does not explain the
relative contribution of the smoothing error and the kernel estimation error in the
total L1 error.

We can also consider the expected L1 error as a function of N
εd
, as in Fig. 3.4.

Note that N
εd

loosely represents the number of particles in interaction with a given
particle (for compact support kernel functions), and is often referred to as the number
of particle “per cell” (denoted Npc), especially in the case of partitioning estimates.
Np here denotes the total number of particles. This Fig. 3.4 illustrates the concept
of bias-variance trade-off and its relation with the number of particle per cell: for a
given small number of particle per cell (compared to the optimal number of particle
per cell), we can observe that the L1 error is almost independent of the absolute value
of ε. This clearly shows that the variance is directly related to the number of particles
used in the computation of the estimator. On the contrary, when the number of particle
per cell becomes large and the bias dominates, the L1 error becomes smaller with
ε. The convergence of the error with respect to the number of particles N (= Np)

can be observed in Fig. 3.5. When ε is sufficiently small, we notice as expected a
convergence of order O( 1√

N
), related to the reduction of the variance component of

the error. On the other hand, when ε is large, increasing the number of particle does
not reduce the error as the bias dominates.
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Fig. 3.4 L1 error as a
function of ε for different
densities of particles N

εd

Fig. 3.5 L1 error as a
function of the total number
of particles, for different
value of ε

Given this bias-variance trade-off, one may be interested in finding the optimal
value of ε that minimizes the expected L1 error for a given number of particles. From
the simulations we ran for different couples (ε, N ) of parameters, we plot the surface
of the error in Fig. 3.6 (left). We can then plot the curve of optimal ε as a function
of the number of particles which is very close to 1

ε4
(for d = 2). This result is in-line

with what we expected from Theorem3.1 where the optimal value of window size
is given by N− 1

d+2 . Moreover, if we plot the error associated with the optimal couple
of parameters as a function of ε, we can observe the optimal experimental rate of
convergence of the algorithm. The theoretical optimal error (3.15) in Theorem3.1,
is of order O(N− 1

4p ), with p close to 1, while in Fig. 3.6 (right), we observe a rate
of order close to − 1

4 to − 1
3 . Theoretical and observed convergence rates are here in

a very good adequacy.
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Fig. 3.6 L1 error as a function of ε and N (left). Optimal rate of convergence for the L1 error
(right)

3.2.3 Particle in Mesh Method

We end this section with some experiments on the particle-mesh version of the
algorithm. The principle of the Particle-Meshmethods is to aggregate the N scattered
data points (Xi , f (Ui )), for 1 ≤ i ≤ N onto a regular mesh covering the simulation
domainD , thus reducing the size of the data set to the number of nodes in the mesh.
The mean field is evaluated from the mesh charges at each particle position using
standard regression techniques as in (3.7), (3.9). If we design the charge assignment
and the force interpolation operation such that they can be performed in constant
time for each particle, the Particle-Mesh algorithm has a O (M)O (N ) complexity,
i.e. it has linear complexity with respect to the total number of particles. This is
a tremendous improvements over the previous kernel regression method, and the
speed-up is not only theoretical but is actually achieved in practical simulations.

The drawback of this approach is that it introduces new sources of numerical
errors, and unlike classical particle computer simulations, increasing the number of
nodes in themesh does not necessarily reduce the error if the total number of particles
is left unchanged. Moreover, refining the mesh increases the computational cost, so
it is particularly important to be able to reduce the errors for a given mesh size in
order to achieve the best compromise between quality and computational cost. In this
regard, we will consider three charge assignment and interpolation functions that are
designed to be optimal according to smoothness and spatial localization of errors
criteria: the Nearest Grid Point (NGP), the Cloud in Cell (CIC), and the triangular
Shaped Cloud (TSC) (see Fig. 3.7 for details).

Charge Assignment

Consider a mesh of cell size h (also called window size). Let xi be the position of the
i th node. Then the charge ci and the charge density di assigned at node i are defined
by
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Fig. 3.7 Charge assignment functions (from left to right: NGP, CIC, TSC)

ci := 1

N

N∑

j=1

f (U j )Kh(xi − X j ) di := 1

N

N∑

j=1

Kh(xi − X j ),

where K is a charge assignment function. By definition of ci and di the ratio
ci
di

is
simply the kernel regression estimate at the node point xi as in (3.7):

E[b(Ut )|Xt = x] ∼ ci
di

=
1
N

∑N
j=1 f (U j )Kh(xi − X j )

1
N

∑N
j=1 Kh(xi − X j )

.

The computation of the mesh charge values can be performed efficiently in O (N )

with an outer loop on the particles and the use of a mesh localization procedure that
makes it possible to loop only on the nodes charged by a given particle.

Of course, it is important that the localization of the particle in the mesh and the
computation of the list of nodes charged by the particle be performed in constant
time. In practice, the lists of neighbor cells are computed once and for all (in linear
time) at the beginning of the procedure to speed up the execution of the algorithm.

In Fig. 3.8, we measured the influence of the regularity order of the charge assign-
ment function Kh . Aside from the smoothing aspect of the obtained velocity field,
we can observe a gap between the error produced by the partitioning estimates (cor-
responding to NGP assignment charge) and the higher order CIC or TSC functions,
and CIC appears to be a good compromise between the error level and the ease of
implementation.

3.3 Wind Farm Simulation Experiment with SDM

Our SDM model has been evaluated against measurements collected at a wind farm
located inBonneval, a small town 100kmSouthwest of Paris, France (at 48.20 ◦Nand
1.42 ◦E). The wind farm is operated by Zephyr ENR, a private company managing
five other wind farms. The Bonneval wind farm, called Parc de Bonneval, has been
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(a) Velocity norm for the NGP scheme
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(c) Velocity norm for the CIC scheme
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(e) Velocity norm for the TSC scheme
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(f) Velocity error for the TSC scheme

Fig. 3.8 Velocity norm and average error for the NGP, CiC and TSC schemes
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implemented in 2006 and is composed of six wind turbines, each with a power rated
of 2.0MW. In order to evaluate the SDM simulations with the data collected at Parc
de Bonneval, wind turbines have been numerically integrated in SDM,based on an
actuator disk model. This model allows the simulation of the dynamical effect of the
presence of wind turbines, in the form of trailing wakes, as well as the computation
of the wind energy production.

3.3.1 SDM for Atmospheric Boundary Layer Simulation

We run SDM for the winter day of December 22th 2016, with the Eq. (3.3) configured
for the case of the neutral atmosphere hypothesis. Here and in the sequel we denote
by

Ut = (u(1)
t , u(2)

t , u(3)
t ) = (ut , vt ,wt )

the velocity components (with numbering or with letters, depending on how it is
convenient in the equations), and for the components of the instantaneous turbulent
velocity:

Ut − 〈U 〉(t, Xt ) = (u′(1)
t , u′(2)

t , u′(3)
t ) = (u′

t , v
′
t ,w

′
t ).

In order to elaborate the SDMmodel, we start from the General Langenvin model
introduced by Pope [15]:

dXt = Utdt,

with Ut = (u(i)
t , i = 1, 2, 3) and u′

i (t) = u(i)
t − 〈u(i)

t 〉 (3.20)

du(i)
t = −∂xi 〈P〉(t, Xt )dt +

⎛

⎝
∑

j

Gi j

(
u( j)
t − 〈u( j)〉

)
⎞

⎠ (t, Xt )dt + √
C0ε(t, Xt )dB

(i)
t .

As a stand-alone PDF method, all the Eulerian statistical means needed by the SDM
model in (3.20) are computed within the simulation. In the ABL, we pay great
attention to the modeling of the ground effects. We incorporate to SDM a model for
the effect of the wall blocking of normal velocity component (following [19], see
also [5] for details). For the wind farm simulation, we further incorporate a model
for the effect of pressure reflection from the surface (by adapting the Durbin elliptic
relaxation method [6]). This model refinement mainly impacts the form of the (Gi j )

relaxation tensor we use in (3.20).We shortly describe (Gi j ), decomposing the tensor
in this common basic diagonal relaxation term 1

2
ε
tke and the more complex γi j part,

decomposed itself in its near wall part γ wall
i j and its internal flow part γ homogeneous

i j :
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Gi j (t, x) = −γi j (t, x) − 1

2

ε(t, x)

tke(t, x)
δi j , with C0ε(t, x) = 2

3

∑

i, j

(γi j )〈u′
i u

′
j 〉(t, x)

and γi j (t, x) = (1 − α(t, x)tke(t, x))γwall
i j (t, x) + α(t, x)tke(t, x) γ

homogeneous
i j (t, x)

−γ
homogeneous
i j = −1

2
(CR − 1)

ε

tke
δi j + C2

∂〈u(i)〉
∂x j

, and − γwall
i j = −7.5

ε

tke
ni n j

where n is the wall-normal unit vector. The coefficients C0 and C2 have to satisfy
some realizability constraints (see [7, 13]). The elliptic blending coefficient α (that
balances γ wall

i j and γ
homogeneous
i j ) solves near the ground the Poisson equation:

L2∇2α − α = − 1

tke
,

where L is a length scale defined as a maximum of the turbulent scale and the scale
connected with dissipative eddies.

Finally, we make use of the Lagrangian methodology to easily introduce com-
plex terrain description in SDM: when a fluid-particle meets the ground during the
simulation, according to the wall-boundary condition, we perform a reflection of it
velocity, according to the friction velocity computed as

u∗(t, x) = κ

√
〈u〉2(t, x) + 〈v〉2(t, x)
log

(
x (3)/z0(x)

)

where the roughness length z0 may vary with the surface terrain.

Lagrangian Actuator Disk Model

SDM method allows some fluid and structure interaction modeling, in particular
when the structure are porous objects like actuator disk models for turbine.

The SDM approach could be used with various actuator disk modelling options
(see [5] and the references therein). In the actuator disc approach, each mill is repre-
sented as an immersed surface which concentrates all the forces exerted by the mill
on the flow. In the SDM context, the presence of wind mills is taken into account
thanks to an additional force f that represents the body forces that the blades exert
on the flow. This force term is incorporated in the SDEs that govern the movement of
the particles. To this end, Eq. (3.20), which governs the time evolution of the velocity
Ut = (ut , vt ,wt ) of a particle, is modified as follows:

dUt = − 1

ρ
∇x 〈P〉(t, Xt )dt + f (t, Xt ,Ut ) dt

− G(t, Xt )
(
Ut − 〈U 〉(t, Xt )

)
dt + C(t, Xt )dWt

(3.21)

where the term f (t, x,U ) represents the body forces of the turbine seen by the
particle at point x with velocity U . We refer to [5] for a detailed discussion on the
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(a) Local coordinates (b) The cylinder C

Fig. 3.9 Non rotating uniformly loaded actuator disc model. a The local reference frame at the
actuator disc of the turbine, using cylindrical coordinates; bThe cylinderC that extends the actuator
disc. Mill forces are applied to particles that lie inside

turbine force terms implementation in the Lagrangian context (including nacelle and
mast forces).

For the simulation of the Parc de Bonneval wind farm presented hereafter, we
have chosen a rather basic non rotating uniformly loaded actuator disc model. Such
model can be easily parametrized with the characteristic data of thrust coefficientCT

and power coefficient Cp, provided by the turbine manufacturer, and varying with
the dynamics of the inflow wind at the turbine.

We describe the force f , using the local reference frame of cylindrical coordinates
centered at the hubof the turbine,with basis vectors ex , er and eθ as shown inFig. 3.9a.
Assuming that the flow moves along the positive direction of the x axis, and that the
turbine’s main axis is aligned with the x axis, so that it faces the wind directly, the
total thrust force exerted by the turbine is formally given by (see e.g. [17])

Fx = −1

2
ρACTU

2
∞ex ,

where U∞ is the unperturbed velocity far upstream from the turbine’s location, A is
the surface area of the turbine’s disc, ρ is the density of air, andCT is a dimensionless,
flow dependent parameter called the thrust coefficient. As in Réthoré et al. [16], the
local velocity magnitude UD is used instead of U∞ and the thrust force expression
in SDM becomes

Fx = −1

2
ρACTU

2
Dex with UD(t) = E[U 2

t |Xt ∈ D]. (3.22)

In order to adapt this thrust force model to particles, the disc is extended to a cylinder
C of lengthΔx andmass ρAΔx (see Fig. 3.9b). The force per unit mass inside region
C , and to include in (3.21), is then given by:



3 Stochastic Lagrangian Approach for Wind Farm Simulation 63

Fig. 3.10 aAerial view of the Parc de Bonneval fromGoogle-Earth; bAerial view of the simulated
wind farm. The pattern define the roughness length. Blue part represents farmland (0.04m), red
are small town (0.4m), green are uncut grass (0.01m), cyan are small forest (0.15m). Yellow stars
represent the turbines. From left to right: the top line are numbered 1 and 2; the turbines in the
bottom line are numbered 3, 4, 5 and 6.

f (t, x) = − 1

Δx
CTU

2
D(t)1{x∈C }ex . (3.23)

The available power is computed following the same idea:

P(t) = 1

2
ρACpU

3
D(t).

Numerical Setup

The modeled domain is a 3D box, with flat ground surface and a variable roughness
length inferred fromGoogle-Earth and lookup tables of roughness lengths for typical
types of land-use. Four different roughness lengths have been used with respect to
the land-use pattern shown in the Fig. 3.10. The roughness length varies between
0.01 and 0.4m. The characteristics of the numerical domain of the simulation and of
the turbines are summarized in Table3.1.

The initial and boundary conditions are generated from the MERRA reanalysis
with a 3-hourly time sampling [8]. All MERRA fields are provided on the same
5/8 degree longitude by 1/2 degree latitude grid. The data used to extract initial and
boundary conditions are those of the closest grid point located at 25km Southwest of
Parc de Bonneval (48 ◦N and 1.25 ◦E). The vertical mesh has 72 pressure levels but
only the first three levels from the surface up to 970hPa (about 400m) are used. The
pressure level coordinates are converted into altitude coordinates using the surface
pressure from the MERRA reanalysis. The wind components are then interpolated
onto the refined grid of SDM. The time step of the SDM simulation is 5 s. The
profiles extracted from the MERRA reanalysis at the closest grid point are therefore
interpolated linearly in time with a 5 s time sampling.
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Table 3.1 Main parameters
of the simulation

(a) Configuration of the simulation

Domain size x 3000m

Domain size y 4787m

Domain size z 408m

75 cells in x Δx = 40m

75 cells in y Δy = 63.83m

85 cells in z Δz = 4.8m

Particles per cell 80

Final time is 24h Time step is 5 s

(b) Parameters of the mill

Hub height 100m

Radius 40m

Nacelle radius 4m

Rotational speed 1.75 rad s−1

Case Study Description

Parc de Bonneval is composed of six turbines of type Vestas V80-2.0MW, each
named by its number from 1 to 6 in Fig. 3.10a. The simulated study-case corresponds
to the 22thDecember 2016, awinter day, allowingneutral atmosphere approximation,
and chosen for its typical wind events, producing wake effects. Figure3.11 displays
the time evolution of the measured wind direction, wind speed and wind energy
production at the 6 turbines. The wind speed and direction are measured directly
at Parc de Bonneval by anemometers located on the hub of each turbine. The wind
energy production is also provided directly from the generator. Those time series
are used to evaluate SDM model performance, with a sampling period of 10min.
The chosen episode is characterized by a strong wind blowing until 5:00 local time
(LT). Between 5:00 and 16:00 LT, the wind speed weakens from 10ms−1 to 2ms−1.
It increases again up to 6ms−1 and decreases down to less than 2ms−1 in 2h. As
a consequence, the turbines production vary from 0 to almost the turbine nominal
power of 2MW during this day. Moreover, the wind shifts progressively from the
South to the North. According to the position of the turbines (see Fig. 3.10), a wind
direction around 230◦ lines up the turbines 3 to 6, and a direction around 250◦ lines
up the turbines 1 and 2. We mainly chose this particular episode of December 22th,
as it contains such wind event, happening between 7:00 and 9:00 LT. Indeed we
can observe the wake effect in Fig. 3.11. The phenomenon decreases the production
downstream by 50%.
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Fig. 3.11 Time evolution of Parc de Bonneval measurements during the 22th December 2016
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Fig. 3.12 Time evolution of SDM results for the 22th December 2016

Results

Figure3.12 displays the time evolution of the simulated wind direction, wind speed
andwind energy production at the 6 turbines. It can be directly compared to Fig. 3.11.
The time variability is well reproducedwith a slightly increasingwind speed between
0:00 and 3:30 LT and a constant wind direction. The wind speed increases between
8 and 9.2ms−1. The simulated wind speed is slightly weaker than the measured
wind speed which remains constant and equal to 10ms−1 over this period of time.
Such underestimation is caused by the initial and boundary conditions fromMERRA
reanalysis which provide a weaker wind speed at the hub height. The wind direction
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Fig. 3.13 Evolution of the wind turbulent velocity between 6:30 and 9:30 LT, when turbines 3, 4,
5 and 6 are lined up. Blue curves display the velocity for turbine 3 (upstream) and green curves
display the velocity for turbine 5 (downstream). Dotted line with circles are measured at Parc de
Bonneval and solid line with triangles are computed in SDM

is also slightly biased by about 10◦. The simulated wind speed then decreases at
a similar rate than the observed wind speed. The short increase of the wind speed
followed by a fast decrease between 15:00 and 23:00 LT is underestimated in the
simulation as the wind speed peaks at about 3.4ms−1 in the simulation versus 6ms−1

in the measurements. The bias in wind direction disappears after 8:00 LT. Finally, we
observe that the high frequency variability is much too smooth in the simulated mean
velocity. We mainly impute this phenomenon to the combination of low frequency
data set for the initial and boundary conditions, with the small size of the numerical
domain, that induces a strong forcing by the lateral inflow boundary conditions.
However, as shown in Fig. 3.13, the intrinsic variability contains in the model is
representative of the observations variability. Figure3.13 displays the evolution of
the norm of the turbulent part of the windU ′ = U − 〈U 〉 between 6:30 and 9:30 LT,
when turbines 3, 4, 5 and 6 are lined up. During thewake alignment period, computed
and measured turbulent velocity norms are displayed at a forefront turbine (turbine
3), and at a downstream turbine (turbine 5). To this end, in SDM, we have extracted a
realization of the turbulent part of the velocity, by randomly picking-up every 10min,
one particle velocity at the neighborhood of the rotors. Hourly moving means are
computed and subtracted to its instantaneous velocity. We proceed similarly with the
measured velocity. In both cases, the variability around the downstream turbine is
higher than the variability around the forefront turbine. Moreover, the variability of
the turbulent velocity computed in SDM is higher than the one measured at Parc de
Bonneval. This can be explained by the way the instantaneous velocity is retrieved.
For SDM we used an instantaneous velocity at 5 s frequency picked every 10min.
For Parc de Bonneval, the velocity measured by anemometers is at a high frequency,
but then it as been averaged over 10min. This time averaging decrease the variability
in the observations.
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Wake effect. Going back to Figs. 3.11 and 3.12, we observe that the wake effect
is well reproduced in the simulation between 7:00 and 12:00 LT. The magnitude
is underestimated but the sheltering effect by the forefront turbines is clearly visi-
ble. The difference of wind speed between the forefront turbines and those located
downstream is about 1–1.5ms−1 in the simulation against 2ms−1 in the measure-
ments. Figure3.14 displays a zoom between 6:00 and 13:00 LT of the measured
and simulated wind direction, wind speed and wind energy production. In detail,
the measured wind speed and energy production displays a continuously decrease
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(a) Observed wake effect
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(b) Simulated wake effect

Fig. 3.14 Zoom between 6:00 and 12:00 LT
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(a) at 00:20 LT (b) at 8:00 LT (c) at 11:00 LT

Fig. 3.15 Surface view at hub height (100m) at different times. The three panels show the turbulent
kinetic energy

between the forefront turbines and the most downstream turbines. At Parc de Bon-
neval, we can distinguish two groups of wind turbines. The forefront turbine 3 with
turbines 4, 5 and 6 downstream in the wake between 6:30 and 9:00 LT and forefront
turbine 1 with turbine 2 downstream in the wake between 10:00 and 12:00 LT. The
simulation displays a similar behavior with however significant differences. Between
6:30 and 9:00 LT, wind speed and energy production at turbines 1 and 2 are similar
to wind speed and energy production simulated at turbine 3, and turbines 4, 5 and 6
are in the wake of turbine 3 as observed. Between 10:00 and 12:00 LT, the simulated
wind speed and energy production varies as observed at the locations of the wind
turbines with however a weaker difference between the forefront and the trailing
wind turbines.

Figure3.15 shows surface views of the simulated turbulent kinetic energy at the
hub height (100m) at different times (0:20, 8:00 and 11:00 LT). At this altitude the
main source of turbulence is due to the interaction with the turbines. Figure3.15a
displays the turbulent kinetic energy pattern 20min after the beginning of the sim-
ulation at 00:20 LT. At this time the turbines are not lined up and they all produce
the same energy. Figure3.15b is similar as Fig. 3.15a at 8:00 LT. At this time, the
wind direction is around 220◦. Consequently, the turbines 3, 4, 5 and 6 are lined-up.
Figure3.15b displays the sheltering effect by the forefront wind turbine and the tur-
bulence generated in its wake. At 11:00 LT (see Fig. 3.15c), the wind veers so that
turbine 1 creates a wake which reaches turbine 2.

To summarize the performance of the simulation against the measurements,
Table3.2 displays skill scores: the Normalized Root Mean Square Error (NRMSE)
and the MAE (Mean Absolute Error) defined by
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Table 3.2 Indicator of the deviation between the simulated wind ŷ and the observed wind y over
the six turbines

NRMSE (in %) MAE (in m/s)

Turbine 1 14.57 1.369

Turbine 2 14.56 1.334

Turbine 3 15.88 1.578

Turbine 4 16.83 1.681

Turbine 5 14.92 1.455

Turbine 6 14.71 1.425

NRMSE =

√
1
N

N∑

i=1
(ŷi − yi )2

ymax − ymin
, MAE = 1

N

N∑

i=1

|ŷi − yi |. (3.24)

N is the number of measurements. It is equal to 145 (one measurement every
10min from the 22thDecember 2016 00:00LT to the 23thDecember 2016 00:00LT).
We make use of the same number of simulated data saved at the same time. y is the
measured wind speed and ŷ is the simulated wind speed.

Table3.2 shows a systematic bias of 1.5ms−1 between the simulation and the
measurements, while the NRMSE range varies between about 14.5 to 17%. This is
in part due to the initial and lateral boundary conditions from MERRA reanalysis.

Figure3.16 shows vertical profiles of the wind at different times and locations.
Both panels display one profile forefront and one profile downstream, at 8:00 (left)
and at 11:00 LT (right). The profiles displaying a continuously increasing wind
speed (blue curves) correspond to forefront profiles. They are taken at the same
location, in front of the turbines and far from their interaction in the middle of
the domain. As a consequence, it displays the upstream vertical wind. At 8:00 LT
(Fig. 3.16a), the profile displaying a strong wind speed decreased between 60 and
150m height (green curve) is extracting downstream turbine 6. This decrease is due
to the forefront turbines which disrupt the flow and slowdown the wind in front of
the downstream turbines. Indeed, at 8:00 LT, turbines 3, 4, 5 and 6 are lined up.
At 11:00 LT (Fig. 3.16b) the green profile is extracting downstream turbine 2. At
this time, turbines 1 and 2 are lined up and this is why the wind speed downstream
the turbine 2 is slowed by turbine 1. In both cases, the interaction with the turbines
decreases the wind speed from 2ms−1 maximum at 80 and 120m height (just under
and above the hub). This figure well describes the wake effect.
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Fig. 3.16 Vertical profils taken at different time and place. a is taken when the turbines 3, 4, 5 and
6 are lined up; b is taken when the turbines 1 and 2 are lined up

Conclusion

In this paper, we have presented some first numerical experiments obtained from the
SDM numerical approach, for a wind farm simulation in condition of use, and we
have compared the obtained result with the reality of measures at the turbines.

We have also presented some numerical analysis and experiments that evidence
the way the numerical algorithm for SDM is converging.

Some other experiments ofwind farm simulation are in preparation,with improve-
ments both in the model and in the description of initial and boundary condition. The
objectives are to perform better and reduce the bias against measure, but also to illus-
trate the ability of SDM to compute not only the mean velocity, but also the local
distribution of the turbulent wind, who takes part in the uncertainty of wind power
production.
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Chapter 4
Day-Ahead Probabilistic Forecast
of Solar Irradiance: A Stochastic
Differential Equation Approach

Jordi Badosa, Emmanuel Gobet, Maxime Grangereau
and Daeyoung Kim

Abstract In this work, we derive a probabilistic forecast of the solar irradiance
during a day at a given location, using a stochastic differential equation (SDE for
short) model. We propose a procedure that transforms a deterministic forecast into
a probabilistic forecast: the input parameters of the SDE model are the AROME
numerical weather predictions computed at day D − 1 for the day D. The model
also accounts for the maximal irradiance from the clear sky model. The SDE model
is mean-reverting towards the deterministic forecast and the instantaneous amplitude
of the noise depends on the clear sky index, so that the fluctuations vanish as the
index is close to 0 (cloudy) or 1 (sunny), as observed in practice. Our tests show a
good adequacy of the confidence intervals of the model with the measurement.

Keywords Solar power · Probabilistic forecast · Stochastic differential equation

4.1 Introduction

Context. As the conventional energy sources such as coal, oil, and gas are considered
to be one the main factors responsible for climate change, solar energy has been rec-
ognized as a viable alternative. Solar powered plants which utilize photovoltaic (PV)

J. Badosa
LMD/IPSL, Ecole Polytechnique,
Route de Saclay, 91128 Palaiseau Cedex, France
e-mail: jordi.badosa@lmd.polytechnique.fr

E. Gobet (B) · M. Grangereau
CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France
e-mail: emmanuel.gobet@polytechnique.edu

M. Grangereau
e-mail: maxime.grangereau@polytechnique.edu

D. Kim
Ecole Polytechnique, 91128 Palaiseau Cedex, France
e-mail: daeyoung.kim@polytechnique.edu

© Springer Nature Switzerland AG 2018
P. Drobinski et al. (eds.), Renewable Energy: Forecasting and Risk Management,
Springer Proceedings in Mathematics & Statistics 254,
https://doi.org/10.1007/978-3-319-99052-1_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99052-1_4&domain=pdf


74 J. Badosa et al.

and Concentrated Solar Power (CSP) have penetrated the electricity grid, and they
are contributing tomeet the electricity balance between production and consumption.
The need for clean energy and energy-generation independence has driven the solar
farms to grow drastically in number. This is backed up by policy supports including
feed-in tariffs.

One of the challenges of the electricity generation through solar panels is that it is
intermittent and driven by meteorological conditions (mainly related to cloudiness),
which results in high uncertainty in the final amount of production. Such uncertainty
put grid operators at risk since they might have to adjust their production on very
short notice and energy storage capacity is limited. Solar irradiance forecast in this
context is crucial not only to predict the solar power generation amount but also to
save the start and shutdown costs of conventional generators [19].

Use of day-ahead predictions. Day-ahead predictions are of particular importance
for application in the energy market, where the day-ahead auction of power price
plays a major role in many countries [22]. For example, in France, one may take
part in the bidding by the noon on the day before the operation.1 Besides the mar-
ket participation, the day-ahead prediction can also be useful for unit commitment
and energy storage dispatch [7, 11]. Simulation studies have shown that day-ahead
forecasts may provide significant cost savings to grid operators and fast start and
lower efficiency power plants [19]. PV-based microgrids also make use of day-ahead
predictions for power planning [14].

Regarding the types of day-ahead solar irradiance forecast, we can distinguish two
categories: deterministic forecasts and probabilistic forecasts. In the state of the art
of irradiance forecasting, most of the literature relies on deterministic forecasts, also
known as point forecasts, since their outputs are specific values at given times in the
future. On the other hand, most probabilistic forecasts give the full distributions of
the values of interest at the times considered. Each one of these distributions can be
represented by histogram or cumulative density function for example. The represen-
tation of uncertainty information takes into account potentially extreme scenarios. It
also allows the operators to gain additional trust in the forecasts [21]. Furthermore,
having at hand a probabilistic forecast for the solar irradiance simultaneously at
any hour (continuous-time forecast), accounting for the inter-temporal probabilistic
dependency allows to properly solve some problems where the full distribution of
the inputs plays an important role (see for instance [10]). For applications in energy
management, see [1] and for the connection with electricity derivatives, see [2]. The
continuous-time forecast may also be updatedwhenever new data becomes available.

Actually, methods for deriving predictions depend much on both the considered
time horizon and the amount of data available at the time when the prediction is
made. Moreover, the flows of data and the frequency for updated predictions are
tightly related. For horizons of minutes to hours, satellite images (see Meteosat for
Europe) are much informative on a global area, a new image is available every 15’;
on the other hand, the access is not granted to anyone. For very local geographic

1See https://www.epexspot.com/en/market-data/dayaheadauction.

https://www.epexspot.com/en/market-data/dayaheadauction
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data, one can be equipped with sky cameras or simply irradiance sensors, the latter
being the most common way of collecting data.

In this study,we focus on the day-ahead horizon andwe consider that deterministic
Numerical Weather Predictions (NWP) of solar irradiance are available at local scale
as it is the case of theMeteo-France’sAROMENWPdata, which has a grid resolution
of 1.3km. This data is available for any individual prosumer and might for instance
be used to manage batteries in order to reduce variability of the demand on the grid,
as in [10].

Deterministic and probabilistic forecasts. In the deterministic forecast of day-
ahead solar irradiance, NWP models are widely used, and the model value goes
through Model Output Statistics (MOS) before the actual usage. MOS is a post-
processing technique used to interpret empirically the outputs of a numerical model
and produce site-specific forecasts [8, 12]. Statistical learning methods are often
used to correct errors in the NWP model outputs and to incorporate knowledge from
several models, by appropriately weighting them. These methods allow to correct
biases and systematic errors in the forecasts [17]. MOS is known to improve the
performance of the raw forecast of NWP by about 10–15% [27].

While the deterministic forecast has been developed for more than thirty years,
the probabilistic forecast seems to be in its infancy yet. However, it seems to have
a high potential of usefulness, especially in applications where risk quantification is
a crucial factor, for example energy storage in connection with intermittent energy
sources.

One noticeable method of probabilistic day-ahead solar irradiance forecast is the
analog ensemble approach,which searches the history for similar forecasts andmakes
corrections to the forecast according to the error in prior forecasts. In this approach,
the prior analogs become an ensemble that quantifies the uncertainty of the forecast
[3]. These approach rely on non-parametric techniques and machine learning tools;
on the one hand, this is a data-driven approach and therefore it is quite flexible;
on the other hand, since it is not aimed at identifying a specific stochastic model,
analytical or numerical methods are not applicable, which limits the resolution of
some problems (like stochastic control problems). In [3] an example of ensemble
approach usingmachine-learning based regressionmodels – such as decision tree, K-
nearest neighbors, random forests – is presented, showing that each of these models
performs better than the Auto-Regressive Integrated Moving Average (ARIMA for
short) model [20, 24].

Another method is the stochastic modeling, where the evolution of the system
is described by a Stochastic Differential Equation (SDE). Knowledge coming from
other deterministic forecasts can be incorporated in these models. As explained in
[13], SDE models have several assets: we can incorporate boundedness properties,
which are essential for correct modeling of the maximal solar irradiance, and the
SDEs are more general than other classical time-series models, like ARIMA pro-
cesses. Besides, the output of the SDE models can be both a point forecast, by
simulation of a single trajectory, or a probabilistic forecast. Indeed, by simulating
multiple independent Markovian evolutions of the process, it is possible to infer the
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full distribution of irradiance at any time (see Sect. 4.2.4). A first attempt for such a
SDEmodeling is proposed by [25] with a simplistic model. The authors of [13] have
designed extensions and more involved models with various degrees of complexity.
They assume a parametric SDE model for the solar irradiance and suppose that the
observations are noisy. A convenient feature of their SDEmodel is to account for the
maximum irradiance (also known as clear sky irradiance, [6]). For the model estima-
tion, they cope with SDE inference with noisy data: for this, they use Kalman-type
filtering techniques, which restrict their SDE model to additive Brownian noise. In
the current study, we also consider a SDE model but its form is different from [13]
and we assume perfect observation of the data, i.e. we assume there is no noise in
the observations, see details below.

Our contribution. Our purpose is to turn deterministic forecasts into probabilistic
forecasts. Our framework is to consider that a single deterministic forecast is avail-
able on the day before (i.e. on D − 1): in our case, this comes from Météo-France
(AROME NWP data). The precise description of this data set is given in Sect. 4.2.2.
To model the irradiance on the day D, we use a time-dependent SDE, which models
the evolutions of the Clear Sky Index (CSI for short), which is the ratio between the
observed irradiance and the clear sky irradiance, that is the maximal theoretical irra-
diance that would be observed with no clouds. In this work we will assume that the
CSI lies in the range [0, 1]. It will be denoted X in the equations. Some parameters
of the SDE for a given day D are fixed (see forthcoming paragraph on the estimation
of the parameters), while others are estimated using the Arome data at day D − 1.
Simulating the SDE gives realistic scenarios of solar irradiance, as demonstrated in
Sect. 4.3. The SDE is driven by a Brownian motionW and it has the following form:

dXt = −a(Xt − xforecastt )dt + σ Xα
t (1 − Xt )

βdWt , t ∈ [t0, t1] ⊂ [0, 24],

for some parameters a, σ, α, β, (xforecastt )0≤t≤24 and where [t0, t1] is the period
(expressed in hours) of the day Dwhere the sun shines at the locationwhere irradiance
is measured. The Brownian motion W allows to model the uncertainty across time.
All the above parameters are identified using the Arome data at day D − 1 and
some historical data. In Sect. 4.3, we show that simulations from this model generate
confidence intervals that are fully consistent with the realizations collected over a
period of one year.

We now stress the similarities and differences with [13]. The form of the SDE
is similar in both cases: the drift is a mean-reversion term and the diffusion term
vanishes at 0 and 1. However, the form of our diffusion term is more general and
allows to take into accountmore general formof dependence of thefluctuations,while
the drift term in [13] incorporates more parameters. It would be an interesting lead to
try to incorporate more parameters in the drift term of the SDE we propose as well,
but one needs tomake sure to have enough data to estimate them properly. Besides, in
our study, the observation is assumed to be direct: by ignoring the observation noise,
we do not need anymore to use filtering techniques and we can directly make use
of appropriate statistical methods for SDEs [16]. This is what allows us to consider
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a more general diffusion coefficient, namely of the form xα(1 − x)β with general
exponents (in Sect. 4.2.3.2, we find (α, β) ≈ (0.8, 0.7)), while the authors of [13]
take α = β = 1 so that, via a Lamperti transformation, they can get back to additive
noisemodel. Last, our SDEdirectlymodels the evolution of the clear sky index, while
in [13], it models the evolution of the irradiance (although the maximal irradiance
clear sky model is incorporated in the SDEs from their second model).

The estimation of the parameters of our model turns out to be fairly satisfactory,
using historical data for measurements and one-day in advance predictions (Arome
data). We are able to reproduce accurately enough the forecast uncertainty (see tests
in Sect. 4.3); it is quite remarkable, especially because only a small amount of data
is used to build the predictions (mainly AROME data).

4.2 Uncertainty Modeling from Data

4.2.1 Definitions and Notations

To be accurate, the solar irradiance (or simply irradiance in the following) that we
consider refers to Global Horizontal Irradiance (GHI), that is the amount of solar
radiation that reaches the surface of the Earth on a horizontal plane (its unit isW/m2).
The GHI depends on the location; in our study, it is at the latitude and longitude of
48.713 ◦N and 2.208 ◦E, at SIRTA (atmospheric observatory at Ecole Polytechnique,
on the Paris-Saclay campus, http://sirta.ipsl.fr).

For each day, we consider the irradiance I (t) (at the above location) as a function
of time t ∈ [0, 24] (in hours, for a given day). We assume that the irradiance evolves
between two bounds, 0 and I clear sky model(t), where the second is the maximal
irradiance obtained under clear sky conditions, that is, a cloudless sky. In our case,
the latter has been calculated with an empirically-derived equation that takes into
account the Sun-Earth geometry and the day of the year:

∀t ∈ [t0, t1], Iclear sky model(t) =
[
83.69 sin

(
2π

365.24
(D + 82.07)

)
+ 1130.44

]
cos(θz(t))

1.2

where D is the day of the year [0, 365], and θz(t) is the solar zenith angle. This
formula was empirically obtained for the SIRTA site by Badosa et al. from 11 years
of measurements (2003–2013); they selected 239 half-days (mornings or afternoons)
for which the weather conditions were cloudless. One minute data was considered
for this. The model they considered has the form C1(D) cos(θz(t))C2 , where C1(.)

and C2 are adjusted on the data, see [4]. Moreover, before the sunrise (t ≤ t0) and
after the sunset (t ≥ t1), I clear sky model(t) is set to 0 and there is no question about
uncertainty in the irradiance. From now on, we mainly stick to the case t ∈ [t0, t1]
(of course, this interval evolves along the days and seasons). Our aim is to propose
a stochastic model for the Clear-Sky-Index (CSI) given by

http://sirta.ipsl.fr
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Fig. 4.1 Measurements of global horizontal irradiance from SIRTA (48.7 ◦N, 2.2 ◦E.) for the con-
sidered period

Xt = I (t)

I clear sky model(t)
. (4.1)

X close to 1 (resp. 0) corresponds to clear-sky day (resp. dark clouds) while inter-
mediate values relate to a variable sky (or light clouds).

To calibrate the model parameters, we also use the Accumulated CSI of the day
D, defined by

ACSID =
∑

t∈T I (t)∑
t∈T I clear sky model(t)

, (4.2)

where T := {measurement times in the day D}. This index is an indicator of the
overall clearness on day D.

4.2.2 Data: AROME Forecast and SIRTA Measurement

In our study, we consider the forecast GHI values from AROME NWP operated by
Météo-France, for the closest grid point to SIRTA site. In particular, we use the run
from 12:00 UTC on the previous day (D − 1) of the target forecast day (D), which
has a time step of 1h and covers the whole day D.

The considered period is October 1st, 2015 to July 16th, 2017 (see Fig. 4.1). Only
days with both measured and forecast GHI available values were considered, which
made a final dataset of 473 days. The measured data was taken at 10-min resolution.
Forecast values with 10-min resolution were generated from the forecast with 1-h
resolution using linear interpolation.
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4.2.3 Fitting the SDE Model

4.2.3.1 Heuristic Derivation

The stochastic model we propose for the irradiance CSI is aimed at giving a precise
meaning to the approximation

Xt ≈ xforecastt + error(t)

and of its continuous-time evolution,where xforecastt is calculated from theAROME
forecast

xforecastt := I forecast(t)

I clear sky model(t)
∈ [0, 1].

We assume that xforecastt is given in continuous time (as mentioned before, we use
linear interpolation to compute values at times where no forecast is available in the
data). The term error(t) stands for the unpredictable part in the prediction and reflects
the uncertainty of the forecast: observe that, since the CSI lies in the range [0, 1], it
is certainly not appropriate to assume that the error has a Gaussian distribution.

To begin with, the deterministic forecast xforecastt is considered as a (time-
dependent) mean-reversion level, i.e. when the realized CSI is far from the forecast
CSI, it is expected that (in mean) Xt gets closer to xforecastt . In other words, a tem-
porary prediction error is possible but it tends to vanish. We model this feature via a
dissipative linear Ordinary Differential Equation that describes the time-evolution2

t 	→ E [Xt ],
dE [Xt ] = −a(E [Xt ] − xforecastt )dt

for some mean-reversion speed parameter a > 0 that will be estimated later.
We now model the stochastic fluctuations around the above relation, i.e. we write

dXt = −a(Xt − xforecastt )dt + noise(dt).

First, the amplitude of the noise over an infinitesimal interval [t, t + dt] has to
decrease as the CSI gets closer to 0 (cloudy sky) and 1 (clear sky): this is requested
to maintain the model values in the unit interval. For this reason, we set

noise(dt) = Xα
t (1 − Xt )

β ñoise(dt)

for two positive parameters α, β. Once the latter will be chosen appropriately, we
expect that the amplitude of the noise noise(dt) is well tuned so that the newly-
renormalized noise ñoise(dt) does not depend anymore on theCSI (see later Fig. 4.3).

Moreover, as explained in the next paragraph, a statistical analysis of ñoise(dt)
shows that it can be modeled by a Gaussian distributionN (0, σ 2dt) and from now

2
E [.] is the expectation attached to the forthcoming probabilistic model.
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on, we take it as a Brownian increment σdWt . This is not the only Gaussian model,
but it has the advantage of a very low parametric dimension (which is a nice asset
when one deals with few data).

Gathering all the previous arguments, we finally obtain a SDE of the form

dXt = −a(Xt − xforecastt )dt + σ Xα
t (1 − Xt )

βdWt , t ∈ [t0, t1], (4.3)

with a given initial value Xt0 ∈ [0, 1]. In the case of xforecastt constant, and α =
β = 1, we retrieve the well-known Fisher-Wright diffusion used in mathematical
genetics. In the following, we will take (α, β) ∈ [ 12 ,+∞) × [ 12 ,+∞).

From a mathematical point of view, we can justify that this SDE model is well-
posed, despite that the coefficients are not globally Lipschitz and that it takes values
in the unit interval [0, 1] as requested. These properties are rigorously proved in
Appendix.

4.2.3.2 Specification of the Parameters

As it is well-know in the statistics for SDEs [9, 16], the estimation of the param-
eters entering in the drift and diffusion coefficients can be made independently,
asymptotically as the frequency gets larger and larger.

Statistical estimation of a. The Itô formula gives that, for any t ≥ s,

eat Xt = eas Xs +
∫ t

s
eauxforecastu du +

∫ t

s
eauσ Xα

u (1 − Xu)
βdWu .

Since the first time integral is deterministic, it readily follows that

Cov
(∫ t

s
eauxforecastu du, Xs

)
= 0.

Moreover the stochastic integral is computed on [s, t] and the SDE solution is adapted
to the Brownian filtration, therefore

Cov
(∫ t

s
eauσ Xα

u (1 − Xu)
βdWu, Xs

)
= 0.

To summarize, we get Cov
(
eat Xt , Xs

) = easVar(Xs), that is

Cov(Xt , Xs) = e−a(t−s)Var(Xs), t ≥ s. (4.4)

In (4.4) we retrieve a nice relation available for any SDEwhich drift is linear, see [5].
Therefore, it is enough to compute the correlogram of the process X from the data
and to extract the parameter a using an exponential fit. The empirical correlogram
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Fig. 4.2 Empirical
correlogram and exponential
curve fit

from Fig. 4.2 has been computed using all the data for the 473 days between sunrise
and sunset. In our case, we obtain a ≈ 0.75h−1.

Specification of σ ,α,β. For high-frequency data (that is when the monitoring fre-
quency is considered high), the increments of Xt − Xs, t ≥ s can be approximated
by

Xt − Xs ≈
t−s small

σ Xα
s (1 − Xs)

β(Wt − Ws). (4.5)

Indeed, as t − s is small, the drift term in (4.3) is of magnitude t − s, which can
be neglected compared to the order

√
t − s arising from Wt − Ws . This is the usual

Euler approximation of SDE in small time [18]. Of course, one needs to make sure
that the time step used in the simulations is small enough to guarantee that X remains
in its domain [0, 1].

In our model, we seek a SDE parametrization that, each day, adapts automatically
to the Arome D − 1 forecast. Our strategy is

• first to identify a pair of exponents (α, β) that will be available in average for all
the days (these parameters are somehow day-invariant),

• then to estimate σ that may be day-dependent and that will be estimated from
Arome D − 1 forecast. In the sequel, the parameter σ for the day D will be
written σD > 0.

Because of the relation (4.5), for measurements collected at a 10’-period (ti+1 − ti =
10′ = δ) in the same day D, we expect to have (provided that α, β are well chosen)

Xti+1 − Xti

Xα
ti (1 − Xti )

β

d≈ N (0, σ 2
Dδ), (4.6)

where
d≈ means approximation in distribution, with an independence property with

respect to ti and Xti (thanks to the properties of the Brownian increments). Therefore,
it is enough to estimate empirically the variance (day by day) of the quantities (4.6)
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to get an estimator of σ 2
Dδ for that day D, and therefore of σD . Actually, instead of

considering increments of the irradiance CSI, we take the increments of the forecast
errors, i.e.

REI = [Xti+1 − xforecastti+1
] − [Xti − xforecastti ]

Xα
ti (1 − Xti )

β

which asymptotic behavior with respect to δ → 0 is similar to (4.6) (indeed, the
curve of forecast xforecast is of finite variation). REI stands for Renormalized Error
Increment.

We could identify the parameters (α, β, σD1 , . . . , σD473) using a Maximum Like-
lihood Estimation technique (via the Gaussian approximation (4.6)), requiring an
optimization procedure in dimension 475! We proceed in a simpler way, by choos-
ing α and β so that the σD’s computed as mentioned (day by day) are decorrelated
from the average irradiance of the day (represented by the ACSI); it shows in a way
that α and β are suitably tuned to make (4.6) valid. This is a way to have a single pair
(α, β) independently of the day of the year. For α = 0.8 and β = 0.7, Fig. 4.3 shows
that σD are quite decorrelated from ACSID (Accumulated Clear Sky Index) defined
in (4.2). Because the ACSI is computed on the measurement (see (4.2)), it makes its
use not applicable as it is in the perspective of probabilistic forecast. Therefore, we
seek to model σD in terms of the Arome forecast on day D − 1, using a regression
analysis. Since σD reflects the amplitude of local variability of the irradiance, we use
the Average Time Increment CSI computed on the Arome forecast as a surrogate to
statistically explain σD:

ATICSID =
∑

ti∈T forecast

∣∣∣∣ I forecast(ti+1)

I clear sky model(ti+1)
− I forecast(ti )

I clear sky model(ti )

∣∣∣∣ , (4.7)

where T forecast := {Arome forecast times}. Figure4.4 depicts the relation between
σD and ATICSID .

We exhibit a linear relation of the form

σD

√
δ = 0.622 × ATICSID + 0.0004 + error. (4.8)

In the next experiments,we set the residual error in (4.8) to 0.Actually, the distribution
of this error (see Fig. 4.5) is close to a Gaussian one, which could be included in our
model of σD to possibly improve the probabilistic forecast. We haven’t gone further
in that direction since with the simplified version (error = 0), our tests reveal a
good accuracy of the probabilistic forecast. Furthermore, it would be interesting to
investigate the sensitivity of parameters α, β and σ with respect to the input data.
This would require splitting the input data into a training set and a test set. As the
data used to specify the parameters was covering a period of not much more than one
year and our tests already show good accuracy of the forecast, we did not conduct
this procedure.
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Fig. 4.3 For each day D in the data set, the standard deviation σD
√

δ of the renormalized error
increment as a function of accumulated clear sky index ACSID , when δ = 10′ = 1/6 h, α = 0.8
and β = 0.7

Fig. 4.4 For each day D in the data set, the standard deviation σD
√

δ as a function of the average
time increment CSI defined in (4.7)
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Fig. 4.5 Histogram of the residual error in (4.8), with the Gaussian density centered at 0 and with
standard deviation 0.097

4.2.4 Probabilistic Forecast Computation

We present how we compute numerically the distribution of irradiance in our model
on the day D, given the Arome forecast of day D − 1.

Using the values of the parameters derived in the calibration step described earlier,
from (4.3) we are now able to simulate independent trajectories of the clear sky index
(and therefore of the solar irradiance accounting for the clear sky model in (4.1)).
In our tests, usually we sample M = 1000 or M = 10000 paths, in order to produce
accurate enough statistics and confidence intervals.

Regarding the simulation scheme itself, once the initial value Xt0 is chosen, we
just need to simulate independent Markovian evolutions. More precisely, we use the
Euler scheme (see [18] for an account on the subject of simulating SDEs). In our
tests, the time step of the Euler scheme is Δt = 1′ and when the value of the Euler
scheme is outside of [0, 1], the value is pushed back to [0, 1] (as the exact solution).
Set tk = t0 + kΔt ; the i th sampled path writes finally as (1 ≤ i ≤ M)

{
X (i)
tk+1

= X (i)
tk − a(X (i)

tk − xforecasttk )Δt + σ (X (i)
tk )α(1 − X (i)

tk )β(W (i)
tk+1

− W (i)
tk ), k ≥ 0,

X (i)
t=t0 = X (i)

t0 ,

where (W (i)) are M i.i.d. trajectories of the Brownian motion, and (X (i)) are M i.i.d.
trajectories of the CSI.

Initialization. A particular treatment of the independent initial value X (i)
t0 for

each trajectory of the CSI needs to be implemented. Indeed, one could initialize all
the processes to the same initial value of the deterministic forecast. However, this
would not allow us to encompass uncertainty in the initial value of the CSI. We
propose another approach, close to Markov Chain Monte-Carlo methods. The initial
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value X (i)
t0 is sampled according to the stationary distribution of the Euler scheme

associated to the SDE

d X̃t = −a(X̃t − xforecastt0 )dt + σ X̃α
t (1 − X̃t )

βdWt . (4.9)

Note the term xforecastt0 in the above equation. Doing so, we pick a initial point X (i)
t0

which reflects in a quite intrinsic way the uncertainty in the forecast at t = t0.
In practice, we simulate the Euler scheme of (4.9) over a time interval of length T ,

where T is chosen long enough so that the distribution of the Euler scheme after time
T is close to the target stationary distribution (and quite independent from the initial
point of the SDE (4.9)); see [26] about approximation scheme for ergodic SDEs.

In practice, due to the form of the drift as a mean-reversion term and in view of
the fast decorrelation (like in (4.4)), we set T as three times the characteristic time
of the system, that is T = 3/a ≈ 4h. This procedure is repeated independently to
sample each X (i)

t0 .

4.3 Numerical Experiments

4.3.1 Description of the Tests

In the followinggraphs,we represent some features of the resultsweobtain for several
types of days: a day with good weather, when the Clear Sky Index remains close to 1,
a day with bad weather, when it remains close to 0 and a day with mitigated weather,
when it takes intermediate values. For all those examples, we take days where the
deterministic forecast used to establish the probabilistic forecast is fairly good, i.e.
close to the real irradiance profile over the day. This is usually the case with Arome
forecast.

For each day with fairly good deterministic forecasts (Figs. 4.6, 4.7, 4.8), we plot
3 graphs. The first in the top left corner features the clear sky irradiance as well as
several simulated trajectories of the irradiance (at the time-scale of 1’ as mentioned
before). The clear sky irradiance is the irradiance we would observe if the sky were
perfectly clear (this is the clear skymodel as explained at the beginning of Sect. 4.2.1).
The simulated trajectories of the irradiance are obtained bymultiplying the simulated
trajectories of the Clear Sky Index, obtained by Euler scheme of a SDE (see previous
paragraph), by the clear sky irradiance (see the relation (4.1)).

The second graph in the top right corner features the clear sky irradiance, the
deterministic Arome forecast irradiance, the irradiance measured on that day, a
simulated trajectory of the irradiance obtained using our model, as well as confi-
dence intervals for the irradiance forecast. This confidence region is obtained by
Monte-Carlo methods: by simulating M = 100 000 i.i.d. trajectories of the irradi-
ance (using our SDE model), we can estimate accurately the 5 and 95% quantiles.
If our model is accurate, we expect that the measured irradiance remains inside the
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(a) Results for the probabilistic forecast

(b) Validation and accuracy of the model for the distribution of the irradiance
over the day

Fig. 4.6 Results for a day with good weather (May 2nd, 2016)

confidence intervals most of the time. However, having a measurement outside this
confidence area does not necessarily mean poor performance of the probabilistic
forecast, because of the definition of quantiles. Of course, the deterministic forecast
staying inside this confidence area is an intrinsic property of the model we have
designed: we take an SDE with a drift which is a mean-reversion term, the mean
being this deterministic forecast.

In the bottom graph, we represent several vertical box-plots, as well as other
information. Let us explain in more details. For each day studied, we can derive
the number of points of a discrete trajectory (observation, forecast or simulation)
for which the irradiance value lies in each of the 10 intervals of length 10% of the
maximal value of the clear sky irradiance (given by the clear sky model). Using this
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(a) Results for the probabilistic forecast

(b) Validation and accuracy of the model for the distribution of the irradiance
over the day

Fig. 4.7 Results for a day with mitigated weather (October 24th, 2015)

procedure for the measured irradiance, we obtain by renormalization an estimation
of the proportion of time spent by the irradiance in a given interval over the day. A
possible application is to derive an estimation of the PV energy that can be produced
on that specific day. For example, a red triangular point with 0–10% on the x-axis
and 0.4 on the y-axis means that the measured irradiance was smaller than 10%
of the maximal theoretical irradiance about 40% of the time of sun exposure over
this day. We can do the same thing for the forecast irradiance and for each of the
simulations. The simulations allow to estimate the distribution of these proportions of
time spent in each subinterval. Indeed, using the values obtained for each simulation,
we can draw box-plots which show how the irradiance was distributed over the
whole day. These statistical outputs can for instance give a clear indication about the



88 J. Badosa et al.

(a) Results for the probabilistic forecast

(b) Validation and accuracy of the model for the distribution of the irradiance
over the day

Fig. 4.8 Results for a day with bad weather (January 22nd, 2016)

probability distribution of the energy that can be produced using PV panels. The red
line represents the median, while the box extends from the first quartile to the third
quartile, and the whiskers extend from the 5% to the 95% quantiles. For example, for
the interval 0–10%, which regroups all data with a value corresponding to less than
10% of the theoretical maximal irradiance observable on this day, a red line with
y-coordinate equal to 0.33 means that for half of the simulations, less than one third
of the points of the corresponding trajectory have a value in this interval, while for
the other half of the simulations, more than one third of the points of the trajectory
have a value in this interval.



4 Day-Ahead Probabilistic Forecast of Solar … 89

Fig. 4.9 Elements of a box-plot: explanation

A good probabilistic forecast would therefore have several characteristics:

• The trajectory of themeasured irradiance would lie in the confidence area obtained
by Monte-Carlo simulations.

• In the box-plots, the points for irradiance measured would lie in high density
regions (between the whiskers and often inside the boxes, see Fig. 4.9).

These last points are not a guarantee that the probabilistic forecast was good.
Indeed, one could imagine the following situation: if on one day, one forecasts a clear
sky in the morning and a cloudy sky in the afternoon, but in practice, these events
occur in the other order, the box-plots might be consistent (i.e. the measurements
should lie inside the confidence area represented by the box and the whiskers),
whereas the forecast and measured irradiance paths would be radically different.
Even the forecast and measurements having close trajectories does not necessarily
mean that all statistical properties of the irradiance are captured by our model.

4.3.2 Analysis of the Results

From these 3 figures (that are quite representative of what we have observed through-
out our tests on the full history), we have general observations. First, as expected,
the forecast lies in the confidence area: this is mathematically consistent with the
model and in accordance with the intuition. Second, generally speaking, the points
drawn using the measured irradiance data lie in the confidence areas obtained with
our Monte-Carlo procedure; this can be observed in two ways.

• From the second graph, one checks that the measured irradiance (at any given
time) remains most of the time in the confidence area. It helps to answer positively
the question whether the profile of the irradiance observed over the day is in
accordance with the forecast distribution that is induced by our SDE model.

• From the third graph, we analyse whether the repartition of irradiance over the day
is correctly predicted by ourmodel, regardless ofwhen phenomenon occurred. The
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answer is yes. This criterion is of course less severe than the previous one, but it has
the merit to accept events in the days which were predicted but occurred at another
time that what the forecast predicted. For example, if the forecast predicts a sunny
morning and a cloudy afternoon, the time frame when the transition happens may
not be accurately predicted by Arome models.

These results constitute empirical evidence of the good performance of our model:
in a way, we are able to correctly reproduce the distribution of the irradiance over the
day (either by time interval – second graph – or by repartition of irradiance – third
graph). Further measures of performance will be investigated in future works.

(a) Results for the probabilistic forecast

(b) Validation and accuracy of the model for the distribution of the irradiance
over the day

Fig. 4.10 Results for a day with bad forecast (October, 19th, 2015)
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4.3.3 Limits

We show in the next Fig. 4.10 that if the deterministic forecast is completely erro-
neous, i.e. if the irradiance profile observed is completely different from the predicted
one, then the probabilistic forecast performs poorly as well. It is not surprising at all,
since the probabilistic forecast is built upon the deterministic one.

In the graph at the top right corner, we see that due to a poor forecast, themeasured
irradiance fails to be inside the confidence area over the whole day. In the box-plots
at the bottom, it is also clear that the distribution of the proportions of time spent in
each subinterval of irradiance is not estimated correctly.

4.4 Conclusion

We have designed a stochastic differential equation that models the solar irradiance
for a given day D. This gives rise to a probabilistic forecast. The parameters of the
model change from day to day and can be tuned automatically: they depend only the
irradiance from clear sky model on the day D and the deterministic Arome forecast
computed on day D − 1 for the day D. By simulating the SDE in a Monte-Carlo
framework, we obtain the distribution of the forecast and related statistics. Despite its
apparent simplicity, the model is able to produce quite accurate confidence intervals
for the irradiance at a given time, and for the repartition of irradiance during the day.

Acknowledgements This research is part of the Chair Financial Risks of the Risk Foundation,
the Finance for Energy Market Research Centre and the ANR project CAESARS (ANR-15-CE05-
0024). The work benefits from the support of the Siebel Energy Institute and it was conducted
in the frame of the TREND-X research program of Ecole Polytechnique, supported by Fondation
de l’Ecole Polytechnique. The authors acknowledge Météo-France and the Cosy project for the
numerical weather prediction data used in the study.

Appendix: Proof of Well-Posedness of the SDE Model (4.3),
When 1

2 ≤ α and 1
2 ≤ β

Because the exponents α and β are possibly non integers in the definition of (4.3),
the signs of Xt and 1 − Xt may be an issue. Therefore, we start with a modification
of the SDE model (4.3) avoiding the sign problems:

dXt = −a(Xt − xforecastt )dt + σ1Xt∈[0,1]Xα
t (1 − Xt )

βdWt , (4.10)

where X0 ∈ [0, 1] is a given deterministic initial value.
Existence/uniqueness. A direct application of [23, Chapter IX, Theorem3.5-(ii),

p. 390 and Theorem1.7 p. 368] shows that themodel (4.10) is well-posed, in the sense
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that there is an unique strong solution on the probability space (Ω,F , P) where the
filtration is the natural filtration of the Brownian motion completed as usually with
the P-null sets. In [23, Chapter IX, Theorem3.5-(ii), p. 390] we have used 1

2 ≤ α and
1
2 ≤ β.

The solution (4.10) takes values in [0, 1]. We invoke a comparison theorem for
SDEs. Denote bX (t, x) = −a(x − xforecastt ) the drift coefficient of X and now,
consider the solution to

dYt = −aYtdt + σ1Yt∈[0,1]Y α
t (1 − Yt )

βdWt , Y0 = 0. (4.11)

Its initial condition fulfills X0 ≥ Y0, its drift bY (t, y) = −ay is globally Lipschitz
in space (and bX too) and last, we have bY (t, x) − bX (t, x) = −axforecastt ≤ 0.
Therefore, [15, ChapterV, Proposition2.18, p. 293] shows that Xt ≥ Yt for any t
with probability 1. But since the solution to (4.11) is 0, the above proves that X
remains positive.

Similarly, set

dYt = −a(Yt − 1)dt + σ1Yt∈[0,1]Y α
t (1 − Yt )

βdWt , Y0 = 1.

Clearly, Y0 ≥ X0, bX (t, x) − bY (t, x) = −a(1 − xforecastt ) ≤ 0, Yt = 1 and we
conclude that Xt ≤ 1. This justifies why we can remove the indicator function in
(4.10) to get (4.3). �
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Homogeneous Climate Regions Using
Learning Algorithms

Mathilde Mougeot, Dominique Picard, Vincent Lefieux
and Miranda Marchand

Abstract Climate analysis is extremely useful to understand better the differences
of electricity consumption within the French territory and to help electricity con-
sumption forecasts. Using a large historical data base of 14 years of meteorological
observations, this work aims to study a segmentation of the French territory based on
functional time series of temperature andwind. In a first step, 14 clustering instances,
one for eachyear, have beenperformedusing, for each instance, one year of data. Each
year, the clustering exhibits several homogeneous and spatially connected regions.
Benefits of this approach let to study the stability of the previous regions over the
years and to highlight the inter-annual variability of the French climate. A final aggre-
gation of all clustering instances shows a segmentation map in easily interpretable,
geographically connected climate zones over the last years. Especially, we observe
that the number of clusters remains extremely stable through the years. Exhibiting
stable homogeneous regions bring then some valuable knowledge for potentially
installing new wind or solar farms on the French territory.
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5.1 Introduction

The United Nations Conference on Climate Change COP21 has set a goal of 30%
renewable energy in French overall energy supply by 2020. Nowadays, wind energy
represents 4% of the national electricity production and should double by 2020 [25].
Since electricity can hardly be stored, forecasting tools are essential to properly
balance electricity consumption and generation. In France, heating represents about
10% of the annual electricity consumption and depends strongly on the felt tempera-
ture which is directly linked to meteorological conditions. Climate understanding is
extremely useful to better understand the differences of electricity consumption on
the French territory and to help electricity consumption forecasts. RTE,1 the French
electricity transmission system operator, is responsible for operating, maintaining
and developing the high and extra high voltage network.

In France, Météo France company owns a large historical data base of meteoro-
logical observations of the French territory, most of them recorded at specific places.
Based on these observations and on a numerical model of the atmosphere, the Arpège
program provides meteorological data for all the French territory, up to a resolution
of 10km. Wind and temperature time series extracted from the Arpège model are in
particular available for 259 points covering all the French territory, for a period of
14 years, at an hourly sample rate (see Fig. 5.1).

This joint work between RTE and LPSM2 investigates the segmentation of the
French territory based on this set of data. Our main goal is to provide a segmentation
of the French territory in homogeneous regions based on these data.

A delicate problem with meteorological data is the scale: how to find a best scale
to describe a phenomena? In this study our aim was not purely meteorological:
it was to find homogeneous regions in terms of climate but also convenient in an
energy planning perspective.With this objective, producing algorithms for the whole
datasetwould not have allowed to provide indices of confidence for this classification.
Instead, we preferred to part the dataset into 14 years. It seemed a reasonable scale to
study the variability along time as well as the robustness of the algorithms - smaller
scales obviously contained too much variability.

Hence, our goal is to provide segmentations of the French territory in homoge-
neous regions based on yearly temperature and wind information, and to exhibit, at a
same time, the regions which tend not to be classified in the same group over years.

In this application, each grid point is considered as an observation. The total
number of observations for the French territory is then n = 259. Each temperature
(resp. wind) at each datetime is considered as a variable and let p define the number
of studied variables. The global data set may be then characterized by a (n, p)matrix
with n = 259 and p equals to the number of variables i.e. the length of the studied
time series.

1Réseau de Transport d’Electricité.
2Laboratoire de Probabilités, Statistique, Modélisation.
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Fig. 5.1 The 259
Meteorological grid points of
the Arpège model
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Data segmentation is commonly achieved with clustering algorithms. Different
methods may be used for this task such as, among others, hierarchical clustering,
k-means, model based clustering or spectral clustering [5]. Most of the clustering
algorithms use different notions of closeness of the inputs, generally Euclidean dis-
tances coupled with a first representation of the data.

Clustering approaches have been frequently used to understand meteorological
data. Atmospheric profiles have been computedwith the help of clustering bymixture
decomposition of copulas [30, 31] and many works have been conducted in order
to understand the repartition of temperature [2, 24] and wind [15, 27] for different
regions of the earth.

In statistical machine learning, a major issue is the selection of an appropriate
feature space where inputs show nice properties for solving the problem. This space
can either be specified explicitly by hand-coded features or be automatically learned.
Choosing the feature space is not an easy task, and without theoretical assumptions,
it is quite hard to propose a first choice. Moreover, it is well known that the choice
of this feature space has a strong impact on the final results.

In our application, the time series of temperature or wind are characterized by
high dimensional data with more than p = 132 860 dimensions for each point of the
grid, observed over the period 2001–2014. A clustering method provides groups of
homogeneous observations. In this case, appropriate representations are especially
required before using segmentation algorithms, to avoid the curse of dimensionality
and to speed up time computation.

A natural pre-processing, to reduce the size of the time series frequently used
consists in averaging raw data to a given scale, for example to a day, a week, a month
or a year scale. Averaging leads also to a natural smoothing of the initial raw data.

An alternative and smartmethod to reduce the raw inputs is tomodel the time series
by using a nonparametric regression model associated with a dictionary of atoms
[18, 19]. In this case, the choice of an appropriate dictionary may provide a sparse
representation allowing to represent the original signals using only few coefficients
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[1, 13]. The atoms of the dictionary can be chosen using transforms as the Fourier
or the Wavelets transforms or directly learned from the data using for example the
well-know Karhunen–Loeve, leading to so the called Principal Component Analysis
decomposition (PCA) -see for instance [17]- or theNonnegativeMatrix Factorization
(NMF) decomposition [11].

Representing the initial signals using fixed or data-driven atoms induces, as for
temporal aggregation, a natural smoothing of the datawhichmay also lead to different
results of clustering. This work will especially study the impact of smoothing on the
segmentation of the meteorological time series: different methods of smoothing are
investigated to extract, at each point of the grid, salient features and/or to model the
temporal signal.

It iswell known that climatic conditionsfluctuate fromoneyear to another. In order
to highlight the inter-annual variability of homogeneous meteorological regions, we
study in this paper successive segmentations, using each time one year of data. Based
on our dataset, 14 segmentation instances are consequently computed, one for each
year. This allows us to evaluate the stability and robustness of the segmentations over
the years.

Finally, in order to provide a global map of homogeneous regions over the years,
we propose to aggregate this set of clustering instances using a graph partitioning
approach based on spectral clustering. This method allows us to take into account
the inter-annual variability of the homogeneous regions in the final segmentation.

This document is organized as followed. The following section presents the initial
meteorological data. Section5.3 presents the different methodologies for extracting
the features. The methods for clustering and for aggregating the set of clusters are
presented in Sect. 5.4. Numerical results computed on the French meteorological
time series are discussed in the last section.

5.2 The Meteorological Data

Meteorological data are displayed on a regular gridwith one single point every 50 km,
both in latitude and longitude. The original grid covers all Europe with 6035 grid
points. In this study, the 259 grid points which are located in metropolitan France
and represented in Fig. 5.1 are used. There are no meteorological stations at the
regular locations of the grid points, so our data is in fact an output of a meteorologi-
cal model. The model combines real meteorological observations at geographically
irregular locations to obtain what would have been the meteorology at a set of geo-
graphically regular locations as a grid. This operation is called “assimilation”. The
model used here is Arpège Climat fromMétéo France. Temperature data correspond
to temperature at 2m high, in Celsius. Wind data correspond to wind at 100m high,
and is composed of two components (South–North and West–East), from which the
wind speed is computed in m/s. The interest of such meteorological model is to work
with coherent and regularly spaced data for both wind and temperature.

Over the period 2001–2014, each temperature or wind signal is characterized by
132 860 hourly observations. On an interval of one year, each time series is then
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Fig. 5.2 Temperature (top) and wind (bottom) for 2 years of data (left) and for one week extracted
from the Arpège model

characterized by a vector of p = 8760 observations (for 365 days). For illustration,
Fig. 5.2 shows 2 years of hourly data from 2013 to 2014 and a zoom of a week in
May 2014. Year and day periodicity can clearly be observed on the temperature time
series. For wind data, it should be stressed that no evident periodicity can be observed
at any scale.

5.3 Smoothing and Feature Extraction

Statistical modeling brings tools for generating descriptions of the observed data and
our first work focuses on extracting salient features from the raw data. In our first
approach, we model the temporal signals using a functional approximation based on
a dictionary of functions. Two kinds of dictionaries are studied here: dictionaries with
generic atoms and dictionaries with data-driven atoms. Theoretically, a comparison
between these two approaches could have been provided with the minimum descrip-
tion length frameworkwhich discriminates between competitivemodels based on the
complexity of each descriptor, see for instance [20]. Here, we focus on the practical
comparison of both methods using the meteorological time series.

5.3.1 Functional Approximation

We consider that the original data are function of time observed at regular intervals.
For each time series at location i , we observe (Y i

j , j/p), 1 ≤ j ≤ p where

Y i
j = f i ( j/p) + εij .
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The functions f i are considered as unknown and the εij ’s are Gaussian random
variablesN (0, (σ i )2), where σ i is the standard deviation of the noise of each signal
at location i , 1 ≤ i ≤ n = 259. We propose to estimate each f i in a nonparametric
way using a dictionary of d functions D = {g1, . . . , gd} and write:

f i =
d∑

l=1

β i
�g� + hi

The Ordinary Least Square (OLS) allows to estimate the coefficients β i of the
model by minimizing ||Y i − Gβ i ||2 where G is the design matrix, defined by the
column vectors of the functions of the dictionary evaluated at times j/p and Y i is
the (p × 1) vector of meteorological observations for the spot number i .

Adaptive Choice of the Meaningful Coefficients

When the matrix (GTG) is invertible, the estimated coefficients β̂ computed with
OLS are then simply β̂ i = (GTG)−1GTY .Without precisely knowing the level (σ i )2

of the noise, it is a bit hard to select the main basis functions needed to estimate
f i . In this work, we chose to select these functions with the help of a criterion
which evaluates the quality of the approximated signal. This criterion is defined by
the ratio between the �2 norms of the approximated and initial signal. A classical
forward variable selection helps select the smallest set of functions of the dictionary
which lets a ratio up to a threshold T . During an iterative procedure, the unitary
functions of the dictionary are added one after another in the different models, testing
at each step whether the added function significantly improves the fit. If we note
Ŷ i
j0

= ∑ j0
j=1 β̂ i

( j)g j and β̂ i
(1), . . . , β̂

i
( j0)

the j0 largest coefficients in absolute value

|β̂ i
(1)| ≥ · · · ≥ |β̂ i

( j0)
|, the procedure stops when the reconstruction is considered as

“satisfactory” i.e. if ||Ŷ i
( j0)

||2/||Y i ||2 ≥ TN P where TN P denotes the threshold for this
nonparametric approach.

It should be underlined that the choice of TN P and of the dictionary of functions
D has a strong impact on the number of selected coefficients and consequently on
the sparsity of the representation and on the nature of the approximation. For a same
value of the threshold TN P , different values of sparsity (and estimated coefficients)
may emerge depending on the chosen functions of the dictionary. This leads to
distinct reconstructions. Considering two different dictionaries, even if the number
of non zero selected coefficients is similar, the approximated signals computed with
each dictionary are different (or slightly different depending on the threshold value
TN P ). It should be stressed that the approximations of the signals are non linear and
computed independently at each localization. There is therefore no evidence that the
non zero coefficients for all approximated signals (for the different spots) share the
same support and consequently the same subspace.

Restrained Support Choice for the Meaningful Coefficients

In order to provide at the same time a sparse representation for all the signals and
a common support for the coefficients, we introduce a second method hereafter
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described. The first step consists in estimating the coefficients β i of each signal
i , 1 ≤ i ≤ n using the standard OLS procedure. For each atom of the dictionary,
we compute an index, κ j = ∑n

i=1(β̂
i
j )
2 to quantify the amount of energy brought

by this atom over all the signals of the data base. The κ j indices are then ordered
by decreasing order κ(1) ≥ · · · ≥ κ(d). We select the size, J0 of the common sup-
ports by taking the minimum number of coefficients κ j for which the following ratio

exceeds a quantity:
∑

i ||Ŷ i
( j)||2∑

i ||Y i ||2 ≥ Tall . This ratio quantifies, in average, the amount of
energy kept in the approximation with the constraint of a common support between
all the approximations. Tall denotes the threshold for this common support approach.
Section5.5 studies the impact of these different representations, using a free decom-
position or a decomposition with a common constrained support on the segmentation
of the French meteorological data.

5.3.2 Data Driven Dictionary

Principal Component Analysis (PCA) is a method widely used for feature extraction
before curve segmentations. For example, in [9], principal components are introduced
to model sparse functional data in biology. Let us recall that the PCA algorithm
consists in producing for a data set where each data point is in R

p, some axes on
which to project the data points to best capture their variability. It becomes rather
intuitively clear that if the data set stores the observations of different populations,
the first PCA axes will probably be adapted to principally describe the differences
between these populations. PCAoperates a linear smoothingwhen retaining a smaller
number of axes which may be interpreted as adaptive dictionary vectors and is also a
feature selection method. PCA clustering consists in processing the data with a PCA
algorithm, retaining the number of principal axes in such a way that for the threshold
TPCA = 95% of the variance is kept.

5.3.3 Kernel-PCA

However one major disadvantage of PCA is to consider only linear transformations
of the data. Obviously, linear methods are not accurate enough to handle typical
situations for instancewhere the data are sitting on a regular but not linearmanifold of
small dimension. In this case, the idea consists in ‘featuring’ the data i.e. transforming
the data set with the help of ‘feature’-functions ϕl(Y i ), l = 1, . . . k [12]. Finding
these transformations is not always an easy task. A useful technique is the ‘kernel-
trick’ due toVapnik [28], consisting in introducing a newkernel K (Y i ,Y j )measuring
the disparities between signals. The theory of Mercer kernels [6] shows that if K
is precisely a Mercer kernel, then a space and a function ϕ (called feature space
and function) exist such that K is the matrix of scalar products 〈ϕ(Y i ), ϕ(Y j )〉.
A standard PCA on this matrix K (Y i ,Y j ), transforms the implicit features ϕ into
‘principal features’ ϕ1(Y i ), . . . , ϕk(Y i ), which are explicit.
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Kernel clustering consists hence to process the data with a PCA starting from the
matrix K (Y i ,Y j ). Examples of kernels currently producing very accurate results are
the following (see [22]).

K (x, x ′) = 〈x, x ′〉d
K (x, x ′) = tanh(κ〈x, x ′〉 + θ)

K (x, x ′) = exp(−‖x − x ′‖2/μ).

Each kernel definition involves regularisation parameters as d, θ and μ. In the
class of kernels presented above, the last one KL(x, x ′) = exp(−‖x − x ′‖2/μ) plays
a special role because of its meaningful mathematical interpretations, and the so
called heat kernel clustering consists in adding a smoothing and a normalizing step
to the steps mentioned above (see the Spectral Clustering in the next section).

5.3.4 Temporal Aggregation

Alternatively, a simple and natural pre-processing to reduce the size of the time
series inputs is to average the raw data at a given scale. Most of the times, averaging
erases the noise in the data but may also erase specific patterns at the same time.
Daily average, for example, which decreases the size of the raw inputs of a factor
of 24, erases also potential day/night meteorological fluctuations. Yearly average
gets also rid of annual fluctuations and compresses the data of a factor 365. Weekly
and monthly averages are also scales commonly used to study the weather but are
not directly linked to natural meteorological fluctuations. Four levels of temporal
aggregation are studied in this project corresponding to raw hourly, daily, weekly or
monthly data. Considering one year of data with 365 days, each point of the grid is
respectively represented with p = 8760 (hourly), p = 365 (daily), p = 52 (weekly)
or p = 12 points (monthly).

5.4 Segmentation

Manymethods of clustering are available for segmentation: among them, hierarchical
clustering [32], k-means [7], spectral clustering [29] or model based clustering [3].
All these algorithms are often used for many applications and we briefly recall the
advantages and disadvantages of each of the first three methods which are used in
our application. More details of each method can be easily found in the literature as
for example in [5, 8, 14].
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5.4.1 Clustering Algorithms

Hierarchical clustering (HC) is a very common algorithm for clustering data [5].
HC produces a nested series of partitions successively created by a bottom-up or
a top-down approach. The bottom-up approach begins with each observation in a
distinct singleton cluster and successively merges clusters together until a stoping
criterion is satisfied. Many variants of HC clustering exist and differ in the way
they characterize the similarity between a pair of clusters. The choice of the merg-
ing criterion induces different results of clustering. In the single-link method, the
distance between two clusters is the minimum of the distances between all pairs of
elements drawn independently from the two clusters. In the complete-link algorithm,
the distance between two clusters is the maximum of all pairwise distances between
elements in the two clusters. The clusters obtained by the complete-link algorithm
are more compact than those obtained by the single-link algorithm. The Ward cri-
terion is frequently used as merging criterion and let to obtain balanced clusters.
The HC algorithm produces a dendrogram and does not need any assumption on the
number of groups before computation. The number of groups is chosen afterwards
(see Sect. 5.4.3). Due to the computation of the distance matrices for all observations
and for a large number of nested partitions, the HC algorithm is numerically costly,
especially for high dimensional data.

The k-means algorithm is the simplest and most commonly used algorithm to
partition data. In contrastwith theHCwhich produces a clustering structure,k-means
partitioning has the advantage of being less complex, particularly in applications
involving large data set or in high dimension data set for which the construction
of a dendrogram is computationally prohibitive. The k-means algorithm produces
clusters by optimizing a criterion function, which is frequently chosen as the squared
error criterion. It is an easily implementable and interpretable (as MLE estimation)
procedurewhich aims at producing a localminimum to the following problem:Given
the number k of clusters (we’ll discuss this point later), one seeks for a partition
C1, . . . ,Ck of {1, . . . , n} minimizing:

minC1,...,Ck

k∑

l=1

∑

i, j∈Cl

‖Zi − Z j‖2.

In our application, Zi may be the raw data Y i , or the projection coordinates after PCA
or the adaptive coefficients computed after the nonparametric estimation procedure,
at a given time scale (hour, day. . .) as well as other results of pre-processing feature
extractions.

As so defined, theminimization problem is exponentially difficult. However, seek-
ing for a local minimum to this problem is much easier. First, if for each group l,
m(Cl) is the centroid of the candidate cluster Cl , the minimization problem reduces
to find the optimal partition C1, . . . ,Ck , for the following problem:
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minC1,...,Ck

k∑

l=1

∑

i∈Cl

‖Zi − m(Cl)‖2.

The algorithm starts with a random affectation of the points into classes C1, . . . ,Ck

and then returns at each new step a centroid to each ‘cluster’ and re-affects each
data point according to its proximity to the centroid, then re-adjusts the centroid, and
repeats the operation until stabilisation. This search naturally reduces at any steps
the quantity

∑k
l=1

∑
i∈Cl

‖Zi − m(Cl)‖2, producing a local minimum.
In practice, the algorithm is therefore, typically run multiple times with different

starting states, and the best configuration obtained from all the runs is used as the
output clustering.

In our case, we chose to run the k-means algorithms to compute the clustering
of each segmentation instance 10 000 steps for 100 initial random configurations
in order to attempt to reach the global minimum of the error criterion. The squared
error criterion, mostly used in the k-means, might not be appropriate for high dimen-
sional data. We compensate this by a pre-processing of pattern extraction or sparse
representation of the data as described in the previous section. As mentioned, in the
k-means algorithm, the number of clusters k has to be chosen in advance before
running the algorithm. The choice of the optimal number of clusters is detailed in
Sect. 5.4.3.

Spectral clustering (SC) considers the initial observations, Z1, . . . , Zn (n =
259), as the nodes of a graph [16, 29] where Zi represents a feature vector for
location i in R

p. An affinity matrix A is associated to this graph, and SC algorithm
uses the spectrum of this matrix to perform the clustering. Many variants of this
algorithm may be found in the literature [23]. The affinity matrix, A, is a n × n
matrix which both defines the architecture of the graph (absence or presence of a
link between two nodes) and the strength of the relation between two nodes i and
j , represented by a weight wi j , 1 ≤ i, j ≤ n, i 	= j . In the graph literature, different
methods are introduced to put an edge between two nodes i and j of the graph [29].

For the ε neighborhood method, two nodes i and j are connected by an edge if
the Euclidean distance ||Zi − Z j || is lower than a chosen threshold ε.

In the B nearest neighborsmethod, two nodes i and j are connected by an edge if i
is among the B nearest neighbors of j and j is among the B nearest neighbors of i . The
case B = n provides a fully connected network. In this case, the presence/absence
of an edge depends on the relative proximity between nodes i and j and not on the
units of Zi and Z j , as in the previous case.

Both previous methods lead to symmetric graphs and depend on the values of the
tuning parameters (ε or B). After defining the architecture of the graph (existence
of a link or not), the affinity matrix A is constructed by attributing weight values to
each edge.

For the Simple-minded graphs, wi j = 1 if and only if nodes i and j are connected
by an edge.

For theHeat Kernel graphs, the connection between two nodes i and j is evaluated
by a weight:
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wi, j = e
−||Zi−Z j ||22

μ

with μ > 0. Again, the choice of the value of μ may have a strong impact on the
results of the algorithm. Using previous notations, the normalized Laplacian graph
is computed: L = I − D−1/2AD−1/2 where D is the diagonal degree matrix with
Di,i = ∑

j wi, j . Assuming that the number k of clusters is known, the k largest
eigenvectors of the Laplacian matrix are used to group the data into classes [16]. Let
A be the adjacency matrix, A ∈ R

n×n , k the given number of clusters, the following
steps defines the SC algorithm:

1. Compute the normalized Laplacian L .
2. Compute the first k eigenvectors u1, . . . uk of L corresponding to the k largest

eigenvalues, λ1, . . . , λk of L ,
3. Extract the matrix T ∈ R

n×k from U , where U ∈ R
n×k is the matrix containing

the vectors u1, . . . , uk as columns, by normalizing the rows to unitary norm such

that ti, j = ui, j/(
√∑k

l=1 u
2
il)

4. Cluster the points (ti ), 1 ≤ i ≤ n with the k-means algorithm into clusters
A1, . . . , Ak where ti ∈ Rk is the vector corresponding to the i th row of T.

Regarding a given set of observations, the SC algorithm needs to first compute the
affinity matrix, and to specify the number k of clusters. The affinity matrix depends
both on the architecture and the weights of the graph.

The parameters of the architecture (ε neighborhood, nearest neighbors) and of
the graph (simple minded or heat kernel) are critical choices which have a strong
impact on the computation of the clusters. However, when the affinity matrix is well
fixed, the SC algorithm is a very powerful tool to cluster the different nodes of the
graph. In this application, the SC algorithm is used for the aggregation of year by
year clustering results (see the following section).

5.4.2 Aggregation of Clustering Instances

As already mentioned in the introduction, a natural study interval for partitioning the
climate of the French territory is the year. On the basis of the available information
in our data base, this study provides 14 clustering instances for the entire period of
analysis.Aggregationof clustering instancesmaybe in this case particularlywelcome
to differentiate the couples of spots which tend to be always classified in the same
group from those which tend to be systematically classified in different groups.
In order to aggregate the clusters, we construct for each instance l of clustering,
1 ≤ l ≤ 14, a co-cluster indicator matrix Dl defined by Dl

i j = 1 if the nodes i and
j are in the same cluster for year l and Dl

i j = 0 otherwise as already introduced in
[33], 1 ≤ i, j ≤ n. Hence in this application, Dl is a n × n symmetric matrix with
n = 259 spots.
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D = 1
14

∑
l D

l corresponds to the average of the co-cluster indicators over the
complete period for 14 years of data. Di j = 1 (resp. Di j = 0) means that both nodes
i and j tend to be classified always (resp. never) in the same cluster over 14 years.

An affinity matrix is naturally defined by A = In − D where In is the n × n
identity matrix. The SC algorithm is, in this case, very appropriate to compute the
final clustering based on A.

5.4.3 Calibration of the Number of Clusters

A major challenge in cluster analysis is the estimation of the optimal number of
“clusters”. During these last years, different methods have been introduced, in
the literature, to identify this optimal number. Most of these methods are based
on the evolution of the within Wk or the between Bk cluster dispersion, function of
the number of clusters k. To compute the optimal number of clusters, [4] proposes
to maximize the between over within variance ratio depending on the number of
clusters. In [7, 10], the number of appropriate clusters is identified when the increase
of the number of groups does not correspond to an appropriate decrease of the within
variance. In [26], the gap statistics based on the within sum of squares function is
introduced to compute the optimal number of clusters. A visual method, called “sil-
houette” is also proposed in [21] to identify the optimal number of clusters. After
implementing and testing all the previous indicators on simulated data (where the
number of groups is exactly known), the conclusion we have drawn is that most of
these indices provide the same results in cases when there is no doubt on the “right”
number of clusters, that is when the number of clusters can be easily and visually
identified. In other cases, these indices may provide different results but, in these
situations, it is also hardly obvious to know the exact answer.

In this work, we decided to take a modeling point of view introduced in [7] and to
estimate the optimal number of clusters, k0 by studying the evolution of the relative
decrease of the within variance function of the number of clusters. The optimal
number of clusters k0 corresponds to the smallest number such that the ratio Wk+1−Wk

V
is smaller than 5% where V is the total variance of the set of data. The choice of
the value 5% corresponds to a relative decrease of the total variance provided by the
increase of the number of groups from k to k + 1. The value of 5% is here chosen
accordingly to the previous threshold values already introduced to approximate the
signals in Sect. 5.3.

5.5 Numerical Results

This section presents the results of the French climate segmentation carried on the
available 14 years of hourly Arpège data of temperature and wind.
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5.5.1 Smoothing and Sparsity

Tables5.1 and 5.2 provide the number of non zero estimated coefficients (sparsity)
obtained using a PCA data-driven dictionary and a nonparametric signal regression
model with a generic dictionary (Fourier andHaar basis) respectively for temperature
and wind. The sparsity is studied for adaptive or constrained support (mentioned
with a (*) in the tables). The thresholds (TN P , Tall , TPCA) chosen to compute the
approximated signals take the same value T = 0.95 for all approaches. The interval
of study equals one year with different temporal scales (hour, day, week, month).
The sparsity results are averaged over the 14 years and the standard deviation is
mentioned.

Both for temperature and wind data, the PCA decomposition provides the highest
sparsity for all scales. For temperature data, the compression rate obtained with PCA
is very high with a ratio equal to 381 for hourly data, 36 for daily data, 13 for week
data and 5 for month data (8760/23; 365/10.21; 52/4.07, 12/2.36). For wind data, the
compression rate observed for the PCA decomposition is much smaller with ratio
equal to 134 for hourly data, 14 for daily data, 5 for week data and 3 for monthly
data (8760/65.35; 365/26.4; 52/10.64; 12/4.21). At a month scale, the compression
ratio is similar for temperature and wind data.

For temperature data at the hour scale, the non-parametric model with a Fourier
dictionary shows as expected a higher sparsity compared to the Haar decomposition.

Table 5.1 Temperature. Sparsity average (and standard deviation) computed for an interval study
of one year for different smoothing methods from 2001 to 2014

Temporal scale Hour Day Week Month

p 8760 365 52 12

PCA 23 (2.5) 10.21 (1.05) 4.07 (0.26) 2.36 (0.49)

Fourier 637 (93) 126 (3.4) 18.5 (0.78) 3.58 (0.33)

Haar 976 (87) 133 (3.9) 18.34 (0.89) 4.76 (0.33)

Fourier* 761 (62) 161.21 (9.61) 23.42 (2.44) 3.35 (0.63)

Haar* 1172 (67) 149.85 (11.85) 17.3 (2.37) 4.14 (0.53)

Table 5.2 Wind. Sparsity average (and standard deviation) computed for an interval study of one
year for different smoothing methods from 2001 to 2014

Temporal scale Hour Day Week Month

p 8760 365 (0) 52 (0) 12 (0)

PCA 65.35 (25.6) 26.4 (5.9) 10.64 (1.08) 4.21 (0.57)

Fourier 937 (257) 176 (2.9) 23.72 (0.9) 4.49 (0.35)

Haar 1233 (218) 197 (4.2) 23.82 (1.02) 5.01 (0.36)

Fourier* 1303 (342) 259 (0) 40 (0) 7.78 (0.57)

Haar* 1878 (359) 259 (0) 37.35 (1.82) 6.85 (0.36)
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This is a consequence of the periodic temporal oscillation of the temperature: night/
day and seasonal oscillations. For wind data, the generic dictionary does not bring
any interesting sparsity for all scales. From a sparsity point of view, PCA appears
to be very interesting to represent temperature or wind data. At small scales, from
a sparsity point of view, the use of a data-driven dictionary or the non-parametric
model seems to be more or less equivalent, especially for wind data.

Comparing temperature and wind approximation for all implemented methods
shows that temperature time series let to the highest level of sparsity.

It is important to notice also that if PCA gives the highest sparsity (it is not
surprising since it is the aim of the method), it lacks stability over the years. Hence
it gives a very powerful tool for insight on the data, but a much less interesting
instrument in a forecast perspective.

5.5.2 Number of Clusters

Tables5.3 and 5.4 provide the number of clusters computed using the criterion on
the decrease of the within variance (function of the number of clusters) at a threshold
of 5% (see Sect. 5.4.3), for temperature and wind data, for different scales and for
an interval study of one year. For the k-means or Hierarchical clustering method, the
clustering is performed using the features (coefficients) computed with the previous
decompositions (PCA, non-parametric models with Fourier and Haar dictionaries
using an adaptive or constrained (*) support). The results are averaged over the 14
years and the standard deviation is mentioned.

For both temperature and wind data, we surprisingly observe that, for each scale,
the average number of clusters obtained with the different smoothing methods is
globally the same. Itmeans that the various representations donot induce an important
variation of the final number of clusters on the studied periods. The number of clusters
decreases slightly with the scale. For temperature, more clusters are obtained with
hourly data (5 to 6 clusters regarding all methods) than with monthly data (less than
5 groups in general).

Table 5.3 Temperature. Average number of clusters computed with the Kmeans algorithm for
different smoothing methods from 2001 to 2014

Scale k means Hierarchical clustering

Hour Day Week Month Hour Day Week Month

Raw data 5 (0) 5 (0) 4.9 (0.3) 4.8 (0.4) 5.4 (1.7) 5.9 (1.1) 6 (1.0) 5.2 (0.8)

PCA 5.1 (0.3) 5 (0) 4.9 (0.3) 4.8 (0.4) 5.8 (1.3) 6.3 (1.8) 5.9(1.0) 5.2 (0.9)

Fourier 5.0 (0) 5 (0) 4.8 (0.4) 4.8 (0.4) 6.1 (1.4) 5.8 (0.9) 5.6 (1.0) 5.8 (0.8)

Haar 4.8 (0.4) 5 (0.4) 4.8 (0.4) 5.0 (0.4) 5.6 (1.4) 6.6 (0.9) 5.7(0.8) 5.5 (1.0)

Fourier* 5 (0) 5 (0) 4.8 (0.4) 4.8 (0.4) 6.0 (1.9) 5.5 (1.0) 5.6 (0.8) 6.6 (1.3)

Haar* 5 (0) 5 (0) 4.8 (0.4) 4.6 (0.5) 6.0 (1.8) 5.3 (1.0) 5.5 (0.5) 5.4 (0.9)
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Table 5.4 Wind data. Average number of clusters computed with the k-means and the hierarchical
clustering algorithm for different smoothing methods from 2001 to 2014

Scale k means Hierarchical clustering

hour day week month hour day week month

Raw data 4 (0) 4.1 (0.4) 4.2 (0.4) 4.2 (0.4) 4.3 (0.8) 4.2 (0.6) 4.5 (0.8) 4.9 (1.2)

PCA 4 (0) 4.2 (0.4) 4.3 (0.5) 4.3 (0.5) 4.2 (0.4) 4.5 (0.8) 5.1 (1.4) 4.7 (1.0)

Fourier 4 (0) 4.1 (0.3) 4.1 (0.4) 4.2 (0.3) 4.1 (0.3) 4.1 (0.3) 4.9 (1.4) 4.6 (0.8)

Haar 4 (0) 4.1 (0.3) 4.1 (0.3) 4 (0) 4.2 (0.4) 4.4 (0.7) 4.6 (0.7) 4.5 (0.7)

Fourier* 4.1 (0.4) 4.1 (0.4) 4.2 (0.4) 4.3 (0.5) 4.0 (0.5) 4.2 (0.6) 4.7 (1.0) 3.9 (0.6)

Haar* 4.0 (0) 4.2 (0.4) 4.3 (0.5) 4.1 (0.4) 4.1 (0.3) 4.4 (0.7) 4.6 (0.7) 4.4 (0.6)

For wind data, the number of clusters is the same for all methods. The level of
sparsity i.e. the number of non zero coefficients used to represent the data, does not
have any influence on the final results. However, it should be stressed that the number
of coefficients used to represent the data has a strong influence on the computation
time needed to provide all the results.

5.5.3 Meteorological Segmentation Maps

Figures5.3 and 5.5 (resp. Figures5.4 and 5.6) illustrate the segmentation maps of
the 14 years using the k-means algorithm (resp. HC) drawn for temperature and
wind data, using an interval study of one year. For these figures, the selected features
are, in both cases, computed with PCA using a threshold TPCA = 0.95. It should be
underlined that the two-step methods previously described, first step of basis expan-
sion followed by step of clustering, does not introduce any topological constraints
on the n = 259 spots for the clustering: for instance the GPS coordinates of the
grid points do not appear at any stage of the procedure. However, we observe
that neighboring points of the grid tend to be classified in the same cluster. For
temperature data, the number of clusters found is around k = 5 for all the 14
years (Figs. 5.3 and 5.4). The computed maps highlight principally four main and
connected regions of homogeneous temperature localized in the four quadrant of
France respectively the north-west, the north-east, the south-west and the south-east.
The last cluster corresponds to the mountains areas (Vosges, Massif Central, Alps
and Pyrenees) localized in different disconnected regions.

For wind data, the number of clusters found is slightly lower than for temperature
data and varies from 4 (mainly) to 5. As for temperature, the four computed clus-
ter maps correspond to connected and oriented area, with a north-east/south-west
orientation (Figs. 5.5 and 5.6).
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Fig. 5.3 Temperature segmentation maps (kmeans) with daily data 2001–2014
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Fig. 5.4 Temperature segmentation maps (HC) with daily data 2001–2014
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Fig. 5.5 Wind segmentation maps (k-means) with daily data 2001–2014
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Fig. 5.6 Wind segmentation maps (HC) with daily data 2001–2014
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5.5.4 Clustering Aggregation

Even if the number of clusters seems to be stable over thewhole period 2001-2014 for
temperature and wind data, the repartition of the points in the different groups varies
fromone year to another. These variations can be quantified by studying the co-cluster
indicator matrix D already described in Sect. 5.4. As an illustration, Fig. 5.7 shows
the values of D for three specific points of the grid, Brest (West of France, i = 46),
Dijon (East of France i = 110) and Toulouse (South of France i = 238), localized
with a red star on the differentmaps. In this example, the co-cluster indicatormatrix is
computed for temperature andwind using the k-means algorithmwith PCA and daily
time series. We decided to take a very conservative point of view by representing
only the points j such that Di j = 1 (with a red cross) and Di j = 0 (with a blue dash).
Recall that Di j = 1 means that both points i and j are always in the same cluster
during all 14 years and Di j = 0, the points i and j are never in the same cluster,
1 ≤ j ≤ 259.

We observe, in Fig. 5.7, that for these three specific cities, neighborhood points
of the grid tend to be in the same cluster, throughout all the studied period (2001–
2014). This is also true for all points of the grids which are spatially localized in the
‘center’ of a cluster region. The points of the grid which are localized in the frontiers
between two regions tend to belong to different clusters from one year to another.
As an example, Toulouse is a such an unstable point for wind classification.

*

+
+++

+ ++
+++++++

++++++++++++
+++++++++

+++ ++
+++

−−
−−−−

−−−−−−−−−−
−−−−−−−−−

−−−−−−−−−−
−−−−−−−−−
−−−−−−−−

−−−−−−−−
− −−−−−−−−−−−
−−− −−−−−−−−−−−

−−−−− −−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−− −− −−−−−−
−− −−−

− −
*

+
+++

+++++
++++++ +
+++++++ +++

++++++++ ++ ++++++
++
+

−
−−−−

−−−−−−−−
− −−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−

−−− −−−−−−−−−−−−−−−
−−− −−−−−−−−−−−

−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−
−−−−−− −−−
−−−− −−−
−−− −−−−−

−−−−
−−

*

+++
++++++++ +
++++ + +

++++++++ +
+++++++++
++ +++

+++++++
+++++

+++
+
+
+ ++

−
−−−

− −−
−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−− −

−−−−−−
−−−−− −
−−−−− −
−−− −−
−−− − − − −−

−−−−− −− −−−
−−−−−− − − −
−−−−−−− −−− − −

−−−−−−−− −− −−−−−−
−− −−

− −

*

+
++++

+++++++
+ +++++
+++++++

++++++++++++++
+++++++++

+++
++++
+

−−−−
−−−−−−−−−

−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−−−−− −−−−−−
−−−−−−−−

−−−
*+

−
−−−−

−−−−−−−−
− −−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−
− −

*

++++
+++++++++

++++++++++
++++++++++++

+++++++++++
++++++++++
++
+

−
−−−−

−−−−−−−
− −−−−−
−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−

−−−
−−−−
−

−−− −−−−
−−− − − −−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−−−−− −−−−−−
−−−−−−−−

−−−

Fig. 5.7 Visualization of the 1 and 0 values of the co-cluster indicator matrix for Brest (left),
Toulouse (middle), Dijon (right). Ci j = 1: red ‘+’; Ci j = 0: blue ‘−’ for temperature (top) and
wind (bottom)
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Fig. 5.8 Aggregation of 14 clustering instances using the spectral clustering for temperature (left)
and wind (right) for daily data

The spectral clustering algorithm is in this case very appropriate to perform an
analysis on the indicator matrix D. The nodes of the graph are defined by the points
of the grid. To define the architecture of the graph, we decided to put an edge between
two nodes i and j if they tend to be classified most always in the same way: either
systematically in the same cluster or in different clusters, throughout the 2001–2014
period, i.e. Di j ≥ (1 − ε) or Di j ≤ ε, ε is a tuning parameter which allows a weak
variability throughout the period. As for heat kernel graphs, the connection between

two nodes is defined with a weight function of the co-cluster indicator: wi j = e
1−Di j

μ .
Figure5.8 shows the results computed with SC for temperature and wind data on

the previous data. The results obtained with the SC clustering are, in this case, very
robust and do not depend on a particular choice of the μ parameter; here μ = 0.20
and ε = 0.20. As expected, 5 main homogeneous regions appear on the map for
temperature data and 4 main regions for wind data. The points colored in gray
correspond to spots with a majority of unstable connections along the years where an
unstable connection between two spots i and j is characterized here by ε ≤ Di j ≤
(1 − ε) with ε = 0.20.

This approach appears to be particularly interesting because it does not only show
the regionswith homogeneous temperature orwind but also the frontiers of variability
between those regions corresponding to the inter-annual climate variations. In this
case, the computed homogeneous regions can be interpreted as confidence intervals
of “robust regions” with climatical similarities (for temperature or wind).

Notice also that computing only one clustering instance using the entire time series
would have been, in this case,much less informative for inter-variability highlighting.

Comparing the final results computed with unsupervised methods as for k-means
and hierarchical clustering is quite difficult. In order to characterize the different
solutions, we draw the histogram of the values of the co-clustering matrix nD, with
Di j > 0, i > j and n = 14. To enhance the representation and to focus on the relative
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Fig. 5.9 Histogram of co-clustering indicators (x14) computed for HC (left) and k-means (right)
for temperature (top) and wind (bottom) daily data

proportion of spots which tend to be classified always in the same cluster (nDi j = n),
the zero modality in not represented in the graphs for k-means or HC instances.

We observe in Fig. 5.9 that the number of spots which tend to be classified in the
same cluster along the years are much higher for k-means than for HC algorithm
for temperature or wind data. For the k-means clustering, 12% of the co-clustering
matrix (nD) equals n = 14 for temperature and wind. This clearly indicates that the
HC algorithm provides more variable clusters along the years as k-means does.

5.6 Conclusion

This work provides a segmentation of the French territory in homogeneous climate
regions using learning methods, and more specifically clustering algorithms. Several
instances of clustering (one per year) are performed to highlight the inter-annual
variability of the French climate. For both temperature and wind data, we observe
that the average number of clusters remains extremely stable over years. It means
that, the various representations do not induce an important variation on the final
number of clusters on the studied periods. Using the variability study along the
different years, we clearly find that HC algorithm is more variable, much less robust
than k means. A final aggregation of this set of clustering instances is provided using
a graph partitioning approach based on spectral clustering. This approach allows us
to give as a result a global instance of classification regions which is cautious and
stable, and even highlights confidence zones.

It is remarkable that the learning techniques investigated in this study, give as
segmentation results climate zones which are easily interpretable, geographically
connected (except mountains regions for obvious reasons), without introduction of
any hints which could lead the algorithms in this direction.
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It is important to notice also that among the smoothing methods, if PCA gives the
highest sparsity (it is not surprising since it is the aim of the method), it undoubtedly
lacks stability. Hence it gives a very powerful tool for insight on the data, but a
much less interesting instrument in a forecast perspective.Obviouslymore elaborated
techniques such as functional representations of the data could lead to more stable
and predictive classifications. A balance between sparsity and reproducibility should
be investigated in this domain, in a future perspective.
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Chapter 6
Electricity Demand Forecasting: The
Uruguayan Case

Andrés Castrillejo, Jairo Cugliari, Fernando Massa and Ignacio Ramirez

Abstract The development of newelectricity generation technologies has given new
opportunities to developing economies. These economies are often highly dependent
on fossil sources and so on the price of petrol.Uruguayhasfinished the transformation
of its energetic mix, presenting today a very large participation of renewable sources
among its production mix. This rapid change has demanded new mathematical and
computing methods for the administration and monitoring of the system load. In
this work we present enercast, a R package that contains prediction models that
can be used by the network operator. The prediction models are divided in two
groups, exogenous and endogenousmodels, that respectively uses external covariates
or not. Each model is used to produce daily prediction which are then combined
using a sequential aggregation algorithm. We show by numerical experiments the
appropriateness of our end-to-end procedure applied to real data from the Uruguayan
electrical system.
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6.1 Introduction

When the balance between electrical supply and demand is broken, the resulting
grid damage or supply outages may affect the quality of the service. Electricity
load anticipation is therefore an important task for the transmission system operator
of an electrical grid as it helps to reduce the risk of this happening; larger pre-
diction horizons (greater than one year) help to anticipate the needs on production
means and distribution, while shorter ones (hours, weeks) are employed to decide the
production and distribution plans. In general, more accurate predictions result in
lower production costs.

Recent years have seen a diverse array of new technologies which allow gener-
ation of electrical energy from new renewable sources (renewables for short). This
diversity increases the complexity of the scenario to be managed by the agent or
agents responsible of the equilibrium balance on the electrical grid. Such is the case
of Uruguay, whose plan for minimizing its dependence on fossil fuel has led to a
very rapid increase in power generation from a wide array of renewables [12]. Such
complex scenario calls for new, sophisticated methods for power management.

A comprehensive survey on traditional electricity load forecasting methods can
be found in [32]; the reader is further referred to [10, 31] for an extensions and
updates of the methods described therein. Broadly speaking, forecasting methods
employ statistical techniques for capturing the salient features of the load demand
(we discuss them in Sect. 6.2). The main difference is in the underlying hypothesis
assumed in each case for justifying and providing validity to the proposed models.
(Clearly, any systematic departure of the data from the assumed hypothesis results
in a degradation in prediction performance.) We classify these methods into four
large groups: time series analysis, pattern methods, regression analysis, and machine
learning. We elaborate on such methods below.

Time series analysis methods form their prediction by combining past load infor-
mation using linear models. Typical approaches are for example ARIMA (Auto
Regressive Integrated Moving Average, see for example [10, 22] or [31]. An impor-
tant drawback of such methods is their rigidity (that is, non-adaptability), leading to
large prediction errors during highly unstable load demand periods. Such issues are
alleviated for example by the use of heavy tailed error models (instead of the tradi-
tional Gaussian noise assumption) [33], or allowing for adaptive linear parameters
and state space models as in [13].

Pattern methods are based on self-similarity within the data, that is, they assume that
future load curves are well modeled as a combination of previously observed patterns
in the data. A typical embodiment of this idea is given in [28], where predictions
result from theweightedmean of past loads, theweights given by a similaritymeasure
between the last observed time frame (e.g., the last observed daily curve) and all past
daily curves in the recorded past. In [2, 3], daily curves are modeled as continuous
functions, and tools from functional theory are used to determine their similarity
to past daily curves. A variant of the previous idea is to look for similarities not in
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the whole past but within a small dictionary of typical patterns which combine past
curves and exogenous covariates [25].

Regression analysis methods predict the future load one sample at a time by decom-
posing the load curves into various explicative effects, usually driven by exogenous
factors. For instance, the predictions obtained in [9, 10, 30] are the result of a non-
linear regression involving two components: one due to meteorological conditions
and the other due to calendar structure. Predictions obtainedwith this approach can be
very accurate but suffer from the same rigidity issues as those observed in time series
methods. Various strategies have been proposed to alleviate such limitations. Exam-
ples include adaptive regression parameters [24], generalized additive models [26],
and Bayesian models [23].

Machine learning techniques usually employ models which are generally more
flexible, albeit less interpretable, than the previously described ones. Examples
include [24] which uses kernel methods combined with Gaussian processes, and
[5] which employs gradient boosting. See the aforementioned references for the
description of such techniques.

A very successful strategy derived from this field is the idea of combining the
output of several predictors, often of different type (i.e., different algorithms may
be used to obtain the different predictions), to produce the final prediction of the
system [11]. This is known as experts aggregation; this is one of the methods we
adopt in our framework, as will be seen later.

Thegoal of thiswork is to obtain a forecasting framework that canbeused to anticipate
the load needs of theUruguayan grid. In particular, we need to account for the fact that
meteorological data is scarce in the Uruguayan scenario. Our work is thus focused
on three models, two of which do not rely on meteorological data.

The reminder of this document is structured as follows. Section6.2 describes both
the electrical and the meteorological data from the Uruguayan system. Section6.3
discusses the models we adopt. A series of experiments illustrate the resulting pre-
diction framework in Sect. 6.4. A short discussion in Sect. 6.5 concludes the work.

6.2 Data

This section explores the typical features encountered in Uruguayan demand data.
The electricity demand data was kindly provided by Adminstración Nacional de Usi-
nas y Trasmisiones Eléctricas (UTE)1; the dataset in question contains hourly electri-
cal loadmeasurements between January 1st 2007 and 31 December 31st 2014.Mete-
orological data covering the same time period, with the same sampling frequency,
was kindly provided by the Instituto Uruguayo de Meteorología (INUMET).2

1portal.ute.com.uy/.
2inumet.com.uy/.
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Fig. 6.1 Mean (above) and standard deviation (middle) of daily load, and mean temperature (bot-
tom) for the Uruguayan electrical system; vertical lines separate years

Figure6.1 aggregates the three available curves (daily load mean, daily load stan-
dard deviation and daily mean temperature). We first focus on load demand (upper
panel). As residential electricity consumption represents a major portion of the total
Uruguayan demand, most salient features in the curves are derived from domestic
human activity patterns. First of all, a clear upwards long-term trend can be observed
which is linked to population increase and increasing use of electrical household
devices, in particular high powered ones. Them a number of cyclical components
can also be observed. The annual cycle reflects the seasonality induced by both
economical activity and meteorological phenomena. It is important to note that this
annual pattern has gradually evolved across the years. While the first years are char-
acterized by one strong mode in winter, later years show another important mode in
summer, which is due largely to the recent widespread adoption of electrical cooling
systems. Note that this change has a major impact in electricity supply planning, for
instance on maintenance schedules. The latter feature shows the importance of hav-
ingmodels capable of adapting themselves tomajor dynamic changes in the structure
of the demand.

Being the domestic demand a major portion of the total, and given that cooling
and heating devices usually require high power to operate, it is to be expected that
the temperature (bottom curve of Fig. 6.1) has a strong effect in the load curves. This
dependency is however more complex than what one might observe at a first glance.
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Fig. 6.2 Temperature gradients estimated at different hours. Each panel represents the scatter of
the load (in Mwh) as a function of the temperature (in Celsius degrees) at one specific hour of the
day. A smooth non parametric estimation of the link is added as a black line

For instance, air conditioning devices are triggered on by extreme temperatures,
either low or high; this is more evident at the daily demand scale. However, this is
not a simple matter of thresholds, and this is evidenced by the marked increase in
standard deviation (middle curve of Fig. 6.1) during cold seasons.

Further insight into the complex dependency between temperature and demand
can be observed when one plots the load curve as a function of the temperature.
This representation allows one to estimate howmuch the electricity demand changes
when the temperature changes and thus it is usually called the temperature gradient.
Graphics shown in Fig. 6.2 represent a way to estimate the temperature gradient
(obtained actually as a nonparametric fit of the curves not explained here). Each
curve fit corresponds to a specific hour of the day, which allows one to see how
this dependency evolves inside the day presenting in some situation very important
slopes on both high and low temperatures.

Figure6.3 exemplifies the variability found in daily load patterns. Despite such
variabilities, common features can still be identified, such as lower demands during
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Fig. 6.3 Three daily load
curves

night time, higher ones during the day, a steady increase during the morning with a
first peak inmid afternoon. The amplitude and position of these features are important
landmarks of the load curve.

6.3 Methods

As mentioned in Sect. 6.1, the proposed framework combines the output of various
models through an experts aggregation strategy.

We now describe the individual models which make up the experts to be aggre-
gated. For clarity of presentation we separate them into exogenous models (using
meteorological data) and endogenous models (relying only on past demand patterns).
We then present and discuss the expert aggregation strategies applied to obtain the
final prediction.

6.3.1 Exogenous Models

The following models use external information that must be available at the moment
of the prediction.

Hong’s Vanilla Benchmark (HVB)

This model was introduced in [19]. This is a multiple linear regression model that
incorporates the effect of temperature on the load as a third order polynomial; the
parameters of the polynomial are indexed by calendar features such as day, month,
and hour, resulting in the following formulation
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E[loadt ] = β0 + β1t + β2 Dayt × Hourt + β3 Montht + β4 Montht × Tempt

+ β5 Montht × Temp2
t + β6 Montht × Temp3

t + β7 Hourt × Tempt

+ β8 Hourt × Temp2
t + β9 Hourt × Temp3

t . (6.1)

The form of (6.1) is simple and easy to interpret, itsmain feature being the thermo-
sensitivity being allowed to vary according to a given calendar hour, day and month.
This model was used as a benchmark model in the GEFCOM 2012 competition [20],
hence its name and popularity. In that competition, gains of up to 40%were obtained
using more flexible models. Notice that Hong’s Benchmark is a purely mid-term
model, as it does not incorporate past load records; this may be useful such data is
not available. It does need, however, enough temperature and load data as to adjust
its parameters, something which is done using plain least squares regression. Point
and interval predictions are then obtained by simple evaluation of the model using
the current temperature and temperature forecasts respectively.

State Space Models (SSM)

This family of models includes an inertial term in the form of an intrinsic state α

of the whole system being modeled [15]. The observed output (the demand) is a
function of the state and external variables represented in ε, and the state evolution
over time is modeled as a linear equation involving the previous state and other
observed variables summarized in a vector η. The general formulation is given by,

{
yt = xtαt + εt
αt+1 = Ttαt + Rtηt

,

where yt is the target variable observed at time t , xt ∈ R
m+1 is a vector of predictors,

the state at time t is represented as αt ∈ R
m+1, Tt and Rt are known matrices, and

εt and ηt are the noise and disturbance processes usually assumed to be independent
Gaussian with zero-mean and with unknown covariance matrices.

One particular case is detailed in [13] for describing evolving parameters on the
load forecast task. The first equation, which provides the current prediction in terms
of the state and exogenous variables, is given by

loadt = X f
t β + Xe

t γt + wt , (6.2)

where the time dependent parameters are included in the state γt and the fixed ones are
inβ. The regressors Xe

t associated to the time evolving parameters aremeteorological
variables such as temperature which is the only meteorological information we use.
To represent the inertia of theweather, temperature is represented as 3 variables. First,
the observed temperature at each moment of the day. Second, the lowest temperature
record in the last 24h. Third, the highest temperature record in the last 24h. The
last two series are smoothed using splines. Behind this construction we follow the
strategy of capturing effects due to extreme weather which are well know by the
electrical engineers inUruguay. Extremeobservations usually arrive in clusters called
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respectively hot and cold waves, that is sequences of days where weather is extreme.
Keeping the information of the extreme is important to detect these days. During
winter, low highest temperatures are an evidence of the presence of a cold wave.
Reciprocally, high lowest records evidences the presence of a hot wave.

The regressors X f
t are associated to the fixed parameters, in this case calendar

variables such as day, month, etc.
In our implementation of thismethodwe choose two components: a trend, which is

a linear function of the discrete time index t = 1, 2, . . . , n, and a seasonal component
which is modeled as a superposition of three pairs of sines and cosines,

j=3∑
j=1

a j sin

(
2π t

s j

)
+ b j cos

(
2π t

s j

)
,

where the coefficients {a j , b j } j=1,2,3 are to be estimated. With respect to the model
in [13] this is a difference since in that work calendar effects are time-varying. The
second equation of the model, which describes the state transition function, is given
by

αt = αt−1 + ηt , (6.3)

that is, a multivariate random walk; the noise magnitude (the variance of ηt ) is to be
estimated.

The parameters of the model are estimated using Kalman filter theory [21]. Given
an initial state, the following states are obtained using closed-form equations that
involve the inversion of possibly large matrices. The dimension of such matrices
depends on the respective dimensions of the state space and the observation vector.
Since this is an effective computational bottleneck, we follow [10] and break the
state space into 24 separate SSMs which can be treated in parallel, providing a huge
decrease on the computation time.

Random Forests (RF)

Originally proposed in [7], a random forest is comprised of a set ofmaximal decision
trees which involve randomness in their construction two ways. First, each maximal
tree is estimated using a bootstrap sample of the data. Second, at each training step
of a tree, which involves splitting one of its nodes, the splitting decision is made
on a random subset of the feature variables. These random subsamplings help in
reducing statistical dependency between the output of each tree in the ensemble.
Finally, whereas each maximal tree may exhibit a large variance, the aggregation of
many such hopefully independent trees yields a predictor with significantly smaller
variance. This method is applied to load demand prediction in, for example, [14],
using past loads and past temperatures as predictors for the current load. Another
example is [27] where the difference between the current temperature and the one
observed some hours ago (that is, with a given lag) is used for prediction. In our
work, we adopt the latter method using a lag of 72h to take into account important
changes in the meteorological conditions.
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6.3.2 Endogenous Models

The followingmodels predict future loads based solely on past load data and calendar
information; no exogenous information is used. For these methods to work, however,
very recent load data must be readily available.

Time Series Benchmark (TSB)

Well known in econometrics, Autoregressive Moving Average (ARMA) models are
a family of stationary linear stochastic processes given by the following general
form [8],

yt =
∑
k≤t

θkεk, (6.4)

where εk is a sequence of i.i.d Gaussian variables of zero mean and variance σ 2. The
linear coefficients {θk}k are fixed parameters which are a priori unknown.

ARMAprocesses can be viewed as the output of finite response filters (FIR)where
the input is white Gaussian noise. The parameters are usually estimating using the
Box–Jenkins method [6]. First the empirical autocorrelation function is defined as
ρ̂� = γ̂�/γ̂0, where � identifies the lag and

γ̂� =
∑
t

(yt − ŷ)(yt−� − ŷ). (6.5)

As many real-life time series cannot be assumed to be stationary, the Box–Jenkins
method proposes a number of possible transformations for obtaining time series
which fall closer to that hypothesis. In our case, we first apply a discrete differen-
tiation, y′

t = yt − yt−�, with � typically 1 or 2. The differentiated series y′
t is then

modeled as an ARMA process; we call this process an integrated ARMA (ARIMA
for short) of order �. A second differentiation is then performed. The second trans-
formation is a seasonal differentiation, y′′

t = yt − y′
t−�′ , which is identical in form as

the first one but with a lag �′ corresponding to the period of a given season in the data
(e.g., hours in a day, days in a week, months in a year). This two step transforma-
tion is known as a SARIMA (Season Auto-Regressive Integrated Moving Average).
The process of identification, estimation and validation of such SARIMA model is
usually done by an expert and can be quite time consuming, especially in the case of
load demand as it typically exhibits two seasonal components. Instead, we propose a
new estimation scheme based on mimicking the empirical autocorrelation function
ρ̂� to the theoretical one, ρ�, as it is done by econometrics.

For a particular SARIMA model one can write

S(θ) =
L∑

�=0

(ρ�(θ) − ρ̂�)
2, (6.6)
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where θ is a vector of unknown parameters and L is a sufficiently large lag. The
estimator θ̂ is obtained as argminθ S(θ). In [18], a similar idea is used to estimate
autoregressive models. The above estimator can be viewed as a generalized method
of moments for time dependent observations. While the theoretical properties of the
proposed estimator are not as good as those of the maximum likelihood estimator
(MLE), its computation is significantly less demanding than the latter, which makes
it our choice of estimator within our framework.

Point predictions are obtained using the last observed values of loadt and the
last prediction errors. Prediction intervals can be obtained using either a normal
approximation or bootstrap procedures.

Kernel Wavelet Functional (KWF)

As discussed in Sect. 6.2, the shape of the load curves carries valuable information
about the context of the observed load (e.g. position of the year, type of the day,
meteorological conditions). Assuming that similar past conditions induce similar
future conditions, one can construct an easy-to-interpret predictor [28]. A modern
version of this method, which exploits the functional nature of time series curves, is
used in [1]. There, the predictor is written as

L̂oadn+1(τ ) =
n−1∑
m=1

wm,nLoadm+1(τ ), τ ∈ [0, 1]

where Loadn(τ ) is the load curve for day n at instant τ ∈ [0, 1] and the weightwm,n is
proportional to the similarity between the load curves Loadm and Loadn (more on the
similarity criterion is mentioned below). Note that the curves Loadn are not observed
directly, but rather estimated from the corresponding (discrete) hourly values, For
instance, Loadn is estimated from loadt , t = (n − 1) × 24 + j, j = 1, . . . , 24. The
preceding estimation is performed using wavelets, which also serve for comput-
ing the similarity weights wm,n in terms of the wavelet coefficients of both curves.
Non stationary patterns are treated by means of corrections applied on the wavelet
coefficients (see [2] for details).

Prediction intervals can be obtained using a bootstrap strategywhere the bootstrap
sampling is determined by {wm,n} the weight vector (see [4]).

6.3.3 Online Mixture of Experts

The general idea of mixing experts is to combine the outputs of different individual
predictors in order to produce a better overall prediction. If this mixture is properly
implemented, the mixed output is theoretically guaranteed to be at least as good
as the best of all the individual predictors [11]. This carries on to practice, where
significant improvements are consistently obtainedwith this strategy in awide variety
of settings beyond time series analysis. The idea is simple, and can be summarized
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as follows. Consider the observations up to time T , y1:T = {yt , t = 1, . . . , T }, and
a set of K individual predictors (experts). For each k = 1, . . . , K , the performance
of the kth predictor up to time T is computed in terms of some loss function, in our
case squared loss, between its output ek,1:T = {ek,t } and the observed output,

lk,T (y1:T , ek,1:T ) =
T∑
t=1

(yt − ek,t )
2.

Given lk,T , k = 1, . . . , K , the aggregated prediction at time T + 1, ŷmix
T+1, is computed

as a weighted sum of the output of all K predictors at time T + 1,

ŷmix
T+1 =

K∑
k=1

wk,T+1ek,T+1

where the weights wk,T+1 = ω(lk,T ) with ω(·) some decreasing function. In our
case we use polynomial potential aggregation rules (ML-Poly) which computes the
mixture as a weighted average of experts using polynomial weights and allowing
different learning rates on each expert.

6.4 Experiments

In this section we report on a number of experiments performed in conditions which
are close to the operational ones. The goal of these experiments is to evaluate the
performance of each of the implemented predictors, as well as that of the aggregation
strategy. We use the open source R environment [29] and the package enercast3

which was developed by the authors. This package implements the proposed indi-
vidual models, whereas the on-line mixing is done with the opera R package [17].

The performance of each model is measured through the one-day-ahead daily
prediction of load demand curves during the whole last year. That is at the end of
day J we use all the records of that day to predict the following 24 records. The only
exception is the data used as temperature predictionswhich is the effectively observed
values of day J + 1 as it is usual to estimate the model. Forecasting performance is
measured using two metrics to compare predicted against actual values. One is the
daily Mean Absolute Proportional Error (MAPE), which is given as a percentage,

MAPE(y, ŷ) = 100

24

24∑
h=1

∣∣∣∣ yh − ŷh
yh

∣∣∣∣ (6.7)

3github.com/cugliari/enercast.
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where y = (y1, . . . , y24) is the effective load, and ŷ = (ŷ1, . . . , ŷ24) is the daily
prediction. The other measure is the Root Mean Square Error (RMSE),

RMSE(y, ŷ) =
√√√√ 1

24

24∑
h=1

(yh − ŷh)2, (6.8)

which is expressed in the same units as the target variable, Megawatts per hour
(MWh). Note that this measure is more consistent with the criterion used by the
sequential aggregation strategy (square loss) for weighting the contribution of each
expert.

Tables6.1 and 6.2 show summary yearly statistics for the MAPE and RMSE
prediction performances for each of the individual methods (experts) as well as that
of the mixture model which combines all of them. To begin with HVB, an exogenous
model, comes out clearly as the worst method in all the statistics, in both tables.
Interestingly, the other purely exogenous model, the Random Forest, comes out as
the best individual expert in almost all cases, the only exceptions being the minimum
and maximum MAPE, and the minimum RMSE. We also note that the performance
of TSB,which is purely endogenous, is very close to that of SSM,which also employs
exogenous (temperature) information.

Finally, as can be clearly seen in both Tables6.1 and 6.2, the mixture strategy
significantly outperforms the rest of the models in all but one of the statistics, the
minimum, which is also arguably the less relevant one. In particular, we obtain a

Table 6.1 Summary statistics of daily MAPE (%) over year 2014. Best results are shown in blue,
while worst are shown in red

Model Min. 1st Qu. Median Mean 3rd Qu. Max.

1. HVB 2.12 4.26 5.49 5.93 6.87 30.85

2. KWF 1.83 3.40 4.30 4.61 5.31 20.17

3. TSB 0.65 2.23 3.14 4.13 5.11 22.03

4. SSM 0.58 2.29 3.42 4.12 4.98 25.84

5. RF 0.76 2.09 2.97 3.66 4.34 20.30

Mixture 0.76 1.76 2.40 3.06 3.58 17.60

Table 6.2 Summary statistics of daily RMSE (in MWh) over year 2014. Best results are shown in
blue, while worst are shown in red

Model Min. 1st Qu. Median Mean 3rd Qu. Max.

1. HVB 31.83 61.05 73.38 81.27 92.32 305.30

2. KWF 25.66 48.69 60.11 65.96 74.71 278.50

3. TSB 7.75 32.94 46.37 58.92 72.94 287.60

4. SSM 11.88 32.96 46.97 57.34 68.42 288.70

5. RF 9.87 29.41 42.32 51.36 62.82 206.30

Mixture 11.19 25.19 36.08 44.35 53.08 196.04
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Fig. 6.5 Average square loss (left) and cumulative residuals (right) for the individual experts and
the online mixture

15% reduction in RMSE w.r.t the best individual model. The following discussion
aims at providing more insight into these results.

The box plot shown in Fig. 6.4 depicts the empirical distribution of the weights
assigned to each individual expert along the 365 days of 2014. The figure shows two
clear groups among the experts. On one side, RF, TSB and SSM exhibit a similar
median weight of about 33%. On the other side, the median weight of both KWF
and HVB are sensibly smaller, barely above 10%, and yet they both peak at values
over 40%.

Figure6.5 providesmore insight into the benefits of the weightingmechanism. On
the left, we show the average squared loss by predictor in increasing order, whereas
the right plot shows the cumulative prediction error across the year for each method.
Here we can see that both endogenous models, HVB and RF, exhibit strong biases
during long periods, even though RF appears to be the best single expert among the
ones tested. The mixture model however does not exhibit such bias, which shows
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Fig. 6.6 Mean RMSE (left) and MAPE (right) for each expert and mixture (right)

its ability to temporarily shift its weight to other predictors, even if they are overall
worse, when such systematic deviations occur.

6.4.1 A Closer Look at the Results

Being a yearly summary, the performance statistics shown in Tables6.1 and 6.2 are
insufficient to characterize the appropriateness of any given individual model, as they
do not reflect the relative importance of different seasons, days (such as holidays),
or specific hours of the day, in what respects to energy generation planning. We
now focus on two of these aspects, namely, the behavior across the year (monthly
performance) and across the day (hourly performance). The first is shown in Fig. 6.6
for the individual predictors as well as for the mixture. Although the mean monthly
RMSE and MAPEs evolve differently for each expert, some common elements can
be observed. First we look at RMSE. Here the worst performances occur during
(Austral) summer (December, January and February); winter (June, July andAugust)
is generally well predicted; autumn is better predicted than spring by all the methods
except HVB. These conclusions however do not carry on to the MAPE case, that
is, when the relative error is evaluated. Here the picture is quite different. The only
similarity is winter, where again the best performance is obtained in general. The
worst season in this case appears to be autumn, peaking in May and then March (this
can be explained by the fact that May, for example, is a month with relatively low
load, thus amplifying relative errors).

The hourlyMAPE for all predictors is shown in Fig. 6.7.Note that the performance
of endogenous hour-by-hour forecast methods, which can only rely on the previous
day loads, becomes worse for larger prediction horizons; this effect is superimposed
to the particular difficulties of the load pattern itself. We note that the RF and SSM
curves are similar in shape to the mixture one. The shape of these predictors reflect
the higher difficulty of predicting the morning ramp and the afternoon plateau (see
Fig. 6.3). As expected, the performance of TSB worsens for larger horizons and yet,
it is the best predictor for the first hours of the day, surpassing the performance of
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the mixture on the first two hours of the day. The afternoon peak (between 18h00
and 20h00) is difficult for KWF and HVB, but KWF has a good performance during
midday, matching the mixture during those hours.

Figure6.8 shows the contribution of the individual experts to the global prediction
as well as the weights distribution. The time axis are the same as the one on the
left panel of Fig. 6.5. Clearly, the best three experts (RF, TSB and SSM) share the
contributions most of the time, that is, when one of the main three experts reduces
its contribution, the other two take on larger weights (cf. February, around time step
1000 where the RF contribution is relatively small and SSM and TSB take over).
However, exceptions to this behavior are of interest. Such is the case of three periods
of the year: Winter, the month of May and Spring. During these periods, HVB and
KWF have point-wise larger participation, meaning that the other three experts are
not able to follow the consumption structure during these periods. The month of
May is of particular interest because the Uruguayan weather in this period is highly
erratic and difficult to anticipate. In other terms, the additional information provided
by the temperature in the exogenous models is of less quality. The online mixing
algorithm quickly detects this phenomenon, thereby adjusting the weights in favour
of the endogenous experts during these periods.
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6.5 Discussion

Anticipation of load demand is a crucial element to help decision taking on dis-
patch. The introduction of new challenging contexts such as renewables, changes
and intensification on electronic devices usages or the increasing availability of new
data sources, pushes the domain towards the use of new automatic approaches to
produce forecast. In this work we show the construction of some models very differ-
ent in their nature. Instead of choosing the best of them to produce the final forecast,
we use a sequential prediction, that is an ensemble method adapted to time series in
order to enhance the prediction quality.

While we tried to be as close as possible to operational conditions some important
issues are to be raised. Unfortunately, forecast measurements were not available dur-
ing this work, as such information would have provided a more realistic operational
scenario in which to evaluate the different predictors. For instance, the performance
of the exogenousmodels (HVB, SSM, RF) has to be considered an optimistic estima-
tion, since predictions from these experts were obtained from the truemeasurements
of the day being predicted rather than from daily forecast, which introduces its own
(significant) errors and biases. Note however that he conclusions on what respects to
the purely endogenous experts as well as the benefits of using mixtures are expected
to hold in the presence of such information. Also, the prediction obtained in our
experiments are computed at midnight with all the data of the that day available.
However, in real conditions one would have to predict many hours in advance in
order to be able to use this information in the decision taking procedure for the
dispatch.

A natural perspective would be to add more experts on the prediction mix. One
inexpensive way to obtain this is to create specialized experts as in [16], where one
trains the individual model on one specific context (e.g. during cold and hot seasons
separately). Using the individual models presented here, one could combine them to
produce slightly different versions. For instance, models such as KWF or TSB could
be used to predict temperature curve for the next day, and then these temperature
predictions can be used as input for the exogenousmodels. Finally, the bias correction
phenomena observed in the experiments and commented in Fig. 6.5 can be exploited
at the level of each expert using some bias correction technique. Then the biased
corrected models can also be included as experts for the mixture.
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Chapter 7
A Flexible Mixed Additive-Multiplicative
Model for Load Forecasting in a Smart
Grid Setting

Eugene A. Feinberg and Jun Fei

Abstract This paper presents a mixed additive-multiplicative model for load fore-
casting that can be flexibly adapted to accommodate various forecasting needs in a
SmartGrid setting. The flexibility of themodel allows forecasting the load at different
levels: system level, transform substation level, and feeder level. It also enables us to
conduct short-term, medium and long-term load forecasting. The model decomposes
load into two additive parts. One is independent of weather but dependent on the day
of the week (d) and hour of the day (h), denoted as L0(d, h). The other is the prod-
uct of a weather-independent normal load, L1(d, h), and weather-dependent factor,
f (w). Weather information (w) includes the ambient temperature, relative humidity
and their lagged versions. This method has been evaluated on real data for system
level, transformer level and feeder level in the Northeastern part of the USA. Unlike
many other forecasting methods, this method does not suffer from the accumulation
and propagation of errors from prior hours.

Keywords Load forecasting · Additive-multiplicative model · Smart grid

7.1 Introduction

Electric load forecasting is a useful tool needed and used by most electric utilities
to make important decisions including decisions on capital expenditures, purchasing
and generation of electric power, area planning, and load switching. By the fore-
casting horizon, load forecasting can be divided into three types: short-term (a few
minutes up to a week), medium-term (a week up to a year), and long-term (over
one year) [1, 2]. Depending on the aggregation scale, load forecasting for a utility
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can be performed at different levels: at the system level for the entire utility, at the
load pocket level (aggregation of several closely located distribution substations), at
the substation/transformer level, at the feeder level, and even at the customer level.
Long-term load forecasting is important for long-term capital budgeting and planning
decisions, medium-term level load forecasting is important for forward purchasing
and adjusting the system capacity and reliability, and short-term load forecasting is
important for energy trading, cogeneration, and load switching decisions including
demand response. Customer level load forecasting is a new feature in a Smart Grid
setting, which is made possible by the availability of Advanced Meter Infrastructure
(AMI) and can be used to enhance the modeling of power system up to the customer
level.

In the literature majority of the works on short-term load forecasting can be
classified into four categories by the modeling and forecasting method used, namely
statistical, intelligent systems, neural networks, and fuzzy logic [3]. They include a
variety of methods: the so-called similar day approach [4], various regressionmodels
[5–8], time series [8–11], statistical learning [2], neural networks [12–14], expert
systems [15, 16], fuzzy logic [17–19], and Support Vector Machine (SVM) [14, 20,
21]. Combination of several of such techniques are reported to producemore accurate
forecasts [4, 9, 11, 12, 14, 15, 18]. Two methods, the end-use and econometric
approach are broadly used for medium- and long-term forecasting. In particular, a
multiplicative model was proposed in [2]. This model corresponds to expression (1)
with L0 = 0. Unlikemany studies, e.g., [8], we did not use the standardmathematical
solutions and software. Instead we have developed iterative computational methods
to dynamically estimate themodel parameters and developed the proprietary software
[22] which was used by a utility.

In this paper we present a more accurate model (1) with the additional term L0.
This models is called mixed additive-multiplicative. The iterative algorithms for
computing the model parameters and software for additive model were adjusted to
the mixed additive-multiplicative models.

The model operates with three groups of inputs: (i) time parameters that consist of
day of the week and hour during the day, (ii) weather parameters, and (iii) historical
loads. Weather parameters include the ambient temperature, relative humidity, and
their lagged values. We have designed and tested six variants of recursive algorithms
to quickly estimate the model parameters and recommend one that worked best in
our practice.

Our initial motivation for the model development was designing and coding the
planning software for a utility in Northeast of US to predict the system next-year
peak loads for local areas called load pockets [23]. Following the success of this
application, the model was adjusted to be used on the daily basis for next-day system
load forecasts described in Sect. 7.3. It was also used to predict potential overloads
for substation transformers and feeders and to model loads for large customers and
groups of customers based on the AMI readings.

The peak load forecasting software for load pockets conducts calculations once
a year typically in the fall because annual peak loads take place in summers in the
most areas of the USA. The application uses the weather and load data in a batch
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mode.The data in the batch consist of hourly loads andweather observations (ambient
temperature and relative humidity) for the summer season. In the applications dealing
with next-day forecasts, the calculations are conducted every morning also in the
batch mode with the batch consisting of the last day loads, weather data, and weather
forecasts. For next-day forecasts, the system recalculates model parameters on the
daily basis.

This paper is organized as follows. In Sect. 7.2 we give the model description
for hourly load forecasts. In Sect. 7.3 the model evaluation is presented. Section7.4
presents some applications of the model in a smart grid setting. Conclusions are
given in Sect. 7.5.

7.2 Model Description

The load is decomposed in the model into two additive parts. One depends on day of
the week (d) and hour of the day (h) only, and it is denoted as L0(d, h). The other is
the product of a weather-independent normal load, L1(d, h), and weather-dependent
factor, f (w). The mathematical form of the model is

yi = L0(di , hi ) + L1(di , hi ) f (wi ) + ei , (7.1)

where i = 1, 2, , N , and N is the total number of observations in the training dataset;
yi is the actual load;
di is the day of the week, di = 1, 2, . . . , 7;
hi is the hour of the day, hi = 0, 1, . . . , 23;
wi are weather data, which are vectors whose components include the current tem-
perature and relative humidity (observed or forecasted depending on the application),
some of their powers, and some of the similar data from the previous 72h;
ei is the random error.

Holidays are treated as weekend days. If a holiday is followed by a business day,
it is treated as Sunday and as Saturday otherwise. Similarly, the first business day
after the holiday is treated as Monday, and the last business day before a holiday is
treated as Friday.

Like for other statistical methods, we first estimate the model using the historical
weather and load information. The hourly weather information, including ambient
temperature and relative humidity, is provided by the NCDC (National Climatic Data
Center). The hourly weather forecasts are purchased from some commercial weather
forecast vendor contracted by the local utility. The hourly historical load data are
obtained from the SCADA and EMS (Energy Management System).

Note that in L0(d, h) and L1(d, h) are discrete parameters, each taking 168 values
that correspond to the 168h during a week. The weather dependent factor, f (w),
takes the form of multiple linear regression. Given k weather parameters we need to
estimate k + 1 coefficients (including the intercept). So, in total we need to estimate
337+ k parameters for model (7.1).
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To estimate the parameters, we use the least square method and minimize the total
squared residues, that is,

min
∑

i

[yi − L0(di , hi ) − L1(di , hi ) f (wi )]
2 , (7.2)

where i = 1, . . . , N , and N is the total number of observations in the training dataset.
This is an unconstrained nonlinear programming problem. Due to the exces-

sive number of parameters and the mixture of discrete and continuous parameters
in the model, traditional methods, such as trust region method, Newton–Raphson
method, quasi-Newton method, double dogleg method, conjugate gradient method,
and Levenberg–Marquardt (LM) method, are not very efficient. Instead we adopt a
recursive algorithm that estimates the parameters sequentially.

The outline of the algorithm is as follows:

Step 1 Initialize L0 and L1. Set tolerance ε;
Step 2

a. Estimate f from y, L0 and L1 using the least square method;
b. Estimate L1 from y, L0 and f ;
c. Estimate L0 from y, L1 and f ;

Step 3 Compute some measure of goodness-of-fit. If the difference between two
successive iterations is less than ε, the model is finished. Otherwise go back
to step 2a.

In step 3 the measure of goodness-of-fit typically includes Mean Absolute De-
viation (MAD), Mean Absolute Percentage Error (MAPE), and Mean Square Error
(MSE).

The above algorithm first updates f , then L1 and finally L0. We call it “ f − L1 −
L0.” If we permute the order of L0, L1 and f in the above algorithm, we get six
variants. Numerical results show that they do not differ too much but consistently
some show better performance than others. According to our calculations. The order
of “L1 − f − L0” gives the smallest model MAPE.

7.3 Computational Results

The proposed model has been evaluated on different level of loads. At the highest
level we used it to model and forecast the aggregate load served by an electric utility.
The peak load level is around 5,000MW. We also tried it on several smaller levels
including load pocket, substation and feeder levels. The actual performance changes
with the scale of the application being the most accurate for the system level. For the
system level, the hourly MAPE for a day-ahead forecast during the summer period
is around $2.35%. However, averaging the forecast with the less accurate forecast
produced by the ANN (Artificial Neural Network), reduced the MAPE to around
2%. An important feature of the described model is that it is simple to apply it and
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Fig. 7.1 Model MAPE at different iteration steps

Fig. 7.2 Model MAD at different iteration steps

the algorithm efficiently estimates the model parameters. The algorithm is simple to
implement, and it provides fast convergence to model parameter.

The data were hourly loads provided by an electric utility located in the Northeast
of US for the summer seasons (May 1 through September 30). The hourly load
values range from 1,500 to 5,000MW. Theweather data are described in the previous
section. Efficiency is illustrated in Figs. 7.1, 7.2 and 7.3, where we plot the model
MAPE, MAD and regression R-squared at different iteration steps. The algorithm
provides a quick convergence in fewer than 10 iteration steps.

Figure7.4 shows the scatter plot relating the model results and actual loads for
the system level. The final model MAPE is 1.4%.

7.4 Applications in a Smart Grid Setting

The proposed model can be applied to load at different levels: at the system level for
the entire utility, at the load pocket level (aggregation of several close substations or
transformers), at the substation/transformer level, at the feeder level, and even at the
customer level. At the customer levels, we were dealing with integrated customer
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Fig. 7.3 Regression R2 at different iteration steps

Fig. 7.4 Scatter plot between model result and actual load

loads recorded by AMIs. During the actual implementation we periodically update
the model with the most recent data, usually every 1–2 weeks in addition to daily
calculations. We simulated the real time run on the daily basis using the forecasted
weather.

At the system level the forecasting of aggregate load helps a utility make long-
term capital budgeting decisions and short-term forward purchase decisions. An
accurate forecastmay save a big amount of capital expenditure and cost of purchasing
electricity in the spot market. The system level load forecast has been pretty accurate
and the reported MAPE for 1–2 day-ahead forecast is between 2–3%. For example,
during the real time run in the summer of 2008 our forecasting software gave an
MAPE of 2.25% for the first-day forecast and 2.98% for the second-day forecast.
Another competing forecaster gave an MAPE of 2.78 and 3.96%, for day 1 and day
2, respectively. If we focus on the summer peak time, 4–6 PM during which load
forecasts are usually the least accurate and the most important, our accuracies were
2.23 and 2.79% for day 1 and day 2 while the competing forecaster reported 4.82 and
5.29%. Similar comparisons were demonstrated in other years too, which indicates
that unlike many other forecasting methods the described method does not suffer
from the accumulation and propagation of errors from prior hours.
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Load pockets refer to the aggregate of several close geographic areas [4]. An
area usually consists of a few distribution substations. Long-term load pocket load
forecasting can be used for area load planning [23]. For example, if the predicted
load for the next few years is close to or exceeds the current capacity of transformers,
the utility should consider adding new transformers or upgrading the existing ones or
diverting some load to a neighboring load pocket. The additional analysis should be
conducted at the transformer and feeder levels. The developed load pocket forecasting
software predicts the next year peak load. The software has been used in a local utility
company for many years. It is used by area planners to computeWeather Normalized
Factors and next year capital expenditure allocation.

Load forecasting at the substation/transformer level can be used to estimate the
transformer rating and protect transformers from being overloaded and overheated
[22]. Combined with the feeder level load forecasting, the load forecasting at the
substation/transformer level can also be used for load switching, feeder reconfigura-
tion, load reductions, and voltage control. Due to the large number of feeders in the
system, some advanced computing techniques such as parallel computing should be
adopted. In our application, it took about 20min to complete the calculations for 140
feeders and the MAPE of the forecast was around 6%.

In the traditional modeling of an electric power grid, the load is modelled up to
the feeder level. The power flow calculation shows the current in the feeder and
voltage at the two ends of the feeder. Nothing is known about the details below the
feeder level, for example, the current and voltage at the customer level. In the Smart
Grid setting, with the installation of Advanced Meter Infrastructure (AMI), the load
and voltage information are measured by AMIs, and it can be used to improve load
forecasting for feeders. By using loads at the customer level, it is possible to model
the electric system at the subsection/customer levels. This additional information can
be used in multiple applications. For example, it is possible to analyze the voltage
at customer levels and adjust settings at the transformers to change the voltage for
some or all customers to make it closer to the nominal voltage such as 120/240V
used in the USA. In dynamic settings, this information can be used for voltage and
reactive power control [24].

We applied the model to AMI readings. This was done for cumulative customer
loads for feeder segments and for large customer loads in order to simulate segment
and customer loads under various weather conditions. The purpose was to provide
recommendations to improve customer load profiles and load qualities (primarily
load factor and voltage profiles). The accuracy of forecasts for feeder segments
and for large customers was not as good as at the system and load pocket levels, but
accurate enough for the purpose of providing recommendations to improve customer
load profiles and load quality by adjusting settings of transformer taps and cap banks.
The load models were used to simulate customer loads under historical weather
conditions. This was done because actual AMI weather data were available just for
a few seasons. The available AMI data were used to build models, and the models
were run on the historical weather data for 30 years and more.
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7.5 Discussions and Conclusions

This paper presents a mixed additive-multiplicative model for short-term load fore-
casting and proposes an efficient algorithm for estimating themodel parameters. This
model has been used to develop load forecasting software that had been evaluated on
real data for system level, transformer level and feeder level in the Northeastern part
of the USA and used by a utility [22, 23]. Unlike many other forecasting methods,
this method does not suffer from the accumulation and propagation of errors from
prior hours.

This paper then discusses applications of the proposed model in a Smart Grid set-
ting. The model is flexible to be applied to load at different levels, from the system
level to the feeder segments and even customer level. At different levels, the forecasts
can be used to achieve different objectives such as capital budgeting, forward pur-
chase, transformer rating, load switching, feeder reconfiguration, load reductions,
voltage control, and customer power quality monitoring and improvement.
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Chapter 8
A Generic Method for Density Forecasts
Recalibration

Jérôme Collet and Michael Richard

Abstract We address the calibration constraint of probability forecasting. We
propose a generic method for recalibration, which allows us to enforce this con-
straint. It remains to be known the impact on forecast quality, measured by predictive
distributions sharpness, or specific scores. We show that the impact on the Continu-
ous Ranked Probability Score (CRPS) is weak under some hypotheses and that it is
positive under more restrictive ones. We used this method on temperature ensemble
forecasts and compared the quality of the recalibrated forecasts with that of the raw
ensemble and of a more specific method, that is Ensemble Model Output Statistics
(EMOS). Better results are shown with our recalibration rather than with EMOS in
this case study.

Keywords Density forecasting · Rosenblatt transform · PIT series · Calibration ·
Bias correction

8.1 Introduction

Due to the increasing need for risk management, forecasting is shifting from point
forecasts to density forecasts. Density forecast is an estimate of the conditional
probability distribution. Thus, it provides a complete estimate of uncertainty, in
contrast to point forecast, which is not concerned with uncertainty.

Two alternative ways to evaluate density forecast exist.

• The first one was proposed by T. Gneiting: Probabilistic forecasting aims to max-
imize the sharpness of the predictive distributions, subject to calibration, on the
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basis of the available information set. Calibration means predictive distributions
are consistent with observations, it is more formally defined in [6]; sharpness
refers to the concentration of the density forecast, and even in the survey paper of
T. Gneiting, it is not formally defined. An important feature of this framework is
that we face a multi-objective problem, which is difficult.

• The second way is the use of a scoring rule, which assesses simultaneously cali-
bration and sharpness. Concerning the well-known CRPS scoring rule, Hersbach
[10] showed that it can be decomposed into three parts: reliability (or calibration)
part, resolution (or sharpness) part, and uncertainty, which measures the intrinsic
difficulty of the forecast. Bröcker [2] generalized this result to any proper score,
that is any score which is minimal if the forecasted probability distribution is the
true one (w.r.t the available information). Recently, Wilks [14] proposed to add an
extra miscalibration penalty, in order to enforce calibration in ensemble postpro-
cessing. Nevertheless, even if the score we use mixes calibration and sharpness,
the framework is essentially different from the first one.

Besides these two alternative ways of evaluation, probabilistic forecast is mainly
used in two different contexts: finance and economics, and weather forecast. In
finance and economics, calibration is the unique objective, so a recent survey on
”Predictive density evaluation” [3] is in fact entirely devoted to the validation of
the calibration, without any hint of sharpness. In weather forecast, both ways of
evaluation are used. For a quick viewon forecastingmethods in atmospheric sciences,
one can look at [13]. In the works of T. Gneiting [7, 8], and in the seminal work of
Krzysztofowicz [11], the goal is to improve sharpness, while preserving calibration.
Nevertheless, one can state that there is no formal test of calibration in theseworks. In
[4], the only measure used is the CRPS, and [9] addresses exclusively the calibration
issue.

Here, we are interested in the first method of evaluation: calibration constraint
and sharpness objective. Indeed, risk management involves many stakeholders and
thus, calibration is a key feature of trust between stakeholders since it impacts all
of them. For example, EDF also faces a regulatory constraint: the French technical
system operator imposes that the probability of employing exceptional means (e.g.,
load shedding) to meet the demand for electricity must be lower than 1% for each
week (RTE, 2004), so EDF has to prove the calibration of its forecasts. Even inside
EDF, many different business units may be involved in the management of a given
risk, so calibration is compulsory to obtain confidence between risk management
stakeholders.

The consequence is that we face a multi-criterion problem, the goal of our con-
tribution is to allow us to enforce the calibration constraint, in a generic way.
Furthermore, we show that, even if the evaluation framework is the proper score
use, recalibrating leads in many cases to an improvement, and to a very limited loss
in other cases.

The remainder of this chapter will be organized as follows. The next section
explains the principle of the method. The third part provides some theoretical results
while the fourth is devoted to a case study.
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8.2 Principle of the Method

The Probability Integral Transform (PIT, Rosenblatt, 1952) is usually a measure of
the calibration of density forecasts. Indeed, if Y ∼ F and is continuous, the random
variable F(Y ) satisfies F(Y ) ∼ U [0, 1]. Thus, we can find in the literature many
tests based on this transformation to evaluate the correct specification of a density
forecast. In our case, it is used firstly to recalibrate the forecasts.

Let’s look at the following case: let E be the set of all possible states of the world;
for each forecasting time j the forecaster knows the current state of the world e( j),
and uses it to forecast. For example, in the case of a statistical regression model, E is
the set of the possible values of the regressors, in the case of the post-processing of a
weather forecastingmodel, E is the ensemble. The conditional estimated distribution
function is Ge, whereas the true one is Fe. So the PIT series is:

PIT ≡ (Ge( j)(Y j )
)
j .

• Assumption A.2.1: Ge is invertible ∀ e ∈ E .

If E is discrete, we assume that the frequency of appearance of each state of the
world e is pe. Then, under the AssumptionA.2.1, the c.d.f of the PIT is:

C(y) ≡ Pr(G(Y) ≤ y) ≡
∑

e

pe Fe ◦ G−1
e (y).

Note that all the results obtained under the hypothesis that E is discrete are still valid
in continuous case, even if we only treat the discrete case in this article.

• Assumption A.2.2: F is invertible.

We propose to use C to recalibrate the forecasts. For each quantile τ ∈ [0, 1], we
use the original model to forecast the quantile τC , such that Pr(G(Y) ≤ τc) = τ . We
remark that this implies τc = C−1(τ ).

This correction makes sense since under the AssumptionsA.2.1 and A.2.2:

Pr(C ◦ G(Y) ≤ y) = Pr(G(Y) ≤ C−1(y))

= C ◦ C−1(y)

= y,

which means that the recalibrated forecasts are uniformly distributed on the interval
[0,1].

Note that thismethod is close to the quantile-quantile correction as in [12] but here,
we are concerned by PIT recalibration, which allows us to consider the conditional
case.



150 J. Collet and M. Richard

8.3 Impact on Global Score

If we evaluate our method on the basis of calibration, it ensures this constraint is
enforced. But it is important to know if our method is still useful even if one of
the probability forecasting users prefers to use scores, for example the Continuous
Ranked Probability Score (CRPS).

The CRPS:

CRPS(G, x) =
∫ +∞

−∞
(G(y) − 1{x ≤ y})2 dy ,

with G a function and x the observation, is used to evaluate the whole distribution,
since it is minimized by the true c.d.f of X .

However, since we have:

CRPS(G, x) = 2
∫ 1

0
Lτ (x,G

−1(τ ))dτ , (8.1)

as shown in [1], with Lτ the Pinball-Loss function:

Lτ (x, y) = τ(x − y)1{x ≥ y} + (y − x)(1 − τ)1{x < y} ,

with y the forecast, x the observation and τ ∈ [0, 1] a quantile level, and that Lτ is
easier to work with, we use this scoring rule to obtain results on CRPS.

Lτ is used to evaluate quantile forecasts. Indeed, it is a proper scoring for the
quantile of level τ , since its expectation is minimized by the true quantile of the
distribution of X .

To begin with, we will prove that under some hypotheses, our correction improves
systematically the quality of the forecasts in an infinite sample. Then we will show
that under less restrictive hypotheses, our correction deteriorates only slightly—in
the worst case—the quality of the forecasts in amore realistic case, e.g. finite sample.

8.3.1 Impact on Score: Conditions for Improvement

To assess conditions for improvements, we need to consider:

EY [ Lτ − Lτc ] ≡ EY,e[ Lτ (Y,G−1
e (τ )) ] − EY,e[ Lτ (Y,G−1

e (τc)) ].

Here, under the AssumptionA.2.1, G−1
e (τ ) corresponds to the estimated conditional

quantile of level τ ∈ [0, 1] andG−1
e (τc) to the corrected conditional quantile. Denote:

ηe ≡ Ge − Fe. We make the following assumptions which ensure small errors of
specification and regularity conditions on the estimated c.d.f Ge, the true one Fe and
their derivatives ge and fe:
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• Assumption A.3.1.1: Ge are C3 ∀ e ∈ E .
• Assumption A.3.1.2: Fe are C3 and invertible ∀ e ∈ E .

• Assumption A.3.1.3: ηe, fe and their derivatives are bounded ∀ e ∈ E by a con-
stant which doesn’t depend on e.

• Assumption A.3.1.4: ∀ τ ∈ [0, 1] , ∀ e ∈ E , ηe, its first, second and third deriva-
tives are finite in F−1

e (τ ),

Using functional derivatives, directional derivatives and the implicit function theorem
(proof in Appendix) we can rewrite (adding the AssumptionA.2.1):

EY [ Lτ − Lτc ] ∼
(
∑

e

peηe(F−1
e (τ ))

fe(F
−1
e (τ ))

)(
∑

e

peηe(F
−1
e (τ ))

)

−
(
∑

e

pe
2 fe(F

−1
e (τ ))

)(
∑

e

peηe(F
−1
e (τ ))

)2

as max ηe → 0, (8.2)

with pe the frequency of appearance of the state e.
This result allows us to find conditions for improvement of the expectation of the

Pinball-Loss score, under one of the following alternative additional conditions.

• Assumption A.3.1.5: η or f −1 is a constant, or maxe(•)/mine(•) < 3 + 2
√
2

for both ηe and f −1
e , ∀ e ∈ E ,

• Assumption A.3.1.6: the correlation between η and f −1, σ f −1 or ση is null. Here
the correlation is used as a descriptive statistics notation, even if the series η

and f −1 are deterministic. The null correlation means that the difference between
the true probability distribution function and the model have the same magnitude
in low and in high density regions.

Under the AssumptionA.3.1.5 or A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E
∀ y ∈ R; |ηe(y)| ≤ ν, we show that (proof in Appendix):

0 ≤ EY [ Lτ − Lτc ] and (8.3)

0 ≤ EY [CRPSG,C◦G ] , (8.4)

with EY [CRPSG,C◦G ] ≡ EY [CRPS(G,Y) − CRPS(C ◦ G,Y) ]. In other words,
with those restrictions, our recalibration systematically improves the quality of the
forecasts. Indeed, remember that the expectation of the Pinball-Loss score is mini-
mized by the true quantile of the distribution of Y and negatively oriented. Thus, the
lower the expectation of the Pinball-Loss score, the better.
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8.3.2 Impact on Score: Bounds on Degradation

In reality, we cannot obtain the corrected probability level τc ∈ [0, 1], and we need
to estimate it. If we want to upper bound the score change, we can study the more
realistic case of

EY [L τ̂c − Lτ ] ≡ E

⎡

⎣ 1

n

n∑

j=1

Lτ (y j ,G
−1
j (̂τc )) − Lτ (y j ,G

−1
j (τ ))

⎤

⎦ , (8.5)

with τ , τ̂c ∈ [0, 1]. In our case study, τ̂c is obtained empirically, on the basis of the
available PIT values. Thus, we have a consistent estimator of τc and one can rewrite
(8.5) such as EY [ Lτ (Y,G−1(Qτ )) ] − EY [ Lτ (Y,G−1(τ )) ], with Qτ a random vari-
able converging in distribution to a Normal distribution with mean τc and a variance
decreasing at the rate 1

n .
In such a case, it is still possible to obtain bounds concerning the error induced

by our correction. We make the following assumptions.

• Assumption A.3.2.1: Fe and Ge are C2 ∀ e ∈ E .
• Assumption A.3.2.2: ∀ y ∈ R, ∀ e ∈ E , |Fe(y) − Ge(y)| ≤ ε, with ε ∈ [0, 1].
• Assumption A.3.2.3: the derivatives of Ge are lower bounded ∀ e ∈ E , ∀ τ ∈

[0, 1] by 1/ξ , on the intervals [G−1
e (0 ∨ (τ − ε)),G−1

e (1 ∧ (τ + ε))] , with ξ ∈
]0,+∞[.

• AssumptionA.3.2.4:∀ e ∈ E, ∀ τ ∈ [0, 1], fe(G−1
e (τc)) ≤ β,withβ ∈ ]0,+∞[

and fe the derivatives of Fe.
• Assumption A.3.2.5: fe are continuous over the interval [−∞,G−1

e (τc)] ∀ e ∈ E
and their derivatives are bounded, i.e ∀y ∈ R, ∀ e ∈ E, | f ′

e(y)| ≤ M , with M ∈
]0,+∞[ and fe the derivative of Fe.

• Assumption A.3.2.6: the derivatives of ge are bounded, i.e ∀y ∈ R, ∀ e ∈ E,

|g′
e(y)| ≤ α, with α ∈ ]0,+∞[ and ge the derivative of Ge.

Under the AssumptionsA.2.1, A.3.2.1–A.3.2.6, we prove (proof in Appendix):

∣∣EY [L τ̂c − Lτ ] ∣∣ ≤ 2 ε2 ξ + C λ

n
and (8.6)

∣∣EY [CRPSG,C◦G ]∣∣ ≤ 2

(
2 ε2 ξ + C λ

n

)
(8.7)

with C = (1−τ)αξ 3

2 + Cint + Cabs , Cint = ξ 2β

2

[
1 + αξ 2 + α2ξ 4

4

]
,

Cabs = M ξ 3

6

[
1 + 3ξ 3α

2 + 3ξ 3α2

4 + ξ 3α3

8

]
and λ

n , the variance of Qτ .
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This inequality shows that our recalibration deteriorates only slightly the quality
of the forecasts in the worst case. Obviously, it also shows that our method improves
only slightly the quality, but remember that our goal is to enforce the calibration
constraint, which is achieved.

8.4 Case Study

We use our method on ensemble forecasts data set from the European Centre for
Medium-Range Weather Forecasts (ECMWF). One can see in [5] that the statistical
post-processing of themedium range ECMWFensemble forecast has been addressed
many times. The extended range (32 days instead of 10 days) has been addressed
in some studies, but with the same methods and tools. We will show here that our
recalibration method, despite its generic nature, is competitive with a standard post-
processing method. We dispose of temperature forecasts in a 3-dimensional array.
The first one represents the date of forecasts delivery. The forecasts were made every
Monday and Thursday from 11/02/13 to 02/02/17. Since 3 observations are missing,
we have 413 dates of forecasts delivery. The second dimension is the number of the
scenario in the ensemble member, and we have 51 scenarios. The third dimension
is the forecast horizon. Since we have 32 days sampled with a forecast every 3h, it
produces 256 horizons.

We study the calibration and compare the CRPS expectation using directly the
ensemble forecast, the so-called Ensemble Model Output Statistics (EMOS) method
and our recalibration method with a Cauchy Kernel dressing for the ensembles.

We choose a Cauchy Kernel in order to address problems with the bounds of the
ensembles. Indeed, a lot of observations were out of the bounds of the ensemble,
which produces a lot of PIT with value 0 or 1. Thus, to avoid this problem, we need
to use a Kernel with heavy tail.

During the last 12 years, the ECMWF has changed its models 27 times, which
means a change every 162 days on average. Thus, it is important to use a train sample
significantly smaller than 162 days.However, it is also important to dispose of enough
observations to obtain a consistant estimator of τc. Our method obtains good results
with 30 days used for the recalibration but the algorithm to minimize in order to find
the parameters of the EMOS in the R package EnsembleMOS doesn’t converge if
we use less than 60 days (at least with our data set). Thus, we chose to use 60 days
for the recalibration.

To recalibrate the forecasts for a particular forecasting day and a particular horizon
(remember that we have 256 horizons), we use the forecasts made for the same
horizon, over the 60 previous dates of forecast delivery for the twomethods.However,
with our method, we use a linear interpolation based on the PIT series formed by
these 60 previous days to recalibrate the forecasts. The linear interpolation is also
used to calculate the different quantile levels when we are not working with EMOS
(in that case, for the recalibration or to calculate the quantile, we use the Normale
distribution with the fitted parameters). Note that the hypotheses concerning only
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Table 8.1 Success rate to 5% K–S test

Raw ensemble EMOS Our method

Success rate in % 14 0.39 96

We have calculated the PIT series for each horizon (256), and use 5% K–S test for each of them.
The success rate is the percentage of horizons passing the test
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Fig. 8.1 Comparison of EMOS and our method CRPS expectation with that of raw ensemble. The
empty line corresponds to our method and the dashed one to the EMOS

Ge are verified ∀ e ∈ E . Besides, even if we cannot verify the other hypotheses, we
show expected results.

Let’s start with the calibration property:
As expected, we can see in Table8.1 that our method allows us the test of validity

to be passedwhile the use of the raw ensemble fails. The EMOS also failed to pass the
test. Clearly, our method is useful to ensure the calibration property. But how about
the quality of the density forecast? In order to evaluate the impact of our correction
on the forecast quality, we are interested in the CRPS expectation.

We can see in Fig. 8.1 that EMOS as well as our method are more efficient than the
raw ensemble for little horizons. However, the EMOS deteriorates clearly the quality
of the forecasts when the horizon grows, contrarily to our method which deteriorates
only slightly the quality of the forecasts, when it is the case.

Thus, this study highlights perfectly the usefulness of our method, which is very
simple to use. Indeed, it shows that it allows us to ensure the validity constraint, with
a limited negative impact on the quality.

Acknowledgements This research was supported by the ANR project FOREWER (ANR-14-
CE05-0028).
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8.5 Appendix

Here are gathered all the proofs concerning the results presented in the chapter. The
first section is concerned by proofs of results in an infinite sample and the second by
result in a finite sample.

Lemma 8.1

EY [ Lτ − Lτc ] =
∑

e

pe

∫ G−1
e (τ )

G−1
e (τc)

(Fe(y) − τ)dy ,

with τ ,τc ∈ [0, 1] and pe the frequency of appearance of the state e. Under the
AssumptionA.2.1, we prove Lemma8.1.

Proof We have:

EY [ Lτ − Lτc ] =
∑

e

pe
(
EY [ Lτ (Y,G−1

e (τ )) ] − EY [ Lτ (Y,G−1
e (τc) ]) . (8.8)

First, we only focus on a particular e. Thus, we are interested in:

EY [ Lτ (Y,G−1
e (τ )) ] − EY [ Lτ (Y,G−1

e (τc) ] ≡ EY,e[ Lτ,τc ].

For ease of notation and comprehension, we suppress e in the notation since there is
no confusion. Moreover, we suppose, for ease of notation again (and since we obtain
the same result if we inverse the inequality) that G−1(τ ) ≤ G−1(τc). So, we have:

EY [ Lτ,τc ] =
∫ +∞

−∞

( [y − G−1(τ )] τ + [G−1(τ ) − y] 1{y≤G−1(τ )}
)
fY (y) dy

−
∫ +∞

−∞

( [y − G−1(τc)] τ + [G−1(τc) − y] 1{y≤G−1(τc)}
)
fY (y) dy

= [G−1(τc) − G−1(τ )] τ + [G−1(τ ) − G−1(τc)] F ◦ G−1(τ )

− G−1(τc) [ F ◦ G−1(τc) − F ◦ G−1(τ ) ] +
∫ G−1(τc)

y=G−1(τ )

y
︸︷︷︸

v

fY (y)
︸ ︷︷ ︸

u′

dy .

Using integral by parts, we have:

EY [ Lτ,τc ] = [G−1(τc) − G−1(τ )] τ +
∫ G−1(τ )

y=G−1(τc)

F(y) dy

=
∫ G−1(τ )

y=G−1(τc)

[ F(y) − τ ] dy .

Replacing it in (8.8) finishes the demonstration. �
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8.5.1 Impact on Score: Conditions for Improvement

In this section, the reader can find the proofs of results mentioned in Sect. 8.3.1 of the
chapter. We first demonstrate how to approximate the difference of Lτ expectation
before showing that under some hypotheses, our correction improves systematically
the quality of the forecasts.

8.5.1.1 Rewriting the Difference of Lτ Expectation

Under the AssumptionsA.2.1, A.3.1.1–A.3.1.4 and using functional derivatives and
the implicit function theorem, we prove (8.2).

Proof Remember: Let H be a functional, h a function, α a scalar and δ an arbitrary
function.

We can write the expression of the functional evaluated at f + δα as follow:

H [h + δ α] = H [h] + dH [h + δ α]
dα

|α=0 α + 1

2

d2H [h + δ α]
dα2 |α=0 α2 + · · · + Rem(α) ,

with Rem(α) the remainder. Denote:

ΔPL[h] =
∑

e

pe

∫ h−1
e (τ )

h−1
e (τc)

(Fe(y) − τ)dy

=
∑

e

peΔPLe[he] .

For ease of notation, denote ΔPLe[Fe + δeα] ≡ ΔPLF,δ,e. Choosing H = ΔPLe,
h = Fe and ηe = αδe (even ifwe useαδe in the development in order to use functional
derivatives, directional derivatives and the implicit function theorem), we have:

ΔPLF,δ,e ∼ ΔPLe[Fe] + dΔPLF,δ,e

dα
|α=0 α + 1

2

d2ΔPLF,δ,e

dα2
|α=0 α2 + Reme(α)

=
[
∂ΔPLF,δ,e

∂α
|α=0 , τc=τ + ∂ΔPLF,δ,e

∂τc
|α=0 , τc=τ

dτc
dα

]
α

+
[
∂2ΔPLF,δ,e

∂α2
|α=0 , τc=τ + 2

∂2ΔPLF,δ,e

∂α∂τc
|α=0 , τc=τ

dτc
dα

]
α2

2

+
[

∂2ΔPLF,δ,e

∂τ 2
c

|α=0 , τc=τ

(
dτc
dα

)2

+ ∂ΔPLF,δ,e

∂τc
|α=0 , τc=τ

d2τc
dα2

]
α2

2

+ Reme(α) .
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To calculate dτc
dα , we will use the equation which link τc and α:

∑

e

peFe ◦ (Fe + δeα)−1(τc) = τ.

Using the implicit function theorem, we find:

dτc
dα

=
∑

e

peδe ◦ F−1
e (τ )

Now, we need to calculate partial derivatives:

∂ΔPLF,δ,e

∂α
|α=0 , τc=τ =

∂
(∫ (Fe+δeα)−1(τ )

(Fe+δeα)−1(τc)
(Fe(y) − τ)dy

)

∂α
|α=0 , τc=τ = 0 ;

∂ΔPLF,δ,e

∂τc
|α=0 , τc=τ = 0 ; ∂2ΔPLF,δ,e

∂τ 2
c

|α=0 , τc=τ = − 1

fe ◦ F−1
e (τ )

;

∂2ΔPLF,δ,e

∂α2
|α=0 , τc=τ = 0 ; ∂2ΔPLF,δ,e

∂α∂τc
|α=0 , τc=τ = δe ◦ F−1

e (τ )

fe ◦ F−1
e (τ )

.

Thus, we have:

ΔPLe[Fe + δeα] ∼
[(

δe ◦ F−1
e (τ )

fe ◦ F−1
e (τ )

)∑

e

peδe ◦ F−1
e (τ )

]

α2

−
[
(
∑

e peδe ◦ F−1
e (τ ))2

2 fe ◦ F−1
e (τ )

]
α2 + Reme(α) ,

and hence:

ΔPL[F + δα] ∼
(
∑

e

peδe(F−1
e (τ ))

fe(F
−1
e (τ ))

)(
∑

e

peδe(F
−1
e (τ ))

)

× α2

−
(
∑

e

pe
2 fe(F

−1
e (τ ))

)(
∑

e

peδe(F
−1
e (τ ))

)2

× α2

+
∑

e

peReme(α).

Now, let’s focus on the remainders. Following the Taylor–Lagrange inequality,

if M such that
∣
∣∣ d

3ΔPLF,δ,e

dα3

∣
∣∣ ≤ M exists, we have |Reme(α) | ≤ M |α3|

3! . Let’ s find

conditions for the existence of M . The third derivative is:
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d3ΔPLF,δ,e

dα3
= ∂ΔPLF,δ,e

∂τc

d3τc
dα3

+ 3
∂2ΔPLF,δ,e

∂τc∂α

d2τc
dα2

+ 3
∂2ΔPLF,δ,e

∂τ 2
c

d2τc
dα2

dτc
dα

+ ∂3ΔPLF,δ,e

∂α3
+ 3

∂3ΔPLF,δ,e

∂τc∂α2

dτc
dα

+ 3
∂3ΔPLF,δ,e

∂τ 2
c ∂α

(
dτc
dα

)2

+ ∂3ΔPLF,δ,e

∂τ 3
c

(
dτc
dα

)3

.

Let’s calculate the partial derivatives of order 3:

∂3ΔPLF,δ,e

∂α3
|α=0 , τc=τ = 0 ; ∂3ΔPLF,δ,e

∂τ 3
c

|α=0 , τc=τ = 2
f

′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )

;
∂3ΔPLF,δ,e

∂τ 2
c ∂α

|α=0 , τc=τ = −2
f

′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )3

(δe ◦ F−1
e (τ )) − 2

δ
′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )2

;
∂3ΔPLF,δ,e

∂τc∂α2
|α=0 , τc=τ = f

′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )3

(
δe ◦ F−1

e (τ )
)2

− 2
δ

′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )2

(
δe ◦ F−1

e (τ )
)
.

Moreover, we have:

d2τc

dα2
=
∑

e

pe

(
2δ

′
e ◦ F−1

e (τ ) − f
′
e ◦ F−1

e (τ )

fe ◦ F−1
e (τ )

)

δe ◦ F−1
e (τ ).

Sinceηe, its first, second and third derivatives are finite in F−1
e (τ ), it is also the case

for δe and the partial derivatives are finite. Furthermore, fe, δe and their derivatives are
bounded (since ηe and their derivatives are bounded), which implies that the second
derivatives of ΔPLe[Fe + δeα] are also bounded. Thus, under these conditions, M
exists. Then, we can write d3ΔPLF,δ,e

dα3 = M1δ
3
e and hence |Reme(α)| ≤ |M1||αδe |3

3! which
implies that lim Reme(α)

(αδe)2
= 0, αδe → 0, which shows that Reme(α) is negligible

compared to d2ΔPLF,δ,e

dα2 .
Moreover, since ∀ e ∈ E the functions Fe are C3 and the functions fe and their

derivatives are bounded by a constant which doesn’t depend on e, ∀ e ∈ E , the
development is valid for all directions and thus, since ηe = Ge − Fe, we have:

EY [ Lτ − Lτc ] ∼
(
∑

e

peηe(F−1
e (τ ))

fe(F
−1
e (τ ))

)(
∑

e

peηe(F
−1
e (τ ))

)

−
(
∑

e

pe
2 fe(F

−1
e (τ ))

)(
∑

e

peηe(F
−1
e (τ ))

)2

as max ηe → 0.
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To finish the demonstration, remark that Lemma8.1 proves that:

ΔPL[G] = EY [ Lτ − Lτc ]. �

8.5.1.2 Systematic Improvement of the Quality

Under the AssumptionA.3.1.5 or A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E
∀ y ∈ R; |ηe(y)| ≤ ν, we show (8.3) and (8.4):

Proof Prove (8.3) is equivalent to show that ΔPL[G] is positive, and if we rewrite:

ΔPL[G] ∼ (2E[ f −1η] − E[ f −1]E[η])E[η] ,

it is clear that the AssumptionA.3.1.6 ensures the positivity of ΔPL[G].
However, we need more argumentation to understand the complete utility of the

AssumptionA.3.1.5. Let’s look at one of the two worst cases: only two states of the
world, the correlation coefficient ρ = −1, η > 0 (the other case is when ρ = 1 and
η < 0) and at each bound of the support of δ and f −1, there is half of the probability
mass.We also consider that the ratios betweenmax andmin of the supports are equal.
If we define maxe = M and mine = M

r , one has the following equation:

1

2
= 2(r2 + 1)

(r + 1)2
− 1.

Solving this equation in r produces the expected result concerning the ratio between
max and min values of η and f −1.

Now, let’s prove (8.4). According to (8.1), we have:

EY [CRPSG,C◦G ] = 2
∫ +∞
−∞

(∫ 1

0
Lτ (y,G−1(τ )) − Lτ (y,G−1 ◦ C−1(τ ))dτ

)

fY (y)dy.

We can rewrite:

EY [CRPSG,C◦G ] = 2
∫ +∞

−∞

∫ 1

0
Lτ (y,G

−1(τ )) fY (y) dτ dy

− 2
∫ +∞

−∞

∫ 1

0
Lτ (y,G

−1 ◦ C−1(τ )) fY (y) d τdy ,

and using the Fubini–Tonelli theorem, one obtains:
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EY [CRPSG,C◦G ] = 2
∫ 1

0
EY [ Lτ − Lτc ]dτ

≥ 0. (8.9)

�

8.5.2 Impact on Score: Bounds on Degradation

Under the AssumptionsA.2.1, A.3.2.1–A.3.2.6 we prove (8.6) and (8.7).

Proof adding and substracting EY [ Lτ (Y,G−1(τc)) ] to EY [L τ̂c − Lτ ], we obtain:

EY [L τ̂c − Lτ ] = EY [ Lτ (Y,G−1(Qτ )) ] − EY [ Lτ (Y,G−1(τc)) ]
+ EY [ Lτ (Y,G−1(τc)) ] − EY [ Lτ (Y,G−1(τ )) ] ,

and finally:

EY [L τ̂c − Lτ ] = EY,e[ Lτ (Y,G−1
e (Qτ )) ] − EY,e[ Lτ (Y,G−1

e (τc)) ] − EY [ Lτ − Lτc ].

To begin with, we treat the third term on the right side. We have:

EY,e[ Lτ,τc ] =
∫ G−1

e (τ )

y=G−1
e (τc)

[ Fe(y) − τ ] dy .

Using the change of variable y = G−1
e (z) and taking the absolute value, we find:

∣∣EY,e[ Lτ,τc ]∣∣ =
∣∣∣∣

∫ τ

z=τc

(Fe ◦ G−1
e (z) − τ)

1

ge(G
−1
e (z))

dz

∣∣∣∣ .

Now, one needs to distinguish two cases.
If τ > τc, one has:

∣∣EY,e[ Lτ,τc ] ∣∣ =
∫ τ

z=τc

∣∣∣
∣ (Fe ◦ G−1

e (z) − τ)
1

ge(G
−1
e (z))

∣∣∣
∣ dz

≤
∫ τ

z=τc

∣
∣ (Fe ◦ G−1

e (z) − τ)
∣
∣ ξ dz .

Since | Fe(z) − Ge(z) | ≤ ε, ∀z ∈ R, ∀e ∈ E , one obtains | Fe ◦ G−1
e (z) − z | ≤ ε,

∀z ∈ [0, 1], ∀e ∈ E and then:
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• if z = τ , one has
∣∣ Fe ◦ G−1

e (τ ) − τ
∣∣ ≤ ε,

• if z = τc,
∣∣ Fe ◦ G−1

e (τc) − τ)
∣∣ = ∣∣ Fe ◦ G−1

e (τc) − τc + τc − τ
∣∣.

Moreover, one has:

| τc − τ | =
∣∣∣∣∣

∑

e

pe
(
τc − Fe ◦ G−1

e (τc)
)
∣∣∣∣∣

≤
∑

e

pe
∣∣ Fe ◦ G−1

e (τc) − τc
∣∣

≤ ε ,

and finally:

∣∣ Fe ◦ G−1
e (τc − τ)

∣∣ ≤ ∣∣ Fe ◦ G−1
e (τc) − τc

∣∣+ | τc − τ |
≤ 2 ε .

One deduces, when τ > τc:

∣
∣EY,e[ Lτ,τc ] ∣∣ ≤ 2 ( τ − τc ) ε ξ.

When τ < τc, one obtains:

∣∣EY,e[ Lτ,τc ] ∣∣ ≤
∫ τc

z=τ

∣∣ (Fe ◦ G−1
e (z) − τ)

∣∣ ξ dz ,

and using the same arguments as previously:

∣∣EY,e[ Lτ,τc ] ∣∣ ≤ 2 ( τc − τ ) ε ξ.

Hence, one concludes that:

∣∣EY,e[ Lτ,τc ] ∣∣ ≤ 2 | τ − τc | ε ξ.

To finish, replacing EY,e[ Lτ,τc ] in (8.8), we have:
∣∣EY [ Lτ − Lτc ] ∣∣ ≤ 2 ε2 ξ.

Now let’s focus on the remainder on the right side. First, we only focus on a
particular e. Thus, we are interested in:

EY [ Lτ (Y,G−1
e (Qτ )) ] − EY [ Lτ (Y,G−1

e (τc)) ] ≡ EY,e[L τ̂c − Lτc ].

For ease of notation and comprehension, we suppress e in the notation since there
is no confusion. So, we have:
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EY [L τ̂c − Lτc ] =
(
1

2
− τ

)
EY
[
G−1(Qτ ) − G−1(τc)

]

+ 1

2
EY
[ |Y − G−1(Qτ )| − |Y − G−1(τc)|

]
.

We find:

∣
∣EY [L τ̂c − Lτc ] ∣∣ ≤

∣
∣
∣
∣
1

2
EY
[
|Y − G−1(Qτ )| − |Y − G−1(τc)| − G−1(Qτ ) + G−1(τc)

]∣∣
∣
∣

+ (1 − τ)

∣
∣
∣EY

[
G−1(Qτ ) − G−1(τc)

] ∣∣
∣ .

Let’s focus on the second term on the right side. Using a Taylor series approxi-
mation around τc ∈ [0, 1] and the Taylor–Lagrange formula for the remainder, one
has:

G−1(Qτ ) = G−1(τc) + 1

g(G−1(τc))
(Qτ − τc) + g

′
(γ )

g(γ )3

(Qτ − τc)
2

2
,

with γ = τc + (Qτ − τc) θ , and 0 < θ < 1.
And so

(1 − τ)
∣∣EY

[
G−1(Qτ ) − G−1(τc)

] ∣∣ ≤ (1 − τ) α ξ 3

2

λ

n
.

Now, one can study the first term on the right side. Some useful remarks before
the next: one can easily see that the study of such a function can be restricted to a
study on the interval Iy :=] − ∞,G−1(τc)], since we can find results on the interval
[G−1(τc),∞[ using the same arguments.

Let’s define G−1(Qτ ) ≡ Zτ , G−1
τc

≡ G−1(τc) and f
G−1

τc
Y ≡ fY (G−1(τc)), for ease

of notation.
Thus, we are interested in calculating:

1

2

∫ G−1
τc

y=−∞
fY (y) (EZτ

[ |G−1
τc

− Zτ | + |Zτ − y| ] − G−1
τc

+ y)
︸ ︷︷ ︸

=EZτ [ |Zτ −y|−Zτ ]+y

dy .

(8.10)

However, the function studied in the integral is complicated to work with. So, one
will prefer to use its integral version, that is,

EZτ
[ |Zτ − y| − Zτ ] + y =

∫ y

u=−∞
d

du
(EZτ

[ |Zτ − u| − Zτ ] + u) du .
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For the bounds of the integral, the upper one is obvious. To justify the lower one,
it is important to note that lim EZτ

[ |Zτ − y| − Zτ ] + y = 0, y → −∞.
Indeed, one has:

EZτ
[ |Zτ − y| − Zτ ] + y =

∫ y

z=−∞
(y − z) h(z) dz +

∫ ∞

z=y
(z − y) h(z) dz

+
∫ ∞

z=−∞
(y − z) h(z) dz

=
∫ y

z=−∞
2(y − z) h(z) dz

= 2y H(y) −
∫ y

z=−∞
2z h(z) dz ,

with h and H the p.d.f and the c.d.f of the variable Zt . If the variable Zτ has a finite
mean, lim, h(y) = 0, y → −∞, and thus it is clear that the choice of −∞ for the
lower bound of the integral is the good one.

At this stage, it is not easy to see the usefulness of the transformation, but it will
be after the following calculus:

d

du
(EZτ

[ |Zτ − u| − Zτ ] + u) = 1 + d

du

(∫ u

z=−∞
(u − z) h(z) dz

)

+ d

du

(∫ ∞

z=u
(z − u) h(z) dz

)
.

Finally, we have:

d

du
(EZτ

[ |Zτ − u| − Zτ ] + u) =
∫ u

z=−∞
h(z) dz −

∫ ∞

z=u
h(z) dz + 1

= H(u) − ( 1 − H(u) ) + 1

= 2 H(u).

Now, it is clear that this transformation could help us for the calculus of (8.10) since
it is equivalent to study:

∫ G−1
τc

y=−∞
fY (y)

(∫ y

u=−∞
H(u) du

)
dy ≡ Half Int.

A difficulty remains, though. Indeed, fY in unknown, and in consequence, not easy

to work with. That’s why, at first, one will use f
G−1

τc
Y for our calculus, and then we

will study the impact of such a manipulation.
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Let’s start with the first task. Using an integral by part on Half Int:

∫ G−1
τc

y=−∞
f

G−1
τc

Y︸ ︷︷ ︸
u′

(∫ y

u=−∞
H(u) du

)

︸ ︷︷ ︸
v

dy .

One obtains:

Half Int =
[
y f

G−1
τc

Y

(∫ y

u=−∞
H(u) du

)]G−1
τc

y=−∞
−
∫ G−1

τc

y=−∞
y f

G−1
τc

Y H(y) dy

=
∫ G−1

τc

u=−∞
f

G−1
τc

Y [G−1
τc

− u ]
︸ ︷︷ ︸

u′

H(u)︸ ︷︷ ︸
v

du

=
[
f

G−1
τc

Y

(
u G−1

τc
− u2

2

)
H(u)

]G−1
τc

u=−∞

−
∫ G−1

τc

u=−∞
f

G−1
τc

Y

(
u G−1

τc
− u2

2

)
h(u) du .

Since
(
u G−1

τc
− u2

2

)
=
(

(u−G−1
τc )2

2 − (G−1
τc )2

2

)
, we have:

Half Int = f
G−1

τc
Y

(∫ G−1
τc

u=−∞

(u − G−1
τc

)2

2
h(u) du

)

.

Now, using the change of variableG(u) = z, a Taylor series approximation around
τc and the Taylor–Lagrange formula, one has the following approximation for Half
Int:

f
G−1

τc
Y
2

∫ τc

z=0

[
1

g(G−1
τc )2

(z − τc)
2 + g

′
(γ )

g(G−1
τc ) g(γ )3

(z − τc)
3 + g

′
(γ )2

4g(γ )6
(z − τc)

4

]

φ(y)dy ,

with φ the p.d.f of the random variable Qτ . Using the Jensen inequality and since
0 ≤ z ≤ τc, we find:

|Half Int| ≤ f
G−1

τc
Y

2

[
ξ 2

2

λ

n
+ αξ 4

2

λ

n
+ α2ξ 6

8

λ

n

]

≤ 1

2

Cint λ

n
.

Since λ
n , which is the variance of the random variable Qτ , is decreasing with n,

let’s study:
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Δ∫
f ≡

∣∣
∣∣∣

∫ G−1
τc

u=−∞
( fY (y) − f

G−1
τc

Y )

(∫ y

u=−∞
H(u) du

)
dy

∣∣
∣∣∣
.

Since one supports the hypothesis that f
′
Y is bounded, using the mean value

theorem, one has:

Δ∫
f ≤ ∫ G−1

τc
y=−∞ | fY (y) − f

G−1
τc

Y | ( ∫ y
u=−∞ H(u) du

)
dy

≤ ∫ G−1
τc

y=−∞ M (G−1
τc

− y )
︸ ︷︷ ︸

u′

(∫ y

u=−∞
H(u) du

)

︸ ︷︷ ︸
v

dy ,

and thus,

Δ∫ f ≤ M

⎛

⎜
⎝

[(

y G−1
τc − y2

2

) ∫ y

u=−∞
H(u) du

]G−1
τc

y=−∞
−
∫ G−1

τc

y=−∞

(

y G−1
τc − y2

2

)

H(y)dy

⎞

⎟
⎠

= M

(
(G−1

τc )2

2

∫ G−1
τc

u=−∞
H(u) du +

∫ G−1
τc

u=−∞

(
(u − G−1

τc )2

2
− (G−1

τc )2

2

)

H(u) du

)

= M
∫ G−1

τc

u=−∞
H(u)
︸ ︷︷ ︸

v

(u − G−1
τc )2

2︸ ︷︷ ︸
u′

du

= M

⎛

⎜
⎝

[
(u − G−1

τc )3

6
H(u)

]G−1
τc

u=−∞
−
∫ G−1

τc

u=−∞
(u − G−1

τc )3

6
h(u) du

⎞

⎟
⎠ .

Finally, we obtain with the same change of variable and Taylor approximation as
previously:

Δ∫
f ≤ M

6

∫ τc

z=0

[
1

g(G−1
τc

))
(τc − z) + g

′
(γ )

2g(γ )3
(τc − z)2

]3
φ(z) dz

≤ M

6

[
ξ 3

2

λ

n
+ 3ξ 3α

4

λ

n
+ 3ξ 3α2

8

λ

n
+ ξ 3α3

16

λ

n

]

≤ 1

2

Cs λ

n
.

Thus, one has
∣
∣EY,e[L τ̂c − Lτc ] ∣∣ ≤ (Cint+Cs )λ

n . Since Cint and Cs do not depend
on e, this result remains meaningful when we are interested in the conditional expec-
tation with respect to the random variable E and so

∣∣EY [L τ̂c − Lτ ] ∣∣ ≤ 2 ε2 ξ + C λ
n .

Moreover, using (8.9), we prove (8.7). �
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Part II
Renewable Energy: Risk Management



Chapter 9
Anticipating Some of the Challenges and
Solutions for 60% Renewable Energy
Sources in the European Electricity
System

Vera Silva, Miguel López-Botet Zulueta, Ye Wang, Paul Fourment,
Timothee Hinchliffe, Alain Burtin and Caroline Gatti-Bono

Abstract In this study, EDF R&D used the EU “high RES” (RenewableEnergy
Sources) scenario of the 2011 European Energy Roadmap, reaching 60% of renew-
ables generation by 2030 including 40% from variable RES (such as wind and solar),
and analysed its implications on systemdevelopment and operation. The analysiswas
based on an in-house chain of power system planning, dispatch and simulation tools.
The study indicates that a strong development of variable RES generation would
imply significant changes to the thermal generation mix required to balance supply
and demand, with the need for less base load power plants and for more flexible
units. The study shows that conventional plants are still required to ensure secu-
rity of supply and, in order to reach a high level of decarbonation, low carbon base
plants are essential. Furthermore, the results also underline the strong interest of
deploying a certain level of interconnections, especially around the North Sea and
France: it is a very efficient way to optimize the systems costs since these ensure
that electricity generated by RES can reach demand and curtailment can be avoided,
while also enabling the sharing of backup plants and of RES and demand diversity.
Storage and flexible demand play a complementary role as flexibility providers, as
a complement to thermal plants and RES curtailment. The potential for cost effec-
tive additional storage will however depend on the zone and on the possibility to
deploy the other existing levers. Storage is particularly interesting in island systems
with limited flexibility such as the UK. Load generation balancing will be highly
dependent on weather conditions and its associated uncertainty that will increase the
need for operation margins at different lead times and reserves. In order to limit the
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impact of this uncertainty, forecasting tools and the operational practices will play
an important role. An increase of variable RES in the mix leads to challenges in
terms of dynamic stability, with frequency excursion potentially reaching security
limit. These challenges are linked to the fact that variable RES are interfaced with the
system by power electronics and do not naturally contribute to system inertia, which
is a key factor in maintaining system security. In order to maintain system security,
some curtailment or the deployment of innovative solutions such as fast frequency
response from battery storage and RES are required. Lastly, the economics of such a
systemwould be a significant challenge, as the cost of the infrastructure is high while
the market profitability of RES decreases with RES penetration since it is exposed
to a “cannibalisation effect”.

Keywords Renewable energy · Low-carbon Europe · Roadmap 2050 · RES-E
variability · Power system reliability · Dynamic stability · Thermal backup
Storage · Active demand response · Interconnections · Synthetic inertia

9.1 Introduction and Hypotheses

European countries have committed to an important change in their energy system
to reduce carbon emissions and foster greater energy efficiency. The power sector
will be a key contributor namely with an increase of renewables for many decades
to follow. The European Union has issued a series of climate and energy packages
that define milestones until 2050.

The HiRes scenario of the EC Energy Roadmap 2011 [1] constitutes the base of
the hypotheses used in this paper. The share of renewables in the mix reaches 60% of
the European Union gross electricity consumption by 2030.1 Unlike today where the
largest share of renewable energy is produced by hydraulic plants, in 2030, the highest
share of renewable production will come from wind and solar plants. This comes
from the fact that there are very few new sites where hydraulic plants could be built
and the costs of wind and solar are plummeting, allowing for a mass development
of these technologies for the next decades. In this scenario, 40% of the European
Union gross electricity consumption would come from wind and solar technologies.
This quantitative scenario is used to illustrate the issues of the large deployment of
variable renewable generation in the European system.

The original HighRES scenario is the result of a global energy modeling exercise
commissioned by the EU. The EU roadmap also provides the electricity generation
from low carbon sources (energy generation for wind, PV, biomass, hydro, other
RES (Renewable Energy Sources) and installed capacity of nuclear) as well as the
commodity and CO2 prices. The TIMES model [2], used to develop the original
scenarios, is a bottom-upmodel that produces least-cost energy systems under a given

1This is to be compared to a share of 29.6% of renewable energy in the EU28 power system in 2016
(Eurostat, SHARES 2016).
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Fig. 9.1 European union energy roadmap

set of constraints at different time horizons, using linear programming. Therefore, it
encompasses the whole European energy sectors and demands, and it cannot rely on
the same level of details that is used in state-of-the-art studies of the power system
[3, 4]. In particular, it provides an average view for the contribution of variable RES
to demand supply using few time-slices, while in reality, the supply and demandmust
be balanced for every hour (and less) whatever the weather conditions and resulting
RES generations happen to be.

EDF R&D constructed a detailed dataset for the European energy mix respect-
ing the global energy volumes per energy source described in EU energy roadmap
2050 [1] including the geographical distribution of the development of the different
technologies. A significant body of work was conducted to build a realistic repre-
sentation of the future European interconnected system. The model used covers 17
countries: the European continental area, the UK, Ireland, and the Nordic system.
For each country, we represent hydro-generation (run of the river and lake), pumped
storage, thermal generation, demand, variable RES (wind, PV), other RES (biomass,
geothermal,) and the interconnection capacity between countries. The geographical
distribution and installed capacity of variable RES (onshore wind, offshore wind and
PV) are optimized given the resource potential, land usage and social acceptance
using a TIMES based model. We find that the level of wind and PV reaches 705GW
as detailed in the table of Fig. 9.1 with 220GWof Solar, 280GWof onshore wind and
205GW of offshore wind. This brings new challenges to the operation of the power
system through the variability of the wind and solar generation and the interface with
power electronics. It will lead to new ways of operating the power system as well
as new market designs, and will require important infrastructure developments and
a transformation of the conventional mix. A complete report with the details of the
modelling is available in [5] and also in [12–14] and [15].



172 V. Silva et al.

The four main challenges of integrating a high level of renewables in a mix, that
will be developed in this paper, are:

• Connecting RES and load: Renewable generation potentials do not coincide with
demand location. Therefore, infrastructures need to be developed to bring renew-
able generation to where the power is used. Having these additional networks
will help smooth the renewable generation by allowing for a bigger geographical
diversity. The generation remains, however, highly variable which requires more
flexibility.

• Bringing flexibility to handle variability: The net demand (the total demand minus
the variable RES production) that has to bemet by conventional plants is exhibiting
new features and becoming increasingly variable. Storage technologies can help
but the conventional mix will also see profound changes.

• Keeping the lights on: To keep the same level of reliability that consumers have
come to expect, RES-Ewill need to provide new services since conventional plants
that have historically ensured the stability of the network will not always be online
at the most delicate times unless RES-E are curtailed.

• Balancing the economics: Finally, the integration of massive RES-E also changes
the economics of the system with the marginal prices exhibiting the shape of a
duck curve or Nessie curve, as already seen today in California and Hawaii.

9.2 Connecting RES and Load

9.2.1 Integrating a Large Share of Variable RES Requires a
Coordinated Development of RES and Networks

Renewable generation potentials do not coincide with power needs. Solar potential
are highest in the south of Europe and wind potential are highest around the North
Sea. EDF R&D constructed a detailed dataset where the wind and solar capacities
were distributed by country. Interconnections are necessary to connect production
and load, pool thermal backup and share the variability of intermittent RES-E. EDF
R&D performed a cost-benefit analysis to assess the reinforcements required by the
new generation mix (see Fig. 9.2). This analysis finds similar reinforcements to the
ones planned in the TYNDP 2014 [6]. In particular, as exhibited in other studies such
as e-Highways 2050 [7], we see a North-South corridor2 going through France to
link electric peninsulas and share wind in the north and solar in the south, as well as
a triangle around the North Sea to bring back the offshore wind to the continent.

2From the UK and the Netherlands all the way to Spain and Italy.
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Fig. 9.2 Geographic distribution of RES and network development

Fig. 9.3 Onshore wind generation for different geographical scales. (source RTE)
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9.2.2 Geographical Diversity Does Help, but There Is Still
Significant Variability at European Level

The development of infrastructures to bring the renewable generation to where the
power is used will also help smooth out the renewable generation by allowing for a
bigger geographical diversity as shown on Fig. 9.3. The generation is very uneven on
the scale of a wind farm (green curve). It becomes smoother when aggregated over a
region (red curve) and even smoother when aggregated over the entire country (blue
curve).

Despite the generation becoming smoother, the variability remains significant at
the European level as shown on Fig. 9.4. The figure represents the daily onshore
wind generation for 30 different climatic years. A climatic year is created by using
climate characteristics of a year in the past, such as wind speeds and solar radiation
and temperature, to project the generation of wind and solar plants into the future.
It therefore preserves the correlation with demand.3 In the figure, there are 30 dots
for each day of the year. We can observe a very large dispersion from one year to
the next, as well as from one day to the next. It is largest over the winter where wind
production is highest with 90GW on average and still reaches a significant level over
the summer. The same can be observed for solar plants with the highest dispersion
occurring over the summer where the production is largest.

9.3 Flexibility to Handle the Variability

9.3.1 Not only Conventional Generation, but also Variable
RES, Will Contribute to Balancing and Ancillary
Services

Wind and PV generation increase the variability that needs to be managed by con-
ventional generation. The net demand4 profile, supplied by conventional generation,
is more variable than demand alone, increasing the solicitation of the flexibility
of conventional plants (see Fig. 9.5). This impact on flexibility needs is expressed
mainly in terms of a higher frequency of large variations in net demand. At European
level, upward hourly variations larger than 20GW and downward variations larger
than 10GW increase by 50% and extreme hourly variations (>70GW), which do not
happen for demand, are present in net demand.

3For the rest of the dataset, the climatic year will take into account the rain and snow patterns of
the year for hydraulics, as well as load pattern.
4Net demand = Demand−Variable RES.
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Fig. 9.4 Dispersion of daily onshore wind generation for 30 climatic years for the European power
system. The average load factor (ratio between the generation output and the total installed capacity)
varies from 15% in summer to 30% in winter

Fig. 9.5 Load-generation balancing becomes quite complex for periods with high net demand
variability
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Fig. 9.6 Evolution of net and gross storage benefits in md/year for with a 40h reservoir

9.3.2 Storage and Active Demand May to a Certain Extent
Supplement Generation to Balance Supply and Demand

The results of the performance of the European system integrating a high penetration
of variable RES do not provide clear economic justifications for further wide-scale
development of centralized storage for managing the generation-demand balance,
given the volume of storage that already exists. The potential for development of
storage will vary across the different zones in the European systems. Figure9.6
presents the net value of storage for a 40h reservoir. This net value is obtained using
a cost-benefit analysis where the cost of storage is subtracted to the gross value
of storage. The gross value is obtained in terms of system cost savings (fixed plus
variable costs) obtained when comparing a scenario with a scenario without storage.
The net value is represented in the figure using a yellow band that presents the interval
of the net value as a function of the storage cost assumptions. We have considered
different scenarios of this cost (see for example [8]) and the band represents the
potential net value depending on the cost assumptions. The results indicate that the
current capacity of storage in France seems well adapted to the optimization of
the generation-load balance. The region of Germany/Austria does not seem to hold
great promise for the development of storage. This is in contrast to the UK in which
the strong potential for offshore wind generation could make storage an interesting
proposition. The interest in such deployment can only increase if storage contributes
to ancillary services and reserves. The conclusions are similar ifwe consider a smaller
storage with a 2h reservoir, with slightly better perspectives for intra-day storage in
Germany.
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Fig. 9.7 European load duration curve of demand and net demand with 60% RES. Baseload
generation = orange, semi-baseload generation = grey, peaking generation = red

9.3.3 Fuel Plant Are Needed for Backup Capacity for
Security of Supply with High Level of Decarbonisation

Generation from wind and PV contributes mainly to the supply of energy. The
stochastic nature of this production means that its output does not always coincide
with periods of high demand and as a consequence it makes a minor contribution to
capacity. A simple statistical calculation, based on a load duration curve at the Euro-
pean system level, can illustrate this issue. Figure9.7 (transparent colors) illustrates
demand by a stack of conventional generation technologies (thermal and hydro)with-
out variable generation in the mix. Figure9.7 (solid colors) illustrates the same but
with the presence of 40% variable RES. In this case the conventional technologies
stack aims at covering net demand (demand minus variable RES). The conventional
generation technology stack is represented in the area below the duration curve of
demand and net demand.

From the Fig. 9.7, one can observe the following:

• The energy produced by wind and PV displaces base load generation: the 700GW
of wind and PV displace 160GW of base load generation, equivalent to 40% of
the annual demand in energy.

• The development of variable RES entails a need for backup capacity, required dur-
ing periods when wind and PV are not available: in the 60% RES scenario, 60GW
of additional backup capacity (called on for very short durations) are required to
respect the capacity adequacy criteria of an expected loss of load of 3h/year.

• Overall, the development of 700GW of wind and PV would lead to a reduction
in conventional generation capacity in the order of 100GW (160−60= 100GW).
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Fig. 9.8 Structure of the generation mix with and without wind and pv generation. CCGT =
Combined Cycle Gas Turbine, OCCGT = Open Cycle Gas Turbine

This capacity credit comes solely from wind generation, since in Europe, PV
generation is not present during winter peak.

• Saying this, periods with an offer of variable RES higher than 100% of demand
are observed at the European level. During these periods, when all demand can
be covered by must-run RES, curtailment may be required to maintain demand-
generation balance as well as to allow the provision of reserves and ancillary
services, required to ensure the security of the system.

The 60% RES scenario, represents an annual CO2 savings in the order of 1 Gt when
compared to a scenario without variable RES. These savings come from wind and
PV generation and from the reduction of carbon-emitting base load plants in the
conventional generation mix (See Fig. 9.8). The decarbonisation of European base
load generation is achieved with a mix of RES and nuclear plants. The average CO2
content per kWh produced with 60% RES is 125gCO2/kWh, a value significantly
lower than todays 350gCO2/kWh. The additional replacement of coalwith gas plants
would allow CO2 output to be reduced to as low as 73gCO2/kWh. Above a certain
share of RES, however, the marginal efficiency of CO2 reductions drop and the
marginal cost of this reduction increases (as a result of an increase in curtailment of
wind and PV and the reduction of capacity credits and of fossil fuel savings).
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9.4 Keeping the Lights on: Variable RES Production
Should Potentially Provide New Services Like Fast
Frequency Response (Inertia)

Wind and PV farms differ from conventional generation and other RES because of
their power electronics interface with the system, often designated as asynchronous
(Fig. 9.9). The connection of wind farms and PV via power electronic interfaces will
lead to a reduction in the inertia of the system.

This reduction of inertia impacts the dynamic robustness of the system, namely
the frequency5 following an incident. For low to moderate penetration of variable
RES, the synchronously interconnected European grid today has high inertia, which
ensures that it has the capacity to accept a significant number of sources of production
connected through power electronics interfaces. In order to quantify the impact of
close to 40% variable RES in the European synchronous system, we have performed
a large number of dynamic simulations. With 40% variable RES, for the majority of
cases, the overall European network appears to be sufficiently robust, as illustrated
in Fig. 9.10. The figure presents the frequency nadir, following a reference incident
of 3.5GW, for all hours of the studied years (close to 100 resulting from combining
30 weather years with generation availability scenarios).

However, critical situations with a frequency nadir lower than 49Hz, triggering
under frequency load shedding, and with a frequency lower than the security level
of 49.2Hz could happen. These are observed for periods with 25% instantaneous
penetration of RES, when the overall system demand is low (<250GW). A similar
incident occurring during periods of high demand would not seem to pose a prob-
lem even for instantaneous penetration of RES as high as 70%, given that the load
self-regulating effect will contribute naturally to the re-establishment of the system
frequency.

9.5 Balancing the Economics: The Pace of Deployment of
Variable RES Should Be Optimised in Order to Limit
Costs of Storage or Excessive Curtailment

The analysis of the revenues touched by variable RES, considering that they are paid
at the system marginal cost, shows their revenue decreases with the scale of their
deployment. This effect has been designated in literature as the “cannibalization
effect”. This is translated by a difference between the system yearly base load price
and the average revenue of variable RES, designated here as “market revenue gap”.

5Keeping the frequency within a prescribed range is essential for the safety of the electric grid. The
power that is received by a consumer stems from generators several hundreds of kilometers away
sending electricity through a maze of lines at a given frequency. If the frequency shifts, there can
be serious consequences for the network and consumer equipments, as well as for the electric grid,
that can lead in the most extreme case to a blackout.
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Fig. 9.9 Inertia and system frequency stability. Wind turbines and PV differ from synchronous
generators in part because their power electronics interface is decoupled from the grid

Fig. 9.10 Analysis of frequency stability in the European continental synchronous area with 35–
38% share of variable RES
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Fig. 9.11 Market revenue gap of Wind and PV in the 60% RES scenario (y-axis shows the gap
between the yearly base load price and the market revenues of wind and PV and the x-axis presents
the relative penetration of wind and PV in the zone in question)

Similar findings have been published in literature for the German, the British system
and some parts of Continental Europe [9–11].

The analysis of the “market revenue gap” for wind and PV, for different countries,
for the “60% RES” scenario, is presented in Fig. 9.11. The figure presents the evalu-
ation of the incremental value of the service provided by variable RES to the system
by comparing the marginal value of the first kW with the value of “40% variable
RES”. We can see that the value gap is very low or positive for the first MW of wind
or PV (while their presence is marginal to the formation of the systemmarginal cost).
Instead, for the higher penetrations of wind and PV for the “60% RES” scenario the
gap becomes significant.

This result, which may seem counterintuitive, is easily explained. A technology
is usually said to be mature when its levelised cost of production appears competi-
tive compared with traditional thermal technologies or with a benchmark price for
electricity. Joskow [9] notes however that for variable RES this comparison is mis-
leading because the variable generation of a RES unit may be statistically biased
towards periods when wholesale spot prices are higher or lower than the benchmark
(see also [10]). In our approach, we capture this effect since the system marginal
costs are outputs of the model and depend on the amount of RES capacity and on
their generation patterns. A noticeable contribution of our approach is to reveal a
telling pattern for how market value for RES decreases with their deployment.
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9.6 Summary and Conclusion

Europe is leading an energy transition to lower carbon emissions. TheHiRes scenario
of the EU Energy roadmap 2050 is based on the introduction of massive volumes of
renewable energies with a share reaching 60% in 2030, with 40% wind and solar in
the mix. Such levels of wind and PV bring new challenges to the operation of the
power system with the four main challenges being:

• Connecting RES (Renewable Energy Sources) and load
Network developments at a local level within the distribution network and at a
national level within the transmission networks along with new interconnectors
may be needed if it is wished to capitalize on the natural diversity in demand and
the production from the different RES sites. Nevertheless, climatic phenomena,
which can have a simultaneous impact across the European continent, can result in
marked changes in wind production as seen across the entire system. In addition,
network development costs may be too high if variable RES is developed too far
away for the load centers.

• Bringing flexibility to handle the variability
If RES penetration reaches 60%, out of which 40% is variable RES, close to
500GW of conventional generation (thermal, hydro and biomass) will still be
required. The European electrical system will be required to cope with the varia-
tions in variable RES production. For instance, an installed capacity of 705GW of
wind and PV could see its daily production vary by a volume equivalent to 50%
of total European demand within a 24 hour period. For an installed on-shore wind
capacity of 280GW, the average hourly generation on a winter’s day could vary
from one year to the next between 40 and 170GW depending on specific weather
conditions.
Near-term flexibility needs will be important, and extreme hourly variations
(>70GW) that do not occur in demand can be found in net demand.
There does not appear to be a business case in the next 15-year for a wide-scale
development of storage as ameans tomanage intermittency, given the existing vol-
ume of storage in the European electrical system. In addition to backup capacity,
demand response mechanisms should also be developed to contribute to genera-
tion/load balancing. Nonetheless, while load shifting could play a role in extreme
situations as means to limit peak demand, it will not be capable of dealing solely
with the variability introduced by wind and PV production.

• Keeping the lights on: variable RES production should potentially provide
new services like fast frequency response (inertia)
The most critical periods for frequency stability are those when the demand is low.
During these periods, it will be necessary to limit the instantaneous penetration
of RES in order to maintain the security of the system. Innovative solutions such
as the creation of synthetic inertia from wind farms or the contribution of wind
generation to frequency regulation are expected to reduce the severity of some of
these limits.
Smaller systems such as Ireland limit already the instantaneous penetration of RES
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in order to preserve the security of their system and are looking to require newwind
generation capacity to provide synthetic inertia and frequency regulation services.
It is essential that the variable RES production which is displacing conventional
generation is also able to contribute to the provision of ancillary services and also
potentially provide new services (e.g. inertia).

• Balancing the economics: the pace of deployment of variable RES should be
optimised in order to limit costs of storage or excessive curtailment
We showed earlier in this document that variable RES displace base generation and
increase the need for flexible backup. This difference in the service provided to the
system is translated by a market value loss when compared to other technologies.
This effect is quantified in terms of the gap between the average system marginal
price and the average market revenue of wind and PV.
Our results show that for the “60% RES” scenario this value gap for wind and
PV ranges from 10 to 30% depending on the country. The gap presents a degree
of correlation with the penetration rate of variable RES. Moreover, this energy
value gap increases with the variable RES penetration (“cannibalisation” effect).
In Europe, this “cannibalisation” effect is more pronounced for PV.

The study shows that variable and conventional generation should be viewed as
complementary. Wind and PV are an important component in the EUs decarboni-
sation strategy, thermal generation is necessary to maintain system reliability and
security of supply. Furthermore, low carbon base load generation is needed in order
to deliver the reduction in the average carbon factor of European electricity.
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Chapter 10
A Joint Model for Electricity Spot Prices
and Wind Penetration with Dependence
in the Extremes

Thomas Deschatre and Almut E. D. Veraart

Abstract This article analyses the dependence between electricity spot prices and
the wind penetration index in the European energy market. The wind penetration
index is givenby the ratio of thewind energyproductiondividedby the total electricity
production. We find that the wind penetration has an impact on the intensity of
the spike occurrences in the electricity prices, and we formulate a joint model for
electricity prices and wind penetration and calibrate it to recent data. We then use
the new joint model in an application where we assess the impact of the modelling
assumptions on the potential income of an electricity distributor who buys electricity
from a wind farm operator.

Keywords Dependence modelling · Spikes · Doubly stochastic Poisson process
CAR processes · Electricity prices · Wind penetration index

10.1 Introduction

Motivation

The trend to increase renewable energy production all over the world with the pos-
sibility of phasing out conventional energy sources while at the same time ensuring
reliability of energy networks constitutes one of the key challenges of modern soci-
eties. Due to their high variability renewable sources of energy tend to be more
difficult to predict and for instance their precise impact on electricity prices is far
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from being understood. The recent literature presents various attempts to model and
characterise the impact of wind energy production on electricity prices, see for
instance [7, 11–13] for some recent accounts. In these studies, wind is often consid-
ered as an exogenous variable for the electricity price. However, for many applica-
tions, one of which will be presented in this article, we in fact need a joint model for
electricity prices and wind energy generation (and possibly other sources of electric-
ity aswell). Hence the goal of this article is to formulate and estimate a jointmodel for
electricity spot prices and wind energy production, more precisely wind penetration,
which is the ratio between wind energy production and total energy production.

Our modelling idea which is guided by our statistical analysis rests on the hypoth-
esis that increasing wind penetration typically results in lower electricity spot prices
and that high wind penetration might increase the frequency at which negative price
spikes occur. In order to formalise these ideas we draw on new statistical methodol-
ogy for estimating jump intensities and mean reversion rates in mean-reverting jump
processes, which has very recently been developed in [6] and Chap.4 of [5].

The goal of this paper is twofold:

(i) First, we carry out a statistical study to assess the impact of the wind penetration
on electricity spot spikes occurrences.

(ii) Second, we quantify the impact of this dependence on the distribution of a
distributor’s income when buying wind production.

Main Results

Statistical studies show that the probability to have an extreme return in electricity
spot time series seems to increase with the wind penetration index, see Sect. 10.2.
From this statistical evidence, the following joint model is introduced for the German
and Austrian electricity spot price S and the wind penetration index WP:

⎧
⎨

⎩

St = Γ1,t + X1,t + Yt ,
Yt = ∫ t

0 e
−β(t−s)dMs,

WPt = expit
(
Γ2,t + X2,t

)

for t ∈ [0, T ] (for some finite T > 0) where Γ1 and Γ2 are seasonality functions,
X1 and X2 are continuous autoregressive processes, expit (x) = 1

1+e−x , x ∈ R, β >

0 and M is a compound Poisson process with stochastic intensity (λt )0≤t≤T . The
process Y is amean reverting compound Poisson process whichmodels the spike part
of the electricity spot price. The linear dependence between S and WP is modelled
by a correlation between the two Brownian motions driving X1 and X2. However,
it does not capture any dependence between extreme values of the electricity spot
price and the wind penetration.

While the marginal modelling of electricity spot price and the linear dependence
are rather traditional, the novelty of our model lies in the fact that it takes the depen-
dence between the intensity of the spikes in the spot price and the wind penetration
level into account. This dependence is introduced by modelling the intensity of the
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Poisson process, representing the frequency of spike occurrence, as a function of the
wind penetration level:

λt = q (WPt ) , t ∈ [0, T ]

with q : R → (0,∞).
After using the method of [6] for jump detection, the function q is inferred non-

parametrically from the data using the estimation procedure proposed in Chap.4 of
[5]. The statistical results confirm our intuition: the intensity of negative spikes is
influenced by the wind penetration level and increases with it. However, the wind
penetration has no impact on the frequency of the positive spikes. Statistical tests are
used to support these hypotheses. In addition, we describe the calibration procedure
used for estimating the entire model.

For our second contribution, let us consider the point of view of an electricity
distributor buying electricity from a wind farm and selling it to the market at price
S. The distribution of their income depends jointly on the electricity spot price and
the wind penetration index. In order to quantify the impact of our statistical results
concerning the dependence between the occurrence of negative spikes and the wind
penetration, we compare two different models. The first model consists of modelling
the intensity of negative spikes as a constant, that is assuming there is no dependence
between it and thewind penetration level. The secondmodel consists ofmodelling the
intensity of negative spikes as a simple parametric function of the wind penetration
index. Our quantitative results show that this dependence can not be neglected: the
risk measures of the distributor’s income such as the value at risk and the expected
shortfall diminish significantly from the first model to the second one.

Structure of the Paper

The outline of the remainder of this article is as follows. Section10.2 gives a detailed
description of the data and data sources used in our statistical analysis. The key
contributions are then collected in Sect. 10.3, where we introduce and estimate the
joint model for hourly electricity spot prices from Germany and Austria and the
corresponding wind penetration index. Finally, in Sect. 10.4, the impact of our joint
model on an electricity distributor’s income buying wind production is studied.

10.2 Data Description and Exploratory Study

10.2.1 Data Description

In this article we analyse German and Austrian wind energy production data, elec-
tricity price data and load data covering a period from the 1st of January 2012 to the
31st of December 2016. The data have been downloaded from the following website
https://data.open-power-system-data.org/. The precise data sets considered are the
following ones:

https://data.open-power-system-data.org/
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• The German and Austrian hourly electricity spot prices (from the day-ahead auc-
tion) from the 1st of January 2012 to the 31st December 2016,

• the German and Austrian hourly load data from the 1st of January 2012 to the 31st
December 2016,

• the German and Austrian hourly wind energy production data from the 1st of
January 2012 to the 31st December 2016. Note that the data has been aggre-
gated over the four German transmission system operators 50Hertz Transmission,
Amprion, Tennet TSO and EnBW Transportnetze and the Austrian transmission
system operator APG.

Throughout this article, we will be analysing and modelling the hourly data from
the day-ahead market rather than the daily data, which is often done in the literature.
The hourly data are revealed in the daily auction at the same time, but it has been
found in e.g. [9] that when taking seasonality into account, they can be successfully
modelled by classical time series models at an hourly frequency. An alternative
approach, which we leave for future research, would be to model the hourly data as
a 24-dimensional vector of daily data, as it has for instance been done by e.g. [10]
in the discrete-time setting and by [21] in the continuous-time setting.

Motivated by the work by [11] we use our data to compute the German/Austrian
wind penetration index, defined as the ratio of the wind energy production and the
electricity load. In [11] the authors found a strong association between the wind
penetration index and the corresponding electricity prices. Figure10.1a, b depict the
time series of the German/Austrian spot price and the wind penetration, respectively.
We observe that the wind penetration index takes values between zero and one,
except for eleven values in 2016 when it exceeds one. This can happen because
of the interconnection between the transmission networks of the various European
countries. Since the total electricity production can also be used in other countries
in Europe, a wind penetration index exceeding one tells us that in these particular
hours all of the German/Austrian electricity came from wind energy.

10.2.2 Exploratory Data Analysis

Next, we aim to study the relation between the prices and the wind penetration index.
To this end, let us look at Fig. 10.1c. Herewe observe that high negative values of spot
prices happen when the wind penetration crosses a certain threshold. More precisely,
Fig. 10.1d reveals that high negative price returns appear when the wind penetration
is over 0.4. Next, Fig. 10.1e, f depict the returns of the spot price against the returns
of the wind penetration index, where extreme values have been removed in the latter
picture. (The procedure of how the extremes were removed is described below.)
The corresponding correlation coefficients for the data in Fig. 10.1e, f are given by
−0.125 and−0.148, respectively. We want to investigate nowwhether or not there is
any association between wind penetration and extreme spot returns. We recall from
Fig. 10.1a that both positive and negative spikes appear in the data. Hence when we
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(a) Spot price. (b) Wind penetration.

(c) Spot price against wind penetration. (d) Spot returns against wind penetration.

(e) Spot returns against wind
penetration returns.

(f) Non extreme spot returns against
wind penetration returns.

Fig. 10.1 Hourly German spot price and wind penetration index

are talking about extreme values in the following we mean the absolute value of the
corresponding spot returns. Note that as a positive spike (resp. negative) leads to a
negative (resp. positive) extreme return due to the high mean reversion, we do not
consider to study negative and positive extreme values separately: in this case, the
negative (resp. positive) extreme value is caused by the positive (resp. negative) one
and not by the wind.

In order to identify the extreme values in the spot returns, we establish theQQ-Plot
of the spot returns against a normal law: we obtain Fig. 10.2a. Removing the values
having an absolute value greater than 20, we obtain the QQ-Plot in Fig. 10.2b. This
new plot shows a better correspondence with the normal distribution and we consider
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(a) QQ-Plot with all the values. (b) QQ-Plot without extremal returns.

Fig. 10.2 QQ-Plot of spot returns against a normal law, with and without certain extreme values

Fig. 10.3 Returns of the spot price against the wind penetration with extreme spot returns

the returns of the spot having an absolute value greater than 20, corresponding to
the quantile of order 99.1%, as extreme values. Figure10.3 represents the extreme
values of the spot return against the wind penetration.

We remark that our procedure of filtering out extreme values can be regarded
as a hard thresholding approach, whereas one could also use more sophisticated
techniques based on methods from extreme value theory as in [14, 21].

In order to study the impact ofwindpenetration on spot returns extremevalues, one
indicator, omitting the timedependency aspect, is the quantityP (|R| > 20|WP > x)
for a given x where R corresponds to the return of the spot and WP is the wind
penetration. Figure10.4 corresponds to the function x → P (|R| > 20|WP > x).
For x = 0, the function takes value 0.82% where it reaches level of order 2% when
x increases: the probability to have an extreme value in the time series of the spot
price is higher with higher values of wind penetration; this dependence has to be
taken into account if we want to model the joint distribution of the spot price and the
wind penetration.
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Fig. 10.4 Probability to have an extreme returns conditionally on wind production greater than a
certain threshold

10.3 A Joint Model for the Electricity Spot Price
and the Wind Penetration Index

The main contribution of this article is that we present and estimate a joint stochastic
model for the hourly electricity spot price (denoted by S) and the corresponding wind
penetration index (denoted byWP).Wewill now proceed by explaining step-by-step
the stochastic model and the corresponding estimation procedure.

10.3.1 Model for the Electricity Spot Price

10.3.1.1 Model

Let (St )0≤t≤T denote the electricity spot price. Motivated by our exploratory study,
we decompose S in the following way:

St = Γ1,t + X1,t + Yt

where Γ1 is a seasonality function, X1 represents a continuous stochastic part of the
spot price and Y represents a spike part.

Modelling of the Seasonality Function Γ1

The seasonality Γ1 is assumed to be of the form



192 T. Deschatre and A. E. D. Veraart

Γ1,t = c0,1 + c1,1t + c2,1t
2 + c3,1 cos

(
τ0,1 + 2π t

365 × 24

)

+ c4,1 cos

(
τ1,1 + 2π t

7 × 24

)

+ c5,1 cos

(
τ2,1 + 2π t

24

)

. (10.1)

Modelling of the Continuous Stochastic Part X1

As working in a continuous-time framework, a continuous autoregressive process
(CAR) of order 24, see for instance Chap.4 in [4], is chosen to model X1. The
dynamics of X1 is modelled by

X1 = bTX1,

dX1,t = A1X1,tdt + eσ1dW1,t ,

where

A1 =

⎛
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⎟
⎟
⎠

,

and
(
W1,t

)

0≤t≤T is a standard Brownian motion. The choice of this modelling is
motivated by the statistical study in a discrete time framework done below.

Modelling the Spike Part Y

While Sect. 10.2.2 gives statistical evidence of a dependence in the extreme values
of electricity spot returns and wind penetration, in this section, we add the temporal
aspect to our analysis. We note that spikes are characteristics of electricity prices and
correspond to extreme values in the time series. We are interested in studying the
relation between the intensity of the spike occurrence and thewind penetration index.
Furthermore, a spike can be modelled as a jump going back to 0 with a strong mean
reversion and with a typically stochastic size. To this end, we start by modelling the
spikes by a mean-reverting Poisson-type process with stochastic intensity function
depending on the wind penetration. Thus, the spike part of the spot Y is modelled as

Yt =
∫ t

0
e−β(t−s)dMs,

where Mt = ∑Nt
i=1 Ki denotes a compound Poisson process with (Ki )i≥1 being

a sequence of i.i.d. real random variables corresponding to the jump sizes and
(Nt )0≤t≤T a Poisson process with stochastic intensity (λt )0≤t≤T corresponding to
the number of jumps in the interval [0, t]. Since we are interested in studying the
dependence between the intensity λ and thewind penetration, we assume a functional
relationship of the form:
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λt = q (WPt ) , t ∈ [0, T ] ,

where q : R �→ (0,∞) is a deterministic function. Conditional on the wind penetra-
tion index, N is an inhomogeneous Poisson process. Also, β > 0 is the speed of the
mean reversion.

10.3.1.2 Calibration

Estimation of the Times of the Spikes

First of all we need to identify the times of the spikes before we can estimate the
sizes of the spikes, the mean reverting parameter β and the intensity function q.
Reference [6] establishes a method for estimating the arrival times of the jumps in
the above setting as soon as the process Γ1 + X1 is a continuous semi-martingale,
which is the case here. We remark that in [6], the intensity of the Poisson process is
not stochastic. However, adding the assumption that λ is bounded below and above,
the result can easily be extended to the stochastic case using the same arguments as
in the original proof.

Let us briefly recall the key ideas: Suppose the price S is observed over the time
interval [0, T ] for some T > 0 at discrete times ti = iΔn , for i = 0, 1, . . . , �T/Δn	.
HereΔn > 0 andΔn → 0 asn → ∞. Note that the asymptotic framework, contrarily
to classical high-frequency one, is not limited to Δn → 0; in [6], λ and β can either
grow with n or be bounded.

The method for identifying the jumps is based on the use of a threshold of the
form CΔ


n for the returns, where C > 0 and 
 ∈ (0, 0.5) are constants which we
specify below. This method is classic for the estimation of jumps in continuous
jump diffusion models with discrete observations, see [2, Section10.4] for instance,
and has been adapted to the spike case when β is large in [6]. Indeed, as the mean
reversion is large and can be of the size of a jump, we need to add the condition
that Δn

i SΔn
i+1S < 0, where Δn

i S = Sti − Sti−1 . It indicates that after a jump (in the
interval ((i − 1)Δn, iΔn]), the subsequent increment will be of the opposite sign of
the jump. We choose a threshold equals to 5σ̄Δ0.49

n with σ̄ 2 the multipower variation
estimator of the volatilitywith order 20; the reader can refer to [3, 19] formore details
about multipower variation. The particular choice of our threshold is motivated by
the following findings in the literature: First, both [1], see Sect. 5.3, and [2], see
Sect. 6.2.2, p. 187, recommend using a constant of the form C = C̃ σ̄ , where C̃ is
a constant and σ̄ is an ‘average’ of the volatility. Moreover they advise choosing

 ∈ (0, 0.5) close to 0.5. In addition, [1] also suggests choosing C̃ between 3 and
5, see also [16] (C̃ = 3) and [17] (C̃ = 4).

In order to avoid too much change in volatility, the data are segmented in time
series of one year in order to identify the jumps. That means that σ̄ does not stay
constant over the entire sample, but just over each of the five years. For the considered
data, we find an estimated number of 114 jumps, 30 of which are negative and 84
positive. Figure10.5a corresponds to the spot price time series with the times of the
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(a) Spot. (b) Wind penetration.

Fig. 10.5 Jumps in German spot price and wind penetration time series

jumps marked by upward triangles for positive jumps and by downward triangles for
negative jumps.

Remark 10.1 The multipower variation estimator of the volatility is chosen with
order 20 which is high compared to the orders typically chosen in the literature.
Contrarily to classical jumps, spikes have a strongmean reversion. Using for instance
bipower variation in such a scenario is not suitable because the impact of the jump
is not diminished by the increments that follows. One also needs to compensate
the effect of the mean reversion, that can be present in two or three increments
following the jumps. Moreover, some spikes have a large amplitude, and then have a
strong impact on the value of the volatility estimator if the order is low. Having 8760
observations per year allows us to choose an order 20 with a good estimation quality.
Some simulations have been performed on simple models such as an arithmetic or
geometric Brownian motions plus spikes and order 20 appears to be a good choice.
The choice of 20 corresponds to a threshold of around 20 Euros per MWh per year,
corresponding to the one used to select the extreme values in the quantile-quantile
plot. Note that we found that the choice of the order of the multipower does not
influence the results significantly in any case. Decreasing the order of the estimator
leads to higher values of the estimated volatility and then also for the threshold. A
threshold of 10 leads to a detection of 61 positive spikes and 27 negative spikes.
The number of negative spikes, which is our key object of interest, does not change
much. Also, the results concerning the dependence with the wind penetration are not
affected.

Estimation of the Sizes of the Spikes

An estimator of the size of the j th jump K j is given by Δn
i S if the j th jump is

identified in the interval ((i − 1)Δn, iΔn]. However, as β is large, this estimator is
biased: indeed, as noticed in [6], if the jumps are well identified, Δn

i S is equivalent

to e
−β

(
� Tj

Δn
	Δn+Δn−Tj

)

K j with Tj the time of the j th jump. In the case βΔn is not
small, the term before the jump size is not closed to one. As Tj cannot be estimated
because of the discrete observations, we cannot estimate this bias term to deduce the
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exact jump size K j . Nevertheless, as the number of jumps is low, we do not consider
a model for the jump sizes and keep the empirical one, knowing that there can be a
bias.

Estimation of the Speed of Mean Reversion of the Spikes β

Reference [6] presents a method for estimating the speed of mean reversion of the
spikes given by β, assuming that β is large enough. The parameter β is estimated
using the slope of the process after a jump, which is of order K j

(
1 − e−βnΔn

)
for

the j th jump. We find β = 7718.84 year−1. As for the jump detection, we note that
while the results of [6] consider a constant λ, the proofs of the consistency of the
estimator (and possibly also of the central limit theorem) can be generalised to the
case of a stochastic intensity, provided the stochastic intensity is bounded below and
above.

Estimation of the Spike Intensity as a Function of the Wind Penetration Index

Figure10.5b depicts the positive and negative jump times of the spot price superim-
posed on the time series plot of the wind penetration index. We observe that negative
jumps appear more often when the wind penetration is high, whereas positive jumps
also appear for small values of wind penetration. In the following, we will sepa-
rate the positive and the negative jumps in order to study the impact of the wind
penetration on each type of jumps independently.

To this end, let us consider two point processes corresponding to the positive and
the negative jumps, respectively. We want to study the dependence between the point
processes and the wind penetration. In order to simplify the exposition, we do not
use superscripts for the two different Poisson processes we are considering, but just
the generic N for the Poisson process governing either the positive or the negative
spikes. Our goal is to estimate the function q on a given time interval I where wind
penetration data is available.

In the following, let us assume that every jump has been identified meaning that
we have an estimated sample path of N . Chapter4 in [5] proposes a local polynomial
estimator of the function q, which is a generalisation of a kernel estimator. This
estimator depends on a bandwidth parameter h belonging to (0,∞). Chapter4 in [5]
gives a method for choosing this bandwidth parameter h in an optimal way relatively
to the L2 error on I between q and its estimator. The optimal bandwidth is chosen
among a discrete set H ⊂ (0,∞) given by the statistician. The method leads to a
trade-off between bias and variance, andminimises the sumof an estimator of the bias
and an estimator of the variancewhich isweighted by an hyperparameter κ . Choosing
this bandwidth leads to an oracle inequality, justifying this particular choice. This
method is similar to the one used by [15] for the kernel estimation of a density,
which is an extension of the Goldenshluger–Lepski method [8]. For the estimation
procedure to work, a few assumptions are required on the exogenous process, which
is here WP . The most important one is that WP must be a semimartingale, which
is the case in the model proposed below. We remark that Chap. 4 in [5] is casted
in a continuous-time framework, whereas our estimation is done in discrete time.
However, since Δn → 0 and T is large, the resulting approximation error which is
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(a) For negative jumps. (b) For positive jumps.

Fig. 10.6 Kernel estimators of the intensity of the spot spikes as a function the wind penetration
(in year−1)

of order Δn is asymptotically negligible and the processes can be assumed to be
continuously observed.

For the considered data, we use the Epanechnikov kernel K (u) = 3
4

(
1 − u2

)

1|u|≤1 and work with a kernel estimator, that is with a local polynomial estimator
of degree 0. The hyperparameter κ is set to 1, leading to an asymptotic optimal
oracle inequality. This choice of parameter cannot be optimal with respect to the
data but no alternative method is proposed to choose it. Choosing I = [0.05, 0.95],
H = {h = hmin + 0.01 × i, i ∈ N, h ≤ 0.4}, hmin = 0.0225 for negative jumps
and hmin = 0.0089 for positive ones, the optimal bandwidths given by this method
are ĥ = 0.25 for negative jumps and ĥ = 0.30 for positive ones. The optimal esti-
mator q̂ĥ for negative jumps is given in Fig. 10.6a and the one for positive jumps in
Fig. 10.6b.

Chapter4 in [5] proposes a method to test if the intensity function belongs to
some parametric function. Using this method, we test if the intensity function q is
constant with respect to the wind penetration. The test is rejected for negative jumps
at level 95% (with p-value equal to 0) but is not for positive jumps (with p-value
equal to 0.47). These results confirm our intuition: the wind penetration index has an
impact on the probability to have a negative spike but not on the probability to have a
negative one. High wind penetration implies that other means of production are not
used to satisfy the demand, and renewable energies constitute the cheapest means of
energy production. Because of the non-storability of electricity, a producer owning
a plant not used to satisfy the demand needs to pause it. Sometimes, it is cheaper for
him to pay someone to consume the produced electricity rather than stop and restart
his plant. This leads to negative jumps and negative prices for the electricity spot
price.

Estimation of the Seasonality Function Γ1

In order to estimate the seasonality function, we start by removing spot values corre-
sponding to spikes and jumps. Values such that |Δn

i S| ≥ 5σ̄Δ0.49
n , which are not

always spikes, are removed; they correspond to extreme value returns. We also
remove ten values following an extreme value, that insures for a spike to have reverted
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Table 10.1 Estimated parameters of Γ1

c0,1 c1,1 c2,1 c3,1 c4,1 c5,1

Estimate 45.94 −8.2 × 10−4 1.0 × 10−8 −3.85 −6.00 −6.10

Standard error 0.16 1.7 × 10−5 3.8 × 10−10 7.6 × 10−2 7.5 × 10−2 7.6 × 10−2

τ0,1 τ1,1 τ2,1

Estimate 36744.54 1032.51 132.97

Standard error 172.85 2.12 0.30

(a) Seasonality function of the spot
price.

(b) Deseasonalised and filtered spot
price.

Fig. 10.7 Seasonality function and deseasonalised spot price

to low value. After this filtering, a least square minimisation is done. Parameters and
standard errors are provided in Table10.1. The function Γ1 and the deseasonalised
and filtered spot are depicted in Fig. 10.7a and b, respectively.

Estimation of the Continuous Stochastic Part X1

In a discrete time framework, X1 is often modelled by an ARMA process. As for
the deseasonalising, we remove the extreme values and ten values thereafter. The
autocorrelation and the partial autocorrelation of the deseasonalised spot process
without the extreme values are given in Fig. 10.8a, b. In a first instance, we choose
to model X1 in a discrete-time framework by an autoregressive process of order 24:

X1,t = Q1 (D) X1,t + ε1,t ,

where D is the lag operator DX1,t = X1,t−1 and Q1 (D) = ∑24
i=1 ai,1D

i is a poly-
nomial of degree 24 and ε1,t is a normal random variable with mean 0 and variance
σ 2
1 .
The parameters estimated by exact likelihoodmaximisation are given inTable10.2

together with their standard errors. The autocorrelation function and the partial
autocorrelation function of the residuals are given in Fig. 10.9a, b, respectively.
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(a) Autocorrelation function of the
deseasonalized and filtered spot price.

(b) Partial autocorrelation function of
the deseasonalised and filtered spot
price.

Fig. 10.8 Autocorrelation and partial autocorrelation of the deseasonalised and filtered spot price

Table 10.2 Estimated parameters of autoregressive process with order 24 and equivalent CAR
parameters on the filtered deseasonalised spot price time series considering a step time of one hour

Parameter Value Standard error CAR parameter (αi,1)

a1,1 1.19 0.004 1.95

a2,1 −0.35 0.006 38.77

a3,1 −0.0098 0.007 67.71

a4,1 0.027 0.007 631.48

a5,1 −0.013 0.008 983.30

a6,1 0.0074 0.008 5649.48

a7,1 0.035 0.008 7804.14

a8,1 −0.040 0.007 30499.38

a9,1 0.048 0.007 37143.97

a10,1 −0.0013 0.007 102868.84

a11,1 0.081 0.007 109599.10

a12,1 −0.080 0.007 217258.32

a13,1 0.078 0.007 200565.84

a14,1 −0.080 0.007 280634.70

a15,1 −0.0084 0.007 221774.15

a16,1 −0.030 0.008 210406.08

a17,1 0.034 0.008 140047.42

a18,1 −0.038 0.008 83291.14

a19,1 0.0035 0.008 45551.82

a20,1 0.0019 0.008 14618.89

a21,1 −0.030 0.008 6246.01

a22,1 0.0082 0.007 789.80

a23,1 0.27 0.007 200.64

a24,1 −0.14 0.004 2.71

σ 2
1 13.35 0.057 13.35
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(a) Autocorrelation function of the spot
price residuals.

(b) Partial autocorrelation function of
the spot price residuals.

Fig. 10.9 Autocorrelation and partial autocorrelation of the spot price residuals

The parameters corresponding to the lags 3, 5, 6, 10, 15, 19, 20 and 22 are not
significant at level 95% but fixing these parameters to 0 leads to non-convergence
of the maximisation of the likelihood. Hence all the parameters are then considered.
One observes that there remains a significant autocorrelation at lags 24 and 48, due
to a seasonal (diurnal) effect. This seasonal effect is considered in [9], where a sea-
sonal autoregressive process is used to model the spot price and fits the data better.
However, considering a seasonal autoregressive process does not allow to have an
equivalent stationary model in continuous time. Furthermore, contrarily to [9], we
choose not to consider the fractional integrated part corresponding to a long term
memory; indeed, it would consist in considering a fractional Brownian motion in an
equivalent continuous-time setting and then to leave the semi-martingale framework.

Note thatCARprocesses are a generalisationofARprocesses to a continuous-time
setting. Indeed, the exact discretisation of a CAR process is a discrete-time process
with AR dynamics. Thus, in order to obtain the parameters of the CAR process, one
can infer the parameters of the AR process corresponding to the discretised data and
map them to obtain the parameters of the CAR process using its exact discretisation.
More details about the equivalence between those parameters are given in Chap.4
of [4]. The vector

(
αi,1

)

1≤i≤24 corresponding to the CAR parameters is given in
Table10.2.

10.3.2 Model for the Wind Penetration Index

10.3.2.1 Model

As we have seen in Sect. 10.2.1, the wind penetration index takes values between 0
and 1, except for a small number of values exceeding 1. To avoid technical difficulties
stemming from these values, they are set to a number close to 1 (here 0.999) below.
We then write the wind penetration in the form

WPt = expit
(
Γ2,t + X2,t

)
,
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with expit (x) = 1
1+e−x , for x ∈ R. The function Γ2 is a seasonality function and X2

a stochastic process with mean 0. The process X2 + Γ2 is equal to logi t (WPt ) with
logi t (x) = log

(
x

1−x

)
, for x ∈ (0, 1) and is observable.

Modelling the Seasonality Function Γ2

As for the spot price, the seasonality function is assumed to be of the form

Γ2,t = c0,2 + c1,2t + c2,2t
2 + c3,2 cos

(
τ0,2 + 2π t

365 × 24

)

+c4,2 cos

(
τ1,2 + 2π t

7 × 24

)

+ c5,2 cos

(
τ2,2 + 2π t

24

)

. (10.2)

Modelling of the Continuous Stochastic Part of the Logit Wind Penetration X2

As for the spot modelling, the deseasonalised logit wind penetration X2 is modelled
by a CAR process of order 24. The dynamics of X2 is modelled by

X2 = bTX2,

dX2,t = A2X2,tdt + eσ2dW2,t ,

where

A2 =

⎛
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and
(
W2,t

)

0≤t≤T is a standard Brownian motion. This modelling is motivated by the
statistical study done below.

10.3.2.2 Calibration

Estimation of the Seasonality Function Γ2

Theparameters are estimated by a least squareminimisation. Theparameter estimates
are given in Table10.3. The seasonality function and the deseasonalised time series
X2 are shown in Fig. 10.10a, b, respectively.

Estimation of the Continuous Stochastic Part of the Logit Wind Penetration X2

As for the spot price, let us first consider a discrete-time modelling setting. The
autocorrelation function and the partial autocorrelation function, see Fig. 10.11a, b,
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Table 10.3 Estimated parameters of Γ2

c0,2 c1,2 c2,2 c3,2 c4,2 c5,2

Estimate −1.73 −1.06 × 10−5 8.82 × 10−10 0.52 0.10 0.31

Standard error 0.015 1.5 × 10−6 3.4 × 10−11 6.9 × 10−3 6.9 × 10−3 6.9 × 10−3

τ0,2 τ1,2 τ2,2

Estimate −2203.66 0.18 −94.62

Standard error 118.37 11.18 0.54

(a) Seasonality function of the logit
wind penetration.

(b) Deseasonalised logit wind penetration.

Fig. 10.10 Seasonality function and deseasonalised logit wind penetration

(a) Autocorrelation function of the
deseasonalised logit wind penetration.

(b) Partial autocorrelation function of
the deseasonalised logit wind penetration.

Fig. 10.11 Autocorrelation and partial autocorrelation of the deseasonalised logit wind penetration

respectively, suggest that one suitable model in a discrete-time framework is an
autoregressive process of the form:

X2,t = Q2 (D) X2,t + ε2,t ,

where Q2 (D) = ∑24
i=1 ai,2D

i is a polynomial of degree 24 and ε2,t a normal random
variablewithmean 0 and varianceσ 2

2 . The parameters estimatedwith exact likelihood
maximisation are given in Table10.4. The parameters corresponding to lags 8, 15,
16, 17 and 18 are not significant, but as for the spot modelling, fixing them to 0 leads
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Table 10.4 Estimated parameters of autoregressive process with order 24 and equivalent CAR
parameters on the deseasonalised logit wind penetration time series considering a step time of one
hour

Parameter Value Standard error CAR parameter (αi,1)

a1,2 1.49 0.001 1.86

a2,2 −0.54 0.002 38.97

a3,2 −0.025 0.004 63.16

a4,2 0.023 0.004 636.17

a5,2 −0.031 0.003 894.05

a6,2 0.036 0.003 5687.46

a7,2 −0.017 0.004 6869.22

a8,2 0.0028 0.006 30590.17

a9,2 −0.017 0.005 31372.93

a10,2 0.044 0.002 102444.15

a11,2 −0.0162 0.002 87798.34

a12,2 −0.084 0.004 213952.50

a13,2 0.097 0.005 149955.10

a14,2 −0.025 0.006 271808.63

a15,2 −0.0090 0.007 151212.31

a16,2 −0.0063 0.008 198823.20

a17,2 0.034 0.008 84071.24

a18,2 −0.010 0.008 75735.70

a19,2 −0.018 0.008 22726.15

a20,2 0.018 0.008 12434.60

a21,2 −0.031 0.007 2319.68

a22,2 0.031 0.006 570.60

a23,2 0.16 0.004 45.37

a24,2 −0.16 0.002 1.33

σ 2
2 0.020 0.000032 0.020

to non-convergence of the likelihood maximisation. The autocorrelation function
and the partial autocorrelation function of the residuals are given in Fig. 10.12a, b,
respectively. We note that a significant autocorrelation at lag 24 remains due to a
seasonal component, but we do not take this issue further for the same reasons as in
the spot price model.

The parameters
(
αi,2

)

1≤i≤24 are given in Table10.4 and are mapped from the
parameters of the AR process using the exact discretisation of the CAR one.

10.3.3 Dependence Modelling

In order to make the joint model between the spot electricity price and the wind
penetration index complete, we need to specify the dependence between the two
components.
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(a) Autocorrelation function of the logit
wind penetration residuals.

(b) Partial autocorrelation function of
the logit wind penetration residuals.

Fig. 10.12 Autocorrelation and partial autocorrelation of deseasonalised logit wind penetration
residuals

10.3.3.1 Model

Here we proceed by modelling the dependence between the spot price and the wind
penetration by four parameters. The first parameter ρ models a linear dependence
between the continuous part of the spot and the wind penetration which is (mildly)
observed in Sect. 10.2.2. The three other parameters are used to model the intensity
of the spike process as a two-valued function. This modelling is motivated by the
kernel estimator computed in Sect. 10.3.1.1, where the test investigating whether or
not the intensity of negative spikes is a constant function of the wind penetration
was rejected. In the following, we will now assume that the spike process Y consists
in fact of the sum of two (possibly doubly stochastic) independent Poisson-type
processes: one for the negative spikes and one for the positive ones, both having
the same mean reversion parameter β. Concerning the negative spikes, we observe
that the intensity of negative spikes increases with the wind penetration. One simple
way to take this dependence into account is to consider a regime-switching intensity
function taking two different values depending on the value of the wind penetration,
that is by a function of the form λ : t �→ λ−,min1WPt≤WPthre + λ−,max1WPt>WPthre .
There are two states: one state with a low intensity if the wind penetration is under a
certain thresholdWPthre, a second state where the intensity is higher. This modelling
is similar in spirit to the one proposed by [20], where two states were considered for
the driving Lévy process: one for low wind penetration values and one for high wind
penetration, where the distribution of the driving Lévy process in the regime with
high wind penetration featured larger skewness and fatter tails than the one in the
low wind penetration setting. Concerning the positive jumps, we choose to model
the intensity by a constant function λ : t �→ λ+, corresponding to a simple Poisson
process.
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(a) For negative jumps. (b) For positive jumps.

Fig. 10.13 Parametric estimators of the intensity of the spot spikes as a function thewindpenetration
(in year−1)

Table 10.5 Parameters for the dependence between the electricity spot price and the wind pene-
tration index

Parameters ρ λ−,min
(year−1)

λ−,max
(year−1)

WPthre λ+ (year−1)

Estimate −0.082 8.82 61.02 0.6773 16.80

10.3.3.2 Calibration

The parameters ρ are estimated by the empirical correlation between the spot resid-
uals and the wind residuals. To estimate the parameters λ−,min , λ−,max , and WPthre,
we minimise the L2 distance on I between the function x �→ λ−,min1x≤WPthre +
λ−,max1x>WPthre and the kernel estimator given in Fig. 10.6a. An estimator of the
intensity of the positive spikes is given by the number of positive jumps, which is
equal to 84, divided by the number of years, 5 (unit in year−1). The parametric inten-
sity function of negative and positive jumps as a function of the wind penetration are
respectively given in Fig. 10.13a, b. The parameters for the dependence are given in
Table10.5.

10.4 Application: Impact of the Dependence Between
Electricity Spot Prices and Wind Penetration
on the Income of an Electricity Distributor

In order to round off this article we consider an application where a joint model for
electricity spot prices andwind penetration is needed. To this end, let us take the point
of view of an electricity distributor. This distributor settles a contract with a wind
farm that produces Q% of the German and Austrian wind production, assuming that
the wind in the location considered resembles the one described by the aggregated
wind data which is available to us. The distributor buys the electricity from the wind
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farm at a fixed price K , say. Its income on this contract over a time period [0, T ] is
then equal to

P = Q
∫ T

0
(St − K )WPtCtdt,

where Ct is the German and Austrian load at each time t . As we want to study the
impact of the wind penetration on the spot prices, let us assume that the load Ct is
deterministic, knowing this assumption is rather strong. Indeed, the spot price and the
load are in fact dependent, but only the dependence arising through the seasonality
is considered in the following.

We are interested in the extreme values in the prices and their impact on the
distributor’s income. We shall consider two risk measures which are widely used in
practice: the value at risk (VaR) and the expected shortfall (ES). The value at risk
at level α ∈ (0, 1), denoted by VaRα (P) corresponds to the maximal loss given
the confidence level 1 − α, that is the quantile of order α of the distribution of P .
The expected shortfall at level α ∈ (0, 1) corresponds to the expected loss in the tail
distribution and is defined by E (P|P ≤ VaRα (P)). We choose to work with the
levels α = 95% and α = 99% that are often considered in finance.

In order to study the impact of the dependencies between electricity spot prices
and wind penetration, we consider two models. The first one is the one considered
in Sect. 10.3 where the intensity of the negative electricity spot spikes can take two
values depending on thewind penetration level. It is referred to as the two-statemodel
in the following. The second one differs by considering a constant intensity function
for the negative electricity spot prices and is referred to as the one-state model. The
value of the estimated intensity in the second model is equal to 30 divided by 5.

Let us assume that the initial time is the 1st of January 2017 and that the maturity
T is equal to the 31st of December 2017. The consumption is chosen as its season-
ality during the year 2017: this seasonality is estimated using German hourly load
data between the 1st of January 2012 and the 31st December 2016 using the same
parametric form as Γ1 and Γ2. The spot and the wind are simulated using the two
different models. Q is chosen as 1% and the strike to be 30. Results for the various
risk measures are given in Table10.6. These values are computed with the Monte
Carlo method using N = 100, 000 simulated paths. The confidence intervals for the
various risk measures are given at level 95%. The confidence intervals for the value
at risk and the expected shortfall are computed using bootstrap, with M = 100, 000

Table 10.6 Different risk measures for the portfolio with strike equal to 30

Model One-state Two-states

Expectation [742451.32, 754842.31] [642085.23, 654479.20]

VaR 95% [−906630.39,−880902.99] [−1009660.00,−978858.45]
VaR 99% [−1596797.78,−1553512.84] [−1697907.39,−1647565.64]
ES 95% [−1323982.81,−1293678.85] [−1426258.31,−1395788.60]
ES 99% [−1932779.14,−1876820.83] [−2036072.86,−1979485.25]
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new samples. The bootstrap method consists of randomly drawing M new samples
of size N from the simulated one, using the empirical distribution function as the
probability measure, and to compute the different quantities we are interested in,
here the risk measures, for each sample. We then obtain M values for these quanti-
ties and the confidence intervals for these quantities at level 95% is defined by the
values between the quantile of order 2.5% and the quantile of order 97.5% of these
M values. The reader can refer to [18], see Chap.23, p. 326, for more details about
the bootstrap method.

We observe that modelling the intensity of the negative spikes as a function of
wind penetration has an impact on the expectation of P , the values at risk at levels
95 and 99% and the expected shortfalls at levels 95 and 99% of the portfolio: they
are lower than in the case when the intensity is constant. Indeed, the portfolio is a
function of WPt St , and negative spikes for St appear more often when WPt is high.

Our intuition gained from the above application is that if one were to use a more
complex parametricmodel than the two-statemodel for the intensity function consid-
ered above, then the impact of the dependence modelling could potentially increase
which could lead to more extreme values in the corresponding electricity spot prices.
It will be worth exploring this aspect in more detail in future research.
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Chapter 11
The Optimal Control of Storage for
Arbitrage and Buffering, with Energy
Applications

James Cruise and Stan Zachary

Abstract We study the optimal control of storage which is used for both arbitrage
and buffering against unexpected events (shocks), with particular applications to the
control of energy systems in a stochastic and typically time-heterogeneous envi-
ronment. Our philosophy is that of viewing the problem as being formally one of
stochastic dynamic programming (SDP), but of recasting the SDP recursion in terms
of functions which, if known, would reduce the associated optimisation problem to
one which is deterministic, except that it must be re-solved at times when shocks
occur. In the case of a perfectly efficient store facing linear buying and selling costs
the functions required for this approach may be determined exactly; otherwise they
may typically be estimated to good approximation. We provide characterisations of
optimal control policies. We consider also the associated deterministic optimisation
problem, outlining an approach to its solutionwhich is both computationally tractable
and—through the identification of a running forecast horizon—suitable for the man-
agement of systems over indefinitely extended periods of time. We give examples
based on Great Britain electricity price data.

Keywords Storage · Buffering · Optimisation · Control

11.1 Introduction

How should one optimally control storagewhich is used simultaneously for a number
of different purposes? We study this problem in the case of a single store which is
used for both price arbitrage, i.e. for buying and selling over time, and for buffering
against unexpected events, or shocks. Here an optimal controlmust balance the some-
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times conflicting controls which would apply to these two uses of storage considered
individually. Of particular interest is the control of an energy store in a stochastic
and typically time-heterogeneous environment, where at any time a full stochastic
description of that environment may not be available over more than a relatively short
future time horizon. The shocks correspond, for example, to the loss of a generator
or transmission line, or a sudden surge in demand. Our philosophy is that of viewing
the problem as being formally one of stochastic dynamic programming (SDP), but
of recasting the SDP recursion in terms of functions which may be determined in
advance, either exactly or approximately, and which reduce the associated optimisa-
tion problem to one which is deterministic, except that it must be re-solved at those
times at which shocks occur.

There is considerable literature on the control of storage for each of the above two
purposes considered on its own. There have been numerous studies of the use of stor-
age for buffering against both the increased variability and the increased uncertainty
in electrical power systems due to the higher penetration of renewable generation—
the former due to the natural variability of such resources aswind power, and the latter
due to the inherent uncertainty of forecasting. These studies have considered many
different more detailed objectives; these range from the sizing and control of storage
facilities co-locatedwith the renewable generation so as to provide a smoother supply
and so offset the need for network reinforcement [9, 12, 20], to studies on storage
embedded within transmission networks so as to increase wind power utilisation and
so reduce overall generation costs [17, 26, 32]. In addition there have been a number
of studies into the more general use of storage for buffering, for example, so as to
provide fast frequency response to power networks [23, 24, 30], or to provide quality
of service as part of a microgrid [6, 19].

In the case of the use of storage for arbitrage, and with linear cost functions for
buying and selling at each instant in time, the problem of optimal control is the clas-
sical warehouse problem (see [5, 8, 14] and also [27] for a more recent example).
Cruise et al. [10] consider the optimal control of storage in the case where the store is
a price-maker (i.e. the size of the store is sufficiently large that its activities influence
prices in the market in which it operates) and is subject to both capacity and rate
constraints; they develop the associated Lagrangian theory, and further show that the
optimal control at any point in time usually depends only on the cost functions asso-
ciated with a short future time horizon. Recent alternative approaches for studying
the value and use of storage for arbitrage can be found in the papers [21, 25, 29, 33,
34]–see also the text [35], and the further references given in [10]. For an assessment
of the potential value of energy storage in the UK electricity system see [30].

In general the problem of using a store for buffering is necessarily stochastic.
The natural mathematical approach is via stochastic dynamic programming. This,
however, is liable to be computationally intractable, especially in the case of long
time horizons and the likely time heterogeneity of the stochastic processes involved.
Therefore much of the literature considers necessarily somewhat heuristic but nev-
ertheless plausible control policies—again often adapted to meeting a wide variety
of objectives. For example, for large stores operating within transmission networks,
the buffering policies studied have included that of a fixed target level policy [4], a
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dynamic target level policy [16], and a two-stage process with day ahead generation
scheduling and an online procedure to adapt load levels [1].

Control policies have been studied via a range of analytic and simulation-based
methods. Examples of an analytic approach can be found in [18], where partial
differential equations are utilised to model the behaviour and control of a store, and
in [2, 3], where spectral analysis of wind and load data is used with models which
also incorporate turbine behaviour. Simulation-based studies include [4, 16], which
use a bootstrap approach based on real wind forecast error data, and [1], which uses
Monte Carlo simulation of the network state.

In the present paper we use an economic framework to study the optimal control of
a store which, as previously stated, is used both for price arbitrage and for buffering
against occasional and unpredictable shocks whose occurrence is described by some
stochastic process. The store seeks to operate in such a way as to minimise over time
the expected total cost of its operation. We believe such an economic framework
to be natural when the store operates as part of some larger and perhaps very com-
plex system, provided the price signals under which the store operates are correctly
chosen—see, for example, [11]. The store may be sufficiently large as to have market
impact, leading to nonlinear cost functions for buying and selling, may be subject to
rate (as well as capacity) constraints, and, as will typically be the case, may suffer
from round-trip inefficiencies. We formulate a stochastic model which is realistic in
many circumstances and characterise some of the properties of an optimal control,
relating the results to the existing experimental literature.

Our approach is that of re-expressing the traditional SDP recursion so as to reduce
the associated optimisation problem to one which is deterministic, except only that
it must be dynamically re-solved whenever shocks occur. The specification of the
associated optimisation problem requires that the cost functions Ct , which give the
costs of buying or selling at each successive time t , are supplemented by further func-
tions At associated with the expected costs of possible shocks. The cost functions Ct

are formally assumed to be deterministic. However, when prices are stochastic, de-
terministic approximations may be used and updated at successive time steps; this
deterministic re-optimisation approach is common when storage is used for price
arbitrage alone—see, for example, [22, 27, 28, 36] and, for the case where storage
is sufficiently large as to have market impact, see [10]. The functions At (which,
although defined in terms of the stochastic process of shocks, are also deterministic)
are formally introduced in Sect. 11.2. We show that in the case of a perfectly effi-
cient store facing linear buying and selling costs the functions At may be determined
exactly, and that otherwise they may typically be estimated to a good approximation.

The optimal control up to the time of the first shock is given by the solution, at the
start of the control period, of an optimisation problem which can be regarded as that
of minimising the costs associated with the store buying and selling added to those of
notionally “insuring” for each future instant in time against the effects of the random
fluctuations, i.e. the shocks, resulting from the provision of buffering services. The
cost of such “insurance” depends on the absolute level of the store at the relevant time.
Thus the deterministic problem is that of choosing the vector of successive levels
of the store so as to minimise a total cost function

∑
t [Ct (xt ) + At (st )], subject to
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rate and capacity constraints. Here Ct (xt ) is the cost of incrementing the level of
the store (positively or negatively) at time t by xt , and the function At is such that
At (st ) is the expected additional cost of dealing with any shock which may occur at
the time t when the level of the store is then st . We define this optimisation problem
more carefully in Sect. 11.2 and discuss various possible approaches to its solution. In
the stochastic environment in which the store operates, the solution of this problem
determines the future control of the store until such time as its buffering services
are actually required, following which the level of the store is perturbed and the
optimisation problem must be re-solved starting at the new level. The continuation
of this process provides what is in principle the exactly optimal stochastic control of
the store on a potentially indefinite time scale.

In Sect. 11.2 we formulate the relevant stochastic model, discuss its applicabil-
ity, and give various approaches to the determination of the optimal control. These
approaches require the availability of good estimates of the above functions At , and
in Sect. 11.4 we show how these may be obtained. In Sect. 11.3 we provide some
characteristic properties of optimal solutions, which we relate to empirical work in
the existing literature. In Sect. 11.5 we give examples.

11.2 Model and Determination of Optimal Control

Consider the management of a store over a finite time interval which is divided into a
succession of periods indexed by 1, . . . , T . At the start of each time period t the store
makes a decision as to how much to buy or sell during that time period; however, the
level of the store at the end of that time period may be different from that planned if,
during the course of the period, the store is called upon to provide buffering services
to deal with some unexpected event or random shock. Such a shockmight be the need
to supply additional energy during the time period t due to an unexpected failure—
for example that of a generator—or might simply be the difference between forecast
and actual renewable generation or demand.

We suppose the store has a capacity of E units of energy. Similarlywe suppose that
the total energy whichmay be input or output during any time period is subject to rate
(i.e. power) constraints PI and PO respectively. This slotted-timemodel corresponds,
for example, to real world energy markets where energy is typically traded at half-
hourly or hourly intervals, with the actual delivery of that energy occurring in the
intervening continuous time period. Detailed descriptions of the operation of the UK
market can be found in [15, 31]. The theory developed here easily extends to the
case where the above storage parameters are time dependent.

Define also the set X = [−PO , PI ]. Both buying and selling prices associated
with any time period t may be represented by a convex function Ct defined on X
such that Ct (x) is the cost of a planned change of x to the level of the store during
the time period t . Typically each function Ct is increasing and Ct (0) = 0; then, for
positive x ,Ct (x) is the cost of buying x units and, for negative x ,Ct (x) is the negative
of the reward for selling −x units. Then the convexity assumption corresponds, for
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each time t , to an increasing cost of buying each additional unit, a decreasing reward
obtained for selling each additional unit, and every unit buying price being at least as
great as every unit selling price.When, as is usually the case, the store is not perfectly
efficient in the sense that only a fraction η ≤ 1 of the energy input is available for
output, then this may be captured in the cost function by reducing selling prices by
the factor η; under the assumption that the cost functionsCt are increasing it is easily
verified that this adjustment preserves the above convexity of the functions Ct . We
thus assume that the cost functions are so adjusted so as to capture any such round-trip
inefficiency. The functions Ct are taken to be deterministic but, as discussed in the
Introduction, in a stochastic environment a deterministic re-optimisation approach
is possible.

A further form of possible inefficiency of a store is leakage, whereby a fraction
of the contents of the store is lost in each unit of time. We do not explicitly model
this here. However, only routine modifications are required to do so, and are entirely
analogous to those described in [10].

Suppose that at the end of each time period t − 1 the level of the store is given by
the random variable St−1, where we take S0 to be given by the initial level s0 of the
store. We assume that one may then choose a planned adjustment (contract to buy or
sell) xt ∈ X and such that St−1 + xt ∈ [0, E] to the level of the store during the time
period t . The planned adjustment xt is a (deterministic) function of the level St−1 and
the cost of this adjustment isCt (xt ). Subsequent to this, during the course of the time
period t , the store may be subject to a shock or random disturbance, corresponding to
the need to provide unexpected buffering services. This shock has an associated cost,
typically due to the store not being able to provide the required services, and may
further disturb the final level of the store at the end of the time period t . We assume
that the cost of any shock occurring during the time period t and the resulting actual
level of the store at the end of the time period t are given by random variables whose
joint distribution is a function of the planned final level St−1 + xt of the store for the
end of that time period, but that, given this planned final level, these random variables
are otherwise independent of all else. Thus we may assume that there are given T
independent stochastic processes (Dt (s), St (s))s∈[0,E] each taking values in R × R

(where each such “process” is indexed by the possible levels s of the store rather than
by time), and that the shock cost and actual store level at the end of each time period t
are then given respectively by Dt (St−1 + xt ) and St (St−1 + xt ); in the absence of
any shock during the time period t , we have Dt (s) = 0 and St (s) = s for all s. The
assumption that the joint distribution of the shock cost and store level disturbance
associated with any time period t depend only on the planned level St−1 + xt of the
store at the end of the time period t is likely to be most accurate in applications
where the store is able to adjust to its target level quickly within each time period, or
where the level of the store does not change too much within a single time period;
its relaxation–for example, by allowing a dependence of these random variables
on a more general function of St−1 and xt—simply complicates without essentially
changing the analysis below. Note that the model further assumes that disturbances
do not persist beyond the end of the time periods in which they occur. Under any
given control policy for the management of the store satisfying the above conditions
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(i.e. under any specification, for each time t , of the planned increment xt as a function
of the realised value of St−1), the levels St of the store at the end of the successive
time periods t form a Markov process.

For each t , and conditional on each possible value st−1 of the level St−1 of the
store at the end of the time period t − 1, define Vt−1(st−1) to be the expected future
cost of subsequently managing the store under an optimal control—where, here and
elsewhere, by an optimal control wemean a control defined as above under which the
expected cost of managing the store is minimised. We then have the SDP recursion

Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[
Ct (xt ) + E[Dt (st−1 + xt ) + Vt (St (st−1 + xt ))]

]
, (11.1)

whereE denotes expectation and where, as above, st−1 + xt and St (st−1 + xt ) (= St )
are respectively the planned and actual levels of the store at the end of the time pe-
riod t . (The assumed independence of the “processes” of paired random variables
{(Dt(s), st (s))}s∈[0,E] defining shock costs and disturbances in successive time peri-
ods ensures that it is sufficient to consider unconditional expectations in (11.1).) We
further have the terminal condition

VT (sT ) = 0 (11.2)

for all possible levels sT of the store at the end of the time period T . The recur-
sion (11.1) and the terminal condition (11.2) may in principle be used to determine
an optimal control. In particular, given the level st−1 of the store at the end of any
time period t − 1, the optimal planned increment to the level of the store for the time
period t is given by x̂t (st−1)where this is defined to be the value of xt which achieves
the minimisation in the recursion (11.1).

However, as discussed in the Introduction, an SDP approach may frequently be
computationally intractable and is further not suitable for the management of a store
over indefinite time horizons. Thus, for each t , let the (deterministic) function At on
[0, E] be such that, for any planned level st = st−1 + xt of the store for the end of
the time period t ,

At (st ) = E[Dt (st ) + Vt (St (st ))] − Vt (st ), (11.3)

where again the random variable St (st ) is the actual level of the store at the end of the
time period t . Given the planned level st of the store for the end of the time period t , the
quantity At (st ) is the difference between the expected cost E(Dt (st ) + Vt (St (st )))
of optimally managing the store during and subsequent to the time period t and
the corresponding expected cost Vt (st ) which would be incurred in the guaranteed
absence of any shock during that time period. We shall show in Sect. 11.4 that in
many cases the functions At may be efficiently determined either exactly or to a very
good approximation even in the absence of any knowledge of the functions Vt .

It now follows from (11.3) that the recursion (11.1) may be rewritten as
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Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[
Ct (xt ) + At (st−1 + xt ) + Vt (st−1 + xt ),

]
, (11.4)

where we again require the terminal condition (11.2). Further, given the level st−1 of
the store at the end of any time period t − 1, the optimal planned increment x̂t (st−1)

to the level of the store for the time period t is given by the value of xt which achieves
the minimisation in the recursion (11.4).

The (backwards) recursion (11.4) is entirely deterministic. Given a knowledge of
the functions At (see Sect. 11.4), a complete solution of the recursion (11.4) would
determine, for all t = 1, . . . , T and for all possible levels st−1 of the store at the end
of the time period t − 1, both the minimised expected future cost Vt−1(st−1) and
the optimal planned increment x̂t (st−1) to the level of the store for the time period t .
Now let the (Markov) process (Ŝ0, . . . , ŜT ), with Ŝ0 = s0, correspond to the sequence
of levels of the optimally controlled store. Then, since this process is random, the
optimal planned increment x̂t (Ŝt−1) for each time period t is not known until the end
of the time period t − 1.

However, the solution of the recursion (11.4) as above, typically require the deter-
mination of each of the functions Vt for all possible values of its argument. We there-
fore define a deterministic optimisation problem whose solution s∗ = (s∗

0 , . . . , s
∗
T ),

with s∗
0 = s0, coincides with the optimal control of the store up to the time of the

first shock. As we discuss below, the solution of this optimisation problem is typi-
cally computationally much simpler than the complete solution of recursion (11.4).
However, it is necessary to re-solve this optimisation problem at the end of each time
period in which a shock occurs.

For any vector s = (s0, . . . , sT ) of possible store levels, where s0 is constrained
to be the initial level of the store, and for each t = 1, . . . , T , define

xt (s) = st − st−1. (11.5)

Define also the optimisation problem:

P: choose s = (s0, . . . , sT ), where again s0 is the initial level of the store, so as to
minimise

T∑

t=1

[Ct (xt (s)) + At (st )] (11.6)

subject to the capacity constraints

0 ≤ st ≤ E, 1 ≤ t ≤ T, (11.7)

and the rate constraints

xt (s) ∈ X, 1 ≤ t ≤ T . (11.8)
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Let s∗ = (s∗
0 , . . . , s

∗
T ), with s∗

0 = s0, denote the solution to the above problem P.
The recursion (11.4) is the dynamic programming recursion for the solution of the
problem P and it follows straightforwardly from iteration of (11.4), using also the
terminal condition (11.2), that x1(s∗) achieves the minimisation in (11.4) for t = 1,
i.e. that x1(s∗) = x̂1(s0) is planned first increment in the optimal control of the store.
Thus, from (11.5), provided no shock occurs during the time period 1 so that Ŝ1 =
s0 + x̂1(s0), we have also that Ŝ1 = s∗

1 . More generally, let the random variable T ′
index the first time period duringwhich a shock does occur. Then repeated application
of the above argument gives immediately the following result.

Theorem 11.1 For all t < T ′, we have Ŝt = s∗
t .

The solution to the problem P therefore defines the optimal control of the store
up to the end of the time period T ′ defined above. At that time it is necessary to
reformulate the problem P, starting at the end of the time period T ′, instead of at
time 0, and replacing the initial level of the store s0 by the perturbed level ŜT ′ at that
time. Iterative application of this process at the times of successive shocks leads to
the dynamically determined stochastic optimal control—which is exact to the extent
that the functions At are known exactly.

Given that the functions At are known, either exactly or to a sufficiently good
approximation (again see Sect. 11.4), the deterministic optimisation problem P may
be solved by using strong Lagrangian techniques to derive a forward algorithmwhich
is computationally much simpler than the use of a dynamic programming approach,
and which further identifies a running planning or forecast horizon. The latter is such
that, for each time t there exists a time t ′ > t such that the optimal decision at time t
does not depend on the functions Cu and Au for u > t ′. This is proved in [10] for the
case in which the functions At are zero, but the more general result and algorithm
may be derived along the same lines. The existence of such a running forecast horizon
further reduces the computation required in the solution of the problem P and makes
the present approach particularly suitable for the management of storage over a very
long or indefinite time period. It further means that, in an environment in which
prices—and so the cost functions Ct—are uncertain, in order to make the optimal
decision at any time t as above it is only necessary to estimate the cost functionsCu for
values of u up to the associated forecast horizon t ′. In the case where, as in the fairly
realistic examples of Sect. 11.5, the store fills and partially empties on an approximate
daily cycle, the length of this forecast horizon is typically of the order of a day or
two. In practice electricity prices in particular may often be estimated accurately on
such time scales, and a deterministic re-optimisation approach, as discussed in the
Introduction, is likely to suffice for the optimal control of the store.
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11.3 Characterisation of Optimal Solutions

In this section we establish some properties of the functions x̂t (·) defined in the pre-
vious section (as achieving theminimisation in the recursion (11.4)) and determining
the optimal control of the store.

One case of particular interest is that where the store is a price-taker (i.e. the
store is not so large as to impact itself on market prices), so that, for each t , the cost
function Ct is given by

Ct (x) =
{
c(b)
t x, if x ≥ 0

c(s)
t x, if x < 0,

(11.9)

where the unit “buying” price c(b)
t and the unit “selling” price c(s)

t are such that c(s)
t ≤

c(b)
t (possible inequality resulting, for example, from the round-trip inefficiency of
the store—see the discussion of Sect. 11.2.)

Theorem11.2 below is a simple result which shows that in the case where buying
and selling prices are equal, and provided rate constraints are nonbinding, the optimal
policy is a “target” policy. That is, for each time period t there exists a target level ŝt
such that, given that the level of the store at the end of the immediately preceding
time period is st−1, the optimal planned level st−1 + xt of the store to be achieved
during the time period t is set equal to ŝt , independently of st−1.

Theorem 11.2 Suppose that, for each t, we have c(b)
t = c(s)

t = ct ; define

ŝt = argmin
s∈[0,E]

[ct s + At (s) + Vt (s)], (11.10)

where the functions At and Vt are as introduced in Sect.11.2. Then, for each t and
for each st−1, we have x̂t (st−1) = ŝt − st−1 provided only that this quantity belongs
to the set X.

Proof The recursion (11.4) here becomes, for each t ,

Vt−1(st−1) = min
xt∈X

st−1+xt∈[0,E]

[
ct xt + At (st−1 + xt ) + Vt (st−1 + xt )

]
, (11.11)

and the above minimisation is achieved by xt such that st−1 + xt = ŝt , provided only
that xt ∈ X .

In order to deal with the possibility of rate constraint violation, or themore general
price-taker case where c(s)

t < c(b)
t , or the general case where the cost functionsCt are

merely required to be convex, we require the additional assumption of convexity of
the functions At . This condition, while not automatic, is reasonably natural in many
applications—see the examples of Sect. 11.5.
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Theorem 11.3 Suppose that, in addition to convexity of the functions Ct , each of
the functions At is convex. Then, for each t:

(i) the function Vt−1 is convex;
(ii) x̂t (st−1) is a decreasing function of st−1;
(iii) st−1 + x̂t (st−1) is an increasing function of st−1.

Proof To show (i) we use backwards induction in time. The function VT is convex.
Suppose that, for any given t ≤ T , the function Vt is convex; we show that the
function Vt−1 is convex. For any given values s

(i)
t−1, i = 1, . . . , n, of st−1 and for any

convex combination s̄t−1 = ∑n
i=1 κi s

(i)
t−1, where each κi ≥ 0 andwhere

∑n
i=1 κi = 1,

define also x̄t = ∑n
i=1 κi x̂t (s

(i)
t−1). Note that x̄t ∈ X and that s̄t−1 + x̄t ∈ [0, E]. Then,

from (11.4),

Vt−1(s̄t−1) ≤ Ct (x̄t ) + At (s̄t−1 + x̄t ) + Vt (s̄t−1 + x̄t )

≤
n∑

i=1

κi

(
Ct (x̂t (s

(i)
t−1)) + At (s

(i)
t−1 + x̂t (s

(i)
t−1)) + Vt (s

(i)
t−1 + x̂t (s

(i)
t−1))

)

=
n∑

i=1

κi Vt−1(s
(i)
t−1),

where the second inequality above follows from the convexity of the functions Ct ,
At and Vt (the latter by the inductive hypothesis). Thus Vt−1 is convex as required.

To show (ii) and (iii) we make use of the following result: let f and g be functions
defined on the real line R such that g is convex, and suppose that, for each fixed s,
the function of x ∈ R given by f (x) + g(s + x) is minimised by x̂(s); then x̂(s) is
a decreasing function of s. To see this, suppose that s1 < s2 and note that, under the
given assumptions,

f (x̂(s1)) + g(s1 + x̂(s1)) ≤ f (x) + g(s1 + x), x ∈ R. (11.12)

The convexity of g implies straightforwardly that

g(s2 + x̂(s1)) − g(s2 + x) ≤ g(s1 + x̂(s1)) − g(s1 + x), for all x > x̂(s1).
(11.13)

It follows from (11.12) and (11.13) that

f (x̂(s1)) + g(s2 + x̂(s1)) ≤ f (x) + g(s2 + x), for all x > x̂(s1).

It now follows from the above that x̂(s2) is (or, in the absence of uniqueness, may
be taken to be) less than or equal to x̂(s1).

The result (ii) of the theorem now follows by applying the above result with the
function f given by Ct and the function g given by At + Vt , since At is assumed
convex and, from (i), Vt is also convex. (That the minimisation in (11.4) is taken over
those x within a closed interval of the real line causes no problems: for example, this
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restriction may be formally dropped by extending the domains of definition of Ct ,
At and Vt to the entire real line, taking them to be infinite outside the intervals on
which they are naturally defined.)

The result (iii) of the theorem similarly follows by applying the above general
result with the function f given by At + Vt and the function g given by the convex
function Ct (in the recursion (11.4) writing Ct (xt ) = Ct (−st−1 + (st−1 + xt )) and,
for each fixed value of st−1, regarding the minimisation in (11.4) as being over the
variable st−1 + xt ).

Remark 11.1 Given initial levels s(1)
0 and s(2)

0 of the store, let {S(1)
t } and {S(2)

t } (with
S(1)
0 = s(1)

0 and S(2)
0 = s(2)

0 ) be the respective optimally controlled stochastic pro-
cesses of levels of the store—coupled with respect to the underlying stochastic
process of shocks. Suppose we additionally assume that the level of the store imme-
diately following any shock is an increasing function of the level immediately prior
to that shock. It then follows from (iii) of Theorem11.3, that under the conditions
of the theorem, if s(1)

0 ≤ s(2)
0 then S(1)

t ≤ S(2)
t for all subsequent t . This monotonicity

property proves useful in Sect. 11.4.

We now return to the price-taker case, in which the cost functions are as defined
by (11.9), and which corresponds to a store which is not sufficiently large as to have
market impact. Here we prove a strengthened version of Theorem11.3. For each t ,
given that the function At is convex, define

s(b)
t = argmin

s∈[0,E]
[c(b)

t s + At (s) + Vt (s)] (11.14)

and similarly define

s(s)
t = argmin

s∈[0,E]
[c(s)

t s + At (s) + Vt (s)]. (11.15)

Note that the above convexity assumption and the condition that, for each t , we have
c(s)
t ≤ c(b)

t imply that s(b)
t ≤ s(s)

t . We now have the following result.

Theorem 11.4 Suppose that the cost functions Ct are as given by (11.9) and that
the functions At are convex. Then the optimal policy is given by: for each t and given
st−1,

x̂t (st−1) =

⎧
⎪⎨

⎪⎩

min(s(b)
t − st−1, PI ) if st−1 < s(b)

t ,

0 if s(b)
t ≤ st−1 ≤ s(s)

t ,

max(s(s)
t − st−1, −PO) if st−1 > s(s)

t .

(11.16)

Proof For each t , it follows from the convexity of the functions Ct , At and Vt (the
latter by the first part of Theorem11.3) that, for st−1 < s(b)

t the function Ct (xt ) +
At (st−1 + xt ) + Vt (st−1 + xt ) is minimised by xt = s(b)

t − st−1, for s
(b)
t ≤ st−1 ≤

s(s)
t it is minimised by xt = 0, while for st−1 > s(s)

t , it is minimised by xt = s(s)
t −
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st−1. The required result now follows from the recursion (11.4) (on again using the
convexity of the functions Ct , At and Vt to account for the rate constraint in that
recursion).

Thus in general in the price-taker case there exists, for each time period t , a “target
interval” [s(b)

t , s(s)
t ] such that, if the level of the store at the end of the previous time

period is st−1, the optimal policy is to chose x̂t (st−1) so that st−1 + x̂t (st−1) is the
nearest point (in absolute distance) to st−1 lying within, or as close as possible to,
the above interval. In the case where c(b)

t = c(s)
t = ct , the above interval shrinks to

the single point ŝt defined by (11.10).
These results shed some light on earlier, more applied, papers of Bejan et al. [4]

and Gast et al. [16], in which the uncertainties in the operation of a energy store result
from errors in wind power forecasts. Themodel considered in those papers is close to
that of the present paper, aswe nowdescribe. The costs of operating the store result (a)
from round-trip inefficiency, which in the formulation of the present paper would be
captured by the cost functionsCt as defined by (11.9) with c

(s)
t < c(b)

t and withCt the
same for all t , and (b) frombuffering events, i.e. from failures tomeet demand through
insufficient energy available to be supplied from the store when it is needed, and from
energy losses through store overflows. In the formulation of the present paper these
costs would be captured by the functions At . In contrast to the present paper decisions
affecting the level of the store (the amount of conventional generation to schedule
for a particular time) are made n time steps—rather than a single time step—in
advance, when wind power is forecast and conventional generation scheduled. The
underlying arguments leading to Theorems11.2–11.4 continue to apply, at least to a
good approximation. In particular sample path arguments suggest that the reduction
of round-trip efficiency slows the rate at which the store-level trajectories—started
from different initial levels but with the same stochastic description of future shock
processes—converge over subsequent time. In particularGast et al. [16] confirm these
results empirically, considering round-trip efficiencies less than 1 and noting that in
this case simple “target” policies such as that described by Theorem11.2 (which is
applicable in the case of round-trip efficiencies equal to 1) are here suboptimal.

11.4 Determination of the Functions At

We described in Sect. 11.2 how, given a knowledge of the functions At defined
by (11.3), the optimal control of the store may be reduced to the solution of an op-
timisation problem which must be re-solved at those randomly occurring times at
which shocks occur. In this section we consider conditions under which the func-
tions At may be thus known, either exactly or to good approximations—in all cases
without the need for the prior determination of the functions Vt .

It is convenient to rewrite slightly the definition (11.3) of each of the functions At

as
At (st ) = EDt (st ) + E[Vt (St (st )) − Vt (st )], (11.17)
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and to regard At (st ) as the sum of the two given expectations on the right side
of (11.17). We shall argue below that in many applications it the first of these two
expectations, i.e. EDt (st ), that is likely to be much the dominant term on the right
side of (11.17). Since, for each t and for each st , the distribution of Dt (st ) is part
of the model specification, the computation of EDt (st ) is straightforward. We do,
however, consider below how one might reasonably obtain this major part of the
model specification, i.e. the cost of dealing with a random shock as a function of the
level of the store at the time at which the shock occurs.

The second expectation on the right side of (11.17) is the difference between the
expected cost EVt (St (st )) of optimally managing the store subsequent to the time
period t (when the actual level of the store at the end of that time period is then given
by the random variable St (st )) and the corresponding expected cost Vt (st ) which
would be incurred in the absence of any shock during the time period t (so that the
level of the store at the end of that time period was then its planned value st ). This
difference EVt (St (st )) − Vt (st ) may also be understood in terms of a coupling of
optimally controlled processes, started at the end of the time period t at the levels
St (st ) and st , and is the expectation of the difference of the costs of their optimal
control up to the time at which the coupled processes first agree.

Now consider the somewhat idealised conditions of Theorem11.2, where the
store is a perfectly efficient price-taker, so that each cost function Ct is given by
Ct (x) = ct xt for somemarket price ct , andwhere each target level ŝt given by (11.10)
is assumed to be always achievable. It follows from Theorem11.2 that, regardless of
any shock which may occur during any given time period t , the planned level of the
store for the end of the time period t + 1 is ŝt+1. Hence, from (11.4),

Vt (St (st )) − Vt (st ) = Ct+1(st − St (st )), (11.18)

so that, from (11.17),

At (st ) =
{
EDt (st ) + Ct+1(st − ESt (st )), t < T,

EDT (sT ), t = T .
(11.19)

Thus the functions At may here be determined—in terms of the given distributions of
the random variables Dt (s) and St (s)—without the need to estimate the functions Vt .

More generally, the relations (11.19) correspond to the modified control in which,
following any shock and hence store level disturbance during any time period t , the
disturbed level St (st ) of the store is immediately returned to the planned level st for
the end of that period at a costCt+1(st − St (st )); subject to this the store is otherwise
optimally managed.

In the absence of this modification, the relations (11.19) may be viewed as pro-
viding a reasonable first approximation to the functions At—given the difficulties, in
applications, of estimating the both the likelihood and the precise consequences of
shocks, it is not clear that one could do significantly better. Better approximations,
if required, might be made by allowing more time for the disturbed and undisturbed



222 J. Cruise and S. Zachary

processes to couple as described above, and by reasoning as before so as to obtain
a more refined version of (11.19). For example, one might extend the coupling time
until a known future time at which it is planned that the store will be full. (This is
often realistic for electricity storage which may aim to be full at the end of each night
so as to take advantage of much higher daytime prices—we give examples based on
real price data and realistic store characteristics in Sect. 11.5.) Then, for any planned
level st of the store at the end of any time period t , the quantity Vt (St (st )) − Vt (st )
may be estimated analogously to (11.18) by considering optimal controls from the
end of the time period t up to the first subsequent time at which the store is planned
to be full.

Finally in the important special case in which shocks are rare but potentially
expensive (as might be the case when the store is required to pay the costs of failing
to have sufficient energy to deal with an emergency), then, for each t and st , the
probability that St (st ) is not equal to st is small, and themajor contribution to At (st ) as
defined by (11.17) is likely to beEDt (st ). In this case either the simple approximation
At (st ) = EDt (st ), or the more refined approximation given by (11.19), may well
suffice in applications.

In applications there is also a need, as part of the model specification, to realis-
tically estimate—for each possible planned level st of the store at the end of each
time period t—the joint distribution of the random vector (Dt (st ), St (st )) modelling
the cost of any shock and the corresponding store level disturbance. This joint dis-
tribution is in general a function of the amount of energy Yt required to deal with
any shock during the time period t , where in practice the distribution of the random
variable Yt may need to be determined by observation. We consider two particular
possibilities, both of which are natural in the context of modelling risk in power
systems, where the focus may either be on loss of load or on energy unserved (see,
for example, [7]):

(i) the cost of a shock occurring during the time period t is simply a constant at > 0
if there is insufficient energy within the store to meet it, and is 0 otherwise;
we then have Dt (st ) = atI(Yt > st ), where I(·) is the indicator function, and
St (st ) = max(0, st − Yt );

(ii) the cost of a shock occurring during the time period t is proportional to the
shortfall in the energy necessary to meet that shock; we then have Dt (st ) =
a′
t max(0,Yt − st ), where a′

t is the constant of proportionality, and again St (st ) =
max(0, st − Yt ).

Given the model of Sect. 11.2, the functions At may be determined (as described
in this section) from the specification of the joint distributions of the random vectors
(Dt (s), St (s)), together with the specification of the cost functions Ct and the store
characteristics. In Sect. 11.5 we consider some plausible functional forms of the
functions At .
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Fig. 11.1 GB half-hourly spots prices (£/MWh) for March 2011

11.5 Examples

We give some examples, in which we solve (exactly) the optimal control problem P

formally defined in Sect. 11.2. We investigate how the optimal solution depends on
the cost functions Ct and on the functions At which reflect the costs of providing
buffering services.

The cost functions Ct are derived from half-hourly electricity prices in the Great
Britain spot market over the entire year 2011, adjusted for a modest degree of market
impact, as described in detail below. Thus we work in half-hour time units, with
the time horizon T corresponding to the number of half-hour periods in the entire
year. These spot market prices show a strong daily cyclical behaviour (corresponding
to daily demand variation), being low at night and high during the day. This price
variation can be seen in Fig. 11.1 which shows half-hourly GB spot prices (in pounds
per megawatt-hour) throughout the month of March 2011. There is a similar pattern
of variation throughout the rest of the year.

Without loss of generality, we choose energy units such that the rate (power)
constraints are given by PI = PO = 1 unit of energy per half-hour period. For il-
lustration, we take the capacity of the store to be given by E = 10 units of energy;
thus the store can completely fill or empty over a 5-h period, which is the case, for
example, for the large Dinorwig pumped storage facility in Snowdonia [13].

We choose cost functions Ct of the form
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Ct (x) =
{
ct x(1 + δx), if x ≥ 0

ηct x(1 + δx), if x < 0,
(11.20)

where the ct are proportional to the half-hourly electricity spot prices referred to
above, where η is an adjustment to selling prices representing in particular round-
trip efficiency as described in Sect. 11.2, and where the factor δ > 0 is chosen so as
to represent a degree of market impact (higher unit prices as the store buys more
and lower unit prices as the store sells more). For our numerical examples we take
η = 0.85 which is a typical round-trip efficiency for a pumped-storage facility such
as Dinorwig. We choose δ = 0.05; since the rate constraints for the store are PI =
PO = 1 this corresponds to a maximum market impact of 5%. While this is modest,
our results are qualitatively little affected as δ is varied over a wide range of values
less than one, covering therefore the range of possible market impact likely to be
seen for storage in practice.

Finally we need to choose the functions At reflecting the costs of providing buffer-
ing services. Our aim here is to give an understanding of how the optimal control of
the store varies according to the relative economic importance of cost arbitrage and
buffering, i.e. according to the relative size of the functions Ct and At . We choose
functions At which are constant over time t and of the form At (s) = ae−κs and
At (s) = b/s for a small selection of the parameters a, κ and b. The extent to which
a store might provide buffering services in applications is extremely varied, and so
the likely balance between arbitrage and buffering cannot be specified in advance.
Rather we choose just sufficient values of the above parameters to show the effect
of varying this balance. For a possible justification of the chosen forms of the func-
tions At , see Sect. 11.4; in particular the form At (s) = ae−κs is plausible in the case
of light-tailed shocks, while the form At (s) = b/s shows the effect of a slow rate of
decay in s. (Note that in these examples we allow that the functions At should not
necessarily be constant for values of their arguments greater than the rate constraint
of 1: it is plausible that in practice greater quantities in store than can immediately be
discharged to deal with a shock may nevertheless assist in dealing with its ongoing
effects at subsequent times and, in the event of such a shock, may be considered as
being notionally set aside for this purpose.)

In each of our examples, we determine the optimal control of the store over the
entire year, with both the initial level S∗

0 and the final level S
∗
T given by S∗

0 = S∗
T = 0.

Figure11.2 shows this optimal control (the sequence of successive levels of the store)
for the time window corresponding to the month of March for each of the four
cases At (s) = 0, At (s) = e−s , At (s) = 10e−s , and At (s) = 1/s. In each case the
corresponding running forward horizon, as defined in Sect. 11.2, is generally of the
order of a day or two. (Recall that the cost functions for March are determined by
the prices illustrated in Fig. 11.1. Although the optimal control is determined over
the entire year, it may be verified empirically that in every case the restriction of this
optimal control to any given time window is independent of the functions Ct and At

for times t which are outside of a period which includes this time window and a few
days on either side of it.)
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Fig. 11.2 Optimally controlled store level throughout March 2011 for each of the four cases
At (s) = 0, At (s) = e−s , At (s) = 10e−s , and At (s) = 1/s

The case At (s) = 0 corresponds to the store incurring no penalty for failing to
provide buffering services and optimising its control solely on the basis of arbi-
trage between energy prices at different times. The daily cycle of prices (again see
Fig. 11.1) is sufficiently pronounced that here the store fills and empties—or nearly
so—on a daily basis, notwithstanding the facts that the round-trip efficiency of 0.85
is considerably less than 1 and that the minimum time for the store to fill or empty
is 5h.

In the case At (s) = e−s the store is just sufficiently incentivised by the need
to reduce buffering costs that it rarely empties completely (though it does so very
occasionally). Otherwise the behaviour of the store is very similar to that in the case
At (s) = 0. In both the cases At (s) = 10e−s and At (s) = 1/s the costs of failing to
provide buffering services are much higher, and so the optimised level of the store
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rarely falls below 25% of its capacity. Note the very similar behaviour in these two
cases despite the very different forms of the “penalty” functions At .
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Chapter 12
Optimal Management of a Wind Power
Plant with Storage Capacity

Jérôme Collet, Olivier Féron and Peter Tankov

Abstract Weconsider the problemof awind producerwho has access to the spot and
intraday electricity markets and has the possibility of partially storing the produced
energy using a battery storage facility. The aim of the producer is to maximize the
expected gain of selling in the market the energy produced during a 24-h period. We
propose and calibrate statistical models for the power production and the intraday
electricity price, and compute the optimal strategy of the producer via dynamic
programming.

Keywords Wind power generation · Battery storage · Intraday electricity market ·
Stochastic control

12.1 Introduction

Wind power is now widely recognized as an important part of the global energy
mix, and the actors of the energy industry must cope with the intermittent and to a
large extent unpredictable nature of the wind power production. To deal with this
intermittency, various economic and physical tools are available to the agents. On
the one hand, intraday markets, where wind power may be traded up to 30min prior
to delivery, allow the wind power producers to adjust their delivery volume estimates
as the forecast becomes more precise. On the other hand, physical storage facilities
whose cost is constantly declining, may be used to smooth out the production peaks
and store the extra power until it can be sold at a profit.
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In this paper, we therefore consider the problem of a (small) wind producer who
has access to the spot (day-ahead) and intraday electricity markets and has the pos-
sibility of partially storing the produced energy using a battery storage facility. The
role of battery storage is two-fold: on the one hand, it smoothes the variations of
wind power production, and on the other hand, it allows to exploit intertemporal
price discrepancies in the day-ahead market. The aim of the producer is to maximize
the expected gain of selling in the market the energy produced during a 24-h period.
The producer first makes a bid in the day-ahead electricity market for the following
day, and then, when the intraday markets for that day opens, may adjust her position
by trading in the intraday market. The strategy of the producer therefore consists of
a static part (position in the day-ahead market) and a dynamic part (trading strategy
in the intraday market). The deliveries in the spot and intraday market must be at
all times balanced by the wind production and battery injections/withdrawals. The
dynamic trading strategy is thus constrained by the finite capacity of the battery.
To determine the dynamic part of the strategy, we set up a stochastic model for the
intraday market price and the realized power production.

We mention that the majority of wind power producers in Europe still operate
within the framework of guaranteed purchase schemes whereby all the power they
produce is bought by the state-owned operator at a fixed price. However, as the
guaranteed purchase schemes are either phased out or replaced with more market-
oriented subsidies, the wind power producers face the need to sell the future power
production in the open markets in the absence of precise knowledge of the volume
to be produced.

In the literature, optimal operation of battery storage facilities has primarily been
considered in the context of microgrid control (see [11] for an up-to-date review
and, e.g., [8] for an example of using dynamic programming techniques similar in
spirit to the ones employed in the present paper). Another interesting reference in
this respect is [7], where the impact of forecast errors on optimal sizing of battery
storage in an isolated microgrid is evaluated. On the other hand, optimal bidding
strategies in intraday electricity markets for wind power producers who do not have
access to battery storage, have been studied in a number of papers, see e.g., [1, 2,
6, 10]. However, among wind power producers there is an interest towards investing
into battery storage to smooth out the intermittency of the renewable resource. More
recently, therefore, several authors have considered optimal bidding strategies for
systems consisting of a wind power plant and a storage capacity.

In [4, 5], optimal bidding strategies in the day-ahead market for wind-storage
systems are determined. The optimization is in this case static and the presence of
intradaymarket or the dynamic properties ofmarket prices are not taken into account.
However, a recent study [9] shows that intraday markets are increasingly used by
renewable energy producers to balance the forecasting errors in their production. It is
therefore important to evaluate the economic benefits of battery storage facilities for
renewable power producers and to determine optimal strategies for their operation
in the presence of intraday market. One study of bidding strategies in both day-
ahead and intraday markets is [3], where it is considered that market participants can
readjust their bids 6 times per day in the intraday market. The price are, however,
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assumed to be the same in the day-ahead in intraday market. Compared to these
references, our contribution is to introduce stochastic dynamic models for both the
wind power production and the intraday market price, calibrate them to market price
and wind production data, and find globally optimal dynamic bidding and operation
strategies for the wind producer using the stochastic control approach.

The paper is structured as follows. After describing the optimization problem
faced by the producer in Sect. 12.2, we introduce stochastic models for the intraday
price process and the realized production process. The methodology for calibrating
these models to real data is described in Sect. 12.3. Finally, in Sect. 12.4, we solve
the optimization problem of the agent within the framework of stochastic control and
optimal quantization and present numerical applications. The data used for model
calibration and numerical examples comes from a power plant in France consisting
of three 2MW wind turbines.

12.2 Description of the Model and the Optimization
Problem

In this section, we detail our assumptions concerning the structure of electricity
markets and formulate the optimization problem faced by the power producer and
the models we use for power production and the market prices.

Structure of the Intraday Market

Intraday electricity market is an electricity exchange where blocks of power for
delivery on a given day may be traded starting typically from 15h on the day before,
up to a very short time (e.g., 30 or 60min) before delivery. A block corresponds to
the delivery of a certain power throughout a fixed time period, such as an hour, a
half-hour or a quarter. The trading day in the intraday market is divided into N such
delivery periods of equal length.

Although the trading in the intraday market starts at 15h of the previous day, at
which point purchases/sales can bemade for any delivery period of the following day,
in practice liquidity becomes sufficient only 2–3h prior to delivery (see Fig. 12.1).
For this reason, and to simplify the analysis, we assume that the power producer
may trade in the intraday market only once for each delivery period, at a fixed time
interval δ (e.g., one hour) before delivery. There are thus N possible trading times,
and we shall denote these moments by T1, . . . , TN .

Strategy of the Producer

The producer makes a bid in the spot (day-ahead) market at time t = 0, by making
an engagement to deliver the amount Pk of electricity during the delivery period
[Tk + δ, Tk+1 + δ] for each k = 1, . . . , N . These deliveries will be paid at the spot
market price denoted by F(0, Tk + δ), k = 1, . . . , N .

At each time Tk , the producer knows the amount of power, whichwill be generated
during the delivery period [Tk + δ, Tk+1 + δ] (we neglect the forecast uncertainty
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Fig. 12.1 Left: French intraday electricity transaction prices for a fixed delivery hour (each point
corresponds to a single transaction). Right: bid-ask spread evolution in the German intraday market
for a fixed delivery hour. In both cases, we see a sharp increase in liquidity 2–3h prior to delivery

at such short time scales), and must decide how much power to buy/sell in the
intradaymarket, and howmuch power towithdraw from/inject into the battery during
this period, under the condition that injections/withdrawals must be balanced by
production and market purchases. This decision may be based on the known power
production for the upcoming delivery period, but also on the forecasts of power
production for future delivery times, as well as the current intraday prices for all
future delivery times.

The notation for various quantities is described (recalled) in the following table:

Qk Energy stored in the battery at the beginning of delivery
period k + 1 (at time Tk+1 + δ).

Qmin Minimal energy stored in the battery at all times.
Qmax Maximal battery capacity.
pk Energy purchased in the intraday market during kth delivery

period [Tk + δ, Tk+1 + δ].
Pk Energy produced during kth delivery period.
P(t, Tk), 0 ≤ t < Tk Forecast at time t of energy production during kth delivery

period.
Pk Energy delivered during kth delivery period according to the

engagements taken in the spot market.
Fk Intraday market price at time Tk for kth delivery period.
F(0, Tk) Spot market price for kth delivery period.
F(t, Tk), 0 < t < Tk Intraday market price at time t for kth delivery period.

Formulation of the Optimization Problem

The total gain from trading of the wind power producer is given by

G =
N∑

k=1

(Pk F(0, Tk) − Fk(pk + α|pk |)),
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where the termα|pk |models the bid-ask spread in the intradaymarket. The aim of the
producer is to maximize the expected value of this gain under the storage constraint

Qk ∈ [Qmin, Qmax ], k = 1, . . . , N .

The dynamics of the battery storage is described by

Qk = Qk−1 + Pk − Pk + pk .

The optimization problem of the producer thus writes:

max
P1,...,PN ,p1,...,pN

{
N∑

k=1

Pk F(0, Tk) − E

[
N∑

k=1

Fk(pk + α|pk |))
]}

,

where P1, . . . , PN are constants (determined at time 0), and (pk)1≤k≤N is a dynamic
strategy of trading in the intraday market, that is, a discrete-time stochastic process
adapted to the filtration generated by the production values (Pk), the price processes
in the intraday market (Fk) and (F(t, Tk))t<Tk and the process of forecast updates
(P(t, Tk))t<Tk .

Modeling the Dynamics of the Intraday Price Process

To understand how the intraday prices for the future delivery times and the power
production forecasts affect the strategyof the producer and formulate the optimization
problem for the power producer as a stochastic control problem,we need, in principle,
to model the dynamics of the intraday price process (F(t, Tk)t≥0,Tk>t ) and of the
forecast update process (P(t, Tk)t≥0,Tk>t ) as function of t . Since the dimension of
these processes is very large (24 or 48 depending on the number of delivery periods),
some form of dimension reduction is necessary. Figure12.2 shows that, for example,
the shape of the forecast curve does not change much in time, and therefore 2–3
stochastic factors should be sufficient to model the dynamics of the entire forecast
curve.

Inspired by the modeling approaches for the interest rate curve, and to allow
negative prices which are common in electricity markets with strong penetration of
renewables, we use a Gaussian factor-based model:

Ft = F(0, t) + ᾱ(t)
M ′∑

j=1

Y j
t .

Here we recall that Ft is the “last” intraday price, F(0, t) is the day-ahead price
(where the time 0 correspond to the gate closure time of the day-ahead market) and
(Y j )M

′
j=1 are independent Ornstein–Uhlenbeck processes:

dY j
t = −λ̄ j Y j

t dt + σ̄ j d B̂ j
t ,
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Fig. 12.2 Evolution of the
forecasts for all delivery
horizons on a single day, as
function of time remaining to
delivery day

where, (B̂ j )M
′

j=1 are Brownian motions under the risk-neutral measure Q. Note that
we have not included discounting because the effect of interest rates is negligible at
intraday time scales. Forward prices are computed by taking risk-neutral expectation:

F(t, T ) = E[FT |Ft ] = F(0, T ) +
M ′∑

j=1

ᾱ(T )e−λ̄ j (T−t)Y j
t . (12.1)

To obtain the dynamics of forward prices under the real-world measure, we make a
change of probability

dP

dQ

∣∣∣
F T

= exp

(
−

∫ T

0
φt d Bt − 1

2

∫ T

0
φ2
t dt

)
,

where the process φ is assumed to be deterministic. The process

Bt = B̂t +
∫ t

0
φsds

is then a Brownian motion under the historical measure and we can write

Y j
t = σ̄ j

∫ t

0
e−λ j (t−s)dB j

s + σ̄ j
∫ t

0
e−λ j (t−s)φ j

s ds := σ̄ j
∫ t

0
e−λ j (t−s)dB j

s + μ̄ j (t).

We can then write

Ft = F(0, t) + ᾱ(t)
M ′∑

j=1

(Y
j
t + μ̄ j (t)), (12.2)
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where Y
j
t = σ̄ j

∫ t
0 e

−λ j (t−s)dB j
s is a centered Gaussian factor process.

This model describes the dynamics of the intraday price over a single day. The
factors ᾱ and μ̄ describe the daily seasonality of the price. For estimating this model,

we shall assume that the random factors Y
j
for different days are independent and

compute averages over all trading days present in the data. Of course, intraday prices
for different days have different distributions due to the presence of the annual sea-
sonality pattern, but we assume that this pattern is fully taken into account by the
day-ahead market price.

The estimation of this model, as well as the one for the forecast dynamics, pre-
sented in the next paragraph, may be carried out in two different settings:

• The number of factors is smaller than the number of different delivery periods
for which the price is available in the market at the same time. In this case, one
can use the prices for different delivery periods to reconstruct the factors Y j

t from
the formula (12.1). In other words, the individual factors become observable. It
makes sense, then, to model separately the seasonality of each factor with the
corresponding mean function μ̄ j (t) as in formula (12.2).

• The number of factors is larger than the number of different delivery periods for
which the price is available at the same time. For instance, one may assume that
only the last intraday price is known and the number of factors is greater than one.
In this case, the individual factors are inobservable, and one cannot reconstruct
the mean function separately for each factor. In practice, we recommend to use
the number of factors which is less or equal to the number of delivery periods for
which prices are available.

More details on the estimation procedure are given in the following section, where
the estimation is based on the last intraday price only and the number of factors is
taken equal to one.

Modeling the Forecast Dynamics

Since the electricity price process in the intraday market and the wind power pro-
duction (forecast) may be negatively correlated, we propose a model for the wind
production process, which is of a similar structure to themodel for the price processes
and includes a possible correlation.

Pt = P(0, t) + α(t)(1 + γ P(0, t)δ)
M∑

j=1

(X j
t + μ j (t)),

where (X j )Mj=1 are independent centered Gaussian factors modeled as Ornstein–
Uhlenbeck processes:

dX j
t = −λ j X

j
t dt + σ j dW

j
t ,

α andμ j are deterministic functionsmodeling the daily seasonality of the production
process, P(0, t) is the forecast at the gate closure time of the intradaymarket, andW j

are Brownian motions possibly correlated with the Brownian motions B j driving the
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price process. Note that this model for the production process may allow for negative
production values, but such values may also be possible in practice when the wind
speed is very low due to nonzero power consumption of the wind turbine. The factor
1 + γ P(0, t)δ reflects the fact that forecast errors are larger in amplitude when the
forecast itself is large.

The forecast processes at other times are given by

P(t, T ) = E[PT |Ft ] = P(0, T ) + α(T )(1 + γ P(0, T )δ)

M∑

j=1

e−λ j (T−t)(X j
t + μ j (t)).

In other words, the forecast process follows a Gaussian dynamics and is completely
determined by the knowledge of the M factors X1, . . . , XM .

12.3 Model Calibration

In this section we explain how our models for the production (Pt ) and the intraday
market price (Ft ) are estimated from data. The estimation procedure will be different
in the one-factor case (one factor for the price and one for the forecast) and the
multifactor case, because in the one-factor case it is enough to observe only the
price/production to recover the risk factor. We describe the estimation procedure of
the model for the production, the one for the price being very similar.

Estimation in the One-Factor Case

We first focus on the estimation of the model for production. Since there is only
one factor, we may omit the index j and take σ = 1 without loss of generality.
We assume that the agent observes L realizations of the forecast (Pl(0, Tk))

l=1,...,L
k=1,...,N

and the production process (Pl
k )

l=1,...,L
1≤k≤N (each realization corresponds to a single

production day in the past), and we introduce the forecast error process (Zl
k)

1≤l≤L
1≤k≤N ,

where Zl
k = Pl

k − Pl(0, Tk).We assume that Zl
k is a Gaussian vector with parameters

E[Zl
k] := μ̃k := μkαk(1 + γ Pl(0, Tk)

δ), Cov[Zl
i , Z

m
j ] = 0 for l �= m

and Cov[Zl
i , Z

l
j ] = αiα j (1 + γ Pl(0, Ti )

δ)(1 + γ Pl(0, Tj )
δ)Ωi j (λ),

Ωi j (λ) := e−λ(Ti−Tj )
+ − e−λ(Ti+Tj )

2λ
,

where we denote αk := α(Tk) and μk = μ(Tk). The log-likelihood of (Zl
k)

l=1,...,L
k=1,...,N ,

omitting constant terms, is given by
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l(α, μ, λ, γ, δ) = − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl (0, Tj )
δ)

− 1

2

L∑

l=1

(
Zl

α(1 + γ Pl (0, T·)δ)
− μ

)�
Ω−1(λ)

(
Zl

α(1 + γ Pl (0, T·)δ)
− μ

)

= − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl (0, Tj )
δ)

− 1

2

L∑

l=1

(
Zlγ,δ

α
− μ

)�
Ω−1(λ)

(
Zlγ,δ

α
− μ

)
,

where we use the shorthand notation Zl
γ,δ = Zl/(1 + γ Pl(0, T )δ).

In an attempt to partiallymaximize the likelihood in explicit form,wefirst compute
the derivatives with respect to μ:

∂l

∂μi
= e�

i Ω−1(λ)

L∑

l=1

(
Zl

γ,δ

α
− μ

)
,

where ei is a vector with 1 at the i th position and 0 elsewhere. As a result,

μ = 1

Lα

L∑

l=1

Zl
γ,δ := 1

α
Zγ,δ,

and we can write the simplified form of the log-likelihood

l(α, λ, γ, δ) = − L

2
log(detΩ(λ)) − L

N∑

j=1

logα j −
∑

l

∑

j

log(1 + γ Pl(0, Tj )
δ)

−1

2

L∑

l=1

(
Zl

γ,δ

α
− Zγ,δ

α

)�
Ω−1(λ)

(
Zl

γ,δ

α
− Zγ,δ

α

)
.

Differentiating now with respect to α, and making some straightforward simplifica-
tions, we find

∂l

∂αi
= − L

αi
+ 1

αi

L∑

l=1

Zl
γ,δ,i − Zγ,δ,i

αi
e�
i Ω−1(λ)

Zl
γ,δ − Zγ,δ

α

with the corresponding first-order condition
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1 = 1

L

L∑

l=1

Zl
γ,δ,i − Zγ,δ,i

αi
eTi Ω−1(λ)

Zl
γ,δ − Zγ,δ

α
. (12.3)

Summing up and substituting into the expression for the log-likelihood, we find that
the latter is given by (once again without constant terms):

l(λ, γ, δ) = − L

2
log(detΩ(λ)) −

∑

l

∑

j

log(1 + γ Pl(0, Tj )
δ) − L

N∑

j=1

logα∗
j (λ),

(12.4)

where α∗(λ) is the solution of (12.3). This equation can also be written as

1 = 1

αi

N∑

k=1

Ω−1(λ)ik
R̂ki

αk
, R̂ki = Zγ,δ,k Zγ,δ,i − Zγ,δ,k Zγ,δ,i ,

or, in vector notation, as

α = M̂α−1, (12.5)

where Mi j = Ω−1(λ)i j R̂i j .
We compute the maximum likelihood estimator by solving numerically the equa-

tion (12.5) and then minimizing the function l(λ, γ, δ) given by (12.4).

Estimation in the Multifactor Case

In the presence of M random factors we assume that the agent observes not only
the production process and the forecast at date zero, but also, at each trading
date (Tk)1≤k≤N−1, the forecast of production of the next M delivery periods, that
is, P(Tk, Tk+i ) for 1 ≤ i ≤ M ∧ (N − k). Let Zl

i,k = Pl(Tk, Tk+i ) − Pl(0, Tk+i ).
Then, the random vector {Zl

i,k, 1 ≤ l ≤ L , 1 ≤ k ≤ N , 0 ≤ i ≤ M ∧ (N − k)} is a
Gaussian random vector with parameters

E[Zl
i,k] := μ̃i,k =

M∑

j=1

α(Tk+i )(1 + γ P(0, Tk+i )
δ)e−λ j (Tk+i−Tk )μ

j
k

Cov[Zl
i,k, Z

m
j,n] = 0 for l �= m

Cov[Zl
i,k, Z

l
j,n] =

M∑

p=1

α(Ti+k)(1 + γ P(0, Tk+i )
δ)(1 + γ P(0, Tn+ j )

δ)

× α(Tj+n)e
−λp(Ti+k−Tk+Tj+n−Tn)σ 2

p

e−λ(Tk−Tn)+ − e−λ(Tk+Tn)

2λ
.
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Similarly to the one-factor case, one can then write down the explicit likelihood
of the model and estimate parameters by numerical maximization of the likelihood
function.

Numerical Illustration

In this paragraph we illustrate our estimation procedure on a real data set. For this
illustration we use a one-factor specification of the model. For estimating the produc-
tion model we use a time series of power production from Jan 1st, 2012 to Dec 31st,
2014 from a wind park in France provided by Engie Green/Maïa Eolis, together with
a time series of historical forecasts provided by the same producer. The production
data had a 10-min frequency and was averaged down to 1h frequency. The forecast
data had 15-min resolution, which was averaged down to 1h resolution. Every day,
4 forecasts are available, at 0, 6, 12 and 18h. In this study, we used only the forecast
at 12h, corresponding to the gate closure time of the day-ahead market.

Figure12.3, left graph illustrates the evolution of the day-ahead forecast and the
realized production on September 8, 2014. The right graph of this figure shows
the results of estimation. The estimated value of the mean reversion parameter is
λ∗ ≈ 3.85days−1; in other words the characteristic length of mean reversion is about
6.2h. The functionα(t) appears to have a slightly increasing profile reflecting the fact
that forecast uncertainty grows with time. The function μ(t) is small and negative,
which means that the forecasts in our data set may have a small but statistically
significant positive bias.

For estimating the intraday price model we use the day-ahead price for the
Germany-Austria region downloaded from the web site of EPEX Spot, and the aver-
age intraday price time series at 1h frequency for the same region, computed from
a high-frequency time series provided to us by EPEX Spot, from Jan 1st, 2014 to
Dec 31st, 2014. In this study, we construct a proxy for the ’last’ intraday price for
each delivery hour, by taking, for the delivery hour H, the average intraday price
for the hour H-1. The Germany Austria region was chosen for reasons of market
liquidity and data availability. Figure12.4, left graph, illustrates the evolution of the
day-ahead price and the corresponding intraday price on September 8, 2014.

Since our price and production data sets are fromdifferent regions and do not cover
the same period completely, we carry out the estimation procedure independently for
the two sets and assume that there is no correlation between the innovations of price
and production. In the same region, the two processes are likely to be correlated, and
our estimation procedure can be easily adapted to that case.

Figure12.4, right graph shows the results of the estimation of the intraday price
model. The estimated value of the mean reversion parameter is λ̄∗ ≈ 9.6, which
corresponds to the length of mean reversion of about 2.5h. The function ᾱ (price
volatility) appears to have peaks at 10th and 20th hours, which correspond, approx-
imately, to morning and evening peaks of electricity demand. The estimator of the
function μ̄ (bias) falls within the 5% confidence interval around zero for almost all
hours, which means that day-ahead prices are almost equal to expectations of the last
intraday prices under the historical measure.
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Fig. 12.3 Top: Evolution of the day-ahead forecast and the realized production on September 8,
2014 (left graph) and October 19, 2014 (right graph). Bottom: Results of estimation of the model
for realized production. Dashed lines show the 5% confidence interval around zero for the estimator
of μ

12.4 Solving the Optimization Problem by Dynamic
Programming and Optimal Quantization

The state variables of the problem are the battery charge state (Qk)1≤k≤N and the
factor processes for the wind production (X j

Tk
)
1≤ j≤M
1≤k≤N and the intraday market price

(Y j
Tk

)
1≤ j≤M ′
1≤k≤N . For our optimization problemwe consider all processes in discrete time.

Define the value function

vk(q, x1, . . . , xM ,y1, . . . , yM
′
)

= min
pk ,...,pN ,Qk−1=q

E
Tk ,x1,...,xM ,y1,...,yM

′
[

N∑

n=k

Fn(pn + α|pn|)
]

.

In the following, to save space, we write x for x1, . . . , xM and similarly for other
variables. The original optimization problem then writes
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Fig. 12.4 Top: evolutionof the day-aheadprice and the corresponding last intradayprice onSeptem-
ber 8, 2014 (left graph) and October 19, 2014 (right graph). Bottom: Results of estimation of the
intraday price model. Dashed green lines show the 5% confidence interval around zero for the
estimator of μ̄

max
P1,...,PN

{ N∑

k=1

Pk F(0, Tk) − E
t0,Xt0 ,Yt0 [v1(Q0, XT1 ,YT1)]

}
.

The dynamic programming principle for the value function writes

vk(q, x, y) = min
pk :q+Pk−Pk+pk∈[Qmin ,Qmax ]

{φk(y)(pk + α|pk |)

+ E
Tk ,x,y[vk+1(q + πk(x) − Pk + pk, XTk+1 ,YTk+1)}

with the terminal condition

vN = vN (q, x, y) = min
pN :q+PN−PN+pN∈[Qmin ,Qmax ]

φN (pN + α|pN |),

where
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φk(y) = F(0, Tk) + ᾱ(Tk)
M ′∑

j=1

(y j + μ̄ j (Tk)),

πk(x) = P(0, Tk) + α(Tk)(1 + γ P(0, Tk)
δ)

M∑

j=1

(x j + μ j (Tk)).

We may also impose a constraint on the state of charge of the battery at the terminal
date: QTN = QT0 . In this case, vN (q) = FN (pN + α|pN |) with pN = QT0 − q −
PN + PN .

To compute the value function and the optimal strategy numerically, we start by
discretizing the state of charge of the battery, introducing a uniform grid Qmin =
q1 < · · · < qJ = Qmax . This means that the control pk also takes a finite number of
values. We denote vk(q j , . . . ) by v j

k . Then,

v j
k (x, y) = min

i=1,...,J
{φk(y)η(qi − q j + Pk − πk(x)) + E

Tk ,x,y[vik+1(XTk+1 ,YTk+1)},

where we have used the notation η(p) = p + α|p| to simplify the formula.
The second step is to replace the discrete-time Ornstein–Uhlenbeck processes

(X,Y ) with a finite-state Markov chain. This will be achieved using the method of
optimal quantization. Let Pk be the unconditional distribution of Z := (XTk ,YTk ).
Note that it is a multivariate Gaussian distribution with zero mean. For every k =
1, . . . , N , we define the optimal grid of size Nq by solving

min
Ẑ

E
Pk [(Z − Ẑ)2],

where the minimum is taken over all random vectors supported by Nq points (and
the variable Z is M + M ′-dimensional in our setting). It is known (see e.g., [12] for
a review) that the solution is the so called optimal Voronoi quantization which is
obtained by nearest-neighbor projection of the vector Z on a set of Nq points. We
shall denote these points by ẑk1, . . . , ẑ

k
Nq

with ẑkj := (x̂ kj , ŷ
k
j ), the associated Voronoi

cells by Ck
1 , . . . ,C

k
Nq

and the associated probabilities by p̂k1, . . . , p̂
k
Nq
. To find the

points, one can simulate a large number of samples from Pk and use the randomized
Lloyd’s algorithm (also knownas theK-means clustering algorithm). In the numerical
illustration below, since the processes X andY are one-dimensional and uncorrelated,
we use the precomputed grids for themultivariate Gaussian distribution, downloaded
from the web site quantize.maths-fi.com.

Next, we replace the continuous process with a Markov chain (Ẑk)0≤k≤N with Nq

states. The transition probabilities of the chain are defined by

π̂0
i = P[Ẑ1 = ẑ1i ] = π̂1

i

and π̂ k
i j = P[Ẑk+1 = ẑk+1

j |Ẑk = ẑki ] = P[ZTk+1 ∈ Ck+1
j |ZTk ∈ Ck

i ].
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Fig. 12.5 Sample evolution of the modelled quantities. In the left graph, prices are in Euros per
MWh. In the right graph, all amounts are shown in KWh, and in the case of production and amount
sold correspond to the production and the amount sold during the specified hour

These transition probabilities are evaluated by Monte Carlo.
The value function can then be computed on the quantization grid using the

following formula:

v j
k (ẑ

k
m) = min

i=1,...,J
{φk(ŷ

k
m)η(qi − q j + Pk − πk(x̂

k
m)) +

Nq∑

l=1

π̂ k
mlv

i
k+1(z

k+1
l )}.

Numerical Illustration

We first illustrate the computation of the value function v1 and the corresponding
optimal strategy. For the numerical illustration we have taken Nq = 500 quantization
nodes, and the state of charge was discretized over J = 20 regularly spaced values.
The computation of the value function v1 takes about 10 s on a MacBookPro with
i5-2.90GHz processor and 8Gb physical memory (C++ implementation using only a
single processor core). The value function depends on the spot market engagements
Pk , and they have been taken equal to production forecasts for the corresponding
hour: Pk = P(0, Tk). Figure12.5 illustrates the evolution of various quantities in our
model. The forward price and forecast curves are taken from the market data on a
specific day (September 8, 2014); the intraday price and production were simulated
using our model estimated from market data, and the state of charge of the battery
(SOC) and the amount to be sold in the intraday market were computed from the
solution of the HJB equation. In the left graph, prices are in Euros per MWh and in
the right graph, all values are shown in KWh, and in the case of production (forecast
and realized) refer to the power generated during the specified hour. The model
parameters are Qmin = 0, Qmax = 1000 KWh, α = 0.2 (the intraday market spread)
and Q0 = 0 (initial state of charge).

We next illustrate the effect of the battery capacity Qmax and the intraday market
spread α. Still under the assumption that Pk = P(0, Tk) for every k, we show in
Fig. 12.6 the maximum expected gain of the power producer for different values of
the battery capacity Qmax and different values of α, that is, the value
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Table 12.1 Expected gain from adding a 1000KWh battery capacity, in euros per day

α = 10% α = 20% α = 30%

September 8, 2014 46.64 41.58 39.28

October 19, 2014 41.35 38.05 36.15

Fig. 12.6 Expected gain (en euros) of the wind power producer as function of the battery capacity
Qmax , for different values of the spread parameter α. The dotted line shows the theoretical profit
of the power producer if the power production were exactly equal to the day-ahead forecast. Left:
8 September 2014. Right: 19 October 2014

N∑

k=1

Pk F(0, Tk) − min
p1,...,pN

E

[
N∑

k=1

Fk(pk + α|pk |)
]

. (12.6)

The dotted line shows the theoretical profit of the power producer if the power
productionwere exactly equal to the day-ahead forecast and no trading in the intraday
market were allowed. We see that in the absence of battery storage the expected gain
is considerably reduced compared to perfect forecast owing to the intermittency
of wind power, but that sufficient storage capacity allows to attain the theoretical
value and even exceed since it allows both to smooth the variations of power output
and trade in the intraday market. Note that the overall expected gain of the power
producer depends on the production forecast and the day-ahead price, therefore it
will not be the same for different days (19 October 2014 was a day with relatively
strong wind, so the gain of the producer was higher than on 8 September 2014, even
though the prices were lower). The extra gain from adding battery capacity (defined
as the difference between the value function in the presence of a battery and the value
function with zero capacity) is more stable, as shown in Table12.1.

Finally we study the optimal bidding strategies for the producer in the day-ahead
market. These are obtained by maximizing the value function of the producer with
fixed bids Pk , with respect to Pk with a numerical optimization algorithm (BFGS).
Figure12.7 shows the optimal bids (quantity to be delivered in the intraday market),
together with the day-ahead production forecast, and the day-ahead price (thin line
with right scale). We see that the producer aims to exploit the intertemporal price
discrepancies in the day-ahead market using her battery storage capacity by selling
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Fig. 12.7 Optimal day-ahead bids for the power producer compared to production forecast (left
scale) and the day-ahead market price (right scale). Left graph: 8 September 2014. Right graph: 19
October 2014

more at times when the day-ahead price is high and buying more when the price is
low. However, the gain of the producer from this additional trading is limited: on 8
September 2014 the value function (expected gain) increases from 542.12 euros to
554.26 euros, and on 19 October it increases only from 1001.90 to 1009.07 euros.
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