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Abstract We review some of the most remarkable results obtained by Ya.G. Sinai
and collaborators on the difficult problems arising in the theory of the Navier–
Stokes equations and related models. The survey is not exhaustive, and it omits
important results, such as those related to “Burgers turbulence”. Our main focus in
on acquainting the reader with the application of the powerful methods of dynamical
systems and statistical mechanics to this field, which is the main original feature of
Sinai’s contribution.

1 Introduction

One of the fundamental unsolved problems in mathematical fluid dynamics is
whether smooth solutions to the three-dimensional incompressible Navier–Stokes
System (NSS) can develop singularities in finite time. Sinai has a remarkable
intuition that the formation of finite time singularities is possible for the 3D
Navier–Stokes system: NSS without external forcing can be regarded a reasonable
approximation to the dynamics of a dry air in a big desert, and in deserts
such phenomena as tornados are possible due to purely kinematic mechanisms.
Mathematically speaking, the most notable difficulties of NSS are its non-locality
and super-criticality. The system is nonlocal due to the incompressibility constraint
and supercritical with respect to the basic energy conservation law. Super-criticality
can also be derived through a scaling analysis on the life-span of solutions.
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Over the years, Sinai and his collaborators have developed several original and
powerful methods to tackle many difficult wellposedness and regularity questions
in hydrodynamics. Unlike the usual practitioners of PDEs, his approach to these
problems is highly original, and his incredible technical power and remarkable
insight from dynamical systems has led to substantial progress on the understanding
of NSS at fine scales, which is the key to the global regularity conjecture.

The list of results surveyed below is certainly not exhaustive and only represents
a small fraction of his many important works. For example, we do not discuss
Dinaburg–Sinai’s Fourier space model of the NSS and Euler systems (see [15, 16]
and see also Friedlander–Pavlovic [22] for further developments), and we do not
include a detailed survey on Sinai’s ground-breaking work on Burgers turbulence,
stochastic hydrodynamics and further developments. Nevertheless, we hope that
what we report reflects his unique dynamical system perspective on mathematical
fluid dynamics. The topics selected here include: a geometric trapping method for
wellposedness and regularity of solutions to NSS [35], power series and diagrams
[36–38], complex solutions and renormalization group for the three-dimensional
NSS [32], bifurcation of solutions for two-dimensional NSS [33, 34] and stochastic
dynamics of two-dimensional NSS [18].

2 A Geometric Trapping Method for NSS

Consider the d-dimensional incompressible Navier–Stokes system on the periodic
torus Td = R

d/Zd ,

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (u · ∇) u = −∇p + νΔu, (t, x) ∈ (0,∞) × T
d,

∇ · u = 0,

u|t=0 = u0.

(1)

Here u = u(t, x) = (u1(t, x), . . . , ud(t, x)) represents the velocity of the fluid
and p = p(t, x) denotes the pressure. When ν = 0 the system (1) becomes the
incompressible Euler equation. The first equation in (1) is just the usual Newton’s
law: the left-hand side describes the acceleration of the fluid in Eulerian frame,
whereas the right-hand side represents the force. The second equation in (1) is
the usual incompressibility (divergence-free) condition. It can also be regarded
a constraint through which the pressure gradient term emerges as a Lagrange
multiplier. To reduce the complexity of the system one can use the vorticity
formulation. In two dimensions, define w = ∇⊥ · u = −∂x2u1 + ∂x1u2. Then
the equation governing w takes the form

∂tw + (u · ∇) w = νΔw, (2)
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where, under suitable regularity assumptions, u is connected tow by the Biot–Savart
law:

u = Δ−1∇⊥w =
(
−Δ−1∂x2w,Δ−1∂x1w

)
.

It is evident from the vorticity form that for smooth solutions the Lp-norm ‖w‖p is
preserved in time for all 1 ≤ p ≤ ∞ in 2D. On the other hand, in three dimensions,
one can introduce the vorticity vector w = ∇ × u for which the vorticity equation
takes the form:

∂tw + (u · ∇) w = (w · ∇) u + νΔw, (3)

with

u = −Δ−1∇ × w.

Compared with two dimensions, the vorticity stretching term (w · ∇u) is the main
obstruction to global wellposedness in three dimensions. In the whole planeR2 case,
the first existence and uniqueness results for weak solutions of (1) were obtained
in Leray’s thesis in 1933. For the three-dimensional whole space case Leray [30]
proved the existence of weak solutions. Hopf in [23] then obtained the existence of
weak solutions in arbitrary open subsets Ω of Rn, n ≥ 2. Ladyzenskaya [26] in
1962 proved existence and uniqueness of solutions for two-dimensional domains.
Since then many other strong methods were developed in [10, 39, 40, 42], providing
deep insights into the fine behavior of solutions to (1).

In [35], Mattingly and Sinai developed a novel geometric trapping method for
proving existence, uniqueness and regularity of solutions to the Navier–Stokes sys-
tem. To describe this method, consider the two-dimensional vorticity equation (2).
Expand the vorticity w in Fourier series:

w(x, t) =
∑

k∈Z2

wk(t)e
2πik·x, x = (x1, x2)

where wk denote the Fourier coefficients. Since w is real-valued, we have w−k =
wk. One can then write a coupled ODE-system for the modes wk(t) as

d

dt
wk + 2πi

∑

l1+l2=k

wl1wl2

k · l⊥2
|l2|2 = −4π2ν|k|2wk, (4)

where |k| =
√

k21 + k22, l
⊥ = (l(1), l(2))⊥ = (−l(2), l(1)).

A more general version of (2) is the case where the Laplacian is replaced by the
fractional Laplacian |∇|α with α > 0. Correspondingly, (4) can be generalized as:

d

dt
wk + 2πi

∑

l1+l2=k

wl1wl2

k · l⊥2
|l2|2 = −4π2ν|k|αwk. (5)
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Without loss of generality one can assume w0 = 0 since the mean value of w is
preserved by the dynamics.

The results obtained in [35] can be formulated as follows.

Theorem 1 ([35]) Let α > 1 in (5). Suppose for some constant 0 < D1 < ∞,

1 < r < ∞,

|wk(0)| ≤ D1

|k|r , ∀ k ∈ Z
2 \ {0}.

Then one can find a finite constant D′
1 > 0, depending only on (D1, ν), such that

any solution to (5) with these initial conditions satisfies

|wk(t)| ≤ D′
1

|k|r , ∀ k ∈ Z
2 \ {0}

for all t > 0.

A few remarks are now in order. First, the main theorems stated in [35] are more
general and include the case with external forcing under suitable decay assumptions
on the Fourier modes which are uniform in time. By using some refined estimates,
Mattingly and Sinai also proved that the solutions become real analytic for t > 0
(i.e., |wk(t)| ≤ const ·e− const ·|k|, for t > t0 > 0). Statements close to these were
also proved in [17, 21, 24], but the methods are quite different and more function
analytic in nature.

In the three-dimensional setting, one can introduce

u(x, t) =
∑

k∈Z3

uk(t)e
2πik·x,

w(x, t) =
∑

k∈Z3

wk(t)e
2πik·x.

By using (3), we obtain

d

dt
wk(t) = −2πi

∑

l1+l2=k

[
(ul1 · l2)wl2 − (wl1 · l2)ul2

] − 4π2ν|k|2wk

= −2πi
∑

l1+l2=k

[
(ul1 · k)wl2 − (wl1 · k)ul2

] − 4π2ν|k|2wk,

where the second equality follows from the incompressibility condition. Similar
to the two-dimensional case, one can replace the Laplacian with the fractional
Laplacian |∇|α, and obtain

d

dt
wk(t) = −2πi

∑

l1+l2=k

[
(ul1 · k)wl2 − (wl1 · k)ul2

] − 4π2ν|k|αwk. (6)
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For this nonlocal system, the following theorem was proved in [35].

Theorem 2 ([35]) Consider (6) with α > 5
2 . If the initial data {wk(0)} are such

that for some 0 < D < ∞, r > 3
2 ,

|wk(0)| ≤ D

|k|r , ∀ k ∈ Z
3 \ {0},

then there exists a constant D′ depending only on (D, r, α), such that for any t ≥ 0,

|wk(t)| ≤ D′

|k|r , ∀ k ∈ Z
3 \ {0}.

Remark One should note that α = 2 corresponds to the usual Navier–Stokes case.
Analogous statements can also be proved for that situation, provided the constant D
is sufficiently small, which will become a typical small data global wellposedness
result for 3D NSS. For large data global wellposedness, one can lower the constant
α > 2.5 to α = 2.5 or even with some logarithmic damping of the symbol. All
of these difficulties are ultimately connected with the lack of globally coercive
quantities stronger than energy.

We now focus on the two-dimensional case and describe in more detail the
geometric trapping method of Mattingly and Sinai. Roughly speaking, the idea is
to consider a finite Galerkin system of coupled ODEs for the Fourier coefficients.
One can write a finite approximation of (5) abstractly as

d

dt
wk(t) = Bk(w,w) − 4π2ν|k|αwk.

By using the basic enstrophy inequality

∑

k

|wk(t)|2 ≤ E0, ∀ t > 0,

one can trap the low modes, i.e., for any K0 > 0, there exists D1(K0), such that

|wk(t)| ≤ D1

|k|r , ∀ |k| ≤ K0.

One then defines a trapping region for all modes as

Ω =
{

(wk) : |wk| ≤ D1

|k|r , ∀ 0 �= k ∈ Z
2
}
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It is evident that the low modes {|k| ≤ K0} are already in the trapping region, and
the boundary of the trapping region is given by

∂Ω =
{

(wk) : |wk| ≤ D1

|k|r , ∀ 0 �= k ∈ Z
2, and equality holds for some k = k∗

}

.

By choosing D1 large,Ω contains the initial data in its interior. Then one endeavors
to show that the dynamics will always trap the sequence of Fourier modes inside Ω .
Geometrically speaking, it amounts to showing that the vector field on the boundary
∂Ω always points into the interior of Ω . More precisely one checks that for K0
sufficiently large, if there are |k∗| > K0, with wk∗ = D1|k∗|r (the case wk∗ = − D1|k∗|r is
similar), then

d

dt
wk(t)

∣
∣
∣
∣
k=k∗

< 0.

By using the enstrophy estimate together with the trapping estimate, one can
estimate the nonlinear term as

|Bk(w,w)(t)| ≤ const ·
√
E0 · D1

|k∗|r−1 · log |k∗|.

Thus

d

dt
wk(t)

∣
∣
∣
∣
k=k∗

≤ const ·
√
E0 · D1

|k∗|r−1 · log |k∗| − 4π2ν
1

|k∗|r−α
< 0, (7)

if K0 is chosen sufficiently large.
This concludes the trapping argument. One should note from (7) that the

restriction α > 1 is purely technical, and due to the fact that only enstrophy
conservation and L∞

t -type breakthrough scenario enter the argument. By using
more time integrability, one can obtain analyticity also for α = 1 (for global
wellposedness we do not need any constraint on α since 2D Euler is globally
wellposed by using ‖w‖L∞

x
).

One can also rephrase in typical PDE language the trapping argument of
Mattingly and Sinai, as a sort of maximumprinciple in Fourier space. It is a beautiful
geometric dynamical system proof, which has since been generalized and developed
to many other situations (cf. [2, 4, 11–14] and the references therein).

3 Power Series and Diagrams

In the seminal works [36–38], Sinai developed a power series and diagram
representation for the Navier–Stokes system. These works can be viewed as a
precursor to the renormalization group approach developed later. Consider the
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three-dimensional Navier–Stokes system (1), with viscosity ν = 1 and on the whole
space R3. After the Fourier transform

v(k, t) =
∫

R3
u(x, t)e−ik·x dx,

it becomes a nonlinear non-local equation:

v(k, t) = e−|k|2t v(k, 0) + i

∫ t

0
e−(t−s)|k|2

∫

R3

〈
k, v(k − k′, s)

〉
Pkv(k′, s)dk′ds.

(8)

The incompressibility condition enforces v(k, t) ⊥ k for any k �= 0. The operator
Pk is the orthogonal projection to the subspace orthogonal to k. In this way the
pressure does not appear and we consider the space of functions {v(k) : v(k) ⊥ k}
as the main phase space of the dynamical system defined by (1).

Classical (strong) solutions to (8) on the time interval [0, t0] are functions
v(k, t), 0 ≤ t ≤ t0, such that the integrals

∫ t

0
e−(t−s)|k|2

∫

R3
|v(k − k′, s)| · |v(k′, s)| dk′ds,

are bounded for any 0 ≤ t ≤ t0 and the left-hand side is equal to the right-hand
side. A more convenient (easily checkable), but stronger condition, is to require the
integrals

∫

R3
|v(k − k′, s)| · |v(k′, s)| dk′

to be uniformly bounded in s. The latter definition was adopted in [38].
Sinai considered (8) in the space of functions which can have singularities near

k = 0 or k = ∞. The following space Φ(α,w) was introduced in [38].

Definition 4 {v(k), k ∈ R
3} ∈ Φ(α,w) if for some constants 0 < C,D < ∞,

|v(k)| ≤
{

C
|k|α , if |k| ≤ 1,
D

|k|w , if |k| > 1.

The cut-off “1” for |k| can be replaced by any positive number. The parameters
α and w satisfy the inequalities α ≥ 2, w < 3. One can endow the space Φ(α,w)

with a norm by taking the infimum of all possible C + D.
In [38], Sinai proved a short-time local existence theorem in the space Φ(α,w),

α > 2,w < 3. Namely, for any initial data (in the Fourier space) v(k, 0) ∈ Φ(α,w),
there exists T0 > 0 sufficiently small, such that (8) admits a unique solution on
[0, T0] in the spaceΦ(α,w). One should note that in this theorem, v(k, 0) is allowed
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to be an arbitrary complex (C3-valued) vector function. When v(k, 0) = v(−k, 0)
for any k ∈ Z

3, the corresponding velocity u(x, 0) is a R3-valued vector function.
In the space Φ(2, 2) one can prove a small data global wellposedness result.

Namely, let v(k, 0) = C(k,0)
|k|2 , with supk |C(k, 0)| ≤ C0 and C0 is sufficiently small.

Then there exists a unique solution v(k, t) of (8) defined for all t > 0.
One can see the references [8, 28, 38] for short proofs of this theorem. Recently,

Lei and Lin [29] discovered a remarkable fact, that for Eq. (1) with ν > 0 and on
R
3 one can have global wellposedness as long as supk |C(k, 0)| ≤ Cν, where C is

an absolute constant.
In [36], Sinai considered the spaceΦ(α, α) with α = 2+ε and ε > 0 sufficiently

small. Denote v(k, 0) = C(k,0)
|k|α where C(k, 0) is continuous everywhere outside

k = 0, and ‖C(k, 0)‖L∞
k

= supk �=0 |C(k, 0)| = 1. Introduce a one-parameter family

of initial conditions vA(k, 0) = AC(k,0)
|k|α , where A is a complex-valued parameter.

For given A, the time of existence for the local solution will depend on A. More
precisely, the following theorem was proven in [36].

Theorem 5 ([36]) There exists a constant λ0 = λ0(α) > 0 depending only on α

such that if |λ| = |AT
ε
2 | ≤ λ0, then there exists a unique local solution in the space

Φ(α, α) on the time interval [0, T ].
To prove this theorem Sinai used the method of iterations. In terms of the

unknown CA(k, t) = |k|αvA(k, t), one can define the iterations C
(n)
A (k, t) via the

formula

C
(n)
A (k, t)

= Ae−|k|2tC(k, 0)

+ i|k|α
∫ t

0
e−|k|2(t−s)

∫

R3

〈k, C(n−1)
A (k − k′, s)〉PkC

(n−1)
A (k′, s)

|k − k′|α|k′|α dk′ds, n ≥ 1,

with

C
(0)
A (k, t) = Ae−|k|2tC(k, 0).

By splitting into low and high frequencies, Sinai showed that if |λ| ≤ λ0(α) �
1, then ‖C(n)‖∞ ≤ 2A for all n ≥ 1, and the sequence of iterations (C(n)) is a
contraction. From the point of view of dynamical systems, the scalar λ is a ruling
parameter in the current situation. In the same paper, Sinai then went on to construct
a power series for the solution CA(k, t), namely:

CA(k, t) = AC(k, 0)e−t |k|2 +
∑

p≥1

Ap

∫ t

0
e−(t−s)|k|2s

pε
2 hp(k, s) ds, (9)
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where

s
ε
2 h1(k, s) = i|k|α

∫

R3

〈k, C(k − k′, 0)〉PkC(k′, 0)e−s|k−k′ |2−s|k′|2

|k − k′|α · |k′|α dk′,

sεh2(k, s)

= i|k|α ·
[ ∫ s

0
s

ε
2
1 ds1

∫

R3

〈k, h1(k − k′, s1)〉PkC(k′, 0) · e−(s−s1)|k−k′|2−s|k′|2dk′

|k − k′|α|k′|α

+
∫ s

0
s

ε
2
2 ds2

∫

R3

〈k, C(k − k′, 0)〉Pkh1(k
′, s2)e−s|k−k′|2−(s−s2)|k′ |2dk′

|k − k′|α · |k′|α
]
,

and

s
pε
2 hp(k, s)

= i|k|α ·
[ ∫ s

0
s

p−1
2 ε

1 ds1 ·
∫

R3

〈k, hp−1(k − k′, s1)〉PkC(k′, 0)e−(s−s1)|k−k′ |2−s|k′ |2dk′

|k − k′|α · |k′|α

+
∫ s

0
s

p−1
2 ε

2 ds2 ·
∫

R3

〈k,C(k − k′, 0)〉Pkhp−1(k
′, s1)e−s|k−k′ |2−(s−s2)|k′|2dk′

|k − k′|α · |k′|α

+
∑

p1,p2≥1
p1+p2=p−1

∫ s

0
s

p1ε

2
1 ds1

∫ s

0
s

p2ε

2
2 ds2

×
∫

R3

〈k, hp1(k − k′, s1)〉Pkhp2(k
′, s2)e−(s−s1)|k−k′ |2−(s−s2)|k′ |2dk′

|k − k′|α · |k′|α
]
.

Now use the ansatz hp(k, s) = s
ε
2 |k|αgp(k

√
s, s) and make the change of variables:

s1 = ss̃1, s2 = ss̃2, k
√

s = k̃, k′√s = k̃′. Then hp(k, s) = s
ε
2 |k|αgp(̃k, s). The

system of recurrent relations governing the functions gp(̃k, s) then takes the form:

g1(̃k, s) = i

∫

R3

〈k̃, C( k̃−k̃′√
s

, 0)〉P
k̃
C( k̃′√

s
, 0)e−|k̃−k̃′|2−|k̃′ |2dk̃′

|k̃ − k̃′|α · |k̃′|α ,

g2(̃k, s)

=
∫ 1

0
s̃ε
1ds̃1

∫

R3

〈k̃, g1((k̃ − k̃′)
√

s̃1, s · s̃1)〉 · P
k̃
C( k̃′√

s
, 0)e−(1−s̃1)|k̃−k̃′ |2−|k̃′|2dk̃′

|k̃′|α

+
∫ 1

0
s̃ε
2ds̃2

∫

R3

〈k̃, C( k̃−k̃′√
s

, 0)〉P
k̃
g1(k̃

′√s̃2, ss̃2)e
−|k̃−k̃′ |2−(1−s̃2)|k̃′|2dk̃′

|k̃ − k̃′|α ,
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and for p ≥ 3

gp(̃k, s)

= i
[ ∫ 1

0
s̃

pε
2
1 ds̃1

∫

R3

〈k̃, gp−1((k̃ − k̃′)
√

s̃1, ss̃1)〉Pk̃
C( k̃′√

s
, 0)e−(1−s̃1)|k̃−k̃′|2−|k̃′|2dk̃′

|k̃′|α

+
∫ 1

0
s̃

pε
2
2 ds̃2

∫

R3

〈k̃, C( k̃−k̃′√
s

, 0)〉P
k̃
gp−1(k̃

′√s̃2, ss̃2)e
−|k̃−k̃′|2−(1−s̃2)|k̃′|2dk̃′

|k̃ − k̃′|α

+
∑

p1,p2≥1
p1+p2=p−1

∫ 1

0
s̃

p1ε

2
1 ds̃1

∫ 1

0
s̃

p2ε

2
2 ds̃2

∫

R3
〈k̃, gp1((k̃ − k̃′)

√
s̃1, s · s̃1)〉·

· P
k̃
gp2(k̃

′√s̃2, ss̃2) · e−(1−s̃1)|k̃−k̃′|2−(1−s̃2)|k̃′|2dk̃′]. (10)

It follows from these recurrent relations that each gp(̃k, s) depends on the initial
conditionsC(k, 0) via the sum of not more than bp 4p-dimensional integrals where
b is some constant. The main assumption is that C(k, 0) is compactly supported in
{|k| ≤ R0}, where R0 is a positive constant.

By using a sophisticated inductive analysis together with some combinatorics,
Sinai proved the following theorem.

Theorem 6 ([36]) The functions gp(̃k, s) satisfy the inequality:

|gp(̃k, s)| ≤ Cpf (|̃k|)e− |̃k|2
p+1 ,

where f (x) = min{x, 1
x
} for x > 0, and Cp ≤ b1b

p
2 for some constants 0 <

b1, b2 < ∞ depending only on α.

It follows that if At
ε
2 < b−1

2 , then the series (9) converges for every 0 �= k ∈ R
3.

In [37], Sinai analyzed in more detail the recurrent system (10) and introduced
diagrams, corresponding to each multi-dimensional integral in the series. Each
diagram is determined by a scheme, and any scheme is a sequence of partitions
of the set starting from [1, 2, . . . , p + 1] = Δ(0). By using a deep analogy with
statistical mechanics, Sinai then estimated several classes of diagrams and showed
that the partition functions of short diagrams decay exponentially. In [37], one
can find a systematic approach to study and estimate short diagrams for large p.
This approach has a striking resemblance of the renormalization group method in
statistical mechanics.
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4 Complex Valued Solutions and Renormalization Group

Consider the Navier–Stokes system (1) on R
3 with viscosity ν = 1. By using the

Fourier transform

ṽ(k, t) =
∫

R3
u(x, t)e−ik·x dx,

one obtains an equivalent non-local nonlinear system

ṽ(k, t) = e−|k|2t ṽ(k, 0) + i

∫ t

0
e−(t−s)|k|2

∫

R3

〈
ṽ(k − k′, s), k

〉
Pkṽ(k′, s)dk′ds,

(11)

where Pk is the solenoidal projection operator

Pkṽ = ṽ − 〈̃v, k〉
|k|2 k,

and 〈·, ·〉 denotes the scalar product

〈a, b〉 = a · b, if a, b ∈ C
3.

Introduce the change of variable

ṽ(k, t) = −iv(k, t).

Then in terms of v(k, t), the integral equation (11) now takes the form

v(k, t) = e−|k|2t v(k, 0) +
∫ t

0
e−(t−s)|k|2

∫

R3

〈
v(k − k′, s), k

〉
Pkv(k′, s)dk′ds.

(12)

This non-local integral equation is the main object of study. In general, R3-valued
solutions to (12) will correspond to complex solutions u(x, t) in (1). If one restricts
to the class of v(k, 0) such that v(k, 0) = −v(k, 0) for all k ∈ Z

3, then v(k, t) will
also be odd in k and such solutions correspond toR3-valued real (and physical) fluid
flows.

In [32], a Renormalization Group type method was developed to show that there
exists a class of R3-valued initial data v(k, 0) which are compactly supported such
that the corresponding solution to (12) blows up in finite time. The velocity field
u(x, 0) corresponding to v(k, 0) is, however,C3-valued. As such, these solutions do
not obey energy conservation and correspond to non-physical flows. Nevertheless
the behavior of these solutions in some sense resemble the forward cascade of
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Fourier modes and they are a show-case of some important fine structures of the
Navier–Stokes system.

We now review in more detail the results of [32].
Consider a one-parameter family of initial data in the form vA(k, 0) = Av0(k),

where v0(k) will be a fixed profile and A is a positive parameter. The corresponding
solution to (12) can then be represented as a power series

vA(k, t) = Ae−t |k|2v0(k) +
∫ t

0
e−|k|2(t−s)

⎡

⎣
∞∑

p=2

Apg(p)(k, s)

⎤

⎦ ds. (13)

Set g(1)(k, s) = e−s|k|2v0(k). Substituting (13) into (12), we then obtain

g(2)(k, s) =
∫

R3
〈v0(k − k′), k〉Pkv0(k

′)e−s|k−k′|2−s|k′|2 dk′,

and for p > 2

g(p)(k, s) =
∫ s

0
ds2

∫

R3
〈v0(k − k′, k〉Pkg

(p−1)(k′, s2)e−s|k−k′|2−(s−s2)|k′|2dk′

+
∫ s

0
ds1

∫

R3
〈g(p−1)(k − k′, s1), k〉Pkv0(k

′)e−(s−s1)|k−k′|2−s|k′|2dk′

+
∑

p1+p2=p
p1,p2>1

∫ s

0
ds1

∫ s

0
ds2〈g(p1)(k − k′, s1), k〉

× Pkg
(p2)(k′, s2)e−(s−s1)|k−k′|2−(s−s2)|k′|2dk′. (14)

The initial data v0 will be assumed to have support localized in a sphere around
some K(0) = (0, 0, k0), k0 � 1. The radius of the sphere is much smaller than k0.
By a deep analogy with probability theory, the support of the functions g(p) is then
expected to be localized about the point pK(0) = (0, 0, pk0) with a fattened size√

p for large p. From these considerations, one can then introduce the change of
variable and ansatz:

k = pK(0) + √
pY, h(p)(Y, s) = g(p)(pK(0) + √

pY, s),

where the new variable Y typically takes values O(1). In all integrals over s1, s2

in (14), make another change of variables sj = s(1 − θj

p2
j

), j = 1, 2. Instead of the
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integration over k′, we introduce Y ′ such that k′ = p2k0+√
pk0Y

′. Denote γ = p1
p
.

Then we obtain from (14) the recurrent relation

h(p)(Y, s) = p5/2
∑

p1+p2=p
p1,p2>

√
p

1

p2
1p

2
2

∫

R3
P

e3+ Y√
p
h(p2)(

Y ′
√
1 − γ

, s)·

× 〈h(p1)(
Y − Y ′

√
γ

, s), e3 + Y√
p

〉dY ′ · (1 + o(1)),

where e3 = (0, 0, 1). In coordinates one can write

h(p)(Y, s) =
(

h
(p)
1 (Y, s), h

(p)
2 (Y, s),

F (p)(Y, s)√
p

)

. (15)

For large p the incompressibility condition 〈h(p)(Y, s), k〉 = 0 enforces

Y1h
(p)

1 (Y, s) + Y2h
(p)

2 (Y, s) + F (p)(Y, s) = O(p−1/2).

It follows that F (p) = O(1) and the vector h(p)(Y, s) is almost orthogonal to the
k3-axis for large p.

Make the ansatz

h(p)(Y, s) = pΛ(s)p
3∏

j=1

g(3)(Y )
(
H(Y) + δ(p)(Y, s)

)
, (16)

where Λ(s) is a positive function, g(3)(Y ) = (2π)−3/2e−|Y |2/2 is the standard
Gaussian density, and the remainder term δ(p) tends to zero as p → ∞. The vector
function

H(Y) = (H1(Y1, Y2),H2(Y1, Y2), 0)

will correspond to the fixed point of the renormalization group. The fact that it is
two-dimensional and depends only on (Y1, Y2), can be traced back to (15), which is
a consequence of the divergence-free condition.

As we take the limit p → ∞, the discrete sum over p1 in the recurrent relation
becomes an integral over γ = p1

p
. The fixed point equation for the renormalization

group then takes the form

g
(2)
1 (Y )H(Y ) =

∫ 1

0
dγ

∫

R2
g(2)

γ (Y − Y ′)g(2)
1−γ (Y ′)L (H ; γ, Y, Y ′) (17)

× H

(
Y ′

√
1 − γ

)

dY ′,
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where, by abuse of notation, H(Y) = (H1(Y1, Y2),H2(Y1, Y2)), g
(2)
0 (Y ) =

1
2πσ

e− Y21 +Y22
2σ , and

L (H ; γ, Y, Y ′) = −(1 − γ )3/2
〈
Y − Y ′

√
γ

,H

(
Y − Y ′

√
γ

)〉

+ γ 1/2(1 − γ )

〈
Y ′

√
1 − γ

,H

(
Y ′

√
1 − γ

)〉

.

In Eq. (17), the Y3-variable was integrated out since it is just the usual convolu-
tion. By using the theory of Hermite polynomials, one can classify the solutions to
the functional equation (17). Amongst all such solutions, a particular simple one is

H(0)(Y1, Y2) = C(Y1, Y2),

where the pre-factor C > 0 can be determined from the equation. One can then
linearize around this fixed point and study the spectrum of the linearized operator.
As it turns out, there are 6 unstable directions and 4 neutral directions. The
following theorem was proven in [32].

Theorem 7 ([32]) For K(0) = (0, 0, k0) and k0 large enough, there exists a 10-
parameter family of initial data and a time interval [s−, s+] such that the ansatz (16)
holds for H = H(0) and s ∈ [s−, s+].

As observed in [5, 6], the recurrent relations and the fixed point equation remain
unchanged if h(p) is replaced by (−1)ph(p). This consideration then leads to two
types of solutions, with type I corresponding to the solution described before and
type II corresponding to (−1)ph(p). Note that if the initial data v0 leads to a type I
solution with the fixed pointH(0), then −v0 leads to a type II solution with the same
fixed point.

In [5], it was shown that the solutions corresponding to type I and type II will
have energy and enstrophy diverging as

E(t) = 1

2

∫

R3
|u(x, t)|2 dx = (2π)3

2

∫

R3
|v(k, t)|2 dk ∼ C

(α)
E

(τ − t)βα
,

S(t) =
∫

R3
|∇u(x, t)|2 dx = (2π)3

∫

R3
|k|2|v(k, t)|2 dk ∼ C

(α)
S

(τ − t)βα+2
,

where τ is the blowup time, α = I, II denotes the type of function, βI = 1, βII = 1
2

and C
(α)
E , C(α)

S are constants depending on the initial data.
Numerical simulations of the complex-valued singular solutions reveal very

interesting features [5, 6] some of which are similar to those of related real-valued
energy-preserving solutions.
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5 Bifurcations of Solutions to Two-Dimensional
Navier–Stokes Systems

The usual bifurcation theory in dynamical systems deals with one-parameter
families of smooth maps or vector fields. In that situation fixed points or periodic
orbits become functions of this parameter. Bifurcations appear when their linearized
spectrum changes its structure. The classical approach is to use versal deformations,
i.e., special families such that arbitrary families can be represented as some
projections of versal deformations [3]. In such kind of approach the positions of
the bifurcating orbits and their dependence on the parameter are known. In [33, 34]
a new approach is developed to study deformations produced by solutions of a
PDE system and construct bifurcations using properties of the dynamical flow.
The construction is nonlinear and does not rely on any knowledge of special fixed
points. As a model case, one can study the bifurcation of critical points for a stream
function driven by a two-dimensional incompressible viscous flow. Unlike the usual
scenario the profile of the function can display quite disparate patterns at different
time intervals due to the nonlocal nature of the dynamics.

Consider the Cauchy problem for the two-dimensional Navier–Stokes System
written for the stream function ψ = ψ(t, x, y):

⎧
⎨

⎩

∂ψ
∂t

+ Δ−1
(

∂ψ
∂x

· ∂Δψ
∂y

− ∂ψ
∂y

· ∂Δψ
∂x

)
= Δψ,

ψ(t, x + 2π, y) = ψ(t, x, y + 2π) = ψ(t, x, y), ∀ (x, y) ∈ T
2,

(18)

where T
2 is the two-dimensional periodic torus with period 1 in each directions.

The velocity u of the fluid is given by u = ∇⊥ψ = (−∂yψ, ∂xψ). For general
initial data the global wellposedness and regularity of solutions to (1) is well-known
by using Mattingly–Sinai’s geometric trapping method or energy type estimates.
The main problem is to study the dynamics of critical points of the stream function
ψ . In [33] it was proposed that if the critical points of the stream function (i.e.,
stagnation points of the velocity field) are points of maxima or minima, then these
points are called viscous vortices because near these points the velocity u is tangent
to the level sets of ψ which is a closed curve. The nonlocal operator Δ−1 in front
of the nonlinear term in (18) is of prime importance (i.e., used in an essential way)
in the construction of the bifurcation. On the other hand, such construction does not
seem to carry over directly to the vorticity formulation. This is deeply connected
with the fact that vorticity only obeys a transport equation and during such processes
the local maxima or minima of the vorticity function are simply transported.

The following theorem establishes in some sense the splitting (bifurcation) of
vortices. It was first proved in [33] under a symmetry assumption and then in [34]
for the general case.

Theorem 8 ([33, 34] Existence of bifurcations) There exists an open set A in
the space of stream functions such that the following holds true: For each stream
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function ψ0 ∈ A , there is an open neighborhood U of the origin, two moments
of time 0 < t1 < t2 such that the corresponding stream function ψ = ψ(t, x, y)

solves (18) with initial data ψ0 and has critical points which bifurcate from 1 to 2
on [0, t1], and 2 to 3 on (t1, t2] in the neighborhood U .

Although the Navier–Stokes equation is not time-reversible, by using a different
construction one can reverse the above scenario and also show the merging of
vortices (see [33, 34] for more details). The bifurcation method devised in [33, 34] is
quite robust and has been generalized to a number of other situations (cf. [31, 43]).
In general the behavior of the critical points is not well studied in multi-dimensional
situations. For parabolic equations, one can show that the number of critical points
decreases as a function of time (see [1]), and estimate the size of critical points
(see [9]).

6 Stochastic Hydrodynamics

Stochastic fluid mechanics is an important tool in the study of real fluid flows, and a
huge physical literature is devoted to it. The traditional approach deals with space or
time averages of some relevant physical quantities. For a deeper insight one needs
information on the typical behavior of the solutions, such as can come from the
knowledge of the invariant measures and their space-time properties.

A brilliant contribution of Sinai and collaborators in this sense is given by the
paper [18], which deals with the two-dimensional Navier–Stokes equations on the
2D torus T2 with random forcing on a finite set of modes:

{
∂tu + (u · ∇) u + ∇p − νΔu = ∂

∂t
W(x, t), (t, x) ∈ (0,∞) × T

2,

∇ · u = 0.
(19)

W(x, t) =
∑

0 �=|k|≤N

σkwk(t, ω)ek(x), k ∈ Z
2, ek(x) = i

k⊥

|k| .

Here the {wk}’s are standard i.i.d. complex Wiener processes such that w−k(t) =
wk(t) and σ−k = σk , |σk| > 0. Let u(x) = ∑

k ukek(x) with u0 = 0, be the Fourier
expansion, and consider the space L2 = {∑k∈Z2 |uk|2 < ∞}. Projecting on L

2 we
get a system of Ito stochastic equations

du(x, t) + νΛ2u(x, t)dt = B(u, u)dt + dW(x, t) (20)

where, denoting by P the projection on the subspace of the divergence-free
functions, we write Λ2u = −PΔu, B(u, v) = −P(u · ∇)v. Equation (20) defines
a Markovian stochastic semi-flow ϕω

s,t , s < t , on L
2, for all ω ∈ Ω , the canonical
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space generated by {dwk(t)}. A measure μ on L
2 is said to be invariant if for any

bounded continuous function F on L2 and t > 0 we have
∫

L2
F(u)μ(du) =

∫

L2
EF(ϕω

0,tu)μ(du) (21)

were E denotes expectation with respect to the measure P on Ω .
The existence of stationary measures was established by compactness in [19, 41].

Uniqueness was proved, under restrictive assumptions, when all modes are forced,
as in the papers by Kuksin and Shirikyan [25] and by Bricmont, Kupiainen and
Lefevere [7]. The main result of E, Mattingly and Sinai is the following theorem.

Theorem 9 ([18]) There is an absolute constant C such that if N2 ≥ C E0
ν3

, where

E0 = ∑
|k|≤N |uk|2 then Eq. (20) has a unique stationary measure on L

2.

Some comment is here in order. Following the seminal work of Ladyzhenskaya
[27] we know that the 2-dimensional Navier–Stokes equations in a bounded domain,
with no forcing, or with a bounded finite-dimensional force, has a finite-dimensional
attractor, of dimension depending on the Reynolds number [20]. There is a finite
number of “determining”modes, and for large times the other modes are determined
by the past history of the determining ones. The main theorem of [18] states that
uniqueness of the stationary measure holds under the condition that all determining
modes are forced, and is a natural extension of the above results.

A main step in the proof is a representation of the high modes as functionals
of the time-history of the low modes. Let L2

� = span{ek : |k| ≤ N}, L2
h =

span{ek : |k| > N} define the subspaces of low and high modes, and denote by
P�, Ph the corresponding projectors in L2. Setting �(t) = P�u, h(t) = Phu, Eq. (20)
becomes

d�(t) =
[
−νΛ2� + P�B(�, �)

]
dt

+ [P�B(�, h) + P�B(h, �) + P�B(h, h)] dt + dW(t), (22)

dh(t)

dt
=

[
−νΛ2h + PhB(h, h)

]
+ PhB(�, h) + PhB(h, �) + PhB(�, �). (23)

If �(t) is assigned, Eq. (23) can be solved for h, and let Φs,t (�, h0) be the solution
of (23) at time t with initial condition h0 at time s and fixed �.

By stationarity, one can represent the initial data as coming from a distant past.
Let C((−∞, 0],L2) be the path space of the past and ψω

t u ∈ C((−∞, t],L2) the
evolution of u ∈ C((−∞, 0],L2) induced by the semi-group: (ψω

t u)(s) = u(s) for
s ≤ 0 and (ψω

t u)(s) = ϕ0,su(0) for s ∈ [0, t].
There is an obvious measure μp on C((−∞, 0],L2), induced by the product

measureP×μ onΩ×L
2. Defining the shift on the trajectories as (θtv)(s) = v(s+t),

the operator θtψ
ω
t maps C((−∞, 0],L2) into itself. If μ is stationary, then μp is
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also stationary in the sense that for any bounded function F(u) on C((−∞, 0],L2)

we have
∫

C((−∞,0],L2)

F (u)dμp(u) = E

∫

C((−∞,0],L2)

F (θtψ
ω
t u)dμp(u).

Moreover, it is clear that if μ and ν are two stationary measures for the stochastic
flow (20), then μp = νp implies μ = ν.

The proof further shows that there is a subset U ⊂ C((−∞, 0],L2) of
full measure consisting of functions v : (−∞, 0] → H where H = {u ∈
L
2 : ∑

k k2|uk|2 < ∞}, and moreover the energy has the correct average in time
and the fluctuations are typical.

The reconstruction of the high modes as a function of the past stretching to −∞
is given by the following lemma.

Lemma 10 ([18]) There is some absolute constant C such that if N2 ≥ C E0
ν3

then
the following holds

(i) If there are two solutions u1(t) = (�(t), h1(t)), u2(t) = (�(t), h2(t))

corresponding to some (maybe different) realization of the forcing and such
that u1, u2 ∈ U , then h1 = h2.

(ii) Given a solution u(t) = (�(t), h(t)) ∈ U , any h0 ∈ L
2
h and t < 0, the limit

limt0→−∞ Φt0,t (�, h0) = h∗ exists and h∗ = h.

The lemma implies that there is a map Φt giving the high modes at time t

in terms of the past trajectory of the low modes Lt = {�(s) : s ∈ (−∞, t]} ∈
C((−∞, t],L2): h(t) = Φt(L

t ). Equation (22) then becomes

d�(t) =
[
−νΛ2� + P�B(�, �) + G(�(t),Φt (L

t ))
]
dt + dW(t) (24)

whereG(�, h) = P�B(�, h)+P�B(h, �)+P�B(h, h). Equation (20) is thus reduced
to a dynamics of the low modes: it is a finite-dimensional process with memory
extending back to −∞, which is not Markovian, but rather Gibbsian.

In the final part of the proof one shows that the memory is not so strong as
to violate ergodicity. A crucial fact is that for a set of full measure of “nice” past
histories of the low modes L ∈ C((−∞, t],L2

�) and for any t > 0, the conditional
distribution of �(t) ∈ L� has a component equivalent to the Lebesgue measure.
This fact is shown to imply that the assumption that the corresponding stationary
measures on the path space of the past μp,i, i = 1, 2 are different, leads to a
contradiction.

We remark that Kuksin and Shirikyan [25] who deal with a forcing given by a
bounded kicked noise acting on all modes, did also introduce a Gibbs construction
in their proof of uniqueness.



Sinai’s Dynamical System Perspective on Mathematical Fluid Dynamics 193

References

1. S. Angenent. The zero set of a solution of a parabolic equation. J. Reine Angew. Math.,
390:79–96, 1988.

2. M. Arnold, Y. Bakhtin, and E. Dinaburg. Regularity of solutions to vorticity Navier–Stokes
system on R

2. Comm. Math. Phys., 258(2):339–348, 2005.
3. V.I. Arnol’d. Lectures on bifurcations and versal families (in Russian). Uspehi Mat. Nauk,

27(5(167)):119–184, 1972.
4. C. Boldrighini and P. Buttà. Navier–Stokes equations on a flat cylinder with vorticity

production on the boundary. Nonlinearity, 24(9):2639–2662, 2011.
5. C. Boldrighini, S. Frigio, and P. Maponi. On the blow-up of some complex solutions of the

3D Navier–Stokes equations: theoretical predictions and computer simulations. IMA J. Appl.
Math., 82(4):697–716, 2017.

6. C. Boldrighini, D. Li, and Ya.G. Sinai. Complex singular solutions of the 3-d Navier–Stokes
equations and related real solutions. J. Stat. Phys., 167(1):1–13, 2017.

7. J. Bricmont, A. Kupiainen, and R. Lefevere. Probabilistic estimates for the two-dimensional
stochastic Navier–Stokes equations. J. Statist. Phys., 100(3–4):743–756, 2000.

8. M. Cannone and F. Planchon. On the regularity of the bilinear term for solutions to the
incompressible Navier–Stokes equations. Rev. Mat. Iberoamericana, 16(1):1–16, 2000.

9. X.-Y. Chen. A strong unique continuation theorem for parabolic equations. Math. Ann.,
311(4):603–630, 1998.

10. P. Constantin and C. Foias. Navier–Stokes Equations. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, IL, 1988.

11. J. Cortissoz. Some elementary estimates for the Navier–Stokes system. Proc. Amer. Math.
Soc., 137(10):3343–3353, 2009.

12. J.C. Cortissoz. On the blow-up behavior of a nonlinear parabolic equation with periodic
boundary conditions. Arch. Math. (Basel), 97(1):69–78, 2011.

13. E. Dinaburg, D. Li, and Ya. G. Sinai. A new boundary problem for the two dimensional
Navier–Stokes system. J. Stat. Phys., 135(4):737–750, 2009.

14. E. Dinaburg, D. Li, and Ya. G. Sinai. Navier–Stokes system on the flat cylinder and unit square
with slip boundary conditions. Commun. Contemp. Math., 12(2):325–349, 2010.

15. E.I. Dinaburg and Ya. G. Sinai. A quasilinear approximation for the three-dimensional Navier–
Stokes system. Mosc. Math. J., 1(3):381–388, 471, 2001.

16. E.I. Dinaburg and Ya. G. Sinai. On some approximation of the 3D Euler system. Ergodic
Theory Dynam. Systems, 24(5):1443–1450, 2004.

17. C.R. Doering and E.S. Titi. Exponential decay rate of the power spectrum for solutions of the
Navier–Stokes equations. Phys. Fluids, 7(6):1384–1390, 1995.

18. W. E, J.C. Mattingly, and Ya. Sinai. Gibbsian dynamics and ergodicity for the stochastically
forced Navier–Stokes equation. Comm. Math. Phys., 224(1):83–106, 2001.

19. F. Flandoli. Dissipativity and invariant measures for stochastic Navier–Stokes equations.
NoDEA Nonlinear Differential Equations Appl., 1(4):403–423, 1994.

20. C. Foias, O. Manley, R. Rosa, and R. Temam. Navier–Stokes Equations and Turbulence,
volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 2001.

21. C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier–Stokes
equations. J. Funct. Anal., 87(2):359–369, 1989.
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