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and SRB Measures

Yakov Pesin

Abstract Some principal contributions of Ya. Sinai to hyperbolic theory of dynam-
ical systems, focusing mainly on constructions of Markov partitions and of Sinai–
Ruelle–Bowen measures, are discussed. Some further developments in these direc-
tions stemming from Sinai’s work, are described.

1 Introduction

In this article I discuss some of the many principal contributions of Ya. Sinai to
the hyperbolic theory of smooth dynamical systems. I focus on two related topics:
(1) Markov partitions and (2) Sinai–Ruelle–Bowen (SRB) measures. Dynamical
systems that admit Markov partitions with finite or countable number of partition
elements allow symbolic representations by topological Markov shifts with finite
or respectively countable alphabet. As a result these systems exhibit high level of
chaotic behavior of trajectories. SRB-measures serve as natural invariant measures
with rich collection of ergodic properties. Various constructions of Markov parti-
tions as well as of SRB-measures represent an important and still quite active area
of research in dynamics that utilizes Sinai’s original ideas and develops them further
to cover many other classes of dynamical systems. Therefore, along with describing
results by Ya. Sinai, I briefly survey some of the latest developments in this area.

I stress that hyperbolic theory of dynamical systems provides a rigorous math-
ematical foundation for studying models in science that exhibit chaotic motions.
For reader’s convenience, I begin with an informal discussion of the role that the
hyperbolic theory plays in studying various chaotic phenomena.
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1.1 From Scientific Determinism to Deterministic Chaos

In the nineteenth century the prevailing view in dynamics was causal or scientific
determinism best expressed by Laplace as follows:

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would be present before
its eyes.

It took about a century to shake up this view with the discovery by Poincaré—in
his work on the three-body problem—of the existence of homoclinic tangles formed
by intersections of stable and unstable separatrices of a hyperbolic fixed point.

Poincaré wrote:

When we try to represent the figure formed by these two curves and their infinitely many
intersections. . . one must be struck by the complexity of this shape, which I do not even
attempt to illustrate. Nothing can give us a better idea of the complication of the three-body
problem, and in general of all problems of dynamics for which there is no uniform integral.

In 1963, in his talk at the International Conference on Nonlinear Oscillations
(Kiev, Ukraine), Smale [66] made the crucial observation that the homoclinic tangle
contains a horseshoe, i.e., a fractal set that is locally the product of two Cantor sets.
One obtains this set by taking the closure of the set of intersections of stable and
unstable separatrices near the fixed point. The horseshoe provided the first example
of a differential map with infinitely many hyperbolic periodic points.

Smale’s discovery was an important step in shaping up a new area of research
in dynamical systems—the hyperbolicity theory—that studies relations between
chaotic motions, instability of trajectories and fractal structure of invariant sets.
The foundation of this new area was built in the 1960s–1970s in seminal works of
Anosov, Sinai, and Smale, see [5, 6, 59–62, 66, 67]. I would like also to emphasize
an important role for the development of the theory of dynamical systems that was
played during this time by two Moscow seminars, one run by Alekseev and Sinai1

and another one by Anosov and Katok (see [19, 37, 38]) as well as by Smale’s school
at Berkeley.

The current view on dynamics draws a much richer picture allowing a variety
of motions ranging from regular to intermittently chaotic to all-time chaotic. More-
over, a dynamical system, which is typical in a sense, should possess an invariant
fractal set of complicated self-similar geometric structure, and the trajectories that
start on or in a vicinity of this set are unstable (hyperbolic). The combination of
fractality of the set and instability of trajectories causes these trajectories to behave
unpredictably; such a chaotic behavior can persist all the time or can be intermittent.

1After Alekseev’s untimely death in 1980, the seminar was run by Sinai only.
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Furthermore, one should typically expect to have infinitely many such fractal
sets, which are mixed together in one invariant multi-fractal set. These fractal sets
can occupy either the whole phase space, or a part of it, in which case the dynamics
on its complement can be quite regular—the highly non-trivial phenomenon known
as the essential coexistence, see [25, 26, 35] for a detailed description of the
phenomenon and recent examples of systems with discrete and continuous time that
exhibit it.

To describe the phenomenon of the appearance of “chaotic” motions in purely
deterministic dynamical systems, one uses the controversial but expressive term
deterministic chaos.2 Its crucial feature is that the chaotic behavior is not caused by
an external random force such as white noise, but by the system itself. The source
of the deterministic chaotic behavior is instability along typical trajectories of the
system, which drives orbits apart. On the other hand, compactness of the phase space
forces them back together; the consequent unending dispersal and return of nearby
trajectories is one of the hallmarks of chaos.

After Poincaré, the fact that instability can cause some complicated chaotic
behavior was further observed and advanced in works of Birkhoff, Hadamard, Hopf,
and Morse. Many years later some systems with chaotic behavior were found and
studied numerically by Lorenz, Chirikov, Ford, Zaslavsky, etc. I refer the reader to
Sinai’s articles [63–65] for a more detailed discussion of the chaos theory, its earlier
development and relations between chaotic behavior and instability of trajectories
as well as for relevant references. In these papers Sinai also demonstrates how ideas
and methods of statistical physics can be used to explain various chaotic phenomena
in dynamics.

1.2 Markov Partitions and Symbolic Representations
of Chaotic Dynamics

To explain what it means for deterministic trajectories to exhibit chaotic behavior,
consider a map f acting on a phase space M and a point x ∈ M . Let us divide the
phase space into two parts A and B. Given an orbit {f n(x)}, we write 0 if f n(x)

lies in A and 1 otherwise. This way we obtain a coding of every trajectory by a
two-sided infinite sequence of symbols 0 and 1 that is

x → ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . . }, where ωi = 0 or 1.

The principal question is:
Given a symbolic sequence of 0 and 1, can we find a point x whose trajectory is

coded by this sequence?

2This term was first used in works of Chirikov, Ford and Yorke.
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If so, starting with a random symbolic sequence that is obtained, for example, by
flipping a dime, one gets a random orbit of the system whose location in either A

or B can only be predicted with a certain probability.
Another way to look at this is to say that the system under consideration is

modeled by (or equivalent to) the classical Bernoulli process in probability theory.
Smale’s horseshoe is a classical example which allows the above coding and

hence, a symbolic representation by the full shift on 2 symbols. In many “practical”
situations however, one may need more sophisticated partitions of the phase space
called Markov partitions (the term coined by Sinai). In general, elements of Markov
partitions may have very complicated fractal structure. These partitions allow one
to model the systems by more general Markov (not necessarily Bernoulli) processes
with finite or even countable set of states. From the probability theory point of view
such processes are chaotic in the strongest possible sense.

The first construction of Markov partitions was obtained by Adler and Weiss [1]
in the particular case of hyperbolic automorphisms of the 2-torus (see also Berg,
[12] whose work is independent of [1]). As a crucial corollary they observed that
the map allowed a symbolic representation by a subshift of finite type and that this
can be used to study its ergodic properties.

Sinai’s groundbreaking contribution was to realize that existence of Markov
partitions is a rather general phenomenon and in [59] he designed a method
of successive approximations to construct Markov partitions for general Anosov
diffeomorphisms (see Sect. 3 below for more details). Furthermore, in [62] Sinai
showed how Markov partitions can be used to study ergodic properties of hyperbolic
dynamical systems and he was also the first to observe the analogy between the
symbolic models of Anosov diffeomorphisms and lattice gas models in physics—
the starting point in developing the thermodynamic formalism.

Using a different approach, Bowen constructed Markov partitions with finitely
many elements for Axiom A diffeomorphisms, see [15]. The construction for
hyperbolic flows was carried out independently by Bowen [16] and Ratner [54] (see
also [15, 17]). Recently, Sarig [57] constructed Markov partitions with a countable
number of elements for surface diffeomorphisms with positive topological entropy.
Symbolic dynamics associated with hyperbolic systems was also studied by Alek-
seev [2].

Aside from smooth dynamical systems, Markov partitions with countable num-
ber of partition elements were constructed for a particular class of hyperbolic
billiards by Bunimovich and Sinai [20] and by Bunimovich, Sinai, and Chernov
[21] (see also the article by Szasz [68]).

1.3 Entropy

Introduced by Kolmogorov and Sinai, the metric entropy is one of the most impor-
tant invariants of dynamics, and this manifests itself in the famous isomorphism
problem. Given a transformation T : X → X preserving a measure μ, we say that
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(T , μ) is a Bernoulli automorphism if it is metrically isomorphic to the Bernoulli
shift (σ, κ) associated to some Lebesgue space (Y, ν), so that ν is metrically
isomorphic to Lebesgue measure on an interval together with at most countably
many atoms and κ is given as the direct product of Z copies of ν on YZ. Bernoulli
systems exhibit the highest level of chaotic behavior and entropy is a complete
invariant that distinguishes one Bernoulli map from another. This statement is
known as the isomorphism problem for Bernoulli systems. I refer the reader to
the article by Gurevich [32] for a more detailed discussion of this problem, its
history, and relevant references, but I would like to emphasize the important role of
Sinai’s work on weak isomorphism [58] that laid the ground for the famous Ornstein
solution of the isomorphism problem for Bernoulli systems, [46, 47].

Since in this paper we are mostly interested in smooth hyperbolic dynamical
systems, we will present a formula for the entropy of these systems with respect to
smooth or SRB measures. This formula connects the entropy with the Lyapunov
exponents (see Theorem 3 below); the latter are asymptotic characteristics of
instability of trajectories of the system. We will also discuss the Bernoulli property;
establishing it for smooth hyperbolic systems is based on verifying Ornstein’s
criterium for Bernoullicity.

1.4 Hyperbolicity

Intuitively, hyperbolicity means that the behavior of orbits that start in a small
neighborhood of a given one resembles that of the orbits in a small neighborhood of
a hyperbolic fixed point. In other words, the tangent space along the orbit {f n(x)}
should admit an invariant splitting

Tf n(x)M = Es(f n(x)) ⊕ Eu(f n(x)) (1)

into the stable subspace Es along which the differential of the system contracts and
the unstable subspace Eu along which the differential of the system expands.

One should distinguish between two types of hyperbolicity: uniform and nonuni-
form. In the former case every trajectory is hyperbolic and the contraction and
expansion rates are uniform in x. More generally, one can consider a compact
invariant subset Λ ⊂ M and require that f acts uniformly hyperbolic on Λ. Such
a set Λ is called uniformly hyperbolic. In the case of nonuniform hyperbolicity the
set of hyperbolic trajectories has positive (in particular, full) measure with respect
to an invariant measure and the contraction and expansion rates depend on x. Thus,
nonuniform hyperbolicity is a property of the system as well as of its invariant
measure (called hyperbolic).

One can extend the notion of hyperbolicity by replacing the splitting (1) along
the orbit {f n(x)} with the splitting

Tf n(x)M = Es(f n(x)) ⊕ Ec(f n(x)) ⊕ Eu(f n(x)) (2)
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into the stable Es , unstable Eu and central Ec subspaces with the rates of
contraction and/or expansion along the central subspace being slower than the
corresponding rates along the stable and unstable subspaces. This is the case of
partial hyperbolicity.

2 An Overview of Hyperbolicity Theory

In this section I formally introduce three major types of hyperbolicity and briefly
discuss some of their basic properties.

2.1 Uniform Hyperbolicity

It originated in the work of Anosov and Sinai [5, 6]; see also the book [39] for the
state of the art exposition of the uniform hyperbolicity theory.

A diffeomorphism f of a compact Riemannian manifold M is called uniformly
hyperbolic or Anosov if for each x ∈ M there is a continuous df -invariant
decomposition of the tangent space TxM = Es(x) ⊕ Eu(x) and constants c > 0,
λ ∈ (0, 1) such that for each x ∈ M:

1. ‖dxf nv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
2. ‖dxf −nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

The distributions Es and Eu are called stable and unstable, respectively. One can
show that they depend Hölder continuously in x. Clearly, the angle between stable
and unstable subspaces is bounded away from zero in x.

Using the classical Hadamard–Perron theorem, for each x ∈ M one can construct
a local stable manifold V s(x) and a local unstable manifold V u(x) such that

(L1) x ∈ V s,u(x) and TxV s,u(x) = Es,u(x);
(L2) f (V s(x)) ⊂ V s(f (x)) and f −1(V u(x)) ⊂ V u(f −1(x)).

Furthermore, define the global stable manifold Ws(x) and the global unstable
manifold Wu(x) by

Ws(x) =
⋃

n≥0

f −n(V s(f n(x))), Wu(x) =
⋃

n≥0

f n(V u(f −n(x))).

These sets have the following properties:

(G1) they are smooth submanifolds;
(G2) they are invariant under f , that is, f (Ws,u(x)) = Ws,u(f (x));
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(G3) they are characterized as follows:

Ws(x) = {y ∈ M : d(f n(y), f n(x)) → 0, n → ∞},
Wu(x) = {y ∈ M : d(f n(y), f n(x)) → 0, n → −∞};

(G4) they integrate the stable and unstable distributions, that is, Eu,s(x) =
TxWu,s(x).

It follows that Ws(x) and Wu(x) form two uniformly transverse f -invariant
continuous stable and unstable foliations Ws and Wu with smooth leaves. In
general, the leaves of these foliations depend only continuously on x.3

Any sufficiently small perturbation in the C1 topology of an Anosov diffeomor-
phism is again an Anosov diffeomorphism. Hence, Anosov diffeomorphisms form
an open set in the space of C1 diffeomorphisms of M .

There are very few particular examples of Anosov diffeomorphisms, namely

1. A linear hyperbolic automorphism of the n-torus given by an n × n-matrix A =
(aij ) whose entries aij are integers, det A = 1 or −1, and all eigenvalues |λ| 
= 1;

2. The Smale automorphism of a compact factor of some nilpotent Lie group (see
[67] and also [39]).

A topologically transitive C2 Anosov diffeomorphism f preserving a smooth
measure μ is ergodic, and if f is topologically mixing, then it is a Bernoulli
diffeomorphisms with respect to μ. The Bernoulli property was established by
Bowen [15], and a much more general result is given by Statement 4 of Theorem 2.

A compact invariant subset Λ ⊂ M is called hyperbolic if for every x ∈ Λ

the tangent space at x admits an invariant splitting as described above. For each
x ∈ Λ one can construct local stable V s(x) and unstable V u(x) manifolds which
have Properties (L1) and (L2).

A hyperbolic set Λ is called locally maximal if there exists a neighborhood U

of Λ with the property that given a compact invariant set Λ′ ⊂ U , we have that
Λ′ ⊂ Λ. In this case

Λ =
⋂

n∈Z
f n(U).

Locally maximal hyperbolic sets can be characterized as having local direct product
structure, that is, given two points x, y ∈ Λ, which are sufficiently close to each
other, the intersection [x, y] = V s(x) ∩ V u(y) lies in Λ. If g is a small perturbation
in the C1 topology of a diffeomorphism f with a locally maximal hyperbolic set
Λf , then g possesses a locally maximal hyperbolic set Λg that lies in a small
neighborhood of Λf .

3In fact, the dependence in x is Hölder continuous.
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A diffeomorphism f is called an Axiom A diffeomorphism if its non-wandering
set Ω(f ) is a locally maximal hyperbolic set.

The Spectral Decomposition Theorem claims (see [39]) that the set Ω(f ) of an
Axiom A diffeomorphism f can be decomposed into finitely many disjoint closed
f -invariant locally maximal hyperbolic sets, Ω(f ) = Λ1 ∪· · ·∪Λm such that f |Λi

is topologically transitive. Moreover, for each i there exists a number ni and a set
Ai ⊂ Λi such that the sets f k(Ai) are disjoint for 0 ≤ k < ni , their union is the set
Λi, f ni (Ai) = Ai , and the map f ni |Ai is topologically mixing.

2.2 Nonuniform Hyperbolicity

It originated in the work of Pesin [49–51]; see also the books [7, 8] for a sufficiently
complete description of the modern state of the theory.

A diffeomorphism f of a compact Riemannian manifold M is non-uniformly
hyperbolic if there are a measurable df -invariant decomposition of the tangent space
TxM = Es(x) ⊕ Eu(x) and measurable positive functions ε(x), c(x), k(x) and
λ(x) < 1 such that for almost every x ∈ M (here 
 (S1, S2) denotes the angle
between subspaces Sj ):

1. ‖df nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Es(x), n ≥ 0;
2. ‖df −nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Eu(x), n ≥ 0;
3. 
 (Es(x),Eu(x)) ≥ k(x);
4. c(f m(x)) ≤ eε(x)|m|c(x), k(f m(x)) ≥ e−ε(x)|m|k(x), λ(f m(x)) = λ(x),

m ∈ Z.

The last property means that the rates of contraction and expansion (given by λ(x))
are constant along the trajectory and the estimates in (1) and (2) can deteriorate with
a rate which, while exponential, has a sufficiently small exponent.

Non-uniform hyperbolicity can also be expressed in more “practical” terms using
the Lyapunov exponent of μ:

χ(x, v) = lim sup
n→∞

1

n
log ‖df n

x v‖, x ∈ M, v ∈ TxM.

This means that for all sufficiently large n and a sufficiently small ε,

‖df n
x v‖ ∼ exp(χ(x, v) ± ε)n.

If χ(x, v) > 0, the differential asymptotically expands v with some exponential rate,
and if χ(x, v) < 0, the differential asymptotically contracts v with some exponential
rate.

Therefore, f is non-uniformly hyperbolic if for almost every trajectory with
respect to μ, the Lyapunov exponent χ(x, v) is not equal to zero for every vector v;



Sinai’s Work on Markov Partitions and SRB Measures 265

in this case the measure μ is called hyperbolic. In other words,

Es(x) = Es
f (x) = {v ∈ TxM : χ(x, v) < 0}, Eu(x) = Eu

f (x) = Es
f −1(x).

Nonuniform hyperbolicity is equivalent to the fact that Lyapunov exponents of f

are nonzero almost everywhere in M (i.e., the smooth invariant measure for f is
hyperbolic)—the phenomenon known as the Anosov rigidity. One can show that f

is an Anosov diffeomorphism if:

1. the Lyapunov exponents for f are nonzero at every point x ∈ M , see [33, 45];
2. the Lyapunov exponents for f are nonzero on a set of total measure one, i.e., on

a set that has full measure with respect to any invariant measure, see [23, 24].

If μ is a hyperbolic measure, then for almost every x ∈ M one can construct local
stable and unstable manifolds V s(x) and V u(x). They depend measurably on x, in
particular, their sizes can be arbitrarily small.

An example of a diffeomorphism with nonzero Lyapunov exponents was con-
structed by Katok [36]. Starting with a hyperbolic automorphism of the 2-torus,
he used the slow-down procedure in a neighborhood of a hyperbolic fixed point
p to turn p into an indifferent fixed point. In particular, the Lyapunov exponents
at p are all zero. Katok used this example as a starting point in his construction
of area preserving C∞ diffeomorphisms with nonzero Lyapunov exponents on
compact surfaces. This result was extended by Dolgopyat and Pesin [31] who
showed that any compact manifold of dimension ≥2 admits a volume preserving
C∞ diffeomorphism with nonzero Lyapunov exponents.

2.3 Partial Hyperbolicity

It originated in the work of Brin and Pesin [18] and of Pugh and Shub [34]; see also
the book [52] for a sufficiently complete exposition of the core of the theory.

A diffeomorphism f of a compact Riemannian manifold M is called partially
hyperbolic if for each x ∈ M there is a continuous df -invariant decomposition of
the tangent space TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x) and constants c1, c2, c3, c4 > 0,
λ1 < μ1 ≤ μ2 < λ2, μ1 ≤ 1 such that for each x ∈ M and n ≥ 0:

1. ‖dxf nv‖ ≤ c1λ
n
1‖v‖ for v ∈ Es(x);

2. ‖dxf nv‖ ≥ c2λ
n
2‖v‖ for v ∈ Eu(x);

3. c4μ
n
1‖v‖ ≤ ‖dxf

nv‖ ≤ c3μ
n
2‖v‖ for v ∈ Ec(x).

The distributions Es , Eu, and Ec are called stable, unstable and central, respec-
tively. They depend continuously in x.4 Clearly, the angle between any two
subspaces Es(x), Eu(x) and Ec(x) is bounded away from zero uniformly in x.

4One can show that the dependence in x is Hölder continuous.
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Any sufficiently small perturbation in the C1 topology of a partially hyperbolic
diffeomorphism is again a partially hyperbolic diffeomorphism. Hence, partially
hyperbolic diffeomorphisms form an open set in the space of C1 diffeomorphisms
of M .

The stable and unstable distributions Es and Eu can be integrated to continuous
foliations Ws and Wu, respectively, with smooth leaves. The central distribution
may or may not be integrable.

Some well-known examples of partially hyperbolic diffeomorphisms are (1) a
direct product of an Anosov diffeomorphism with the identity map of a manifold;
(2) a group extension over an Anosov diffeomorphism; (3) the time-1 map of an
Anosov flow.

A compact invariant subset Λ ⊂ M is called partially hyperbolic if the restriction
f |Λ is partially hyperbolic in the above sense. For each x ∈ Λ, one can construct
local stable V s(x) and unstable V u(x) manifolds.

3 Markov Partitions

3.1 Definition of Markov Partitions

Let Λ be a locally maximal hyperbolic set for a diffeomorphism f of a compact
smooth Riemannian manifold M . From now on we assume that f |Λ is topologically
mixing. The general case can be easily reduced to this one by using the Spectral
Decomposition Theorem.

A non-empty closed set R ⊂ Λ is called a rectangle if

• diam R ≤ δ (where δ > 0 is sufficiently small);
• R = int R where int R is defined in the relative topology in R;
• [x, y] ∈ R whenever x, y ∈ R.5

A rectangle R has direct product structure that is given x ∈ R, there exists a
homeomorphism

θ : R → R ∩ V (s)(x) × R ∩ V (u)(x).6

One can show that both θ and θ−1 are Hölder continuous. A finite cover R =
{R1, . . . , Rp} of Λ by rectangles Ri , i = 1, . . . , p is called a Markov partition for
f if

5We use here the fact that the set Λ is locally maximal.
6In other words, θ identifies the rectangle R with the product R ∩ V (s)(x) × R ∩ V (u)(x).
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1. int Ri ∩ int Rj = ∅ unless i = j ;
2. for each x ∈ int Ri ∩ f −1(int Rj ) we have

f (V s(x) ∩ Ri) ⊂ V s(f (x)) ∩ Rj , f (V u(x) ∩ Ri) ⊃ V u(f (x)) ∩ Rj .

These relations are called the Markov property of the Markov partition. We stress
that despite the name a Markov partition R is a cover of Λ which is almost a
partition: any two elements of the cover can intersect only along their boundaries.

3.2 Symbolic Models

A Markov partition R = {R1, . . . , Rp} generates a symbolic model of f |Λ by a
finite Markov shift or a subshift of finite type (ΣA, σ), where ΣA is the set of two-
sided infinite sequences of numbers {1, . . . , p}, which are admissible with respect
to the transfer matrix of the Markov partition A = (aij ) (i.e., aij = 1 if int Ri ∩
f −1(int Rj) 
= ∅, and aij = 0 otherwise). Namely, define

R
(u)
i0...in

=
n⋂

j=0

f −j (Rij ), R
(s)
i−n...i−1

=
−n⋂

j=−1

f −j (Rij ),

Ri−n...in = R
(s)
i−n...i−1

∩ R
(u)
i0...in

.

Now we define the coding map χ : ΣA → Λ by

χ(. . . , i−n, . . . , i0, . . . in, . . . ) =
⋂

n≥0

Ri−n...in .

Note that the maps f and σ are conjugate via the coding map χ , i.e., f ◦χ = χ ◦σ .
The map χ is Hölder continuous and injective on the set of points whose trajectories
never hit the boundary of any element of the Markov partition.

For any points ω = (. . . , i−1, i0, i1, . . . ) ∈ ΣA and ω′ = (. . . , i ′−1, i
′
0, i

′
1, . . . ) ∈

ΣA with the same past (i.e., i ′j = ij for any j ≤ 0) we have that χ(ω′) ∈ V (u)(x) ∩
R(x), where x = χ(ω) and R(x) is the element of a Markov partition containing x.
Similarly, for any point ω′′ = (. . . , i ′′−1, i

′′
0 , i ′′1 , . . . ) ∈ ΣA with the same future as

ω (i.e., i ′′j = ij for any j ≥ 0) we have that χ(ω′′) ∈ V (s)(x) ∩ R(x). Thus, the set

V (u)(x) ∩ R(x) can be identified via the coding map χ with the cylinder C+
i0

in the

space Σ+
A of “positive” one-sided infinite sequences of numbers {1, . . . , p} and the

set V (s)(x) ∩ R(x) can be identified via the coding map χ with the cylinder C−
i0

in

the space Σ−
A of “negative” one-sided infinite sequences of numbers {1, . . . , p}.
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3.3 Sinai’s Construction of Markov Partitions

I outline here a construction of Markov partition from [59] (see also [27]). For
simplicity, I only consider Anosov diffeomorphisms of the two-dimensional torus,
in which case the geometry of the construction is rather simple and it produces
a partition whose elements are connected subsets with non-empty interior. In the
multi-dimensional case the requirement that partition elements are connected cannot
be ensured unless one allows partitions with countable number of elements. For the
construction of Markov partitions for general Axiom A maps I refer the reader to
the works of Bowen [14, 15].7

Let f be an Anosov diffeomorphism of the two dimensional torus T2. Fix ε > 0.
We shall construct a Markov partition with diameter of elements ≤ ε. It suffices
to do so for some power n of f . Indeed, if R is a Markov partition for f n, then⋂n

k=−n f kR is a Markov partition for f .
For points in the torus, local stable and unstable manifolds are smooth curves

which are called stable and unstable curves. In the course of our construction every
rectangle R is a closed connected subset of the torus. Its boundary ∂R is the union
of four curves, two of which are stable and the other two are unstable. The union
of stable curves forms the stable boundary ∂sR of R while the union of unstable
curves forms the unstable boundary ∂uR of R. For every x ∈ R we denote by γ s

R(x)

(respectively, γ u
R(x)) the full length stable (respectively, unstable) curve through

x, i.e., the segment of stable (unstable) curve whose endpoints lie on the unstable
(stable) boundary of R.

Let us now fix δ > 0, n > 0, and let λ ∈ (0, 1) be the constant in the definition
of Anosov diffeomorphisms. A collection of rectangles R̃ = {R̃1, . . . , R̃p} is called
a sufficient (n, δ)-collection if

1.
⋃p

j=1 R̃j = T
2;

2. diam R̃j ≤ δ, j = 1, . . . , p;
3. given a rectangle R̃j , one can find two subcollections of rectangles {R̃i1, . . . , R̃ik }

and {R̃s1, . . . , R̃st } such that

(a) f n(R̃j ) ⊂ ⋃k
�=1 R̃i� and f −n(R̃j ) ⊂ ⋃t

�=1 R̃s� ;
(b) for every x ∈ R̃j , if f n(x) lies in some rectangle R̃i� from the first

subcollection, then f n(γ s

R̃j
(x)) ⊂ γ s

R̃i�

(f n(x));

(c) for every x ∈ R̃j , if f −n(x) lies in some rectangle R̃s� from the second
subcollection, then f −n(γ u

R̃j
(x)) ⊂ γ u

R̃s�

(f −n(x)).

It is not difficult to show that given δ > 0 and a large enough n > 0, there is a
sufficient (n, δ)-collection R̃.

7In [14], Bowen used a method similar to the original Sinai method known as the method of
successive approximations. In [15] he used a different approach based on pseudo-orbits.
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Our goal is to slightly “extend” each rectangle of a given sufficient (n, δ)-
collection R̃ in both the stable and unstable directions to ensure the Markov
property in these directions. This will produce a cover of the torus by rectangles,
which is a Markov cover.

To this end fix a rectangle R̃j ∈ R̃ and consider two subcollections
{R̃i1, . . . , R̃ik } and {R̃s1, . . . , R̃st }, which have the properties with respect to R̃j

mentioned above. We refer to the union of the (un)stable boundaries of all rectangles
in the subcollection as the (un)stable boundary of the subcollection.

Consider the set f n(∂uR̃j ). It consists of two unstable curves γ u
1 = f n(γ̃ u

1 )

and γ u
2 = f n(γ̃ u

2 ) where the curves γ̃ u
1 and γ̃ u

2 form the unstable boundary of R̃j .
Denote by A1, B1 and A2, B2 the endpoints of these curves. We refer to A1 and
A2 as the left endpoints of γ u

1 and γ u
2 , respectively, and to B1 and B2 as the right

endpoints of γ u
1 and γ u

2 , respectively. If R̃m is a rectangle from the subcollection
that contains A1, then it also contains A2.

Consider now the full length unstable curve γ u

R̃m
(A1). It intersects the stable

boundary of R̃m at two points, C1 and D1. One of them, say C1, lies on the “left”
of A1 and does not belong to the curve γ u

1 (while the other one does). We now
extend the curve γ̃ u

1 to the left by adding the segment f −n(A1C1) to its left point
f −n(A1). It is easy to see that the length of this segment does not exceed δλ−n.
Similarly, the full length unstable curve γ u

R̃m
(A2) intersects the stable boundary of

R̃m at two points, C2 and D2 of which C2 lies on the “left” of A2 and does not
belong to the curve γ u

2 . We again extend the curve γ̃ u
2 to the left by adding the

segment f −n(A2C2) to its left point f −n(A2). The length of this segment does not
exceed δλ−n. As a result we obtain a new rectangle R̃l

j , which is a left extension of

the rectangle R̃j . The left stable boundary of this new rectangle is the stable curve
f −n(C1C2).

In a similar manner we can extend the rectangle R̃j to the right and obtain a new
rectangle which has the Markov property in the unstable direction with respect to
the subcollection associated to R̃j . Continuing in this way, we obtain a new cover

R̃(1) = {R̃(1)
1 , . . . , R̃

(1)
p } which has the Markov property in the unstable direction

with respect to the cover R̃. Note that the diameter of each rectangle in the new
cover in the unstable direction does not exceed δ + δλn, while the diameter in the
stable direction does not exceed δ. Proceeding by induction we obtain a sequence of
covers R̃(q) = {R̃(q)

1 , . . . , R̃
(q)
p } such that

1. rectangles in the cover R̃(q) have the Markov property in the unstable direction
with respect to the rectangles in the cover R̃(q−1);

2. the diameter of each rectangle in the cover R̃(q) in the unstable direction does
not exceed

1 − λ−(q+1)n

1 − λ−n
2δ,

while the diameter in the stable direction does not exceed δ;
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3. for each q > 0 and j = 1, . . . , p we have that R̃
(q)

j ⊂ R̃
(q−1)

j and the rectangle

R̃
(q)
j is a connected subset.

One can show that the sets R+
j = ⋃

q>0 R̃
(q)

j forms a cover R+, which has the
Markov property in the unstable direction and whose diameter in the unstable
direction does not exceed 1

1−λ−n 2δ, while the diameter in the stable direction does
not exceed δ. Furthermore each rectangle in this cover is a connected subset.
Replacing f n with f −n and repeating the above argument, we can slightly extend
each element of the cover R+ in the stable direction to obtain a new cover R =
(R+)− which has the Markov property in both the unstable and stable directions
and whose diameter does not exceed 1

1−λ−n 2δ. Moreover, each rectangle in this
cover is a connected subset. One can now subdivide the rectangles of the cover to
obtain the desired Markov partition.

4 SRB Measures I: Hyperbolic Attractors

4.1 Topological Attractors

Let f be a diffeomorphism of a compact smooth Riemannian manifold M . A
compact invariant subset Λ ⊂ M is called a topological attractor for f if there
is an open neighborhood U of Λ such that f (U) ⊂ U and

Λ =
⋂

n≥0

f n(U).

The set U is said to be a trapping region or a basin of attraction for Λ. The maximal
open set with this property is called the topological basin of attraction for Λ. It
follows immediately from the definition of the attractor that Λ is locally maximal,
i.e., is the largest invariant set in U .

4.2 Natural and Physical Measures

Starting with the volume m in U , consider its evolution under the dynamics, i.e., the
sequence of measures

mn = 1

n

n−1∑

k=0

f k∗ m. (3)
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This sequence is compact in the week∗ topology, and hence has a convergent
subsequence mnk . Clearly, the limit of mnk is supported on Λ and by the Bogolubov–
Krylov theorem, it is an f -invariant measure called a natural measure for f . In
general, the measure μ may be quite trivial—just consider the point mass at an
attracting fixed point.

Given a measure μ on an attractor Λ, define its basin of attraction B(μ) as the
set of μ-generic points x ∈ U , i.e., points such that for every continuous function ϕ

on Λ,

lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(x)) =
∫

Λ

ϕ dμ. (4)

A natural measure μ on the attractor Λ is a physical measure if its basin of
attraction B(μ) has positive volume. An attractor with a physical measure is called
a Milnor attractor.

4.3 SRB Measures

Let μ be a hyperbolic invariant measure supported on Λ. Using results of nonuni-
form hyperbolicity theory one can construct for almost every x ∈ Λ a local stable
V s(x) manifold and a local unstable V u(x) manifold. It is easy to show that for such
points x we have V u(x) ⊂ Λ and consequently, Wu(x) ⊂ Λ (recall that Wu(x) is
the global unstable manifold through x). On the other hand, the intersection of Λ

with stable manifolds of its points is a Cantor set.
There is a collection {Λ�}�≥1 of nested subsets of Λ that exhaust Λ (mod 0)

such that local stable V s(x) and unstable V u(x) manifolds depend continuously
on x ∈ Λ�. In particular, their “sizes” are bounded uniformly from below. Given
x ∈ Λ�, set

Q�(x) =
⋃

y∈B(x,r�)∩Λ�

V u(y),

where r� > 0 is sufficiently small, and let ξ� be the partition of Q�(x) by local
unstable leaves V u(y), y ∈ B(x, r�)∩Λ�. Denote by μu(y) the conditional measure
on V u(y) generated by μ with respect to the partition ξ� and by mu(y) the leaf-
volume on V u(y) generated by the Riemannian metric.8

A hyperbolic invariant measure μ on Λ is called an SRB measure (after Sinai,
Ruelle and Bowen) if for every � with μ(Λ�) > 0, almost every x ∈ Λ� and almost
every y ∈ B(x, r�) ∩ Λ� the measures μu(y) and mu(y) are equivalent. The idea of

8Both μu(x) and mu(x) are probability measures.
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describing an invariant measure by its conditional probabilities on the elements of a
continuous partition goes back to the classical work of Kolmogorov and later work
of Dobrushin on random fields, [30] (see also [62]).

The following result describes the density du(x, y) of the conditional measure
μu(x) with respect to the leaf-volume mu(x).

Theorem 1 (Sinai [62], Pesin and Sinai [53], Ledrappier [41]) For almost every
x the density du(x, y) is given by du(x, y) = ρu(x)−1ρu(x, y) where for y ∈ V u(x)

ρu(x, y) =
∞∏

k=0

Jac(df |Eu(f −k(y)))

Jac(df |Eu(f −k(x)))
(5)

and

ρu(x) =
∫

V u(x)

ρu(x, y) dmu(x)(y) (6)

is the normalizing factor.

The Eq. (5) can be viewed as an analog of the famous Dobrushin–Lanford–Ruelle
equation in statistical physics, see [40] and [62].

Using results of nonuniform hyperbolicity theory one can obtain a sufficiently
complete description of ergodic properties of SRB measures.

Theorem 2 Let f be a C1+ε diffeomorphism of a compact smooth manifold M with
an attractor Λ and let μ be an SRB measure on Λ. Then

1. Λ = ⋃
i≥0 Λi , Λi ∩ Λj = ∅;

2. μ(Λ0) = 0 and μ(Λi) > 0 for i > 0;
3. f |Λi is ergodic for i > 0;
4. for each i > 0 there is ni > 0 such that Λi = ⋃ni

j=1 Λij where f (Λij ) = Λi j+1,
f (Λni1) = Λi1 and f ni |Λi1 is Bernoulli.

For smooth measures this theorem was proved by Pesin in [50] and its extension
to SRB measures was obtained by Ledrappier in [41] (see also [7, 8]). We note that
the proof of the Bernoulli property in Statement 4 of the theorem is based on the
work of Ornstein and Weiss who established the Bernoulli property for geodesic
flows on compact manifolds of negative curvature, [48].

SRB measures admit the following characterization.

Theorem 3 Let μ be a measure on Λ of positive entropy. Then μ is an SRB measure
if and only if its entropy is given by the entropy formula:

hμ(f ) =
∫

Λ

∑

χi(x)>0

χi(x) dμ(x).
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For smooth measures (which are particular cases of SRB measures) the entropy
formula was proved by Pesin [50] (see also [7]) and its extension to SRB measures
was obtained by Ledrappier and Strelcyn [42]. The fact that a hyperbolic measure
satisfying the entropy formula is an SRB measure was shown by Ledrappier [41].9

It follows from Theorem 3 that any ergodic SRB measure is a physical measure
(any ergodic component of an SRB measure is an ergodic SRB measure). In
particular, if an attractor supports an ergodic SRB measure then it is a Milnor
attractor.

The limit measures for the sequence of measures (3) are natural candidates for
SRB measures. The classical eight figure map10 is an example of a diffeomorphism
f with an attractor Λ such that the sequence of measures (3) converges to a
hyperbolic measure μ whose basin of attraction has full volume, however μ is not
an SRB measure for f .

4.4 Uniformly Hyperbolic Attractors

An attractor Λ is hyperbolic if it is a uniformly hyperbolic set for f .11 The unstable
subspace Eu is integrable: given x ∈ Λ, the global unstable manifold Wu(x) lies in
Λ, and hence the attractor is the union of the global unstable manifolds of its points,
which form a lamination of Λ. On the other hand the intersection of Λ with stable
manifolds of its points may be a Cantor set.

Theorem 4 Assume that the map f |Λ is topologically transitive. Then the sequence
of measures (3) converges to a unique SRB measure on Λ and so does the sequence
of measures (7) (independently of the starting point x).

This theorem was proved by Sinai, [60] for the case of Anosov diffeomorphisms,
Bowen [15], and Ruelle [56] extended this result to hyperbolic attractors, and Bowen
and Ruelle [17] constructed SRB measures for Anosov flows.

Well-known examples of hyperbolic attractors are the DA (derived from Anosov)
attractor and the Smale–Williams solenoid (see [39] for definitions and details).

In the following two subsections I will outline two different approaches to prove
Theorem 4. The first approach was developed by Sinai in [60] and uses Markov
partitions, while the second one deals with the sequence of measures (3) in a
straightforward way and hence, is more general. In particular, it can be used to

9In this paper we use the definition of SRB measure that requires that it is hyperbolic. One can
weaken the hyperbolicity requirement by assuming that some (but not necessarily all) Lyapunov
exponents are non-zero (with at least one positive). It was proved by Ledrappier and Young [43, 44]
that within the class of such measures, SRB measures are the only ones that satisfy the entropy
formula.
10This is a two dimensional smooth map with a hyperbolic fixed point whose stable and unstable
separatrices form the eight figure. Inside each of the two loops there is a repelling fixed point.
11Clearly, the set Λ is locally maximal.
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construct some special measures for partially hyperbolic attractors which do not
allow Markov partitions; these are so called u-measures which are natural analog of
SRB measures in this case, see [53] and Sect. 6. For simplicity of the exposition
I only consider the case of Anosov diffeomorphisms, extension to hyperbolic
attractors is not difficult.

4.5 First Proof of Theorem 4 (Sinai [60])

Let R be a Markov partition of sufficiently small diameter and let R− =∨∞
n=0 f −nR. One can show that the partition R− has the following properties:

1. fR− ≥ R−;
2.

∨∞
k=0 f kR− is the trivial partition;

3. there is an r > 0 such that every element of the partition R− is contained in a
local stable manifold and contains a ball in this manifold of radius r .

Given x ∈ Λ, denote by CR−(x) the element of the partition R− containing x. For
every n > 0 we have that f n(CR−(x)) = Cf n(R−)(f

n(x)) and that f n is a bijection
between CR−(x) and Cf n(R−)(f

n(x)). Therefore, f −n transfers the normalized
leaf-volume on Cf n(R−)(f

n(x)) to a measure on CR−(x) which we denote by μn.
This measure is equivalent to the leaf-volume on CR−(x) and we denote by ρn(y)

the corresponding density function, which is continuous. One can show that the
sequence of functions ρn converges uniformly to a continuous function ρ̃(y) =
ρ̃CR− (x)(y), which can be viewed as the density function for a normalized measure
μ̃CR− (x) on CR−(x). These measures have the following properties:

1. μ̃CR− (x) is equivalent to the leaf-volume on CR−(x);
2. for every measurable set A ⊂ C′

R− ⊂ Cf −1(R−) the following Chapman–
Kolmogorov relation holds:

μ̃(A|Cf −1(R−)) = μ̃(A|C′
R−)μ̃(C′

R−|Cf −1(R−));

3. the measures μ̃ are determined by Properties 1 and 2 uniquely.

One can now show that for any x ∈ M and any measurable subset A ⊂ M there is
a limit

μ(A) = lim
n→∞ μ̃(A|Cf −n(R−)(x)),

which does not depend on x. The number μ(A) determines an invariant measure for
f which is the desired SRB measure.
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4.6 Second Proof of Theorem 4 (Pesin and Sinai, [53])

The way of constructing SRB measures on Λ based on the sequence of measures (3)
can be viewed as being “from outside of the attractor”. There is another way to
construct SRB measures “from within the attractor”. Fix x ∈ Λ and consider a local
unstable leaf V = V u(x) at x. One can view the leaf-volume mu(x) on V u(x) as a
measure on the whole of Λ. Consider the sequence of measures on Λ

νn(x) = 1

n

n−1∑

k=0

f k∗ mu(x). (7)

We shall show that every limit measure for the sequence of measures (7) is an SRB-
measure. In fact, every SRB-measure μ can be constructed in this way, i.e., it can
be obtained as the limit measure for a subsequence of measures νn. Furthermore, if
f |Λ is topologically transitive, then the sequence of measures (7) converges to μ

and so does the sequence of measures (3).
We stress that in the definition of the sequence of measures (7) one can replace

the local unstable manifold V u(x) with any admissible manifold, i.e., a local
manifold passing through x and sufficiently close to V u(x) in the C1 topology.

Let μ be a limit measure of the sequence of measures (7) and let z be such that
μ(B(z, r)) > 0 for every r > 0. Consider a rectangle R of size r > 0 containing
z and its partition ξ into unstable local manifolds V u(y), y ∈ R. We identify the
factor space R/ξ with W = V s(z) ∩ Λ and we denote by Un = f n(V ). Set

An = {y ∈ W : V u(y) ∩ Un 
= ∅},
Bn = {y ∈ W : V u(y) ∩ ∂Un 
= ∅},
Cn = An \ Bn.

Note that Cn is a finite set, and we denote by δn the measure on W , which is the
uniformly distributed point mass on Cn. If h is a continuous function on Λ with
support in R, then

∫

Λ

h dνn =
∫

R

h dνn

=
∑

y∈An

∫

V u(z)∩Un

h dνn

=
∑

y∈Cn

∫

V u(z)∩Un

h dνn +
∑

y∈Bn

∫

V u(z)∩Un

h dνn

= I (1)
n + I (2)

n .
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One can show that I
(2)
n ≤ C

n
where C > 0 is a constant. One can further show that

I (1)
n = cn

∑

y∈Cn

ρu(f n(x), y)

∫

V u(y)

h(w)ρu(y,w) dμu(w)

=
∫

W

cnρ
u(f n(x), y)ρu(y) dδn(y)

∫

V u(y)

h(w)
ρu(y,w)

ρu(y)
dμu(w),

where

cn =
[n−1∏

k=0

Jac(df |Eu(f k(x)))
]−1

and ρu(y) is given by (6).
It follows that for any subsequence n� → ∞ for which the sequence of measures

νn�(x) converges to a measure μ on Λ, one has that μ is an SRB measure.
The above argument implies that μ(int R) > 0 and hence, the set

E =
⋃

n∈Z
f n(int R)

is open and is an ergodic component of μ of positive measure (i.e., f |E is ergodic).
In fact, every ergodic component of μ can be obtained in this way and hence, is
open (mod 0). One can derive from here that there are at most finitely many SRB
measures and if f |Λ is topological transitive, then there is only one SRB measure.

5 SRB Measures II: Chaotic Attractors

5.1 Chaotic Attractors: The Concept

An attractor Λ for a diffeomorphism f is chaotic if there is a natural measure
that is hyperbolic, i.e., a measure with nonzero Lyapunov exponents (with some
being positive and some being negative). In this case using results of nonuniform
hyperbolicity theory one can show that for almost every x ∈ Λ there are a local
stable V s(x) and unstable V u(x) manifolds. It is easy to see that for such points x

we have V u(x) ⊂ Λ, so that the attractor contains all the unstable manifolds of its
points.
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5.2 Chaotic Attractors: Some Open Problems

1. Construct an example of a diffeomorphism f with an attractor Λ such that the
volume m is a non-invariant hyperbolic measure for f (i.e., for almost every
x ∈ U with respect to m and for every nonzero vector v ∈ TxM the Lyapunov
exponent χ(x, v) 
= 0) but the sequence of measures (3) converges to a measure
μ on Λ for which the Lyapunov exponent χ(x, v) = 0 for almost every x ∈ U

with respect to μ and for every nonzero vector v ∈ TxM;
2. Construct an example of a diffeomorphism f with an attractor Λ such that for

almost every x ∈ U with respect to volume m and for every nonzero vector
v ∈ TxM the Lyapunov exponent χ(x, v) = 0 but the sequence of measures (3)
converges to a hyperbolic measure μ on Λ.

5.3 The Hénon Attractor

Consider the Hénon family of maps given by

Ha,b(x, y) = (1 − ax2 + by, x). (8)

For a ∈ (0, 2) and sufficiently small b there is a rectangle in the plane, which
is mapped by Ha,b into itself. It follows that Ha,b has an attractor—the Hénon
attractor.

Benedicks and Carleson [9] developed a highly sophisticated techniques to
describe the dynamics near the attractor. Building on this analysis, Benedicks and
Young [10] established existence of SRB measures for the Hénon attractors.

Theorem 5 There exist ε > 0 and b0 > 0 such that for every 0 < b ≤ b0 one can
find a set Ab ∈ (2 − ε, 2) of positive Lebesgue measure with the property that for
each a ∈ Ab, the map Ha,b admits a unique SRB measure μa,b.

Wang and Young [71] introduced and studied some more general 2-parameter
families of maps with one unstable direction to which the above result extends.

The underlying mechanism of constructing SRB measures in these systems is
the work of Young [72] where she introduced a class of non-unformly hyperbolic
diffeomorphisms f admitting a symbolic representation via a tower whose base
A is a hyperbolic set with direct product structure and the induced map on the
base admits a Markov extension. Assuming that the return time R to the base is
integrable, one can show that there is an SRB measure.

As in the case of uniformly hyperbolic systems, the real power of a symbolic
representation is not just to help prove existence of SRB-measures but to show the
exponential decay of correlations, the Central Limit Theorem, etc. For the Hénon
attractor, Benedicks and Young [11] showed that if for all T > 0 we have

∫
R dm ≤

CλT where C > 0, 0 < λ < 1 and the integral is taken over the set of points x ∈ A
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with R(x) > T , then f has the exponential decay of correlations for the class of
Hölder continuous functions.

5.4 Chaotic Attractors: An Example

Let f be a diffeomorphism with an attractor Λ to be the Smale–Williams solenoid.
f has an SRB measure on Λ. In a small ball B(p, r) around a fixed point p, the map
f is the time-1 map of the linear system ẋ = Ax of ODEs.12 We wish to perturb f

locally by slowing down trajectories near p. Define a map g to be the time-1 map
for the following nonlinear system of ODEs inside B(p, r)

ẋ = ψ(x)Ax

and set g = f outside of B(p, r). Here ψ(x) = ‖x‖α for ‖x‖ < 2 and ψ(x) = 1
for ‖x‖ � 2.

Theorem 6 (Climenhaga, Dolgopyat, Pesin, [28]) The map g has an SRB-
measure.

5.5 Chaotic Attractors: Constructing SRB-Measures

Consider the set S ⊂ U (U is a neighborhood of the attractor Λ) of points such
that

• f (S) ⊂ S, i.e., S is forward invariant;
• there are two measurable cone families Ks(x) = Ks(x,E1(x), θ(x)) and

Ku(x) = Ku(x,E2(x), θ(x)),13 which are invariant,14 i.e.,

Df (Ku(x)) ⊂ Ku(f (x)), Df −1(Ks(f (x))) ⊂ Ks(x)

and transverse, i.e., TxX = E1(x) ⊕ E2(x).

Define

• λs(x) = sup{log ‖Df (v)‖: v ∈ Ks(x), ‖v‖ = 1}—coefficient of contraction;
• λu(x) = inf{log ‖Df (v)‖: v ∈ Ku(x), ‖v‖ = 1}—coefficient of expansion;
• d(x) = max (0, (λs(x) − λu(x))—defect of hyperbolicity;
• λ(x) = λu(x) − d(x)—coefficient of effective hyperbolicity;

12The matrix A is assumed to be hyperbolic having one positive and two negative eigenvalues.
13Recall that given x ∈ M , a subspace E(x) ⊂ TxM , and θ(x) > 0, the cone at x around E(x)

with angle θ(x) is defined by K(x,E(x), θ(x)) = {v ∈ TxM : 
 (v,E(x)) < θ(x)}.
14We stress that the subspaces E1(x) and E2(x) do note have to be invariant under df .
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• α(x) = 
 (Ks(x),Ku(x)) > 0—angle between the cones;
• ρα̂(x) = limn→∞ 1

n
#{0 ≤ k < n : α(f k(x)) < α̂}—average time the angle

between the cones is below a given threshold α̂ > 0.

We further assume that for every x ∈ S,

(S1) limn→∞ 1
n

∑n−1
k=0 λ(f k(x)) > 0;

(S2) limᾱ→0 ρᾱ(x) = 0;
(S3) limn→∞ 1

n

∑n−1
k=0 λs(f k(x)) < 0.

Theorem 7 (Climenhaga, Dolgopyat, Pesin, [28]) Assume that the set S has
positive volume. Then f possesses an SRB-measure.

In [70], Viana conjectured that if the set of all points with non-zero Lyapunov
exponents for a C1+α diffeomorphism f has positive (in particular, full) volume
(which is not necessarily invariant), then f admits an SRB measure. The above
theorem provides some stronger conditions under which the conclusion of Viana’a
conjecture holds. An affirmative solution of this conjecture for surface diffeomor-
phisms, under some general additional assumptions, is obtained in a recent work by
Climenhaga, Luzzatto and Pesin [29]. It is conjectured that if Requirement (S1) is
replaced with a stronger requirement that

limn→∞
1

n

n−1∑

k=0

λ(f k(x)) ≥ λ

for some λ > 0, then f possesses at most finitely many SRB-measures. In
[55], F. Rodriguez Hertz, J. Rodriguez Hertz, Tahzibi and Ures showed that
any topologically transitive surface diffeomorphism possesses at most one SRB
measure.

6 SRB-Measures III: Partially Hyperbolic Attractors

6.1 Partially Hyperbolic Attractors

An attractor Λ is partially hyperbolic if f |Λ is uniformly partially hyperbolic, i.e.,
if the tangent space T Λ admits an invariant splitting

T Λ = Es ⊕ Ec ⊕ Eu

into strongly stable, central and strongly unstable subspaces, respectively, which
satisfy conditions (1)–(3) in Sect. 2.3. The subspace Eu is integrable: given x ∈ Λ,
a local unstable leaf V u(x) lies in Λ, and hence so does the global strongly unstable
manifolds Wu. It follows that the attractor is the union of the global strongly unstable
manifolds of its points, which form a lamination of Λ.
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One can obtain an example of a partially hyperbolic attractor by considering the
product map F = f1 × f2 where f1 : M → M is a map possessing a uniformly
hyperbolic attractor and f2 : S1 → S1 is an isometry.

If f is a diffeomorphism possessing a uniformly (partially) hyperbolic attractor
Λ = Λf then any sufficiently small perturbation g of f in the C1 topology
possesses a uniformly (partially) hyperbolic attractor Λg that lies in a small
neighborhood of Λf . This provides an open set of uniformly (partially) hyperbolic
attractors in the spaces of C1 diffeomorphisms.

6.2 SRB-Measures on Partially Hyperbolic Attractors

Let Λ be a partially hyperbolic attractor for a diffeomorphisms f . A measure μ

on Λ is a u-measure if for almost every x ∈ Λ, the conditional measure μu(x)

generated by μ on the global strongly unstable leaf Wu(x) is absolutely continuous
with respect to the leaf-volume mu(x). One can show that the Jacobian of the u-
measure in the unstable direction is given by the formula (5). The following result
shows that every partially hyperbolic attractor carries a u-measure. Its proof can be
obtained by adjusting the argument in the second proof of Theorem 4 to the partial
hyperbolicity setting.

Theorem 8 (Pesin, Sinai, [53]) The following statements hold:

1. Any limit measure μ of the sequence of measures (3) is a u-measure on Λ;
2. Any limit measure μ of the sequence of measures (7) is a u-measure on Λ.

Unlike the case of hyperbolic attractors, the topological transitivity of f |Λ (or
even topological mixing) does not guarantee uniqueness of u-measures.15

Every SRB-measure on a partially hyperbolic attractor Λ is a u-measure but
not every u-measure is an SRB-measure. We say that a u-measure ν has negative
(positive) central exponents if there is an invariant subset A ⊂ Λ with ν(A) > 0
such that the Lyapunov exponents χ(x, v) < 0 (respectively, χ(x, v) > 0) for every
x ∈ A and every nonzero vector v ∈ Ec(x). A u-measure with negative (positive)
central exponents is an SRB-measure.

Below is a result that guarantees existence and uniqueness of SRB-measures for
partially hyperbolic attractors with negative central exponents. It requires existence
of at least one u-measure with negative central exponents and a strong transitive
condition. A detailed discussion of these requirements can be found in [22].

15Indeed, consider F = f1 × f2, where f1 is a topologically transitive Anosov diffeomorphism
and f2 a diffeomorphism close to the identity. Then any measure μ = μ1 × μ2, where μ1 is the
unique SRB-measure for f1 and μ2 any f2-invariant measure, is a u-measure for F . Thus, F has
a unique u-measure if and only if f2 is uniquely ergodic. On the other hand, F is topologically
mixing if and only if f2 is topologically mixing.
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Theorem 9 (Bonatti, Viana, [13]; Burns, Dolgopyat, Pollicott, Pesin, [22]) Let
f be a C1+ε diffeomorphism of a compact smooth manifold M with a partially
hyperbolic attractor Λ. Assume that:

1. there exists a u-measure ν with negative central exponents;
2. for every x ∈ Λ the global strongly unstable manifold Wu(x) is dense in Λ.

Then ν is the unique u-measure for f and is the unique hyperbolic SRB-measure
for f whose basin of attraction B(ν) has full volume in the topological basin of
attraction of Λ.

The case of positive central exponents is more difficult and existence of SRB-
measures can be established under the stronger requirements that (see [69]):

1. there is a unique u-measure ν with positive central exponents on a subset A ⊂ Λ

of full measure;
2. for every x ∈ Λ the global strongly unstable manifold Wu(x) is dense in Λ.

6.3 Dominated Splitting and SRB-Measures

The key tool in constructing SRB-measures in the uniform hyperbolic setting is
presence of a dominated splitting, i.e., a decomposition of the tangent bundle
TxM = E1(x) ⊕ E2(x) for every x ∈ Λ such that

1. E1(x) and E2(x) depend continuously on x;
2. �(E1(x),E2(x)) is bounded away from 0;
3. there is 0 < λ < 1 such that

‖Df |E1(x)‖ < λ, ‖Df |E1(x)‖ · ‖Df −1|E2(f (x))‖ < λ.

Construction of SRB measures for systems with dominated splitting was effected in
various situations. Here is an (incomplete) list:

• (Alves, Bonatti, Viana, [3]) there is a subset S ⊂ U of positive volume and ε > 0
such that for every x ∈ S,

lim sup
n→∞

1

n

n∑

j=1

log ‖df −1|E2(f
j (x))‖ < −ε.

In this case, in addition one can have no more than finitely many distinct SRB
measures.

• (Alves, Dias, Luzzatto, Pinheiro, [4]) there is a subset S ⊂ U of positive volume
and ε > 0 such that for every x ∈ S,

lim inf
n→∞

1

n

n∑

j=1

log ‖df −1|E2(f
j (x))‖ < −ε.
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In this case, in addition one can have no more than finitely many distinct SRB
measures. In fact, if f is topologically transitive and m(S) = 1, then the SRB
measure is unique.

We stress that for non-uniformly hyperbolic f , the splitting of the tangent space
does not have to be dominated.
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