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Non-Noble Metal Electrocatalysts
for the Oxygen Reduction Reaction in Fuel
Cells
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Abstract Low temperature fuel cells are promising and sustainable alternative in
energy generation. However, their large-scale production have been limited due at
high-cost and scarce electrocatalysts based commonly in noble metals. Development
of non-noble electrocatalysts has become intensive in recent years. A wide variety of
materials as perovskite-type, spinel-type oxides, tungsten carbides, and heteroatom-
doped carbons has been explored as alternative electrocatalysts to platinum. They
have demonstrated promising electrocatalytic activity toward the oxygen reduction
reaction (ORR) in alkaline electrolytes. However, these electrocatalysts are not
favorable using strong acid electrolytes. Moreover, transition metal macrocycles
show activity performance close to those of Pt-based electrocatalysts in acid media.
In this chapter, we present the most recent developments regarding non-noble metal
electrocatalyst, starting with a review of some basic electrochemistry concepts and
some techniques commonly used to evaluate their performance. Then, materials used
as non-noble metal electrocatalyst are presented which are divided into two groups:
(1) the most promising non-noble metal electrocatalysts used in acid electrolytes and
(2) in alkaline media. Finally, the conclusions and futures perspective are mentioned
for these materials that should be considered as the future electrocatalysts for
sustainable large-scale fuel cell commercialization.
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7.1 Introduction

The oxygen reduction reaction (ORR) plays a key role in several important processes
such as energy conversion, gas sensors, and biology. In energy conversion systems
as fuel cells and metal–air batteries, the ORR takes place in the cathode of the device.
This reaction is a complex electrochemical process, that is involving multi-electron
transfer, which occurs mainly by two pathways: the direct 4-electron reduction
pathway and the 2-electron reduction pathway. Additionally, 1-electron reduction
pathway can also occur in nonaqueous aprotic solvents and/or in alkaline solutions.

Moreover, the ORR kinetics is very slow; for this reason, to speed up its kinetics a
cathode ORR catalyst is needed. Platinum (Pt)-based catalysts are the most used in
low temperature fuel cells. However, it is known that Pt-based catalysts are too
expensive for making viable the large-scale commercialization of fuel cells. Exten-
sive research over the past several decades has focused on developing alternative
catalysts, including non-noble metal catalysts [1].

In this chapter, the most recent advances in the development of non-noble metal
catalysts are reviewed. In the first section, we focus on the ORR background
information, including the reaction kinetics and mechanisms in acid and alkaline
media of the most studied ORR catalysts: platinum, followed by the conventional
techniques for electrochemical measurements. The following sections address the
wide variety of non-noble metal catalysts that have been developed in recent years,
which were classified into two major groups: non-noble catalysts for proton
exchange membrane fuel cells (PEMFCs), including direct methanol fuel cells
(DMFCs) and non-noble metal catalysts for anion exchange membrane fuel
cells anion exchange fuel cells (AEMFC).

Catalysts for PEMFCs include transition metal macrocyclic compounds, transi-
tion metal chalcogenides, metal nitrides, oxynitrides, and carbonitrides. On the other
hand, catalysts for AEMFC include perovskite, transition metal oxides with spinel
structure, and heteroatom-doped carbon materials. The chemical structure of each
group of electrocatalysts and the reaction mechanisms proposed for the ORR are
discussed in detail in Sects. 7.3 and 7.4 of this chapter.

Finally, a comparison between the catalysts used in acid and basic medium is
elucidated, where we discuss from our perspective, what are the biggest challenges
and the major areas of opportunity offered by this line of research in the near future.

7.2 Fundamentals of the ORR

The mechanism by which the ORR is carried out currently is complicated to explain,
and this depends mainly on the naturalness of the catalyst, surface structure of
electrode and the electrolyte. The reaction mechanisms according to the type of
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electrolyte in the ORR has been summarized in Table 7.1. In electrochemical devices
such as fuel cells and metal–air batteries, the 4-electron pathway is highly desirable.

The kinetics of the reactions presented in Table 7.1 depends on two factors:
(1) the rate of the electrons that are transferred from the electrode to the reactant
species and vice versa, and (2) the rate of mass transport on the surface of the
electrode to displace the reaction products and feed on the reactant species.

The mass transport is relatively easy to control through the design of the cell and
the selection of the materials for the fuel cell construction, while the electrons
transfer is more complicated. The model of Julius Tafel (classic model) for the
electrons transfer relates the reaction rate constant with the molecular structure of the
reactants and the characteristics of the reaction medium [3]. However, the theory
proposed by Gerischer is more suitable in electrochemical systems because it
realizes the nanoscopic aspects with voltage–current variable [4]. This theory is
based on determining the energy density states and their occupation in the electrode
and the reactant species, associating the probability of tunneling between the elec-
trode and the redox species.

Several studies about electron transfer have been performed by physicists
[5, 6]. The main problem of electron transfer in solution is the highly polarizable
environment in which transfer processes are carried out. The “polaron” theory has
been discussed based on electron and hole conduction in semiconductors. The
electron transfer occurs between one occupied quantum state and one quantum
vacant state. During the ORR, the electron is transferred from the active site
(occupied quantum state) to the oxygen molecule (vacant quantum state). In this
case, the electrons in the electrode are studied according to the Sommerfeld–Drude
model, while the electrons of the redox pair are treated as ions in solution.

In order to understand the fundamental about the effect of structure and properties
of the non-noble metal electrocatalysts, several theoretical studies have been

Table 7.1 ORR in different electrolytes and their thermodynamic potential [2]

Electrolyte Pathway Reactions
Thermodynamic electrode
potential vs. NHE (V)

Acidic 4e� O2 þ 4H+ þ 4e� ! 2H2O 1.299

2e� O2 þ 2H+ þ 2e� ! H2O2 0.70

H2O2 þ 2H+ þ 2e� ! 2H2O 1.76

Alkaline 4e� O2 þ 2H2O þ 4e� ! 4HO� 0.401

2e� O2 þ H2O þ 2e� ! HO�

þ HO2
�

�0.065

HO2
� þ H2O þ 2e� ! 3HO

�
0.867

Nonaqueous aprotic
solvents

1e� O2 þ e� ! O2
� a

O2
� þ e� ! O2

2� a

aThe thermodynamic potential of this reaction strongly depends on the solvent used
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developed [7]. Ab initio is considered a useful tool to calculate adsorption geometry,
energy, the dissociation energy barrier, reversible potential, activation energy, and
potential-dependent properties for elementary electron transfer steps [8]. In sum-
mary, the theoretical models have contributed greatly to the knowledge of the
electrocatalytic systems and are considered a helpful tool for further development
in this area.

Experimental studies are also widely used in the determination of some kinetical
parameters of the ORR. The most frequently used techniques for the kinetic studies
for the ORR are rotating disk electrode (RDE) and rotating-ring disk electrode
(RRDE) . The ORR pathway is determined by RDE, and the number of electrons
transferred is commonly calculated from the Koutecky–Levich plot [9], where the
inverse of the kinetic current (1/ik) is plotted versus the inverse of the square root of
the rotation speed (1/ω1/2) according with the Koutecky–Levich Eq. (7.1):

1
i
¼ 1

ik
þ 1
iL
¼ 1

ik
þ 1

0:62nFAD2=3Cv�1=6w1=2
ð7:1Þ

where ik is the kinetic current for the ORR, iL is the mass transport limiting current,
n is the number of electrons per oxygen molecule for the ORR, F is the Faraday
constant, A is the geometrical area of electrode, C is the saturation concentration for
oxygen in water, D is the aqueous binary diffusion coefficient of oxygen, ν is the
kinematic viscosity of the solution, and ω is the rotation rate.

Additionally, 1/0.62nFAD2/3Cv�1/6 can be determined when calculating the
Koutecky–Levich slope [10]. However, the Koutecky–Levich method was devel-
oped more than 50 years ago, under the assumptions of elementary reactions
[11]. This method is not very useful with some of the recently developed nanostruc-
tured 3D electrocatalysts in alkaline electrolytes. Koutecky–Levich plots are often
not linear and the electron number (n) sometimes exceeds the theoretical limits. It is
highly desirable that the estimation of n, which is a very important indicator of the
performance of an electrocatalyst, should preferably be performed with the RRDE
technique. This technique allows the detection of intermediate compounds as H2O2

during the ORR, where n and the peroxide hydrogen percent are calculated from
RRDE data using Eqs. (7.2) and (7.3) [12]:

n ¼ 4iD
iD þ iR=N

ð7:2Þ

%H2O2 ¼ 200iR=N
iD þ iR=N

ð7:3Þ

where iD is the reduction current density at the disc, iR is the oxidation current
density at the ring, and N is the collection efficiency of the RRDE.

The polarization curves that are typically obtained from the RRDE data are shown
in Fig. 7.1a, where the current registers by the disk at several rotations rates are
plotted. The ring current is several orders of magnitude smaller than the current of
the disk (Fig. 7.1b). The plots of the Figs. 7.1c, d have been obtained from
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polarization curves data using the Eqs. (7.2) and (7.3). The number of electrons and
the percentage of hydrogen peroxide can be calculated at different potentials. Thus, it
is appreciated that n is not a constant value in the potential window of this test, as is
assumed in Koutecky–Levich method; therefore, RDDE technique has important
advantages to calculate n. In a study conducted by Zhou and coworkers [13], the
authors suggest that it is preferable to use an electrode with Au ring instead of Pt, in
addition to proposing an interesting methodology to calibrate the N value (efficiency
of collection).

Many of the experimental and theoretical methods proposed currently base their
models on Pt-based electrocatalysts to explain the electron transfer and pathway for
the ORR. However, these models have not been so useful when trying to explain
these two parameters in non-noble metal electrocatalysts. Therefore, it has been
necessary to propose new models and mechanisms according to the nature and
properties of each material.

In the following sections, two main groups of non-noble metal electrocatalysts are
presented, highlighting some of their most important properties in relation to the
ORR performance.

Fig. 7.1 Typical plots obtained from RDDE technique: (a) potential-current curves collected by
the disk, (b) potential-current curve collected in the ring, (c) electron number n calculated from
Eq. (7.2), and (d) H2O2% calculated from Eq. (7.3)
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7.3 Electrocatalysts for ORR in Acid Media

7.3.1 Transition Metal Macrocycles

In recent years, transition metals macrocycles (TMM) are studied as alternative of
Pt-based electrocatalyst, due they have a good catalytic activity for ORR in acid
electrolytes. These materials are large molecules composed of a transition metal
bound to a complex ligand. There are several reports in the literature about TMM
that have been studied for the ORR. Some of these studies considered the use of
noble transition metals such as Pd, Pt, or Ru [12]. However, in this chapter we will
focus only on TMM with non-noble metals in their chemical structure.

The TMM with better performances and a remarkable electrocatalytic activity for
the ORR are Fe- and Co- macrocyclic complex. Moreover, other TMM studied,
although with less attractive performances, include transition metals such as Mo
[14], Ni [15, 16], Cu [17, 18], Zn [16], Mn [19], V [16] and Ti [20].

Regarding the complex ligands, they play an important role maintaining stable
the metal in the electrode surface and serving as active site. The chelating group
composed of four nitrogen atoms (N4) that coordinate with the metal ion for the
TMM formation. Phthalocyanine (Pc) and porphyrin (PP) are the most used ligands
complex in the literature. The structural formulas of the TMM with a Pc and PP
ligands complex are shown in Fig. 7.2.

The reaction mechanism that takes place to carry out the ORR in these materials is
still unclear. Several results from electrochemical studies suggest that electronic
transfer occurs with the combination of 2- and 4-electron pathway. Some authors
suggest that ORR involves a modified redox reaction [21, 22], where the first step
involves the adsorption of O2 on the metal ion located in the center of the TMM
forming and oxygen–catalyst adduct. Subsequently, electrons are released and

Fig. 7.2 Structural formula of TMM of the most reported ligands complex: phthalocyanine
(Pc) and porphyrin (PP), Me ¼ Transition metal ion and R ¼ substituents
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transferred from the metal ion to the bond of the oxygen molecule. The adduct
undergoes further reductions forming intermediate spices like hydrogen peroxide or
water. The reduced N4-chelates will be regenerated to complete the cycle (Eqs. (7.4),
(7.5), (7.6), and (7.7)).

XMe2þ þ O2 ! XMeδþ . . .O2
δ�� � ð7:4Þ

XMeδþ . . .O2
δ�� �þ Hþ ! XMe3þ . . .O2H

� �þ ð7:5Þ

XMe3þ . . .O2H
� �þ þ Hþ þ e� ! XMeþ intermediates peroxideð Þ ð7:6Þ

H2O2 þ XMe ! H2Oþ 1=2 O2 ð7:7Þ

On the other hand, several factors have been identified that have a direct effect on
the ORR activity such as the transition metal, the complex ligand, the heat treatment,
and the support used.

The central transition metal defines largely the electron transfer pathway by
which the ORR is carried out. It has been shown that most TMM with Fe reduce
by direct 4-electron pathway, while TMM with Co generate peroxide as an inter-
mediate product through the 2-electron pathway. However, Co complexes have
shown more electrochemical stability than Fe complexes. Moreover, the formation
of dimetal face-to-face macrocycles is another interesting alternative. An
electrocatalyst with two Co centers face-to-face can provide two adsorption sites
for O2 molecule instead of one site promoting the 4-electron transfer process [23]. In
addition, the advantage of combining two different metal centers with porphyrins
complex ligand has been studied [16], resulting electrocatalysts with much greater
activity and stability for ORR than electrocatalysts with a metal center only.

Furthermore, the complex ligand also plays an important role in the ORR. The
majority complexes with Fe and Co have ORR activity, and their catalytic activity is
attributed to the inductive and mesomeric effects of the ligand to the central metal
ion [24]. Some of the N4 chelate complexes evaluated for the ORR are
tetracarboxyphthalocyanine (TcPc), tetramethoxyphenylporphyrin (TMPP),
tetraphenylporphyrin (TPP), tetrasulfophthalocyanine (TSP), phthalocyanine (Pc),
and dibenzotetraazaannulene (TAA).

The N4 chelate complexes have their optimal catalytic activity when are subjected
to heat treatments in a temperature range of 500–700 �C [16]. At temperatures below
500 �C, the catalytic activity is usually reduced by half, while at too high temper-
atures the active sites Me–N4 are destroyed and lose their active nature [17]. Then,
the effect of the heat treatment has a direct effect on the catalytic activity; however, it
does not have a significant effect on the catalytic stability [12].

Jaouen et al. [25] suggest that the catalytic activity of Fe–N4/C and FeN2/C
electrocatalysts depends directly on the type of carbon material in which they are
supported. Specific surface area and pore size distribution are determining factors in
the performance for the ORR. Although the most important factor is the nitrogen
content in these materials, the higher it is, the higher is the density of the catalytic
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sites. In terms of electrochemical parameters, the TMM performances report onset
potentials in a range of 600–800 mV vs. RHE in strong acid electrolytes and current
densities like the Pt-based electrocatalysts [26–29].

The ORR activity of TMMs has recently been evaluated in alkaline electrolytes;
however, these results are not discussed in this review. If the reader is interested in
this topic, there are several reviews that we recommend [30, 31].

The future research directions for the TMM as non-noble metal electrocatalyst
request exploring new materials that optimize the catalytic activity and stability, may
be optimizing the heat treatments in order to introduce more nitrogen active sites,
using novel carbon supports with high surface areas and tunable pore sizes. Finally,
the fundamental understanding of the reaction mechanisms involved in the ORR is
necessary.

7.3.2 Transition Metal Chalcogenides

The pioneers in the development of transition metal chalcogenides (TMC) as
non-noble metal alternative electrocatalysts are Alonso-Vante and Tributsch, pub-
lishing the first report three decades ago [32]. The TMC have a cluster structure with
a repeating crystal lattice, the so-called Chevrel phase. The metal ion in the center is
surrounded by several nonmetal ions. There are binary compounds with a basic
formula MexXy, where Me is a transition metal and X is chalcogen (e.g., S, Se, or
Te). There are also ternary compounds with basic formula MoM1

xXy, where M
1 is an

intercalated metal guest ion and the so-called pseudobinary compounds such as
MoM2

xXy, where M2 is a metal ion which replaces the Mo in the octahedral M2

cluster.
Extensive studies have focused on Me6X8 and MoM2

xX8 pseudobinary com-
pounds, due to their high current density and relative and comparatively close onset
potential to platinum reported for the ORR. The reaction mechanism for an oxygen
molecule in acid medium is proposed by Alonso-Vante [33]:

• þ O2 ! • � O2ads ð7:8Þ
• � O2ads þ Hþ þ e�ð Þ ! • � Oads þ H2O ð7:9Þ

• � Oads þ Hþ þ e�ð Þ ! • � OHads ð7:10Þ
• � OHads þ Hþ þ e�ð Þ ! • þ H2O ð7:11Þ

where the active site localized on the electrode surface is •, and an oxygen molecule
adsorbed on an active site is •�O2. The ORR takes place with the transition metal
d-states. For example, for the TMCMo4Ru2Se8, the catalytic center is the ruthenium
atoms. For this material, the cluster serve as electrons reservoirs that adsorb oxygen
molecules which favored the formation of water via 4-electron pathway. On the
other hand, a change of volume occurs during the transfer process, which favors the
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breaking bond O¼O, and this last theory has been confirmed using nanodivided
chalcogenide materials [34–37].

The carbonyl chemical route is the synthesis method most used to obtain TMC
with Chevrel phase clusters. RuxSey electrocatalysts contain Ru hpc core cluster
whose surface is coordinated to selenium atoms [34, 38–40], which preset a prom-
ising activity toward ORR and good methanol tolerance. Additionally, they can
reduce oxygen by the 4-electron pathway.

Binary TMC containing Ru, Ir, Co, Fe, and Ni have shown high activity for the
ORR [41–46], while the ternary Ru-Mo-Se TMC with Chevrel phase has been
widely studied in this application [47]. Ru-based chalcogenides show high catalytic
activity and good stability toward ORR in acid media. However, this noble metal and
other such Ir-, Pt-, and Rh-based chalcogenides are not feasible for large-scale
commercialization of PEMFC.

Regarding non-noble metal chalcogenide electrocatalysts, these have been
reported since 1970. Combination of TMC consisting in CoxSy have high density
current (958–2150 mA/m2 at 5 0.0–0.6 V vs. RHE), good chemical stability, and an
open circuit potential (OCP) � 0.83 V vs. RHE [48], while the binary TMC
containing Ti, W, Ta, Mo, and Cr bound to S atoms are shown the lowest current
densities (> 1 mA/m2 at 0.6 V vs. RHE). Furthermore, cobalt selenides supported on
carbon (Co1–xSe/C) exhibit significant ORR current compared with Co, Se, and
carbon. The OCP in acid medium for these electrocatalysts is of 0.78 V vs. RHE
[49]. In another research, Feng and coworkers investigated the ORR activity of
CoSe2/C; in this work, chalcogenide nanoparticles show an OCP of 0.81 V vs. RHE,
and the electron transfer process involves about 3.5 electrons and the production of
H2O2 between 15 and 30% (higher than the requirement below 5%) [50]. Although,
one of the best performing TMCs is the pseudobinary compound CoNiS2 with spinel
structure and an OCP of 0.89 V vs. RHE.

Some theoretical studies have been carried out with the objective of clarifying the
reaction mechanisms involved in the ORR. Sidik and Anderson conducted a study
using the Vienna ab initio simulation package (VASP). They propose a mechanism
of a TMC type Co9S8 with pentlandite structure, where the oxygen molecule can be
adsorbed in a cobalt site or a sulfur site. In this work, they calculated the theoretical
overpotentials between 0.74 and 0.89 V, which are higher compared to the
overpotentials calculated for cobalt selenides with the same approach (0.22 V) [51].

There is still a long way to go to explore all the alternatives of TMC as non-noble
metal electrocatalysts. The main challenges that they present are to improve their
catalytic activity, which is still below that of Pt-based electrocatalyst. In addition, it
is necessary to propose synthesis methods that are more environment friendly, using
green solvents, for example. Finally, it is worth mentioning that in recent years there
has not been an important development of TMC evaluated in acid medium; and that
as with other types of materials such as TMM, the interest has focused on evaluating
these materials in an alkaline medium.
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7.3.3 Transition Metal Nitrides and Carbides

Transition metal nitrides (TMeN) and carbides (TMeC) have physical properties
such as high melting point, high electrical conductivity, and chemical stability as
well. These features make them excellent candidates as electrocatalysts to operate
under the hostile conditions in the cathode of the fuel cells. The TMeC and TMeN
are considered as “interstitial allows” [52] formed between transition metals of
groups IVB-VIB and nitrogen or carbon atoms (see Table 7.2). Moreover, these
materials are usually unstable with most of the metals of groups VIIB and VIIIB,
mainly noble metals. An exception is the Fe, which can form iron carbides/nitrides
(Fe3C and Fe3N), and Co and Ni, which can form nitrides such as Co3N and Ni3N,
respectively.

TMeC and TMeN often have unit cells such as face-centered cubic (fcc), hexagon
close-packed (hcp), and hexagonal simple, which are usually formed by the small
carbon or nitrogen atoms occupying interstitial positions (Fig. 7.3) [53]. The inter-
calation of the nitrogen/carbon atoms in the metal lattice causes an expansion, which
would be broadening the metal d-band. These contractions in the d-band produce a
greater density of states (DOS). This redistribution of DOS could give to the carbides
and nitrides electronic properties analogous to the noble metals [54]. However,
theoretical models and catalytic mechanisms are still under discussion.

Despite the similarities in the electronic structure of carbides and nitrides com-
pared to noble metals, their electrochemical activity toward the ORR is still low. The

Table 7.2 Transition metal
carbides/nitrides and their
formula regarding their
position in the periodic table

Group

IVB VB VIB

Carbides TiC1�x VC1�x Cr3C2

ZrC1�x NbC1�x Mo2C

HfC1�x TaC1�x WC

Nitrides TiN VN1�x Cr3N2

ZrN1�x NbN1�x Mo2N

HfN1�x TaN1�x WN

Fig. 7.3 Common unit cells of the TMeN and TMeC
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WC, for example, is unstable at potentials over 0.6 V vs. RHE [55]. To improve its
stability at higher potentials, Lee and coworkers synthesized the compound
W42Ta24C34, which is more stable in acid corrosive environments than WC and
has an onset potential 350 mV higher than pure WC [56]. In other research, the
addition of Ta to nickel carbide (Ni33Ta41C26) had an effect like the mentioned
above, where Ta improves the stability and onset potential of the electrocatalysts for
the ORR; however, Ta2O5 is formed, which is a problem due that this oxide is an
electrical insulation [57].

Recently, it was reported Fe3C as novel non-noble metal electrocatalyst with high
onset potential (0.92 V vs. RHE) and good stability in strong acid electrolytes
[58]. Moreover, ternary Fe/N/C has been considered one of the most promising
candidates for their high ORR activity [59–61]. The synergistic effect between Fe
and N supported on carbon matrix promotes the ORR and is relatively stable in
acidic media. Lui and coworkers [62] developed core shell Fe2N/C structures from
seaweed biomass, in which the nitride is the core and nitrogen-doped amorphous
carbon is the shell. The ORR performance shows a high onset potential of
0.93 V vs. RHE in 1 M HClO4 electrolyte, good tolerance to methanol, and an
electron transfer number of 3.85.

Furthermore, monometallic (δ-MoN, Mo5N6, and Mo2N) and bimetallic
(Co0.6Mo1.4N2) molybdenum nitrides exhibit catalytic activity with a modest onset
potential of 0.71 V vs. RHE and electron transfer mechanism of 4-electron at
potential lower than 0.5 V [63].

The reaction mechanisms of the ORR are not clear yet; however, it is evident that
the synergy that occurs between Fe–C–N improves the catalytic activity. Thus,
materials based on these elements are the most promising electrocatalysts to replace
noble metal-based catalyst operating in acid media. Recently, Sun and coworkers
achieve a comparative study between Fe3C, Fe2N, and Fe–N4/C moieties. The
highest catalytic activity of Fe–N4/C moieties has an onset potential of
0.879 V vs. RHE. However, the formation of moieties is not easy to obtain. On
the other hand, the catalytic activity of iron nitride/carbide is lower than moieties and
they are unstable in acid media due to their possible dissolution [64].

7.4 Electrocatalysts for ORR in Alkaline Media

7.4.1 Perovskite-Type Oxides

Oxides with perovskite or closely related structures play an important role in the
development of effective earth-abundant and low-cost electrocatalysts for renewable
energy storage and conversion systems. Perovskite oxides obtain their name from
the structure of the mineral calcium titanium oxide (CaTiO3) discovered in 1839 [65].

Commonly, perovskites have the general chemical formula ABO3, where A is a
rare-earth, alkaline earth, or a mix of both cations and B is one or more transition
metal cations [66, 67]. The ideal cubic perovskite lattice is shown in Fig. 7.4a, b. It

7 Non-Noble Metal Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells 245



consists of A cations located at the corners of the cube, which are 12-fold coordi-
nated by oxygen. While cations at the B site are in the center, octahedrally coordi-
nated with oxygen ions in the face-centered positions. The A site cation is slightly
larger than B cation. The structure is commonly visualized as a three-dimensional
network of regular corner-linked BO6 octahedra, where all B–O–B angles are 180�.

However, the wide variety of substitutions in the A and B sites lead to structural
distortion and/or oxygen vacancies (δ) that can be related to the A and B ionic radii
and electronic configuration of the metal ions. The degree of deviation from the ideal
cubic perovskite can be quantified using the Goldschmidt tolerance factor (t) [68]. It
relates how much strain can tolerate the lattice before it deforms. Thus, the
perovskite-type structure is usually obtained in the range of 0.75 � t � 1.0, for the
ideal perovskite structure t ¼ 1. The limiting values of t may differ depending upon
the set of ionic radii employed [69]. As t decreases from 1 (A cations are too small),
the perovskite structure deforms to orthorhombic or rhombohedral structures. When
t is higher than 1 (A cations are very large), the structure of the perovskite is no
longer cubic leading to a so-called hexagonal perovskite. In which, the octahedra
share faces instead of corners modifying the M-O bond distances as well as making
possible interactions between transition metals (Fig. 7.4c) [66, 69].

Moreover, it is possible to make partial substitutions of the A or B sites giving the
formation of quaternary oxides or double perovskite. Where the cations in the A or B
site are two different elements with strongly differing sizes (AxA’y)BO3, A(BxB’y)O3

where x + y ¼ 1 or a complex perovskite (AxA’y)(BxB’y)O3. These oxides result in a
complex structure array and oxygen vacancies are frequently presented. Some of
these oxides are known as perovskite-like oxides, see Fig. 7.4d. Interestingly, there
is a relation between the structural distortions and oxygen vacancies (or oxygen
nonstoichiometry δ) to the rise of important properties in the perovskite oxides.
Thus, their physicochemical properties can be systematically tuned by carefully
selecting the A or B cation and adjusting the stoichiometry [66, 69]. Up to now,
many perovskite-type oxides and perovskite-like oxides have been generated and
investigated as electrocatalysts for the ORR. They have shown promising
electrocatalytic activity and stability in alkaline solutions due to their high electrical
conductivity and outstanding catalytic behavior [66, 70, 71].

It was reported in the literature that for the ORR attractive electrocatalytic
performance has been reported for perovskites containing in the A-site La, Nd, Ca,
Sm, Li, Ba, and Sr ions and good chemical stability is obtained when Co, Fe, Mn, Ni,

Fig. 7.4 (a, b) Ideal cubic perovskite unit cell. (c) Distorted perovskite structure and (d) perovskite
structure with partial B-site substitution
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and Cu ions were used at the B-site [66]. Among perovskite oxides, the lanthanum-
based oxides have been recognized as one of the most promising electrocatalysts for
the ORR. This type of oxides has high electrical conductivity at room temperature
and significant stability against anodic oxidation in alkaline solution. Sunarso et al.
[70] studied the electrocatalytic tendency of B-site substitution by the trivalent 3d
transition metal ions such as Ni, Co, Fe, Mn, and Cr in LaBO3 perovskite using a
0.1M KOH solution. The LaCoO3 showed the largest ORR current density and the
most positive onset potential followed by Mn, Fe, Ni, and Cr. Similar results were
reported by Suntivich et al. [72] and Celorrio et al. [71] confirming that Co and Mn
cations at the B-site presented the best performance for the ORR on LaBO3 (B¼ Cr,
Co, Fe, Mn, and Ni) nanoparticles. For these La systems, the ORR followed a close
four-electron pathway.

Partial substitutions of the B site and stoichiometry on the electrocatalytic activity
were studied by Larsson and Johansson [73] in LaMnxCuyO3, LaMnxCryO3, and
LaMnxNiyO3 where x ¼ 0.1–0.9 using 6 M KOH solution. They tried to find a
relation with the current density and the magnetic moment of the superoxide ion O2�

due to that the rate determining step in alkaline media involves the adsorption of the
ion at the surface. However, they did not find a linear trend between the measure-
ments. It is also known that for many perovskites charge ordering effects lead to
charge disproportionation, but complementary spectroscopic experiments are
required to understand the effect. Suntivich et al. [72] concluded that Mn is a more
active element than Ni in the La oxides perovskites with partial substitution at the
B-site.

The effect of A-site substitution on the ORR in an AMnO3 was systematically
varied using several lanthanoids and yttrium [74]. It was reported that the
electrocatalytic activity is higher as the ionic radius of the lanthanide increases
being in the order of La > Pr > Nd > Sm > Gd > Y > Dy > Yb. Partial substitutions
at the A-site have been also studied for the system AMnO3 using cations such as:
A ¼ LaXCa1�x where X ¼ 0.36, 0.4, 0.5, 0.6, 0.81 [72, 75, 76]. A ¼ La1�xSrx, where
X¼ 0.1, 0.2, 0.33, 0.4, 0.5, 0.7, 0.8 [77, 78]. In all studies, the best performance was
obtained around 0.4 of the divalent A-site cation, which promotes the maximum
oxidation state of Mn increasing the electron transfer number close to four. A similar
tendency was obtained for the Pr1�xCaxMnO3 perovskite where the maximum
current density was obtained when x ¼ 0.4 [79].

Another important factor in the design of perovskite oxides for the ORR is the
effect of oxygen stoichiometry. Several authors have reported that the appropriated
amount of oxygen ion vacancies (δ) enhanced the electrocatalytic activity. Takeda
et al. [80] found that for the SrFeO3�δ, the samples with 0.24 < δ < 0.29 showed the
best activity. However, a slight dependence was observed in SrCoO3�δ. Du et al.
[81] studied the effect of oxygen vacancies in the range of 0 < δ � 0.5 for the
CaMnO3�δ, and the higher electroactivity was obtained when δ is close to 0.5 and
average Mn valence close to 3.5. The improvement in the catalytic activity of
the ORR is due to an rise electrical conductivity generated by the oxygen defects
which facilitated the oxygen activation. The absence of too much oxygen will result
in the formation of less conductive and poorly active perovskite oxide and the loss of
perovskite structure.
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Moreover, for the electrocatalytic measurements, perovskite oxides are usually
mixed with carbon forming an electrocatalytic layer. It has been reported that the use
of carbon disperses the oxide particles, electrically connects the particles, and
enhances the electroactivity acting as cocatalyst in some cases. To investigate the
effect of the amount of carbon in the electrocatalyst layer, Poux et al. [82] evaluated
the electrocatalytic activity for the ORR on electrodes containing perovskite alone
(LaCoO3 and La0.8Sr0.2MnO3), carbon alone, and both perovskite and carbon.
They concluded that the presence of carbon electrocatalyzes the reduction of O2

into OH- as intermediate, which can react to ultimately result in a 4e- ORR to water.
Mixing it with perovskites improves the electrical contact between the oxide parti-
cles increasing the number of accessible active sites on the oxide surface for the
reduction of the OH2�.

Significant progress has been made over the last decades in understanding the
electrocatalytic activity and stability of perovskite oxides for the ORR. The flexibil-
ity in the oxidation states leads to the formation of redox coupes, unique electronic
properties, defective structure for oxygen vacancies or excess, and cation ordering
resulting in distortion-free channels of oxygen vacancies and enhanced mobility of
oxygen ions, which facilitate their bifunctional electrocatalytic activity for the
oxygen reduction and oxygen evolution reactions. However, they can only be used
in alkaline media, thus the long-term stability still being an issue to overcome. The
formation of hydrogen peroxide during the ORR process can attack the
electrocatalysts damaging their actives sites. Moreover, the structures of such active
sites are not well understood. More research is necessary with emphasis on the
activity–stability improvement. Further efforts are also required to understand the
dependence of carbon supports and perovskites to catalyze the ORR or the use of
other types of cocatalysts for engineering optimization proposes and fuel cell
commercialization.

7.4.2 Spinel-Type Oxides

Spinel-type oxides are an interesting class of compounds that have been identified as
promising candidates and alternatives to noble metal electrocatalysts. These oxides
are also bifunctional electrocatalysts of the ORR and OER (oxygen evolution
reaction) in alkaline media [83]. Spinel oxides with general formula AB2O4 are a
very large family of compounds with the same crystal structure as the mineral
MgAl2O4. The spinel structure can be described as a face-centered cubic close-
packed array of O2� ions, with tetrahedrally A2+ and octahedrally B3+ coordinated
metal cations, see Fig. 7.5 [84]. Tetrahedral interstices are usually smaller than the
octahedral; thus, cations with smaller ionic radii occupy the A-sites, while the larger
cations occupy the B-sites. Moreover, to keep the valence balance, cation A can be in
the þ2 or þ 4 oxidation states and the corresponding cation B can be in the þ3
or þ 2 oxidation states.
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The variations in distribution of cations in the A and B sites cause marked
changes in some of the physical properties. For these oxides, several researches
have been done to identify the active site and defect features, and understand the
composition-dependent activities and intentional substitution of cations or dopants
to enhance the electrocatalytic activity for the ORR [85–87]. Spinel oxides with
cations on the B-site such as Co, Mn, and Fe are among the most active for the ORR.
Many spinel oxides have been synthesized using cations in the A-site such as Co, Ni,
Mn, Li, Zn, Cu, and Fe [83, 87].

In general, these compounds exhibit comparable electrocatalytic activities than
precious metal-based electrocatalysts, high corrosion resistance, and easy availabil-
ity. However, their low electrical conductivity and large particle size have limited
their electrocatalytic performance and long-term stability. Numerous researches
have been conducted to enhance their performance by controlling composition,
designing nonstoichiometric oxides, creating defects, nanostructured characteristics,
and using carbon nanomaterials as supports [87–90].

The synthesis of nonstoichiometric compounds and the creation of oxygen
defects optimize the electronic structures of spinel, produce more active sites for
molecular adsorption of oxygen, and reduce the reaction energy barriers. To examine
the effect of M2+ substitution, Mn, Fe, Co, and Cu were used as cations in the
nonstoichiometric MFe3�xO4. It was demonstrated that the most active spinel for
ORR was MnFe3�xO4 followed by CoxFe3�xO4, CuxFe3�xO4, and Fe3O4 [91].
Recently, Wei et al. [83] reported an increasing activity for MnCo2O4 with the
reduction from Mn3.7þ to Mn3.2þ showing that the band gap occupancy of the active
cation in the octahedral site is the activity descriptor for ORR, consolidating the role
of electron orbital filling in metal oxide electrocatalysts.

Spinel with nanostructured characteristics as nanoparticles, nanoneedles,
nanopetals, core-shell arrays, or porous structures have been prepared to improve
their ORR properties. Zhu et al. [91] have been reported that MnFe2O4 nanoparticles
(around 10 nm) with catalytic activity towards ORR comparable with the commer-
cial Pt-based electrocatalyts in alkaline solution. The mesoporous nanostructured

Fig. 7.5 Unit cell of ideal
spinel-type oxide structure
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MFe2O4 (M ¼ Co, Mn, Ni) oxides exhibited excellent performance as bifunctional
electrocatalysts for ORR and OER; the CoFe2O4 and NiFe2O4 exhibited higher OER
activity than MnFe2O4 [89]. Recently, Bhandary et al. [92] synthesized MnFe2O4

nanopetals on porous carbon paper, and reported that electrocatalytic activity for the
ORR (onset potential of 1.6 V vs RHE and higher current density of 11.5 mA/cm2 at
2.0 V vs RHE reference electrode) was better than those other earlier reported spinel
electrocatalysts and comparable to those spinel oxides supported on graphene or
carbon nanotubes.

Carbon substrates are used to improve the electrical conductivity and adsorption
capability by increasing the number of active sites. A high ORR electrocatalytic
performance and durability was reported in a zinc ferrite/reduced graphene oxide
(ZnFe2O4/rGO) with 69.8 wt.% of electrocatalyst, which follows a four-electron
transfer mechanism in alkaline media [90].

7.4.3 Heteroatom-Doped Carbon Materials

Carbon materials are most widely used as electrodes in several energy devices such
as fuel cell, batteries, and supercapacitors. In addition, they are frequently used as
supports for many of the materials that have been mentioned in the previous sections.
Certainly, this group of materials is one of the most promising for the performance of
the ORR. Its boom began in 2009, when Dai et al. [93] reported that carbon
nanotubes doped with nitrogen had high catalytic activity for the ORR in alkaline
solution.

Basically, heteroatom-doped carbons are materials formed mainly by carbon
atoms (<80% wt.), where doping consists in substituting a carbon atom with a
heteroatom (N, S, B, P, etc.). The incorporation of one type of heteroatom into the
carbon lattice generates a charge delocalization in the adjacent carbons, which
promotes the formation of catalytic sites [94–96]. Additionally, the electronegativity
and size of the doping atom has a determining influence on the electronic modulation
of the electrocatalysts [97]. Moreover, it has been reported that the incorporation of
dual-doped or more types of heteroatoms into carbon materials favors the formation
of active sites, and usually have greater activity than its counterpart with a single
heteroatom, and in some cases better catalytic activity than Pt/C [98–101]. In
addition, most of these electrocatalysts have shown greater stability than Pt/C [102].

Nitrogen-doped carbons are probably the metal-free electrocatalysts most studied
in the last decade [103–106]. Nitrogen–carbon bonds (N–C) can be identified
relatively easily by X-ray photoelectron spectroscopy (XPS). Figure 7.6 shows the
main N–C bonds in relation to their binding energy. This classification considers five
types of N–C bonds commonly identified as pyridinic (N1), amine (N2), pyrrolic
(N3), graphitic (N4), and pyridine-N-oxide (N5). Usually, several authors do not
report the amine bond (N2, �399.4 eV); however, it has been reported that N2 bond
is important to explain the evolution of carbon functionalities during pyrolysis
treatments, to which carbon materials are usually subjected [107].
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N-C type bond has a direct influence on the electrochemical performance of the
electrocatalyst. Several studies suggest that N1 and N4 bonds favor the ORR [108].
However, the reaction mechanisms have not yet been fully elucidated. Conversely, it
is currently a challenge to clarify these mechanisms and validate them experimen-
tally and theoretically. Theoretical methods based on the density functional theory
(DFT) have been widely used to propose some mechanisms. Some hybrid methods
such as B3LYP-DFT and Car–Parrinello molecular dynamic simulation have also
been employed [109, 110]. It should be noted that the theoretical studies proposed
recently have been developed for nanostructured carbon materials such as carbon
nanotubes and graphene doped with nitrogen.

Zhang and Xia [111] reported a theoretical study, where they justify how the
ORR takes place for 4-electron pathway in N-doped graphene, and this reaction did
not arise in pristine graphene, due mainly to pristine graphene does not have
electroactive sites. Additionally, they observe that when introducing hydrogen
atoms at the edges of the carbon lattice, the sequential reactions for the ORR
energetically can occur. One of these reactions involves the formation of the
chemical bond O–C between the oxygen of the medium and one carbon of the
graphene. The O–O bond breaks up forming water molecules. For each step of the
reaction, the energy of the system decreases, which indicates that the reaction by
4-electron pathway is spontaneous and possible. The active catalytic sites depend on
the distribution of the density of the spin and the distribution of the atomic charge.
The substitution of nitrogen atoms generates a pair of free electrons that modifies the
distribution of the atomic charge in graphene. According to this study, carbon atoms
with high spin densities are the electrocatalytically most active sites. As can be
expected, N–C bond type has influence in the charge distribution of the carbon atoms
adjacent to where the nitrogen doping atom is located. The dopant or heteroatom that
is introduced into the carbon lattice not only causes changes in the distribution of
electronic charge, it also causes defects such as bending and breaking of C–C bonds
in the lattice.

The catalytic activity toward ORR for N-doped carbon materials is close to Pt/C
electrocatalyst; however, the cost of these metal-free electrocatalysts is considerably
lower, which opens the possibility of large-scale production of the fuel cells. Many
reports show that N-doped carbons have onset potential in a range of 0.75 to

Fig. 7.6 Commonly nitrogen–carbon bonds identified by XPS in nitrogen-doped carbon materials
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0.86 V vs. RHE. For example, partially exfoliated N-CNT has onset potential of
0.77 V [112]. Moreover, N-doped graphene synthetized by resin-based methodology
has an onset potential 60 mV lower than Pt/C, comparable activity but higher
durability than Pt/C, and 3.9 electron transfer number at�0.2 V [113]. Other authors
have obtained N-doped graphene with promising performance, and most of them
agree that these metal-free electrocatalysts have comparable ORR activity with Pt/C,
higher long-term stability and resistance to crossover than Pt/C [103, 114–116].

Besides nitrogen, nanostructured carbon materials as carbon nanotubes (CNT),
graphene, mesoporous ordered carbons (MOC), carbon aerogels, and carbon
nanofibers (CNF) have been doped with heteroatoms such as sulfur [117–119],
boron [120–122], phosphorous [123, 124], silicon [125], and halogens [126, 127].

Table 7.3 summarizes several heteroatom-doped nanostructured carbons evalu-
ated as metal-free electrocatalysts in alkaline electrolyte, the range of binding energy
in which they are usually identified by XPS, the type of bond formed between
heteroatom-carbon and other elements that usually are present, and their onset
potential according to recent reports. It should be noted that for comparative
purposes, it is best to report the onset potential vs. the reversible hydrogen electrode
(RHE), because the pH of the electrolyte is adjusted.

Table 7.3 Chemical structure of some heteroatom-doped carbon nanostructured electrocatalysts
and their electrochemical activity toward the ORR

Heteroatom
Energy
binding (eV)

Formed
bonds Onset potential Reference

Si 2p 100–105 SiO2

C–Si–O
Si–C

�0.2 V vs. Ag/AgCl in 0.1 M
KHO

[125]

P 2p 132–137 P–C
P–O
P¼O

�0.2 V vs. Hg/Hg2Cl2 in 0.1 M
KOH

[123]

S 2p 161–172 C–S–C
R–SO2

RO2–S–S–R

0.69 V vs. RHE
0.88 V vs. RHE
0.86 V vs. RHE
0.96 V vs. RHE
0.80 V vs. RHE

[128]
[129]
[130]
[131]
[132]

B 1s 186–194 B2O3

CBO2

C2BO
B–C sp2

B4C

0.83 V vs. RHE
�0.14 V vs. Ag/AgCl in 0.1 M
KOH

[122]
[121]

I 3d 617–632 I2
I–C

� �0.1 V vs. Ag/AgCl in 0.1 M
KOH

[127]

F 1s 681–690 Ionic C–F
Semi-ionic
C–F
Covalent
C–F

� �0.15 V vs. SCE in 0.1 M
KOH
� �0.13 V vs. SCE in 0.1 M
KOH

[133]
[126]
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It can be seen that heteroatom-doped nanostructured carbon shows promising
performances toward the ORR. However, nanostructured carbon materials currently
have several drawbacks: (1) the chemical reagents used in the processes to obtain
them, generally they are of high purity and high costs, which in many cases are
hazardous for the health and the environment; (2) although sophisticated technolo-
gies or equipment are used in synthesis processes, even large-scale production
remains a challenge in order to obtain high quality materials [134].

The most recent research has a clear tendency: to use natural sources of carbon
and heteroatoms as raw materials instead of expensive reagents that are commonly
hazardous chemicals, mainly motivated by economic and environmental reasons
[135]. In addition, several investigations have been carried out proposing less
inexpensive methodologies to obtain nanostructured carbon materials and increase
the large-scale production [134, 135]. The use of biomass as a carbon and hetero-
atom source to obtain metal-free electrocatalysts is economically and environmen-
tally attractive. This alternative has recently been explored; biomass-derived
electrocatalysts have performance for the ORR higher than heteroatom-doped nano-
structured carbons, and in some cases higher than Pt/C. Most of the biomass waste is
usually used as an energy source through direct combustion and gasification pro-
cesses, among others. However, the possibility of taking advantage of biomass
residues for the manufacture of carbon materials used in electrochemical devices is
very attractive. In addition, the technology to obtain them is inexpensive [136–
138]. The above, then, also represents an alternative for the exploitation of several
biomass wastes generated in large quantities and that are currently disposed in
landfills or are left open.

Food and several biomass wastes such as urban, forest, vegetable, and animal
wastes have been used as raw materials in obtaining metal-free electrocatalysts.
Most biomass-derived carbons are synthetized by pyrolysis and/or hydrothermal
carbonization treatments. Their electrochemical performances are very attractive; for
example, egg [139], soybeans [140], amaranth [141], soy milk [142], and honey
[143] have been used as raw materials in obtaining metal-free electrocatalysts and
evaluated in the ORR.

However, the use of food in obtaining carbon could have serious food implica-
tions globally. Plant and forest wastes such as tree leaves [144], vegetables skin
[128], luffa [145], and algae [146, 147] have also been explored to obtain metal-free
electrocatalysts. As far as animal waste is concerned, carbons have been obtained
from human hair [148], human urine [149], leather [137, 138], bones, and pig blood
[150, 151]. Generally, the electrochemical performance of these materials in an
alkaline media is comparable to that of Pt/C, due to their high surface areas, and
high current densities are usually reported. However, it is still a challenge to improve
the onset potential.
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7.5 Conclusions

Throughout the last decade, a wide variety of materials have been studied as
non-noble metal electrocatalysts, each family of materials have advantages and
disadvantages over Pt/C. However, to have electrocatalysts with the most favorable
properties for ORR, it is necessary to use several types of materials to enhance their
properties. On the other hand, carbon materials have been used as a support and as
metal-free electrocatalysts, they are very versatile materials, of great abundance and
therefore of low cost. Prospects indicate that heteroatom-doped carbon materials in
combination with transition metals such as Fe or Co could be a very promising
option for the substitution of noble metals in fuel cell cathodes.

Now, environmentally the use of biomass waste as raw material for producing
metal-free electrocatalysts would be very attractive. The main advantage of these
materials is that they have a heterogeneous chemical composition, which includes
metals that can function as active sites for the ORR. There is still a long way to go to
develop a material with the properties to replace the noble metals; however, the use
of non-noble metal electrocatalysts is a research area that is developing rapidly. Last,
but not least, it must be considered that for the development of new non-noble metal
electrocatalysts it is necessary to implement methodologies that have a low envi-
ronmental impact; in addition, the process must be easily scalable to cover market
demand and that its production involves the use of technologies of easy
implementation.
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