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Chapter 2
Evolution of Endovascular Technique

May Nour and Gary Duckwiler

From the advent of digital subtraction angiography and diagnostic angiography to 
early device development, the field of neurointervention has made great strides in 
neurovascular disease diagnosis and treatment. We will detail some of the most 
prominent advances in the field, which have shaped the current state of practice as 
they relate to vascular lesions including vascular malformations, aneurysms, vascu-
lar tumors, and ischemic stroke-related large vessel occlusions.

 Introduction of Digital Subtraction Angiography  
and Early Diagnostic Angiography

The first attempt at angiography in 1896 followed the invention of X-ray in 1895. 
Using an amputated cadaver hand, Hascheck and Lindenthal first described the 
visualization of the vascular network using a mixture of mercuric sulfide, petro-
leum, and quicklime as a contrast agent [1]. Years later, in 1927, Moniz is known for 
performing the first cerebral angiogram using iodinated contrast composed of 25% 
sodium iodide solution. Angiography during his initial attempt was performed with 
percutaneous access and direct injection into the carotid artery in the context of 
transient carotid ligation/occlusion [2]. Cerebral venography followed by Moniz in 
1931 who by that time became proficient at performing cerebral angiography in 
patients with a wide range of neurological disease. The idea of separating 
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confounding anatomical background from angiographic signal was first introduced 
in 1934 by Ziedses des Plantes as an initial concept termed film subtraction angiog-
raphy [3]. Hand in hand with the development of radiographic technology, enhanc-
ing signal obtained from the vessels continued to be investigated including the 
possibility of intravenous rather than intra-arterial iodinated contrast injection; 
however, given the dilution in contrast and subsequently signal, arterial injection 
became a more favorable choice [4]. Until the 1950s, percutaneous access of the 
carotid artery and brachial artery for opacification of the vertebral artery had been 
the method used for cerebral vessel catheterization [5]. This of course later evolved 
with the evolution of catheter technology. Another pivotal development in angiogra-
phy was the construction of a real-time digital fluoroscopic image processor at the 
University of Wisconsin which was described by Kruger et  al. in 1977 [6]. This 
processor yielded 30 subtraction images per second and permitted the elimination 
of bony structures and soft tissues for the first time, in an interactive manner [6]. The 
evolution of digital subtraction angiography continued over the course of the years 
to include further refinement in resolution and has been further enhanced by the 
development and current use of three-dimensional, rotational angiography. The pre-
cise visualization yielded by the advancement in cerebral vascular imaging has 
served as a founding platform for the understanding and subsequent targeted thera-
peutic treatment across a wide range of neurovascular disease.

 Advancing Access to the Cerebral Circulation

Surgically inoperable lesions including challenging arteriovenous malformations, 
fistulas, and aneurysms served as the driving factor in the development of more 
advanced catheters and microcatheters with the ability to reach the target lesion.

 Gaining Precise Access and Targeted Treatment  
of Intracranial Vascular Lesions

 Catheters and Microcatheters

The navigation of catheters endovascularly, particularly in the tortuous and small 
caliber of the cerebral circulation, poses unique challenges. Early efforts of 
Luessenhop and Velasquez in 1964 demonstrated the first successful cerebral cath-
eterization [7]. Silastic tubing was inserted into the internal carotid artery by way of 
a glass chamber which was surgically connected to the external carotid artery. In 
1966, the microcatheter described by the name of para-operational device (POD) 
was engineered as a combination of polyethylene proximally and silicone rubber 
distally forming a soft 7 cm tip of 1.3 mm in outer diameter [8]. Additionally, the 
distal tip of the microcatheter included a 1 mm micro-magnet which allowed for 
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pull and vibration achieved by the application and manipulation of an external mag-
netic field. Another technical strategy introduced by these early scholars was use of 
a guide catheter which Frei and colleagues termed by the name of plastic T [8]. This 
concept continued to propagate in 1968 where Yodh et al. [9] developed six itera-
tions of a microcatheter with an implanted 1.3 mm magnet in the silastic microcath-
eter tip, some of which were designed to detach. These detachable constructs 
contained 0.5 mm cooper wire wrapped in ten turns and attached by paraffin wax 
which was intended to melt upon the introduction of heat via electric current. One 
year later, in 1969, the first report of middle cerebral artery catheterization was 
published describing access using the POD catheter through percutaneous carotid 
puncture [10].

Iterations of the POD catheters continued to evolve and included the POD with 
incorporated detachable balloon [11]. Later in the 1970s, detachable balloons were 
described by Serbinenko [12] and Debrun [13] for the endovascular treatment of 
carotid-cavernous fistulas. To better understand the technique, Debrun et  al. 
described the methodology of detachable balloon synthesis using latex sleeves cre-
ated using stainless steel molds, steam-treated in two different iterations, Type I and 
Type II, which differ in the balloon catheter construction [13]. The former did not 
involve firm attachment of the balloon to the catheter nor does it need a second 
catheter for detachment, while the latter involved the balloon being tied to the cath-
eter by a latex thread, was self-sealing, and required a coaxial catheter for detach-
ment. Although their results were favorable for carotid-cavernous and 
vertebra-vertebral fistulas, less favorable results were seen with aneurysm treatment 
with a risk of morbidity, mortality, and recanalization of the aneurysms that was 
seen in a subset of their patients [13]. Calibrated-leak balloon catheters and flow- 
directed microcatheters were also described for the treatment of arteriovenous mal-
formations using bucrylate, hydroxyethylmethacrylate, or isobutyl 2-cyanoacrylate 
[13–17].  

The next significant turning point in microcatheter evolution occurred in the 
1980s with the development of the Tracker microcatheter which occurred as a modi-
fication to an existing Target Therapeutics product by one of its biomechanical engi-
neers by the name of Erik Engelson [18]. This new microcatheter distinguished 
itself by a property of variable stiffness owing to varying consistency of polyethyl-
ene. He continued to advance the use of existing microcatheters by also developing 
shapeable tip microwires which were more navigable as well as adding a radiopaque 
marker in the distal portion of the microcatheter to allow for visualization. This 
essentially marked the beginning of the so-called “over-the-wire” catheterization.

Microcatheter technology continued to improve and expand to include flow- 
directed microcatheters. The Balt Magic (Montmorency, France) provided a more 
flexible alternative to the Tracker catheter owing to its polyurethane and silicone 
composition [19]. The Balt Magic, along with the Marathon (EV3, Irvine, California) 
microcatheter, has been particularly useful in tortuous distal vessel access. In addi-
tion to the flow-directed microcatheters, further modifications have been made to 
aid in the safe delivery of embolic agents whereby the Apollo (EV3, Irvine, 
California) and Sonic (Balt, Montmorency, France) microcatheters also include a 
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detachable tip, which can be safely retained after embolization and catheter 
 withdrawal. A valuable addition to the current microcatheters which is particularly 
helpful in the treatment of high flow lesions is the Scepter balloon (Microvention, 
Tustin, California). This dual lumen microcatheter which has a balloon at the cath-
eter tip, which allows for concurrent inflation of the balloon for flow arrest and 
injection of embolic material through its inner lumen.

 Embolic Agents

The evolution of endovascular embolization with polyvinyl alcohol (PVA) particles 
(Boston Scientific/Target Therapeutics, Cordis J&J Endovascular, Miami, FL, USA) 
began with use of sponge material for embolization in 1974 [20, 21]. In the late 
1970s, Irv Kricheff described flow-directed bead embolization to reduce vascular 
flow to arteriovenous malformations [22, 23]. Also useful in the preoperative embo-
lization of richly vascularized head and neck tumors, the ability of these particles to 
decrease tumor blush angiographically often translates into a surgical benefit during 
excision [24–28]. Typically made of foam sheet which is vacuum dried and ground, 
particles are subsequently sieved and are manufactured in sizes as small as 100 uM 
and as large as 1100 uM; their irregularity in shape promotes their aggregation when 
reconstituted in suspension [29]. The mechanism by which they contribute to vas-
cular embolization includes lodging into small vessels correlating with their selected 
size and adherence to vessel wall which both contribute to flow stagnation and 
therefore embolization of the vessels targeted [30]. Nontarget embolization must be 
avoided as the PVA particles are known to accumulate in the catheter hub [31].

 Isobutyl 2-Cyanoacrylate (IBCA) and N-Butyl-2-  
Cyanoacrylate (NBCA) Glue

Early on, IBCA was used as an embolic agent in cerebral vascular lesion emboliza-
tion; however due to its handling characteristics, it was later replaced with NBCA 
glue [32]. In the year 2000, the FDA approved NBCA glue (TruFill, Cordis, Miami 
Lakes, Fl) as a synthetic agent for arteriovenous malformation (AVM) emboliza-
tion. The embolization agent mix is composed of NBCA, which polymerizes when 
exposed to an anionic environment [33]; ethiodized oil (Savage Laboratories, 
Melville, NY, USA), a vehicle for retardation of polymerization and opacification; 
and tantalum powder which also allows for radiographic visualization. Pretreatment 
of the catheter with dextrose 5% in water (D5W) is essential to avoid premature 
polymerization due to contact with anionic material. Following NBCA glue injec-
tion, the catheter tip is swiftly withdrawn to avoid catheter adherence to the vessel 
being treated. The glue material creates a permanent cast within the vasculature 
and, in generating inflammation in the vessel wall, leads to fibrosis to achieve 
embolization [33].
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 Ethylene Vinyl Alcohol Copolymer (Onyx)

Soon following FDA approval of NBCA for cerebral AVM embolization in 2004, in 
2005, the FDA approved ethylene vinyl alcohol copolymer (EVOH) (Onyx, Micro 
Therapeutics, Inc., Irvine, CA), although first introduced in 1990 [34]. The agent 
precipitates in aqueous solutions and thus is prepared with dimethyl sulfoxide 
(DMSO), which acts as its solvent. Once the DMSO rapidly disperses, the EVOH 
mixture precipitates. Akin to NBCA preparation, tantalum powder is used for radio-
graphic visualization. The Onyx preparations differ in viscosity with the commonly 
used Onyx-18 and Onyx-34 with lower concentration correlating with lower viscos-
ity. Catheter pretreatment is accomplished by the use of DMSO flush. Catheter dead 
space is then filled with Onyx, and endovascular delivery is performed under fluo-
roscopy, which forms a visible vascular cast. Longer injection times can be per-
formed as compared to NBCA glue, and the risk of catheter tip adhesion in the event 
of reflux is considerably less, although catheter tip entrapment is still possible, and 
thus the advantage of using detachable tip microcatheters. Given suspension in 
DMSO, initial injection rate is <0.3 ml over greater than 40 seconds to avoid the risk 
of DMSO-related vasospasm and necrosis.

 Absolute Alcohol

Ethanol embolization may also be utilized particularly in the case of venous and 
venolymphatic malformations. The alcohol serves to induce thrombosis and fibrosis 
and has been described in use for neck and oral/facial slow flow malformations 
[35–37]. Given its ability to widely diffuse, it has the risk of damage to the sur-
rounding tissue, including possible skin necrosis when used percutaneously, and as 
such should be used with precaution.

 Evolution of Endovascular Aneurysm Treatment

Early attempts at endovascular aneurysm embolization with balloon occlusion 
occurred as early 1974 as described by Serbinenko [38]. Four years later, Debrun 
reported the use of silicone-filled latex balloons in aneurysm embolization, and 
even later, silicone detachable balloons were developed by Hieshima and 
Interventional Therapeutics (ITC). However, radiographic recanalization of 
balloon- treated aneurysms was seen in a significant number of cases [13]. In the 
1980s, a study reporting results of balloon occlusion in over 100 aneurysms 
addressed the inability to effectively treat wide-necked aneurysms, small aneu-
rysms, and in ruptured aneurysms as well as in cases of vasospasm [39]. Aneurysm 
rupture and its associated morbidity/mortality also became a concern as the rela-
tively non- compliant balloons filled with hydroxyethylmethacrylate preserved their 
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own shape rather than adapting to the shape of the fragile aneurysms. As such, the 
endovascular community searched for the next technical advance in aneurysm 
treatment.

First introduced in 1988, the idea of pushable coils for use in embolization of 
cerebral aneurysms was a desirable one that was unfortunately limited by the 
 stiffness and irretrievable nature of these early coils [40, 41]. As such, the develop-
ment of soft platinum coils by Guglielmi in 1989 dramatically changed the course 
of endovascular aneurysm embolization. The naissance of the GDC system occurred 
as a research continuum from bench side to the AngioSuite at the University of 
California, Los Angeles (UCLA). Several integral members of the development 
team along with Guglielmi included neurointerventionalist Vinuela and Target 
Therapeutic engineer Ivan Sepetka [42–44]. The structure of these coils consisted of 
a soft, platinum detachable material ranging in length from 2 to 30 cm, connected to 
a stainless steel pusher wire. The technique involves the over wire navigation of the 
microcatheter to the aneurysm, followed by delivery of these platinum coils and 
their subsequent electrolytic detachment. The first human use of GDC coil occurred 
at UCLA in 1990 [45], and now, coil embolization of aneurysm is a standard for 
endovascular aneurysm embolization. Detachment methods for the currently uti-
lized coils include both electrolytic and mechanical means. Decades later, the trend 
for increase in endovascular treatment of aneurysms has grown as the leading 
method of treatment when anatomically feasible and continues to grow with less 
adjusted morbidity as compared with surgical clipping [46, 47]. The need for effec-
tive treatment of wide-necked aneurysms which are not amenable to primary coil 
embolization further advanced the field to include stent-assistive devices beginning 
with open-cell, Neuroform (Stryker, Kalamazoo, MI, USA) stent which received 
FDA approval under Humanitarian Device Exemption (HDE) in 2002. In 2007, the 
first closed-cell stent approved by the FDA for the adjunctive treatment of intracra-
nial aneurysms in the United States was the Enterprise (Cordis Neurovascular, 
Miami, FL) stent. Many groups have described their embolization experience in the 
treatment of wide-necked aneurysms with each of these stents [48–50]. Other stents 
described as aneurysm stent-assistive devices in Europe have included the Leo 
(Balt, Montmorency, France) and detachable Solitaire (Covidien, Irvine, California) 
stent, among others [51, 52].

However, even with aneurysm stent-assistive devices, wide-necked aneurysms 
continue to be a challenge, as persistent flow can continue to impact the coil con-
struct and remodel the coil mass or even lead to aneurysm growth. To address these 
issues, lower porosity stents and flow-diverting devices have been developed. To 
accommodate for smaller vessel calibers and with a degree of decreased stent 
porosity than its predecessors, Microvention’s (Tustin, CA, USA) Low-profile 
Visualized Intraluminal Support device, LVIS Jr., along with its larger version 
LVIS, was approved for use under HDE in 2014. Intra-saccular flow-diverting 
devices, which have yet to gain FDA approval, include the WEB device produced 
by Sequent Medical, which consists of a microbraided structure intended for deliv-
ery within the aneurysm and functions to stagnate flow in a similar fashion to a 
dense coil mesh.
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Compared to the purely intra-saccular treatment of aneurysm, the introduction of 
flow-diverting stents including the Pipeline embolization device (EV3, Covidien, 
CA, USA) and Surpass flow diverter (Stryker, Kalamazoo, MI, USA) relies on low 
porosity (30–35% metal surface area coverage versus 6.5–9.5% in stents used for 
Neuroform/Enterprise, 18–22% LVIS/LVIS Jr.) [53, 54]. The flow diversion is 
thought to change the parent vessel hemodynamics and decrease blood flow into the 
aneurysm leading to thrombosis. This is particularly useful in lesions where the 
anatomical pathology is complex or the disease involves portions of the parent ves-
sel extending outside of the aneurysm sac [55–61].

 Evolution of Endovascular Stroke Treatment

The endovascular treatment of acute stroke has considerably evolved since its incep-
tion beginning with intra-arterial urokinase infusion in the late 1980s/early 1990s 
[62, 63]. Investigators continued to assess the efficacy of IA thrombolysis with pro- 
urokinase/urokinase [64–66] and tissue plasminogen activator (tPA) [67, 68]. The 
use of IA thrombolytic therapy was aimed at delivering a more concentrated dose of 
these agents in direct proximity to the clot in an effort to achieve more effective 
recanalization, thereby reducing systemic exposure. In spite of the effective recana-
lization demonstrated by thrombolysis in acute myocardial infarction (TIMI) score 
in the intra-arterial treatment group, clinical improvement defined as a modified 
Rankin Scale (mRS) of 0–1 in PROACT and 2 or less in PROACT II was not signifi-
cantly different from placebo in spite of a trend toward improvement in morbidity 
[64]. Combined thrombolysis using intravenous (IV) tPA in conjunction with IA 
tPA was further investigated in multiple trials including Emergency Management of 
Stroke (EMS) [69] and Interventional Management of Stroke (IMS) [68].

With a lack of positive clinical results, the technical advances in the field continued 
to evolve to meet the clinical need. Endovascular treatment of stroke next addressed 
mechanical thrombectomy in combination with thrombolysis. Clouded by a small 
sample population and possible selection bias, the RECANALISE trial assessed 53 
patients, a subset of whom were treated with mechanical thrombectomy if IA tPA was 
unable to achieve a desirable TIMI [2, 3] recanalization [70]. No significant differ-
ence in 90-day Rankin scores was identified in the patient study group [70].

From a technical perspective, mechanical thrombectomy efforts began with the 
development of both aspiration and retriever devices which have continued to be 
refined since inception. In 2004, the first mechanical thrombectomy device FDA 
approved for stroke was the Mechanical Embolus Removal in Cerebral Ischemia 
(MERCI, Concentric Medical, California, USA) device [71].

The major initial randomized control trials addressing the possible benefit of 
endovascular intervention for large vessel acute ischemic stroke including IMS-III 
[72], SYNTHESIS [73], and MR RESCUE [74] did not demonstrate a statistically 
significant clinical benefit of endovascular therapy. Several confounding factors 
which likely contributed to the lack of benefit noted include less refined imaging 
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inclusion/exclusion criteria, the use of IA thrombolysis and first-generation 
thrombectomy devices, as well as significant time delays in endovascular treat-
ment with time of up to 381 minutes of mean time to groin puncture in the MR 
RESCUE trial [75].

The biggest shift in paradigm occurred beginning in 2014 with the validation of 
endovascular thrombectomy as the standard of care in ischemic stroke caused by 
large vessel occlusion, presenting within 6 h of symptom onset. After the results of 
the MR CLEAN trial were announced at the World Stroke Conference in 2014 [76], 
a number of trials followed suit confirming the clinical benefit [76–80]. Patients had 
a more advanced imaging selection criteria in some of the trials including perfusion 
data, received standard doses of IV TPA when eligible, and confirmed proximal 
large vessel occlusions prior to enrollment. The positive results were also owed in 
part to the development of more effective second-generation stent retrievers includ-
ing the Solitaire FR (EV3/Medtronic, California, USA) and TREVO (Concentric 
Medical/Stryker, California, USA) devices [81, 82]. Achieving more effective 
recanalization from the first-generation devices [81, 83, 84], small construction dif-
ferences are seen with an open-ended basket of the Solitaire FR stent retriever and 
a closed-ended and stent wire radiopaque nature of the TREVO. Others in the mar-
ket which are also constructed of nitinol memory wire include CATCH (Balt 
Extrusion, Montmorency, France) and REVIVE (Codman & Shurtleff Inc., 
Massachusetts, USA). In terms of aspiration, the penumbra (Penumbra Inc., 
California, USA) system initially developed as a multicomponent system with a 
reperfusion catheter, separator, and thrombus removing ring [85]. While aspiration 
is currently used in clinical practice alone or in conjunction with stent retriever 
devices, no evidence of clinical efficacy for aspiration has been demonstrated in a 
randomized trial. The THERAPY trial designed for addressing the question of aspi-
ration benefit was halted after the positive endovascular study results were pub-
lished in 2014 and 2015. As such, the 108 patients enrolled in the THERAPY trial 
underpowered the study for an ability to show significance in their primary end-
point of 90-day mRS 0–2, correlating to functional independence [86]. Additional 
efforts at reducing distal emboli and improving clot thrombectomy have shown the 
clinical benefit of proximal balloon guide use during clot retrieval [87]. More 
recently, a number of reperfusion catheters have been in use adjunctively in the 
clinical setting with second-generation stent retrievers, although no data currently 
exists for their efficacy. Studies aimed at investigating efficacy of thrombectomy in 
acute ischemic stroke have mostly focused on anterior circulation occlusions. Given 
the small percentage of posterior circulation occlusions, no dedicated study has 
evaluated the efficacy of any of the specific thrombectomy or aspiration devices 
exclusively in the vertebrobasilar or posterior cerebral artery infarcts. The improve-
ment and evolution of endovascular thrombectomy devices over the past years since 
MERCI was approved in 2004 has positively affected treatment outcomes and has 
allowed endovascular thrombectomy to become the standard of care, at this interval 
in patients presenting within 6 h of symptom onset. Further trials evaluating late 
presentation past the current 6-h time point are ongoing, which include DAWN and 
POSITIVE.
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 Summary

Since the 1960s with the first reported endovascular catheterization, the diagnostic and 
therapeutic horizon of neurointervention has continued to expand. This is in part due to 
the conception, development, and rapid evolution of catheter, device, and embolic 
materials. Endovascular treatment of fistulas, arteriovenous malformations, aneu-
rysms, and acute ischemic stroke due to large vessel occlusion has become more 
refined and increasingly widespread. The persistent refinement of these tools will serve 
to challenge the field in seeking further continued improvement in patient outcomes.
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