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Abstract. In this paper, we propose REAL-T), a distributed event-based
language with explicit support for time manipulation. The language
introduces automata for operational time manipulation, causality con-
structs and Linear Temporal Logic for declarative time predicates, and
a distributed-time aware event model. We have developed a compiler for
the language and a dynamic run-time framework. To validate the pro-
posal we study detection of complex patterns of security vulnerabilities
in IoT scenarios.
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1 Introduction

Time management requirements in distributed computer systems are becoming
more complex. Intrusion detection systems, Internet of things networks (IoT),
autonomous vehicles, and smart cities are all examples of reactive, concurrent,
and distributed systems with complex real-time management needs. Those sys-
tems support millions of interconnected devices with complex and dynamic
deployment topologies. However, mainstream distributed computing tools still
support relatively simple and naive models of time. Namely, explicit time man-
agement using the system clock to tag events, and implicit time management by
means of the next-instruction abstraction in programming languages and com-
puter systems. These simple abstractions have created complex usage patterns to
address massive parallelism (see, common concurrency patterns in [7]), frequent
resource sharing errors (e.g., liveness and data-race errors [5,6]) and convoluted
event ordering and synchronization algorithms (see, for example, [25]).

Several strategies for explicit time management have been proposed to
address the problems described above. Synchronous and asynchronous state
machines address the problem of event ordering, pattern recognition, and for-
mal specification of concurrent systems. Other state machine variants consider
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implicit time management and explicit time management, e.g. timed machines
(see [12] for a complete overview). Temporal logic has been used to address
real-time system specification and verification [4,17], error detection in concur-
rent systems [9,22], and Intrusion Detection [3,24]. Logical clocks [19] and vector
clocks [21] have been proposed to address causal ordering of events in distributed
systems, and have been implemented in several systems to address detection of
complex distributed event patterns and debugging and unit testing of distributed
concurrent application, see [6,27]. All these approaches suffer of at least one of
two problems. First, they provide only some abstractions for time management.
Two, except for [6,27], they are non distributed, thus assume centralized access
to the program trace. We argue that both restrictions severely limit the appli-
cability of the mentioned tools, considering the current computing systems have
complex and heterogeneous requirements for time management, distribution,
and concurrency.

In this paper we investigate the implementation of several time management
strategies in REAL-T, a reactive event-based distributed programming language.
We also evaluate their applicability in the context of Intrusion Detection Systems
for ToT networks. Concretely, we provide the following contributions: REAL-T,
A decentralized, elastic, and time-aware event-based model for distributed pro-
gramming and the corresponding language design; A prototype implementation
of a compiler supporting: automata for complex pattern modelling, causal pred-
icates, and Linear Temporal Logic to address explicit time aware predicates;
Evaluation of usage scenarios in the context of Intrusion Detection Systems for
IoT networks.

The paper is organized as follows. Section 2 motivates our research analyz-
ing actual problems in intrusion detection systems over IoT networks. Section 3
discusses work related to the issue. Sections 4 and 5 present the event-based dis-
tributed time model and the corresponding language design. Section 6 presents
the prototype implementation of the compiler and the run-time virtual machine.
In Sect.7 we present usage scenarios. Finally, we conclude and discuss future
work in Sect. 8.

2 DMotivation: Time Constraints in Intrusion Prevention
Systems

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have
been in the security landscape for a long time. On these systems multi-step
attacks can be modeled using an automaton to identify a sequence of specified
events. If the automaton accepts such a combination of events, it could be evi-
denced that an attack is occurring, and the system may log the attack or stop
the computation.

An example of a multi-step attack is a Worm Attack [28] since the attack pat-
tern is based on scanning, exploiting and finally developing a malicious action.
Let us imagine a worm attack over a victim host that has installed an IDS.
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The first step is to scan the victim’s ports and find one that allows it to infil-
trate, which makes the IDS identify event el referring to the detected port scan
activity. Then, a new event e2 will be generated by the IDS when it detects
a suspicious file is entering the system (dropper). The goal of a dropper is to
download and install a malware (payload), when this occurs the IDS registers
event e3. The next event generated by the IDS e/, happens when the malware
runs and tries to fulfill its purpose (ex-filtration, disruption, tampering, etc.).
Finally, the malware can go through a state of self-destruction to erase any trace
of its existence in the victim’s host, which can also be registered by the IDS as
event e5. The attack has gone through five (5) events to fulfill its objective, and
each step depends on the fulfillment of the previous ones.

Now consider such an attack over a Internet of things Network. The Inter-
net of Things is a technological paradigm envisioned as a global network of
machines and devices capable of interacting with each other [20]. A mechanism
to detect a simple sequence of events is not enough to recognize attacks on such
heterogeneous network. Not even, network-based IDS, which capture packets of
network traffic and analyze them to detect possible attacks. Most of mainstream
IDS/IPS systems have simple implementations of event sequence detectors, and
even small variations on the sequence of events may affect the detection of an
attack. Consider, for example, an IoT network that is under attack, due to the
non-deterministic nature of the network, and the distributed nature of the attack,
events can be triggered in the right malicious order (actual order), but detection
may happen in different order. Having support for detection of event sequences
is not a guarantee of attack identification. A modern IDS/IPS solution needs
more sophisticated mechanisms to detect possible attacks, for example, identi-
fying causality relations, or defining predicates on complex time dependencies.
Therefore, in this paper, we argue that such systems could be enriched with
real-time detection of intricate patterns of distributed events with sophisticated
time dependencies.

3 State of the Art

Several dimensions must be considered when implementing time models in com-
puter Systems (see [12] for a complete discussion). Time models may be discrete
or dense (continuous). They may model time simply by imposing order on events
or by means a metric system, tagging each event with a clock reading. They may
support linear time, where each state has only one successor and one predecessor,
or time branching, where each state has one predecessor but could have several
successors. They may model time via explicit concepts of time, e.g., a clock,
or via implicit concepts of time, e.g., the next step in a sequential algorithm.
Finally, the modeler should take into consideration concurrency and composi-
tion, in particular considering that the problem of synchronization of parallel
activities have created a plethora of abstractions (e.g., thread, process, tasks)
and several complex usage patterns (see, common concurrency patterns in [7]),
frequent resource sharing errors (e.g. liveness and data-race errors [6]) and con-
voluted event ordering and synchronization algorithms [25].
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According to Furia et al. [12] temporal models of time in modern com-
puter systems may be classified in three categories: operational time models,
declarative time models, and hybrid time models. Operational time formalisms
describe the evolution of a system, starting from a certain initial state, tran-
sitioning to other states through events or transitions. Finite state automata,
Statecharts [14], and Petri networks [26] are examples of operational formalisms.
On the other hand, declarative models describe explicitly temporal properties
that must endure during the execution of the system. Most of these models are
based on temporal logic [4]. Temporal logic is a family of first order logic that
has temporal operators on time-dependent propositions. Temporal logic allows
programmers to describe complex temporal relations among events happening in
a computation. Hybrid models include abstractions from operational and declar-
ative formalisms. The model proposed in REAL-T is a hybrid model, including
explicit abstractions for automata and explicit abstractions for Propositional
Temporal Logic.

Several actual implementations of these models have been proposed, see for
example [9,10]. Monitoring-Oriented Programming (MOP) frameworks aim to
reduce the gap between formal specification and implementation [22]. MOP
frameworks monitor whether the activities that are being performed by the soft-
ware comply with a formal specification. The original MOP framework has been
extended with state machines and temporal logic. However, the implementations
of such frameworks, address only non-distributed applications and assume full
access to the computation trace (see application of MOP frameworks to secu-
rity [3]). REAL-T extends these ideas into a fully distributed framework for real
time monitoring.

To complete these discussion, we augment the taxonomy above with a cat-
egory for distributed logical time abstractions. Logical time has been proposed
by Lamport [19] and Mattern [21] to address partial orders of distributed events
without a global synchronized clock. Additionally, the order of messages is based
on a causality relation among events. Several implementations of these concepts
have been proposed, see logical clocks implemented in the Horus system [27]
and automata with logical clocks implemented in [6]. REAL-T includes these
concepts with the additional support of Propositional Temporal Logic.

4 A Distributed Event-Based Time Model

The proposed programming model has three main components: an event model,
a message model, and a time model. The event model describes the general
architecture of the distributed application and what events are considered. The
message model describes how messages are exchanged and differentiates the mes-
sages that exchange meta-information of the events, and the messages comprising
the distributed application. Finally, the time model describes different consider-
ations of time for the programming model components.
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4.1 The Event and Message Models

The model assumes the existence of a base distributed application where specific
behaviors want to be detected or reinforced. The distributed application runs
in distributed hardware, e.g., several servers and devices sending and receiv-
ing information. The network is a component of the distributed application, it
connects all the devices and servers. The base application exchanges messages
through the network to accomplish its purpose.

REAL-T’s main constructs are event classes, those classes are instantiated
with a singleton policy, i.e., each event class creates one event monitor on each
running node of the distributed application. The proposed model considers only
one type of event: method call. When a method call is detected in the base
application, the meta-information of that call is broadcast to the nodes par-
ticipating in the distributed application. This message does not interfere with
the distributed messages of the base application. Furthermore, no restriction is
imposed regarding synchronization with the messages of the base application.

Event monitors are the instances of the event classes. They consume mes-
sages with event information, and they react to those events. The reaction may
be a simple notification, e.g., registering the event in a log file, or it may mod-
ify the original behavior of the base application. Complex patterns of events are
detected using a predicate language. The current implementation supports finite
deterministic automata, to detect complex sequences of distributed events [6],
causal predicates to reinforce causality [21], and Linear Temporal Logic (LTL,
sometimes called PTL or PLTL [15]) to address more complex temporal predi-
cates [22].

The message model differentiates explicitly two types of messages in the
application. First, the regular messages that address the purpose of the dis-
tributed application. Second, the messages representing the meta-data of events.
The meta-data messages are exchanged over the REAL-T framework while the
regular messages are exchange over the mechanisms defined by the distributed
base application. Thus, even though regular messages and meta-data messages
may be triggered by the same events, they travel over different distributed soft-
ware infrastructures.

Figure 1 shows the main concepts of the event and message models. Nodes
one, two, and three represent a distributed application with a three-layer archi-
tecture. Each node executes a multi-threaded component of the application and
exchange messages through defined mechanisms depicted as bidirectional solid
lines and white envelopes. Each node has an instance of a monitor. The figure
shows only the computation that monitor three detects, thus we only show meta-
event messages (black envelopes) arriving at monitor three. Finally, the time line
at the bottom of the figure, shows the arriving order of messages with the event’s
meta-information at monitor three, emphasizing that different components may
see different histories of the distributed application. The other monitors may
see different histories, and even the nodes of the application may see different
histories.
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Fig. 1. Message model

4.2 Time Model

Above we describe the general event model and the distributed message model.
Those models characterize the non-deterministic behavior of concurrent and dis-
tributed applications. We now introduce the time model for REAL-T. The time
model considers three type of time models. The first is operational time, where
time is not explicit but is only modeled through the order of messages. The
second is logical time [19,21] to address partial orders of events, predicating,
for example, over causal relations. Finally, we introduce declarative time using
LTL where custom models of time are introduced by the programmers of event
classes.

Operational Time: Operational formalisms [12] describe explicitly the evo-
lution of software systems. In our model we use Deterministic State Automata
to describe complex sequences of events. The automaton is concerned only with
the possible next transitions, thus enforcing specific sequences of events. Each
transition on the automaton may be guarded with a boolean guard. In our model
each monitor may have an automaton definition and depending on the arrival
order of messages each automaton will detect different histories of the distributed
computation (see Fig.2).

Logical Time: REAL-T also incorporates a notion of logical time, virtual time,
and the global state of distributed systems, following ideas presented by Lamport
and Mattern [19,21]. On this model, each event is tagged with a value from the
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Fig. 2. Operational time model

logical clock instance deployed on the node where the event originated. Logical
clocks are updated with the information from other logical clocks, such informa-
tion arrives with event’s meta-information. The model allows programmers to
write predicates on the causality relationship among events, i.e., when an event
has causal influence over another. To understand this relation, let us a look at
the Happens-before relationship defined in [19], which states that a causal rela-
tionship must meet any of the following cases. Let a, b and c be events, two
events are considered to have causal relation if:

— a and b are in the same process and a takes place before b; then a happens-
before b (a is causally related to b).

— a represents an event of sending a message while b is an event of receiving a
message, then a happens-before b.

— If a happens-before b and b happens-before ¢, hence, a happens-before ¢ due
to relationship transitivity.

In any other case, events are considered concurrent ([21]).

Declarative Time Model (Linear Logical Time): Finally, REAL-T incor-
porates a time model based on Propositional Temporal Logic (PTL) [11]. Using
PTL programmers write temporal predicates asserting temporal relations among
events in a sequence of distributed events. Concretely, REAL-T supports the
operators described below, where ¢ and v are PTL formulas:
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— Q¢ := “Next: In the next moment ¢ is true”.

— Q¢ := “Fventually: In some future or present moment ¢ is true”.

— O¢ := “Always: ¢ is true in all future moments”.

— ¢ Uy := “Until: ¢ continues being true up until some future moment when
1) is true”.

— ¢ W ¢ := “Unless: ¢ continues being true unless 1) becomes true”.

As an example, suppose that P, is a process that at some point of its execu-
tion over time sends a message to P;. P; then receives the messages and sends a
result to P so that it can continue its execution (a basic example of distributed
computation). This behavior allows us to infer a main property, at some point in
the execution of P, P; will eventually happen. If you must specify the previous
behavior this specification in PTL would be:

Exe(P;) := The process P; is being executed

Spec : OQ(Eze(Py) = OFxe(P) ) ANO(Eze(P2) = —FExe(Py) )

The second condition of the specification informs that the sending of messages
between P, and P; is not immediate in the same way it could be ensured that the
sending of messages between P; and P» is not immediate. A possible behavior
of that specification would be:

P1 : s—e

PQZ.

LTL introduces the notion of time into a sequence of states or moments.
Each state in the series is represented as a model at different moments in time.
A model (M) in LTL is composed of:

— A set of moments M.

— A order relation <: M x M — {true, false}, the relation may be transi-
tive, non-reflexive, linear, or discrete. This relation defines how moments are
ordered and represents the temporal structure of the model.

— A function, 7 : M — P(prop) such as 7 maps each moment/state to a set of
valid propositions, where P(prop) is the power set operator.

A concrete model may be represented as follows:

7T z+1 z+2
.

s N e N - ~

gy NS r,s .
\ - \ / \
\p\/q// ‘, D ‘
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Where,

— M= {M;, My 1, Mi12}
— < is a linear order on M, such that, (Vi, j|i < j : M; < M;)
— The function :
™= {(Mm {Qﬂp 4 q})v (Mi+17 {_‘pvp =q \ 7’})7 (Mi+27 {’f’, S, p Vs= ’I"})}

The model of PTL we are studying considers a discrete and linear model of
time, thus each moment of time has at most one successor. However, the event
and message models described above require the time model to have specific
characteristics. First, each monitor has a concrete instance of a formula attached
to it. Second, the set of formulas defines a custom model of time, where the
events of interest of each formula define the set of events that moves the model
from moment to moment. The next moment is determined by the arrival of
an event of interest, i.e., each formula is evaluated once an event of interest
arrives to the node. Third, the model of time may vary from node to node. As
mentioned before, each node may see a different history of the computation,
then the temporal model may be different, especially the sequence of events of
interest seen by each node. This implies that evaluation of the formula depends
on the model seen by each formula instance. This non-deterministic behavior
simplifies implementation and requires no-synchronized clocks.

5 REAL-T by Example: Time Aware Constructs

REAL-T incorporates constructs to implement the event model, the message
model, and the time model. In this section, we are going to present the main
elements of the language using a security test example. Consider a distributed
application with several servers doing business computations and persisting data
to a database replicated in a different set of servers. We are interested in detecting
write commands on the database that are not in a secure session, i.e., they are
not in between a login - logout sequence of events.

Figure 3 shows the implementation using an automaton in REAL-T. First,
the event class is declared with the name SecurityTest. The events of interest
(alphabet of the automaton) are defined from lines 2-10. The signature of the
first event, sessionLogin, is defined with parameter uid of type String. The
concrete event definition is a boolean expression. The causal construct indicates
that the method call is only matched when there is a causal relation with the pre-
vious event. The call construct matches any call to the method destroySession
on objects of type SecurityManager. The call may be executed on any host of
the distributed application. The args construct bounds the parameter values to
the variables. Note that, once a variable is bounded, subsequent events using
the variable are only matched if the value of the event parameter is the same
as the one in the variable. The sessionLogout event is defined similarly but it
is interested in destroySession method calls on any host. On the other hand,
the write event uses the construct host(localhost) to indicate that it is only
interested in write events happening on the local host, i.e., writes that happen
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1| eventclass SecurityTest{

2| event sessionLogin(String uid):

3 causal(call(* SecurityManager.createSession(String)))

4 && args(uid);

5| event sessionLogout(Fgn name, Object x):

6 causal (call(x SecurityManager.destroySession(String)))
7 && args(uid);

8| event write(String uid, Fqn memorySpace, Object value):
9 causal (call(x DataBase.write(String, Fqn, Object)))

10 && args(name) && host(localhost);

11

12| automaton securityViolationDetector(String uid,

13 Fgn memorySpace, Object value){
14 start init: (write(uid, Fqn, value) —> securityViolationt) ||
15 (sessionLogin(uid) —> login);

16 login:(write(uid, Fqn, value) —> login) ||

17 (sessionLogout(name, x) —> init);

18 end securityViolation;}

19
20| reaction before
21| security ViolationDetector.security Violation(String uid,
22 Fgn memorySpace, Object value){
23 //Reaction to security violation}}

Fig. 3. Example of causal automaton implementing a security test

on the database host. Once the events are placed in lines 12 to 19 we define the
automaton. The automaton has three states and four possible transitions. From
the init state, the automaton may transition to the login state if a login event
is received; or it may transition to the securityViolation state, if a write event
is received before a login event. If the automaton is in the login state, it stays
there if it receives a write event, or transitions to the init state if it receives a
logout event. Lines 21 to 24 show the reaction definition which is executed before
transitioning to the SecurityViolation state.

Figure4 shows the same implementation but using a PTL formula. In this
case the same set of events are defined, however, those events will determine
the set of moments for the temporal model. Once a concrete event is detected,
the temporal model moves to the next moment and evaluates the formula. The
formula defined in lines 4 to 8 asserts that, in the system is always true (always
construct), that immediately (next construct) after a login event, write events
are received until a logout event (until construct). If the formula is violated the
reaction is triggered.
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eventclass Security Test{

// Event definition

1t1 securityViolationDetector(String uid,

Fgn memorySpace, Object value){
always(sessionLogin(String uid) —>
next(write(uid, memorySpace, value)
until sessionLogout(name,x)))}

//Reaction definition}

o N T N N O

Fig. 4. Example of PTL formula implementing the security test

6 Compiler Implementation

We have developed a runtime library and a compiler for REAL-T'. The event and
messaging models are implemented using a group communication library [2]; this
constitutes the core of the runtime framework. The compiler translates REAL-T
programs into AspectJ [16] code, and then it is compiled into Java bytecode.
Implementation of automata support, uses an automata library, [23] augmented
with group communication. Detection of causal predicates uses vector clocks [21].
Finally, we translate propositional temporal logic formulae into Biichi automata
Sect. 4.2, feeding the automata with distributed events. The implementation
of automata support and causality support with distribution, follows similar
techniques as those described in [5,21].

We now present an overview of the translation of temporal logic into Biichi
automata. Biichi automaton [8] is an extension of classic finite automata created
to read and evaluate infinite words [1,11,18]. The main difference with finite
automata is that the acceptance criterion over an infinite word is that there
exists a run of the automaton which visits infinitely often one or more final
states. Further information regarding the details of the translation is beyond the
scope of this work, we encourage the interested reader to see [11]. However, we
use now an example to show the mechanics of the translated automata.

Consider the following formula defined in REAL-T:

always(login —> next(write until logout))

The formula describes a property where always, immediately after a login
event, there is a sequence of write events until a logout event occurs. Once the
first event occurs, it will only recognize write until a logout appears. Note that
any other declared event will be considered as another element in the alphabet.
So, if any other event happens between a login and a logout different to write,
it is a violation of the temporal property. Note that the Biichi automaton of
the formula (see Fig.5) contains a transition labeled with 1, this transition is
followed if the implementation moves the clock to the next moment. Thus, even
though, the automaton does not have a transition for a specific event, if an event

! https://github.com /unicesi/eketal.
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“loginAlogout

-login logout write

Fig. 5. Buchi automaton for LTL property

notification arrives, the model will move to the next moment. REAL-T translates
the formula into a Biichi automaton using a library described in [13].

7 Securing an IoT Ecosystem

We evaluate the applicability of the proposed language in the context of an IoT
scenario. Our scenario is composed of three main components. An IoT Sentinel
monitoring several IoT devices at a particular site (e.g., home, factory, hospital,
etc.). A network-based IDS (NIDS) monitoring messages flowing from the IoT
devices to an IoT platform deployed on the cloud (e.g., Oracle IoT, Samsung
Artik, Amazon IoT). A host-based IDS (HIDS) running on the storage server on
the IoT platform infrastructure deployed on the cloud.

The IoT Sentinel generates three kind of events: (i) urlAccess, when an IoT
device with device Id (dId) access to a web server (url), (ii) dropperDownload,
when a dropper (Object X) is downloaded to an IoT device (dId) using a web
server (url), (iii) payloadDownload, when a dropper (Object X) located in an
IoT device (dId) downloads a payload (Object Y). The NIDS generates event
servicesScanning when a scanning activity with a severity (sev) is performed
from an IoT device (dId) over a server (target) on the IoT platform. At last,
the HIDS generates an event injectionAttack when an injection (dataHash)
coming from an IoT device (dId) is detected against itself (target). For such
a distributed configuration, traditional IDS components detect those events as
independent nonsuspicious events. Then, after an attack, an automatic system
may notice the event relation when accessing the full trace of the computation,
i.e., when all the trace logs from all IDS components are compared together.
However, REAL-T can do better. In REAL-T, the specific sequence of related
events can be described using a PTL formula over distributed events on the
system. The use of PTL to detect this attack is shown in Fig. 6.

Figure 6 shows event definitions from lines 3 to 18, where the first three
events are detected in the IoTDFEvices group of hosts, and the other two events
are detected at the NIDS and HIDS groups. In lines 20 to 27 a PTL formula
is defined. The formula links together events through the common values dId,
X, Y, url and target. The formula consumes events respecting causal order,
and moves the model to the next moment each time a defined event arrives. The
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1| eventclass SecurityTest{

2

3| event urlAccess(String dId, String url):

4 causal(call(* IoTSentinel.urlAccess(String))) && args(dId)

5 && host("IoTDevices”);

6| event dropperDownload(String dId, Object X, String url):

7 causal (call(x IoTSentinel.download(String))) && args(dld)

8 && host(”IoTDevices”);

9| event payloadDownload(String dId, Object Y, Object requester):
10 causal (call(x IoTSentinel.download(String))) && args(dld)
11 && host(”IoTDevices”);

12| event servicesScanning(String dId, String sev, hostname target)
13 causal (call(x NIDS.scan(String)))

14 && args(dId) && host(”NIDS”);

15| event injectionAttack(String dId, String dataHash,

16 hostname target)

17 causal (call(x HIDS.inject(String injection)))

18 && args(dId) && host("HIDS”);

19
20| Itl securityViolationDetector(String did,
21 String url, Object X, Object Y, String sev,
22 String target, string dataHash){
23 always(urlAccess(did, url)) —>
24 eventually(dropperDownload(did, X, url)) —>
25 eventually (payloadDownload(did, Y, X)) —>
26 eventually(serviceScanning(did, sev, target)) —>
27 leventually (injectionAttack(did, dataHash, target))
28
29| reaction before securityViolationDetector(String dId, String url,
30 Object X, Object Y, String severity,
31 String target, String dataHash){
32 // isolate IoT device and gather Forensic Evidence}}

Fig. 6. Example of PTL formula detecting an distributed IoT attack

last part of the formula is negated to force triggering of the reaction when the
pattern is violated. Lines 29 to 32 define the reaction when the security violation
has occurred. The reaction is to isolate the IoT device (dId) and gather forensic
evidence for later adversary analysis. Notice, that the reaction is taken on all
the IDS. Thus, using REAL-T, not only the attack is detected in real time, but
the IDS take a common action against the attack.

8 Conclusions

We have presented REAL-T a programming language for real time monitoring
of distributed applications. The language supports a fully distributed program-
ming model, with a notion of distributed events and distributed messages, no
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central control is needed for the run-time infrastructure of the language. The
language also incorporates a model to detect complex temporal relations among
events. It supports operational time management through automaton constructs,
predicates over causal relations of events using logical vector clocks, and pred-
icates of Propositional Temporal Logic. We have explored composition of time
models, allowing automata transitions to depend on causal relations of atomic
events. We have validated the time model implementing a functional compiler
capable of monitoring distributed java applications. The implementation of the
compiler has concrete constructs for the automata and translates PTL formu-
las into Buchi automata. The run-time framework supports logical clocks and
presents a fully distributed framework based on group communication. We have
evaluated the usage of the model in the context of intrusion detection systems
for IoT networks.

Several open questions remain. First, we must explore run-time performance
on real scenarios. We also should explore different semantics for the language,
addressing how the instantiation policy affects the patterns that programmers
may use. We also must explore applicability in other domains, for example,
how real-time monitoring system may improve the performance and behavior of
autonomous vehicles.
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