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Abstract. One of the most dangerous threats to Wireless Sensor Networks
(WSN) are wormhole attacks due to their capacity to manipulate routing and
application data in real time and cause important damages to the integrity,
availability, and confidentiality of network data. In this work, an empirical
method to launch such attack (which is successful) on IEEE 802.15.4/Zigbee
devices with source routing enabled is adopted to find signatures for detecting
wormhole attacks in real environments. It uses the KillerBee framework with
algorithms for packet manipulation through a malicious node to capture and
inject malicious packets in victim nodes. Besides, a reverse variant of wormhole
attack is presented and executed. To evidence the realization of this threat by the
attacking software, the experimental framework includes XBee S2C nodes. The
results include recommendations, detection signatures and future work to face
wormhole attacks involving source routing protocols like DSR.
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1 Introduction

A The Internet of Things (IoT) is a growing technology trend towards connecting all
kinds of electronic devices to the Internet. The purpose of IoT devices is to interact and
share information to ease end users’ life. Thanks to it, by 2020 nearly 37 billion devices
are going to be connected to the cyberspace [1]. Nevertheless, IoT is a new challenge in
the information security field because a wide range of devices with different security
features can be integrated, leading to a wider security gap. Furthermore, the imple-
mentation of security measures such as strong cipher protocols on devices with reduced
processing power and memory, like environmental sensors, is a difficult task [2]. One
of the most important IoT technologies are Wireless Sensors Networks (WSN), which
can be deployed in many places (e.g. homes, buildings, cities, factories and hospitals)
to monitor environmental variables: temperature, humidity, movement, lighting, and
also to improve processes in the industrial field [3].
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On the other hand, a considerable number of vulnerabilities and security threats
related to WSNs has been presented in various research studies [4–6] that introduce
potential damages to the integrity, availability, and confidentiality of the information in
a WSN. Some of these threats are related to the network layer in the protocols stack.
They include attacks selective forwarding, sinkholes, and wormholes, and are intended
to induce an unwanted behavior in specific elements of WSNs through malicious nodes
and traffic manipulation. These attacks are successful because they give an attacker the
ability to intercept and modify data in real time, execute denials of service and selective
forwarding attacks, store packets, inject false information into legitimate nodes and
disrupt routing processes [7]. The risks of wormhole attacks represent new security
gaps that must be addressed and reduced to protect end users’ data and privacy.

1.1 Background

Wormhole attacks exploit the mechanisms to discover routes of on-demand routing
protocols. The most remarkable cases are Ad-Hoc On-Demand Distance Vector
(AODV) and Dynamic Source Routing (DSR) protocols, which use route request
(RREQ) and route replay (RREP) packets as a way to discover routes by nodes in a
WSN [8]. A RREQ packet is a broadcast message sent by a source node (“S”) to
request a route to a destination node (“D”), while an RREP is a unicast message sent by
the destination node in response to an RREQ. Besides, when the RREP that contains
the route to reach “D” arrives at “S”, the source node stores the route collected by the
RREP in the route cache and then sends the application data to “D” through that route.
Accordingly, the main goal of wormhole attacks is to build a tunnel between two
remote nodes through a third node (“M”) placed within transmission range of “S” and
“D”. This occurs when “S” needs to send application data to “D” and broadcasts an
RREQ message to discover a route to “D”. “M” (which is listening to network traffic)
forwards the message directly to “D” because the RREQ sent by “M” reaches “D”
before the original RREQ through the direct link. “M” can listen to RREP from “D”
first and then forward it to “S” with better metrics (zero hops), thus creating a false
direct link between “S” and “D” through “M” in the process (Fig. 1).

Fig. 1. Wormhole attack with malicious node
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At this point, the attacker can control the data that flows through the malicious
tunnel and launch other attacks. Finally, if victim nodes are too far from each other, the
attacker can use two malicious nodes sharing a link to build the wormhole tunnel [9].

1.2 Related Work

In [10], wormhole attack detection is based on hop count and delay changes between
source and destination nodes. If there is a wormhole tunnel between given source and
destination nodes, the delay increases due to the longest path created by the wormhole
tunnel, while hop count decreases for the same reason. In that sense, the detection
scheme compares delay and hop count at a given moment with previous values to
detect the attack. [11] proposes to apply modifications to the DSR routing protocol to
automatically calculate a Round Trip Time (RTT) delay value between source and
destination nodes at a given moment. Thus, initial RTT values are stored and compared
with subsequent values of the same kind. If RTT changes, a wormhole attack is
detected. Additionally, the network nodes are set in a promiscuous mode to monitor
neighboring nodes. [12] introduces a modified version of the AODV routing protocol
to calculate the transmission force from source nodes. The method aims to detect
wormhole attacks with high transmission power by establishing a transmission power
threshold for network nodes. If a node exceeds such threshold, it could be a com-
promised node and a wormhole attack is detected. In another modification of the
AODV protocol [13], network nodes introduce the hash of the hop addresses and hop
count into the RREQ packet while it follows a path from source to destination. When
the RREQ packet reaches the destination node, the expected hash of RREP is calcu-
lated and compared with the received hash. If the hashes do not match, the packet is
discarded assuming a wormhole attack in progress. In [10], to detect a wormhole
attack, source nodes of RREQ calculate the delay between a sent RREQ and every
received RREP to establish an average RTT value for all received routes. If the RTT of
one or more routes is less than the average RTT, a wormhole attack is detected,
malicious routes discarded, and the detection is replied to neighboring nodes to delete
the malicious routes from their routing table. In [13], every node calculates changes in
the number of neighboring nodes by counting neighbors at different times.

As a result, a wormhole attack is detected if a predefined threshold of the number of
neighboring nodes is exceeded by one or more nodes. Besides, [14] presents a
wormhole detection algorithm with node connectivity and statistical calculation. Such
method defines two terms, node connectivity and network connectivity, to determine
the probability of a wormhole attack in progress in the network. The probability of said
attack depends on the network’s density, which is based on the number of nodes and
connections between nodes.

The research studies above conducted tests in simulation environments to measure
the impact of wormhole attacks and the effectiveness of different detection/prevention
algorithms in WSNs. Nevertheless, they are based on simulations of routing protocol
attacks and are difficult to implement in real environments because of the lack of
devices with the features required by the proposed methods. Due to existing and
potential cybersecurity threats to WSNs, intrusion detection systems need to be
developed for real sensor nodes. At last, since most WSN security research studies are

100 J. R. Gómez et al.



based on simulation results, future characterization of WSN threats should focus on real
devices to build actual security solutions and prevent security disasters in WSN
technologies.

To expose the flexibility of a wormhole attack and its impact on real cybersecurity
environments, this paper proposes an algorithm to execute classic and “reverse”
wormhole attacks on XBee S2C devices with source routing enabled. The main goal is
to modify the route record field in routing packet headers to manipulate the routing
cache in victim nodes. The algorithm is implemented in Python language using the
KillerBee framework and an RZUSBSTICK dongle with preinstalled KillerBee firm-
ware. The results include recommendations to prevent wormhole attacks, attack pat-
terns and fingerprints to develop an Intrusion Detection System (IDS) for WSNs as
future work.

2 Proposed Wormhole Attack Algorithm

The route record field in source routing packets [15, 16] contains the whole route from
source to destination when the routing packet reaches the source of data transmission.
This feature allows the intermediary hops between source and destination nodes to
introduce their network address into the routing packets (RREP) while the packet
follows the path from destination to source. A route is thus created and can be used by
source nodes to send data packets to the corresponding destination of the source route,
as shown in Fig. 2. When the route record field is void in received RREP packets, it
means that both nodes source and destination are neighboring nodes.

In a classic wormhole attack, the main goal is to create a false neighborhood
between two remote nodes through a third malicious node causing the route record field
of RREP packets sent through the malicious links to be unmodifiable by intermediary
nodes; as a result, they arrive at the destination with zero hops. This approach
encompasses capturing packets, modifying the route record in RREP packets and
injecting them into the source node to override its routing table with zero hop routes,
which eventually builds a false neighborhood between source and destination nodes, as
shown in Fig. 3. Consequently, the route record parameter needs to be modified
because RREP packets could come from an intermediary node.

Fig. 2. Route record parameter process

Implementation of a Wormhole Attack on WSN with XBee S2C Devices 101



A wormhole attack begins with an attacker introducing a malicious node into a
WSN to gather critical information about network attributes related to node types,
network ID, frequency and operational channel. During this step, the target nodes are
selected. Subsequently, the malicious node starts a packet capture process to find
routing packets involving target nodes (interesting traffic). Once the interesting traffic is
captured, the malicious node sets the hop count and relay list to zero in the route record
header of the routing packets. Besides, source and destination MAC addresses are
changed to match the network addressing of victim nodes since packets from an
intermediary node can be captured. Finally, the malicious node forwards the modified
routing packet to the destination node, overriding its routing table with the false route
and creating a false neighborhood between target nodes in the process. The next step is
to continue capturing packets to find application data to be modified and injected into
destination nodes. When malicious nodes are not able to capture interesting traffic, the
packets are stored and the capture process is restarted. Figure 4 shows the workflow of
the proposed algorithm.

In addition, two conditions must be satisfied to carry out a successful wormhole
attack: (1) Source and destination addresses must match between layer 2 (802.15.4) and
layer 3 (Zigbee); otherwise, the destination node of the RREP discards the packet.
(2) The packet sequence number has to be different from the original routing packet;
otherwise, the modified packet is discarded [13]. The proposed attack works by
overriding the destination node of the RREP’s routing cache by injecting a modified
version of the original routing packet, which prevents ZigBee devices from using the
original route.

Fig. 3. False route record injection
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2.1 Attacking Software Design

The proposed algorithm was used to develop an attacking software for real devices as a
tool to probe security levels in wireless sensor networks since most research studies
describe wormhole attacks by means of simulation environments. On the other hand,
the purpose of the attacking software is to expose attributes of ZigBee devices and
wormhole attacks that could be used to effectively detect the latter. This section pre-
sents a short description of every phase of the attack.

2.2 Software Requirements

Scapy and KillerBee frameworks are required to dissect, capture and store packets, and
also to inject malicious traffic into victim nodes. These features are combined in a
Python script to execute the wormhole attack and build the malicious tunnel.

(1) Malicious node introduction: During this phase, an attacker sends “beacon-
frame”1 requests channel by channel to discover routing and coordinator nodes in
the network, as well as device addressing and network ID using the zbstumbler
command of the KillerBee framework.

(2) Attacking software design: The attacking software presents the following attri-
butes and functions.

Packet Capture and Network Learning: It occurs when the attacker has selected
victim nodes in the network. Then, using relevant networking data like PANID, fre-
quency channel, and node addressing, it captures the packets transmitted over the air
through a malicious node. The following pseudocode algorithm describes the packet
capture phase.

Fig. 4. Proposed wormhole attack algorithm.

1 A “beacon-frame” is a message sent by the coordinator node to synchronize the clocks with network
nodes.
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The attack begins by using the sniffer object of the KillerBee framework to capture
packets with ZigBee source routing header. Once a source routing packet has been
captured, the next step determines if the packet belongs to a target device. If not, the
while loop continues until KillerBee’s sniffer captures a source routing packet that
involves victim nodes.

Interesting Traffic: A packet is interesting traffic when it is originated or sent from/to
an attacker-defined victim device. In that sense, the attacker must dissect the captured
packet, extract the addressing data and compare it with victim nodes’ addressing. As
shown in Algorithm 1, the compare function compares addresses. Since the KillerBee
sniffer generates an object from the captured packet, packet dissection becomes a
simple task. It consists of retrieving the addressing data from the packet object attri-
butes (Algorithm 2).
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The previous algorithm determines if a captured packet involves victim nodes’
addressing in a data transaction. Once the addressing data is compared, the result can
be true if both destination and source addresses of the captured packet and victim nodes
are the same. It can also be false if one or more addressing data are not equal. In that
case, the packet capture algorithm is executed again.

Routing Packet Modification: After finding an RREP packet with the right
addressing, the attacking software changes some attributes of the routing information in
the captured packet to build the malicious tunnel. It specifically modifies route record
information related to hop count, relay list, and sequence number. Algorithm 3 exe-
cutes the routing packet modification.

Packet modification begins by rewriting the sequence_number of the captured
packet with a random number between 1 and 255 to prevent the destination node form
discarding the modified packet sent by the malicious node. At that point, the wormhole
attack can present two scenarios: (1) victim nodes are further apart than one hop of
distance, or (2) the victim nodes are neighbors.

The first case describes a classic wormhole attack, and the modifications of
hop_count and relay_list are made to “eliminate” the distance between victim nodes.
Such changes also make nodes “think” they are neighbors because of the wormhole
tunnel. Because victim nodes are distant from each other, layer 2 addressing must be
altered to match layer 3 addressing. The second scenario is a “reverse” wormhole
attack, where victim nodes are neighbors and a malicious node tries to add distance in-
between. In such case, packet modifications are performed by increasing the hop_count
number and adding intermediary nodes to the relay_list.

Routing Packet Forwarding: After the routing packet has been modified, the next
step is to send it to its real destination with the send method of the KillerBee framework.
Additionally, a new packet capture process is conducted to search for application data.
The latter is used to make further modifications that may cause an unwanted behavior in
the application of the WSN. Algorithm 4 shows the packet injection process.
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Packet injection causes two possible effects in victim nodes because, once the
modified packet is processed by the destination node, it depends on the malicious node
whether to forward the next application packets or not. If they are not forwarded, the
attack may cause a denial-of-service (DoS) state.

Data Packets Modification and Forwarding: As shown in Algorithm 4, this
wormhole attack tries to modify application as well as routing data. In this case, the
destination node of the application data would receive the attacker’s data. The main
differences with a replication attack is that the proposed wormhole prevents the direct
communication between involved victim nodes and it works over real-time traffic.

At last, the entire process is repeated indefinitely, injecting false routes with every
modified data packet sent to the destination node to maintain the wormhole tunnel until
the script is stopped or moved to another network point.

3 Implementation and Results

In this section, the implementation of the proposed worm- hole attack on a testing
network takes place without encryption protocols applied in the packets to measure its
impact on unsecured devices.

3.1 Network Requirements and Characteristics

Table 1 lists legitimate features of nodes and the parameters used to build the prototype
network. The malicious node specifications are shown in Table 2. Atmel RZUSB
STICK with KillerBee firmware is used in conjunction with Raspberry Pi 3 to capture
packets and inject modified data and routing packets into victim nodes.

In order to execute the reverse and classic wormhole attacks, two testing networks
were built with a coordinator node and two router nodes. Figure 5 presents a reverse
wormhole scenario with router nodes sharing a direct link, which is common between

106 J. R. Gómez et al.



neighboring nodes. On the other hand, Fig. 6 shows router nodes without a direct link
and the coordinator node as an intermediary node (adding one hop of distance between
router nodes) to test a classic wormhole attack.

In a reverse wormhole attack, victim nodes are identified by network addresses
0x72DD (source of route record) and 0x88F8 (source of application data). In a classic
wormhole attack, the source node has the network address 0xE99C, while the desti-
nation node has 0xF14B. At last, the coordinator node has the default address 0x0000
in both cases.

3.2 Wormhole Attack Execution

(1) Reverse wormhole attack: The main goal is to add distance between victim nodes
by modifying the hop count and relay list in the routing packet, thus avoiding

Table 2. Malicious node features.

Node type Raspberry Pi 3 Model
B

Network
interface

ATAVRRZUSBSTICK

Firmware Killerbee
Scripting
language

Python 2.7.14

Frameworks Scapy - Killerbee
Operating system Raspbian

Table 1. Legitimate node features.

Type XBee S2C (XB24C)

Firmware 405E
Functions set ZIGBEE TH Reg
Medium access
control

IEEE 802.15.4

Network layer ZigBee (Source
Routing)

Frequency 2.4 GHz
Router nodes 2
Coordinator
nodes

1

Network ID
(PANID)

10

Microcontroller Arduino UNO -
ATMEGA 328p

Fig. 6. Prototype network for classic wormhole
attack.

Fig. 5. Prototype network for reverse
wormhole attack
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using the direct link shared by nodes 0x72DD and 0x88F8. The following
command line output shows the execution of the wormhole attack script.

The attack starts by capturing packets until a source routing packet involving victim
nodes is found. Then, the routing packet is injected a hop count equal to 1 and an
intermediary node (0xABCD) into its relay list parameter. Finally, when the script
captures an application packet, the application data is replaced with the sentence “re-
verse wormhole”. Figure 7 shows the original application frame sent by node 0x88F8.
In this case, the original application packet has the word “TEST”. When the packet
arrives at the destination node, an update of the source route is sent to 0x88F8 from
0x72DD, as shown in Fig. 8.

Figure 9 shows the malicious route injected into 0x88F8 when the reverse
wormhole attack captures the first source routing packet.

Fig. 8. Original source routing packet for
neighboring nodes.

Fig. 7. Original application packet payload.
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Figures 8 and 9 show the difference between both routes. The first one contains the
attributes of the original route with 0 relays as “Number of addresses”. The second one
contains the false intermediary nodes with a relay that has the address 0xABCD. Due to
this, the malicious node is the only one that can listen to the next application packets
sent by 0x88F8, which are changed by the attacker’s malicious data (Fig. 10).

(2) Classic wormhole attack: Similar to a reverse wormhole attack, this variant
captures routing packets to create the malicious tunnel and application packets to
inject malicious data. Figure 11 shows the legitimate and malicious routing packet
received at the source node. The first route record indicator entry belongs to the
original source of RREP and the second entry is the RREP modified by the
malicious node to override the routing table of a victim node.

Once again, a source route is updated when the source node attempts to send the
word “TEST” and the packet is captured and modified by the wormhole attack. Fig-
ures 12 and 13 present the changes in the route received by the source node.

Fig. 11. Received routing packets.

Fig. 13. False source route fields.Fig. 12. Original source route fields.

Fig. 10. Malicious data received at destination
node.

Fig. 9. Modified source routing packet.
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An evident change can be observed in the field Number of addresses (hop count) of
the source routes: the value goes from 1 hop in the first packet to 0 hops in the second.
After false route injection, the source node attempts to send the word “TEST” and the
task of the wormhole attack script is to replace these data with the word “WORM-
HOLE”. Figure 14 shows the malicious data packet received by the destination node,
and Fig. 15 shows the content of the packet.

3.3 Signatures for Wormhole Attack Detection

(1) Routing packet duplication: In ZigBee devices, source routes can be requested by
sending the Network Discovery (ND) command or updated when destination
nodes receive a packet. In that sense, a wormhole attack must inject false routes
for every modified packet that is sent, thus forcing the sensors/devices to receive
two source routing packets per data packet transmitted to destination nodes. The
abrupt changes in route record fields of the routing packets and the increase in
transmitted routing packets could be used to detect the presence of an attacker in
the network.

(2) Multiple “beacon-frame” requests without a joined de- vice: The first step to
attack WSNs is launching a discovering process to identify possible targets in the
network. In 802.15.4/Zigbee networks, “beacon-frame” requests are responded
by router and coordinator nodes to have new nodes join the network. However,
after malicious nodes send a “beacon-frame” request, no new devices join the
network. To monitor this behavior, pairing beacon request frames with newly
joined devices in the WSN would help to detect active scans before the wormhole
attack occurs.

(3) Neighborhood table and link status packets: ZigBee devices regularly send link
status packets to maintain a first hop neighborhood table. Due to the fact that
remote nodes cannot share link status packets, wormholes are detected by
examining previous link status messages of nodes in a routing packet with route
record of zero hops. If previous link status messages are not found, a wormhole
threat is detected. On the other hand, a reverse wormhole is detected by checking

Fig. 14. Modified application data received at
destination node.

Fig. 15. Application data content after
attack.
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routing packets with route records containing more than one hop. If the nodes
involved in the transmitted packet have shared link status messages before, a
reverse wormhole is detected. This approach could be used with neighborhood
tables instead of link status messages.

3.4 Recommendations

Due to the harmful behavior of a wormhole attack, the cryptographical features of the
ZigBee specification should avoid modifying data and routing packets during wireless
transmission. Besides, encryption keys must be regularly changed to prevent brute
force attacks and reduce the functionality of possible key extraction from a stolen node.
Additionally, a better randomization method for the sequence number in every packet
must be implemented by the ZigBee specification to make predicting this number
difficult and prevent packet injection attacks, which causes packets with a wrong
sequence number to be the discarded by legitimate nodes.

4 Conclusions and Future Work

This implementation of a wormhole attack in real devices was successful in using the
algorithm proposed to manipulate packets with the KillerBee framework and Scapy
decoders. Besides, a new variant of the wormhole attack was introduced and tested to
show the flexibility and risk of malicious nodes in a network. Such variant takes
advantage of the vulnerability of ZigBee devices for wormhole attacks and packet
injection. On the other hand, the lack of effective security measures for WSNs must be
explored from an empirical point of view to close the security gap of IoT with the
available technology. This would also enable end users to implement security tools for
real devices. As future work, an Intrusion Detection System (IDS) for wormhole
attacks is going to be designed and implemented using signatures and patterns pre-
sented in this paper as result of the wormhole attack execution on real devices.
Additionally, other experimental attacks, such as sinkhole and Sybil, will be explored
to improve the detection system.
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