
Comparative Analysis Between
Embedded-Spaces-Based and

Kernel-Based Approaches for Interactive
Data Representation

C. K. Basante-Villota1,2,3,4, C. M. Ortega-Castillo1,2,3,4(B),
D. F. Peña-Unigarro1,2,3,4, J. E. Revelo-Fuelagán1, J. A. Salazar-Castro2,3,

and D. H. Peluffo-Ordóñez3,4
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Abstract. This work presents a comparative analysis between the lin-
ear combination of em-bedded spaces resulting from two approaches:
(1) The application of dimensional reduction methods (DR) in their
standard implementations, and (2) Their corresponding kernel-based
approximations. Namely, considered DR methods are: CMDS (Classi-
cal Multi- Dimensional Scaling), LE (Laplacian Eigenmaps) and LLE
(Locally Linear Embedding). This study aims at determining -through
objective criteria- what approach obtains the best performance of DR
task for data visualization. The experimental validation was performed
using four databases from the UC Irvine Machine Learning Repository.
The quality of the obtained embedded spaces is evaluated regarding the
RN X (K) criterion. The RN X (K) allows for evaluating the area under
the curve, which indicates the performance of the technique in a global or
local topology. Additionally, we measure the computational cost for every
comparing experiment. A main contribution of this work is the provided
discussion on the selection of an interactivity model when mixturing DR
methods, which is a crucial aspect for information visualization purposes.
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1 Introduction

Nowadays, the large volumes of data are accompanied by the need of power-
ful tools for analysis and representation, as, you could have a dense repository
of data, but without the appropriate tools the information obtained may not
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be very useful [1]. The need arises to find different techniques and tools that
help researchers or analysts in tasks such as obtaining useful patterns for large
volumes of data, these tools are the subject of an emerging field of research
known as Knowledge Discovery in Bases of Data (KDD). Dimension reduction
(DR) is considered within the KDD process as a pre-processing stage because it
projects the data to a space where the original data is represented with fewer
attributes or characteristics, preserving the greater intrinsic information of the
original data to enhance tasks such as data mining and machine learning. For
example, in classification tasks knowing the representation of the data as well as
knowing whether these have separability characteristics, make easier to engage
and interpret by the user [2,3].

We have two method PCA (Principal Component Analysis) and the CMDS
(Classical Multi-Dimensional Scaling) which are part of those classic RD meth-
ods whose objective is to preserve variance or distance [4]. Recently, the focus of
DR methods is based on criteria aimed at preserving the data topology. A topol-
ogy of this type could be represented in an undirected and weighted graph based
on data constructed whose points represent the nodes, and their edge’s weights
are contained in an affinity and non-negative similarity matrix. This representa-
tion is leveraged by methods based on spectral and divergence approaches, for
the spectral approach we can represent the weights of the distances in a simi-
larity matrix, such as with the LE (Laplacian Eigenmaps) method [5] and using
a matrix of unsymmetrical similarity and focusing on the local structure of the
data, the method called LLE (Locally Linear Embedding) arises [6]. There is
also the possibility of working on the high-dimensional space with the advantage
of greatly enhancing the representation and the embedded data visualization of
the original space mapped to the high-dimensional space, from the calculation
of the eigen decomposition. An estimate of the inner product (kernel) can be
designed based on the function and application which one wants to develop [7],
in this work the kernel matrices will represent distance or similarity functions
associated with a dimension reduction method.

In this research three spectral dimension reduction methods are considered,
trying to encompass different criteria which CMDS, LLE and LE are based on,
these are used under two approaches, one of them is the representation of their
embedded spaces obtained from their standard algorithms widely explained in
[5,6,8], and the second is based on the kernel approaches of the same methods.
After obtaining each of the embedded spaces, a linear weighting is performed
for combine the different approaches leveraging each of the RD methods, the
same is done for the kernel ma-trices obtained from the approximations of the
spectral methods. Subsequently the Kernel PCA technique is applied to reduce
the dimension to obtain the embedded space from the combination of the kernel-
based approach. The combination of embedded spaces already obtained from the
RD methods is not clear and intuitive mathematically, on the other hand, the
linear combination of kernel or similarity matrices which are represented in the
same infinite space is more intuitive and concise mathematically. Nevertheless,
in tasks such as visualization of information, choosing any of the two interaction
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methods for dimension reduction is a crucial task on which the representation
of the data and also the interpretation by the user will depend, therefore this
research proposes the quantitative and qualitative comparison in addition to
the demonstration of the previous assumption in order to contribute to machine
learning tasks, visualization data, data mining where dimension reduction exe-
cute an imperative role, For example, perform tasks of classification of high
dimension data, it is necessary to visualize them in such a way that they are
understandable for non-expert users who want to know he topology of the data
and characteristics such as separability which aid to determine which classifier
could be adequate for determinate data record.

2 Methodology

Mathematically, the objective of dimension reduction is to map or project (lin-
ear transformation) data from a high-dimensional space Y ∈ R

D×N a low-
dimensional space X ∈ R

d×n, where d < D, therefore, The original data and
the embedded data will consist of N points or registers, denoted respectively by
yi ∈ R

D and Xi ∈ R
d with {K(1), · · · ,K(M)} [5,6]. It means that the num-

ber of samples in the high-dimensional data matrix would not be affected when
the number of attributes or characteristics is reduced. In order to represent the
resulting embedded space in a two-dimensional Cartesian plane, this research
takes into account only the two main characteristics in the kernel matrix, which
represent most of the information in the original space.

2.1 Kernel Based Approaches

The RD method known as principal component analysis (PCA) is a linear pro-
jection that tries to preserve the variance from the values and eigenvectors of the
covariance matrix [9,10]. Moreover, when a data matrix is centered, which means
that the average value of the rows (characteristics) is equal to zero, the preser-
vation of variance could be named as a preservation of the Euclidean internal
product [9].

Kernel PCA method is as similar as PCA method which maximizes the vari-
ance criterion, but in this case of a kernel matrix, which is basically an internal
product of an unknown space of high dimension. We define φ ∈ R

D×N a high-
dimensional space with Dh � D, which is completely unknown except for its
internal product that can be estimated [9]. To use the properties of this new
high-dimensional space and its internal product, it is necessary to define a func-
tion φ(· ) that can map the data from the original space to the high-dimension
(φ) as follows:

φ(· ) : RD
R

Dh

yi ⇒ φ(yi), (1)

where the i-th vector column of the matrix φ = φ(yi).
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Considering the conditions of Mercer [11], and the matrix f is centered, the
internal product of the kernel function K(· , · ) can be calculated as follows:
φ(yi)Tφ(yi) = K(yi, yj). In short, the kernel function can be understood as a
composition of the mapping generated by φ(· ) and its scalar product as follows:
φ(yi)Tφ(yi), so for each pair of elements of the set Y its scalar product is directly
assigned without going through the mapping (φ). Organizing all possible internal
products in a KN×N array will result in a kernel matrix:

KN×N = ϕT
Dh×NϕDh×N . (2)

The advantage of working with the high-dimensional space (φ) is that it
can greatly improve the representation and visualization of the embedded data
from the original space mapped to the high-dimensional space, from the calcu-
lation of the eigenvalues and eigenvectors of its product internal. An estimation
of the internal product (kernel) can be designed based on the function and
application that the user wants to develop [12], in this case the kernel matrices
will represent distance functions associated with a dimension reduction method,
approximations kernels presented below are widely explained in [13]. The kernel
representation for the CMDS reduction method is defined as the distance matrix
D ∈ R

R×N doubly centered, that is, making the mean of the rows and columns
zero, as follows:

KCMDS = −1
2
(IN − 1N1�

N )D(IN − 1N1�
N ), (3)

where the ij entry of D is given by the Euclidean distance:

dij = ||yi − yj ||22. (4)

A kernel for LLE can be approximated from a quadratic form in terms of the
matrix W holding linear coefficients that sum to 1 and optimally reconstruct
observed data. Define a matrix M ∈ R

N×N as M = (IN − W)(IN − W�) and
λmax as the largest eigenvalue of M . Kernel matrix for LLE is in the form:

KLLE = λmaxIN − M . (5)

Considering that kernel PCA is a maximization problem in the high-dimensional
covariance represented by a kernel, LE can be represented as the pseudo-inverse
matrix of the graph L, as shown in the following expression:

KLE = L†, (6)

where L = D−S, S, such that S is a dissimilarity matrix and D = Diag(S1N )
is the degree matrix is the matrix of the degree of S. The similarity matrix
S is organized in such a way that the relative width parameter is estimated
by maintaining the entropy of the distribution with the nearest neighbor with
approximately log K, where K is the given number of neighbors as explained
in [14]. For this investigation the number of neighbors was established as the
integer closest to 10% of the amount of data.
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Finally, to project the data matrix Y ∈ R
D×N into an embedded space

X ∈ R
d×N we use the PCA dimension reduction method. In PCA, the embedded

space is obtained by selecting the most representative eigenvectors of the covari-
ance matrix [6,10]. Therefore, we obtain the d most representative eigenvectors of
the kernel matrix KN×N obtained previously, constructing the embedded space
X. As it was said for this research, the embedded space with two dimensions
that represents most of the characteristics of the data is established.

2.2 DR-Methods Mixturing

In terms of data visualization through RD methods, the parameters to be com-
bined are the kernel matrices and the embedded spaces obtained in each method,
each matrix corresponds to each of the M RD methods considered, that is
{K(1), · · · ,K(M)}. Consequently, a matrix is obtained depending on the ker-
nel approach or final embedded space K resulting from the mixing of the M
matrices, such that:

̂K =
M
∑

m=1

αmK(m), (7)

Defining αm as the weighting factor corresponding to the method M and α =
{α1, · · · , αm} as the weighting vector. In this research these parameters will be
defined as 0.333 for each of the three methods used, so the sum of the three
will be 1 in order to provide to each method equal priority, since the aim of
this research is to present a comparison of each proposed approach in a equal
conditions scenario, Each K(M) will represent the kernel matrices obtained after
applying the approximations presented in Eqs. (3), (5) and (6) or the embedded
spaces obtained by applying the RD methods in their classical algorithm.

3 Results

Data-Sets: Experiments are carried out over four conventional data sets. The
first data set (Fig. 1(a)) is an artificial spherical shell (N = 1500 data points
and D = 3). The second data set (Fig. 1(c)) is a toy set here called Swiss roll
(N = 3000 data points and D = 3). The third data set (Fig. 1(d)) is Coil 20
is a database of gray-scale images of 20 objects. Images of the objects were
taken at pose intervals of 5 degrees. This corresponds to 72 images per object
(N = 1440 data points 20 and D = 1282 -number of pixels) [15]. The fourth data
set (Fig. 1(b)) is a randomly selected subset of the MNIST image bank [11], which
is formed by 6000 gray-level images of each of the 10 digits (N = 1500 data
points 150 instances for all 10 digits and D = 242). Figure 1 depicts examples of
the considered data sets.

Performance Measure: In dimensionality reduction, the most significant
aspect, which defines why a RD method is more efficiency, is the capability of pre-
serve the data topology in low-dimensional space regarding the high-dimension.
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Fig. 1. The fourth considered datasets, source: https://archive.ics.uci.edu/ml/
datasets.html.

Therefore, we apply a quality criterion used by conserving the k-th closest neigh-
bors developed in [16], as efficiency measure for each approach proposed for the
interactive RD methods mixture. This criterion is widely accepted as an ade-
quate unsupervised measure [14,17], which allows the embedded space to assess
in the following way: The rank of εj with respect to εi in high-dimensional space
is denoted as:

pij = |{k : δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}|. (8)

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
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In Eq. (8) | · | denotes the set cardinality. Similarly, in [13] is defined that the
range of xj with respect to xi in the low-dimensional space is:

rij = |{k : dik < dij or (dik = dij and 1 ≤ k < j ≤ N)}|. (9)

The k-th neighbors of ζi and xi are the sets defined by (10) and (11), respec-
tively.

vi
k = {j : 1 ≥ pij < K}, (10)

ni
k = {j : 1 ≥ rij < K}. (11)

A first performance index can be defined as:

QN X (K) =
N

∑

i=1

|vi
k ∩ ni

k|
KN

= 1. (12)

Equation (12) results in values between 0 and 1 and measures the normal-
ized average according to the corresponding k-th neighbors between the high-
dimensional and low-dimensional spaces. Defining in this way a coclasification
matrix:

[Q = qN X ] for j ≥ N − 1, (13)

whit qkl = |{(i, j) : pij = k and pij = l}|.
Therefore QN X (K) counts k-by-k blocks of Q, the range preserved (in the

main diagonal) and the permutations within the neighbors (on each side of the
diagonal) [12]. This research employs an adjustment of the curve QN X (K)
introduced in [12] in order that the area under the curve is an adequate indicator
of the embedded data topology preservation, hence, the quality curve that is
applied into the visualization methodology is given by:

RN X (K) =
(N − 1)QN X (K) − N

N − 1 − K
. (14)

When the equation in (14) is expressed logarithmically, errors in large neighbor-
hoods are not proportionally as significant as small ones [14]. This logarithmic
expression allows obtaining the area under the curve of RN X (K) given by:

AUC logK(RN X (K)) =
∑N−2

K=1
RN X (K )

K
∑N−2

K=1
1
K

. (15)

The results obtained by applying the methodology proposed over four data
bases described, are shown in Fig. 2, where the curve RN X (K) of each approach
is presented as well as the AUC in (13) which assess the dimension reduction
quality corresponding to each proposed combination. As a result, for RD pro-
cedure in terms of visualization we show the embedded space for each test per-
formed. It is necessary to clarify that each combination was carried out same
scenario with equal conditions which allows us to measure a computational cost
in terms of execution time, which are shown in Table 1. This is an important
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Table 1. Consumed time for performing each approach over the fourth dataset.

Based approach Dataset Computacional time (sec)

Kernel 3D sphere 6, 27

Swiss Roll 6, 43

Coil-20 28, 94

MINST 37, 87

Embedded-spaces 3D sphere 2, 88

Swiss Roll 3, 09

Coil-20 15, 24

MINST 16, 24

issue if users are seeking for an interactive RD methods mixture which has a
satisfactory performance, as well as an efficient computational development.

Nevertheless, results achieved in this research allows us to conclude that in
data visualization terms performing an interactive mixture RD method based
on kernel is more favorable than based on standard methods, mathematically
combining a kernel approximations, which means that each kernel approximation
is in the same high-dimensional space where all classes are separable before
developing the mixture, is more appropriate than combining obtained embedded
space from an unknown space which are the standard methods.

The computational cost (Table 1) allows us to infer that the cost in execut-
ing kernel approaches and PCA kernel application for dimension reduction is a
slightly more elevated in all cases. This is since the databases have a high num-
ber of registers, which means that acquiring the kernel matrices involves a lot of
processing, as if the data base consists of n samples, the kernel matrix size will
be N × N .

Making a comparison of the RN X (K)curves for each database, there is a
low performance in the dimension reduction process for the case of the Coil-20
database whose AUC is the lowest among all, which means that the data topology
in the embedded space obtained is not as conserved as in the other studied cases.
Evidently the best performance was accomplished for 3D spherical shell and
Swiss roll which obtained the best AUC and preserve the data local structure,
generally preserved local structure generates superior embedded spaces [13]. On
the other hand, MNIST and spherical shell database preserved the global data
structure in a preferable way as regards the other cases.
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Fig. 2. Results obtained for the four experimental databases

4 Conclusion

This work presented a comparative analysis of two different approaches for
DRmethods mixturing which are applied in an interactive. Results obtained in
this research allows us to conclude that performing an interactive DR-methods
mixture could be a tough task for a dataset with a great number of points
and dimensions as it was proved that the computational cost is higher but also
this approach gives to users a high-quality performance since, a greater area is
obtained under the quality curve which indicates that the topology of the data
can be preserved more. On the other hand, embedded-spaces-based approach
has a slightly difference in the RN X (K) AUC curve, but it is not wide so if the
user wants to carry out a quicker mixture, the embedded-spaces-based approach
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will be more appropriate for data visualization where interactivity is the most
important achievement seeking a better perception for the inexpert users of their
datasets.
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3. Peluffo-Ordóñez, D.H., Castro-Ospina, A.E., Alvarado-Pérez, J.C., Revelo-
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