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Abstract. On-line prediction of sign language gestures is nowadays a
fundamental task to help and support multimedia interpretation of deaf
communities. This work presents a novel approach to recover partial
sign language gestures by cumulative coding different intervals of the
video sequences. The method starts by computing volumetric patches
that contain kinematic information from different appearance flow prim-
itives. Then, several sequential intervals are learned to carry out the task
of partial recognition. For each new video, a cumulative shape difference
(SD)-VLAD representation is obtained at different intervals of the video.
Each SD-VLAD descriptor recovers mean and variance motion informa-
tion as signature of the computed gesture. Along the video, each partial
representation is mapped to a support vector machine model to obtain a
gesture recognition, being usable in on-line scenarios. The proposed app-
roach was evaluated in a public dataset with 64 different classes, recorded
in 3200 samples. This approach is able to recognize sign gestures using
only 20% of the sequence with an average accuracy of 53.8% and with
60% of information, the 80% of accuracy was achieved. For complete
sequences the proposed approach achieves 85% on average.
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1 Introduction

Deaf community and people with some auditive limitation around world is
estimated in more than 466 millions according to world health organization
(WHO) [2]. Sign languages is the main resource of communication and interac-
tion among deaf people, being rich and complex as any spoken language. This
articulated language is composed by coherent and continuous spatio-temporal
gestures that summarize the articulated motions of upper limbs, facial expres-
sions and trunk postures. Despite of the importance of automatic interpretation
of sign languages, such characterization remains as an open problem because the
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multiple inter and intra signers variations. Also, different factors such as culture
and regions can introduce external variations to sign languages. Such variations
imply great challenges to understand and associate semantic language labels to
spatio-temporal gestures. Also, for real interactions, current automatic interpre-
tations demand on-line applications to recognize gestures while they are devel-
oped. In such sense, the problem is even more difficult because computational
strategies must predict incomplete gestures while remaining robust to illumina-
tion changes, variations of perspective and even partial occlusion of signers.

The sign language recognition (SLR) has been addressed in literature by
multiple approaches that include global shape representations that segment all
articulators but with strong limitations due to occlusions and dependences of
controlled scenarios. For instance, in [21] a multi-modal analysis was proposed
to recover shape information from RGB-D sequences. Local gesture representa-
tions include interest points characterization [13,20] and the analysis of appear-
ance and geometrical primitives to represent gestures in videos [16,19]. Zahedi
et al. [22] proposed a SLR by computing descriptors of appearance that together
with gradient of first and second order characterize particular signs. Such app-
roach is dependent of signer appearance and perspective in video sequence.
Motion characterization has also been used to recognize gestures being robust
to appearance variance and illumination changes [11,13]. For instance, in [11,20]
Lukas-Kanade motion fields were computed to characterize gestures in terms of
velocity displacements. Nevertheless, this strategy is prone to errors because the
flow sensibility to little camera displacements and also the sparse nature of the
approach capture few displacement points that difficult any statistical analysis.
Also, Konecný et al. [11] integrates local shape information with histograms of
optical flow to describe gestures. This approach achieved a frame-level repre-
sentation but lose local and regional information. Wan et al. [20] proposed a
dictionary of sparse words codified from salient SIFT points and complemented
with flow descriptors captured around each point. This representation achieves a
proper performance of sign recognition but remains limited to cover much of the
variability gestures. In [13] was implemented a local frame motion description
for SLR by computing motion trajectories along of the sign but losing spatial
representation of the signs.

Additional, machine learning strategies are proposed for gesture recognition
from real-time and on-line perspectives [8,14,15]. For instance, Masood et al. [14]
proposed a deep convolutional model to represent spatial and temporal recurrent
features. This approach allows a sign representation of multiple gestures but with
several limitations to segment articulators of signers. Also in [15] a 3D convolu-
tional network (3D CNN) was adapted to recognize gestures in sign language.
Initially, They normalize the number of video frames. They then apply the CNN
model with two layers, one for feature extraction and the other for classifica-
tion. Although, 3D feature extraction is more suitable for video processing, this
method evidently does not take into account motion information. On the other
hand, Fan et al. [8] recognize frame-level gestures using a simplified two-stream
CNNs network. This network is trained with dense optical flow information as
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input to the convolutional network. However, this single kinematics is insufficient
to describe large human motion, that result fundamental in language recognition.
Other alternatives have included multi-modal information [5,12], for instance,
Liu et al. [12] proposed a computational strategy over RGBD sequences by firstly
segmenting and tracking hands. Then a convolutional proposal was adapted to
learn hand trajectories but with limitations in the representation of first order
kinematics.

The main contribution of this work is a novel strategy to recognize partial
gestures by using a cumulative regional mid level representation of kinematic
primitives. The proposed approach achieves coding gestures while they are being
developed in video sequences. Firstly, a kinematic representation of gestures is
carried out by coding features from a dense large displacement optical flow. Then
a patch volume based coding is carried out at each frame to code the developed
gestures. A set of dictionaries that compute different intervals of the gestures
are built from training videos. Finally, a test video is coded as a shape difference
VLAD representation to recover main means and variance motion clues. Such
representation is carried out at different intervals of the video and mapped to a
previously trained support vector machine, allowing a partial gesture recognition.
The proposed approach was evaluated in a public sign gesture corpus with 64
different classes and more than 3000 videos. This approach is able to recognize
sign gestures using 20% of the sequence with an average accuracy of 53.8% and
for 60% of the information, 80% accuracy on average is achieved. For complete
sequences, 85% average accuracy is obtained. The rest of the paper is organized
as follows: Sect. 2 introduces the proposed method, Sect. 3 presents results and
the evaluation of the method, and finally Sect. 4 presents several conclusions and
perspectives of the proposed approach.

2 Proposed Approach

A cumulative gesture representation is herein proposed to recognize video
sequences. The proposed approach starts by a kinematic local level representa-
tion to achieve appearance independence characterization. The kinematic prim-
itives are computed from a dense optical flow that take into account large dis-
placements. Multiple temporal and cumulative dictionaries are then built from a
patch volume representations of the kinematic primitives. At each defined video
interval, the set of recovered patches with relevant motion information are coded
w.r.t. the respective cumulative dictionary from a shape difference VLAD [7] rep-
resentation. Finally the obtained representation of a particular video is mapped
to a previously trained support vector machine to obtain a gesture label. The
several steps considered in the proposed strategy are explained in detail in the
next subsections.

2.1 Computing Kinematic Features

The method starts by characterizing sign gestures with low level kinematic rela-
tionships from a local velocity field. In such case, result crucial to quantify large
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motion regions developed by independent actuators, such as arm, hands, face
or even shoulders. To recover such large displacements a special dense optical
flow was herein implemented [1] and then several measures were captured to
represent motion. The set of kinematic features herein considered are illustrated
in Fig. 1. The set of set of computed features are described as follows:

Fig. 1. Kinematic features computed along video sequences as low level description of
gestures, namely: (b) large displacement optical flow, (c) divergence, (d) curl, (e) and
(f) motion boundaries w.r.t. x and y axis

– Dense flow velocity fields
Typical approaches remain limited to quantify large displacements because
the assumption of smooth motion in local neighborhoods. To avoid these lim-
itations, herein was implemented a robust optical flow approach able to cap-
ture dense flow fields but considering large displacements of gestures [1]. This
approach consider a variational strategy to minimize classical flow assump-
tions in which color Ecolor(w) and gradient Egradient(w) changes remain con-
stant among consecutive frames. Likewise, additional assumptions are con-
sidered, as:

Esmooth(w) =
∑

x∈Ω

Ψ(|∇u(x)|ti+1 + |∇v(x)|ti) (1)

where Ψ represents the atypical values, penalized in a specific neighborhood
Ω. Also, a non-local criteria allows the estimation of coherent large displace-
ments. In this case, a sift point matching is carried out among consecutive
frames to recover points with large displacements in space. Then the flow
regions of such interest matched regions are measured to find flow similar
patterns fti(x), described as:

Edesc(w1) =
∑

x∈Ω

δ(x)Ψ(|fti+1(x + w1(x)) − fti(x)|2) (2)
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with δ(x) as step function that is active only for regions where exist interest
points. The sum of whole restrictions are minimized from a variational Euler-
Lagrange approach.

– Divergence fields
The physical pattern of divergence over the field was also herein considered
as kinematic measure of gestures. This kinematic estimation result from the
derivative of flow components (u, v) at each point x along spatial directions
(x, y), described as:

div(pt) =
∂u(pt)

∂x
+

∂v(pt)
∂y

(3)

This kinematic estimation captures a local field expansion and allows to char-
acterize independent body actuators along a sign description.

– Rotational fields
The rotational flow kinematic estimation was also considered to measure local
rotation around of a perpendicular axis. This rotational patterns stand out
circular gestures, commonly reported in sign languages [9]. Also, this mea-
sure estimate the flow rigidity, useful to distinguish articulated motions. The
rotation of field can be expressed as:

curl(pt) =
∂v(pt)

∂x
− ∂u(pt)

∂y
(4)

– Motion boundaries
The relative speed among pixels was also recovered as first spatial derivative
in flow components [6]. This kinematic measure allows to code the relative
motion among pixels and remove constant motion information. This primitive
also highlight main articulator motions.

2.2 Coding Motion Gesture Patches

A main drawback of typical gesture strategies is the sensibility to occlusion of
articulators, and scene perturbations while the sign is described. The herein
proposed approach is based on a local gesture representation, from which, a
set of volumetric motion patches are computed to represent a sign gesture.
In this work only patches with motion information are taken into account, by
removing background patches with poor motion information. For doing so, we

firstly compute the average background of the video as: B(x̂, y) =
1
t

t∑

t=1

ft(x, y).

Then, foreground pixels are get by a simple subtraction w.r.t. the background
|ft(x, y) − B(x̂, y)| > τ . Differences larger than τ are considered static pixels
and removed. For on-line purposes, the average background can be built from
a recursive mean estimator. To remove relative static patches also improve the
computational efficiency of the approach (see in Fig. 2).
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Fig. 2. An efficient kinematic patch representation is achieved by only considering
patches with relevant motion information. To remove static pixels is herein considered
a simple but efficient background model.

2.3 Kinematic Patch Description

Each of the recovered volumetric patches are described using the kinematic his-
tograms of local motion information. Then, a histogram is built for every kine-
matic primitive considered in the proposed approach, as:

h(p) =
∑

x∈p

Rb(x)W (x), b =
{

1, 2, · · · ,
2π

Δθ

}

Rb(x, y) =

⎧
⎨

⎩

1 if (b − 1)Δθ ≤ θ(x) < bΔθ

0 elsewhere

(5)

where Rb(x) is an activation function that determines the particular bin, that-
code-codes the local kinematic feature, while the W (x) corresponds to a particu-
lar weight for each histogram bin. In case of orientation flow histograms (HOOF)
the bins b correspond to orientations, while the W (x) is defined by the norm of
each vector [4]. Likewise, the motion limits are codified as MBH histograms,
quantified for each x, y components [6]. For divergence and curl the primitives are
statistically cumulated by defining the bins as: {max, max

2 , 0, min
2 ,min}. In such

case the curl histogram (HCURL) quantify the main motion around perpendic-
ular axis, while divergence histogram (HDIV) summarize the main moments of
divergence present around each spatio-temporal patch. For divergence a simple
occurrence counting is carried out while for rotational the occurrence is weighted
according to angular speed. The final descriptor for each patch is formed as the
concatenation of all histogram. Then, a particular sign is defined as a set of n

spatio-temporal patches S = {p
(c,j)
1...n : j ∈ [t1 − t2]; c ∈ [x1, x2]} bounded in a

temporal interval j and spatially distributed in a c region.
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2.4 Mid Level Partial Accumulated Gesture Representation

A main contribution of this work is the possibility to predict gestures while they
are developed in the sequence. For this purpose, a set of cumulative partial dic-
tionaries are obtained at different periods of the sequence. Then, a SD-VLAD
descriptor can be updated at different times in the video, achieving a prediction
of the signs using cumulative patches information. The whole temporal repre-
sentation is illustrated in Fig. 3 and will be explained as follows.

Fig. 3. The figure illustrates the mid level partial accumulated gesture representation.
With the patches of all the video partial sequences (a), a dictionary adapted to the
partial content is created (b) and updated as the information arrives. Finally a coding
accumulated representation is obtained using Hard assignment and SD-VLAD (c). The
computed descriptors are mapped to support vector machines previously trained with
the accumulated partial descriptors (d).

Gesture accumulated dictionaries to temporally recognize sign gestures, a
set of cumulative dictionaries Λ ∈ R

t×w×k were built from training sequences
with different interval gesture lengths. Then, Λ = [D1,D2, . . . Dt] has t tempo-
ral dictionaries that are built in a cumulative way each 20% of the sequences,
i.e., D1 is a dictionary built only with the first 20% of active patches, D2 sum-
marize a representation of 40% of active sign patches and so on. Each dictio-
nary Di = [di

1, d
i
2, . . . d

i
k],∈ Rw×K has K representative centroids that corre-

spond to w−dimensional kinematic features. Every built Di dictionary is con-
structed by using a classical k-means algorithm from a cumulative set of samples
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Xi = [x1, x2, . . . xN ] that increase as the gesture is developed. For each dictio-
nary, K << N by considering that a set of K patches in each temporal partition
are sufficient to represent particular gestures from incomplete data. Also, It is
assumed that each articulator is formed by a set of these mean patches. This dic-
tionary coding progressively achieves a finer representation of gestures because
the major density of samples tend to obtain a better statistical representation.

The computed dictionaries are used as reference to code a global represen-
tation in each temporal partition of the video. Each local descriptor generated
is coded using the respective cumulative dictionary calculated with the informa-
tion size. To preserve independence of local description, the proposed approach
implements a hard assignment HA of each computed kinematic patch w.r.t. the
dictionary of gestures. In such case the HA corresponds to a voting based strate-
gies that associated each descriptor volume to a specific word in the dictionary,
formally defined as:

HA(x) =
{

1 if i = argminj ||x − cj ||2
0 otherwise (6)

where each kinematic volume vote for the most similar cluster cj in the dictio-
nary. This kind of assignment allows to stand out main spatio-temporal regions
associated with salient learned patches in temporal dictionaries. Eventually, such
representation can border similar gestures in regional salient details recovered.

Shape Difference VLAD. A gesture descriptor is defined by the coding of each
volume patch w.r.t. the temporal set of dictionaries Λ by using HA association.
In literature has been proposed several alternatives to obtain a global repre-
sentation of patches w.r.t. general dictionaries. For instance, the classical Bag
of Words (BoW) codifies patches using simple occurrence but lost information
about patch descriptor and also lost particular details of gestures, which can be
dramatical in SLR [20]. Currently, the codification Vector of Locally Aggregated
Descriptors (VLAD) has shown advantages w.r.t. mid level representations by
considering statistics of first order about computed cluster descriptors [10]. Such
VLAD representation measures the differences among local descriptor patches
of the new video and the closer centroid ck. Formally, such differences can be
expressed as: vμ

k =
∑nk

j=1(xj − ck) with dimensionality of K × w. The associa-
tion of new patches to specific centroids ck are achieved by the HA correspon-
dence. This particular strategy can achieve gesture description from dominant
kinematic patterns by capturing similarities sign motions w.r.t. centroid dictio-
naries and adding variance informations. Nevertheless, this strategy is limited
to capture the local distribution of the motion descriptor and is variant w.r.t.
symmetric motions. For instance, same features vectors can result from different
kinematic gestures. Hence, a novel SD-VLAD aggregated the standard deviation
of each cluster to complement statistical of VLAD vectors, recovering regional
relationships of patches that form a cluster [7].

Following the SD-VLAD representation scheme, at each temporal interval t of
the video, defined by a percentage of patches, is taken the difference among local
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descriptor patches of new video and the closer cluster K. To achieve this variance
cluster representation, firstly, the characteristic vectors of each cluster proposed
in [10] are weighted by their respective standard deviations and normalized by
the number of descriptors as:

vμ
k =

1
nt

k

nt
k∑

j=1

(xt
j − dt

k)
σt

k

(7)

where the normalization nt
k is a pooling carried out to VLAD descriptors. To

highlight the calculation of the variance descriptor, a new cluster ĉk is estimated
with projected samples of a particular test what are assigned to the pattern ck.
Then, the variance of the means is defined as the difference between the new ĉt

k

estimated centroid and the dictionary centroid ct
k, for a particular t cumulative

dictionary, defined as:

vt
k,μ =

1
nt

k

nt
k∑

j=1

(xt
j − ct

k) =
1
nt

k

(
nt
k∑

j=1

(xt
j) − nt

kct
k)

=
1
nt

k

nt
k∑

j=1

(xt
j) − ct

k = ĉt
k − ct

k

(8)

Such variance of the means vt
k is coded at each time t, w.r.t. the particular

cumulative dictionary Dt. From same analysis, a new representation is added to
descriptor by computing differences among standard deviation, such as:

vt
k,σ = σ̂t

k − σt
k =

⎛

⎝ 1
nt

k

nt
k∑

j=1

(xt
j − ct

k)2

⎞

⎠

1
2

− σt
k (9)

where σ̂t
k is the standard deviation of assigned local descriptors in VLAD and σt

k

is the standard deviation of assigned descriptors ck. Such difference recover shape
information of descriptor. The SD-VLAD descriptor is form by the concatenation
of vectors vt

μ and vt
σ at each time t. Finally is applied a normalization at each

dimension of the descriptor as suggested in [17] as: f(p) = sign(p)|p| 1
2 . In such

way is possible to obtain a partial representation at each interval t of the video.

2.5 SVM Sign Recognition

The recognition of each potential sign is carried out by a Support Vector Machine
(SVM) [3] classifier since this constitutes a proper balance between accuracy
and low computational cost. The present approach was implemented using a
One against one SVM multi-class classification with a Radial Basis Function
(RBF) kernel. Here, the classes represent the particular signs coded as SD-VLAD
descriptors and optimal hyperplanes separate them by a classical max-margin
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formulation. For m motion classes, a majority voting strategy is applied on the
outputs of the m(m−1)

2 binary classifiers. Taking into account that our repre-
sentation constitutes several SD-VLAD partial representations, for each defined
interval of representation we built a particular SVM model. A (γ,C)-parameter
sensitivity analysis was performed with a grid-search using a cross-validation
scheme and selecting the parameters with the largest number of true positives.

3 Evaluation and Results

A public corpus of a sign language LSA64 [18] was herein used to evaluate the
proposed approach. Such corpus describe a total of 64 signs that correspond to
the Argentinian Sign language performed by 10 non-expert signers. Each sign is
developed 5 times by each signer by a total of 3200 utterance videos. The spatial
resolution is 1920 × 1080 at 60 frames per second. The selected signs involve
articular motions with one or both hands, and evident displacements in space
and time. The corpus was captured in different scenarios, with some illumination
changes. Several challenges are present in some different gestures with dynamic
and geometric similarities during the sequences except in some localized spatio-
temporal regions. For experimental evaluation, the dataset was spatially resized
to 346 × 194, since proposed approach is mainly based in kinematic features.
Five different intervals in time were defined to recover partial gestures, i.e, each
20% of the video were built a dictionary and SD-VLAD descriptor. The whole
experiments were computed with volumetric patches of 15×15×5 with kinematic
histograms of 7 bins for HOOF and 14 bins for MBH (both directions) and 5 bins
for HDIV y HROT features. A total of 31 scalar values constitutes the dimension
for each considered patch. The experimental framework was stated to recognize
new gestures developed for different signers, that are independent of signers
employed during training. In LSA64 corpus, each signer has recorded several
repetition of the same sign, and therefore the random partition of samples can
lead to a mistake in the validation of recognition. Then, a leave-one-out scheme
based on the number of signers was herein implemented. In this scheme, one
different signer was tested while the other 9 signers were used for the training
model, running 10 different experiments to obtain a robust statistical meaning.

The first experiment was performed for general sign gesture recognition using
the whole video sequences. From such experiment was possible to obtain the best
performance of our approach by using all available patch information in video.
The performance of the proposed approach was fix for individual signers over
the LSA64 corpus. In whole experiments was considered only patches that have
motion information, i.e., patches computed mainly from foreground signers. In
order to build a dictionary with K = 64 and descriptors, all calculated patches
for each sign were used. As reported (see in Fig. 4), the SD-VLAD representation
achieved a better description of the gestures and its able to properly code the
salient sign patterns in both local and regional characterization. For most people,
the accuracy of our approach was about 85%, thanks to shape representation
of kinematic clusters and the quality of the dictionary due to the background
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removed. Particularly for signer 8 there exist some limitations because strong
noise variation in temporal recording such as long hair movement and the signers
1, 4 where the highest accuracy was obtained, with 90%, because they perform
the sign in an ideal way and do not exaggerate facial expressions or capture
additional movement as in person 8 due to the short hair (Fig. 4).

Fig. 4. A individual signer analysis is carried out for LSA64 by using the SD-VLAD
descriptor. An average accuracy of 85% was achieved in the task of recognition. Some
errors are reported for signer 8 because some variabilities of gestures as well as external
motions are captured without correspondence with gesture information

Fig. 5. The confusion matrix obtained in first experiment with the LS64 dataset. The
proposed approach achieves an average score close to 85.45% for the multi-class recog-
nition

A second experiment was designed to evaluate the performance of the pro-
posed approach for temporal signs recognition task in several intervals of the
video. In such case, each 20% of the video, in terms of number of patches, a new
SD-VLAD descriptor is obtained and mapped to the SVM to obtain a prediction.
Because each video records only one gesture we can determine the percentage of
gesture information by simple counting the number of patches while the video
is running. Nevertheless, in real application, the proposed approach is able to
compute a prediction at each frame of the sequence. A first evaluation was car-
ried out by only computing a general dictionary of gestures. In fact it was used
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the same trained dictionary representation used for the task of classification.
Figure 6-left illustrates the performance achieved by the proposed approach. As
expected, the proposed approach has a poor performance with initial intervals
of video, because the obtained sparse SD-VLAD representations are not taken
into account during training. Nevertheless, for the 60% of the video, the pro-
posed approach achieve a 70% in average of accuracy, showing an appropriate
performance by only taking half of the information of the gesture. This result is
fundamental because using only one dictionary is possible to recover sign ges-
tures with half of the video information.

Fig. 6. A temporal recognition performance of the proposed approach. In left is illus-
trated the performance of the proposed approach by only using one dictionary. In
right a complete implementation of the method is presented by computing t different
dictionaries. In last case, t different SVM models are built for prediction.

In a third experiment, a complete version of the proposed approach was con-
sidered. In such case, several t dictionaries were firstly trained to coded partial
information. Also, a set of t different SVM models were trained for each inter-
val of the video. The experiment considered intervals of 20%, i.e. t = 5, as in
the previous experiment. As illustrated in Fig. 6-right the proposed approach
achieves competitive results even in few intervals of the video. For instance,
using only the 20% and 40% of the video the strategy achieves on average 53.8%
and 66.7%, respectively. It is worth noting, that such intervals corresponds to
approximately 10 frames of the recorded gesture which is negligible in terms of
the gesture description. For 60% of the video, the proposed approach achieves
almost 80% of accuracy, and stable result with few information of the sequence.
Such result using the half of the video sequences is comparable to the classifica-
tion task carried out in the first experiment (Fig. 7).

The performance obtained with the proposed approach is competitive and
result promising for develop more advanced tools that allows to carried out
on-line recognition, as well as, the independent analysis of articulators during
time. The corpus herein evaluated has been used in other recognition works. For
example, in [14] was reported 95.2% accuracy but selecting 18 fewer classes. The
framework of validation of this work is randomly and result difficult to evaluate
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Fig. 7. Performance of the proposed approach using only one dictionary and a set
of temporal dictionaries. In this illustration is shown the mean accuracy with the
maximum an minimum score obtained by signer.

the real performance of the proposed approach with the complete corpus. Also,
in [15] was reported an accuracy of 93.9% using only one random partition of
corpus with 80% for training and 20% for testing. In such case, some repetitions
of the same signer can be spread in both partition, losing the real meaning of
gesture recognition accuracy.

4 Conclusions

In this work was proposed a novel computational strategy to temporally predict
sign gestures by using a robust cumulative SD-VLAD representation. The pro-
posed approach built a set of cumulative kinematic patch-based dictionaries to
represent gestures in different intervals of the video. Each of these dictionaries
has cumulative information of patches captured along the sequence. For any new
sign gesture video, a SD-VLAD descriptor is obtained at different instances of the
video by coding difference vectors w.r.t. the respective dictionary. The computed
descriptor is mapped to a SVM model to obtain a recognition of the sign. The
proposed approach achieves 80% of accuracy using only the 60% of the video
sequences. Also for very few frames the approach achieve competitive results,
demonstrating the capabilities to recognize signs from partial temporal informa-
tion. The proposed approach is able to be used in on-line applications requiring
few frames to capture an appropriate set of patches and built the SD-VLAD
descriptor. Future works include frame-level evaluation to built a grammatically
more complex models. Also, additional experiments will be doing with additional
datasets.
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11. Konecnỳ, J., Hagara, M.: One-shot-learning gesture recognition using HOG-HOF
features. J. Mach. Learn. Res. 15, 2513–2532 (2014)

12. Liu, Z., et al.: Real-time sign language recognition with guided deep convolutional
neural networks. In: Proceedings of the 2016 Symposium on Spatial User Interac-
tion, pp. 187–187. ACM (2016)

13. Mart́ınez, F., Manzanera, A., Gouiffès, M., Braffort, A.: A Gaussian mixture rep-
resentation of gesture kinematics for on-line sign language video annotation. In:
Bebis, G. (ed.) ISVC 2015. LNCS, vol. 9475, pp. 293–303. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27863-6 27

14. Masood, S., Srivastava, A., Thuwal, H.C., Ahmad, M.: Real-time sign language ges-
ture (word) recognition from video sequences using CNN and RNN. In: Bhateja,
V., Coello Coello, C.A., Satapathy, S.C., Pattnaik, P.K. (eds.) Intelligent Engineer-
ing Informatics. AISC, vol. 695, pp. 623–632. Springer, Singapore (2018). https://
doi.org/10.1007/978-981-10-7566-7 63

http://www.who.int/en/news-room/fact-sheets/detail/deafness-and-hearing-loss
http://www.who.int/en/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://doi.org/10.1007/11744047_33
https://doi.org/10.1007/11744047_33
https://doi.org/10.1007/978-3-319-71607-7_23
https://doi.org/10.1007/978-3-319-27863-6_27
https://doi.org/10.1007/978-981-10-7566-7_63
https://doi.org/10.1007/978-981-10-7566-7_63


On-Line Sign Language Recognition Using SD-VLAD 385

15. Neto, G.M.R., Junior, G.B., de Almeida, J.D.S., de Paiva, A.C.: Sign language
recognition based on 3D convolutional neural networks. In: Campilho, A., Kar-
ray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 399–407.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8 45

16. Paulraj, M., Yaacob, S., Desa, H., Hema, C., Ridzuan, W.M., Ab Majid, W.:
Extraction of head and hand gesture features for recognition of sign language. In:
International Conference on Electronic Design, ICED 2008, pp. 1–6. IEEE (2008)

17. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15561-1 11

18. Ronchetti, F., Quiroga, F., Estrebou, C.A., Lanzarini, L.C., Rosete, A.: LSA64: an
Argentinian sign language dataset. In: XXII Congreso Argentino de Ciencias de la
Computación (CACIC 2016) (2016)

19. Tofighi, G., Monadjemi, S.A., Ghasem-Aghaee, N.: Rapid hand posture recognition
using adaptive histogram template of skin and hand edge contour. In: 2010 6th
Iranian Machine Vision and Image Processing (MVIP), pp. 1–5. IEEE (2010)

20. Wan, J., Ruan, Q., Li, W., Deng, S.: One-shot learning gesture recognition from
RGB-D data using bag of features. J. Mach. Learn. Res. 14(1), 2549–2582 (2013)

21. Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., Presti, P.: American sign
language recognition with the kinect. In: Proceedings of the 13th International
Conference on Multimodal Interfaces, pp. 279–286. ACM (2011)

22. Zahedi, M., Keysers, D., Ney, H.: Appearance-based recognition of words in Ameri-
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