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Abstract. Activity recognition is a fundamental task in areas such as
video-surveillance, gesture recognition, robotics, multimedia applications
among much others. Such task remains as an open problem because
the variability of many factors such as the appearance of actors, illu-
mination changes in real scenarios and the dynamic developed for each
action. Despite favorable results in recent works for several academic
datasets, the proposed methodologies require a huge number of training
samples and the output descriptor result in a high dimensional array
that difficult the implementation in real conditions. This work proposes
a spatio-temporal descriptor that model human activities by using a fast
regional covariance representation for each frame. At each frame, a set
of motion and geometrical map measures are quantified into a pyramidal
regional structure to describe the instantaneous action. Such low-level
primitive maps are codified into a integral covariance that allows a fast
and compact description of local correlation among features. The set of
pyramidal-frame-covariances along the video sequence represent a mani-
fold that coexist in a positive Riemannian space. Then, a set of means are
approximated in Riemannian space for each regional covariance sequence
to represent a very compact action descriptor. The proposed action
descriptor is mapped to a Euclidean space to perform an automatic clas-
sification using a Support vector Machine. The proposed approach was
evaluated in two different public datasets: (1) in UT-Interaction with a
k-fold cross-validation scheme was achieved a 70.8% of accuracy with a
descriptor size of just 10 features per video sequence and (2) in UCF
Sports achieve an accuracy of 71.7% using 13 features.

Keywords: Spatio-temporal covariance · Human activity recognition
Motion analysis · Low-level primitives

1 Introduction

Action recognition is a fundamental area in computer vision with widely appli-
cations such as surveillance applications, sport analysis, smart vehicles, HCI
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systems among others [14]. However, the proper characterization of activities
implies several challenges that include the modeling of complex variability of
illumination, object representation, motion changes, among much others. Like-
wise, traditional approaches involve a high computational cost due to exhaustive
quantification of features that lead to increased descriptor dimensionality.

In the state of the art have been proposed multiple strategies to recognize
actions that coarsely can be classified as global and local recognition methods.
Global representation methods have focus on characterization and quantifica-
tion of extensive regions of interest or even complete video sequences. Seminal
strategies proposed subtraction-based methods and human silhouette tracking
methods for addressing pedestrian detection applications [6]. Moreover, Wang
et al. [21] proposed a descriptor for activity recognition based on the extrac-
tion of binary human silhouettes using the R-Transform to represent low-level
features. This strategy is robust to occluded frames, disjoint silhouettes and
holes over shapes. Souvenir and Babbs [19] further extended this work by con-
sidering image contours, which improved activity characterization at the cost of
decreasing computational efficiency. Additional strategies have proposed silhou-
ettes characterization from multiple cameras, but requiring exhaustive calibra-
tion for the acquisition devices [4]. These methods quantify postural movement
based on frame-level silhouettes a but are sensitive to noise, partial occlusion,
view point variability and dependent of proper capture of the silhouettes [14].

On the other hand, a wide variety of methods based on interest point detec-
tion and local patches have been proposed that relatively avoid invariance to
appearance, perspective, and are robust to partial occlusions [14]. For instance,
Laptev and Lindeberg [10] capture multiple interest points at different scales
into the spatio-temporal domain that allows local structure detection for event
representation in video sequences. Laptev in [9] uses local geometry characteriza-
tion at multiple scales to compute salient cuboids in video-sequences. The salient
points are mapped to a Support Vector Machine (SVM) to automatically clas-
sify actions. Gowayyed et al. [7] proposed a method for action recognition using
the position of joints with respect to a human skeleton. This method describe 3d
human joints trajectories based on Histograms of oriented displacements (HOD).
Robertson and Reid [15] proposed to combine trajectory features (i.e. position
and speed) as a set of local motion descriptors for human action recognition.
Liu et al. [11] proposed a method based on regularized multi-task learning that
implicitly codify local visual characteristics and human body structure as small
information blocks, which are represented as a pyramid-shaped bag of words
(PPBoW). This approach achieve competitive results because the robustness to
appearance and geometry but remains dependent to appearance. Nevertheless,
these approaches evidenced a high computational cost which limit the devel-
opment of online applications. Also, in these approaches the accuracy namely
requires high-dimensional descriptors to achieve a correct action prediction.

The present investigation develops a spatio-temporal covariance descriptor
that model and characterize human activities occurring in video sequences. For
so doing, the proposed approach compute a dense optical flow representation
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along the video sequence, allowing to quantify large displacements. Then, a set
of kinematic primitives are computed at each frame to highlight main motion
that represent the present action. The kinematic primitives at each frame are
coded in regional covariance matrices that are computed from a coarse to fine
representation by iteratively splitting each frame. The set of computed covari-
ance at each frame represent a manifold in Riemannian space that is the signa-
ture of each particular action codified in the video. Then, the final descriptor
is computed as the Riemannian mean of covariance matrices that represent the
action along the video. The rest of the paper is organized as follows: the pro-
posed approach is described in section two, while the evaluation and result of
the proposed approach with respect to the state of the art is reported in Sect. 3.
Finally in Sect. 4 is discuss the advantages and limitations of the approach and
also are presented several conclusion of the work.

2 Proposed Method

In this work is introduced a compact covariance descriptor that coded spatio-
temporal features mainly computed from a dense optical flow to represent activ-
ities in videos. The proposed approach starts by computing a dense velocity field
that allows to code large displacements along the video. Then a set of kinematic
primitives are calculated frame-wise along the sequence. Hereafter an efficient
integral covariance is herein implemented to represent multiple frame regions
and coded the different kinematic primitives. A special mean approximation is
computed over the set of frame-covariances that form a manifold video repre-
sentation in Riemannian space. Finally, the proposed descriptor is mapped to
a Euclidean space to be tested on a classification algorithm to obtain an auto-
matic activity classification. The pipeline of the proposed approach is depicted
in Fig. 1.

2.1 Kinematic Primitive Maps

The herein proposed approach quantify apparent motion map primitives as low-
level representation of each video. In this work, was firstly computed a dense
optical flow to code a set of velocity field maps for each frame. Also, additional
local motion patterns were computed from the optical flow representation. The
proposed approach has an intrinsic advantage to admit any local measure rep-
resented as a feature map. The kinematic feature maps are described as follows:

This approach is flexible to admit any dense flow representation that codifies
the apparent velocity at each frame. In this work was implemented a robust vari-
ational strategy that allows to describe large displacements along the sequence
by considering several local and regional restrictions [1]. The computation of
large displacements allows to properly describe many salient patterns of typical
actions that implies large body displacements in short periods of time. First, the
optical flow approach consider classical restriction of color Ecolor(w) and gradi-
ent Egradient(w) between consecutive frames. As classical dense approximations,
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Fig. 1. Pipeline of the proposed method: In (a) is calculated large displacement optical
flow. In (b) is calculated low-level motion and appearance primitives. In (c) is calculated
regional covariances for each frame. This regional descriptor is constructed by five
covariance matrices. Regions are calculated using center of mass position w.r.t the
optical flow. In (d) a covariance descriptor is calculated for each sequence by estimating
the average of covariance matrices. (e) Finally, the proposed covariance descriptor was
validated with academic datasets.

such optical flow consider that the color and shape representation of the object
is the same in very short intervals of time. Also, this dense flow use additional
restrictions such as:

– Smooth: This restriction Esmooth(w) quantify the minimal difference
between velocity vectors inside a region. The assumption is that velocity
patterns must be similar in a certain neighborhood, taking into account local
dispersion of vector field.

– Non-local regions: This restriction Edesc(w1) allows to search for large local
displacements between consecutive frames by comparing matching-regions
calculated from feature vectors. An non-local matching of some interest points
between frames is achieved by a SIFT points representation.

Finally, the sum of all energy equations allows to estimate the best dense opti-
cal field for all video sequences. Therefore a complete model is defined as a unique
optimization problem, by minimizing: E(w) = Ecolor(w) + γEgradient(w) +
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αEsmooth(w) + βEMatch(w,w1) + Edesc(w1), where {γ, α, β} which represent
regularization constants with values between [0, 1]. The herein implemented flow
can handle object deformations, motion discontinuities, occlusion and arbitrarily
large displacements along the video sequences.

From dense motion field are first recovered the speed ||V (t)|| and angle θV (t)
maps. These kinematics represent first order primitives, from which are com-
puted other spatio-temporal and higher order representations. For instance, the
derivative of speed magnitude represents motion rapidness which corresponds to
an scalar value that relates tracked distance and time S‖V (t)‖ and the derivative
of speed angle represents direction of variation in speed Sθv(t) for each frame.

Unit tangent speed T (t) is also calculated as T (t) = V (t)
‖V (t)‖ and the unit nor-

mal speed N(t) is computed as N(t) = T
′
(t)

‖T ′ (t)‖ . For each pixel inside optical flow

frames there are two orthogonal vectors N(t) and T (t) for each t and they expand
over an osculating plane ρ(t) which contain unit tangent vectors. Furthermore,
acceleration corresponds to the derivative of motion speed with respect to time.
This can be expressed in terms of unit tangent speed and unit normal speed. Oscu-
lating plane contains this primitive only if T (t) and N(t) exist. Acceleration is
given by a(t) = aT (t)T (t)+aNN(t), where tangential aT and normal aN (t) accel-
eration coefficients are given by: aT (t) = d

dt ‖V (t)‖, aN (t) = ‖V (t)‖
∥
∥
∥T

′
(t)

∥
∥
∥.

Tangential acceleration represents the derivative of motion speed whereas
normal acceleration represents the derivative of speed direction with respect
to time. Both quantities allow us to obtain the magnitude of acceleration as:
‖a‖2 = (aT )2 + (aN )2. To enrich motion representation, the velocity neighbor-
hood relationship was captured by computing the first derivative of motion field
but with respect to the (x, y) axis as: ∂||V (t)||

∂x∂y . Additionally, the kinematic motion
representation maps can be complemented by using shape and appearance maps
at each frame. In this paper for some experiments was added first and second
order derivatives over each frame. Such maps represent the borders i.e., local
geometry captured at each frame.

2.2 Integral Covariance Coding

A compact correlation of independent kinematic maps is carried out by com-
puting the covariance that represent the particular activities. Covariance matrix
constitutes a natural and compact method for combining multiple correlated
features, that can be expressed as:

CR(i, j) =
1

n − 1

⎡

⎢
⎢
⎢
⎢
⎣

n∑

k=1

zk(i)zk(j)

︸ ︷︷ ︸

Q

− 1
n

n∑

k=1

zk(i)

︸ ︷︷ ︸

P

n∑

k=1

zk(j)

︸ ︷︷ ︸

P

⎤

⎥
⎥
⎥
⎥
⎦

, (1)

where zk=1...n is a vector that coded the kinematic maps with n samples for
(i, j) = 1 . . . d features and 1

n

∑n
k=1 zk(i) represents the μ expected value.
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Covariance matrices are d × d symmetric and positives, representing a phe-
nomenon by d2+d

2 different values, with the main diagonal as the feature vari-
ances. This matrix has been widely exploited in different applications of object
identification, tracking, and classification [12]. However, the multiple computa-
tions with n samples require a high computational cost, because the interactions
between each pair of d features. To cope such limitation, a fast regional alterna-
tive proposed in [20] was herein implemented to compute covariance regions by
using integral image representation (as illustrated in Fig. 1(c)). These integral
images are intermediate representations and are typically used for fast calcula-
tion of sums over a given region.

In this work each frame F is characterized with d kinematic features and then
regionally coded by using a integral covariance representation. In such case,
the sum of each characteristic dimension z(i)k=1...n, is represented as a first-
order tensor P ∈ R

W×H×d, computed as P (x
′
, y

′
, i) =

∑

x<x′ ,y<y′ F (x, y, i),
where F is a frame F ∈ R

(W×H×d) with i = 1 . . . d. Then, tensor P is a d-sized
vector containing the sum of each kinematic map independently, with dimension,
Px,y = [P (x, y, 1) . . . P (x, y, d)]T .

Also, the sum of the product of features zk(i)zk(j)i,j=1...n (first part of Eq. 1)
can be expressed as integral images as a second-order tensor Q ∈ R

W×H×d×d

as: Q(x
′
, y

′
, i, j) =

∑

x<x′ ,y<y′ F (x, y, i)F (x, y, j) with {i, j} = 1...d. Tensor Q
is a d ∗ d symmetric matrix that contains the sum of the products of any pair of
features, expressed as:

Qx,y =

⎛

⎝

Q(x, y, 1, 1) ... Q(x, y, 1, d)
.

Q(x, y, d, 1) ... Q(x, y, d, d)

⎞

⎠ (2)

The computation of this integral tensor require d2+d
2 iterations. Then, any rect-

angular region R, bounded by upper-left and lower-right corners can be com-
puted with a computational cost of O(d2).

The Eq. 1 can be re-written in terms of integral tensors as:

CR(x′ ,y′ ;x′′ ,y′′ ) = 1
n−1 [(Qx′′ ,y′′ + Qx′ ,y′ − Qx′′ ,y′ − Qx′ ,y′′ )
− 1

n (Px′′ ,y′′ + Px′ ,y′ − Px′′ ,y′ − Px′ ,y′′ )
(Px′′ ,y′′ + Px′ ,y′ − Px′′ ,y′ − Px′ ,y′′ )T ],

(3)

where n = (x
′′ −x

′
)(y

′′ −y
′
). Such expression implies faster computations for any

regional covariances in the entire frame with few arithmetic operations. The com-
putational advantages of integral covariances allow us to enrich the description
of each frame by computing the covariance matrix at different spatial regions.
A total of five covariance matrices were obtained to represent each frame F
in the video sequence (see in Fig. 2). The first covariance correspond to whole
frame. The remaining four correspond to frame sub-regions split with respect
to the position of center of mass (CoM) and given by the appearance motion
field. This CoM is computed as CoMx,y = 1

M

∑n
y=1

∑n
x=1 ‖Vy,x(t)‖ ry,x(t),

where ‖V (t)‖ represents the speed, {x, y} is the frame positions and M =
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∑n
y=1

∑n
x=1 ‖Vy,x(t)‖. The CoM can be interpreted as the spatial position with

the biggest amount of motion for any given frame. The four sub-regions are cal-
culated by dividing the frame with respect to the CoM. In Fig. 2 is represented
this computation.

Fig. 2. Covariance descriptor: (a) Selection of activities in video sequences and calcu-
lating large displacement optical flow and position of center of mass. (c) Calculating
covariance matrices for each region.

2.3 Riemannian Mean Video Sequence

The set of covariance matrices computed at each frame c1, c2, c3, . . . , cn form a
manifold that represent the action video. Because covariance properties, such
manifold is defined in a spherical Riemannian space and not in the classical
Euclidean space [13], limiting the use of classic machine learning and vision
algorithms. The projection of a covariance matrix ci into a Euclidean space is
approximated by computing log(p) = ΣDIAG(log (λi))ΣT , where Σ are the
eigenvectors of the matrix and λ are the respective eigenvalues. In the same way,
any projection from euclidean space to Riemannian space is approximated as
exp(p) = ΣDIAG(exp (λi))ΣT .

Hence, a video descriptor is herein proposed as a representative covariance
matrix that has minimal distance with respect to the set c1, c2, c3, . . . , cn, com-
puted for each region along time. This representative covariance is then com-
puted as the intrinsic mean covariance in Riemannian space, as shown in Algo-
rithm1 [5].

To compute intrinsic mean, the log and exp operations are defined
with respect to the computed μ, that is expressed as: expμ(X) =
μ

1
2 exp(μ

−1
2 Xμ

−1
2 )μ

1
2 and logμ(p) = μ

1
2 log(μ

−1
2 pμ

−1
2 )μ

1
2 , respectively. It holds

that exp(log(μ)) = μ and the inverse matrix μ
1
2 = exp(12 (log μ). The stop crite-

ria ‖Xi‖, is measured in the iterative matrix result as ‖Xi‖ =
∑N

i=1(log(σi))2,
where σ are the respective eigenvalues. An error threshold must be defined as:
(0.01 < ε < 0.1). A final video descriptor is then formed by the concatenation
of the set of regional covariance means as Vd = {μcR1 , μcR2 , . . . , μcRn

}.
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Algorithm 1. Gradient descent algorithm to compute the intrinsic mean com-
putation from a set of regional frame-covariances
Output: μ ∈ C(n)

1: for Each regional covariance sequences j do
2: cj1, ..., c

j
N ∈ C(n)

3: μ = cj1
4: τ = 1 → initial step size
5: Do
6: Xi = 1

N

∑N
k=1 logµi

(cjk)
7: μi+1 = expµi

(τXi)
8:
9: if (‖Xi‖ > ‖Xi−1‖) then

10: τ = τ/2
11: Xi = Xi−1

12: end if
13:
14: While (‖Xi‖ > ε)
15: end for

2.4 Support Vector Machine Training

Finally, action classification of covariance descriptor was achieved by using a
Support Vector Machine (SVM). The SVM strategy has been widely used for
action recognition problems because the proper trade-off between accuracy and
computational cost. Since, the action descriptor Vd herein proposed is formed by
a set of mean covariance matrices, it is necessary to project to euclidean space
as log(Vd) = {log(μcR1), log(μcR2), . . . , log(μcRn

)} by using a spectral decompo-
sition log(μcRi

) = Σ log(λ)ΣT , as explained in Sect. 2.3.
Once the covariance descriptor is projected to euclidean space a One against

one SVM multiclass classification was herein implemented, with a Radial Basis
Function (RBF) kernel [3]. Here, the classes represent the actions and opti-
mal hyperplanes separated by a classical max-margin formulation. For k motion
classes, a majority voting strategy is applied on the outputs of the k(k−1)

2 binary
classifiers. A (γ,C)-parameter sensitivity analysis was performed with a grid-
search using a cross-validation scheme and selecting the parameters with the
largest number of true positives.

2.5 Data

To evaluate the performance of the proposed strategy, two different public
datasets were considered, described as follows:

– UT-Interaction (High-level Human Interaction Recognition Challenge)
exhibits complex human activities in real-world scenarios [16]. This dataset
contains 6 human interaction classes: shake-hands (sh), point (po), hug (hg),
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push (ps), kick (ki) and punch (pn), with a spatial resolution of 720× 480
with 30 fps. The dataset is split in two groups of 60 videos (see Fig. 3). The
first group was captured in a relative static background while the second one
report some jitter of the camera, and also there are some human motions
in background. Following criteria of evaluation proposed by authors of the
dataset, we used a cross-validation strategy using a K-fold scheme.

– UCF Sports (University of Central Florida sports dataset) consists of a set
150 sequences of different sports [18], such as: Diving (dv), Golf Swing (gs),
kicking (ki), Lifting (lf), Riding Horse (rd), Running (ru), SkateBoarding
(sk), Swing-Bench (sw), Swing-Side (ss) and Walking (wl). The sequences
were recorded with a spatial resolution of 720 × 480 and namely 10 fps. The
dataset represents a natural pool of actions featured in a wide range of scenes
and viewpoints (see Fig. 3). Some of sequences are formed by several split
sequences which difficult to track the coherence in developed actions. For
evaluation purposes, a multi-class classifier of the proposed descriptor was
run under a leave-one-out scheme.

Fig. 3. Example of video sequences in both datasets: (a) UT-Interaction dataset and,
(b) UCF Sport dataset. The Figure illustrates the shape and dynamic variability for
both datasets as well as the non-controlled scenarios that difficult the action charac-
terization

3 Evaluation and Results

A first evaluation of the proposed approach was carried in UT-Interaction dataset
by computing several kinematic primitives at each frame of the sequences. The
kinematic primitives considered were V (t), ‖V (t)‖, θV (t), T (t), N(t), aT (t) and
aN (t). Such kinematic maps codified five integral covariances per each frame.
Then, five Riemannian means were estimated for each regional covariance region
for the entire sequence, resulting in a total descriptor of 275 values per video
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sequence. Table 1 shows the confusion matrices obtained for the dataset with rel-
ative static background (left) and for data with background motions and camera
jitters (right). In Fig. 4 is illustrated the optical flow herein computed in a typical
video sequence of UT-Interaction. In most of the cases the optical flow achieves a
proper description of local gesture activities along the video-sequence, capturing
large displacement in actions such as punching or kicking.

Fig. 4. A large displacement optical flow computed over a UT-Interaction sequence. A
color map represent the computed field on each frame. Colors represent displacements
while the intensity represent the norm of each vector.

Table 1. Confusion matrix for the UT-Interaction dataset by coding several kinematic
primitives. The results are expressed in percentage (%). In the left is shown the per-
formance of the proposed approach for relative static background videos, while in the
right is presented the performance with videos that present jitter camera motions and
other activities in background.

Category sh hg ki po pn ps
sh 90 10 0 0 0 0
hg 0 100 0 0 0 0
ki 0 0 80 0 10 10
po 0 0 0 100 0 0
pn 20 0 20 0 40 20
ps 0 0 20 0 10 70

Category sh hg ki po pn ps
sh 60 30 10 0 0 0
hg 20 70 0 0 0 10
ki 0 0 60 0 40 0
po 0 0 0 100 0 0
pn 0 0 30 0 40 30
ps 10 10 10 0 30 40

In average, the proposed approach achieve an average accuracy of 80.0% and
61.66% for both UT-Interaction datasets. Because the flexibility of the proposed
approach to code any feature maps computed over the frame, a set of appearance
was included in a new experiment. In such case, simple gradient features of first
S‖I(t)‖ and second order S

′′
‖I(t)‖ were integrated in the proposed strategy. On

average, we obtained an accuracy of 75.0% and 55.0% for UT-Interaction in
categories 1 and 2, respectively. The addition of appearance to our proposed
descriptor shows no improvement on classification and recognition of human
activities because shape among actions in this dataset tend to be similar. For
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instance, the actions shake-hands and pointing have similar shape information
along the action developing. Also hugging and pushing along the sequences share
shape similarities that can lead to misclassification. Also, the interaction and
background variability on video sequences can limit the proper quantification of
actions geometry.

Table 2 report a comparison of the proposed motion descriptor with other
state of the art strategies. Some of these approaches achieve high accuracy rates
but demand a complete processing of the video to compute the features. For
instance, the propagative voting approach [22] reports a computational com-
plexity of O(NM ) + O(WHT ), where NM is the number of matches and W , H,
T is the spatial (width × height) and temporal video resolutions. Such number of
matches is computed by using random projection trees, a precise strategy that
results computationally expensive and prohibitive for online applications.

Table 2. Average accuracy for different reported state of the art strategies. Although
the propagation voting achieves better results in terms of accuracy, the match of fea-
tures using random projection trees is computationally expensive. The Xiaofei et al.
work integrates BoW occurrence histogram with HoG, representing again a high com-
putational time to obtain an action representation. In contrast, the proposed approach
produces a compact descriptor that takes into account different time interval depths
by using the same source of primitives, i.e., a dense optical flow.

Approaches UT-interaction set 1 UT-interaction set 2

Propagative voting [22] 93.3 91.7

Daysy [2] 71.67 56.67

Laptev [9] + SVM 68 65

Slimani [17] 40 66

Xiaofei [8] 83 -

Proposed approach 80 61.66

In summary, the proposed approach achieves a relevant dynamic characteriza-
tion of the different human interaction activities but only considering kinematic
information. The activities recorded in UT-Interaction are often the result of
combinations of complex motion patterns that may occur during a short time
interval. In such cases some misclassifications can be obtained in several sam-
ple activities that share several local motion patterns along the sequence. For
instance, interactions like hand shaking, pointing or pushing, share similar limb
movements during certain temporal intervals.

This strategy was also evaluated in UCF Sports achieving an average accu-
racy of 61.5% using kinematic primitives, such as: V (t), ‖V (t)‖, θV (t), T (t),
N(t), aT (t) and aN (t). For this specific dataset with the integration of gradient
features (S‖I(t)‖, S

′′
‖I(t)‖) the proposed approach achieve an average accuracy of

71.7%. An overall increase of 10% was obtained because characteristic human
postures in certain sports can help to distinguish activities.
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Table 3. Confusion matrix for UCF Sports dataset with motion and appearance prim-
itives. The results are expressed in percentage (%).

Category dv gs ki lf rd ru sk sw ss wl

dv 83.3 0 0 0 0 0 0 8.3 0 8.3

gs 0 68.7 0 0 0 0 0 0 0 31.2

ki 5.2 5.2 36.8 0 0 26.3 5.2 5.2 0 15.7

lf 0 0 0 83.3 0 0 16.6 0 0 0

rd 0 0 0 0 80.0 20.0 0 0 0 0

ru 0 0 25 0 0 58.3 0 0 0 16.6

sk 9.0 9.0 9.0 0 0 0 63.6 9.0 0 0

sw 0 0 5.2 0 0 0 0 94.7 0 0

ss 0 9.0 0 0 0 9.0 9.0 0 72.7 0

wl 0 4.5 4.5 0 4.5 0 0 4.5 0 81.8

In Table 3 is shown the confusion matrix for the proposed descriptor inte-
grating kinematic and shape features. The proposed descriptor was implemented
with a total of 455 scalar variables which result very compact and appropriate in
applications that demand efficiency in time to obtain results. Some mistakes are
reported in confusion matrix among actions such as running and walking because
the close dynamic description of such actions. Also, rapid motion on kicking was
misclassified with other actions. In UCF Sports dataset the integration of shape
information result relevant because the typical gestures of some sports can help
with the signature of such actions.

The proposed descriptor was also evaluated in terms of runtime execution
at the different stages herein considered. Table 4 summarizes the average of exe-
cution time for the proposed descriptor at a frame level. The experiments for
execution time were developed on a computer machine with the following hard-
ware features: Intel Xeon(R) CPU E5-1650 v3 at 3.50 GHz - 12 with a 32 GB
Random Access Memory. It is worth noting that there is not significant differ-
ence for the computation of multiple covariances in the integral representation.
This fact result fundamental to implement more robust descriptor without lost
computational advantages. A major computational cost is reported in the com-
putation of feature maps. However, additional fast features can be explored and
included in the proposed approach.

Table 5 shows the execution time of our final video-level covariance descrip-
tor. In such case, it is presented the execution time average for a Riemannian
mean computed from all frame-covariances in each datasets. For sequences with
more than 100 frames the proposed approach take in average 6 s, which result
efficient in different tasks. Also, the proposed approach can be computed in
partial sequences for faster prediction of the interactions.
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Table 4. Table summarizes the computational time average that take the proposed
approach at each stage. The experiment were run in a standard computer with a total of
10 and 12 features for UT-interaction and UCF-sport, respectively. As observed, there
is not difference to compute many regional covariances in the integral representation. In
average, videos on UCF-sport take more time because the number of features considered
for the analysis. In the UT-interaction only 275 values are considered in the descriptor,
while for UFC a total of 455 values integrate the descriptor.

Dataset Resolution Primitives maps [s]
(number of features)

Regional
covariance [s]

Five regional
covariances [s]

UT-1 373 × 278 1.67 (10) 0.53 0.58

UT-2 336 × 254 1.45 (10) 0.43 0.44

UCF-sport 672 × 428 4,99 (13) 0.96 0.97

Table 5. An average computational time is herein presented for the different datasets
considered in the evaluation. The Riemannian mean achieve a convergence in 6 s for
more than 100 frames and using 5 different covariances at each frame.

Datasets Frames Resolution Riemannian mean
time[s]

UT-1 119 373 × 278 6.24

UT-2 105 336 × 254 6.03

UCF-sport 67 672 × 428 3.72

4 Conclusions and Perspectives

In this work was proposed a compact descriptor based on the computation of
frame covariances over a set of kinematic and shape features. A Riemannian
mean average was computed over the set of frame-covariances to obtain a com-
pact video descriptor. The proposed method was evaluated in UT-Interaction
dataset achieving in average up to 80% and up to 61.66% by using only 275 val-
ues to describe videos. Also the proposed strategy was evaluated in UCF Sport
dataset achieving 71.7% with a descriptor size of 455 scalar values. Future works
include the evaluation in additional public datasets and the exploration of new
high-order estimations in Riemannian space for covariance matrices. Also, salient
regions methods will be included to focus on most important regions along the
video sequences.
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