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Abstract. This article shows how Machine learning techniques are tested to
predict the performance of different exploration algorithms: Random Walk,
Random Walk WSB and Q Learning, for robots moving on a bi-dimensional
grid. The overall objective is to create a tool to help select the best performing
exploration algorithm according to a configurable testing scenario, without the
need to perform new experiments, either physical or simulated. The work pre-
sented here focuses on optimizing the topology of an Artificial Neural Network
(ANN) to improve prediction results versus a previously proposed approach.
The Hill Climbing algorithm is tested as optimization method, compared with
manual trial and error optimization. The ANN was selected because it has the
best performance indicators in terms of Relative Absolute Error and Pearson
Correlation Coefficient compared with Random Forest and Decision Trees. The
metric used to measure the performance of the exploration algorithms is Max-
imum Number of Steps to target.

Keywords: Machine learning � 2D grid exploration � Artificial neural network
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1 Background

The problem of exploration of an unknown environment has utmost importance in the
area of mobile robotics due to its wide real-world applications, such as space explo-
ration, search & rescue, hazardous material handling and military operations, among
others [1, 2]. As a result, numerous publications about exploration algorithms have
appeared in recent years [3–10]. In all these works, the problem of how to compara-
tively evaluate different competing exploration strategies is solved using a limited set of
experimental conditions that are typically run in simulators. From the simulation
results, evaluation metrics are quantified and used to select the algorithm with the best
performance. If any change is made on the testing scenarios, then new simulations are
required to determine the comparative performance of the algorithms under consider-
ation. The work presented here shows an alternative approach to evaluate and compare
the performance of exploration algorithms. The general objective is to develop a
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practical tool that predicts the performance of a given exploration algorithm under a
configurable testing scenario, without needing additional experiments (either physical
or simulated). The proposed approach, first described by the authors in [11], is based on
predicting, as opposed to measuring through new experiments, the performance of the
algorithms under the new testing scenarios. This method uses a prediction model
extracted from measured experimental algorithm’s performance under initial testing
scenarios. Under this approach, algorithm’s performance is treated as a random variable
that can be modeled for prediction.

Traditional solutions for predicting the behavior of a random variable use statistical
linear regression models and estimation of its probability density function (PDF) [12–
15]. However, as it is shown in [11], these solutions have many limitations related to
meeting model requirements when they are applied to this particular application. For
example, the number of initial simulations needed to obtain good PDF estimations is
too large to be practical, because a different PDF is generated for each intersection
point on the bi-dimensional grid.

Given the shortcomings of classical prediction models for estimating navigation
algorithm performance, in [11] it was proposed a Machine Learning (ML) algorithm as
prediction method. Among the ML techniques tested in [11], Artificial Neural Net-
works (ANN) were identified as the best performers. The objective of the present work
is to improve the results obtained in [11] using a optimization model to tune the
parameters of the ANN. This optimized method is tested with the same two exploration
algorithms considered in [11], Random Walk (RW) and Random Walk Without Step
Back (RW WSB), plus a third exploration algorithm called Q Learning which is based
on reinforcement learning. Then the main contribution of this paper is to measure the
impact of automatic parameter optimization on the performance of the prediction
algorithms, compared to the performance of the same algorithms but with manual
optimization as done in [11].

In the reviewed literature, it was not possible to find additional studies that use ML
to estimate and compare the performance of exploration algorithms. Using the pro-
posed approach, it is possible to compare algorithms in environments that were not
initially considered, that is, to make predictions under conditions not contemplated in
the initial tests. This method saves up additional data collection, which can be costly
and time consuming, becoming an invaluable tool for faster assessment of algorithmic
alternatives. With ML, a set of new experimental conditions is entered as input and
then the model computes a prediction of the corresponding performance metric for the
algorithm under consideration. If effective, ML is a practical alternative in which
experimental data needs to be collected only once for training the predictor.

The rest of this document is organized as follows: Sect. 2 presents the experimental
conditions and gives a detailed description of the proposed prediction system; Sect. 3
presents the methods and algorithms used for ANN optimization; in Sect. 4, the
experimental results of the optimization methods are showed and analyzed; Finally,
Sect. 5, provide conclusions and discusses results from the prediction models and
pointers for future work.
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2 Experimental Setup

2.1 Grid Based Scenario

In robotics, grid maps are often used for solving tasks like collision checking, path
planning and localization [16]. The exploration algorithms chosen for testing are well
known and relatively simple, the reasoning behind this decision is to reduce ambiguity
in the interpretation of the new results. Since there is already a solid theoretical and
empirical expectation about how those exploration algorithms perform when compared
to each other, it allows us to focus solely on finding out if the machine learning
predicted performance matches the expected results.

For the experiment considered here, a single robot (green dot in Fig. 1(a)) will
explore a rectangular grid with the task of finding a target object (red dot in Fig. 1(a)),
by moving from intersection to intersection. The robot is limited to move a single
intersection at a time on four possible directions: up, down, right and left. The robot
knows its starting point, but does not know the location of the target object, nor of any
obstacles that may be on the grid. The robot must keep moving until it reaches the
target object, as illustrated in Fig. 1(a). For physical experiments, a digital computer
executes the exploration algorithms, while a wireless communication module transmits
motion commands to a robotic platform, which has proximity and color sensors to
identify both, obstacles and target object. Square grids with 3 � 3, 4 � 4, 5 � 5,
6 � 6 and 7 � 7 intersections are selected considering the dimensions of the real
experimental scenario available for validation. For each grid, a number of obstacles
ranging from 0 to 4 are used. Because the objective of this paper is to improve the
result obtained in reference [11] then our optimized method must be tested in the same
experimental scenario described above, where a bi-dimensional grids, obstacles, and
known initial point were used. A 7 � 7 grid example is shown in Fig. 1(b).

Fig. 1. Bi-dimensional grid and robotic platform in experimental scenario (Color figure online)
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2.2 General Description of the ML Prediction System

Machine Learning (ML) is a scientific discipline in the field of Artificial Intelligence
(AI) that creates systems that can learn automatically from experience and includes
techniques capable of generalizing behaviors from information supplied in the form of
examples, identifying complex patterns present in the input data [17]. The procedure
described below, and illustrated in Fig. 2, is proposed to solve the issue of performance
prediction to select the most suitable exploration algorithm.

• Execution of Exploration Algorithm

To build the prediction models, each exploration algorithm under test must be executed
under different experimental conditions (grid size, number and location of obstacles,
location of target object) to compute training values for the chosen performance
indicator variable. The Random Walk, Random Walk WSB and Q Learning algorithms
were used for testing and evaluation in this work. These are all well known algorithms,
therefore easing the task of validating the prediction results.

For the Random Walk algorithm each step is randomly taken on one of the possible
directions (up, down, right and left). After each step the robot checks if it has reached
the target object, and if not, looks for obstacles on the adjacent intersections to update
its internal map and decide where to take the next step.

*R=Number of rows of the grid, C=Number of columns of the grid, O=Number of obstacles, 
X= x coordinate of target object, Y= y coordinate of target object 

Fig. 2. Diagram for building the proposed ML regression system
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The Random Walk WSB (Without Step Back) algorithm emerges as an improve-
ment over the basic Random Walk described above. It works similarly to the Random
Walk algorithm, but in this case the robot remembers its previous position, and so it
will never choose to go immediately back to that point, unless forced by obstacles. In
this way the robot avoids back-and forward loops possible in the basic random walk
[11].

The last exploration algorithm under test is based on Q Learning. Here, the robot
chooses its path in a way to maximize some reward measure. After a learning period,
the robot finally settles on a relatively stable path as long as the scenario does not
change.

• Data collection

The data set obtained from the simulations of the Random Walk, Random Walk WSB
and Q Learning algorithms is described in Table 1.

The performance indicator variable is computed for each exploration algorithm.
From the work in [11], the appropriate indicator variable for the RW and RW WSB

algorithms is Max NS, defined as “the maximum number of steps in which the robot
reached the target object, for a fixed set of conditions”. Both exploration algorithms,
RW and RW WSB, are executed 15000 times to obtain a value for Max NS for each
experimental condition.

For the case of the Q Learning algorithm, initial tests were run with 1000, 5000,
10000, 15000, 20000 and 25000 learning cycles. However, it was identified that the
learning occurred between the first 100 learning cycles in all cases. Therefore, for the
results reported here, data collection was done with only 200 learning cycles for each
experimental condition. Max NS is then computed from the last 100 cycles, when the
variance of the data is minimal.

Table 1. Characteristics and experimental conditions to evaluate Random Walk, Random
Walk WSB and Q Learning algorithms

Configurable
variables

Performance
indicator
variable

Study cases Total
dataset

- Number of
grid’s rows (R)
- Number of
grid’s columns
(C)
- Number of
obstacles (O)
- Target object’s
X coordinate (X)
- Target object’s
Y coordinate (Y)

Max NS - RxC: 3 � 3, 4 � 4, 5 � 5, 6 � 6 and
7 � 7
- O: 0, 1, 2, 3, 4
- Iterations per training scenario:
• 15000 simulations for each
experimental condition for RW and
RW WSB cases

• 200 learning cycles for Q Learning case

300
distinct
scenarios
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After the data is collected, techniques of machine learning such as Artificial Neural
Networks (ANNs) and decision trees are used to solve the prediction problem.

• Prediction Performance Parameters - RAE and R

The ML prediction is evaluated using the following two parameters:

– Percentage relative absolute error ð%RAEÞ: This compares true values with their
estimates but relating it to the scale of its true value [18].

%RAE ¼
PM

i¼1
dMax NSi �Max NSi

�
�
�

�
�
�

PM
i¼1 Max NS�Max NSi

�
�

�
�
� 100% ð1Þ

Where, M is the number of experimental conditions evaluated, Max NSi are the

experimental values that the variable Max NS takes, dMax NSi are the predicted values
and Max NS is a mean value of Max NS. The variable Max NS could be in different
ranges for each exploration algorithm, for this reason it was necessary to use a per-
formance measure that can be easily compared across different variable ranges. Using
RAE the errors should be comparable.

– Pearson correlation coefficient ðRÞ: This measures the similarity between the true
values and the predicted values of the variables, that is, their linear dependence.
Independently of the scale of measurement of the variables, the correlation mea-

sures the similarity between Max N and dMax NS. This function gives values
between −1 and 1, where 0 is no relation, 1 is very strong, linear relation and −1 is

an inverse linear relation [18]. In terms of the covariance of Max NS and dMax NS,
the correlation coefficient R is definied as:

R ¼ q Max NS; dMax NS
� �

¼
cov Max NS; dMax NS

� �

rMax NS � r dMax NS

ð2Þ

Where rMax NS is the standard deviation of Max NS and r dMax NS
is the standard

deviation of dMax NS.
For the selection of the most suitable ML algorithm the following criteria were

followed:

– Low percentage Relative Absolute Error ð%RAEÞ, means that exist a narrow dis-
tance between the prediction data and true data.

– High correlation coefficient ðRÞ between true values and predicted values, means
that the predicted data is similar with the true data, that is, the variables have a high
degree of relationship.
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A low %RAE and R close to 1 will generate a good prediction and in consequence,
can be reliably used to select the best performing exploration algorithm.

• Training, validation and testing

The selected machine learning algorithms will be evaluated using a data partition
technique, cross-validation, which is commonly used in prediction problems. Cross-
validation is a way to divide the input data in one testing set and k−1 training sets to
evaluate its performance. The k value is chosen according to the size of the data and the
building of the sets is done randomly. Cross-validation then involves k-folds that are
randomly chosen and of roughly equal size. This process is repeated k times as each
subset is used once for validation [19].

• Comparison

The box plot is a graph based on quartiles that visualizes the distribution of a data set
and allows two or more data sets to be compared. For our testing scenario, lower values
of the performance indicator variable Max NS are preferred. Consequently, the best
performing algorithm is the one that has the box with the lowest height.

3 ML Optimization

As a first approach, optimization by manual trial and error is applied on the following
ML algorithms: ANN and Decision tree. These algorithms are commonly used to solve
prediction problems. According to [11], ANN delivers better prediction results than
Decision tree for RW and RW WSB which is confirmed with the results from the
dataset used in this work, as shown in Table 2. For this reason, in this work the focus is
on testing parameter optimization algorithms to improve the prediction indicators for
the ANN.

For an ANN, the number of layers and neurons can be adjusted in order to improve
the performance indicators, i.e. lower %RAE and raise R. According to [11], the
Bayesian regularization and Levenberg-Marquardt training algorithms achieve the
lowest %RAE and the highest R for the RW and RW WSB exploration algorithms,
when using manual trial and error to optimize the number of layers and neurons of the
ANN. Table 2 shows the results obtained with these training methods (and manual
optimization) with a new data set for three exploration algorithms: RW, RW WSB and
Q Learning.

The previous results, obtained using manual trial and error optimization, are used as
baseline performance indicators for the proposed estimation algorithm. To improve
those results, alternative optimization solutions using conventional and unconventional
methods are reviewed. The work in [20] defines the optimization of a problem P, as the
task of looking for parameter values that applied to P, satisfy certain expectations. For
each problem P, an objective function f that measures the suitability of each possible
solution of P is defined. The domain of f , that is, the set of points that can be proved as
a solution to the problem, is called the space of solutions S. In an optimization problem,
it is possible to find many areas of S with relatively good solutions (local optimums),

22 L. Caballero et al.



while a single area of S, or a few ones in the best case, provide the best overall solution
(global optimum) [20].

For the work presented here, Hill Climbing optimization is proposed to search for
the ANN topology (i.e. number of layers and neurons per layer) that maximizes R and
minimizes RAE. In order to improve the changes of finding a global optimum as
opposed to a local one, Hill Climbing is complemented with random restart, i.e. Hill
Climbing is restarted several times using randomly chosen starting points [21].

According to [11] neural networks of 1 or 2 layers with few neurons generated
predictors with good performance, for this reason, in this work the number of possible
ANN layers has been limited to 1 or 2, while the number of neurons has been limited to
a natural number in the range [1, 20]. As a result the solution space S for this opti-
mization problem is bounded, which also increases the chances of finding the global
optimum using Hill Climbing.

4 Experimental Results

4.1 Topology Optimization Using Hill Climbing Method

The results showed on Table 3 were obtained using Levenberg-Marquardt algorithm to
train the ANN while performing parameter optimization with three different methods:
manual trial-error, Hill Climbing and Hill Climbing (with Re-training).

Table 2. Comparison between the correlation coefficients and relative absolute error obtained
for three exploration algorithms and two technique ML using different training algorithms.

Exploration
algorithm

Technique
ML

Training algorithm R RAE %½ � No. neurons
per layer

Random
Walk

ANN Bayesian
regularization

0.9194 33.89 [27]

Levenberg-Marquardt 0.8911 44.26 [27]
Decision
tree

Trees: Random
Forest

0.8872 36.1397 N/A

Trees: RandomTree 0.8135 46.2505 N/A
Random
Walk WSB

ANN Bayesian
regularization

0.9203 34.5400 [7]

Levenberg-Marquardt 0.9019 38.2600 [7]
Decision
tree

Trees: Random
Forest

0.9093 36.4538 N/A

Trees: RandomTree 0.8783 43.5831 N/A
Q Learning ANN Bayesian

regularization
0.8830 42.89 [9]

Levenberg-Marquardt 0.8658 46.03 [9]
Decision
tree

Trees: Random
Forest

0.8655 43.21 N/A

Trees: RandomTree 0.7837 54.98 N/A
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The Hill Climbing algorithm with re-training obtained the best results for all three
exploration algorithms. This indicates that the retraining process got a better adjustment
of the ANN weights for the task. It is very important to use cross-validation to reduce
the effect of over-fitting. For this reason, only three cycles of retraining were used.

The results showed on Table 4 were obtained in a similar way to the ones on
Table 3 but replacing Levenberg-Marquardt training with Bayesian regularization.

4.2 Comparison Between Real Data and Predicted Data

The topologies that achieved the best%RAE and R results from the previous subsection
were used to build the ANN predictors. Each ANN computes an estimation of the
corresponding value for Max NS given a new set of scenario parameters, obtaining
immediate results without the need for further experiments.

Table 3. Comparison between the correlation coefficients and relative absolute error obtained
for three exploration algorithms and three optimization methods to get the ANN topology using
Levenberg-Marquardt training algorithm

Exploration
algorithms

Method for optimizing ANN
topology

R RAE %½ � No. neurons per
layer

Random Walk Trial and error 0.8911 44.26 [27]
Hill Climbing 0.9013 40.84 [8]
Hill Climbing (Re-training) 0.9815 12.79 [16:20]

Random Walk
WSB

Trial and error 0.9019 38.26 [7]
Hill Climbing 0.9206 37.03 [11]
Hill Climbing (Re-training) 0.9817 15.49 [10:19]

Q Learning Trial and error 0.8658 46.03 [9]
Hill Climbing 0.8838 46.63 [2:2]
Hill Climbing (Re-training) 0.9628 19.40 [20:20]

Table 4. Comparison between the correlation coefficients and relative absolute error obtained
for three exploration algorithms and three optimization methods to get the ANN topology using
Bayesian regularization training algorithm

Exploration
algorithms

Method for optimizing ANN
topology

R RAE %½ � No. neurons per
layer

Random Walk Trial and error 0.9194 33.89 [8]
Hill Climbing 0.9296 35.35 [9:5]
Hill Climbing (Re-training) 0.9887 9.94 [19:4]

Random
Walk WSB

Trial and error 0.9203 34.54 [12]
Hill Climbing 0.9297 32.19 [5:3]
Hill Climbing (Re-training) 0.9864 10.85 [19:4]

Q Learning Trial and error 0.8830 42.89 [9]
Hill Climbing 0.8900 40.83 [4:19]
Hill Climbing (Re-training) 0.9613 8.51 [20:8]
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In order to evaluate the reliability of the predicted results to compare the perfor-
mance of different exploration algorithms, we compare the predictions against the real
experimental results when the exploration algorithms are used on the testing scenarios.
The box plot chart in Fig. 3 shows the predicted data in contrast with the real data for
each algorithm. The shape of the graphic for both sets of data is very similar. This
suggests that the predicted results can be used as reliable decision parameters when
choosing between exploration algorithms, since using them will gave the same con-
clusion than using actual experimental data. In our particular comparison the predicted
data shows that the Q learning algorithm has a better performance than the Random
Walk and Random Walk WSB algorithms, since the box plot corresponding to the
predicted data for Q Learning, has lower values in each quartile with respect to the box
plot for Random Walk and Random Walk WSB. Such result is consistent with what is
indicated by the actual experimental data.

5 Conclusions

This research work extends previous work by the authors [11] demonstrating that an
ML system can predict the performance of different exploration algorithms for robots
moving on a bi-dimensional grid. The predicted values can then be compared to select
the best exploration algorithm. A dataset of 300 different examples is enough to find a
predictor with good performance, as measured by the corresponding %RAE and R
values. Different experimental scenarios, not contemplated in the initial training
dataset, are used for testing.

Fig. 3. Comparison between real and predicted target variable NS Max
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This work focuses on optimizing the topology of a neural network, that is, the
number of layers and number of neurons in order to improve the initial results reported
in [11]. Further effectiveness of the proposed method is also established by introducing
a new exploration algorithm (Q Learning) into the tests. Three different optimization
strategies are compared: manual trial and error, Hill Climbing and Hill Climbing with
re-training. With single Hill Climbing the prediction performance improves versus the
manual trial and error, however Hill Climbing with re-training outperforms the other
two methods. Hill Climbing with re-training reduced %RAE from 33,89% to 9,94%,
from 34,54% to 10,85% and from 42,89% to 8,51% respectively for the RW, RWWSB
and Q learning exploration algorithms, when compared to manual trial and error
optimization. Simultaneously, R was increased from 0,9194 to 0,9887, from 0,9203 to
0,9864 and from 0,8830 to 0,9313. Combining the results presented here with the ones
previously reported [11] indicates the viability of building a Machine Learning-based
tool to compare exploration algorithms under configurable testing scenarios. In future
works, alternative optimization methods would be considered looking to reduce the
current computational cost.
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