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Abstract. Documents semantic representations built from open Knowl-
edge Graphs (KGs) have proven to be beneficial in tasks such as recom-
mendation, user profiling, and document retrieval. Broadly speaking, a
semantic representation of a document can be defined as a graph whose
nodes represent concepts and whose edges represent the semantic rela-
tionships between them. Fine-grained information about the concepts
found in the KGs (e.g. DBpedia, YAGO, BabelNet) can be exploited
to enrich and refine the representation. Although this kind of seman-
tic representation is a graph, most applications that compare semantic
representations reduce this graph to a “flattened” concept-weight repre-
sentation and use existing well-known vector similarity measures. Con-
sequently, relevant information related to the graph structure is not
exploited. In this paper, different graph-based similarity measures are
adapted to semantic representation graphs and are implemented and
evaluated. Experiments performed on two datasets reveal better results
when using the graph similarity measures than when using vector sim-
ilarity measures. This paper presents the conceptual background, the
adapted measures and their evaluation and ends with some conclusions
on the threshold between precision and computational complexity.

1 Introduction

In recent years, great efforts have been made in the development of technolo-
gies and applications that incorporate semantic models exploiting the relational
knowledge found in Knowledge Graphs (KG). A Knowledge Graph is defined as a
large group of facts about a set of entities described by the classes that compose
it and instances of these classes in a particular ontology [5]. KGs like DBpedia1,
Yago2 and BabelNet3 incorporate knowledge, which is freely accessible and sup-
ported by the mature technologies of the Semantic Web, from multiple domains.

1 http://dbpedia.org/.
2 www.yago-knowledge.org/.
3 http://babelnet.org/.
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To respond to the nature of this large, open, machine-readable knowledge,
new representations of semantically-enriched documents have been used in dif-
ferent tasks such as content recommendation [10,14], user profiling [11,17],
document retrieval [3,20] and query reformulation [12]. These representations
are constructed from the concepts identified in the textual information of the
document through Named Entity Recognition and Entity Linking tools. Using
these concepts, novel algorithms have been developed to extract new, related
relevant information from the KGs [10,15,18]. This extracted information is
interconnected and expresses relationships between the concepts at the type
level (classes), topics and hierarchies (categories), and characteristics expressed
through the properties defined by the KG ontology.

In essence, semantic representations are graphs whose nodes represent con-
cepts and whose edges represent the existence of a semantic relationship between
the connected nodes. Instead of exploiting this multidimensional graph struc-
ture, most applications use a “flattened” version that considers the set of nodes
identified in combination with some weighting measure [10,17,20]. Even though
this weighting measure may consider the importance or interconnection of the
concept in the graph, much of the structural information of the graph is dis-
carded due to flattening into vectors. The previous problem can be attributed to
the fact that applications require the computation of distances and similarities
between the document representations. Vectorial representations can be imple-
mented efficiently and it is also possible to apply simple algorithms to them,
such as cosine similarity.

As a result of recent developments in graph matching, different algorithms
have been proposed to compare graph-based representations [1]. These algo-
rithms can be used to compare two semantic representations without flattening
the representations. However, some of these proposals need to be adjusted to deal
with the characteristics of semantic representations, particularly the absence of
a common set of nodes between two representations. In this paper, we focus
on comparing different graph similarity measures proposed in the literature
about semantic representations. Using a semantic representation proposed by
the authors in previous work, we implement different algorithms to calculate
similarities. To compare these algorithms, we use two different datasets. The
Lee50 dataset [9] consists of a set of short documents in which each pair of
documents is scored according to their semantic relatedness by ten human anno-
tators. The other set, a scholarly paper recommendation dataset [10], contains
the profiles of eleven users and a corpus of more than 5000 academic papers both
represented through semantic representations.

2 Related Work

With the growth and popularity of KGs, the use of semantic representations
that exploit semantic content has been increasing. Semantic representations have
been used to enrich vector spaces in information retrieval tasks. First, [20] shows
that including a semantic layer that takes advantage of the connectivity and
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hierarchical information of the concepts in the KG improves traditional text-
based retrieval. Later, [3] proposes a representation for queries and documents
using multiple semantic layers that exploit information from multiple KGs. These
semantic layers include the unified resource identifier (URI) of each annotated
concept to link them to DBpedia, YAGO and to a frame containing temporal
values explicitly expressed in the text or associated with DBpedia concepts. In
content-based recommendation tasks, semantic representations have been used
for user modeling in social networks [17] and modeling user research interests
[10,11]. These applications, which are based on semantic representation, have
shown superior results in comparison with other representations such as the
classical bag of words vector space model. Nevertheless, they do not exploit the
structural information of the graph that is produced by the semantic connections
of the concepts since their measures are based on a flattened representation of
the graph.

On the other hand, as a result of recent developments on graph match-
ing, different algorithms have been proposed to solve the problem of comparing
graph-based representation [1]. Though little has been explored in this regard
for semantic representations, these graph matching algorithms can be adapted
in order to support the calculation of similarities. Therefore, it is not neces-
sary to flatten the representation, thus allowing the structure of the graph to
be taken into account. Some of the most important measures are presented in
the following paragraphs. It is also important to emphasise that there is not a
single criterion to choose the best measure since their performance does greatly
depend on the characteristics of the graph [16]. As such, experimentation is the
most appropriate way to select the best algorithm for the problem at hand [8].

Since the nodes in the semantic representations are unambiguous concepts
identified with URIs, we are interested in the algorithms that take advances
of this known correspondence between nodes. A basic strategy known as VEO
(vertex edge overlap) [16] measures the similarity between two graphs by cal-
culating the overlap between their edges and nodes, ignoring the edge or node
weights. GED (graph edit distance) is a more flexible similarity measure that
contemplates the differences in edges and nodes as well as the set of associated
weights [6]. There are many adaptations of GED; however, we use the bipartite
variation of GED [4] to limit algorithm complexity as much as possible.

Another graph similarity measure we consider is signature similarity [16].
This method seeks to create a signature vector of 1 s and 0 s for each graph using
the weights of the nodes. Then, it compares the vectors by counting the amount
of matches between the two. It normalizes the result and provides measurements
of similarity between 0 and 1. A different approach to graph similarity is the
different variations that have been proposed for the MCS (Maximum common
subgraph) algorithm [2]. The MCS is the largest sub-graph that is common in
the considered graphs. Different metrics use the size of the MCS as an indicative
of similarity. The size of a sub-graph can be measured in several ways, however,
in this paper we will focus on the amount of nodes. This method is particularly
useful in biological and chemical analysis [21].
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There is little research in which measures of similarity based on graphs have
been applied to semantic representations. Specifically, the work done in [18] is
the closest to the purpose of our research. The authors present an approach to
the calculation of document semantic similarity over graph-based structures. A
variation of GED is used to measure the similarity of two semantic represen-
tations. Different from the previous work, we implement and compare different
graph-based similarity measures on top of a more refined semantic representation
that contemplates expansion and filtering processes.

3 Graph-Based Similarity Measures

To properly define and understand these algorithms, we must first address the
issue of the set theory context of the problem and define the notation to explain
the algorithms. It is important to clarify that vertex and node are one and the
same. Therefore, we henceforth understand G = (V,E) as a directed graph, with
a set V of vertices and a set E of edges, with both edge and vertex weights. We
define an edge as a 2-tuple e = (o, d) with a origin o and a destination d. We
will refer to the edge and vertex weight as w(e) and w(v) respectively.

For the complexity of each algorithm we will use Big O notation. The vertices
and the edges are both kept in 2 hash tables. For the vertices, we use the label
as the hashed key. For the edges we combine the origin and the destination to
form a unique hashed key. The size of set V and set E are known. This will allow
us to estimate the complexity of the most efficient version of each algorithm.

3.1 Vertex Edge Overlap

Among the simpler algorithms, we find VEO (Vertex edge overlap). This method
seeks to simplify the problem of graph matching by counting the total number
of vertices and edges that match and dividing the result by the sum of the total
number of vertices and of the total number of edges on each graph. This factor
is multiplied by 2 in order to normalize the result to the correct scale.

V EO(G,G′) = 2
|V ∩ V ′| + |E ∩ E′|

|V | + |V ′| + |E| + |E′| (1)

This algorithm can be applied on any graph structure since it only uses vari-
ables found on the graph. Even still,it is also an extremely narrow approach since
it does not take information such as vertex or edge weight or path information
into account. This approach is based on the simple form of the GED (Graph
edit distance) algorithm and is normalized to a scale of 1 to 0, when 1 is com-
pletely similar, and 0 is completely dissimilar. The complexity of this algorithm
is O(V + E) since it only requires a single iteration over the sets of one of the
graphs in order to find the matching pairs in both vertices and edges.
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3.2 Node Graph Edit Distance

To properly take advantage of the information found on the semantic models, we
devised a highly modified version of GED. The first issue was creating a method
that takes the weight of the vertices into account. This algorithm would need to
provide a normalized measure of similarity that used the weight of the nodes.

GEDnodes(G, G
′
) =

∑
w(V ) +

∑
w′(V ′) − ∑

w(V ∩ V ′) − ∑
w′(V ∩ V ′) +

∑ |w(V ∩ V ′) − w′(V ∩ V ′)|
∑

w(V ) +
∑

w′(V ′) − ∑
w(V ∩ V ′) − ∑

w′(V ∩ V ′) +
∑

max(w(V ∩ V ′), w′(V ∩ V ′))
(2)

We can understand the dividend as the sum of vertex weights found only
in G, plus the sum of vertex weights found only in G’, plus the sum of the
differences in weights between the vertex intersections between G and G’. The
divisor is the the total sum of vertex weights found only in G, plus the total
sum of vertex weights found only in G’, plus the sum of the maximum weights
between of the vertex intersections between G and G’. The complexity of this
algorithm is O(V + V’) since it requires iterating over the vertices of both graphs
in order to find the sum of weights in each one.

3.3 Edge Graph Edit Distance

Using a similar approach to node graph edit distance, we can obtain the edge
graph edit distance. This formula works for both directed and non-directed
graphs. With that in mind, we can convert a directed graph into a non-directed
graph by adding the weights of corresponding opposite edges. This allows us to
obtain a higher, and in some cases, more appropriate similarity measure.

GEDedges(G, G
′
) =

∑
w(E) +

∑
w′(E′) − ∑

w(E ∩ E′) − ∑
w′(E ∩ E′) +

∑ |w(E ∩ E′) − w′(E ∩ E′)|
∑

w(E) +
∑

w′(E′) − ∑
w(E ∩ E′) − ∑

w′(E ∩ E′) +
∑

max(w(E ∩ E′), w′(E ∩ E′))
(3)

We can understand the dividend as the total sum of edge weights found only
in G, plus the total sum of edge weights found only in G’, plus the total sum
of the differences in weights between the edge intersections between G and G’.
The divisor is the the total sum of edge weights found only in G, plus the total
sum of edge weights found only in G’, plus the sum of the maximum weights
of the edge intersections between G and G’. The complexity of this algorithm
is O(E + E’) since it requires iterating over the edges of both graphs in order to
find the total sum of weights in each one.

3.4 Total Graph Edit Distance

Given the values of node similarity and edge similarity, we can create a more
complete measure by adding them together.

GED(G,G′) =
GEDnodes(G,G′) + GEDedges(G,G′)

2
(4)
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This formula creates a new measurement that equates the similarity weight
of vertex similarity and edge similarity. It provides a normalized value between
0 and 1. The complexity of this algorithm is O(V + V’ + E + E’) since it is the
sum of both the edge graph edit distance and the node graph edit distance.

3.5 Maximum Common Sub Graph

The MCS (Maximum Common Subgraph) of two graphs can be calculated by
finding the common sub-graph with most nodes. In order to do this, MCS algo-
rithm finds all common sub-graphs, and then calculates the amount of nodes in
the largest one. To normalize the result, it divides this amount by the number
of nodes in the graph with the most nodes.

MCSnodes(G,G′) =
|MCS(G,G′)|
max(|V |, |V ′|) (5)

This formula creates a value between 1 and 0, where 1 is completely similar,
and 0 is completely dissimilar. The MCS is calculated via Algorithm 1.

Algorithm 1. Maximum common subgraph
Require: G = {V, E}, G′ = {V ′, E′}

function mcsNodes(G, G′)
currentNodeMaximum := 0
for all v ∈ V do

count =: 0
visited = [] � Keeps track of explored nodes in current subgraph
result =: mcsNodesRecursor(count, visited, v, G, G′)
if result[0] > currentNodeMaximum then

currentNodeMaximum := count
end if

end for
return currentNodeMaximum

end function
function mcsNodesRecursor(count, visited, v, G, G′)

outwardEdges := E[v] � Gets all out-edges of a node
inwardEdges := E[v] � Gets all in-edges of a node
if v /∈ visited then

if v ∈ V ′ then
count := count + 1
visited := visited + v
for all e ∈ outwardEdges do

if e ∈ E′ then
r = e[1] � Extracts destination node from edge
result := mcsNodesRecursor(count, visited, r, G, G′)
count := result[0]
visited := result[1]

end if
end for
for all e ∈ inwardEdges do

if e ∈ E′ then
r = e[0] � Extracts origin node from edge
result := mcsNodesRecursor(count, visited, r, G, G′)
count := result[0]
visited := result[1]

end if
end for

end if
end if
return (count, visited)

end function
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In order to find a subgraph, Algorithm1 recursively travels through the com-
mon connections between the two considered graphs. The algorithm starts iter-
ating over all the nodes in one of the graphs. Once it finds a matching node, the
algorithm adds it to the current subgraph hash-table and iterates through its
edges looking for common connections. If an edge match is found, the algorithm
adds the destination node and subsequently processes the edges of this new node.
The MCS algorithm is usually defined in the context of non-directed graphs [2].
Since our graphs are directed, we adapted the original algorithm to explore
nodes through outgoing and incoming edges. We accomplish this by iterating
over outgoing edges and then iterating over incoming edges. We keep track of
explored nodes by adding their labels to a hash-table. If the two nodes in a pair
are connected by both an incoming and an outgoing edge, we only explore the
subsequent node once and exclude it upon the second inspection. Once a sub-
graph has been identified and there are no more matching edges found on the
border nodes, the algorithm detects the subgraph size and compares it with the
largest subgraph previously found. This algorithm will provide us with the size
of the largest possible common subgraph, in terms of nodes included, between
two graphs.

Finding the MCS is a np-complete problem. Nevertheless, it is possible to
calculate the worst case time complexity. As mentioned in [2], the worst case
time complexity of the MCS algorithm is O((V ∗ V ′)V ).

4 Semantic Representation

In this section, we explain the semantic representation building process in gen-
eral. The essential information is taken from a KG using the concepts found in
the document text. A KG consists of a set of resources4 C and literals L that
are interrelated through a set of properties/predicates P . Under an RDF model,
KG data consists of a set of statements S ⊂ C × P × (C ∪ L). Each s ∈ S is a
triplet composed of a subject, a predicate, and an object/literal. For this paper,
DBpedia was employed as KG; however, other KGs can also be employed or
combined to build the representation.

Once the KG is defined, the representation of a document is constructed
following the process depicted in Fig. 1. The process begins with the extraction
of the concepts mentioned in the text (i.e. annotations) contained by the docu-
ment. DBpedia Spotlight5 and Babelfy6 two automatic entity linking and word
sense disambiguation tools were used for this task. Then, the Expansion Module
receives the initial set of annotations and expands it through the rich number
of relationships in the KG. In this module, new expanded concepts that are not

4 Hereafter, we use concept and entity interchangeably to refer to resources of the KG.
5 http://www.dbpedia-spotlight.org/.
6 http://babelfy.org/.

http://www.dbpedia-spotlight.org/
http://babelfy.org/
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Fig. 1. General overview of the semantic representation process

found in the text, but are related with the annotation, are incorporated into the
representation. We follow two different expansion approaches:

– Category-based expansion: We add the hierarchical information of each
concept. We find such information in DBpedia through the Dublin Core
dct:subject property.

– Property-based expansion: The semantic representation is enriched with the
set of resources recovered by following the set of properties of the KG ontology.

As a result of the expansion, an initial set of nodes for the representation
is obtained. A weight for each node is assigned by the Weighting Module that
checks the importance of each concept for the document. For annotations and
expanded concepts, different weighting strategies are employed. Finally, in the
Filtering Module, we apply a filtering technique to select concepts that are highly
connected such that weakly connected concepts are discarded. The strategy seeks
connection paths of length l between annotations because it uses these to create
edges in the representation and assign the corresponding edge weight. Using
previous results, we limit the path length to a maximum of l = 2. From these
processes, a graph whose nodes are concepts and edges expressing the existence
of a linkage between two concepts in the KG is built. A more detailed description
of each of these modules can be found in previous works by the authors [10,11].
The resulting representation follows Definition 1.

Definition 1. The semantic representation Gi of a document ri is a directed
weighted graph Gi = (Vi, Ei, w(ri, c), w(ri, e)), where both nodes and edges have
an associated weight defined by the functions w(ri, c) : V → R+ and w(e) : E →
R+. The set of nodes Vi = {c1, c2, ..., ck} are concepts belonging to the space of a
KG (ck ∈ C). The node weight w(ri.c) denotes how relevant the node c is for the
document. A connection edge between two nodes (ca, cb) represents the existence
of almost one statement s in the KG that links both concepts. The weight of the
edge w(e) denotes how relevant this linkage in Gi is.

The definition above refers to a directed graph to the extent that the direction
of the relationships found in the KG are preserved. Nevertheless, it is also possible
to build a non-directed version by unifying the vertices that share the same nodes
but go in opposite directions. The weight of the resulting non-directed vertex is
the sum of the directed opposite vertices. We also use this non-directed version
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of the semantic representation to evaluate the contribution of the direction in
the similarity calculation. Additionally, even when there is a loss of information,
this non-directed version is lighter and reduces the computational cost.

Finally, we define the flattened version of the representation as that which
only preserves the set of nodes and their weights (Definition 2). Put simply, edges
are removed from the representation. Since it is easy to transform this flattened
version into a vector representation, measures such as the cosine similarity, L2-
norm or Manhattan distance can be used for the calculation of similarity between
documents. For the flattened version, and following previous results [11], we use
the cosine similarity.

Definition 2. The flattened semantic representation Ri of a document r is a set
of weighted KG entities/concepts. A weighted concept is a pair (c, w(ri, c)) where
the weight w(ri, c) denotes how important the concept c is for the document ri,
and is computed by a certain function w.

Ri = {(c, w(ri, c))|c ∈ C} (6)

5 Evaluation

5.1 Datasets

Our evaluation aims to compare the graph similarity measures described above
when the graphs are semantic representations of documents. To this end, we
select two different datasets that have been used in the past. The first one,
Lee50 [9] is a compilation of 50 short documents collected from the Australian
Broadcasting Corporations news mail service. Each possible pair of documents
was scored by ten human judges on their semantic relatedness. The final similar-
ity judgment for every pair is obtained by averaging all annotation of the judges,
so the final collection contains 1225 relatedness scores. With this dataset we can
compare how well the combination of the representation and the graph similar-
ity measures approximate the human notion of similarity. The second dataset,
Man17 [10], was developed for the scholarly paper recommendation task. It
contains eleven researcher profiles built from the concepts found in their open
publications. For this dataset, the semantic representation is built for research
profiles and the candidate corpus of documents (>5000 documents). Different
from Lee50, documents in Man17 are larger since they are academic papers that
usually contain more than 2000 words. Hence, the dataset has greater number
of concepts in the text and a larger graph is produced in terms of the number
of nodes and edges. For each profile, this dataset contains the set of relevant
papers from the candidate set. The task here is try to recover relevant papers
by comparing the research profile with the candidate corpus (i.e. content base
recommendation) using the different graph similarity measures.

In order to evaluate the performance on Lee50, we report the Pearson (r) and
Spearman correlation (ρ). According to [7], these correlation metrics are appro-
priate to evaluate relatedness measures and have been used in related work, so
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we are able to compare our results to other approaches. For the Man17 dataset,
we use the following typical metrics for the evaluation of Top-N recommender
tasks [19]: MRR (Mean Reciprocal Rank), MAP@10 (Mean Average Precision),
and NDCG@10 (Normalized Discounted Cumulative Gain). Following the orig-
inal paper, we select N = 10 as the recommendation objective [10]. In this data
set, the relevance measures are binaries (i.e. the recommended documents are
relevant to the user or not), so we use a binary relevance scale for the calcula-
tion of NDCG. The final NDCG is calculated averaging the results for each user
profile.

5.2 Semantic Annotators and Path Length

We use DBpedia Spotlight (DBS) and Babelfy to annotate text documents.
DBpedia Spotlight allows us to configure the level of annotation (precision/recall
trade-off) by confidence/support parameters. Support parameters specify the
minimum number of inlinks a DBpedia resource has to have in order to be
annotated, while the confidence parameter controls the topical pertinence and
the contextual ambiguity to avoid incorrect annotations as much as possible
[13]. We define 5 different configurations for DBS: DBS1 (support: 5, confidence:
0.35), DBS2 (support: 5, confidence: 0.40), DBS3 (support: 5, confidence: 0.45),
DBS4 (support: 10, confidence: 0.40), and DBS5 (support: 20, confidence: 0.40).
We explore the influence of the confidence parameter with the first three configu-
rations. Values higher than 0.45 are not considered since this would significantly
reduce the number of annotations obtained. This can be particularly detrimental
in short documents such as those handled in Lee50. For the support parameter
we use values of 5, 10 and 20; our hypothesis is that the identification of highly
specialized concepts may be affected by this parameter. For Babelfy, no special
configuration was used and the complete set of annotations recovered are used
in the semantic representation building process.

As previously mentioned, the semantic representation input parameter is the
path length (l) that specifies the maximum depth to look for connections between
concepts in the KG. This parameter affects the edge composition, and thereby
the graph structure. We want to explore the effect of this parameter in the graph
similarity measures, so we define values of path length of l = 1 and l = 2.

6 Results

We report our results on the Lee50 dataset in Table 1. Each column in the
table represents one of the similarity measures presented above. To differentiate
the results obtained for the directed and non-directed versions of the semantic
representations, we use the letter D to indicate directed or U to mean undirected.
The column Flattened presents the results obtained with the flattened version
of the representation (Definition 2). Finally, the column NodeAvg presents the
average of nodes in each case. For each column, the best result at the level of
each correlation measure is highlighted in bold.
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Table 1. Lee50 dataset results. Correlation measure: Pearson (r) and Spearman (ρ).
l: path length parameter

The best results were obtained using the DGEDnode. Since there is no dif-
ference in nodes between the directed and undirected version of the graph,
DGEDnode is equivalent to UGEDnode. We prefer DGEDnode because the addi-
tional step of merging edges is avoided. The superiority of this similarity measure
is independent, in most cases, of other elements such as the annotation service
and the path length. Regarding the contribution of the edges as the similarity
measures DGEDedge and UGEDedge, the following is shown: (a) the direction
seems to favor the Pearson correlation; however, better results were obtained at
the Spearman correlation level using the undirected version; and (b) surprisingly,
when combining the contribution of the edges and nodes (DGED and UDGE),
there is no improvement in the results obtained compared to DGEDnode and
UGEDnode. The behavior described in (a) can be attributed to increases in non-
equivalent magnitude among the variables that are evaluated, in particular in
the undirected version the changes of similarity are very low in comparison with
its directed version. While the Pearson correlation is usually strongly affected
by this, the Spearman correlation does not. Furthermore, (b) seems to indicate
that the contribution of the edges is not so important compared to the node
contribution, at least when compared to the similarity established by the human
annotators. However, we believe that edges provide additional semantic infor-
mation that increases the relatedness between documents on a deeper level, and
this might be overlooked by human annotators when comparing text documents.

The results obtained with the VEO measure, for both the directed (DVEO)
and undirected (UVEO) versions, are interesting since both have an excellent
trade-off between the computational complexity and the performance. Since
VEO does not consider the edge or node weight, we also highlight that it is
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possible to reduce the time to construct the semantic representation by discard-
ing the weighting module. Thus, VEO is an interesting alternative for critical
response time applications.

In accordance with the aforementioned, another suitable way to reduce the
computational cost is to consider unitary path lengths l = 1. Results in Table 1
are not conclusive about an improvement when a longer path length is selected.
In the cases where the correlation measures are improved by the selection of
l = 2, the difference in the values obtained by its counterpart l = 1 does not
seem to be significant (i.e. less than 2%). In contrast, the selection of connections
path of l = 1 significantly reduces the complexity and/or the number of queries
that must be send to the KG.

When considering the Spearman correlation, the MCS algorithm performs
poorly. The similarity measures obtained via this algorithm present the high-
est variance, so more appropriate ways to normalize MCS (Eq. 5) should be
explored.

Clearly, the results show the superiority of DBS1 as annotation service.
Independent of the graph similarity measure or path length selected, DBS1
outperforms all the annotation services considered. Babelfy has a high number
of false positives that negatively influence the representation. Although it seems
not to be properly documented, Babelfy provides confidence measures that are
associated with each recovered annotation that can be exploited for future fil-
tering strategies. In the case of Spotlight service, small increases in the level
of confidence strongly affect the number of concepts in the final representation.
The support parameter, on the other hand, does not seem to be so decisive in
the final representation and thus the similarity in the results obtained.

Table 2 lists the performance for our best-performing similarity measures
(obtained via DGEDnode similarity measure, DBS1 as annotation tool and a
semantic representation build with l = 2 as input parameter), as well as for the
following related baselines:

– Salient Semantic Analysis (SSA): a concept-base strategy which incorporates
a similar semantic abstraction and interpretation of words, by using the link-
age of concepts in Wikipedia [7].

– Graph-based document similarity (GDS): Similar to this work, a semantic
graph using KGs is constructed. The representation in this case is basically a
KG subgraph on the basis of the annotated concepts. No refinement process-
ing is performed.

– Vector Space Model (V SM): the cosine distance of a standard bag-of-words
Vector Space Model. We carried out typical text processing operations includ-
ing tokenizer, stop word removal and stemming.

In general, very competitive results of our best measure of similarity are
observed. At the level of the Spearman correlation (ρ) we present the best results;
however, SSA is superior in terms of the Pearson correlation (r). There is a
relative improvement of 15.4% over V SM and 4.6% over GDS at the Pearson
correlation level.
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Table 2. Comparison with related work for Lee50 dataset. Correlation measures:
Pearson (r) and Spearman (ρ)

r ρ

SSAs [7] 0.684 0.488

DGEDnode 0.659 0.516

GDS [18] 0.63 -

VSM 0.571 0.402

Table 3 shows the results obtained from the Man17 dataset. For this dataset,
we report the results obtained by the semantic representation using DBS1 as
annotation service . The results of the flattened version were taken from [11] when
the full text of the paper was used as input for the semantic representation. We
also report the results obtained via VSM.

Table 3. Man17 dataset results.

Consistent with the results obtained in Lee50, DGEDnode presents the best
results in terms of MAP and NDCG. The flattened version is better in terms
of the MRR. In this dataset, the direction of the edges are more relevant for
the recommendation quality. Indeed, there is a significant difference between the
values obtained by DGEDedge and UGEDedge. The results also show that a
path of size l = 1 is more appropriate for this task.

7 Conclusion

In this paper we have compared the performance of different graph-based sim-
ilarity algorithms with two different datasets that employ semantic representa-
tions. One of the datasets is focused on the similarity between short documents,
while the second is focused on the recommendation of academic papers. For
each dataset, different evaluation measures were used. The graph yielded better
results in comparison with the flattened version of the semantic representation.

The results suggest that GEDnodes, an algorithm based on comparing the
weighted nodes of both graphs, is an appropriate measure and that it is not
necessary to consider the edges of the graph. This goes slightly against our initial
hypothesis which suggested that the edges connecting the nodes in the semantic
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graph express relevant information of the described document and should thus
be taken into account. However, as the baseline used was the similarity explicitly
indicated by humans, two hypotheses should be further explored: either edges do
not add significant information; or, when comparing documents, humans look at
the broad picture and if examining a more detailed relation, they might reduce
the initial similarity degree.

The computational complexity will also be taken into account in order to
select the most appropriate similarity measure. It should be noted that the cur-
rent implementation of the algorithms discussed was done on networkx, a graph
library for python. Consequently, the complexity achieved was much higher than
theoretically possible. For VEO, we obtained a complexity of O(V + V’ + E + E’)
since the algorithm had to create the hash tables to avoid an even higher process-
ing cost. For node graph edit distance, we obtained a complexity of O(2V + 2V’),
and for edge graph edit distance, O(V + V’ + 2E + 2E’) for the same reasons.

Our future work will focus on exploring other graph matching algorithms,
in particular, those with a low computational complexity that can be imple-
mented in real recommendation scenarios and/or information retrieval applica-
tions. Additionally, we would like to explore other ways to evaluate the edge
correspondence based on paths analysis.
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