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Abstract. The analysis of physiological signals is widely used for the devel-
opment of diagnosis support tools in medicine, and it is currently an open
research field. The use of multiple signals or physiological measures as a whole
has been carried out using data fusion techniques commonly known as multi-
modal fusion, which has demonstrated its ability to improve the accuracy of
diagnostic care systems. This paper presents a review of state of the art, putting
in relief the main techniques, challenges, gaps, advantages, disadvantages, and
practical considerations of data fusion applied to the analysis of physiological
signals oriented to diagnosis decision support. Also, physiological signals data
fusion architecture oriented to diagnosis is proposed.
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1 Introduction

Physiological signals deliver relevant information on the status of the human being,
which helps the doctor to give a diagnosis for specifics pathologies, and therefore
provide appropriate treatment. However, in many cases, these tasks become more
complicated since patients can present several pathologies that must be managed
simultaneously. Additionally, physiological parameters change frequently, requiring a
rapid analysis, and high-risk decisions [1] that result from the interpretation of the
human expert that analyses the available clinical evidence.

Recently, studies the analysis of multimodal signals, for diagnostic support using
multimodal has increased [2, 3] in data fusion. This last covers the analysis of different
sources and types of data. Its aims is to provide information with less uncertainty [4]
and potentially allows ubiquitous and continuous monitoring of physiological param-
eters [5] and reduce adverse effects of the signals due to sensor movements, irregular
sampling, bad connections and signal noise [6–10]. Data fusion can include different
processes such as association, correlation, combine data, and information achieved
from one or multiple sources to identify objects, situations, and threats [11].

This paper presents a literature review of the data fusion oriented to clinical
diagnosis discussing and identifying their most common techniques, properties, and
highlighting advantages, disadvantages, challenges, lacks, and gaps. This review was
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carried out from Scopus and Web of Sciences database, based on these search criteria:
(i) (physiological signals) and (diagnosis decision support); and (ii) ((“data fusion”) or
(“information fusion”) or (“multimodal”) and (diagnosis or diagnostic)) and (“physi-
ological signals”). The selected papers were reported between years 2013 and 2018 in
journals of quartile 1 and quartile 2 principally. Also, a data fusion framework oriented
to clinical diagnostic was proposed for physiological signals processing based on the
Joint Directors of Laboratories (JDL) model. The rest of the document is organized as
follows: in section two, a description of the physiological signals is presented. In
section three, we describe the most common multi-modal fusion models, spotlighting
data processing, and fusion techniques; Section four contains the proposed architecture;
and finally, the conclusions and future work are presented.

2 Physiological Signals Description

The physiological signals provide information that can be analyzed by specialists to
determine with more accurate the diagnosis and treatments, besides, may be used for
retrospective studies by research organizations [12]. Physiological signals are obtained
through a large number of biomedical measuring devices, such as multi-parameter vital
signs monitors, electroencephalograms, electrocardiograms, electromyograms, ther-
mometers, motion sensors, oxygen saturation, glucometers, among others. These sig-
nals give a lot of information of the organs, but they have multiple problems of noise
derived from internal and external causes.

Each signal or group of signals have different application for monitoring of vital
signs or diagnostic such as cardiovascular diseases [13], apneic events [14], assesses
the activity of back muscles in patients of (scoliosis, identify locomotion modes and
measure tissue oxygenation) measure the level of anesthesia during surgery [15], eye
tracking [16], non-invasive assessment of blood flow changes in muscle and bone using
photoplethysmography (PPG) [17], pulmonary embolism, acute respiratory distress
syndrome [18], heart valve disease [19], changes in the severity of aortic regurgitation
[20], Arterial aging studies [21], Human motion disorders [22], Epilepsy [23] among
others. Some signals are applied for brain–computer interfaces (BCI), which provide
people suffering partial or complete motor impairments, through a non-muscular
communication channel to transmission of commands to devices that allow managing
an application, e.g., computerized spelling, robotic wheelchairs, robotic arms, teleop-
erated mobile robots, games or virtual environments [24, 25].

Different signals are analyzed for developing diagnostic support systems; an
important group of them capture information synchronously or asynchronously from
different human being organs. Figure 1 shows a classification of these signals as follow:
(i) bioelectric signals: they are variations of biopotential versus time, e.g. Electrocar-
diogram (ECG), electrooculography (EOG), electromyography (EMG), electroen-
cephalography (EEG), and electrocorticography (ECoG); (ii) Bioacoustic signals: These
provide plot of recording of the sounds, e.g. phonocardiography (PCG); (iii) Biooptic
signals: they correspond to measures based on detected light intensity from different
tissues, flows of the body, among others, e.g. photoplethysmography (PPG); (iv)
biomechanical signals: they are pressure measures mainly, e.g. blood pressure (BP),
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intracranial pressure (ICP), body move (BM), systolic volume (SV); (v) bioimpedance
signals: correspond to electrodermal activity e.g. skin conductivity (SC) or galvanic skin
response (GSR); (vi) biochemical signals: These are based on chemical components
measures e.g. blood glucose (BG).

ECG is widely used to understand and investigate cardiac health condition [2, 26,
27]. EOG is related to the eye movement which is derived from Cornea-Retinal
Potential [28, 29]. EMG is acquired using electrodes through a muscle fiber skin to
observe the muscle activity. It is also associated with the neural signals, sent from the
spinal cord to muscles [30, 31]. EEG signals indicate any nervous excitement by
detecting brain activities derived from neurons in the brain that communicate through
electrical impulses [15, 32, 33]. ECoG records are an electrical activity of the brain by
means of invasive electrodes [23, 34]. Obtaining information from bioelectric signals
becomes extremely difficult due to limited data and presence of noise which signifi-
cantly affects the ability to detect weak sources of interest [26, 35].

PCG acquisition is plain, non-invasive, low-cost and precise for assessing a wide
range of heart disease (e.g. cardiac murmurs) [19, 36]. However, they are altered by
external acoustic sources (such as speech, environmental noise, etc.) and physiological
interference (such as lung sounds, cough, etc.) [37]. Respiratory rate (RR) [18], can be
altered by noise and movement artifacts [38]. PPG signal consists of direct current
(DC) and alternating current (AC) components. The AC component represents the
changes in arterial blood volume between the systolic and diastolic phases of a cardiac
cycle. The DC component corresponds to the detected light intensity from tissues,
venous blood, and non-pulsatile components of arterial blood, an example of trans-
mission type is a fingertip pulse oximeter (Spo2), which is clinically accepted and
widely used. Clinical applications of PPG sensors are limited by their low signal to
noise ratio (SNR), which is caused by the large volume of skin, muscle, and fat and
relatively small pulsatile component of arterial blood [17, 39].

BP is defined by systolic and diastolic pressure, and it is measured in millimeters of
mercury (mmHg), but main forms of noninvasive blood pressure measurement are
divided into intermittent and continuous blood pressure measurements [40, 41], con-
secutively affecting the calculated measure of systolic volume (SV), ICP is the pressure
within skull [42]; BM capture body movements [22, 43]; SC is the electrodermal
activity, indicator of sympathetic activation and a useful tool for investigating

Fig. 1. Physiological signals classification

Physiological Signals Fusion Oriented to Diagnosis - A Review 3



psychological and physiological arousal [44, 45]; BG indicates the amount of energy in
the body [43, 46]. Finally, the temperature measurement (Temp) is a measure of the
ability of the body or skin to generate and release heat [3, 43]. These signals can be
easily altered by movement and body mass, environmental noise, intermittent con-
nections, etc. In Table 1 is shown a summarize of some applications of physiological
signals for monomodal clinical support systems.

3 Signal Fusion

Multiple information about the same phenomenon can be acquired from different types
of detectors or sensors, under different conditions, in multiple experiments or subjects.
Particularly multimodal fusion refers to the combination of various signals of multiple
modalities to improve the performance of the systems decreasing the uncertain of their
results. Each modality contributes a type of added value that cannot be deduced or
obtained from only type of physiological signals [51, 52].

There are several techniques of multimodal fusion reported in the literature, like the
sum and the product, which have been used for data fusion, and consecutively these
operators have evolved into more advanced ones, particularly through the results of

Table 1. Physiological signals applications

Signal Applications

ECG Cardiovascular diseases [13]
Apneic events [14]

EMG Assesses the activity of back muscles in patients suffering of scoliosis [47]
Identify locomotion modes such as level-ground walking, standing, sitting,
and ascending/descending stairs and ramps [30]
Measure tissue oxygenation [48]

EEG The level of anesthesia during surgery [15]
EOG Eye tracker [16]

Parkinson’s disease [49]
PPG Early detection of pathologies related to the heart [15]

Non-invasive assessment of blood flow changes in muscle and bone using
PPG [17]

RR Rapid breathing (tachypnea) [18]
PCG Heart failure [19]
SV Changes in the severity of aortic regurgitation [20]

Arterial aging studies [21]
GSR Repeatability of measurements of galvanic skin response [45]
Accelerometer Human motion disorders [22]
Blood glucose Diabetes or hypoglycemia [46]
BP Hypotension or hypertension [40]
Temperature Emotion recognition [50]
ICP Hydrocephalus [42]
ECoG Epilepsy [23]
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soft-computing and fuzzy operator research (Fig. 2) [53] which are widely discussed in
[54] as follows: (i) Fusion of imperfect data are approaches capable of representing
specific aspects of imperfect data (Probabilistic fusion, Evidential belief reasoning,
fusion based on Random set theoretic fusion, Fusion and fuzzy reasoning, Possibilistic
fusion, Rough set based fusion, Hybrid fusion approaches (the main idea behind
development of hybrid fusion algorithms is that different fusion methods complement
each other to give a more precise approach); (ii) Fusion of correlated data provide
either independence or prior knowledge of the cross covariance of data to produce
consistent results; (iii) Fusion of inconsistent data is the notion of data inconsistency
(Spurious data, Out of sequence data, Conflicting data), and (iv) fusion of disparate
data is the input data to a fusion system, which is generated by a wide variety of
sensors, humans, or even stored sensory data [54]. However, categorizations most used
are described in [11, 52, 55–57]; which consists of three types of fusion: (i) early: the
characteristics obtained from different modalities are combined into a single repre-
sentation before feeding the learning phase, it is known as feature fusion, and its major
advantage is the detection of correlated features generated by different sensor signals so
to identify a feature subset that improves recognition accuracy; In addition, the main
drawback is to find the most significant feature subset, large training sets are typically
required [11, 50, 58]; (ii) intermediate: it can cope with the imperfect data, along with
the problems of reliability and asynchrony between different modalities, and (iii) late
[59]: it is known as fusion level decision each modality is processed separately by a
first recognizer, and another model is trained on the unimodal predictions to predict the
actual single modal gold standard [33], main decision-level fusion advantages include
communication bandwidth savings and improved decision accuracy. Another important
aspect of decision fusion is the combination of the heterogeneous sensors whose
measurement domains have been processed with different algorithms [11, 50, 58, 60].

The simplest approach to multimodal analysis is to design a classifier per modality
and joint the output of these classifiers combine the visual model and the text model
under the assumption that they are independent, thus the probabilities are simply

Fig. 2. Evolution of data fusion operators [53]
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multiplied [61]. Nevertheless, accurate synchronization of multimodal data streams is
critical to avoid parameter skews for analysis [62]. Table 2, shows a summarize
advantages and disadvantages of this multimodal fusion.

In general, the main problem of multimodal data processing is that the data must be
processed separately and must be combined only at the end, the dimensionality of joint
feature space, different feature formats, and time-alignment. The information theory
provides with a set of information measures that not only assess the amount of
information that one single source of data contains, but also the amount of information
that two sources of data have in common [52, 61].

In Table 3 is shown multiple studies of fusion of several physiological signals
alongside the techniques applied for specific clinical diagnostic decision support with
their respective accuracy (Acc). We highlighted the applications in emotion recogni-
tion, monitoring and reduce the false alarms hart diagnosis, and the applicability of
ECG signals for fusing with other signals for several diagnostics.

Table 2. Advantages and disadvantages multimodal fusion

Advantages Disadvantages

- Improved signal to noise ratio
- Reduced ambiguity and uncertainty
- Increased confidence
- Enhanced robustness and reliability
- Improved resolution, precision and
hypothesis discrimination
- Interaction of the human with the
machine
- Integration of independent features
and prior knowledge [33, 58]

- The uncertainties in sensors arise the ambiguities
and inconsistencies present in the environment, and
from the inability to distinguish between them [54]
- They require signal processing techniques
- The data distributed with a similar semantics, cannot
be directly fused and should process separately
- Primary data is only available for a short time, as in
the case of stream data, which is usually processed in
real time and then deleted after storing the analysis
results [63]

Table 3. Multimodal fusion systems

Ref Fused signals Techniques Diagnostic

[64] RR and ECG Modified Kalman-Filter
(KF) framework

Estimating
respiratory rate

[65] ECG, EMG, SC and RR
Acc: 71%

Hilbert-HuangTransform
(HHT)

Emotion
recognition

[10] ECG, EMG, EOG, SC, RR,
and finger Temp
Acc: 67.5% arousal and
73.8% valence

Classifier fusion (Linear and
Quadratic Discriminant
Analysis with diagonal
covariance matrix estimation)

[66] BP and SC Algorithm sequence pattern
mining and artificial neural
network

[50] BP, EMG, SC, SKT and FR
Acc: 78.9%

Viola-Jones face detector, Shi
& Thomasi method, Euclidean
distance and feature-level
fusion

(continued)
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Table 3. (continued)

Ref Fused signals Techniques Diagnostic

[67] GSR, attitude of the head,
eyes and facial expressions

Reference model (CSALP),
valence-arousal method,
boosting algorithm, model
(ASM), Haar-like features,
flow-based algorithm, POSIT
algorithms, RANSAC
regression, entropy, SVM-
based method, Support vector
machine (SVM), filters and
multimodal fusion

[52] EEG, GSR, EMG and EOG
Acc: 85%

Discrete wavelet transform Predict emotions

[5] ECG and SpO2 Stochastic Petri net (SPN) and
Wearable health monitoring
system (WHMS)

Improve
monitoring and
reduce the false
alarms[8] ECG, PA, SV, PPG and

EEG
Acc: 89.63%

Robust algorithm

[2] ECG Beat-by-beat algorithm,
Function ‘gqrs’ of the WFDB
toolbox, Open-source
algorithm, ‘wabp’ of the
WFDB Toolbox and candidate
detections ratio (CDR)

Location of the
heart beat

[68] EEG and EOG
Acc: 97.3%

Approximate entropy (ApEn),
Sample entropy (SampEn),
Renyientropy (RenEn),
Recurrence quantification
analysis (RQA), Extreme
learning machine (ELM) and
wavelet-based nonlinear
features

Drowsiness

[69] Change eye gaze direction
and duration of flicker
Acc: 70%

SLD (Standard Lateral
Deviation), D-S, decision
fusion

[43] BP, ECG, EEG, EMG,
Spo2, FC, Temp and BG

Preprocessing, puts filter, self-
adaptive, data compression
(CR and PRD), Gateway data
fusion, fuzzy logic, artificial
neural networks, support
vector machines and
classification (specificity and
sensitivity)

Heart rate
variability [70]

[71] ECG and PCG
Acc: 97%

Wavelet transform, discrete
wavelet transform STFT, band
pass filter and decision fusion

(continued)

Physiological Signals Fusion Oriented to Diagnosis - A Review 7



Table 3. (continued)

Ref Fused signals Techniques Diagnostic

[60] BP, ECG and FC
Acc: 99.7%

The Processing Elements
(PEs) and decision-level fusion

Hypotension and
hypertension [40]

[72] ECG and accelerometer
Acc: 99%

Hamilton-Tompkins algorithm,
bandpass filter, wavelet
transform and data fusion
algorithm

Congestive heart
failure and sleep
apnea and asthma

[73] ECoG Criterion of Neyman-Pearson,
preprocessing, fusion channels
unification and voting, ROC
curve and area under the curve
(AUC)

Epilepsy

[7] BP and ECG
Acc: 99.4%

Kalman Filter (KF), fusion
technique Townsend and
Tarassenko and signal quality
index (SQI)

Left ventricular
hypertrophy [74]

[1] ECG, BP and
PPG

PCA (principal component
analysis), Kalman filter, LSP
(Lomb - Scargleperiodogram)
and data fusion covariance

Arrhythmias

[6] BP, ECG and RR
Acc: 94.15%

DWT (Discrete Wavelet
transform) and decision fusion

[75] ECG, GSR, rotation of the
head, movement of the eyes
and yawn

FFT, fusion based on Bayesian
network data, pre-filter
Butterworth fission and
Gaussian filter

Fatigue and stress

[76] Essential tremor (ET),
Parkinson’s disease (PD),
physiological tremor
(PT) and EMG
Acc: 99.6%

EMD (Empirical mode
decomposition), DWT
(discrete wavelet transform),
D S (Dempster-Shafer), BPNN
(back-propagation neural
network) and decision fusion

Tremor

[42] ICP The median and the tendency
of the waveform, FIR (low
pass filter), evidence fusion
and global fusion

Hydrocephalus

[77] FC Fuzzy logic, Neural networks,
Bayesian probability and belief
network

Hypovolemia

[55] BP, ECG and EEG
Acc: 86.26%

Signal quality index (SQI),
Estimation of regular intervals,
Heartbeats detection,
adaptative filter, Multimodal
fusion and QRS detection

Alterations in
cardiac
autonomic control
peripheral [78]
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4 Proposed Model

Different architectures and methodologies of data fusion have been reported in [11, 60,
79, 80], based on the Joint Directors of Laboratories (JDL) model which focus on the
abstraction level of the manipulated data by a fusion system. We proposed a general
framework for processing and fusion of multimodal physiological signals oriented to
diagnostic support systems. The architecture consists of four levels (Fig. 3), where the
level 0 has for purpose make the acquisition of different physiological signals and
realize the pre-processing, which consists of the stage of filtration, feature extraction,
and normalization; Level 1, is composed by a spatial-temporal alignment and data
correlation, the latter checks the proportionality of the information, i.e., if the infor-
mation is not consistent will be feedback to the preprocessing stage, otherwise the
process continues. Subsequently, the association of information executes a classifica-
tion with multiple hypothesis tests, which tracks multiple targets in dense environments
with the help of Bayesian networks or similar techniques, providing labels to each
signal obtained from the sensors, but when the objective position is doubtful, data
estimation is performed with the maximum posterior method that is based on Bayesian
theory, and is used when the X parameter to be estimated is the output of a random

acterHuman
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Fig. 3. Proposed data fusion oriented to diagnostic.
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variable with a known Pr P(X) function, consecutively the system performs an analysis
verifying the status of the labels, if at any moment a different label to those assigned to
the physiological parameters is identified as false alarm, it is eliminated by means of the
algorithm; afterwards, sets of characteristics obtained are fused to form vectors of
significant features. Consequently, level 2 has the function to determine the possible
pathologies presented by the patient through learning machines; finally level 3 includes
the decision level, which will determine the best hypothesis for the pathology, pro-
viding a clinical diagnosis and a possible treatment, besides this determines the
assessment, risk, and impact of the process based on forecast system. All stages allow
including hard and soft data, context information, together medical criteria and a
mapping system based on performance quality metrics that allow optimizing the
processing.

The proposed model was developed to diminish the high rate of false alarms in
services of constant monitoring, supply a timely diagnosis and a possible treatment to
the pathology of the patient, providing support the specialist.

5 Conclusion

In this work were discussed multiple physiological signals alongside multimodal data
fusion systems applied in clinical diagnosis support systems, highlighting advantages,
disadvantages, shortcomings, and challenges. It has highlighted the capability of
multimodal data fusion systems because of allowing obtaining more reliable and robust
psychological or physiological information using multiple sources respect to unimodal
systems, revealing an increase in the accuracy of diagnoses, and demonstrating com-
plementarity of modalities. Additionally, multimodal data fusion yields important
insights processes and structures, spatiotemporal resolution complementarity, including
a comprehensive physiological view, structures, quantification, generalization and
normalization [81]. Nevertheless, accurate synchronization of multimodal data streams
is critical to avoid parameter skews for analysis.

For some diagnosis, the results can be considered low. Therefore, studies in this
field must follow. We consider that other signals can be included in the data fusion
systems and complement it with information quality evaluation systems as the pro-
posed in [82]. In addition, we proposed a physiological signal fusion architecture,
based on the JDL model; in order to provide a more reliable diagnosis and treatment
based on evidence, all of the above to support the specialist in their decisions; The
interface for the model will present continuous monitoring, without alterations with
minimum response times, and easy to use.

Finally, to develop more effective clinical decision support mechanisms, an
architecture was proposed, which covers all levels of development of diagnostic of the
assistance systems in the field health taking into account the gaps found in the literature
such as lack traceability of the systems from acquisition until results, visualizations,
and treatments. Besides, other problems such as signals that cannot be directly merged
and must be done separately, the low availability of data in the time, the high com-
putational cost of complex models, and limitations about the assessment of situation
and risk.
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