
Trust Anchors in Software Defined
Networks

Nicolae Paladi1(B), Linus Karlsson2, and Khalid Elbashir3

1 RISE SICS, Kista, Sweden
nicolae.paladi@ri.se

2 Lund University, Lund, Sweden
linus.karlsson@eit.lth.se

3 KTH - Royal Institute of Technology, Stockholm, Sweden
elbashir@kth.se

Abstract. Advances in software virtualization and network processing
lead to increasing network softwarization. Software network elements
running on commodity platforms replace or complement hardware com-
ponents in cloud and mobile network infrastructure. However, such com-
modity platforms have a large attack surface and often lack granular
control and tight integration of the underlying hardware and software
stack. Often, software network elements are either themselves vulnerable
to software attacks or can be compromised through the bloated trusted
computing base. To address this, we protect the core security assets of
network elements - authentication credentials and cryptographic context
- by provisioning them to and maintaining them exclusively in isolated
execution environments. We complement this with a secure and scalable
mechanism to enroll network elements into software defined networks.
Our evaluation results show a negligible impact on run-time performance
and only a moderate performance impact at the deployment stage.

1 Introduction

Software Defined Networking (SDN) is a widely used approach to operate net-
work infrastructure in virtualized environments. Separation of forwarding and
control logic, a core idea of this model, is often realized by software network ele-
ments in a virtualized network infrastructure deployed on commodity hardware.
However, by departing from hardware network elements with tightly couped soft-
ware and hardware often provided by the same vendor [20], SDN broke previous
assumptions, outdated best-practices and introduced new vulnerabilities [41,42].
Scott-Hayward et al. outlined a series of attack vectors that can lead to unautho-
rized access, data leakage or modification, malicious applications on the network,
configuration issues, and a wider collection of system-level security vulnerabili-
ties [49]. This concern applies to both the data plane and the application plane in
SDN deployments. On the data plane, related literature describes both potential
attacks on SDN in case of a virtual switch compromise [2], partly demonstrated

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11099, pp. 485–504, 2018.
https://doi.org/10.1007/978-3-319-98989-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98989-1_24&domain=pdf

486 N. Paladi et al.

in [55]. Malicious applications deployed on the SDN infrastructure are a par-
ticular concern in virtualized environments. They affect network security both
directly (by intercepting or modifying traffic), or indirectly through horizontal
attacks aimed to leak authentication credentials and encryption keys [54].

Earlier research addressed SDN security through additional services [21,48,
53], formal verification [6] and isolated execution using Intel Software Guard
Extensions (SGX) [28,43,44,52], and most popular network element implemen-
tation support communication over transport layer security (TLS) [15]. Despite
these efforts, the confidentiality and integrity of authentication credentials of net-
work elements in SDN remain unaddressed. In particular, the existing approaches
to provision authentication credentials to network elements in SDN are either
plain insecure or both insecure and unscalable, requiring manual steps1 [38].
Moreover, credentials provisioned to network elements in virtualized environ-
ments are often stored in plaintext on the file system. Adversaries exploiting
vulnerabilities in process and virtualization isolation can access authentication
credentials to perform network attacks or impersonate network elements. In this
paper, we address two complementary questions: (1) How can authentication
credentials be securely provisioned to software network elements in SDN deploy-
ments? and (2) How can the TLS context of virtual switches be protected on
compromised hosts?

1.1 Contributions

In this work, we present the following contributions:

– A secure, practical, and scalable mechanism to provision authentication cre-
dentials and bootstrap communication between software network elements.

– TLSonSGX2, a library allowing to maintain authentication credentials and
the TLS context exclusively in isolated execution environments.

– A novel approach to restricting the availability of authentication credentials
for SDN components to hosts with an attested trusted computing base.

– A first thorough analysis of the performance trade-offs of deploying compo-
nents of network elements in SGX enclaves.

1.2 Structure

The remainder of this paper is structured as follows. We present the system
model and threat model in Sect. 2. Next, we describe the proposed solution
in Sect. 3 and its implementation in Sect. 4. We evaluate the approach in Sect. 5,
discuss the related work in Sect. 6, outline limitations and future work in Sect. 7
and conclude in Sect. 8.

1 Indeed, the Open vSwitch manual contains phrases as “Write the fingerprint down on
a slip of paper and copy sc-req.pem to the machine that contains the PKI structure”.

2 Source code available: https://github.com/TLSonSGX/TLSonSGX.

https://github.com/TLSonSGX/TLSonSGX

Trust Anchors in Software Defined Networks 487

2 System and Threat Model

We consider an SDN infrastructure deployed on commodity platforms in a dis-
tributed system, such as in a cloud platform or a mobile communications net-
work. The infrastructure is managed by the administrators of a network operator.
Physical access to the platforms is restricted and auditable.

System Model. Administrators use orchestrators to manage network infrastruc-
ture, software components and network services [20]. They deploy network ele-
ments on the data plane, control plane and application plane. The data plane
consists of hardware or software switches (e.g. Open vSwitch [47]) and commu-
nication links between them. The control plane consists of a logically central-
ized network controller (e.g. ONOS [7], Floodlight [25]). The network controller
manages software switches through protocols such as OpenFlow [34] (to add or
remove flows) or OVSDB [46] (to create ports and tunnels); it manages hardware
switches through OpenFlow (if supported) or other interfaces, such as NET-
CONF [17]. The application plane comprises network functions that implement
services such as traffic engineering, monitoring, or caching. A Virtual Network
Function (VNF) is a virtualisation of a network function [20]. Orchestrators
deploy VNFs upon request from the network controller or a tenant. The net-
work controller configures flows and steers traffic to the network functions.

Network elements on the data-, control-, and application planes communi-
cate over two application programming interfaces (APIs). The controller com-
municates with data plane elements over the southbound API, commonly Open-
flow [8,34,51] and with application plane elements over the northbound API.

At deployment time, the orchestrator provisions TLS certificates to network
elements during the enrollment process. Furthermore, to protect the data within
the SDN deployment, the network controller enforces communication over TLS
with mutual authentication on both southbound and northbound APIs.

Threat Model. Similar to earlier work on SDN security threats [30,41], we assume
physical security of the platforms underlying the SDN infrastructure and correct
implementation of cryptographic algorithms and communication security proto-
cols, such as TLS [15]. The adversary has the capabilities of a system admin-
istrator with remote access to commodity platforms in the SDN infrastructure.
The adversary can intercept, drop and modify packets on the southbound and
northbound interfaces. Furthermore, the adversary can run arbitrary network
elements in the SDN deployment and elsewhere [20]. The adversary can read the
memory of the commodity platforms, exploit vulnerabilities in network elements
on the data- and application planes, and circumvent virtualization isolation [2].

3 Solution Space

We next present the approach for provisioning and protecting authentication
credentials on the data and application planes of SDN deployments. We first

488 N. Paladi et al.

introduce three building blocks to create trust anchors in SDN deployments: Soft-
ware Guard Extensions (SGX), Trusted Platform Module (TPM) and Integrity
Measurement Architecture (IMA).

3.1 Trust Anchors

We use SGX enclaves [1,32,33,61] to create trusted execution environments
(TEEs) during operating system execution. We use the TEEs to store authen-
tication credentials and execute cryptographic operations for network elements.
SGX enclaves rely on a trusted computing base (TCB) of code and data loaded
at enclave creation time, processor firmware and processor hardware. Program
execution within an enclave is transparent to the underlying operating system
and other mutually distrusting enclaves on the platform. Enclaves operate in
a dedicated memory area called the Enclave Page Cache, a range of DRAM
that cannot be accessed by system software or peripherals [23,33]. The CPU
firmware and hardware are the root of trust of an enclave; it prevents access to
the enclave’s memory by the operating system and other enclaves. Remote attes-
tation [12] allows an enclave to provide integrity guarantees of its contents [1].

We use TPMs to store platform integrity measurements collected during
boot, and attest the integrity of platforms hosting the SDN infrastructure. A
TPM is a discrete component on the platform motherboard and its state is
distinct from the state of the platform. TPMs provide secure non-volatile stor-
age, cryptographic key generation and use, sealed storage and support (remote)
attestation [56]. TPMs assume platform integrity by identifying and reporting
the platform state that comprises the hardware and software components [36].
In this context, trust is based on the conjecture that a certain behaviour can
be expected based on the reported platform state [42]. TPMs can prove the
association between a cryptographically verifiable identity and the host plat-
form [56,57].

We use Linux IMA to measure the integrity of the TCB. Linux IMA measures
a predefined set of files on the system by hashing their contents and storing the
values in a measurement list; it can be configured to detect modifications of files
at runtime. To guarantee the integrity of the measurement list, its trust can be
rooted in the TPM. The system’s trustworthiness can be assessed by a remote
appraiser by comparing the measurement list to an expected configuration [12].
We utilize IMA to collect measurements of the network elements on the platform.
During the remote attestation of the platform, we use the measurement list to
verify the integrity - and implicitly the trustworthiness - of network elements.

3.2 Data Plane

At cloud platform deployment time, an orchestrator deploys and runs virtual
switches on the underlying compute resources. To enable network connectivity,
the orchestrator instructs virtual switches to add (or delete) ports whenever
virtualized execution environments are instantiated or torn down.

Trust Anchors in Software Defined Networks 489

Fig. 1. TLSonSGX system design

For a secure deployment, the administrator must ensure both a secure instal-
lation of hardware and software, as well as provision the correct initial con-
figuration of the virtual switch instances in the cloud infrastructure. In turn,
secure generation of keys and provisioning of certificates is a precondition to
ensuring security of the initial deployment configuration. Furthermore, ensuring
the integrity of virtual switch binaries and configurations is a precondition for
ensuring the run-time security of the deployed instances.

We address this with a new library, TLSonSGX, that enables virtual
switches to use a cryptographic library running in a TEE (see Fig. 1). TLSon-
SGX provides an abstraction layer and a wrapper around the cryptographic
library deployed in a TEE, allowing to easily substitute the implementation
depending on performance, functionality and licensing aspects. Following this
approach, TLS sessions originate and terminate within the TEE and the gener-
ated keys and certificates are confined to the TEE, ensuring the confidentiality
and integrity of core assets, such as generated keys, certificates and TLS context,
even in the event of a host compromise. This, in combination with an infrastruc-
ture monitoring system and a file integrity subsystem (such as Linux IMA),
prevents the adversary from impersonating data plane network elements [55]
and from enrolling additional network elements into the infrastructure.

Secure provisioning of authentication certificates is challenging, especially at
scale, and depends on the capability to establish a secure communication chan-
nel between the certificate authority (CA) and the target component. Several
vendor-specific solutions exist [27,33]. To support the deployment, we introduced
a CA with extended functionality to sign certificates for the virtual switches and
the SDN controller. CA certificates are provisioned to the virtual switches and
the SDN controller in the deployment and are subsequently used for mutual
authentication. Beyond secure certificate provisioning, the extended CA verifies
the integrity of the virtual switches before signing their certificates. We lever-
age the remote attestation capability provided by the TPM to verify the TCB
integrity on the host platform. The TPM is in this protocol the root of trust that
stores and provides a signed quote of the integrity measurements of the virtual
switch binary and ancillary libraries, collected by IMA.

3.3 Application Plane

Network elements on the application layer, such as VNFs, must be authenticated
and integrity verified prior to enrollment into the SDN infrastructure. As the

490 N. Paladi et al.

Fig. 2. Enrollment steps in the application layer.

controller requires mutual authentication with all its clients, this ensures that
only trustworthy VNFs can communicate with the controller. Similar to the
approach above, the TPM is used as a root of trust.

We use SGX enclaves to ensure integrity and confidentiality of the authen-
tication credentials for enrolled VNFs. Storing the credentials in SGX enclaves
reduces the attack surface to the enclave TCB and offers an additional layer of
protection even in the case of a breach of the platform TCB. We discuss the
limitations of this approach in Sect. 6.3.

We next provide an overview of the proposed solution (see Fig. 2). The
extended certificate authority (CA) introduced above determines whether or
not a VNF configuration is valid, by matching against a list of known good
configurations. If a configuration is valid, the CA can also sign certificates. This
component can be collocated with the network elements in the deployment, or be
deployed and operated by a third party. We assume that the CA root certificate
is provided to the SDN controller during initial setup.

At the start of the enrollment protocol, the orchestrator launches an exe-
cution environment (such as a bare-metal host, virtual machine or container)
with TPM and IMA support. Together, these two mechanisms record both the
software and hardware configuration in a measurement log, including the TCB
of the VNFs. The measurement log is anchored in the TPM located of the host,
allowing the use of the TPM’s remote attestation functionality. Note that both
a native and a virtualized TPM can be used in this case.

Similar to [62] we use an attestation agent running on the container host.
This agent proxies the communication between the container and the TPM and
IMA. We propose a solution where the attestation agent is only accessible from
the container running on the same host. This prevents direct communication
between the attestation agent and the CA. To prevent cuckoo attacks [45], the
communication passes through the container application and the enclave and
ensures that the enclave is running on the same host.

The enrollment phase consists of the following steps (see Fig. 2): Upon ini-
tialization of the container and application, the latter requests a nonce from the
CA 1 , 2 . Next, the application requests from the attestation agent a quote
for the given nonce, together with the IMA measurement list 3 . The agent
communicates with the TPM and the IMA to retrieve the data 4 , and returns
the data to the application 5 . The enclave generates a new private key and
a certificate signing request (CSR) and stores it in the SGX enclave 6 . The

Trust Anchors in Software Defined Networks 491

application sends the quote, measurement list, and the CSR to the CA 7 , that
verifies the message 8 . As the measurement list covers both the host system
and the container TCB, the integrity of the host and target containers can be
validated. If the measurement values match known good configurations, the CA
signs the CSR and returns the signed certificate to the enclave 9 . At this point,
the VNF can establish a secure TLS connection with the SDN controller. The
proposed solution ensures that only trustworthy VNFs receive valid certificates
and can be enrolled in the SDN infrastructure.

4 Implementation

To facilitate adoption and obtain reproducible results, we implemented the pro-
posed solution using common open-source libraries and execution isolation fea-
tures available on commodity platforms. We used Open vSwitch (OvS), a popular
software switch implementation and the Ryu and Floodlight SDN controllers,
mainly due to their popularity and simple configuration. In the remainder of this
section, we first describe the implementation of TLSonSGX on the data plane.
Next, we describe the security mechanisms deployed on the application plane.

4.1 TLSonSGX

The SGX programming model requires that applications deployed in SGX
enclaves have an external component that can be called by other processes run-
ning on the operating system, and that in turn maps such calls to software in the
enclave. This external component is not part of the enclave and its integrity can-
not be attested using the SGX integrity attestation mechanisms, thus is consid-
ered untrusted ; in contrast, the code running in the enclave is considered trusted
once its integrity has been attested. Following the SGX programming model,
the untrusted code portion of the TLSonSGX library is a wrapper that maps
OpenSSL external methods (used by Open vSwitch) internally into enclave calls
(ECALLs). The trusted portion of the code, contained within the SGX enclave,
implements the ECALLs by utilizing the SGX trusted TLS library. Support
for TLS libraries in SGX varies and evolves continuously; we have chosen the
mbed TLS [31] library considering its sufficient support for SGX enclaves.

Considering that authentication keys and certificates are confined to the
enclave, we modified OvS to use only a limited set of OpenSSL external meth-
ods that we subsequently implemented in TLSonSGX. The OpenSSL library
implements three data structures: SSL METHOD, SSL CTX, and SSL.

These data structures all contain crucial information for TLS connection
security, therefore we create and confine them within the enclave. The objects
are passed by the OvS instance via an unmodified API using the external meth-
ods we implemented. They are created, confined, and handled inside the enclave
during the operation of the virtual switch, and hence discarded and not passed
to ECALLs. There is no one-to-one mapping in mbed TLS for these three struc-
tures, hence we redefine these structures using mbed TLS primitives (specifically
the mbedtls ssl config and mbedtls ssl context data structures).

492 N. Paladi et al.

The code in stream-ssl.c implements the interface between OvS and the
OpenSSL library. We extended the OvS configuration script and stream-ssl.c
with a new compilation flag, SGX. If the SGX flag is set at compilation time,
stream-ssl.c will use the TLSonSGX static library instead of the OpenSSL
library. Moreover, the sections of stream-ssl.c that load keys and certificates
from the file system become redundant and are omitted.

4.2 Application Plane

On the application plane, the solution consists of three major components: the
network application, the attestation agent, and the certificate authority.

The attestation agent is a service running on the container host, setup to
listen to connections from containers running on the same host, as those are the
only containers able to request a quote from this host. The attestation agent
can return both a copy of the measurement list, and a quote from the TPM.
The quotes are made over the appropriate PCR registers to capture the current
configuration, together with a nonce to prevent replay attacks. Interfacing with
the TPM is implemented using the TrouSerS TSS library [22] on Linux. Using
an attestation agent reduced the code base of the containers, since they do not
have to interface directly with a TPM or Linux IMA.

Next, the CA fulfills two goals. First, it validates the integrity of the compo-
nents by validating the quote, and compares the configuration and measurement
list to known good values. Second, if the two values match, the CA signs the
applications CSR. We implemented this using the OpenSSL C library to cre-
ate the signature with a pre-configured root certificate. This root certificate is
distributed to the SDN controller, allowing it to validate the certificate chain.

The final component is the container application. Using mbed TLS [31], we
implemented an application that supports the attestation sequence described
earlier, and communicates with both the attestation agent and the CA. Once
the attestation sequence is finished, the application can connect to an SDN
controller using the credentials generated and confined within the enclave.

5 Evaluation

5.1 Testbed

We evaluated the solution on the testbed described below (see Fig. 3).

Hardware. The host platform is a Lenovo Thinkpad T460s with a dual-core
Intel R© CoreTM i7-6600U CPU clocked at 2.60 GHz with SGX support. VM1 was
created with 1 virtual CPU, and VM2 with 2 virtual CPUs; both VMs had 4 GB
RAM, 30 GB of storage, and used virtio as vNIC. We used Ubuntu 16.04.1 (with
OvS and SGX drivers and SDKs) on both the host and VMs. To enable the use
of SGX within the VM environment, we created VM2 using patched versions of
QEMU and KVM provided by the SGX project3 and Intel SGX SDK, v1.8.
3 SGX Virtualization, 01.org/intel-software-guard-extensions/sgx-virtualization.

http://01.org/intel-software-guard-extensions/sgx-virtualization

Trust Anchors in Software Defined Networks 493

Fig. 3. Testbed architecture

Network
Namespace 2

Open
vSwitchNetwork

Namespace 1

Traffic
Generator/

Sink

Echo
Server

1

8

2 3

5

4

67

UDP Echo Request

UDP Echo Reply
Ryu SDN
Controller

Fig. 4. UDP packet path

We enabled hyper-threading on the host platform, yielding 4 logical CPUs.
We pinned VM1 to CPU 2 and VM2 to CPUs 1 and 3 (same core). In VM2,
we pinned the virtual switch to CPU 1 and the traffic generator/sink and echo
server to CPU 2, in order to reduce inter-core communication overhead [50].
However, due to the limited number of cores on the host (2 cores) we were
unable to implement strict CPU isolation by dedicating entire cores. In Sect. 5.3
we discuss the potential implications of this.

Software. We used OvS release 2.6.04. In VM2, we deployed OvS binaries com-
piled and linked with our TLSonSGX (as explained in Sect. 3.2). We created two
network namespaces, each with a port connected to the OvS instance.

The CA uses OpenSSL 1.1.0d for TLS communication with OvS and to sign
the OvS and the SDN controller certificates. We used OpenSSL, rather than
TLSonSGX for the CA implementation for two reasons: (1) the CA implemen-
tation is trusted according to the threat model; and (2) to ensure interoperability
between TLSonSGX (on the client side) and OpenSSL (on the server side).

We chose the Ryu SDN open-source controller as it supports TLS communi-
cation with OpenFlow switches5. It is written in Python and is widely used in
research [3] and in commercial products6.

5.2 Evaluation Targets

SDN Controller Program. In the SDN model, the virtual switch forwards the
first packet in a new flow to the SDN controller. The controller replies with a
flow table update, the action to be executed by the switch to handle the packet,
and the packet itself. The virtual switch handles subsequent packets in the flow
according to the newly installed rule in the flow table.

4 Commit 4b27db644a8c8e8d2640f2913cbdfa7e4b78e788.
5 See Ryu 4.9 Documentation, https://ryu.readthedocs.io/en/latest/tls.html.
6 See SmartSDN Controller, https://osrg.github.io/ryu-book/.

https://ryu.readthedocs.io/en/latest/tls.html
https://osrg.github.io/ryu-book/

494 N. Paladi et al.

To exercise the communication between the SDN controller and the virtual
switch and to capture latency measurements, we designed the SDN controller as
a learning L2 switch, with a MAC address to port number mapping table. To
collect measurements of the controller-induced latency, the SDN controller sends
no flow updates to the virtual switch (otherwise we would get one measurement
per new destination). As a result, the virtual switch sends all the packets in the
flow to the SDN controller and the controller returns the packets to the virtual
switch along with the action to send the packet through the corresponding port.

Performance Measurements. We are primarily interested in the latency and the
time required to generate key pairs and to obtain a signed certificate from the
CA. When it comes to latency, the choice of traffic generators was limited to those
that can provide latency measurements. Moreover, such measurements require
that clocks of both traffic source and sink are synchronized (or co-exist in the
same host). Having investigated several traffic generators (qperf7, pktgen [37],
moongen [16], and Click [35]), we chose Click due to its flexibility and versatility.

We implemented a traffic generator and sink using the Click Modular Router.
This allows us to measure round trip latency for UDP packets of varying
sizes, at a rate of 500 Packets Per Second (pps) using the Click element
StoreUDPTimeSeqRecord. Increasing the rate beyond that results in much higher
latency variance (see Sect. 5.3).

We deployed the traffic generator and sink in network namespace (i) and a
UDP echo server in network namespace (ii). The echo server echoes the received
UDP packet back to the traffic generator and sink. The two network names-
paces communicate through Open vSwitch, as illustrated in Fig. 4. To bench-
mark the performance, we replicated the measurements in a clone of VM2, using
a vanilla QEMU and KVM, with a default Open vSwitch implementation that
uses OpenSSL.

5.3 TLSonSGX Performance Evaluation

Keys and Certificate Generation Time. This measurement concerns the time
from SSL library init invocation in the Open vSwitch until the key pairs and
signed certificate are loaded to the enclave’s memory. See measurement results
in Table 1. There is no corresponding measurement in a vanilla Open vSwitch,
since keys and certificates are handled manually [38]. However, as this operation
is only executed once when ovs-vswitchd starts, the measurements show that
there is little de facto overhead introduced by the implementation.

Packet Round Trip Latency. In this section we discuss and analyze the
packet round trip latency. The measurements do not include the key generation
time; likewise, the time to establish a TLS session is not included, as it must
already be established before packets can flow. The TLS session remains active
unless one of the two ends (Open vSwitch or SDN controller) terminates the
session.
7 See qperf man page.

Trust Anchors in Software Defined Networks 495

Table 1. Keys and certificate gener-
ation time. 1000 measurements.

Mean 0.344 s

Variance 0.0488

1st Quartile 0.186 s

Median 0.276 s

3rd Quartile 0.434 s

Table 2. Packet rate vs. average
CPU utilization.

Packet rate OpenSSL TLSonSGX

500 pps 25% 61%

1000 pps 40% 78%

2000 pps 49% 96%

Packet Size. The IP packet size received by the Open vSwitch from the traffic
generator is bounded by the Maximum Transmission Unit (MTU) of the network
namespace port connected to the Open vSwitch (1500 bytes in our tests). Open
vSwitch encapsulates the received packet in an OpenFlow Packet In message,
adding an 18 bytes header [13], that is in return encapsulated in a TLS record
sent from the Open vSwitch to the SDN controller. If the packet sent by the
traffic generator is larger than the MTU, then it is fragmented and Open vSwitch
handles it as two separate Packet In messages to the SDN controller.

The TLS record adds a 5-byte header. Depending on the cipher suite nego-
tiated between the server and the client, a padding field (up to 15 bytes) is
added, and the TLS record is appended with a Message Authentication Code
(MAC) computed over the data. In the handshake messages exchanged between
Open vSwitch and the SDN controller in our tests, the negotiated cipher suite
was ECDHE-RSA-AES256-SHA, which provides perfect forward secrecy through
the use of an Elliptic Curve Diffie-Hellman key exchange [9], while the bulk
encryption use 256-bit AES in CBC-mode with SHA-1 for MAC [11].

We measure the latency for increasing packet sizes ranging from 64 bytes
up to 1408 bytes (in increments of 64 bytes), including the Ethernet and IP
headers (minus the Cyclic Redundancy Check). The upper limit is set to avoid
subsequent fragmentation between the Open vSwitch and the SDN controller.

Packet Rate Selection and CPU Utilization. We excluded outliers with a round
trip latency over 2.5 ms from the captured data: 5237 outliers when testing
OpenSSL and 11622 outliers when testing TLSonSGX, out of 220000 samples
for each implementation. We investigated the CPU utilization to identify the
cause of the outliers and the order-of-magnitude difference in the outlier numbers
between the two implementations. In both implementations, inside the VM, the
first vCPU reaches 100% utilization due to the Click packet generation process
pinned to it, even at rates lower than 500 pps (i.e., 50, 100, 200 pps). However,
the second vCPU, where ovs-vswitchd process is pinned, has a higher average
CPU utilization when TLSonSGX is used compared to OpenSSL (see Table 2).
Increasing the rate beyond 500 pps leads to increasing the second vCPU’s uti-
lization and average latency. Thus, we chose 500 pps as a suitable and opti-
mal maximum rate for further measurements and analysis. Using SGX causes
increased CPU utilization due to the overhead of transitioning to and from the
memory enclave.

496 N. Paladi et al.

Latency and Packet Size. The packet round trip latency measurements are
plotted in a boxplot comparing TLSonSGX with the vanilla Open vSwitch
with OpenSSL when forwarding UDP packets of a range of sizes (outliers were
excluded, as stated above). Figure 5 shows a plot of latency versus packet size.

1.25

1.50

1.75

2.00

2.25

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408
Packet Size in Bytes

 L
at

en
cy

 in
 M

ill
is

ec
on

ds

TLS Library

OpenSSL:

 Latency = 0.000028*Packet Size + 1.371, R²=0.0691

TLSonSGX:

 Latency = 0.000182*Packet Size + 1.703, R²=0.948

Fig. 5. UDP packet round trip latency vs. packet size

Each box represents the data between first and third quartile, the thick line in
the box represents the median. The upper whisker is the minimum value between
the data maximum and 3rd Quartile + 1.5 * IQR, where IQR is the interquartile
range. The lower whisker is the maximum value between the data minimum and
1st Quartile − 1.5 * IQR [18].

A linear regression analysis of means shows that at zero byte TLSonSGX adds
an overhead of 0.33 ms compared to OpenSSL. In implementations the latency
increases linearly with packet size; we estimate this increase to 28 ns per byte
for OpenSSL, and 182 ns per byte for TLSonSGX. While the linear increase is
consistent with our expectations (larger packets require more processing time),
the increase per byte is higher in TLSonSGX than in OpenSSL (154 ns per
byte). This, and the extra cost of 0.33 ms at zero byte are also expected due to
the transition overhead to and from the memory enclave.

Once a packet is received at an Open vSwitch port from the net-
work name space, ovs-vswitchd triggers ecall ssl write to encrypt and
send the packet to the SDN controller, while checking the SSL state
(ecall ssl get state) before and after the write ECALL. Since ovs-vswitchd
uses non-blocking sockets, ovs-vswitchd keeps reading and returning from the
socket (ecall ssl read), while comparing the SSL state before and after the

Trust Anchors in Software Defined Networks 497

read (ecall ssl get state). If a negative value is returned (WANT READ)
from ecall ssl read then it triggers (ecall ssl get error) to retrieve the
error code which indicates that the read call must be repeated and accordingly
continue the loop. If a positive value is returned, there is a response from the
controller. The controller will respond with two packets: (1) the original packet
itself; (2) the action needed by the switch to forward the packet to the second
network name space. The same flow will run during the return trip from the
second network name space to the first one.

Table 3. Analysis of packet latency (all measurements are in milliseconds**)

Size (B) TLSonSGX OpenSSL Diff ecall ssl Total enclave

access

read write get state* get error*

64 1.6500 1.2682 0.3817 0.0047 0.0646 0.0047 0.0043 0.2966

128 1.6667 1.2722 0.3944 0.0048 0.0676 0.0047 0.0043 0.3040

256 1.6820 1.2844 0.3976 0.0049 0.0725 0.0047 0.0043 0.3146

512 1.6852 1.2955 0.3897 0.0049 0.0828 0.0047 0.0043 0.3350

1024 1.6963 1.3145 0.3818 0.0049 0.1022 0.0047 0.0043 0.3740

* ecall ssl get state and ecall ssl get error are independent of packet size.

** Measurements captured in a different iteration than in Fig. 5.

To analyze and break down the time difference between OpenSSL and TLSon-
SGX, we traced the ECALLs indirectly called by ovs-vswitchd during the
packet’s round trip. We measured the time consumed for each ECALL and
repeated the measurement 10000 times per packet size. Table 3 lists the mean
values for each of the four different ECALLs. The last column in the table shows
the sum of all ECALLs times per packet round trip.

We noticed that the duration of ecall ssl write is longer (and increases
with packet size) than that of other ECALLs. This is because ecall ssl write
is the only ECALL that writes from a buffer with a pointer outside the enclave
(unprotected memory) to the enclave memory. All other ECALLs do the oppo-
site. According to the manual, ECALLs that pass an external pointer into the
enclave are slow, since a buffer is allocated inside the enclave memory8. Before
copying the contents of the external buffer into the enclave memory, the content
and the size of the buffer referenced by the external pointer are verified for every
call to prevent overwriting enclave code or data.

Recall from the system model (consistent with a typical SDN deployment)
that only the first packet in the flow is sent to the SDN controller. As a result,
crafting a small enough first packet (64 bytes) allows to optimize the latency
and reduce the time to add the flow rule in the Open vSwitch flow table.

8 Pointer Handling, IntelR© Software Guard Extensions SDK, https://software.intel.
com/en-us/node/708975.

https://software.intel.com/en-us/node/708975
https://software.intel.com/en-us/node/708975

498 N. Paladi et al.

Table 4. Attestation time in application plane for various stages of the attestation
sequence. Stages with execution time <0.010 s removed.

Stage Mean Variance Median

TPM quote 0.332 s 0.000159 0.335 s

Key generation 0.326 s 0.050746 0.266 s

CSR signing 0.011 s 0.000002 0.010 s

Total attestation time 0.686 s 0.050849 0.622 s

5.4 Application Plane Evaluation

In the application plane, we are mostly interested in performance measurement
regarding the attestation time. Every time a container is launched, both the
container itself and the host it is running on must be attested. In this section,
we focus on measuring the attestation time for the proposed application plane
design. There are of course other relevant performance aspects, such as time
required for the actual TLS connection to the controller, but we refer to previous
work for such measurements [19].

The benchmarks were made by repeatedly launching the application which
triggers the attestation. We ran 1000 tests, and calculated the mean and median
values of the total attestation time (see results in Table 4). As seen from the table,
the attestation time is well below one second in the average case. Breaking down
the execution time to various stages of the attestation, and presenting those
with an execution time of ≥0.010 s, we see that the majority of the attestation
time is spent in two different stages: (1) waiting for the TPM chip to generate
the quote, and (2) generating the private key within the enclave. Stage (1) is
implemented in the TPM chip itself, while stage (2) depends on the size and type
of key generated. A 2048-bit RSA key was used for the measurements presented
above. We also note that our current implementation is not optimized, and it
may be possible to reduce the execution time even further.

6 Related Work

6.1 Isolating Network Elements

Protecting the sensitive code and data of network elements is a topic of active
on-going research. Jacquin proposed an architecture that used a hardware root
of trust to remotely attest the integrity of virtualization hosts in SDN infras-
tructure [26]. Furthermore, commodity TEEs were used in case studies on secur-
ing network applications [29,52], implemented using OpenSGX, an emulator of
SGX [27]. TruSDN is a framework for bootstrapping trust in an SDN infras-
tructure implemented using OpenSGX [43]. It supports secure provisioning of
switches in SGX enclaves, a secure communication channel between switches and
SDN controller, and secure communication between endpoints in the network

Trust Anchors in Software Defined Networks 499

using session keys that are generated per flow and used only during the lifetime
of the flow. Similarly, Trusted Click [14] explores the feasibility of performing
network processing in SGX enclaves.

SCONE enables operators to protect confidentiality and integrity of com-
putation in application containers against an adversary with root access to the
container host [4]. SCONE achieves this by deploying containers within SGX
enclaves and relies on a libc library ported to the SGX environment to reduce
performance impact of context switches between SGX enclaves and the under-
lying OS, at the cost of expanding the TCB.

Our solution addresses both confidentiality of long-term credentials and ses-
sion keys, as well as integrity of the network element platform. In particular,
we enable network elements on remotely attested hosts to protect their commu-
nication with the network controller using a TLS library and credentials in a
local SGX enclave. This allows us to protect core assets with insignificant per-
formance overhead and minimal changes to network element implementations.
Porting entire applications into SGX enclaves - as proposed in the related work
above - expands the attack surface to both software vulnerabilities and side-
channel attacks. We avoid this by only porting to the enclaves a minimal TCB
of the network elements. We reduce the TCB by only confining the TLSonSGX
library, credentials, and TLS session information to the enclave.

6.2 Enrolling Network Elements

Incomplete or incorrect network views are an attack vector in SDN deploy-
ments [40]. The Secure Network Bootstrapping Infrastructure (SNBI) proto-
col [39] bootstraps secure communication channels of network elements and con-
trollers and provisions the keys required for secure communication. To enable
connectivity to the network devices, SNBI assigns unique IPv6 addresses (based
on the unique device identifier) or and bootstraps devices with the required keys.
However, the SNBI protocol is not resistant against impersonation attacks on
network elements and fails to specify a protocol for software network elements
with similar security features. We address the shortcomings of SNBI by attesting
the integrity of the trusted computing base of the platforms hosting network ele-
ments prior to provisioning authentication credentials; the credentials are stored
in a secure enclave and as described in Sect. 4.1, never leave the enclave.

6.3 TLS Implementations for SGX

There are several known TLS libraries ported to SGX enclaves. TaLoS [5] ter-
minates TLS communication inside the container enclave by providing a port of
LibreSSL library into SGX and thus maintaining OpenSSL API, including APIs
to set private keys and certificates from outside the enclave. In this paper, keys
and certificates are maintained inside the enclave and no APIs are exposed to
manipulate them. Furthermore, TaLoS was not available at the time of writing.

Initially, mbed TLS was the only available port of a TLS library into SGX
in Linux [31]. Intel R© [24] and wolfSSL [59] provided a port to Linux in May

500 N. Paladi et al.

2017 and June 2017 respectively. However, none of these three provided an
unmodified OpenSSL API that is exposed outside the enclave. Thus, none of
the TLS libraries for SGX enclaves expose the required functionality. We imple-
mented TLSonSGX to address the lack of usable implementations. TLSonSGX
implements a wrapper around mbed TLS Trusted SGX library that exposes the
OpenSSL APIs (that are needed for Open vSwitch TLS operations) outside the
enclave.

Popular TLS libraries with support for execution in SGX enclaves (OpenSSL,
GnuTLS, mbed TLS, WolfSSL, LibreSSL) are vulnerable to Bleichenbacher
attacks [10] and a modified version padding oracle attacks [58] on branch level,
cache line level and page level [60]. Such attacks can be mitigated by using
the Diffie-Hellman (DH) key exchange instead of RSA-based key exchanges
and Authenticated Encryption with Associated Data (AEAD) mode for encryp-
tion [60]. TLSonSGX is compatible with the mitigation suggested in [60] and
can be configured to enforce DH key exchanges and AEAD encryption mode.

7 Limitations and Future Work

We implemented a prototype and tested it using one dual-core laptop and used
VMs with SGX support to host the virtual switches, the SDN controller, and
network namespaces (See in Sect. 5.1). While this sufficient to demonstrate the
feasibility of TLSonSGX and compare it to OpenSSL, the platform choice limited
possible performance measurements. Dedicated multi-core platforms, or cloud
resources, with SGX support could be used to refine the performance measure-
ments.

The current implementation supports only one virtual switch connecting mul-
tiple VMs per physical host, as only one SSL context is created and kept inside
the enclave. This can be improved by introducing support for multiple switches
per host by extending the library to support multiple SSL contexts. TLSonSGX
could also be extended to protect the flow table or OVS database content from
tampering by storing them in the enclave.

For keys and certificates to survive host reboots, the enclave could deploy
sealing mechanisms to seal the enclave, i.e. encrypt it, export it from the enclave,
and store it on the local hard disk. We did not prioritize this, as generating new
keys and obtaining a new certificate takes approximately 0.3 s (See Sect. 5.3).

8 Conclusion

Protecting network elements on the data and application planes is essential for
the security of SDN deployments and the network isolation between tenants.
However, both state of art network elements and the underlying platforms are
vulnerable to software attacks, potentially exposing authentication credentials
stored in plaintext. To address this, we implement the TLSonSGX library that
provides a secure and scalable mechanism for network elements to generate

Trust Anchors in Software Defined Networks 501

keys and obtain signed certificates, while keeping them secure within a mem-
ory enclave. TLSonSGX confines all the TLS connections to the SDN controller
within the enclave to ensure that keys, certificates, and session data remain inac-
cessible outside the enclave. We complement TLSonSGX with additional mech-
anisms to asses the network element trustworthyness and apply the approach on
both data- and application planes.

Our evaluation results show that TLSonSGX does not significantly impact
the time to generate credentials and only adds an insignificant overhead when
processing the first packet in each flow. TLSonSGX reduces the TLS configura-
tion overhead and improves the security of SDN deployments.

Acknowledgements. This research was conducted within the 5G-ENSURE and
COLA projects and received funding from the European Union’s Horizon 2020 research
and innovation programme, under grant agreements No. 671562 and 731574.

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, HASP 2013, p.
10. ACM, June 2013

2. Antikainen, M., Aura, T., Särelä, M.: Spook in your network: attacking an SDN
with a compromised OpenFlow switch. In: Bernsmed, K., Fischer-Hübner, S. (eds.)
NordSec 2014. LNCS, vol. 8788, pp. 229–244. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11599-3 14

3. Arbettu, R.K., Khondoker, R., Bayarou, K., Weber, F.: Security analysis of Open-
Daylight, ONOS, Rosemary and Ryu SDN controllers. In: 2016 17th International
Telecommunications Network Strategy and Planning Symposium (Networks), pp.
37–44, September 2016

4. Arnautov, S., et al.: SCONE: secure Linux containers with Intel SGX. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI 2016, pp. 689–703. USENIX, November 2016

5. Aublin, P.L., et al.: TaLoS: secure and transparent TLS termination inside SGX
enclaves. Technical report 2017/5, Imperial College London, March 2017

6. Ball, T., et al.: VeriCon: towards verifying controller programs in software-defined
networks. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2014, pp. 282–293. ACM, June 2014

7. Berde, P., et al.: ONOS: towards an open, distributed SDN OS. In: Proceedings of
the 3rd Workshop on Hot Topics in Software Defined Networking, HotSDN 2014,
pp. 1–6. ACM, August 2014

8. Bifulco, R., Boite, J., Bouet, M., Schneider, F.: Improving SDN with InSPired
switches. In: Proceedings of the Symposium on SDN Research, SOSR 2016, pp.
1–12. ACM, March 2016

9. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: The open vSwitch
database management protocol. RFC 4492, IETF, May 2006. http://www.rfc-
editor.org/rfc/rfc4492.txt

10. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

https://doi.org/10.1007/978-3-319-11599-3_14
https://doi.org/10.1007/978-3-319-11599-3_14
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc4492.txt
https://doi.org/10.1007/BFb0055716

502 N. Paladi et al.

11. Chown, P.: Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS). RFC 3268, IETF, May 2002. http://www.rfc-editor.org/
rfc/rfc3268.txt

12. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011)

13. OpenFlow Switch Consortium: OpenFlow switch specification, v. 1.5.1. Technical
report, ONF TS-025, Open Networking Foundation, March 2015

14. Coughlin, M., Keller, E., Wustrow, E.: Trusted click: overcoming security issues of
NFV in the cloud. In: Proceedings of the ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, SDN-NFVSec
2017, pp. 31–36. ACM, March 2017

15. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, IETF, August 2008. http://www.rfc-editor.org/rfc/rfc3268.txt

16. Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle, G.: MoonGen: a
scriptable high-speed packet generator. In: Proceedings of the 2015 Internet Mea-
surement Conference, IMC 2015, pp. 275–287. ACM, New York (2015)

17. Enns, R., Bjorklund, M., Schoenwaelder, J.: Network configuration protocol (NET-
CONF). RFC 6241, IETF, June 2011. http://www.rfc-editor.org/rfc/rfc6241.txt

18. Frigge, M., Hoaglin, D.C., Iglewicz, B.: Some implementations of the Boxplot. Am.
Stat. 43(1), 50–54 (1989). http://www.jstor.org/stable/2685173

19. Girtler, D., Paladi, N.: Component integrity guarantees in software-defined net-
working infrastructure. In: Proceedings of the 2017 IEEE Conference on Network
Function Virtualization and Software Defined Networks, NFV-SDN 2017, pp. 292–
296, November 2017

20. Group Specification: Network Functions Virtualisation (NFV), Architectural
Framework, v. 1.1.1. Technical report, GS NFV 002, European Telecommunica-
tions Standards Institute, October 2013

21. Hu, H., Han, W., Ahn, G.J., Zhao, Z.: FLOWGUARD: building robust firewalls
for software-defined networks. In: Proceedings of the 3rd Workshop on Hot Topics
in Software Defined Networking, HotSDN 2014, pp. 97–102. ACM, August 2014

22. IBM Corp.: TrouSerS: The open-source TCG Software Stack. http://trousers.
sourceforge.net/. Accessed 13 Apr 2018

23. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Combined
Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Technical report, 325462–
063US, Intel Inc., July 2017

24. Intel Corp.: Intel SGX SSL. https://github.com/01org/intel-sgx-ssl. Accessed 20
July 2017

25. Izard, R.: Floodlight REST API. https://floodlight.atlassian.net/wiki/display/
floodlightcontroller/Floodlight+REST+API. Accessed 16 Dec 2016

26. Jacquin, L., Shaw, A.L., Dalton, C.: Towards trusted software-defined networks
using a hardware-based integrity measurement architecture. In: Proceedings of the
1st IEEE Conference on Network Softwarization, NetSoft 2015, pp. 1–6, April 2015

27. Jain, P., et al.: OpenSGX: an open platform for SGX research. In: Proceedings
of the 2016 Network and Distributed System Security Symposium, NDSS 2016.
Internet Society, February 2016

28. Kim, S., Han, J., Ha, J., Kim, T., Han, D.: Enhancing security and privacy of Tor’s
ecosystem by using trusted execution environments. In: 14th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2017, pp. 145–161.
USENIX (2017)

http://www.rfc-editor.org/rfc/rfc3268.txt
http://www.rfc-editor.org/rfc/rfc3268.txt
http://www.rfc-editor.org/rfc/rfc3268.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.jstor.org/stable/2685173
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
https://github.com/01org/intel-sgx-ssl
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+REST+API
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+REST+API

Trust Anchors in Software Defined Networks 503

29. Kim, S., Shin, Y., Ha, J., Kim, T., Han, D.: A first step towards leveraging com-
modity trusted execution environments for network applications. In: Proceedings
of the 14th ACM Workshop on Hot Topics in Networks, HotNets-XIV, pp. 7:1–7:7.
ACM, November 2015

30. Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-
defined networks. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN 2013, pp. 55–60. ACM, August
2013

31. mbedTLS: TLS for SGX: a port of mbedTLS. https://github.com/bl4ck5un/
mbedtls-SGX. Accessed 23 Apr 2018

32. McKeen, F., et al.: Intel software guard extensions (Intel SGX) support for dynamic
memory management inside an enclave. In: Proceedings of the 2016 Hardware and
Architectural Support for Security and Privacy, HASP 2016, pp. 10:1–10:9. ACM,
June 2016

33. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, HASP 2013, p. 10:1. ACM, June 2013

34. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Comput. Commun. Rev. 38, 69–74 (2008)

35. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The click modular router.
ACM Trans. Comput. Syst. 18(3), 263–297 (2000)

36. Nyman, T., Ekberg, J.E., Asokan, N.: Citizen electronic identities using TPM
2.0. In: Proceedings of the 4th International Workshop on Trustworthy Embedded
Devices, TrustED 2014, pp. 37–48. ACM (2014)

37. Olsson, R.: Pktgen the Linux packet generator. In: Proceedings of the Linux Sym-
posium, Ottawa, Canada, pp. 11–24, May 2005

38. Open vSwitch: Open vSwitch Manual. https://github.com/openvswitch/ovs/blob/
master/INSTALL.SSL.rst. Accessed 10 Nov 2017

39. OpenDaylight Community: Secure Network Bootstrapping Infrastructure, October
2017. http://docs.opendaylight.org/en/stable-boron/user-guide/snbi-user-guide.
html. Accessed Oct 2017

40. Paladi, N., Gehrmann, C.: Towards secure multi-tenant virtualized networks. In:
2015 IEEE TrustCom/BigDataSE/ISPA, vol. 1, pp. 1180–1185, August 2015

41. Paladi, N.: Towards secure SDN policy management. In: Proceedings of the 8th
International Conference on Utility and Cloud Computing, UCC 2015, pp. 607–
611, December 2015. https://doi.org/10.1109/UCC.2015.106

42. Paladi, N.: Trust but verify: trust establishment mechanisms in infrastructure
clouds. Ph.D. thesis, Department of Electrical Engineering, Lund University,
September 2017

43. Paladi, N., Gehrmann, C.: TruSDN: bootstrapping trust in cloud network infras-
tructure. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm
2016. LNICST, vol. 198, pp. 104–124. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59608-2 6

44. Paladi, N., Karlsson, L.: Safeguarding VNF credentials with Intel SGX. In: Pro-
ceedings of the SIGCOMM Posters and Demos, SIGCOMM Posters and Demos
2017, pp. 144–146. ACM, August 2017

45. Parno, B.: Bootstrapping trust in a “trusted” platform. In: Proceedings of the 3rd
Conference on Hot Topics in Security, HOTSEC 2008, pp. 9:1–9:6. USENIX, July
2008

46. Pfaff, B., Davie, B.: The open vSwitch database management protocol. RFC 7047,
IETF, December 2013. http://www.rfc-editor.org/rfc/rfc7047.txt

https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/openvswitch/ovs/blob/master/INSTALL.SSL.rst
https://github.com/openvswitch/ovs/blob/master/INSTALL.SSL.rst
http://docs.opendaylight.org/en/stable-boron/user-guide/snbi-user-guide.html
http://docs.opendaylight.org/en/stable-boron/user-guide/snbi-user-guide.html
https://doi.org/10.1109/UCC.2015.106
https://doi.org/10.1007/978-3-319-59608-2_6
https://doi.org/10.1007/978-3-319-59608-2_6
http://www.rfc-editor.org/rfc/rfc7047.txt

504 N. Paladi et al.

47. Pfaff, B., et al.: The design and implementation of open vSwitch. In: Proceedings of
the 12th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2015, pp. 117–130. USENIX, May 2015

48. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security
enforcement kernel for OpenFlow networks. In: Proceedings of the 1st Workshop
on Hot Topics in Software Defined Networks, HotSDN 2012, pp. 121–126. ACM,
August 2012

49. Scott-Hayward, S., Natarajan, S., Sezer, S.: A survey of security in software defined
networks. IEEE Comm. Surv. Tutor. 18, 623–654 (2015)

50. Sekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G.: Design and implementa-
tion of a consolidated middlebox architecture. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, p. 24. USENIX
Association (2012)

51. Sherwood, R., et al.: Carving research slices out of your production networks with
OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 40, 129–130 (2010)

52. Shih, M.W., Kumar, M., Kim, T., Gavrilovska, A.: S-NFV: securing NFV states
by using SGX. In: Proceedings of the 2016 ACM International Workshop on Secu-
rity in Software Defined Networks & Network Function Virtualization, SDN-NFV
Security 2016, pp. 45–48. ACM, March 2016

53. Shin, S., Porras, P.A., Yegneswaran, V., Fong, M.W., Gu, G., Tyson, M.: FRESCO:
modular composable security services for software-defined networks. In: Proceed-
ings of the 20th Annual Network & Distributed System Security Symposium, NDSS
2013. Internet Society, February 2013

54. Telecommunication Standardization Sector of ITU: Security requirements and
reference architecture for software-defined networking. Technical report, X.1038,
International Telecommunications Union, October 2016

55. Thimmaraju, K., et al.: The vAMP attack: taking control of cloud systems via the
unified packet parser. In: Proceedings of the 2017 on Cloud Computing Security
Workshop, CCSW 2017, pp. 11–15. ACM, New York (2017)

56. Trusted Computing Group: TPM Main Specification Level 2 Version 1.2, Revision
116. Parts 1–3. Technical report, 116 01032011, Trusted Computing Group Inc.,
March 2011

57. Trusted Computing Group: Trusted Platform Module Library Specification, Family
“2.0”, Level 00, Revision 01.16. Technical report, 120 01102013, Trusted Comput-
ing Group Inc., October 2014

58. Vaudenay, S.: Security flaws induced by CBC padding—applications to SSL,
IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 35

59. WolfSSL: wolfSSL with Intel SGX on Linux. https://www.wolfssl.com/wolfSSL/
Blog/Entries/2017/6/14 wolfSSL with Intel SGX on Linux.html. Accessed 20
July 2017

60. Xiao, Y., Li, M., Chen, S., Zhang, Y.: Stacco: differentially analyzing side-channel
traces for detecting SSL/TLS vulnerabilities in secure enclaves. arXiv preprint
arXiv:1707.03473 (2017)

61. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel software guard extensions (Intel
SGX) software support for dynamic memory allocation inside an enclave. In: Pro-
ceedings of the 2016 Hardware and Architectural Support for Security and Privacy,
HASP 2016, pp. 11:1–11:9. ACM, June 2016

62. Zhu, S.Y., Scott-Hayward, S., Jacquin, L., Hill, R.: Guide to Security in SDN
and NFV, 1st edn. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-64653-4

https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/6/14_wolfSSL_with_Intel_SGX_on_Linux.html
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/6/14_wolfSSL_with_Intel_SGX_on_Linux.html
http://arxiv.org/abs/1707.03473
https://doi.org/10.1007/978-3-319-64653-4
https://doi.org/10.1007/978-3-319-64653-4

	Trust Anchors in Software Defined Networks
	1 Introduction
	1.1 Contributions
	1.2 Structure

	2 System and Threat Model
	3 Solution Space
	3.1 Trust Anchors
	3.2 Data Plane
	3.3 Application Plane

	4 Implementation
	4.1 TLSonSGX
	4.2 Application Plane

	5 Evaluation
	5.1 Testbed
	5.2 Evaluation Targets
	5.3 TLSonSGX Performance Evaluation
	5.4 Application Plane Evaluation

	6 Related Work
	6.1 Isolating Network Elements
	6.2 Enrolling Network Elements
	6.3 TLS Implementations for SGX

	7 Limitations and Future Work
	8 Conclusion
	References

