
Chapter 1
Infrared Thermography
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Steffen Leonhardt, and Daniel Teichmann

Abstract Infrared thermography (also infrared imaging or thermal imaging) is a
new remote, non-contact and non-invasive diagnostic and monitoring technique
with increasing relevance in a wide range of medical fields. This is mainly
due to the several advantages of this technology. Thermal imaging is a passive
technique which detects the radiation naturally emitted from an object, in this
case the human skin, and does not use any harmful radiation. Thus, infrared
thermography (IRT) is suitable for prolonged and repeated use. In the last decades,
new medical applications for thermal imaging have arisen. These techniques have
been successfully used in the diagnosis of several pathologies, including breast
cancer, rheumatic diseases, dry eye syndrome, vascular diseases, etc. Infrared
thermography has also demonstrated its potential in the monitoring of several
vital signs, including temperature, respiratory rate, heart rate, and blood perfusion.
Recently, there has been new advance in 3D infrared imaging. A three-dimensional
thermal signature may provide several advantages in the detection and monitoring
of the course of several pathologies including arthritis, thyroid dysfunctions, breast
cancer, sports lesions, and diabetic foot. The current chapter focuses on advances in
the area of medical IRT. First, it reviews the basics of IRT and essential theoretical
background. Second, some medical applications and corresponding methods are
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described in detail. Third, it gives an overview on the recent advances on “3D
Infrared Thermography”.

Keywords Infrared thermography · Medical applications · Diagnostic ·
Monitoring · 3D infrared thermography

1.1 Introduction

Infrared thermography (IRT), also known as thermal imaging, is an imaging
modality, which senses infrared radiation (heat) emitted by objects. In contrast
to other imaging techniques in medicine, such as X-Ray, computed tomography
(CT), and magnetic resonance imaging (MRI), IRT is a completely passive—
i.e., non-invasive and non-radiating—measurement technique. The first infrared
thermogram of a human was recorded in 1928 by Prof. Czerny in Frankfurt,
Germany [1]. Initially, only single infrared detectors have been used. Later on,
during World War II, infrared detectors have been developed and used for military
applications [2]. Besides the issues regarding availability (military restrictions)
and price, that technology was unsuitable for medical applications: both thermal
resolution (approx. 0.5 K) and spatial resolution (approx. 5 mm at a target size of
50 cm2) were too low in order to detect small temperature differences and anatomic
structures on the human body. Moreover, the infrared detectors were big and needed
cooling by, e.g., nitrogen, argon gas, or a sterling cooler [3]. It was only in the 1990s
and early 2000s when the development and availability of uncooled microbolometer
focal plane arrays (FPA) pioneered the usage of IRT in medicine. In contrast to
the old devices with single detectors, the new cameras with FPAs provided a high
spatial and thermal resolution. Also temporal resolution (sample rate or scanning
speed) increased, enabling real-time and high-speed recordings. Another factor was
the availability of computers and more user-friendly image processing software
[3, 4].

A widely known medical application of modern IRT is mass fever screening
during worldwide pandemics, for example, at airports. With the general trend in
medicine away from a reactive, curative approach (diagnosis and treatment) towards
a proactive and preventive approach (identification of risks and elimination of
those), IRT is playing an important role. Since it can easily detect anomalies of
body surface temperature, i.e., hyperthermia due to inflammation or hypothermia
induced by poor perfusion, there are multiple medical applications [4]. In this
chapter, we will introduce some of them—detection of breast cancer, diagnosis of
rheumatic diseases, dry eye syndrome, wounds, monitoring of vital sings (respira-
tory rate, cardiac pulse, and perfusion) as well as the capabilities of 3D thermal
imaging.
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1.2 Physical Principles of Infrared Thermography

Thermographic cameras are unable to sense the surface temperature of an object
directly. Rather, the power of electromagnetic rays that hit the sensors of the cameras
is measured. In this section the physical principles for the calculation of the surface
temperature from its radiation are introduced. Additionally, the effects of non-
ideal objects as well as effects of the transport medium in medical applications of
thermographic measurements will be considered.

1.2.1 Thermal Radiation

All objects with a surface temperature above absolute zero (0 K or −273.15 ◦C,
respectively) emit electromagnetic radiation with a particular wavelength (λ). This
phenomenon is different from heat transfer due to the collusion of particles, called
conduction, where the energy transport depends on the temperature gradient inside
the transport medium. Radiation, on the other hand, describes the energy transfer
by electromagnetic waves, which is solely dependent on the temperature of the
radiation source. For example, the electromagnetic radiation of the sun reaches Earth
even though the temperature of outer space is constant.

The theory of radiant heat was first described by Max Planck in 1913 and is the
fundamental basis of the calculation of surface temperatures based on the spectral
analysis of its radiation [5].

1.2.2 Blackbody Radiation

A practical way to describe the energy flux of radiation is via an idealized physical
body called “blackbody”. A blackbody absorbs all incident radiant energy without
reflection and is homogeneous as well as isotropic. Hence, its radiation is emitted
uniformly in all directions of space. In addition, it is postulated that all radiation of
a blackbody is entirely dependent on the body’s absolute temperature, therefore the
phenomena of luminescence are excluded from calculations. In order to describe
thermal radiation, the permanent state will be investigated, which means that the
energy and thus the temperature of the blackbody are distributed equally inside its
volume.

Based on these assumptions, it is possible to calculate the spectral distribution of
thermal radiation emitted by a blackbody. This function was first described by Max
Planck as the Planck spectrum M0

λ and follows the equation:

M0
λ(λ, T ) = 2πhc2

λ5 · (e
hc

λkT − 1)
. (1.1)
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Fig. 1.1 Spectral radiant
exitance of a body (M0

λ ) at
two different temperatures:
300 and 5778 K (surface
temperature of the sun)
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Here, M0
λ represents the spectral radiant exitance of the blackbody in

(W m−2 µm−1), λ is the wavelength (µm), T stands for the surface temperature (K),
h denotes the Planck constant (h = 6.626 × 10−34 J s), k = 1.3807 × 10−23 J K−1

corresponds to the Boltzmann constant, and c = 2.998 × 108 m s−1 is the speed of
light in vacuum. M0

λ is a function of λ, which means that the total energy content
is distributed over a range of wavelengths. This resulting energy distribution is
dependent on the temperature T of the blackbody as displayed in Fig. 1.1.

The shape of the Planck spectrum is similar for all temperatures, but its amount
of power as well as the wavelength of maximum power (λmax) is shifted based on the
surface temperature. For example, the surface temperature of the sun equals 5778 K;
this creates a spectrum with a wavelength of maximum power at around λmax ≈
500 nm (the wavelength where human eyes evolved to be most sensitive ranges
between about 390 and 700 nm). Bodies with surface temperatures around 300 K
(26.85 ◦C) generate a Planck spectrum between 2.5 and 150 µm. As temperature
decreases, the radiation emitted is more in the range of longer wavelengths. This
effect is explained by Wien’s displacement law. Wavelengths created by surface
temperatures of around 300 K are invisible for the human eye, but sensors that are
sensitive around 10 µm are able to detect this radiation, just like human eyes can
detect the radiation emitted by the sun [6].

Surface temperatures can be calculated based on the total radiant power per sur-
face area M (W m−2). Hence, it is not necessary for thermal detectors to distinguish
between different wavelengths. In general, M describes the area underneath the
curves given in Fig. 1.1; it can be calculated by integrating M0

λ over the range of
all significant wavelengths as given by

M =
∫ ∞

λ0=0
M0

λ dλ. (1.2)

The solution of the integral can be estimated by applying the Stefan-Boltzmann law:

M = σ · T 4, (1.3)

where σ = 5.67 × 10−8 W m−2 K−4 is the Stefan-Boltzmann constant. With this
equation the surface temperature of an object can be easily calculated based on the
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measurement of the radiated power per surface area. This is the general working
principle of sensors integrated in thermographic cameras.

1.2.3 Greybody Radiation

Both Planck’s and Stefan-Boltzmann’s law describe the radiation of a blackbody
under ideal conditions. Nevertheless, real bodies often do not absorb all radiant
energy. In general, objects interact in three different ways with radiation: by absorp-
tion (α), reflection (β), and transmission (γ ). Considering the law of conservation
of energy, α + β + γ = 1 applies. For black bodies, the absorption value α equals
1 and reflection and transmission are zero. If the absorption value is less than 1,
the considered object is called a “greybody”. Solid bodies are generally opaque
(transmission γ = 0), and consequently α + β = 1.

According to Kirchhoff’s law, at a given temperature the ratio of radiant
absorbance to emittance is constant for greybodies (α = ε), therefore the emissivity
for each wavelength is described by

ε = 1 − βλ. (1.4)

For greybodies the Stefan-Boltzmann law takes the form

M = ε · σ · T 4, (1.5)

where ε is constant for all wavelengths. Since ε is smaller than 1 for greybodies,
their temperature has to be larger to create the same total radiant power of
blackbodies.

1.2.4 Temperature Measurement

As mentioned previously, thermal cameras measure and convert the radiation energy
emitted by a body into a temperature value. However, not all radiation detected by
the camera sensors corresponds to the target object. The measured energy (Wtot)
rather consists of the emission of the object (Eobj) plus reflected emission from
ambient sources (Eamb) and emission from the atmosphere (Eatm).

The atmosphere describes the transport medium of heat radiation. In this
medium, there are molecules that interact with the heat rays: some of its energy gets
absorbed or scattered and the atmospheric transmittance γatm must be considered.
Therefore, the Stefan-Boltzmann law for black bodies in vacuum,

Mmeasured = σ · T 4
obj, (1.6)
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Table 1.1 Parameters used to calculate the temperature of the target object Tobj

Parameter Symbol Value

Total radiant power Mmeasured Measured by the camera

Emittance of object εobj Unknown/estimated

Transmittance of atmosphere γatm Approximated: γatm ∼= 1

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Temperature of ambient objects Tamb Unknown

Temperature of the atmosphere Tatm Unknown

must be adapted for greybodies in the atmosphere:

Mmeasured = εobj ·γatm ·σ ·T 4
obj+(1−εobj)·γatm ·σ ·T 4

amb+(1−γatm)·σ ·T 4
atm. (1.7)

The parameters necessary to compute the temperature of the target object Tobj are
displayed in Table 1.1. Next to the Stefan-Boltzmann constant σ and the measured
radiation Mmeasured, additional information about the object itself (namely, object’s
emittance εobj) and its environment (such as temperature of the atmosphere Tatm,
temperature of ambient objects Tamb, and transmittance of the atmosphere γatm)
need to be known.

The transmittance of a medium can vary very strongly for different wavelengths.
For example, visible light propagates through water with few losses (you can see
very far in clear water) in contrast to infrared light that is completely absorbed by the
water molecules. The transmittance for wavelengths above 1500 nm approximates
zero. This makes impossible the use of IRT under water. The transmittance of air
γatm is dependent on the wavelength as well. As opposed to water, there exists a
transmittance window that makes thermography possible. For a significant range
of wavelengths, γatm is approximately 1. Thus, when air is the transport medium,
Eq. (1.7) can be further simplified

Mmeasured ∼= εobj · σ · T 4
obj + (1 − εobj) · σ · T 4

amb. (1.8)

Now, the relation between measured power and the object’s temperature is indepen-
dent from air temperature.

There are many sources of thermal radiation that could increase the thermal
radiation without increasing the object’s temperature, for example, the sun, heating
or light bulbs, especially when the emissivity of the greybody is noticeably below
1. In practice, the operator of a thermal camera should make sure that there are
no ambient heat radiation sources close to the object of interest. In this case the
equation further simplifies to

Mmeasured ∼= εobj. (1.9)
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Finally, in order to correctly calculate a surface temperature based on the radiation,
the emissivity εobj of the object needs to be known. Many thermal cameras give
the option to input the emissivity value of the object that is currently measured.
However, this value is often unknown or multiple objects with different emissivity
values are measured at the same time. The consequences are systematic measure-
ment errors that distort the results, i.e., the output of the camera.

In medical applications, the surface area of interest often consists of human skin.
Its emissivity εskin is well known, approximately 0.97–0.99 for temperatures around
300 K. Therefore, blackbody theory can be applied for the measurement of skin
surface temperatures. In contrast, the emissivity of inner organs like the heart is
noticeably below 1. This has to be considered for surgical applications of thermal
imaging [7, 8].

1.2.5 Thermal Cameras

There are multiple types of thermal detectors capable of converting infrared
radiation into electrical signals. For medical applications, these systems need to
be saved, easy to use, and inexpensive. Traditionally, thermographic cameras have
been used for maintenance and research especially in industrial processes, like
engine diagnostics or power electronics. These cameras are capable of covering a
thermal range from values below 0 ◦C up to temperatures far above 1000 ◦C and use
detectors that often require active cooling. Additionally, the lenses of most thermal
cameras cannot to be made of glass whose transmissivity approaches zero for
wavelengths above 4500 nm. Hence, rare materials such as Germanium or sapphire
crystals need to be incorporated.

Cameras for standard clinical applications use sensors that cover the wavelength
spectrum from 3 to 5 µm (mid-wave infrared) and from 7 to 14 µm (long wave
infrared), and therefore the bulk of the Planck spectrum of human skin temperatures
(around 300 K). They reach temporal resolutions of 30 frames per second (fps) and
make the analysis of dynamic temperature changes possible.

Thermographic cameras do not reach the spatial resolution of modern cameras in
the visible spectrum, primarily because the sensor technology, active cooling, and
materials for lenses are very expensive. High sensitivity hand-held infrared cameras
reach resolutions of 2048 × 1536 pixels. Today, there are standard thermographic
cameras on the market that do not require cooling and reach resolutions of 1024 ×
768 pixels. Those camera types are often used for medical applications that will be
further described in Sect. 1.3. Cameras for standard clinical applications use modern
sensor technologies like microbolometer disposed on FPAs. These technologies
reach thermal sensitivities below 0.1 ◦C, and their accuracy lies around 1 ◦C. They
enable the analysis of small temperature changes on the surface of an object,
like the temperature distribution on the human skin [9]. Nevertheless, the thermal
accuracy of infrared cameras does not allow for sophisticated diagnostics of absolute
temperatures, especially when the effects of unknown emissivities (as described
above) are taken into account [10, 11].
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1.3 Medical Applications

In the last decades several medical applications for thermal imaging cameras started
to emerge. The next sections present some of the current applications of IRT for
both medical fields, diagnosis and monitoring.

1.3.1 Diagnosis

A healthy human body presents a symmetric temperature distribution around the
sagittal plane [12]. However, there are several biological factors that might influence
the human body temperature, locally or systemically. Therefore, any deviation from
normal can be an indicator of pathophysiologic anomalies, such as inflammation,
carcinogenesis, or neuropathology [13]. The first use of temperature for health
assessment dates back to 400 BC in the writings of Hippocrates. Hippocrates
routinely slathered wet mud and clay over the patients’ bodies speculating that the
areas where the mud dried first had a disease [14]. Abnormal thermal patterns can
be easily recognized in thermal imaging. Therefore, an early diagnosis of certain
diseases is possible through the analysis of thermograms. In the last couple of
years, IRT has found a wide acceptance among the medical community due to its
advantages. Thermal imaging is a remote, non-contact, non-invasive, and passive
technique. It only records the natural radiation emanated from the skin surfaces and
does not use any harmful radiation [2, 15]. Lastly, IRT is a real-time technology,
enabling monitoring of dynamic variations of body temperature. Due to all these
advantages, thermal imaging has been considered an effective alternative diagnosis
tool [2]. It has been being used in a variety of medical applications, including fields
such as neurology, oncology, orthopedics, and dermatology [16]. Table 1.2 describes
some medical applications, relevant research studies, and the hardware used. In the
following sections only four applications will be presented in detail.

1.3.1.1 Detection of Breast Abnormalities

According to the World Health Organization, 1.7 million breast cancer cases
occurred in 2012 worldwide. It is the most frequent cancer in women in 150
countries (approximately 25% of all cancer cases) as well as the most common
cause of cancer-related death. It was estimated that 522,000 women died from
this cancer in 2012 worldwide [38]. Studies demonstrated that an early detection
can lead to 85% survival chance while a late detection of breast cancer leads
to only 10%. Therefore, it is very important for physicians to identify in due
course potentially threatening malignant tumors for a successful treatment [2].
Mammography is the current gold standard to examine the human breast. However,
this technique exhibits low sensitivity in young women and in women with a
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Table 1.2 Medical applications of IRT (Ref.—references)

Application Year Authors [Ref.] IRT system

Breast cancer 2011 Kontos et al. [17] Meditherm Med2000™ Pro
(Meditherm, Medical Monitoring
Systems Pty Ltd., Beaufort, NC, USA)

2011 Umadevi et al. [18] Fluke Ti40FT (M/s Fluke Corp.,
Everett, Washington, USA) and
Varioscan 3021 ST (InfraTec GmbH,
Dresden, Germany)

Complex regional
pain syndrome

2006 Niehof et al. [19] ThermaCam SC2000 (FLIR,
Danderyd, Sweden)

2008 Gardiner et al. [20] FLIR A40M (FLIR Systems Boston,
MA, USA)

2016 Cho et al. [21] IRIS-5000 (Medicore Co., Seoul,
Korea)

Diabetic neuropathic
foot

2006 Bharara et al. [22] Unknown

Dry eye syndrome 2010 Tan et al. [23] VarioCAM, JENOPTIK Laser
(Germany)

2017 Matteoli et al. [24] FLIR 320A (FLIR Systems, Oregon,
USA)

Knee injuries 2010 Hildebrandt et al. [4] TVS-500EX (NEC Avio Infrared
Technologies, Tokyo, Japan)

Low back pain 2006 Zaproudina et al.
[25]

IRTIS-2000 C (IRTIS Ltd, Moscow,
Russia)

Osteoarthritis 1981 Ring et al. [26] Unknown

2004 Varju et al. [27] Compix PC2000e (Compix, Lake
Oswego, OR, USA)

2010 Denoble et al. [28] Meditherm Med2000™ Pro
(Meditherm, Medical Monitoring
Systems Pty Ltd., Beaufort, NC, USA)

Peripheral arterial
disease

2009 Bagavathiappan et al.
[29]

AGEMA Thermovision 550 system
(Danderyd, Sweden)

2011 Huang et al. [30] Spectrum 9000-MB Series (United
Integrated Service Co. Ltd, Taipei
Hsien, Taiwan)

2016 Staffa et al. [31] FLIR B200 (Flir Systems, Danderyd,
Sweden)

Raynaud’s
phenomena

2014 Lim et al. [32] IRIS-XP® (Medicore, Seoul)

Rheumatoid arthritis 2015 Lasanen et al. [33] FLIR A325 (FLIR Systems Inc., USA)

2017 Lerkvaleekul et al.
[34]

FLIR E60 (FLIR System Inc., USA)

Shoulder
impingement
syndrome

2007 Park et al. [35] IRIS 5000 (Medicore, Seoul, Korea)

Wound assessment 2015 Dini et al. [36] FLIR T620 Thermal Imager (FLIR
Systems Boston, MA, USA)

2017 Keenan et al. [37] FLIR A325 (FLIR Systems Boston,
MA, USA)
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greater breast density. In addition, this technique requires breast compression during
screening and exposes the patient to harmful radiation (X-rays usually around
30 kVp). Several studies have demonstrated that thermal imaging may be a potential
adjunctive tool for detecting this kind of cancer [38]. Breast thermography was
firstly introduced by Lawson in 1956 [39]. According to this author, one of the
biological characteristics of malignant tumors is the increased rate of growth in
comparison to that of the surrounding tissues. This leads to an accelerated local
metabolism, which is supported by increased blood and lymphatic vascularity, and
consequently to localized hot spots [2, 39]. Amalric et al. screened over a period of
10 years 61,000 women using thermography [40]. Their outstanding study showed
that thermal imaging was the earliest marker of breast cancer in approximately 60%
of the cases [40]. In addition to passive breast imaging, there are other procedures
to enhance thermographic contrast of tumors. The first is based on cold stimulation.
The blood vessels which supply the tumors are simply endothelial tubes devoid
of a muscular layer. Thus, during cold stress (sympathetic stimulus) they fail to
vasoconstrict and show instead a hyperthermic pattern due to vasodilation [2]. The
second procedure is based on induced evaporation. Deng and Liu [41] demonstrated
that this technique enhances the temperature contrast in case of tumors underneath
the skin. In short, the authors sprayed water and 75% of ethanol solution (evaporant)
before imaging acquisition. They conclude that this method permitted to improve
diagnostic accuracy, particularly in the early stage of deeply embedded tumors [41].

In 2012, Boquete et al. proposed a novel approach capable of detecting high
tumor risk areas [42]. It was based on independent component analysis. For
validation purposes, they used the database of the Ann Arbor thermography center
comprising eight case studies, where two out of eight were control cases. The
thermograms had YCbCr 480 × 380 pixels format and followed a color code:
lower temperatures were shown in blue and higher temperatures in yellow-red tones;
the highest temperatures were displayed in white. While Fig. 1.2a shows a control
case, Fig. 1.2b, c denotes two cases of ductal carcinoma. The proposed method
corroborated that the hot spots in the thermogram of the breast indicate a potentially
cancerous zone. It presented a sensitivity of 100% and specificity of 94.7%. The
positive and negative predictive values were 83% and 100%, respectively [42].

1.3.1.2 Rheumatic Diseases

Rheumatic diseases are a group of over 150 systemic autoimmune diseases (e.g.,
rheumatic arthritis, osteoarthritis and autoimmune diseases, such as systemic
lupus erythematosus, scleroderma, osteoporosis, back pain, gout, fibromyalgia, and
tendonitis) which are characterized by inflammation affecting the connecting or
supporting structures of the body, mostly joints, but also tendons, ligaments, bones,
and muscles. Common symptoms of these diseases include swelling, pain, stiffness,
and decreased range of motion. Rheumatic diseases are one of the leading causes
of disability in the USA affecting more than 50 million people of all ages, genders,
and races. By 2040, the number of adults in the USA is expected to increase to 78.4
million.
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a

b

c

Fig. 1.2 (a) Control case. (b, c) Ductal carcinoma. Modified from Boquete et al. [42]

Currently, there are few tools for early diagnosis of rheumatic diseases and
for assessing the effectiveness of therapies: bone scintigraphy, ultrasound, contrast
enhanced ultrasound, magnetic resonance (MR), and contrast enhanced MR. How-
ever, these techniques are not readily available for the masses and waiting lists in
many countries are very long. Therefore, less expensive technologies for diagnosis
and therapy monitoring would be beneficial in this medical field.

IRT has been used in the diagnosis and assessment of recovery of some
rheumatic diseases, including Raynaud’s phenomena, gout, and arthritis [2]. In
an outstanding publication, Ring [43] demonstrated that patients suffering from
juvenile arthritis,1 osteoarthrosis,2 rheumatoid arthritis,3 gout,4 among others show
abnormal temperature distributions over joints. To quantify joint inflammation,
Collins et al. [44] developed in 1974 a “thermographic index”:

1Juvenile arthritis, also known as pediatric rheumatic disease, is an umbrella term that describes
autoimmune and inflammatory conditions or pediatric rheumatic diseases developed in children
under the age of 16.
2Osteoarthrosis is the most frequent chronic condition of the joints, affecting more than 30 million
Americans. It can affect any joint, but it occurs most commonly in knees, hips, lower back and
neck, small joints of the fingers, among others.
3Rheumatoid arthritis is an autoimmune disease in which the body’s immune system mistakenly
attacks the joints.
4Gout is a form of inflammatory arthritis that affects people who have high levels of uric acid in
the blood. Uric acid can form needle-like crystals in the joints. The most common symptoms are
sudden and severe episodes of pain, tenderness, redness, warmth, and swelling.
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∑
(	t × a)

A
, (1.10)

where 	t stands for the difference between the measured isothermal temperature
and a constant (26 ◦C); a is the area occupied by isotherm (region of the thermogram
with the same temperature); and A corresponds to the total area of the thermogram.
In other study, Ring et al. [45] studied the ability of thermal imaging to detect
and quantify the effects of non-steroidal anti-inflammatory drugs (such as aspirin,
indomethacin, and benorylate) in patients with gout and rheumatoid arthritis [45].
The results indicated that IRT is a suitable tool for assessment of the response to
the anti-inflammatory treatment; the administration of a local anti-inflammatory
caused a fall in the thermographic index of the inflamed joint. Frize et al. used,
in turn, IRT for diagnosis of rheumatoid arthritis [46]. The authors reported that
metacarpophalangeal joints of the index, middle fingers, and knee are the best
indicators of the presence and absence of this disease [46]. Lerkvaleekul et al.
studied the capability of IRT to detect wrist arthritis in juvenile idiopathic arthritis
patients [34]. Using the mean temperature and maximum temperature at the skin
surface in the region of interest, moderate wrist joint arthritis could be differentiated
from severe and inactive arthritis. In 2009, Wu et al. published a work where they
claimed that local skin temperature near the coccyx region decreases significantly
after therapy in patients suffering from coccygodynia (pain in the coccyx or tailbone
area) [47]. In this case, thermal imaging has demonstrated to be an effective tool
for the assessment of coccygeal pain intensity after treatment. In contrast, Park
et al. used IRT for the assessment of shoulder impingement syndrome [35]. They
prospectively evaluated 100 patients with unilateral impingement syndrome, and
a control group of 30 subjects. In IRT findings, 73% of the patients presented
abnormal thermal changes, 51% displayed hypothermia, and 22% had hyperthermia.
The results confirmed that in the hypothermic group limitation of shoulder motion
was significantly more prominent than in the other groups: hyperthermic and normal
groups. Commonly, shoulder immobility induces a localized muscle atrophy, which
in turn causes apoptosis of the muscle’s cells. This phenomenon may lead to a
decreased blood flow in this region, resulting in hypothermic patterns in the skin
of the shoulder [35]. Vecchio and associates [48] corroborated in their papers the
findings of Park et al. [35]. They stated that the most part of the subjects with
unilateral frozen shoulder had anomalous skin temperature distribution [48].

1.3.1.3 Dry Eye Syndrome and Ocular Disease

Dry eye syndrome is a disturbance of the tear film caused by a lack of adequate tears.
Tears can be described as a complex mixture of water, mucus, and fatty oils, which
make the surface of the eyes smother and clear and protect them from infection.
Therefore, dry eye syndrome may lead to eye inflammation, vision problems, as
well as scarring on the surface of the corneas.
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Nowadays, there are some methods for diagnosis of dry eye. Film breakup time
and tear osmolarity give information about tear functionality but do not specify the
causes of possible damage. The objective clinical examination of corneal fluorescein
staining may help in the diagnosis but is very fastidious.

In recent decades, the diagnostic of dry eye syndrome and ocular diseases
using infrared thermography has been analyzed. Studies have demonstrated that
patients with dry eye disease have cooler ocular surfaces than those of asymptomatic
normal subjects [24, 49]. In 2009, Tan and associates [23] published a review
paper describing different methodologies for manual, semi-manual, and automatic
measure of ocular surface temperature in IRT.

Additionally, thermal imaging can be used for diagnosis and assessment of the
inflammatory state in patients with Graves’ ophthalmopathy as described by Chang
et al. [50]. Note that Graves’ orbitopathy is an autoimmune inflammatory disorder of
the orbit and periorbital tissues. It is characterized by lid lag, upper eyelid retraction,
conjunctivitis, redness, among others. In their study, the authors measured the
temperature at different regions, including lateral orbit (reference point), cornea,
medial and lateral conjunctiva, upper and lower eyelids, and caruncle. They
observed significantly higher temperature differences between reference point and
other eye regions for the patients suffering from this inflammatory disorder [50].

1.3.1.4 Wound Assessment

A chronic wound is commonly defined as a wound whose healing process is
hampered. Commonly, wounds are classified as chronic if they need more than
3 months to heal, i.e., to recover anatomic and functional integrity. Indeed, they
may require several years to heal, and in some cases remain unhealed for decades.
Patients with this problem can experience pain, reduced mobility, physical and
emotional distress as well as social isolation. The Wound Healing Society classifies
chronic wounds into four categories: diabetic ulcers, pressure ulcers, venous ulcers,
and arterial insufficiency ulcers [51].

In the USA, chronic wounds affect approximately 6.5 million patients (∼2%
of the US population) leading to annual costs of about 25 billion US dollars. In
the Scandinavian countries, the associated medical costs correspond to 2–4% of the
total health care expenses. However, the medical expenditures are increasing rapidly
due to aged population and a sharp grow in the incidence of diabetes and obesity
worldwide [51].

Thermal imaging can be used for non-invasive assessment of wound severity.
The potential of IRT to aid in the assessment of wounds was identified by Lawson
in the early 1960s [52]. He used this technology to predict burn depth. Histological
analysis confirmed an accuracy of 90%. The author stated that whereas superficial
burns are warmer than uninjured skin due to increased inflammatory processes,
deeper burns are cooler than uninjured skin owing to structural damage of the
vasculature [52]. In 1996, Hansen et al. [53] published a very interesting work
where they studied the capability of IRT to assess wound severity of newly formed
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temperature-modulated pressure injuries in a porcine model. They observed that
relative surface temperature of the wounds strongly correlated with the presence
or absence of deep tissue injury. In addition, infrared imaging permitted to assess
wound depth and, thus, predict the severity of the injuries.

The measurement of skin and wound bed temperature in chronic wounds may
play an important role in the assessment and diagnosis of chronic wound infection.
Dini et al. [36] carried out a study whose aim was to correlate the wound bed
score,5 validated by Falanga [54] in 2006, to wound bed and perilesional skin
temperature. It included 18 patients suffering from venous insufficiency and lower
leg ulcers. In total, 24 chronic wound bed and perilesional skin ulcers were
assessed using an infrared thermographic camera (FLIR T620 Thermal Imager,
FLIR Systems, Boston, Massachusetts, USA). The authors conclude that wound
bed temperature plays a major role in wound healing. According to them, if the
temperature of the wound bed falls below the core body temperature, healing can
be delayed due to lack of collagen deposition and reduced amount of late-phase
inflammatory cells as well as fibroblasts [36] . Fierheller and Sibbald [55], in
turn, studied the importance of periwound skin temperature. They demonstrated a
statistically significant relationship between infection and increased periwound skin
temperature [55].

1.3.2 Monitoring

In the last decade, thermal imaging has been used for monitoring of vital signs,
such as respiratory rate (RR) and heart rate (HR), and perfusion dynamics. Possible
applications are monitoring of preterm infants in neonatal intensive care units as
well as critical care patients in intensive care units. Additionally, this monitoring
technology can be used in the automotive branch as well for continuous monitoring
of drivers. The following sections discuss the capability of IRT as a monitoring
technique.

1.3.2.1 Respiratory Rate

Respiratory rate (RR) is an important vital sign and is measured in breaths per
minute or min−1. Each breath or breathing cycle consists of two phases: inspiration
and expiration. During inspiration, the diaphragm contracts and moves towards
the caudal (downward) direction; due to under pressure in the pleural cavity the
lungs are also pulled towards the caudal direction and air is sucked into the

5The wound bed score is based on healing edges (wound edge effect), presence of eschar,
greatest wound depth/granulation tissue, amount of exudate amount, edema, periwound dermatitis,
periwound callus and or fibrosis, and a pink/red wound bed.
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lungs. Simultaneously, the rib cage moves towards the cranial and ventral (up and
forward) direction in order to accommodate the increased volume of the lungs. This
movement is also translated to the shoulders. During expiration, the diaphragm
relaxes; the lungs and ribcage also move back into the relaxed end-expiratory
position and warm air is exhaled.

Usually the RR of an average adult under resting conditions ranges from 12
to 20 breaths per minute (min−1). An abnormal RR, such as bradypnea (low RR,
<12 min−1) or tachypnea (increased RR, >20 min−1), can be the first indication
for various medical conditions including heart and lung diseases. Furthermore,
analysis of the respiration pattern can provide even more information. Kussmaul’s
respiration, for example, which is characterized by deep breaths at normal or low
RRs, can point towards a diabetic coma or kidney failure. Another example is
Cheyne–Stokes respiration, which is characterized by alternating phases of hyperp-
nea and apnea. Additionally, the depth of the breaths increases at the beginning of
the hyperpnea phase and decreases again towards the end. Underlying reasons for
Cheyne–Stokes respiration can include cardiac insufficiency and cerebral damage.
Despite all the information carried in the RR and respiratory pattern, it is still an
often neglected parameter [56]. A study of Philip and associates [57] showed that
both spot and formal assessment of RR performed by physician is sometimes highly
inaccurate and that they were not able to detect abnormal RRs. The findings of this
study emphasize the importance of techniques in order to reliably and easily detect
RR [57].

Technical state-of-the-art for respiration monitoring includes impedance pneu-
mography (measurement of respiration-modulated thoracic impedance), spirome-
try (flow measurement), capnography (measurement of exhaled carbon dioxide),
piezoplethysmography (measurement of thoracic and/or abdominal effort), and
thermistors (measurement of respiration-modulated temperature differences around
the nostrils). All these methods rely on sensors, which need to be directly attached
to the patient and usually have cables to, e.g., a patient monitor. These factors limit
both patient comfort and ease of use, which is why there have been many efforts to
develop non-contact methods for RR monitoring in the recent years. Among other
techniques, the application of IRT for non-contact respiration monitoring has been
investigated intensively.

In 2004, Murthy, Pavlidis, and Tsiamyrtzis first proposed IRT for touchless
monitoring of breathing function [58]. In a dimly lit room, the faces of ten subjects
were recorded in a profile view using a mid-wave infrared camera with a spectral
range of 3.0–5.0µm, a spatial resolution of 640 × 512 pixels, and a temperature
sensitivity of 25 mK. Temperature changes caused by inhalation and exhalation were
measured in a region of interest (ROI) a certain distance away from the nose tip.
In order to determine the RR, those temperature modulations were first classified
as either part of the inspiration or part of the expiration phase using statistical
distributions. Afterwards, the RR could be derived from the length of the respiration
cycles. This work was later extended by Fei and Pavlidis in 2007 [59] and 2010 [60].
Table 1.3 lists other works on the field of respiration monitoring using IRT.
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Table 1.3 Works on the field of respiration monitoring using IRT

Year Authors Summary Reference

2005 Chekmenev et al. Measurement of RR on 4 healthy subjects by analysis
of temperature variations around the nose and wavelets
for signal processing and analysis

[61]

2008 Yang et al. Estimation of RR on 20 healthy subjects using
temperature modulations measured around the nose
and fast Fourier transform for signal processing and
analysis

[62]

2009 Murthy et al. Airflow monitoring on 14 healthy adult subjects and 13
adult sleep apnea patients using temperature
modulations around the nose and wavelets for signal
processing and analysis

[63]

2011 Abbas et al. Monitoring of RR on seven premature infants in a
hospital using temperature variations around the
nostrils and wavelets for signal processing and analysis

[64]

2011 Al-Khalidi et al. Peak detection on temperature changes around the nose
for RR monitoring on 16 children

[65]

2011 Lewis et al. Extraction of RR and relative tidal volume on 25
healthy subjects based on temperature modulations
around the nose and fast Fourier transform for signal
processing and analysis

[66]

2015 Pereira et al. Monitoring of respiration dynamics on 11 healthy
subjects by analysis of temperature changes around the
nose and a robust interval estimator

[67]

Although the algorithms and experimental settings of the works listed in
Table 1.3 differ from each other, a general structure is clearly visible: after acquisi-
tion of thermal video sequences, the image frames undergo image preprocessing and
image enhancement, before selection of a ROI. To compensate motion, a tracking
algorithm is applied to the ROI. Then, extraction of the respiration waveform from
the ROI is performed and, finally, the RR is calculated. The following pages will
focus on image processing, image enhancement, selection of ROI, extraction of
respiration waveform, and calculation of RR. Tracking algorithms are not covered
in this section, thus the reader is kindly referred to the original research articles.

Selection of ROI

Research listed in Table 1.3 uses the area around the nose as the ROI. There, the
temperature variation between inspiration and expiration, which lies around 0.3–
0.6 K for adults, is measured (see Fig. 1.3). In the work of Murthy et al., subjects
were recorded in a profile view [58]. Their approach consisted in: (1) removing
the background with the Otsu’s method; (2) detecting the nose tip (regarded as
the right most point); and defining a ROI (region direct below the nose tip). After
experimental evaluation, considering the distance between subject and camera as
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Fig. 1.3 Temperature differences around the nostrils between inspiration and expiration

well as the lens’ focal length, the size of the ROI was set to 21 × 9 pixels. In a later
version of their work, Fei and Pavlidis [60] recorded the subjects in a frontal view
and used a semi-automatic approach in order to detect the nose. Initially, the area
around the nose is manually selected in the first frame of the video and then tracked
throughout the whole video sequence by a tracker. Within this tracked ROI (TROI),
the exact position of the nostrils is automatically detected. This is accomplished by
application of both the horizontal and vertical Sobel Operator to the TROI, which
detects the spatial features of the nostril area. By calculation of the horizontal as well
as vertical projection of the edge image, the boundaries of the nostrils are clearly
visible and can be obtained.

Another approach was proposed by Al-Khalidi et al., which first segments the
face of the subject recorded from a frontal perspective and detects the two warmest
points in the face [65]. Due to the facial temperature distribution, those points
coincide with the periorbital regions. From there downwards, the coldest point is
the tip of the nose.

However, although commonly used, the nose is not the only suitable region in
order to extract a respiration waveform. Another suitable ROI is the mouth. Al
Khalidi et al., for example, had to exclude four subjects from analysis, since they
were breathing through the mouth [65]. In 2016, Pereira et al. presented a robust
algorithm for estimation of RR [68]. In addition to the nose, the mouth and both
shoulders were added as ROIs. While the respiration waveform around the nose
and mouth was caused by temperature changes during inspiration and expiration,
the respiration waveform around the shoulders was induced by respiration-related
movement of the shoulders. Respiratory rate was estimated independently for each
ROI and fused afterwards; different fusion algorithms (Bayesian fusion, median,
and a signal quality-based algorithm) were investigated.
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Extraction of Respiration Waveform and Calculation of Respiratory Rate

The respiration waveform is usually obtained from the 2D average temperature over
time according to Eq. (1.11)

s(t) = 1

XY

X∑
x=1

Y∑
y=1

I (x, y, t), (1.11)

with s(t) being the respiration waveform at time t and I (x, y, t) the value at position
(x, y) of the infrared video frame at time t . Based on this respiration waveform, the
RR can be determined by many forms of signal processing and signal analysis.
One frequently used method is continuous wavelet transform (CWT) according to
Eq. (1.12)

Wψ,s(a, τ ) = 1√|a|
∫

ψ

(
t − τ

a

)
s(t) dt, (1.12)

where a is the scaling parameter, τ represents the translation parameter, ψ denotes
the mother wavelet, and s is the signal to be analyzed. Fei and Pavlidis [60], for
example, used the Mexican hat wavelet as mother wavelet and assume that the RR
is represented by the scale amax with maximum energy. Finally, the RR is calculated
according to

RR = Fc · f s

amax
, (1.13)

where Fc is the center frequency of the mother wavelet and f s is the sampling rate
of the respiration waveform. Abbas et al. use the Daubechies wavelet as the mother
wavelet instead of the Mexican hat [64].

Another method for calculation of the RR is the short time Fourier transform
(STFT), given by

S(ω, τ) =
∫

s(t) · w(t − τ) · e−jωt dt. (1.14)

Here s is the signal to be transformed and w is a windowing function (e.g.,
Hamming, Hann, Gaussian window). The window size must be chosen carefully
with regard to temporal and spectral resolution. Zero padding can be applied in
order to increase the number of frequency points in the spectrum and therefore
increase the precision of peaks within the spectrum. However, it should be noted
that zero padding does not increase the spectral resolution. Afterwards, the RR can
be obtained from the spectrum by selecting the frequency with maximum spectral
energy. This method was used by Lewis et al. [66] and Pereira et al. [68].

There are other techniques to determine RR from the respiration waveform, for
instance, (1) bandpass-filtering of the respiratory waveform and calculation of the
time peak-to-peak [65] or (2) using a robust breath-to-breath interval estimator [67].
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In the publication of Murthy et al., the average RR obtained with IRT was
compared with the RR measured by a piezo belt (reference). On average, an
accuracy of 92% (over ten healthy subjects) was obtained [58]. In the work of
Yang et al. the absolute deviations ranged from 0.8 to 2.2 breaths/min between
average IRT respiratory rate and average ground truth [62]. In 2011, Abbas et al.
first measured RR with IRT on five premature neonates in a neonatal intensive care
unit [64]. The average deviation between average IRT respiratory rate and reference
respiratory rate was approximately 1 breaths/min and the largest average deviation
was 2.25 breaths/min. In 2016, Pereira et al. used fusion of multiple ROIs for RR
estimation [68]. Among others, they investigated the effects of different breathing
patterns on the algorithm’s performance. To validate the approach, an experiment
on 12 healthy subjects was conducted. For normal breathing, the root mean squared
error (RMSE) was 0.28 breaths/min and correlation between IRT respiratory rate
and ground truth was 0.98 (averaged over all 12 subjects). For the simulated
respiration patterns, RMSE averaged 3.36 breaths/min and the correlation was 0.95.
The increased RMSE could be explained by an imperfect time synchronization
between IRT and ground truth in combination with rapid changes of RRs. In total,
both lab experiments and clinical studies indicate that IRT is a very promising
method for RR monitoring.

1.3.2.2 Cardiac Pulse

In addition to RR, some research groups studied the capability of IRT to monitor the
cardiac pulse [69, 70]. In 2007, Garbey et al. proposed a novel method to monitor
HR at a distance [70]. Their aim was to develop a non-invasive and contactless
method capable of assessing the human anatomic nervous system activity and
psychophysiology state. According to them, in psychophysiological experiments,
the physiological responses of a subject should be measured without any interfere,
otherwise an extra variable must be introduced to his psychological state. In these
cases, a contact-free measurement modality for monitoring of vital signs (e.g., RR
and cardiac pulse) is very appealing [70]. Such measurement methodology can also
be beneficial in critical care medicine, especially in the monitoring of burned and
traumatized patients as well as premature infants [68].

As well known, during ventricular systole the heart contracts generating blood
pressure and flow fluctuations that propagate as waves through the arterial tree [71].
The approach proposed by Garbey and associates [70] is based on the hypothesis
that pulsative blood flow modulates temperature of surrounding tissues (e.g., skin)
as a result of heat exchange by convection and conduction (between vessels and
surrounding tissue). Certainly, this modulation is more pronounced in the vicinity
of greater blood vessels. To verify the hypothesis, the authors implemented a
mathematical model to simulate the heat transfer processes on the skin, including
the influence of core tissue and major superficial blood vessels. The simulations
showed that the skin temperature waveform is similar to the pulse waveform; the
amplitude of the temperature variation ranged between 0.02 and 0.03 ◦C [70].
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Fig. 1.4 Regions where the cardiac pulse can be extracted using thermal imagery: superficial
temporal vessel complex (red boxes) and carotid vessel complex (green box)

Due to tissue thermal diffusion, variation of skin temperature is strongest along
the superficial blood vessels, as demonstrated in [30]. Based on that assumption,
Garbey et al. focus their research on three different body regions: neck (external
carotid complex), temporal area (superficial temporal artero-venous complex), and
wrist (radial artero-venous complex) [70]. Figure 1.4 shows two of these regions: red
boxes enclose the temporal vessel complex and the green box encloses the carotid
vessel complex. As displayed the blood vessels are hot spots in the thermogram. In
short, the approach of this research group consisted in manually selecting a “line-
based region” (ROI) along visible vessels in the first frame of thermal video. To
compensate involuntary movements of the subjects, a motion tracking algorithm
was integrated; the authors chose the conditional density propagation tracker
with thresholding as its feedback mechanism. Then, they applied the fast Fourier
transform (FFT) to the individual pixels along the line of interest to capitalize upon
the pulse propagation phenomenon. As a blood vessel is a long and narrow structure,
the pulse’s thermal propagation effect induces a slight phase shift on the temperature
profile along it. Within this context, each single pixel along the line of interest has a
unique periodic temperature profile, which was considered to be shifted with regard
to the others. Thus, the temperature profiles of the pixels are shifted in the time
domain but not in the frequency domain. Lastly, an adaptive estimation function was
applied on the average FFT outcome to extract the dominant pulse frequency [70].

To validate their approach, the authors carried out experiments on 34 healthy
human subjects using a high sensitive mid-wave infrared camera from FLIR (FLIR
Inc., Santa Barbara, CA). It presents a temperature resolution of <25 mK and a
full spatial resolution of 640 × 480 pixels. Thermal videos (5 min) were acquired
with a frame rate of 30 fps. The HR obtained with thermal imaging was compared
to a standard ground-truth (GT), a piezoelectric transducer [70]. On average, the
performance of the method, given by complement of the absolute normalized
difference (CAND),6 was 88.52%.

6CAND = 1 − |GT−IRT|
GT , where GT corresponds to the HR obtained with the ground truth and IRT

stands for the HR estimated with infrared thermography.
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A research group of the University of Louisville (Louisville, Kentucky, USA)
proposed a similar approach to that of Garbey et al. [70]. In 2007, Chekmenev et al.
developed a multi-resolution method for non-contact measurement of the arterial
pulse [69]. In general, the algorithm detects in the ROI the skin area where the
arterial periodic heat pattern is more prominent. Then, multiscale decomposition
models are applied to each frame in order to extract the scales containing most
of the arterial pulse information. As a result, the influence of irrelevant noise is
minimized and a better accuracy can be achieved. The next step consists in selecting
the coarse scales to track the ROI. Afterwards, the ROI is divided into K-cells
and the mean temperature value is calculated; this results in K one-dimensional
waveforms. For each waveform, continuous waveform analysis is applied to detect
systolic peaks/maxima for each single waveform; this method permits to remove
high frequency noise and to extract arterial pulse structures. Finally, the waveform
with higher periodicity is used to calculate the cardiac pulse; the cell corresponding
to this waveform is defined as region of measurement [69].

To validate the approach, measurements on five healthy subjects were carried out.
The research group used a long-wave Phoenix infrared camera from FLIR (FLIR
Inc., Santa Barbara, California, USA) with the following characteristics: thermal
sensitivity of 25 mK; 14-bit dynamic range; spatial resolution of 320 × 256 pixels.
In this experiment the acquisition time ranged between 20 and 50 s and the frame
rate was 30 fps. The HR obtained with IRT was compared to a standard ground
truth (GT), a portable HR monitor from Polar USA. According to the authors, a
100% accuracy on the carotid artery area was obtained [69].

In 2013, the same research group presented a full-automatic approach to estimate
the pulse signal. In contrast to the previous works, the new algorithm identifies the
forehead in the thermogram and extracts the vascular maps (Fig. 1.5). Every vessel
segmented in the forehead is then used to calculate the HR [72].

In this work an experiment with 32 subjects was carried out. Here, three different
scenarios were tested. In the first scenario (phase A—normal condition), the thermal
videos were recorded during normal conditions. During phase B (second scenario—

Fig. 1.5 Thermal facial
region and vascular maps of
the forehead
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mild pain), the healthy subjects submerged their right hand in an ice bath to induce
pain. In the last phase (phase C—mild exercise), subjects held 20–40 lbs of weight
in order to increase HR [72].

The results showed an overall accuracy of almost 90% (median). Under normal
conditions, the best outcome was achieved, the median averaged 92.5%. In phase B
(pain) and phase C (mild exercise) the median was approximately 91% and 82%,
respectively [72].

1.3.2.3 Perfusion

Acute circulatory disorders are still one of the main causes of death worldwide. In
critical care medicine, this complication is frequently triggered by sepsis or SIRS
(systemic inflammatory response syndrome). Sepsis is considered a severe disease
consisting of both infection and SIRS. It may evolve into severe sepsis or septic
shock. Whereas the first is an aggravated sepsis by acute organ dysfunction, the
second corresponds to a severe sepsis plus hypotension, which cannot be settled
with fluid resuscitation [73, 74].

According to the World Health Organization (WHO), severe sepsis and septic
shock are the main factors of morbidity and mortality in intensive care units [75]
and neonatal intensive care units [76]. In the USA, approximately 751,000 cases of
severe sepsis occur annually with a mortality rate of 28.6%. This estimation was
presented by Angus et al. in 2001 [77]. In 2003, Martin and associates observed
an increase in septicemia incidence and septicemia-related deaths over the past 20
years in the USA [78]. This trend is expected to continue due to several reasons
including aging of the population, increasing number of immunosuppressive thera-
pies, transplantations, chemotherapies, and invasive procedures [79]. Furthermore,
a study carried out by Lawn et al. [80] evidenced that severe infections such as
sepsis/pneumonia, tetanus, and diarrhea are the second major cause of dead in
neonates at the age of 0–27 days. According to the publication, of 3.072 million
deaths in 2010, approximately 27% were due to severe infections [80].

During sepsis cardiovascular changes are patent. Commonly, they lead to tissue
hypoperfusion, which can further result in the development of multiple organ
dysfunction. Thus, to improve the outcome of the patients through appropriate
clinical interventions (e.g., antibiotic therapy and organ support) the diagnosis
must be performed in due course [73, 81]. The remarkable work of Kumar et al.
evidenced an increase of circa 7.6% in mortality rate for every single hour by
which antimicrobial was tardily administered [82]. However, a prompt identification
of sepsis is still a major challenge for clinicians as its signs and symptoms are
nonspecific [82].

Body temperature, and consequently skin temperature, is dependent on several
factors such as heat-exchange processes between skin, inner tissues, and vasculature
as well as on metabolic activity and sympathetic and parasympathetic activity. As a
result, its distribution may provide evidence of the centralization’s progress due to
peripheral hypoperfusion (restriction of blood flow to vital organs at the expense of
peripheral organs) [15].
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In 2014, Pereira et al. analyzed the capability of IRT (a) to detect acute
impairments of body circulation and perfusion as well as (b) to monitor the
progress of temperature centralization in a porcine animal model of acute lung
injury (ALI) [15]. For that, two new indices (standard deviation and 	T /	x)
were developed. They aimed to quantify peripheral temperature gradients and, thus,
peripheral perfusion [15].

In this study, ALI, one of the major causes leading to SIRS and sepsis, was
experimentally induced in six female piglets. To evaluate the progress of skin
temperature distribution, 15 measurements were performed with a long wave
infrared camera at different points of time (approximately at two-hourly intervals).
The thermograms were acquired with a VARIOCAM® hr head (InfraTec GmbH,
Dresden, Germany), which presented a thermal sensitivity of 0.03 ◦C at 30 ◦C and a
spatial resolution of 384 × 288 pixels [15].

As referred previously, two indices were proposed, standard deviation (SD) and
	T /	x. The former corresponds to the standard deviation of the skin temperature
distribution. The latter can be considered as a measure of the spatial temperature
profile, i.e., it describes the change in temperature 	T with the distance 	x

between the body center (hottest point next to the coolish sternal region) and the
most peripheral point visible in the thermogram (animal’s paw). To evaluate the
capability of IRT to detect acute impairments of body circulation and to monitor the
progress of temperature centralization, both SD and 	T /	x were compared with
clinical parameters such as shock index (SI),7 mean arterial pressure (MAP), PaO2
(partial pressure of oxygen), and Carrico index,8 which are markers of circulatory
impairments and oxygenation [15].

The results demonstrated that at the baseline measurement the body temperature
of the piglets was uniformly distributed. However, with the progress of the disease’s
severity, the temperature gradient between center and periphery increased (temper-
ature centralization) as a result of peripheral hypoperfusion. Figure 1.6 displays
the development of the skin temperature distribution. Figure 1.6a and c represents
the thermograms at two different time measurements, baseline and ALI 25 (last
measurement). They show an increase of temperature profile due to hypoperfusion.
Figure 1.6b, d shows the corresponding histograms. In general, differences of
shape of the probability distributions between baseline and ALI were observed. At
the baseline, the histograms presented a higher negative asymmetry and a higher
kurtosis distribution, characterized by a sharper and longer peak. The latter means
that the distribution is more clustered around the mean, which results in relatively
smaller SDs, i.e., a more homogeneously distributed body temperature (Fig. 1.6a, b).
During ALI the histograms presented smaller negative asymmetries and lower

7SI, a marker of shock, is the ratio of HR to systolic blood pressure. It is a effective marker for the
initial assessment of sepsis.
8Carrico index, also denominated PaO2/FiO2, is the ratio of arterial oxygen concentration to the
fraction of inspired oxygen. In critical care medicine, this parameter describes the severity of
pulmonary dysfunction.
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Fig. 1.6 Original thermograms at two different points of time: (a) Baseline and (c) ALI 25 (last
measurement). Histograms representing the relative skin temperature distribution of the ROI (head,
superior limbs and trunk) at these two time points: (b) Baseline and (d) ALI 25 (last measurement)

kurtosis distributions. A lower peak in the histogram denotes, on the contrary,
that the distribution is less clustered around the mean. This can be translated into
higher standard deviations and, consecutively, a heterogeneously distributed body
temperature (temperature centralization) [15].

In addition, possible correlations between the two new indices and both SI
and MAP were analyzed, as denoted in Table 1.4. Note that they are markers
of circulatory impairments. The Pearson product-moment correlation evidenced
a strong correlation between SD and SI as well as between 	T /	x and SI.
Moreover, the same method demonstrated a strong negative correlation between
both parameters, SD and MAP, and 	T /	x and MAP. The authors observed that the
progress of the disease severity is accompanied by an increase in SD, 	T /	x, and
SI and a decrease in MAP. Commonly, sepsis and shock include hypotension and are
characterized by an impaired blood flow to peripheral body tissues (hypoperfusion),
which leads to temperature centralization (increased 	T /	x and SD). The Pearson
product-moment correlation pointed out a moderate negative correlation between
SD, 	T /	x, SI and both PaO2 and PF as well. Hypoperfusion is frequently
accompanied by tissue hypoxia as there is an inability to meet the oxygen demands
of the tissues [15].
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Table 1.4 Pearson product-moment correlation between SD, 	T /	x, SI and SI, MAP, PaO2 and
Carrico index [15]

Standard deviation 	T /	x SI

SI Pearson correlation 0.593a,b 0.561a,b −
p-Value <0.0005 <0.0005 −

MAP Pearson correlation −0.587a,b −0.534a,b −0.519a,b

p-Value <0.0005 <0.0005 <0.0005

PaO2 Pearson correlation −0.344a,c −0.334a,c −0.326a,c

p-Value 0.004 0.005 0.007

PF ratio Pearson correlation −0.315a,c −0.319a,c −0.326a,c

p-Value 0.009 0.008 0.007
a Correlation is significant at the 0.01 level (two-tailed)
b Strong correlation [0.40 < |r| < 0.70]—according to Weinberg et al. [83]
c Moderate correlation [0.30 < |r| < 0.39]—according to Weinberg et al. [83]

In sum, the study demonstrated the ability of thermal imaging to monitor
circulation and perfusion in a porcine animal model. The two new indices were
capable of quantifying the course and severity of the disease.

1.4 Recent Advances in 3D Infrared Thermography

Infrared thermography is a powerful tool to gather information about temperature
distribution on the surface of objects. A major disadvantage of thermographic
cameras is that 3D bodies are represented by 2D images, which leads to the loss
and distortion of information [84]. Especially for medical applications it can be very
useful to visualize 3D representations of the temperature distribution of an object.
This enables a more intuitive and precise analysis of the thermography data for the
physician. Furthermore, the fusion of different image modalities becomes possible,
for example, the fusion of thermal information with those of 3D models created by
MRI scans [84, 85].

In order to create a 3D representation of the temperature distribution of a body
surface, it is necessary to create a multitude of different 2D images that then are
combined to obtain information about the depth of an object. A possible apparatus
to create more than one image are stereo cameras. These consist of two cameras
that create images of the same object from two different vantage points (like human
binocular vision). Based on the relative positions of the object on these two different
images, it is then possible to extract 3D information about the object, for example,
the depth of a wound bed. Thermographic stereo cameras have been introduced in
studies for breast cancer detection [86] and diabetic foot disease [87]. These devices
generate information about the depth of surface structures, nevertheless it is not
possible to produce a whole 3D surface model. A more sophisticated approach poses
the recording of images from different angles. A major advantage of this technique
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is that regular infrared cameras can be used by taking images from the same object
from different locations. For example, it is possible to generate a temperature map
of the human head by taking four pictures with the same camera (one frontal image,
one image of the left side, one image of the back, one image of the right side).
These four 2D projections then have to be combined with an existing 3D model from
another imaging modality. This could be a 3D scanning system that generates spatial
models as well as the 3D models that are obtained by MRI or CT scans. The infrared
images then are registered onto the 3D model. This registration process includes
multiple image processing calculations that will not be discussed here. The resulting
model then carries the combined 3D information of both imaging modalities [88].

MRI or CT scans are used to create 3D models of a variety of body parts like
the brain, bone structures, or the heart in everyday clinical practice. These models
contain anatomical information for medical diagnostics, for example, information
about the integrity of bones and vessel walls as well as the location and size
of tumors. Infrared images on the other hand are used to provide physiological
information and therefore complement the anatomical information of MRI and CT
scans. Possible medical applications lie in sports medicine as well as in tumor
diagnostics as well as in breast cancer diagnostics, where a 3D model of the breast
can be very useful to precisely detect regions of possible tumor development. The
regions of inflammation detected by IRT can be mapped on the 3D model of a
fracture and increased hemodynamics could provide crucial information about the
development of a tumor that has been scanned with MRI.

1.5 Summary

The use and the fields of applications of thermal imaging have been growing
throughout the last decades. Consecutive innovations in the production of infrared
detectors made IRT an accurate and sensitive technology. The spatial resolution
allied to the high sensitivity of infrared cameras contributed to their increasing use
in medicine. Studies indicate the potential of thermal imaging in the diagnosis of
breast cancer, rheumatic disease, chronic wounds, among others. In addition, IRT
has demonstrated its potential as a monitoring technique (HR, RR, and perfusion),
not only because of its sensitivity but also because is a passive and non-invasive
method, which does not need a light source. In the last years, some advances in
3D thermal imaging were patent. Three-dimensional representations enable a more
intuitive and precise visualization of body temperature distribution. In addition,
more information can be achieved by combining 3D thermal imaging with other
3D models, for instance, from CT or MRI.
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