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Abstract. Pictorial languages, while intuitive and descriptive, are
rarely used as the primary reasoning language in program verification
due to lack of precision. In this paper, we introduce a precise pictorial
language for specifying array invariants that preserves visual perspicuity.
The language extends Reynold’s partition diagrams with the notion of a
coloring, allowing assertions over portions of an array to be expressed by
color-coding. The semantics of a coloring is given by a legend, mapping a
colored partition of an array into a universally quantified predicate over
the array. The pictorial syntax is an extension toinvariant diagrams,
transition graphs where preconditions, postconditions and invariants,
rather than the program code, determine the main program structure.
We demonstrate the approach with three examples, verified using the
Why3 theorem prover frontend.

1 Introduction

Deductive program verification is the process of establishing correctness by prov-
ing verification conditions (VCs) extracted from a program. It relies on a formal
pre- and postcondition specification as well as loop invariants being provided by
the programmer. This task by itself requires proficiency in mathematical logic.
Further challenges include assessing completeness of the specification, whether
invariants are sufficiently strong to establish the postcondition while sufficiently
weak to be maintained, and using automatic theorem provers. Training in formal
methods aims at giving the necessary conceptual and technical skills to address
these challenges.

In instructional settings, verification is often taught by examples from tan-
gible and visually perspicuous domains, such as arrays of colored objects in the
case of the famous Dutch national flag three-way-partitioning problem [1]. While
such examples are a valuable pedagogical device, how to generalize the reason-
ing to more typical programming problems is often left unexplained. Also, the
transition from instructional pictures to a mathematically precise reasoning lan-
guage does not always follow a happy path. Even though influential authors have
already several decades ago highlighted the benefits of pictures in formal reason-
ing [2,3], pictures have by and large been employed as stepping stones towards
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some final, textual, formalization suitable for conventional symbolic reasoning.
While reasons therefore (lack of precision, technical limitations, convention) may
be legitimate, we suspect that this demoted role of pictures means their full ben-
efit as reasoning tools is not being realized.

A notable exception is Reynold’s interval and partition diagrams [4], which
integrate pictures with mathematical notation seamlessly, allowing invariants
and even proofs over arrays to be expressed in a way that simultaneously main-
tains visual perspicuity and mathematical precision. It is on this trajectory that
we position the approach described in this paper. A partition diagram, in its
base form, is a precise, compact and embeddable diagram stating that a collec-
tion of integer indexes subdivides an array into disjoint partitions. Precise means
that the language has a well-defined mathematical meaning, compact that it is
space-conserving, and embeddable that it can be integrated into another dia-
gram or a textual formula. Associated with a partitioning is some collection of
properties, that the elements in the partitions should satisfy. A property can
be expressed precisely by a formula universally quantifying over the partition
diagram (e.g., [4, p. 94]), or by (less formally) annotating the partition diagrams
with the properties (e.g., [3, p. 94]). In line with the second approach, we extend
partition diagrams with the notion of coloring a partition. Formally, a coloring
is a function from array indexes to a small finite set (“palette”) of programmer-
defined colors. The programmer gives interpretation to the colors through the
legend construct. Analogously to its cartography namesake, a legend is a map-
ping from colors to a universally-quantified predicate over the colored partitions.
Together, partitionings, colorings and legends provide a precise and expressive
pictorial language for array invariants.

As an umbrella framework we use invariant-based programming (IBP), a
correct-by-construction formal verification approach geared towards teaching [5].
In IBP, preconditions, postconditions and invariants—under the common nomen
situations—serve as the main organizing structures of a program. The program
is represented by an invariant diagram, a graph of nested situations connected
by transitions. The situations represent state predicates, such as pre- and post-
conditions and invariants, while the transitions constitute the actual executable
code. We define the semantics of colorings and legends by translation into pred-
icates over the program state. After translation, the VCs of the diagram are
extracted using the proof rules of invariant diagrams. Nesting allows substitu-
tions to inherit constraints from outer situations. In our extension, nesting also
allows legends to be shared by multiple situations, as well as to be extended in
substitutions with additional color interpretations. We illustrate the approach
with examples from the domain of searching and sorting. The examples have
been mechanically verified using the Why3 platform [6], a front-end for a num-
ber of automatic theorem provers.

We proceed as follows. Section 2 introduces the pictorial language in the con-
text of two search programs. Section 3 describes the verification semantics. A ver-
ification of a slightly more complex program is given in Sect. 4. We discuss related
work in Sect. 5 and end the paper with conclusions and future work in Sect. 6.
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Fig. 1. Linear and binary search

2 Pictorial Invariant Diagrams

Consider the leftmost invariant diagram in Fig. 1. Each rounded rectangle—
called a situation—identifies a subset of all possible program states. The role
of a situation in a program is determined by the transitions, guarded program
statements, connecting to it: a situation with no incoming transitions corre-
sponds to a precondition (LinearSearch); a situation with no outgoing transi-
tions corresponds to a postcondition (Found and NotFound). A situation with
both incoming and outgoing transitions is an intermediate situation; an inter-
mediate situation (or collection of intermediate situations) connected through
a cycle of transitions corresponds to a loop (Searching). There are five types of
declarations that can appear inside a situation:

Variable declarations introduce program variables and associate them with
types. For example, the declaration “A :array[N]of int” in the situation
LinearSearch types the variable A as an integer array of length N, indexed
from 0 to N − 1.

Legends introduce colors and assign them their meanings. For instance, the
legend “A| i : A(i) �= x” states that the red elements in A are different
from x. A legend is not a state assertion; rather it introduces an implication,
allowing invariants over an array to be expressed visually by “painting” sub-
arrays with a relevant property (in this case, that the sub-array is known to
not hold the value x). We make this notion more precise in the next section.
Legends may introduce any number of new colors, but the color palettes for
distinct arrays must be disjoint.
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Invariants are assertions over the program variables of the situation. We can
express invariants using standard mathematical and logical notation. E.g.,
“0 ≤ k ≤ N” expresses that the value of k is between 0 and N, inclusively.
For asserting that a collection of variables form a partitioning we prefer to
use Reynolds-style partition diagrams. The basic partition diagram is a rect-
angular contour:

ji

where i and j are integer expressions over the program variables. It stands
for the predicate “i < j”. The bounds may be juxtaposed with respect to the
adjacent edge to specify whether they are inclusive or exclusive:

i j = j − 1i = i < j − 1
i j = j − 1i − 1 = i − 1 < j − 1
i j = ji − 1 = i − 1 < j

Conjunctions of partition diagrams, when the upper bound of the predecessor
coincides with the lower bound of its successor, may be written in chained
form:

ji k = ji ∧ kj

i j k = ji ∧ j k

The following abbreviations denote singleton intervals:

i = i i

i = i + 1 i + 1

i = i − 1 i − 1

Using partition diagrams, the aforementioned predicate is equivalently
expressed as:

0 k N = 0 ≤ k ≤ N

As mentioned, partition diagrams can be embedded in textual formulas; e.g.,
the invariant of BinarySearch states that A is sorted.

Colorings are pictorial invariants similar to partition diagrams, but appear as
colored regions rather than as contours. The basic form is

/c/ ji

where c is the chosen color of the regions (for contrast, we chiefly pick ,
and ). It stands for the partial definition of a coloring function over

the integer interval (i, j]. Colorings allow the same syntactic shorthands as
partition diagrams (bound juxtaposition, chaining and singleton intervals).
For example, the following coloring asserts that the coloring function takes
the value between 0 (inclusive) and k (exclusive):

0 k
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For compact representation, partitioning and coloring invariants may be
drawn overlapping when their bounds coincide. For example, the invariant
of situation BinarySearch � Searching is the conjunction of a partitioning
and a coloring:

0 k N = 0 k N ∧ 0 k

Variants are written in the upper right corner of intermediate situations that
are part of a loop. To verify termination, we need to show that the variant
(N − k) is decreased by each transition through the situation and does not
decrease below the lower bound (0).

Finally, we note that situations can be nested. Nesting is conjunctive: an inner
situation inherits all declarations, with the exception of variants, from the enclos-
ing situations.

3 Verification of Pictorial Invariant Diagrams

An invariant diagram is correct iff it is consistent, terminating and live. A tran-
sition t from a situation satisfying predicate p to situation satisfying predicate q
is consistent if p ⇒ wp(t, q) is true, where wp is the weakest precondition trans-
former. For termination, we check that the variant v decreases and that its lower
bound is maintained on re-entry to the situation, i.e., v = v0∧p ⇒ wp(t, 0 ≤ v <
v0). A situation satisfying p is live if at least one outgoing transition is always
enabled, i.e, p ⇒ wp(t, g1 ∨ · · · ∨ gn), where g1, . . . , gn are the guards of outgoing
transitions. Next, we describe how the pictorial elements of a situation (legends
and colorings) combine into a predicate onto which these rules can be applied.
For a formal treatment of the proof rules themselves, see [7].

For a given situation s, let x be the declared variables, T their types, and a
the subset of x containing only the variables of array type. The coloring function
associated with a variable A ∈ a of type array[N] in situation s is a total function
from the program state and an array index

cols,A : T × [0,N) → Cs,A ∪ { }
where the set Cs,A is the color palette associated with A in s, and is a spe-
cial value indicating that no coloring has been specified. The coloring function
formalizes the mapping between legends and invariants, is fully defined, and is
intended to be fully eliminated from the final VC. Given the colorings declared
for array A in situation s:

/c1/ j1i1 . . . /cn/ jnin

where c1, . . . , cn ∈ Cs,A, the coloring function is defined as:

cols,A(x)(i) = if (i1 < i ≤ j1) then c1
...
else if (in < i ≤ jn) then cn
else
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Disjointness of partitioning means that the if-conditions are mutually exclusive,
and the else-clause ensures that the function is total. A legend declaration for
variable a in situation s has the general form:

A | /c1/ j1i1 . . . /cn/ jnin : p(x, i1, . . . , in, j1, . . . , jn)

where c1, . . . , cn ∈ Cs,a and p is a predicate on the program state. Semantically,
this legend stands for the following predicate:

lgds,A(x) = (∀i1, . . . , in, j1, . . . , jn . (0 ≤ i1 < j1 < N) ∧ · · · ∧ (0 ≤ in < jn < N)
∧ (∀k . i1 < k ≤ j1 ⇒ cols,A(x)(k) = c1)
...
∧ (∀k . in < k ≤ jn ⇒ cols,A(x)(k) = cn)
⇒ p(x, i1, . . . , in, j1, . . . , jn))

That is, a legend is an assertion that p holds for subintervals of A matching the
sequence of colorings given in the legend. Like invariants, legends are conjunctive.

To verify a diagram, we generate a theory including the coloring functions,
legend predicates and invariants of each situation, and a lemma to be proved for
each transition. For example, the theory of BinarySearch � Searching in Fig. 1
contains the following declarations (for brevity, in lgdSearching,A we have omitted
the inner quantifications, as the ranges are singletons in both cases):

colSearching,A(A, s, t)(i) = if (−1 ≤ i ≤ s) then
else if (t ≤ i < N) then
else

lgdSearching,A(A, s, t) = (∀i . (0 ≤ i < N) ∧ (colSearching,A(i) = ) ⇒ A(i) �= x)
∧ (∀i . (0 ≤ i < N) ∧ (colSearching,A(i) = ) ⇒ A(i) = x)

invSearching,A(A, s, t) = −1 ≤ s < t ≤ N
∧ (∀i, j.0 ≤ i ≤ j ≤ N ⇒ A(i) ≤ A(j))

To generate the VCs for situation Searching, we can now apply the proof
rules of IBP, taking the conjunction of lgdSearching,A and invSearching,A as
the situation predicate. For example, to prove that the loop transition
“[t − s > 1]; k := (s + t) div 2; [x > A(k)]; s := k” is consistent we will need to
discharge the following VC:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ t − s > 1 ∧ k = (s + t) div 2 ∧ x > A(k) ∧ s′ = k
⇒ lgdSearching,A(A, s′, t) ∧ invSearching,A(A, s′, t))

Additionally, to prove that the same transition is decreasing the variant of
Searching:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ t − s > 1 ∧ k = (s + t) div 2 ∧ x > A(k) ∧ s′ = k
⇒ 1 ≤ t − s′ < t − s)
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Note that the antecedents are identical to those of the consistency VC. Finally,
the liveness condition for situation Searching is:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ k = (s + t) div 2
⇒ (t − s = 1) ∨ (t − s > 1 ∧ (x > A(k) ∨ x < A(k) ∨ x = A(k))))

The VCs can now be discharged using an automatic theorem prover.

4 Example: Insertion Sort

Figure 2 shows an invariant diagram interpretation of insertion sort. It consists of
an outer loop (Sorting) maintaining a sorted partition (green), and an inner loop
(Inserting) moving the next element from the unsorted partition into its correct
position in the sorted partition. The inner loop, as it moves the element back
one step per iteration, maintains two sorted partitions (green and blue). The
control flow transfers from the inner to the outer loop when the concatenation
of the partitions becomes sorted. The outer loop terminates when every element
of the array has been processed. Transitions must additionally ensure that A is
a permutation of the original A0.

Fig. 2. Insertion sort (Color figure online)

Like invariants, legends are inherited from outer situations. For instance,
that any two adjacent green elements are sorted is visible to both Sorting and
Inserting. We note that legends may introduce new colors limited in scope to the
declaring situation and its nested situations. For example, blue introduced by the
legend of Inserting is visible only within Inserting. The coloring functions, legend



158 J. Eriksson et al.

Fig. 3. Coloring function, invariant and legend predicate of situations Sorting and
Inserting. (Color figure online)

predicates and invariant predicates for situations Sorting and Inserting are shown
in Fig. 3. Given these functions and predicates, the VCs for the transitions are
formulated as described in the previous section (omitted here for brevity). The
VCs are automatically proved by Why3 and its associated SMT solvers Z3 [8]
and CVC4 [9].

5 Related Work

Reynolds [4] introduced interval and partition diagrams to express constraints
on arrays. Gries’s seminal textbook [3] uses array pictures in several exam-
ples. Astrachan [2] suggests pictorial representations of arrays and linked lists.
Ginat [10] considers loop invariants as mathematical games, with emphasis on
the heuristics of invariant identification. Some recent approaches have explored
transforming invariant problems into games [11,12] and crowdsourcing verifi-
cation to online communities. Partitioning has been employed in static analysis
and heuristics-driven loop invariant generation [13,14]. Reasoning on range pred-
icates is the basis of the axiomatic rules on array manipulations for correctness
proofs of programs involving arrays in [15]. The converse problem, generating



A Precise Pictorial Language for Array Invariants 159

visual representations from textual specifications, has been addressed in the con-
text of the Z language [16], and also with the purpose of visualizing VCs on arrays
[17]. While pictures and colors are a staple in algorithm animation, we are not
aware of prior work combining partitionings and colorings for formal reasoning.

6 Conclusions and Future Work

In this paper, we have introduced a pictorial language for invariants over arrays.
The language extends two existing visual formalisms: the notation for invariants
and predicates builds on Reynold’s partition diagrams, extending them with col-
orings to connect partitions with desired properties; the language for specifying
the invariant structure and program statements is invariant diagrams, extended
with a hierarchical mapping of colorings to predicates. Partition diagrams, col-
orings and legends seem to be rather expressive visual constructs, allowing many
common array invariants to be stated.

This work is in its initial phases with multiple directions to be explored.
First and foremost, tool support (in the form of editors and VC generators)
would be needed for practical use. Existing tools for IBP [18] do not support the
array-specific visual notations introduced here. Secondly, we would like to gener-
alize the approach to more advanced data structures, such as trees and graphs.
One challenge here is finding equally expressive and intuitive visual partition-
ing notations to state invariants over these non-linear data structures. Thirdly,
we believe that colorings could serve runtime visualization and animation by
overlaying the colors on a data structure instance picture, and analogously, to
produce color-coded counterexamples during verification.
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