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Abstract. Cryptographic protocols are used in different environments,
but existing methods for protocol analysis focus only on the protocols,
without being sensitive to assumptions about their environments.

lpa is a tool that analyzes protocols in context. lpa uses two pro-
grams, cooperating with each other: cpsa, a well-known system for pro-
tocol analysis, and Razor, a model-finder based on SMT technology. Our
analysis follows the enrich-by-need paradigm, in which models of proto-
col execution are generated and examined.

The choice of which models to generate is important, and we motivate
and evaluate lpa’s strategy of building minimal models. “Minimality”
can be defined with respect to either of two preorders, namely the homo-
morphism preorder and the embedding preorder (i.e. the preorder of
injective homomorphisms); we discuss the merits of each. Our main tech-
nical contributions are algorithms for building homomorphism-minimal
models and for generating a set-of-support for the models of a theory, in
each case by scripting interactions with an SMT solver.

1 Introduction

Cryptographic protocol analysis is well-developed. Many tools and rigorous tech-
niques can determine what confidentiality, authentication (e.g. [5,11,16,35]), and
indistinguishability properties (e.g. [6,8,9]) protocols satisfy.

However, what goals a protocol needs to achieve depends on the applications
that use it. The applications require certain security functionality; a protocol
is acceptable if it achieves at least what that functionality relies on. Often,
an attack shows that a protocol ensures less than an application needed. For
instance, the TLS resumption attacks [37], cf. [4,41] show that the protocol
did not allow the server application to distinguish unauthenticated input at the
beginning of a data stream from subsequent authenticated input. This may lead
to erroneous authorization decisions.

Conversely, a protocol may be good enough for an application because of
environmental assumptions the application ensures. For instance, some protocols
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Fig. 1. DoorSEP protocol

fail if the same long-term key is ever used by a principal when playing the server
role and also when playing a client role. However, some applications ensure that
no server ever executes the protocol in the client role at all. This policy would
ensure that an otherwise weak protocol reliably supports the application’s needs.

Logical Protocol Analysis is our term for combining a protocol analyzer with
these additional concerns, which we analyze via model finding. Our goal is to
analyze cryptographic protocols that include trust axioms that cannot be stated
using the typical input to a protocol analyzer. We will carry this idea out using
the model finder Razor [42] and cpsa, a specialized protocol analysis tool [20,36].

Flawed protocols are often deployed before the flaws are understood, and
embedded in widely used devices. Such protocols can still achieve desired security
goals when used in a restricted context. If the context can be modeled using
environmental assumptions and other trust axioms, Logical Protocol Analysis
can be used to discover whether the goals are met in the actual context of use.

An Example: DoorSEP. As a motivating scenario consider the Door Simple
Example Protocol (DoorSEP), derived from an expository protocol [7] that was
designed to have a weakness. Despite this, the protocol achieves the needs of an
application, given a trust assumption. Section 4.1 has more detail.

Imagine a door D that is equipped with a badge reader, and a person P
equipped with a badge. When the person swipes the badge, the protocol executes.
Principals such as doors or persons are identified by the public parts of their key
pairs, with D−1 and P−1 being the corresponding private keys. We write {|M |}K

for the encryption of message M with key K. We represent digital signatures
{|M |}P−1 as if they were the result of encrypting with P ’s private key.

P initiates the exchange by creating a fresh symmetric key K, signing it,
and sending it to the door D encrypted with the door’s public key. D extracts
the symmetric key after checking the signature, freshly generates a token T , and
sends it—encrypted with the symmetric key—back to P . P demonstrates they
are authorized to enter by decrypting the token and sending it as plaintext to
the door. The two roles of DoorSEP are shown in Fig. 1, where each vertical
column displays the behavior of one of the roles.

cpsa finds an undesirable execution of DoorSEP. Assume the person’s private
key P−1 is uncompromised and the door has received the token it sent out.
Then cpsa finds that P freshly created the symmetric key K. However, nothing
ensures that the person meant to open door D. If P ever initiates a run with
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Fig. 2. DoorSEP weakness

a compromised door C, the adversary can perform a man-in-the-middle attack,
decrypting using the compromised key C−1 and re-encrypting with D’s public
key, as elided in the · · · in Fig. 2. Thus, without additional assumptions, the
door cannot authenticate the person requesting entry.

But possibly we can trust the person to swipe her badge only in front of
doors our organization controls. And we can ensure that our doors have uncom-
promised private keys. If so, then the adversary cannot exercise the flaw. We
regard this as a trust assumption, and we can express it as an axiom:

Trust Assumption 1. If an uncompromised signing key P−1 is used to prepare
an instance of the first DoorSEP message, then its owning principal has ensured
that the selected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be split between P
and the organization controlling D. P makes sure to swipe her badge only at
legitimate doors of the organization’s buildings. The organization maintains a
security posture that protects the corresponding private keys.

Is DoorSEP good enough, assuming the trust axiom? To analyze DoorSEP
under trust assumption 1, we use a model finder, namely Razor [42]. We provide
it a theory leading to a model containing the man-in-the-middle attack. We then
add the trust axiom above. The axiom entails that the adversary cannot decrypt
the message sent by the P .

The generated model is then given to cpsa, which infers that the door can
decrypt the person’s message only if C = D, i.e. if P intended it D. Thus,
the protocol does its job; namely, ensuring that the door opens only when an
authorized person requests it to open.

1.1 Protocols and Theories

Security conclusions require protocol analysis combined with other properties,
which we will assume are given axiomatically by a theory G. We also regard a
protocol Π as determining an axiomatic theory Th(Π), namely the theory of Π’s
executions, as Π runs possibly in the presence of a malicious adversary. Thus,
we would like to understand the joint models of G ∪ Th(Π), where of course
these theories may share vocabulary. In the DoorSEP case, G is the trust axiom.
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The models of G ∪ Th(Π) are runs of DoorSEP in which the doors and people
act as assumed in G.

Enrich-by-Need. Indeed, our approach is to construct minimal models in a
homomorphism order. We refer to these minimal models as shapes [20]. The
shapes show all of the minimal, essentially different things that can happen sub-
ject to G ∪ Th(Π): every execution contains instances—meaning homomorphic
images—of the shapes. This is useful to the security analyst who can inspect the
minimal models and appraise whether they are compatible with his needs. The
analyst can do this even without being able to explicitly state the key security
goals. In the case in which G = ∅, so that only Th(Π) matters, generating these
shapes is the central functionality of cpsa [36].

We call this approach to security analysis enrich-by-need, since we build
homomorphism-minimal models by rising stepwise in the homomorphism order,
gradually generating them all. cpsa does so using a “authentication test”
method, which yields a compact, uniform way to generate the set of minimal
models of the protocol theory [20,27].

Indeed, when the set of shapes is finite, we can summarize them in a formula,
the disjunction of the diagrams of each. We regard this as the conclusion of an
implication; the diagram of the starting scenario is the hypothesis. This shape
analysis sentence is a strongest security goal achieved by the protocol that has
the hypothesis chosen [21,34]. Lemma 8 justifies this idea.

We extend cpsa here to cooperate with another tool to provide models of
the whole theory G ∪ Th(Π). We effectively split Th(Π) into two parts, a hard
part Th and an easy part Te. Only cpsa will handle the hard part.

We use a general-purpose model-finder, Razor [42] to look for minimal models
of G∪Te that extend a fragment of a model. When the resulting model A contains
additional behavior of Π, we return to cpsa to handle the hard part Th, enriching
A with some possible executions. We then return these extensions to Razor. If
this process terminates, we have a minimal joint model. By iterating our search,
we obtain a covering set of minimal joint models. Razor, in turn, is built as
a wrapper around a Satisfiability Modulo Theories (SMT) solver, specifically
Z3 [12].

Contributions. We have two goals. First, we define and justify the methods
that the new Razor uses to drive Z3 to generate homomorphism-minimal models
of a given theory. These homomorphisms are not necessarily embeddings; that is,
a homomorphism to construct may map distinct values in its source model to the
same value in its target model. To begin with, we need a method to construct,
from a model A, a set of sentences homFromA, true in precisely those models
B such that there is a homomorphism from A to B. We also need a method to
construct, from a model A, a set of sentences homToA, true in precisely those
models B such that there is a homomorphism from B to A. We show how to use
these two resources to compute a set of minimal models that covers all of the
models; this method is codified in Razor.

Second, we develop a particular architecture for coordinating Razor and
cpsa. In this architecture, Razor handles all aspects of G ∪ Th(Π) except that
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it does not enrich a fragmentary execution of Π to obtain its shapes, i.e. the
minimal executions that are its images. Instead, we generate an input to cpsa
that contains the substructure A0 containing only protocol behavior. cpsa com-
putes the shapes and extracts the strongest security goal that applies to A0. It
returns this additional information to Razor, which then iterates. We call this
cooperative architecture lpa for Logical Protocol Analysis.

Structure of the Paper. In Sect. 2 we fix some preliminary definitions and
notation; we introduce the two existing tools that coordinate to make lpa in
Sect. 3. In Sect. 4 we describe lpa itself and how it is used to analyze the
DoorSEP protocol. Section 5 is a development of some of the underlying the-
ory of using SMT solving to compute and present models, with an emphasis on
the question: which models should be presented to the user? We end with con-
clusions and a discussion of future work. Some proofs have been omitted, and
some discussion condensed, for lack of space; see [14] for a fuller treatment.

Related Work. Model-finding is an active area of investigation [3,10,29,38,43].
But existing model-finders compute an essentially random set of models. Close
in spirit to our goals and techniques are lightweight formal methods tools such as
Alloy [26] and Margrave [31]. Aluminum [32] supports exploration by returning
minimal models: it instruments the model-finding engine of Alloy.

Logic programming languages produce single, least models as a consequence
of their semantics; this is not a notion of minimality based on homomorphisms,
and is traditionally tied to Horn-clause theories. Generalizations of minimality
for non-Horn theories have already been used in specifying the semantics of
disjunctive logic programming [28] and in non-monotonic reasoning, especially
circumscription [39].

Our previous work on a Cryptographic Protocol Programming Language [22,
24] led to a programming language that would allow protocol actions to be
controlled by a trust management policy.

The Tamarin prover [30] can limit the context in which a protocol is to be
analyzed by restricting its analysis to a user-specified subset of all protocol traces.
In contrast, our primary interests lie in enriching the context in which analysis
is done and in generating principled output instances. There was also related
work in the applied π-calculus [18,19]. Protocol analysis sometimes builds in
environmental assumptions in a security goal hypothesis, by assuming that some
keys are uncompromised, or that some principal names are unequal. However,
the focus of research has been on the pure problem of determining the security
properties of protocols in isolation.

2 Foundations

2.1 Models and Homomorphisms

In this chapter we present some of the foundations of model-finding, focusing on
the use of an SMT solver. In broadest terms, model-finding is the following task:
given a logical theory T , produce one or more (finite) models of T .
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Of course a typical satisfiable theory will have many models. Special empha-
sis is given in this paper to the question of which models should be presented to
the user? One answer—embodied in the lpa tool—is based on the fundamen-
tal notion of homomorphism between models, with a focus on models that are
minimal (see Sect. 5) in the pre-order determined by homomorphism.

Fix a signature Σ. A model A for signature Σ is defined as usual: a collection
of sets interpreting the sorts of Σ, and a collection of functions and relations
interpreting the function and relation symbols of Σ. In this paper we work with
finite models exclusively.

Definition 1. Let A and B be Σ-models. A homomorphism from A to B is a
sort-indexed family of maps such that

1. A |= f [a1, . . . , an] = a implies B |= f [h(a1), . . . , h(an)] = h(a) and
2. A |= R[a1, . . . , an] implies B |= R[h(a1), . . . , h(an)].

Write A � B if there is a homomorphism h : A → B, and write A ≈ B

if A � B and B � A. Write A �i
B if there is an injective homomorphism

h : A → B, and write A ≈
i

B if A �i
B and B �i

A. We will sometimes use
the phrase “hom-cone of A” to refer to the set of models B for which there is a
homomorphism h : A → B.

Definition 2. Let M be a class of models. A model M ∈ M is a-minimal for M
if whenever A ∈ M and A � M, we have A ≈ M. The definition of i-minimal
is similar, using injective homomorphisms. (The modifier “a−” is to suggest
“arbitrary”.)

The notion of the core of a model is standard [17,25]; it is important for us
because cores will give canonical representatives of ≈ equivalence classes.

Core are defined in terms of retractions, as follows.

Definition 3. A retraction r : A → B is a homomorphism such that there is a
homomorphism e : B → A with r ◦ e = idB.

A submodel C of A is a core of A if there is a retraction r : A → C but no
retract r′ : A → C

′ for any proper submodel C
′ of C.

A model C is a core if it is a core of itself.

Definition 4 (PE formula, Geometric theory). A formula is positive-
existential, or PE, if it is built from atomic formulas (including true and false)
using ∧, ∨ and ∃. A geometric sentence is one of the form

∀�x. α(�x) → β(�x)

where α and β are positive-existential.

Theorem 5. The following are equivalent, for a formula α(�x):

1. α is preserved by homomorphism: if h : A → B is a homomorphism, and �a is
a vector of elements from A such that A |= α[�a], then B |= α[ �ha].
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2. α is logically equivalent to a PE formula.
3. α is equivalent, in the category MΣ of finite models, to a PE formula.

Proof. The equivalence of (1) and (2) is a classical result in model theory when
considering arbitrary models. The equivalence of (1) and (3) is a deep result of
Rossman [40].

The case for geometric logic as a logic of observable properties was made clearly
by Abramsky [1]. As detailed in [21], typical security goals for protocols are natu-
rally expressed as geometric sentences. (As is well-known, any theory is equisat-
isfiable with one in conjunctive normal form, by introducing Skolem functions.
Such an enrichment of the theory signature is not innocent, however, since it has
consequences for the existence of homomorphisms between models.)

It is straightforward to see that when T is geometric, if A is a model of T
then a retraction of A is a model of T .

Lemma 6. Let T be a geometric theory, A |= T , and r : A → B a retraction.
Then B |= T .

Definition 7. If M is a class of Σ-models and M0 ⊆ M say that M0 is an
a-set of support for M if for all B ∈ M, there exists A ∈ M0 with A � B.
Similarly for i-set of support.

A set of support for a class of models provides a complete “testbed” for entail-
ment of geometric sentences:

Lemma 8. Let σ ≡ ∀�x. α(�x) → β(�x) be geometric and let M be a class of
models. Let M0 be an a-set of support for {A ∈ M | A |= ∃�x. α(�x)}. If every
model in M0 satisfies σ then every model in M satisfies σ.

Proof. Let P ∈ M with P |= α[�a]; we want to show that P |= β[�a]. Let M ∈ M0

with M � P. Since M |= σ, M |= β[�a]. Since β is PE and M � P, P |= β[�a].

2.2 Strand Spaces

We can formalize protocol executions as models, as follows. A run of a protocol is
viewed as an exchange of messages by a finite set of local sessions of the protocol.
Each local session is called a strand: a strand is a sequence of nodes n, each of
which is a transmission or a reception of the message msg(n) at that node.

A strand space Θ is a finite sequence of strands. A message that originates in
exactly one strand of Θ is uniquely originating, and represents a freshly chosen
value. A message is mentioned in Θ if it occurs in a strand of Θ, or if it is an
asymmetric key, its inverse occurs in a strand of Θ. A message that is men-
tioned but originates nowhere in Θ is non-originating, and often represents an
uncompromised key.

A protocol Π is a finite set of strands, which are the roles of the protocol. A
strand s is an instance of a role ρ ∈ Π, if s = α(ρ), i.e. if s results from ρ by
applying a substitution α to parameters in ρ.
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Skeletons are fragmentary executions of the regular participants, which factor
out adversary behavior. A skeleton K = (nodes,, non, unique) consists of a finite
set of regular nodes, a partial ordering on them, a set of values assumed non-
originating, and a set of values assumed uniquely originating. These components
are designed to code in the aspects of executions that we care about, namely
the ordering, and what values are uncompromised (“non”) or freshly chosen
(“unique”).

A skeleton K is an execution, or realized, iff for every message received in K,
the Dolev-Yao adversary [13] can derive that message with the help of earlier
transmissions in K.

Associated with each cpsa protocol Π is a first-order language L(Π) used
to specify security goals [21]. The language can be used to exchange information
between cpsa and an smt solver. These mechanisms are described in Sect. 4.

3 Constituent Tools

CPSA. The Cryptographic Protocol Shapes Analyzer [35] (cpsa) can be used
to determine if a protocol achieves authentication and secrecy goals. cpsa will—
given a protocol Π and a skeleton of interest K—generate all of the minimal,
essentially different realized skeletons that are homomorphic images of K. We
call these minimal, essentially different skeletons shapes, and, although in general
there could be infinitely many of them, frequently there are very few of them.

cpsa begins a run with a protocol description and an initial scenario K0.
The initial scenario is a partial description of executions of a protocol. If cpsa
terminates, it characterizes all the executions of the protocol consistent with the
initial scenario. For example, if it is assumed that one role of a protocol runs to
completion, cpsa will determine what other roles must have executed.

Each skeleton K has a characteristic sentence σK such that, for all K
′, h :

K → K
′ (for some homomorphism h) iff K

′ |= σK.
Homomorphisms play an essential role in cpsa. At each step in the algorithm,

an unrealized skeleton K is replaced by a set of skeletons {K1, . . . , Kn}, called a
cohort, by solving an authentication test [23]. The skeletons {K1, . . . , Kn} form
an a-set of support for the realized skeletons that are homomorphic images of K.
That is, if there is an execution (or “realized skeleton”) Kr such that h : K → Kr,
then there exists some homomorphism h′ : Ki → Kr such that h = h′ ◦ hi.

For an initial scenario K0, cpsa produces a set of realized skeletons
{K1, . . . , Kn} and homomorphisms hi : K0 → Ki. These are built up by a suc-
cession of cohort steps; thus, they remain an a-set of support for the realized
skeletons that are homomorphic images of K0. The set hi : K0 → Ki—called the
shapes of this scenario—are a compact way of describing all of the executions
compatible with the initial scenario. By Lemma8, if a geometric sentence σ holds
in each shape, then σ holds in every realized skeleton that is an image of K0.
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There is a key geometric sentence that can be extracted from the results of
a run of cpsa. A Shape Analysis Sentence (sas) [34] encodes everything that
has been learned about the protocol from a cpsa analysis starting with a given
initial scenario. It holds in every realized skeleton of the protocol. A sas is used
to import the results of a cpsa analysis into the smt solver.

The antecedent of a sas is a conjunction of atomic formulas that specify the
initial scenario K0. The universally quantified variables are the ones that occur in
the antecedent. The conclusion is a disjunction of formulas, one for each shape.
The ith disjunct is an existentially quantified conjunction of atomic formulas
that describes the mapping hi and the additions to the antecedent required to
specify shape Ki.

Razor. Razor is a general-purpose model-finder: it takes as input an arbi-
trary first-order theory T and attempts to find finite models of T (cpsa can
be viewed as a domain-specific model-finder, working over various theories of
strand spaces).

Razor finds models by (i) preprocessing the input theory as described below,
(ii) using an off-the-shelf SMT solver, currently Z3, and (iii) postprocessing the
results of the solver’s output to fulfill certain goals: return minimal models by
default, allowing the user to explore and augment models, and computing a set-
of-support of models for T . Razor can be used in REPL mode or batch mode;
only the latter is used as part of lpa (refer to [42] for a fuller description of
Razor’s REPL mode).

Once the SMT solver has determined that a theory T is satisfiable, and
computed—internally—a model for T , the application must extract the model
from the solver. But the API mandated by the SMT-Lib Standard (v.2.6) [2] for
doing this is quite restricted. The model can be inspected only through certain
commands returning the solver’s internal representation of values of terms.

This is inconvenient for us, especially since the solver might create only a
partial model internally.

To address this, we first ensure that the language we use to communicate
with the solver has enough ground terms at each sort to name all elements of a
model, by adding fresh constants. Then we can query the solver for the values
of the functions and predicates, and build a “basic” model representation

equations ci = cj and
equations f�c = c and

facts R�c

where the ci range over the fresh constants. Using standard techniques we then
construct from these equations a convergent (terminating and confluent) ground
rewrite system, which facilitates working with the models.
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4 LPA

This section shows how to use cpsa and Razor to analyze cryptographic proto-
cols in context. Our architecture for lpa is displayed in Fig. 3. An analysis begins
with a cpsa protocol Π and an initial theory T0. The initial theory contains a
specification of the trust policy and a description of the initial scenario of the
protocol as a collection of sentences in L+(Π), an extension of L(Π).

protocol
(cpsa)

init
theory
(smt2)

first
theory
(smt2)

current
model

current
theory
(smt2)

prot2smt2

copy copy

razorcpsa +
friends

Fig. 3. lpa architecture

The program prot2smt2 uses
protocol Π to generate a set
of geometric axioms Th(Π) [14,
Sect. 2.1.5]. These axioms allow
Razor to produce models from which
skeletons can be extracted. For
example, an axiom about the transi-
tivity of node orderings allows Razor
to compute the partial ordering of
the nodes. Other axioms ensure
that a uniquely originating value is

received only after it is transmitted and that the double inverse of each asym-
metric key is equal to itself.

The initial theory is appended to Th(Π) to form the first theory T1 to be
analyzed by Razor. A skeleton is extracted from each model. If the skeleton is
realized, the model describes the impact of the trust policy on complete exe-
cutions of the protocol. If the skeleton is not realized, it is used as the initial
scenario for cpsa. The results of cpsa is turned into a sas (shape analysis
sentence, cf. Sect. 3) and added to the current theory for further analysis. The
process is repeated until all of the extracted skeletons are realized.

4.1 Analyzing the Door Simple Example Protocol

We now expand on the analysis of the DoorSEP protocol introduced in Sect. 1.
In this protocol, a person begins by generating a fresh symmetric key, signing it,
and then encrypting the result using the door’s public key. If the door accepts the
first message, it responds by freshly generating a token and uses the symmetric
key to encrypt it. If the door receives the token back unencrypted, the door
concludes the person that generated the key is at the door and opens.

The initial theory specifies Trust Assumption 1 and the fact that the door
is open. To assert the door is open, one asserts there is a strand that is a full
length instance of the door role. We further assert that the person’s private key
is uncompromised.

Recall the diagram in Fig. 3 to visualize the analysis process. After appending
the initial theory to the protocol axioms Th(Π), Razor finds model M0. As
expected, model M0 specifies a full length door strand in which the person’s
private key is uncompromised and other facts such as the fact that double inverse
of the model’s asymmetric keys are equal to themselves.
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At this stage, we have a model that characterizes an unrealized skeleton, and
we would like to use cpsa to find out what else must have happened. The shape
produced by cpsa is displayed in Fig. 2. The shape shows the lack of mutual
authentication built into this flawed protocol.

The next step in the analysis makes use of the trust axiom. The result of
the cpsa analysis is transformed into a sas. The antecedent specifies the initial
scenario described by the first model. The consequence specifies what else must
be added to make the initial scenario into the complete execution shown in Fig. 2.

When the sas is added to the current theory, Razor finds one model M1.
The skeleton extracted from this model is very similar to the shape in Fig. 2
with one crucial difference: the key D′ is uncompromised. Razor applied the
trust axiom. The skeleton extracted from M1 is unrealized, so cpsa can make a
contribution. It finds a sas that extends the length of the person strand to full
length and equates D and D′. The addition of this sas produces model M2 that
characterizes a realized skeleton with full agreement between the door and person
strands. Because the skeleton is realized, cpsa has nothing more to contribute
and the analysis terminates.

5 Minimality, Cores, and Set-of-Support

In this section we explore the question which models should we compute and
show to the user of a model-finding tool? Our proposal, motivated by Lemma8
and implemented by lpa, is: compute a set-of-support for the input theory com-
prised of minimal models. As we have observed there are two natural notions
of minimality; we point out some theoretical differences between them. Most
importantly, we present algorithms for computing minimal models and sets-of-
support: these involve programming against the functionality of SMT solvers.

5.1 Comparing i-Minimal and a-Minimal

One way to think about a-minimality of a model M is that if any atomic fact of
M is removed, the resulting model would no longer be a model of the theory at
hand. In particular, since equality is an atomic predicate, if two terms denote—
unnecessarily—the same model-element, this is a failure of a-minimality.

Neither of i-minimality or a-minimality implies the other.

Example 9.

– Let T be the single sentence ∃x.P (x) ∧ ∃x.Q(x), and let A have one element
a with A |= P [a] ∧ Q[a].
Then A is i-minimal but not a-minimal: the model B with two elements a1

and a2 such that B |= P [a1] ∧ Q[a2] is strictly below A in the � preorder. (B
is a-minimal for T .)

– Let T be ∃x.P (x) and let A have two elements a1 and a2 with A |=
P [a1] and A |= P [a2]. Then A is a-minimal but is not i-minimal: the induced
model determined by a1 is a model of T .
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However, an a-minimal model that is a core will be i-minimal.

Lemma 10. If A is a-minimal for T and is a core, then A is i-minimal for T .

Proof. Suppose B is a model of T and j : B → A is injective. Since A is a-
minimal, there is a homomorphism h : A → B. The composition j ◦ h is an
endomorphism of A. Since A is a core this map is injective, so h is injective, and
A ≈

i
B.

We should observe that for a given theory there might be no finite a-minimal
models at all. An example is the theory with one unary function and no axioms.
The initial (hence unique minimal) model of this theory is the natural numbers.
Another way to put this is: the � preorder is not well-founded in general.

On the other hand, we will typically add axioms to a theory to ensure that
there is an upper bound on the size of its models. In such a case there will be
only finitely many models of T , and the � preorder will be well-founded. This
is the key to the termination of many of the algorithms in this section. (There
will always be a-minimal models for theories T that are bounded in this way.)

Lemma 11. Let T be a theory with only finitely many models. Then the � and
�

i preorders on models of T are well-founded.

Proof. Suppose for the sake of contradiction that we have an infinite descending
chain . . . � M2 � M1 � M0 of strict homomorphisms. Then we have Mi+k �

Mi for any k ≥ 0. Since T has finitely many models, we eventually get i and
k ≥ 0 with Mi+k+1 isomorphic to Mi. So Mi+k+1 � Mi+1. But that implies
Mi � Mi+1, a contradiction.

The same argument applies to �i as well.

5.2 Minimal Models for Protocol Analysis

When model-finding is used for protocol analysis, specifically when reasoning
about an authentication goal, minimality with respect to arbitrary homomor-
phisms is of particular interest. Consider, for example, the analysis of the authen-
tication properties of DoorSEP. The model A corresponding to the failure of
authentication described in the Introduction is one in which there are keys for
two different doors D and D′ involved in the protocol run. The model B that
would arise from identifying D and D′ would still represent a protocol execution
(indeed, the hoped-for behavior of the protocol). But A is strictly below this
B in the � ordering, and it is A that gives insight in to the possibility of the
man-in-the-middle attack (in the absence of the trust axiom, of course).

5.3 Computing Minimal Models and Set-of-Support

We present the following algorithms, each of which relies on the primitive oper-
ation of asking an SMT solver for a single finite model of a given theory. Recall
that an SMTLib-compliant solver need not return any particular model for a
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satisfiable theory, and that repeated requests to a solver for the same theory will
typically return the same model.

Fix a theory T .

– iMinimize: given model A |= T , compute an i-minimal model M |= T with
M �i

A.
– aMinimize: given model A |= T , compute an a-minimal model M |= T with

M � A.
– computeCore: given model A, compute the core of A.
– SetOfSupport (resp. iSetOfSupport): compute a stream of models comprising

a (resp. injective) set of support for theory T .
– aHomTo (resp. iHomTo): given model A |= T , compute a sentence homToA

defining the models P |= T such that there is a (resp. injective) homomor-
phism h : P → A.

– aHomFrom (resp. iHomFrom): given model A |= T , compute a sentence
homFromA defining the models P |= T such that there is a (resp. injective)
homomorphism h : A → P.

The algorithms aMinimize and computeCore each rely on the sentences
homToA and homFromA. The latter of these is subtle, so we first present the
other algorithms in terms of these, then develop aHomTo and aHomFrom.

5.4 i-Minimization

The following procedure was originally developed for use in the Aluminum tool
[33] For this algorithm we use the notation flipP to denote

∧
{¬α | α is atomic, P |= ¬α} ∧

∨
{¬β | β is atomic, P |= β}

Note in particular that if c and c′ are constants naming distinct elements of
a model P, then c �= c′ is one of the conjuncts of flipP.

Algorithm 12 (i-Minimize).

input: theory T and model A |= T
output: model P |= T such that P is i-minimal for T and P �i

A

initialize: set P to be A

while T ′ def
= T ∪ {flipP} is satisfiable

set P to be a model of T ′
return P

Lemma 13. Algorithm12 is correct: if A is a finite model of T then Algo-
rithm12 terminates on A, and the output P is an i-minimal model of T with
P �i

A

Proof. Each iteration goes down in the �
i ordering, thus termination. To show

that the result is i-minimal for T , it suffices to argue that the result is a minimal
T -submodel of the input, under the submodel ordering. But this is clear from
the definition of the sentences flip .
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5.5 a-Minimization

Computing a-minimal models is harder. If we bound the size of the domain(s) of
our models then a-minimal models exist: the � preorder is well-founded, so the
set of minimal elements with respect to this order is non-empty. The question
is, how to compute a-minimal models?

The idea is that, given a model A, we can use the sentences homToA and
homFromA to iterate the process of constructing a model that is strictly below
A in the � ordering.

Algorithm 14 (a-Minimize).

input: theory T and model A |= T
output: model P |= T such that P is a-minimal for T and N � A

initialize: set P to be A

while T ′ def
= T ∪ {homToP} ∪ {¬homFromP} is satisfiable

set P to be a model of T ′

return P

Lemma 15. Algorithm14 is correct: if A is a finite model of T then Algo-
rithm12 terminates on A, and the output P is an a-minimal model of T with
P � A

Proof. Each iteration constructs a model lower in the � ordering; termination
follows from well-foundedness of the � ordering.

5.6 Computing Cores

Cores are interesting for us because—when the input theory T is geometric—
they give a way to build models that are both a-minimal and i-minimal.

Testing whether a model is a core is NP-complete [25]. So computing cores
is presumably expensive, from a worst-case complexity perspective. But it is not
difficult, using an SMT solver, to write a program that behaves well in practice.
The key point is the well-known observation that a model C has no proper
retracts if and only if it has no proper endomorphisms.

Definition 16. If A is a finite model for signature Σ, the sentence endoA, over
the signature Σh that extends Σ by adding a new function symbol hs : S → S at
each sort S, is the conjunction of

– the diagram of A,
– the sentence expressing “h is a homomorphism”, and
– the sentence expressing “h is not injective.”

Algorithm 17 (ComputeCore).

input: model A over signature Σ
output: a core P of A

initialize: Set P to be A
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while endoP is satisfiable
let P

′ be a model of endoP;
let P0 be the image of endoP in P’;
let P be the reduct of P0 to the original signature Σ

return P

Lemma 18. Algorithm17 computes a core of its input.

Proof. The algorithm terminates because the size of the model P decreases at
each iteration. The resulting model is a core, since it has no proper endomor-
phisms.

5.7 Set of Support

We take the ability to generate a set-of-support for the class of all models of a
theory T to be a natural notion of “completeness” in model-finding. Lemma8
makes a precise claim of completeness with respect to reasoning about geometric
consequences of T .

It should be noted that if a class C is a set-of-support for a theory T with
respect to i-homomorphisms then C is a set-of-support for T with respect to
a-homomorphisms; this is immediate from the definitions.

There will be typically many more models comprising an i-set of support.
However, it is true that if there is a finite C that is a set-of-support for a theory
T with respect to a-homomorphisms then there is a finite C′ set-of-support for
T with respect to i-homomorphisms. To see this, suppose C is a set of support
for a class of models. Each A in this set has a finite number of i-minimal models
B1, . . . Bk below it. The collection of all these taken over the models in C makes
a i-set of support.

Computing sets-of-support is another application of the homFromA tech-
nique. Given theory T and model A, if we construct the theory T ′ def

= T ∪
{¬homFromA} then calls to the SMT solver on theory T ′ are guaranteed to
return models of T outside the hom-cone of A if any exist. So a set-of-support
for T can be generated by iterating this process.

Completeness of this strategy does not require that the models A we work
with are minimal. But if we do work with minimal models there will be fewer
iterations. We give SetOfSupport here, for iSetOfSupport simply use i-minimal
models and the iHomFromA sentence.

Algorithm 19 (SetOfSupport).

input: theory T and profile prf
output: a stream M1, M2, . . . of minimal models of T such that for any
prf -model P |= T , there is some i such that Mi � P.
initialize: set theory T ∗ to be T
while T ∗ is satisfiable

let M be an a-minimal model of T ∗

output M

set T ∗ to be T ∗ ∪ ¬homFromM
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5.8 Hom-To

This is straightforward “solver programming”. Given model A, we want to char-
acterize those P such that there is a hom h : P → A, by constructing a sentence
homToA axiomatizing such models.

Algorithm 20 (HomTo).

input: model A over signature Σ.
output: sentence homToA in an expanded signature Σ+, such that for any
model P |= Σ, P � A iff there is an expansion P

+ of P to Σ+ with P
+ |=

homTomM .

define Σ+ to be the extension of Σ obtained by
– adding a set of fresh constants naming elements of the domain of A

– adding a function symbol hS : S → S at each sort S
return homToA as the conjunction of the following sentences, one for each
function symbol f and predicate R in Σ. Here �e and e′ range over the names
for elements of A.

∀�x, y. f�x = y =⇒
∨

{( �hx = �e ∧ y = e′) | A |= f�e = e′}

∀�x. R�x = true =⇒
∨

{( �hx = �e) | A |= R�e = true}

For iHomTo, simply add a sentence to say that h is injective.

Lemma 21. There is a homomorphism from B to A iff there is a model B
+ |=

homToA such that B is the reduction to Σ of B
+.

5.9 Hom-From

Our eventual goal is: given a model A, find a formula to capture not being in the
hom-cone of A. This is more interesting than the aHomTo problem, because we
are going to negate the sentence we build, to express hom-cone-avoidance. Since
universal quantifiers can be bottlenecks in SMT-solving, we want to minimize
the number of existential quantifiers we use here.

The ideal outcome would be to construct an existential sentence capturing
the complement of the hom cone of A. Equivalently we might look for a structure
D such that for any X, X � D iff A �� X. This is called “homomorphism duality”
in the literature [15]. Such a structure doesn’t always exist, and even if it does, it
can be exponentially large in the size of A [15]. So we turn to heuristic methods.

Our strategy is to construct a sentence (to be negated) which is guaran-
teed to characterize models in the hom-cone of M, then refine this sentence to
eliminate (some) quantifiers. We start with the equations of the standard model
representation for A as described in Sect. 2. By replacing the Razor-defined con-
stants by existentially-quantified variables we arrive at a sentence repA, which
is a positive-existential sentence (without disjunctions).

By the fact that homomorphisms preserve positive existential formulas and
the fact that the equations of repA completely describe the functions and predi-
cates true of A we have:
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Lemma 22. Let A and F be Σ models. Then A � F iff F |= repA.

The trouble with repA is that it has as many existential quantifiers in repA

as there are domain elements. If we were to take homFromA to be repA, simply
negating this would lead to a sentence inconvenient for the SMT solver. We can
compress the representation, though. This will lead to a nicer representation
sentence, which we will take as our homFromM.

Algorithm 23 (HomFrom).

input: model A over signature Σ
output: sentence homFromA over signature Σ, such that for any model P |=
Σ, A � P iff P |= homFromA.
comment: sentence homFromA is designed to use as few existential quanti-
fiers as possible, in a “best-effort” sense.
initialize: Set sentence homFromA to be repA, the standard model represen-
tation sentence for A.
while there is a conjunct in the body of homFromA of the form f(t1, . . . , tn) =
x such that x does not occur in any of the ti,

– replace all occurrences of x in homFromA by f(t1, . . . , tn). Erase the
resulting trivial equation f(t1, . . . , tn) = f(t1, . . . , tn) and erase the (∃x)
quantifier in front.

For iHomFrom , first enrich repA to say that each of the fresh constants naming
elements of A is distinct. The rest of the development goes through as described.

Lemma 24. For any model P |= Σ, A � P iff P |= homFromA. Similarly for
iHomFromA and �i.

The order in which we do these rules matters, in the sense that smaller formu-
las result if we process nodes as follows. Construct a graph in which the nodes are
the variables occurring in the set of equations, and in which, if fx1 . . . xn = x is
a rule, then there is an edge from each xi to x. Then process the nodes according
to the preorder given by this graph.

Example 25. Start with

σ ≡ ∃x0x1x2 . fx0 = x2 ∧ fx1 = x0 ∧ fx2 = x1 ∧ c = x2

Making the graph as defined above, we treat the variables in the order x2, then
x1 then x0. We then derive, in order:

∃x0x1 . fx0 = c ∧ fx1 = x0 ∧ fc = x1

∃x0 . fx0 = c ∧ ffc = x0

fffc = c

An SMT solver will work more happily with fffc �= c than with ¬σ.
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5.10 Section Summary

1. i-minimal models for a theory T always exist; there may be no finite a-minimal
models for a given theory.

2. a-minimal models are better suited to protocol analysis since they do not
make unnecessary identifications between terms.

3. i-minimal models are easier to compute than a-minimal models.
4. If T is a geometric theory, and M is an a-minimal model and a core, then M

is i-minimal (Lemma 10).
5. If a class C is a set-of-support for a theory T with respect to i-homomorphisms

then C is a set-of-support for T with respect to a-homomorphisms.
6. If there is a finite C that is a set-of-support for a theory T with respect to

a-homomorphisms then there is a finite C′ set-of-support for T with respect
to i-homomorphisms.

6 Conclusions and Future Work

In this paper, we have developed a method for analyzing systems with crypto-
graphic protocols in the context of first-order theories such as trust assumptions,
and presented a detailed analysis of a specific example, the DoorSEP protocol.

We have described an implementation of these methods as the Logical Pro-
tocol Analysis (lpa) system. lpa is a coordination between a general-purpose
model-finder, Razor, and a cryptographic protocol-specific tool, cpsa. We have
shown how to share labor between Razor and cpsa so that the latter can apply
its authentication test solving methods, while Razor is handling the remainder
of the axiomatic theory of the protocol together with some non-protocol axioms.

We explored the comparative virtues of minimality with respect to injective
homomorphisms versus arbitrary homomorphisms, and developed algorithms for
finding minimal models and computing a set-of-support of models for a theory.

Unfortunately, as the size of a protocol grows, so does the size of its the-
ory, and SMT solvers struggle with performance in the presence of a significant
number of universal quantifiers. In future work, we plan to reorganize the soft-
ware architecture to be one in which only subtheories are delivered to the solver,
preferably governing smaller parts of the domain.
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