
Making Linearizability Compositional
for Partially Ordered Executions

Simon Doherty1, Brijesh Dongol2(B), Heike Wehrheim3, and John Derrick1

1 University of Sheffield, Sheffield, UK
2 University of Surrey, Guildford, UK

b.dongol@surrey.ac.uk
3 University of Paderborn, Paderborn, Germany

Abstract. In the interleaving model of concurrency, where events are
totally ordered, linearizability is compositional: the composition of two
linearizable objects is guaranteed to be linearizable. However, lineariz-
ability is not compositional when events are only partially ordered, as
in the weak-memory models that describe multicore memory systems.
In this paper, we present a generalisation of linearizability for concur-
rent objects implemented in weak-memory models. We abstract from the
details of specific memory models by defining our condition using Lam-
port’s execution structures. We apply our condition to the C11 memory
model, providing a correctness condition for C11 objects. We develop a
proof method for verifying objects implemented in C11 and related mod-
els. Our method is an adaptation of simulation-based methods, but in
contrast to other such methods, it does not require that the implemen-
tation totally orders its events. We apply our proof technique and show
correctness of the Treiber stack that blocks on empty, annotated with
C11 release-acquire synchronisation.

1 Introduction

Linearizability [23,24] is a well-studied [16] condition that defines correctness
of a concurrent object in terms of a sequential specification. It ensures that for
each history (i.e., execution trace) of an implementation, there is a history of the
specification such that (1) each thread makes the same method invocations in
the same order, and (2) the order of non-overlapping operation calls is preserved.
The condition, however, critically depends on the existence of a total order of
memory events (e.g., as guaranteed by sequential consistency (SC) [31]) to guar-
antee contextual refinement [20] and compositionality [24]. Unfortunately, most
modern execution environments can only guarantee a partial order of memory
events, e.g., due to the effects of relaxed memory [3,5,8,34]. It is known that
a naive adaptation of linearizability to the partially ordered setting of weak
memory is problematic from the perspective of contextual refinement [18]. In
this paper, we propose a generalisation of linearizability to cope with partially
ordered executions, which we show satisfies compositionality.

c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 110–129, 2018.
https://doi.org/10.1007/978-3-319-98938-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98938-9_7&domain=pdf

Making Linearizability Compositional 111

Fig. 1. Writing to shared variables Fig. 2. Writing to shared stacks

To motivate the problem consider the following. Figures 1 and 2 show two
examples1 of multi-threaded programs on which weak memory model effects can
be observed. Figure 1 shows two threads writing to and reading from two shared
variables x and y. Under SC, the assert in process 2 never fails: if y equals
1, x must also equal 1. However, this is not true in weak memory models like
C11 [8,28]: if the writes to x and y are relaxed, process 2 may observe the write
to y, yet also observe the initial value x (missing the write to x by process 1).

Such effects are not surprising to programmers familiar with memory mod-
els [8,28]. However, programmer expectations for linearizable objects, even in a
weak memory model like C11, are different: if the two stacks S and S′ in Fig. 2
are linearizable, the expectation is that the assert will never fail since lineariz-
able objects are expected to be compositional [23,24], i.e., any combination of
linearizable objects must itself be linearizable. However, it is indeed possible for
the two stacks to be linearizable (using the classical definition), yet for the pro-
gram to generate an execution in which the assert fails, i.e., the composition
of the two stacks is not linearizable. The issue here is that linearizability, when
naively applied to a weak memory setting, allows too many operations to be
considered “unordered”.

Failure of compositionality is repaired by strengthening the requirements of
linearizability on partial orders. Namely, we require the ability to infer enough
order in an execution to ensure that the method call S.Push(1) precedes S.Pop,
forcing S.Pop to return 1, whenever S’.Push(1) precedes S’.Pop.

The contributions of this paper are as follows.
– Our main contribution is the development of a new compositional notion of

correctness; we call this condition causal linearizability.
– We establish two meta-theoretical properties of causal linearizability. First, we

show that, as expected, causal linearizability reduces to linearizability when
the underlying memory model is totally ordered. Second, we show that that
causal linearizability is the weakest possible strengthening of linearizability
that guarantees compositionality, i.e., any correctness condition stronger than
linearizability that is also compositional must imply causal linearizability.

– We present a new inductive simulation-style proof technique for verifying
causal linearizability of weak memory implementations of concurrent objects,
where the induction is over linear extensions of the happens-before relation.
This is the first such proof method for weak memory, and one of the first

1 Example in Fig. 2 inspired by H.-J. Boehm talk at Dagstuhl, Nov. 2017.

112 S. Doherty et al.

that enables refinement-based verification, building on existing techniques
for linearizability in SC [13,16,36].

– We apply this proof technique and verify causal linearizability of a blocking
version of the Treiber Stack executing in the C11 weak memory model. For
the standard Treiber Stack under C11, we identify a synchronisation pitfall
when using only release-acquire synchronisation.

Causal linearizability is so called because it takes into account the causal
relationship between events in a way that is relevant to weak memory models.
There is an earlier definition of a condition also called “causal linearizability”
introduced by Doherty and Derrick in [11]. However, this earlier definition con-
siders causality at the level of (interleaved) sequences and only applies to memory
models such as TSO, that satisfy certain operational properties.2 In contrast,
the definition in this paper (Definition 6) considers causality directly over partial
orders, making it applicable to a wider range of memory models.

The definition of causal linearizability in this paper is built on the same
concerns as the earlier definition in [11], but is not a generalisation of it in a
technical sense. Thus Definition 6 does not reduce to the condition in [11], or
vice versa, although both reduce to classical linearizability [24]. All mentions of
“causal linearizability” in this paper refers to Definition 6. Further comparisons
to related correctness conditions are given in Sect. 8.

Causal linearizability is defined in terms of an execution structure [32], tak-
ing two different relations over operations into account: a “precedence order”
(describing operations that are ordered in real time) and a “communication rela-
tion”. Execution structures allow one to infer the additional precedence orders
from communication orders (see Definition 3 (A5)). Applied to Fig. 2, for a weak
memory execution in which the assert fails, the execution restricted to stack S
would not be causally linearizable in the first place (see Sect. 3 for full details).
Execution structures are generic, and can be constructed for any weak memory
execution that includes method invocation/response events. We develop one such
scheme for mapping executions to execution structures based on the happens-
before relation of the C11 memory model.

This paper is structured as follows. We present our motivating example, the
Treiber Stack in C11 in Sect. 2; describe the problem of compositionality and
motivate our execution-structure based solution in Sect. 3; and formalise causal
linearizability and compositionality in Sect. 4. Causal linearizability for C11 is
presented in Sect. 5, and verification of the stack described in Sect. 6. Section 7
describes a synchronisation pitfall.

2 Treiber Stack in C11

The example we consider (see Algorithm 1) is the Treiber Stack [40] (well-studied
in a SC setting, but not in a weak memory one), executing in a recent version
of the C11 [30] memory model. In C11, commands may be annotated, e.g., R

2 In retrospect, the name “causal linearizability” is more fitting to this current paper.

Making Linearizability Compositional 113

Algorithm 1. Release-Acquire Treiber Stack
1: procedure Init
2: Top := null;

3: procedure Push(v)
4: n := new(node) ;
5: n.val := v ;
6: repeat
7: top :=A Top ;
8: n.nxt := top ;
9: until CASR(&Top, top, n)

10: function Pop
11: repeat
12: repeat
13: top :=A Top ;
14: until top �= null ;
15: ntop := top.nxt ;
16: until CASR(&Top, top, ntop)
17: return top.val ;

(for release) and A (for acquire), which introduces extra synchronisation, i.e.,
additional order over memory events [8,28]. We assume racy read and write
accesses that are not part of an annotated command are unordered or relaxed,
i.e., we do not consider the effects of non-atomic operations [8]. Full details of
the C11 memory model are deferred until Sect. 5.

Due to weak memory effects, the events under consideration, including
method invocation and response events are partially ordered [5,6,14,28,30]. As
we show in Sect. 3, it turns out that one cannot simply reapply the standard
notion of linearizability in this weaker setting; compositionality demands that
we use modified correctness condition, causal linearizability, that additionally
requires “communication” across conflicting operations.

In Algorithm 1, all accesses to Top are via an annotated command. Thus,
any read of Top (lines 7, 13) reading from a write to Top (lines 9, 16) induces
happens-before order from the write to the read. This order, it turns out, is
enough to guarantee invariants that are in turn strong enough to guarantee3

causal linearizability of the Stack (see Sect. 6).
Note that we modify the Treiber Stack so that the Pop operation blocks by

spinning instead of returning empty. This is for good reason - it turns out that
the standard Treiber Stack (with a non-blocking Pop operation) is not naturally
compositional if the only available synchronisation is via release-acquire atomics
(see Sect. 7).

3 Compositionality and Execution Structures

This section describes the problems with compositionality for linearizability of
concurrent objects under weak execution environments (e.g., relaxed memory)
and motivates a generic solution using execution structures [32].

3 Note that a successful CAS operation comprises both a read and a write access to
Top, but we only require release synchronisation here. The corresponding acquire
synchronisation is provided via the earlier read in the same operation. This synchro-
nisation is propagated to the CAS by sequenced-before (aka program order), which,
in C11, is included in happens-before (see Sect. 6 for details).

114 S. Doherty et al.

Notation. First we give some basic notation. Given a set X and a relation
r ⊆ X × X, we say r is a partial order iff it is reflexive, antisymmetric and
transitive, and a strict order, iff it is irreflexive, antisymmetric and transitive.
A partial or strict order r is a total order on Xiff either (a, b) ∈ r or (b, a) ∈ r
for all a, b ∈ X. We typically use notation such as <, ≺, to denote orders,
and write, for example, a < b instead of (a, b) ∈ <. We let X∗ denote the set
of all finite sequences over X, let 〈〉 denote the empty sequence and use ◦ as
a concatenation operator on sequences. For a sequence w, we let w be the
(total) order on its elements: e w e′ if w = w1 ◦ 〈e〉 ◦ w2 ◦ 〈e′〉 ◦ w3.

Fix a set of invocations Inv and a set of responses Res. A pair from Inv ×Res
represents an operation. Each invocation includes both a method name and any
arguments passed to the method; each response includes any values returned
from the method. For example, for a stack S of natural numbers, the invocations
of the stack might be represented by the set {Push(n) | n ∈ N} ∪ {Pop}, and
the responses by N ∪ {⊥, empty}, and the set of operations of the stack is

ΣS = {(Push(n),⊥), (Pop, n) | n ∈ N} ∪ {(Pop, empty)}.

In an execution, an occurrence of an invocation, response, or operation will
take the form of an event. In a full treatment, events would have the form
e = (l, t, g), where l is a label of type Inv ∪ Res (for executions of a concrete
implementation) or Inv × Res (for executions of an abstract specification), t is
a thread identifier t from some given set of threads (or processes) Tid and g
is a tag uniquely identifying the event in the execution. However, for clarity of
presentation, we omit tags in this paper. Furthermore, for uniformity, we assume
that all invocations, responses and operations are indexed by thread identifiers.
For example, the invocations are now given by the set {Pusht(n),Popt | t ∈
T ∧ n ∈ N}. We only make thread ids explicit when necessary. We let tid(e) be
the thread identifier of event e. For a sequence or partial order of events w, we
let w�t be the restriction of w to events e with tid(e) = t only.

The standard notion of linearizability is defined for a concurrent history,
which is a sequence (or total order) of invocation and response events of opera-
tions. Since operations are concurrent, an invocation of an operation may not be
directly followed by its matching response in this sequence, and hence, a history
induces a partial order on operations (through the total order on events). For lin-
earizability, we focus on the precedence order (denoted), where, for operations
o and o′, we say o o′ in a history iff the response of operation o occurs before
the invocation of operation o′ in the history. A concurrent implementation of an
object is linearizable if the precedence order () for any history of the object
can be extended to a total order that is legal for the object’s specification [24]. It
turns out that linearizability in this setting is compositional [23,24]: any history
of a family of linearizable objects is itself guaranteed to be linearizable.

Unfortunately, histories in modern execution contexts (e.g., due to relaxed
memory or distributed computation) are only partially ordered since processes do
not share a single global view of time. It might seem that this is unproblematic for
linearizability and that the standard definition can be straightforwardly applied

Making Linearizability Compositional 115

to this weaker setting. However, it turns out that a naive application fails to
satisfy compositionality. To see this, consider the following example.

Example 1. Consider an execution of Fig. 2 where the operations are only
ordered by a happens-before relation, which is a relation present in many weak-
memory models [3,5,8,34]. Since we do not have a global notion of time, we say
operation o precedes o′ (denoted o o′) if the response of o happens before
the invocation of o′ (also see [18]). For the C11 memory model, happens-before
includes program order, and hence, the progam in Fig. 2 may generate the fol-
lowing execution, where operations executed by the same thread are precedence
ordered.

(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

If we restrict the execution above to S only, we can obtain a legal stack
behaviour by linearizing (S.Pop, empty) before (S.Push(1),⊥) without contra-
dicting the precedence order in the diagram above. Similarly, the execution
when restricted to S′ is linearizable. However, the full execution is not lineariz-
able: ordering the pop of S before its push, and the push of S’ before its pop
contradicts the precedence order . ��

A key contribution of this paper is the development of a correctness condition,
causal linearizability, that recovers compositionality of concurrent objects with
partially ordered histories. Our definition is based on two main insights.

Our first insight is that one must augment the precedence order with addi-
tional information about the underlying concurrent execution. In particular, one
must introduce information about the communication between operations, e.g.,
when one operation sees the effects of another one. In our example, a pop would
see the effect of a push; in the Treiber algorithm it would specifically see the
change of Top. Causal linearizability states that the ordering we impose during
linearization has to (a) preserve the precedence order of operations and (b) has
to be consistent with the communication order. We represent communication by
a relation .

Example 2. Consider again the partial order in Example 1. For stack S, we must
linearize pop before push, and for stack S’, push before pop. Causal linearizabil-
ity mandates the existence of a logical order that contains such that all linear
extensions of the logical order are legal w.r.t. the specification object. Moreover,
it requires that this logical order is contained within the communication rela-
tion. Hence, in Example 1, neither S nor S’ is causally linearizable: for S, the
only valid logical order is S.Pop before S.Push(1), but there is currently no
communication from S.Pop to S.Push(1). Thus, the execution in Example 1 is
not a counterexample to compositionality of causal linearizability. Now consider
changing the example by introducing communication as follows:

116 S. Doherty et al.

(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

Here, communication is introduced in a manner consistent with the logical order,
which requires that (S.Pop, empty) is linearized before (S.Push(1),⊥) and that
(S’.Push(1),⊥) is linearized before (S’.Pop, 1). So far, we would consider this
to be a valid counterexample to compositionality. We describe why this cannot
be the case below. ��
Our second insight is that the operations (taken as events) together with the
precedence order and the communication relation must form an execution
structure [32].

Definition 3 (Execution structure). If E is a finite4 set of events, and
, ⊆ E × E are relations over E (the precedence order and communication

relation), an execution structure is a tuple (E, ,) satisfying the following
axioms for e1, e2, e3 ∈ E.

A1. The relation is a strict order.
A2. Whenever e1 e2, then e1 e2 and ¬(e2 e1).
A3. If e1 e2 e3 or e1 e2 e3, then e1 e3.
A4. If e1 e2 e3 e4, then e1 e4. ��
Example 4. We apply Definition 3 to Example 2. The requirements of an execu-
tion structure, in particular axiom A4 necessitate that we introduce additional
precedence order edges as follows.

(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

For example, the edge (S’.Pop, 1) (S’.Push(1),⊥) is induced by the combina-
tion of edges (S.Push(1),⊥) (S’.Push(1),⊥) (S’.Pop, 1) (S.Pop, empty)
together with axiom A4. However, this structure now fails to satisfy axiom A2
and is thus no longer a proper execution structure. ��

Hence, for our running example, compositionality no longer fails. We conclude
that for causally linearizable stacks, the assert in Fig. 2 always holds if it is
executed.

4 The original presentation allows infinite execution structures but requires that
be well founded.

Making Linearizability Compositional 117

4 Causal Linearizability

Causal linearizability extends linearizability to cope with partially ordered exe-
cutions. Next, we will formally define it and its compositionality property.

Like ordinary linearizability, causal linearizability is defined by comparing the
behaviour of concurrent executions to legal sequential ones. The comparison typ-
ically proceeds by bringing concurrent operations in sequence under some given
constraints. This basic principle is kept for the partially ordered case. Legality
is defined by a sequential object specification, which we define operationally.

Definition 5. A sequential object is a 4-tuple (Σ,Γ, init , τ), where Σ is a set
of labels, Γ is a set of states, init ∈ Γ is an initial state, and τ ⊆ Γ × Σ × Γ
is a transition relation.

The set Σ ⊆ Inv × Res consists of pairs of invocations and responses. For our
stack example, Γ = N

∗, init = 〈〉 and

τ = {(s, (Push(n),⊥), 〈n〉 ◦ s) | n ∈ N} ∪ {(〈n〉 ◦ s, (Pop, n), s) | n ∈ N}
∪ {(〈〉, (Pop, empty), 〈〉)}

We write s
op

τ s′ for (s, op, s′) ∈ τ . For a sequence w ∈ Σ∗, we write s
w

τ s′

iff either w = 〈〉 and s = s′, or w = 〈op〉 ◦ w′ and there exists an s′′ such that

s
op

τ s′′ and s′′ w′
τ s′. The set of legal histories of an object S = (Σ,Γ, init , τ)

is given by legalS = {w ∈ Σ∗ | ∃s ∈ Γ. init w
τ s}.

In general, executions of concurrent processes might invoke operations on
more than one object. To capture this, we define a notion of an object product.
If S1 = (Σ1, Γ1, init1, τ1) and S2 = (Σ2, Γ2, init2, τ2) are two sequential objects
with Σ1 ∩ Σ2 = ∅, the object product of S1 and S2 is defined by S1 ⊗ S2 =
(Σ1 ∪ Σ2, Γ1 × Γ2, (init1, init2), τ1 ⊗ τ2), where

τ1 ⊗ τ2 ={((s1, s2), op1, (s′
1, s2)) | op1 ∈ Σ1 ∧ (s1, op1, s′

1) ∈ τ1}
∪ {((s1, s2), op2, (s1, s′

2)) | op2 ∈ Σ2 ∧ (s2, op2, s′
2) ∈ τ2}.

Clearly, this construction can be generalised to products of more than two
objects, provided their sets of actions are pairwise disjoint. We abstain from
such a treatment here since a compositionality result for two objects is sufficient
to ensure compositionality over multiple objects.

Causal linearizabilty compares the concurrent execution given by an execu-
tion structure to the legal sequential behaviour. The constraint on this sequen-
tialization is that the precedence and the communication order of execution
structures provide lower and upper bounds for the allowed ordering. More pre-
cisely, we use a partial order < that contains all orders necessary to ensure
legality, i.e., there is no linear extension of < that is not legal. Causal lineariz-
ability requires (a) the precedence order of execution structures to be preserved
by this order, and (b) this order to be contained in the communication rela-
tion. We say a strict partial order < is a logical order of an execution structure

118 S. Doherty et al.

E = (E, ,) iff < ⊆ E × E and ⊆ < ⊆ . For concurrent objects, one
possible instantiation of a logical order is given in [12], where the logical order
corresponds to a conflict-based notion of causality.

For a partial order < ⊆ E × E, we let LE (<) = {w ∈ E∗ | < ⊆ w} be the
set of linear extensions of <.

Definition 6. Let S be a sequential object. An execution structure E is causally
linearizable w.r.t. S iff there exists a logical order < of E such that LE (<) ⊆
legalS.

Causal linearizability guarantees compositionality, i.e., the composition of
causally linearizable concurrent objects is causally linearizable. More formally,
for an execution structure E = (E, ,) and events X ⊆ E, we let E �X be
the execution structure restricted to X, i.e., (X, ∩ (X × X), ∩ (X × X)).

Theorem 7 (Compositionality). If S1 = (Σ1, . . .) and S2 = (Σ2, . . .) are
sequential objects with Σ1 ∩ Σ2 = ∅ and E = (E, ,) is an execution struc-
ture, then E �Σ1

is causally linearizable w.r.t. S1 and E �Σ2
causally linearizable

w.r.t. S2 iff E is causally linearizable w.r.t. S1 ⊗ S2. ��

Standard linearizability as introduced by Herlihy and Wing [24] is defined on
executions (histories) which are totally ordered sequences of invocations and
responses of operations, i.e. a history h is an element of (Inv ∪ Res)∗. Note that
this allows executions in which operations are concurrent because invocation and
response events are now separated. Histories are required to be well-formed and
complete5, which means that the projection of a history onto one thread forms
a sequence of invocations and corresponding responses.

A strict order ≺ on Inv ∪ Res is well-formed and complete iff for all threads
t ∈ Tid, ≺ �t is sequential, i.e., forms an alternating total order of invocations
and responses starting with an invocation. Invocations and responses thus form
matching pairs as defined by a function mp. For a strict order ≺ such that i ≺ r,
(i, r) ∈ mp(≺) iff tid(i) = tid(r) and there is no event e such that i ≺ e ≺ r and
tid(e) = tid(i). This allows us to derive an execution structure from any strict
order and thus also from a history h by using its ordering h.

Definition 8. Let ≺ be a well-formed and complete strict order on Inv ∪ Res.
We say exec(≺) = (E, ,) is the execution structure corresponding to ≺ if

E = mp(≺),
= {((i1, r1), (i2, r2)) ∈ E × E | r1 ≺ i2},

= {((i1, r1), (i2, r2)) ∈ E × E | i1 ≺ r2}.

Note that this construction guarantees a saturation property: for two events e, e′,
we either have e e′ or e′ e.

The classical definition of linearizability only employs the precedence ordering
of an execution structure. That is, (E, ,) is linearizable w.r.t. a sequential
5 Note that we only assume completeness for the sake of simplicity here.

Making Linearizability Compositional 119

object S iff there exists a sequence hs ∈ legalS such that (i) �t = hs �t for
all t ∈ Tid (threads execute the same sequence of operations) and (ii) ⊆ hs

(precedence ordering between operations is preserved). We say that a strict order
≺ is linearizable iff exec(≺) is linearizable and that a history h is linearizable iff

h is linearizable.

Theorem 9. Suppose h is a history and S a sequential object. Then h is lin-
earizable w.r.t. S iff exec(h) is causally linearizable w.r.t. S. ��

We now provide an adequacy result for causal linearizability, i.e., show that
causal linearizability is, in fact, the weakest possible strengthening of lineariz-
ability that is compositional. The technical exposition is formalised in terms of
correctness conditions that guarantee linearizability. Here, we regard a correct-
ness condition to be a function mapping a sequential object to the set of all
well-formed strict orders on Inv ∪ Res accepted as being correct for the object,
where the mapping is closed under renaming of the operations.

We let S be the set of all possible sequential objects and H the set of all
possible well-formed complete strict orders on Inv ∪ Res . To formalise closure
under renaming, we assume a bijection b : X → Y between sets X and Y . If
S = (X,Γ, init , τ) is a sequential object, define b[S] = (Y, Γ, init , b[τ]), where
b[τ] = {(s, b(x), s′) | (s, x, s′) ∈ τ} and if w ∈ X∗, define b[w] ∈ Y ∗ to be the
sequence obtained from w by replacing each wi by b(wi).

Definition 10. We say a function Δ : S → 2H is a correctness condition iff Δ
is closed under renaming of operations, i.e., for all bijective functions b : Σ → Σ′

and for all S = (Σ, . . .) ∈ S, we have ≺ ∈ Δ(S) iff b[≺] ∈ Δ(b[S]).

Definition 11. We say Δ : S → 2H guarantees linearizability iff for all S ∈ S,
each ≺ ∈ Δ(S) is linearizable w.r.t. S.

Our adequacy result for causal linearizability is defined for well-formed strict
orders that have exactly one possible legal linearization. Formally, for a correct-
ness condition Δ and sequential object S, we say ≺ ∈ Δ(S) is strongly synchro-
nised iff it is linearizable w.r.t. exactly one hs ∈ legalS.

Theorem 12. Let Δ be a compositional correctness condition, and let S be a
sequential object. Then for any strongly synchronised strict order ≺ ∈ Δ(S),
exec(≺) is causally linearizable.

Strong synchronisation may always arise for some specifications, e.g., a data
structure such as a stack or a counter object that only provides a fetch-and-
increment operation. In general, the execution of any object may be strongly
synchronised due to interactions with other objects or a client (see [18]), causing
additional precedence order to be introduced. For example, a client thread of a
concurrent object may introduce precedence order via program order, inserting
fences between operation calls, or calling objects that induce additional order [6,
18]. Thus for typical sequential objects, a correctness condition that prohibited
strongly synchronized executions would be overly restrictive. Theorem12 ensures
that, for such executions, if the correctness condition is compositional then it is
at least as strong as causal linearizability.

120 S. Doherty et al.

5 C11 Executions

We now briefly introduce the C11 memory model as to be able to reason about
programs executing within C11. To this end, we simply give a (condensed) adap-
tion of the programming-language oriented presentation of C11 [14,28], but we
ignore various features of C11 not needed for our discussion, including non-
atomic operations and fences. For a more complete explanation see e.g. [28].

The C11 Memory-Model. The memory model specifies how read and write
operations access shared state. Let L be a set of such shared locations (ranged
over by x, y) and let V be a set of values (ranged over by u, v). Our model
employs a set of memory events, which can be partitioned into read events,
R, write events, W , and update (read-modify-write) events, U . A read event
would e.g. take the form rd(x, 0). An update event occurs for instance when
a CAS operation is executed: a shared location is read, compared to a local
variable and then possibly written to. We let Mod = W ∪ U be the set of events
that modify a location, and Qry = R ∪ U be the set of events that query a
location. For any memory event e, let loc(e) be the event’s accessed location and
Loc(x) = {e | loc(e) = x} the set of events accessing location x. For any query
event let rval(e) be the value read; and for any modification event let wval(e) be
the value written. An event may carry a synchronisation annotation, which (in
our restricted setting) may either be a release, R, or an acquire, A, annotation,
and we let ann(e) be an event e’s annotation.

Definition 13. A C11 execution is a tuple D = (D, sb, rf ,mo), where D is a
set of events, and sb, rf ,mo ⊆ D × D define the sequenced-before, reads-from
and modification order relations, respectively.

We say a C11 execution is valid when it satisfies the following constraints:
(V1) sb is a strict order, such that, for each process p, the projection of sb onto
p is a total order; the reads-from relation specifies the write a particular read
event reads-from: rf ⊆ Mod × Qry and (V2) for all (w, r) ∈ rf , loc(w) = loc(r)
and wval(w) = rval(r) as well as (V3) for all r ∈ D ∩ Qry, there exists some
w ∈ D ∩ Mod such that (w, r) ∈ rf ; the modification order relates writes to the
same location and these writes are totally ordered: (V4) for all (w,w′) ∈ mo,
loc(w) = loc(w′); and (V5) for all w,w′ ∈ Mod such that loc(w) = loc(w′),
(w,w′) ∈ mo or (w′, w) ∈ mo.

Other relations can be derived from these basic relations. For example, assum-
ing DR and DA denote the sets of events with release and acquire annota-
tions, respectively, the synchronises-with relation, sw = rf ∩ (DR × DA), cre-
ates interthread ordering guarantees based on synchronisation annotations. The
annotations R and A can thus be used by programmers to achieve certain visi-
bility effects of their write events. The from-read relation, fr = (rf −1;mo)\Id,
relates each query to the events in modification order after the modification
that it read from. Our final derived relation is the happens before relation
hb = (sb ∪ sw)+, which formalises causality. We say that a C11 execution is
consistent if (C1) hb is acyclic, and (C2) hb; (mo ∪ rf ∪ fr) is irreflexive.

Making Linearizability Compositional 121

Method Invocations and Responses. So far, the events appearing in our
memory model are low level read and write events. Our goal is to model algo-
rithms such as the Treiber stack. Thus, we add method events to the standard
model, namely, invocations, Inv , and responses, Res . Unlike weak memory at
the processor architecture level, where program order may not be preserved [18],
program order in C11 is consistent with happens-before order, and hence, invo-
cation and response events can be introduced here in a straightforward manner.
The only additional requirement is that validity also requires (V6) sb for each
process projected restricted Inv ∪ Res must be an alternating sequence of invo-
cations and matching responses, starting with an invocation. In any execution
of a well-formed program, this condition is naturally satisfied.

From C11 Executions to Execution Structures. A C11 execution with
method invocations and responses naturally gives rise to an execution structure.
First, for a C11 execution D and IR = Inv ∪ Res , we let hbir = hb ∩ (IR × IR),
i.e., the happens-before relation of D restricted to the invocation and response
events. By (V6), hbir is well-formed and complete. Thus, we can apply the
construction defined in Sect. 4 to build an execution structure exec(hbir).

Definition 14. We say that a C11 execution D is causally linearizable w.r.t. a
sequential object if exec(hbir) is. ��

Compositionality of causal linearizability thus naturally carries over to C11
executions. Finally, we say that a data structure (like the Treiber stack) is
causally linearizable on C11 when all its C11 executions are. Thus, we will in
the following investigate how we can prove such a property.

6 Verification

We now describe an operational method for proving that a given C11 execution
is causally linearizable w.r.t. a given sequential object. Our method is based on a
simulation-based proof rule described in Sect. 6.1. We illustrate our technique on
the Treiber Stack (Sect. 6.2), which is often used as an exercise in the verification
literature [16]. Unlike these existing verifications, we consider weak memory, and
hence, the stack in Algorithm 1 generates more behaviours than in a standard
sequentially consistent setting. The proof in Sect. 6.2 below is the first to verify
that the stack under C11 satisfies causal linearizability. Moreover, our proof
technique, which considers simulation over a happens-before relation, is novel to
this paper.

6.1 A Simulation Relation over Happens-Before

For the remainder of this section, fix a C11 execution D = (D, sb, rf ,mo), and
a sequential object S = (Σ,Γ, init , τ). We describe a method for proving that

122 S. Doherty et al.

D is causally linearizable w.r.t. S. In what follows, we write e hb e′ when
(e, e′) ∈ hbD.

As in the interleaving setting our method depends on assigining lineariza-
tion points [16] to each operation. Therefore, the verifier must define a func-
tion lp : D ∩ Inv → D, which returns the memory event that linearizes the
given high-level operation, represented by its invocation. For simplicity, in this
presentation, we require that our linearizations be injective.6 Recall from the
previous section that the operations in the execution structure exec(hbir) are
elements of matching pairs from the set mp(hbir). To recover the abstract order
of operations corresponding to a linearization, we use <lp= {((i, r), (i′, r′)) |
lp(i) hb lp(i′) ∧ (i, r), (i′, r′) ∈ mp(hbir)}.

Definition 15. We say lp is a linearization iff for each i ∈ D∩Inv, and match-
ing response r, i hb lp(a) hb r. Furthermore, we say lp is a legal linearization
iff LE (<lp) ⊆ legalS.

Note that, for a legal linearization, we require that every linear extension of <lp

yields a legal history under the linearization function lp. Of course, if hb were
total, this would reduce to essentially the standard notion of linearization point,
and thus our proof technique is a generalization of a standard technique.

The existence of a legal linearization is sufficient to prove causal linearizability
of the C11 execution.

Theorem 16 (Legal linearizations guarantee causal linearizability). If
there is a legal linearization lp, then D is causally linearizable w.r.t. S.

The key difficulty in using Theorem16 is showing that a given linearization
function is legal. To this end, we extend the standard simulation method to prove
legality of a linearization function [16].

In the usual setting, a simulation relation relates states of the implementation
to states of the specificiation, and this relation encodes an induction hypothesis
for an induction on the executions of the specification. In our current setting, the
simulation relation (which we denote ρ, below) relates sets of low-level actions
to abstract states. The simulation relation encodes an induction hypothesis for
an induction on the linear extensions of the hb-relation. Thus, at each stage of
the induction we can assume ρ(Z, γ) for some set of events Z ⊆ D and state
γ ∈ Γ , where Z is downwards-closed with respect to the hb order. The set Z is
the set of low-level actions already considered by the induction. In order to be
a simulation, the relation ρ must satisfy the conditions given in the following
definition.

Definition 17 (hb-simulation). Suppose lp is a linearization. An hb-
simulation is a relation ρ ⊆ 2D × Γ such that:

1. ρ(∅, init), and (initialisation)
2. for all Z ⊆ D, events e ∈ D\Z and γ ∈ Γ , if ∀e′ ∈ D. e′

hb e ⇒ e′ ∈ Z
and ρ(Z, γ) then

6 Thus, each low-level event can linearize at most one action of the specification.

Making Linearizability Compositional 123

(a) if e /∈ ran lp, then ρ(Z ∪ {e}, γ), and (stutter step)
(b) if e = lp(i) for some i ∈ D ∩ Inv,

then, letting r be the matching response of i in D, (γ, (i, r), γ′) ∈ τ and
ρ(Z ∪ {e}, γ′) for some γ′ ∈ Γ . (linearization step)

Condition 1 ensures that the initial states match up: at the concrete level this
is the empty set and at the abstract level, this is the initial state. The induction
considers the low-level actions in hb order, the low-level action under consider-
ation must be an element of D\Z such that all its hb predecessors are already
in Z. For each such event e, there are two possibilities: either e is a stutter step
(in which case the abstract state is unchanged), or e linearizes the operation
invoked by i (in which case the abstract system takes a step). In either case, the
event e is added to the set Z, and we must show that the simulation relation is
preserved.

The existence of an hb-simulation guarantees that lp is a legal linearization.
This fact is captured by the next theorem.

Theorem 18 (hb-simulation guarantees legal linearization). If lp is a
linearization and ρ is an hb-simulation with respect to lp, then lp is a legal
linearization.

Thus, if we can exhibit a linearization lp and an hb-simulation ρ, then D is
causally linearizability w.r.t. S.

6.2 Case Study: The Treiber Stack

We now describe a linearization function lp and an hb-simulation relation ρ,
demonstrating causal linearizability of the Treiber stack. We fix some arbitrary
C11 execution D = (D, sb, rf ,mo) that contains an instance of the Treiber stack.
That is, the invocations in D are the stack invocations, and the responses are
the stack responses (as given in Sect. 3). Furthermore, the low-level memory
operations between these invocations and responses are generated by executions
of the operations of the Treiber stack (Algorithm1). As before, we write e hb e′

when (e, e′) ∈ hbD.
The linearization function lp for the Treiber stack is completely standard:

referring to Algorithm 1 on page 4, each operation is linearized at the unique
update operation generated by the unique successful CAS at line 9 (for pushes)
or line 16 (for pops).

The main component of our simulation relation ρ guarantees correctness of
the data representation, i.e., the sequence of values formed by following next
pointers starting with & Top forms an appropriate stack, and we focus on this
aspect of the relation. As is typical with verifications of shared-memory algo-
rithms, there are various other properties that would need to be considered in a
full proof.

In a sequentially consistent setting, the data representation can easily be
obtained from the state (which maps locations to values). However, for C11
executions calculating the data representation requires a bit more work. In what

124 S. Doherty et al.

follows, we define various functions that depend on a set Z of events, representing
the current stage of the induction.

We define the latest write in Z to a location x as

latestZ(x) = max(mo �(Z∩Loc(x)))

and the current value of a location x in some set Z as cvalZ(x) =
wval(latestZ(x)), which is the value written by the last write to x in modifi-
cation order. It is now straightforward to construct the sequence of values corre-
sponding to a location as stackOf Z(x) = v ·stackOf Z(y), where v = cvalZ(x.val)
and y = cvalZ(x.nxt).

Now, assuming that s is a state of the sequential stack, our simulation
requires:

stackOf Z(cvalZ(&Top)) = s (1)

Further, we require that all modifications of &Top are totally ordered by hb:

∀m,m′ ∈ Z ∩ Mod(&Top). m hb m′ ∨ m′
hb m (2)

to ensure that any new read considered by the induction sees the most recent
version of &Top.

In what follows, we illustrate how to verify the proof obligations given in
Definition 17, for the case where the new event e is a linearization point. Let
e be an update operation that is generated by the CAS at line 9 of the push
operation in Algorithm 1. The first step is to prove that every modification of
&Top in Z is happens-before the update event e. Formally,

∀m ∈ Z ∩ Mod ∩ Loc(&Top). m hb e (3)

Proving this formally is somewhat involved, but the essential reason is as follows.
Note that there is an acquiring read r to &Top executed at line 7 of e’s operation
and sb-prior to e. r reads from some releasing update u. Thus, by Property 2,
and the fact the hb contains sb, e is happens after u, and all prior updates. If
there were some update u′ of &Top such that (u′, e) /∈ hb, then (u′, u) /∈ hb
so by Property 2, u hb u′. But it can be shown in this case that the CAS
that generated e could not have succeeded, because u′ constitutes an update
intervening between r and e. Therefore, there can be no such u′.

Property 3 makes it straightforward to verify that Condition 2b of Defini-
tion 17 is satisfied. To see this, note that every linearization point of every oper-
ation is a modification of & Top. Thus, if (i′, r′) is some operation such that
lp(i′) ∈ Z (so that this operation has already been linearized) then lp(i′) hb e.

Using Property 3 it is easy to see that both Propertys 1 and 2 are pre-
served. We show by contradiction that latestZ′(&Top) = e. Otherwise, we
have (e, latestZ′(&Top)) ∈ mo. Therefore (latestZ′(&Top), e) /∈ hb, but
latestZ′(&Top) is a modification operation, so this contradicts Property 3.

It follows from latestZ′(&Top) = e that stackOf (cvalZ′) = stackOf (wval(e)).
Given this, it is straightforward to show that Property 1 is preserved. This step of

Making Linearizability Compositional 125

the proof relies on certain simple properties of push operations. Specifically, we
need to show that the current value of the val field of the node being added to the
stack (formally, cvalZ((wval(e)).nxt)) is the value passed to the push operation;
and that the current value of the nxt field (formally, cvalZ((wval(e)).nxt)) is the
current value of &Top when the successful CAS occurs. These properties can be
proved using the model of dynamic memory given in Sect. 5.

7 A Synchronisation Pitfall

We now describe an important observation regarding failure of causal lineariz-
ability of read-only operations caused by weak memory effects. The issue can be
explained using our abstract notion of an execution structure, however, a solu-
tion to the problem is not naturally available in C11 with only release-acquire
annotations. Note that this observation does not indicate that our definition of
causal linearizability is too strong, but rather that release-acquire annotations
cannot guarantee the communication from a read-only operation to a writing
operation necessary for compositionality.

Fig. 3. Read-only operations without communication (not compositional)

Consider the Treiber Stack in Algorithm 1 that returns empty instead of
spinning; namely where the inner loop (lines 12–14) is replaced by code block

top :=A Top ; if top = null then return empty
Such an implementation could produce executions such as the one in Fig. 3 which,
like the examples in Sect. 3, is not compositional. Recovering compositionality
requires one to introduce additional communication edges from the pops return-
ing empty to the corresponding push operations. In the C11 memory model,
these correspond to “from-read” anti-dependencies from a read to a write over-
writing the value read. However, release-acquire synchronisation is not adequate
for promoting from-read order in the memory to happens-before.

One fix would be to disallow read-only operations, e.g., by introducing a
release-acquire CAS operation on a special variable that always succeeds at the
start of each operation. However, such a fix is somewhat unnatural. Another
would be to use C11’s SC annotations, which can induce synchronisation across
from-read edges. However, the precise meaning of these annotations is still a
topic of active research [7,30].

126 S. Doherty et al.

8 Conclusion and Related Work

We have presented causal linearizability, a new correctness condition for
objects implemented in weak-memory models, that generalises linearizability
and addresses the important problem of compositionality. Our condition is not
tied to a particular memory model, but can be readily applied to memory models
such as C11, that feature a happens-before relation. We have presented a proof
method for verifying causal linearizability. We emphasise that our proof method
can be applied directly to a standard axiomatic memory model. Unlike other
recent proposals [15,25], we model C11’s relaxed accesses without needing to
prohibit their problematic dependency cycles (so called “load-buffering” cycles).
Although causal linearizability has been presented as a condition for concurrent
objects, it is possible to extend this condition to cover, for example, transactional
memory.

Causal linearizability is closely related to causal hb-linearizability defined
in [18], which is a causal relaxation of linearizability that uses specifications
strengthened with a happens-before relation. The compositionality result there
requires that either a specification is commuting or that a client is unobstructive
(does not introduce too much synchronisation). Our result is more general as we
place no such restriction on the object or the client. In previous work (see also
Sect. 1), we have defined a correctness condition that is only compositional when
the client satisfies certain constraints [11]; in contrast, the treatment in this paper
achieves a full decoupling between the client and object. Furthermore, that con-
dition is only defined when the underlying memory model is given operationally,
rather than axiomatically like C11. Early attempts, targeting TSO architec-
tures, used totally ordered histories but allowed the response of an operation to
be moved to a corresponding “flush” event [10,17,21,39]. Others have considered
the effects of linearizability in the context of a client abstraction. This includes a
correctness condition for C11 that is strictly stronger than linearizability under
SC [6]. Although we have applied causal linearizability to C11, causal lineariz-
ability itself is more general as it can be applied to any weak memory model with
a happens-before relation. Causal consistency [4] is a related condition, aimed
at shared-memory and data-stores, which has no notion of precedence order and
is not compositional.

There exists a rich body of work on the semantics of weak memory models,
including semantics for the C11 memory model [3,5,7,8,26,30,35]. This has been
used as a basis for program logics [14,15,22,25,29,38] and given rise to auto-
mated tools for analysis of weak memory programs [1,2,27,37]. These logics and
associated verification tools however, are typically not designed to reason about
simulation and refinement as is essential for proofs of (causal) linearizability
of concurrent data structures [16]. There are several existing automated tech-
niques for checking (classical) linearizability [9,19,33,41] that use simulation-
based techniques. We anticipate that such techniques could be extended to verify
hb-simulation and causal linearizability, however, leave such extensions as future
work.

Making Linearizability Compositional 127

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. Acta Inform. 54(8), 789–818 (2017)

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
56–74. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 4

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comput. 29(12), 66–76 (1996)

4. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995)

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

6. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 235–248. ACM (2013)

7. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCL. In: POPL, pp. 634–648. ACM (2016)

8. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 55–66. ACM (2011)

9. Bouajjani, A., Emmi, M., Enea, C., Mutluergil, S.O.: Proving linearizability using
forward simulations. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10427, pp. 542–563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 28

10. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol.
7211, pp. 87–107. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28869-2 5

11. Doherty, S., Derrick, J.: Linearizability and causality. In: De Nicola, R., Kühn, E.
(eds.) SEFM 2016. LNCS, vol. 9763, pp. 45–60. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41591-8 4

12. Doherty, S., Derrick, J., Dongol, B., Wehrheim, H.: Causal linearizability: compo-
sitionality for partially ordered executions. CoRR abs/1802.01866 (2018)

13. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30232-2 7

14. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 20

15. Doko, M., Vafeiadis, V.: Tackling real-life relaxed concurrency with FSL++. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 448–475. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 17

16. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Com-
put. Surv. 48(2), 19:1–19:43 (2015)

17. Dongol, B., Derrick, J., Smith, G.: Reasoning algebraically about refinement on
TSO architectures. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS, vol.
8687, pp. 151–168. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10882-7 10

https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-319-41591-8_4
https://doi.org/10.1007/978-3-319-41591-8_4
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1007/978-3-319-10882-7_10
https://doi.org/10.1007/978-3-319-10882-7_10

128 S. Doherty et al.

18. Dongol, B., Jagadeesan, R., Riely, J., Armstrong, A.: On abstraction and com-
positionality for weak-memory linearisability. Verification, Model Checking, and
Abstract Interpretation. LNCS, vol. 10747, pp. 183–204. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73721-8 9

19. Doolan, P., Smith, G., Zhang, C., Krishnan, P.: Improving the scalability of auto-
matic linearizability checking in SPIN. In: Duan, Z., Ong, L. (eds.) ICFEM 2017.
LNCS, vol. 10610, pp. 105–121. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68690-5 7

20. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

21. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33651-5 3

22. He, M., Vafeiadis, V., Qin, S., Ferreira, J.F.: Reasoning about fences and relaxed
atomics. In: PDP, pp. 520–527. IEEE Computer Society (2016)

23. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2008)

24. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

25. Kaiser, J., Dang, H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: reasoning about release-acquire consistency in iris. In: ECOOP. LIPIcs,
vol. 74, pp. 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

26. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp.
175–189. ACM (2017)

27. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. PACMPL 2(POPL), 17:1–17:32 (2018)

28. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Bod́ık, R., Majumdar, R. (eds.) POPL, pp. 649–662. ACM (2016)

29. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

30. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential con-
sistency in C/C++11. In: PLDI, pp. 618–632. ACM (2017)

31. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

32. Lamport, L.: On interprocess communication. Part I: basic formalism. Distrib.
Comput. 1(2), 77–85 (1986)

33. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 21

34. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL, pp. 378–
391. ACM (2005)

35. Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11
concurrency. In: Visser, E., Smaragdakis, Y. (eds.) OOPSLA, pp. 111–128. ACM
(2016)

36. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4),
31:1–31:37 (2014)

https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-319-68690-5_7
https://doi.org/10.1007/978-3-319-68690-5_7
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-642-05089-3_21

Making Linearizability Compositional 129

37. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
190–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 11

38. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A sepa-
ration logic for a promising semantics. In: Ahmed, A. (ed.) ESOP 2018. LNCS,
vol. 10801, pp. 357–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89884-1 13

39. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs. In:
Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13338-6 11

40. Treiber, R.K.: Systems programming: coping with parallelism. Technical report,
RJ 5118, IBM Almaden Res. Ctr. (1986)

41. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1007/978-3-319-89960-2_11
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-13338-6_11
https://doi.org/10.1007/978-3-642-14295-6_40

	Making Linearizability Compositional for Partially Ordered Executions
	1 Introduction
	2 Treiber Stack in C11
	3 Compositionality and Execution Structures
	4 Causal Linearizability
	5 C11 Executions
	6 Verification
	6.1 A Simulation Relation over Happens-Before
	6.2 Case Study: The Treiber Stack

	7 A Synchronisation Pitfall
	8 Conclusion and Related Work
	References

