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Abstract. Rule-based systems are used to define complex policies in
several contexts, because of the flexibility and modularity they provide.
This is especially critical for security systems, which may require to com-
pose evolving policies for privacy, accountability, access control, etc. The
inclusion of conflicting rules in complex policies, results in the inability
of the system to unambiguously answer to certain requests, with pos-
sibly unpredictable effects. The static identification of these undefined
requests is particularly challenging for unconstrained rule-based systems,
including quantifiers, computations and chaining of rules. In this paper
we introduce a static method to precisely characterize the set of all unde-
fined requests for a given unconstrained rule-based system, providing the
user with a global view of the rule conflicts. We propose an enumerative
approach, made usable in practice by two key performance optimizations:
a finer classification of the rules and the resort of the topological sorting.
We demonstrate its application on a well-known policy with more than
fifty rules.

1 Introduction

Rule-based systems are widely used in very different contexts, ranging from
knowledge representation and reasoning to system configuration, from logic
programming to databases. Among these contexts, security systems are espe-
cially witnessing a significant growth in production of critical, complex and
rapidly evolving rule-based policies aiming to offer strong guarantees (of privacy,
accountability, etc.) in modern networking environments (including Internet of
Things, Software-Defined Networks, etc.). A rule expresses in a concise and nat-
ural manner the link between some conditions and a conclusion. This if then
else semantics is familiar to many software stakeholders, and allows for the
definition of modular systems and their flexible evolution.

In this paper we consider a strict logical context, where a rule system is a
finite set of logical implications and in conjunction with a request it ensures a
reply. Efficient methods for verifying the correctness of such systems in practice
is an important research subject [1]. We are particularly interested in one type of
error, namely rule conflicts, that cause some requests to be undefined, i.e. to have
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several incompatible replies. The risk of rule conflicts is very relevant in modern
security systems, that often compose independent and evolving policies. We are
here interested in a general notion of conflicts entailing the system execution and
leading to a runtime bug. We are not focusing on redundancies, misconfigurations
or other similar problems which can be considered either as simplifications or
holes in the rule system.

There are already several verification methods and algorithms for rule-based
policies, in expert systems and databases [2], for Web policies and contracts [3],
and in the security domain [4–6]. In this paper we will focus on formal methods
and assume a formal policy written in a decidable logic. Moreover we will con-
sider unconstrained systems with complex conclusions and chaining of rules (i.e.
the conclusion of one rule can be used to match other rules and produce new
derivations). For these systems we want to provide a precise characterization
of the set of all undefined requests the user can present, that is in general an
infinite set. This characterization constitutes a global view of the conflicts in the
system, and a valuable aid in debugging extensive rule sets.

Techniques that have the potential to check for conflicts in unconstrained
systems with chaining, divide in two categories. The testing method (e.g., [7,8])
computes the set of undefined requests by generating large sets of ground sen-
tences as test requests, and checking the unsatisfiability of each of them in con-
junction with the rule system. The testing method suffers from two main draw-
backs: (i) the global cost of the request generation and evaluation is very high and
(ii) the test set has finite coverage over the infinite set of undefined requests. The
verification method (e.g., [9–12]) considers consistency properties (e.g., it is not
possible to deny and permit an access at the same time) and tries to prove these
properties. It has similar drawbacks since it is generally costly, and does not aim
at an exhaustive view of all possible conflicts.

Our contribution is to provide an enumerative method based on symbolic
manipulation of the rules and a satisfiability procedure to exhaustively find the
precise set of undefined requests in a rule system. The computation complexity
is exponential, but we provide two optimization steps to enhance its practical
applicability: an iterative method with rule classification and a sorting algorithm.
Finally, we evaluate our approach on a well-known case study in XACML, trans-
lated into FOL. The experimentation shows that our method is suitable for the
verification of rule systems of this size (i.e., 47 rules), where in less than one
hundred seconds it produces and analyzes less than one thousand new rules
(summarizing the analysis of 247 rule combinations).

The content of this paper is structured as follows. Section 2 describes related
work in the area of rule-based systems and checking for conflicting rules. Section 3
presents a motivating example. Section 4 provides the necessary background and
definitions to understand our approach. Section 5 illustrates our enumerative
method and optimizations. In Sect. 6 we evaluate our method, based on a well-
known case study. Lastly, In Sect. 7 we conclude and sketch future work.
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2 Related Work

An extensive literature studies the management of rule-based systems. The sur-
vey [1] shows that verification and validation of rule-based systems in practice
is mainly based on testing or code review which are of course not sufficient to
prove that a system is free from bugs. Validation and verification techniques for
various kinds of rule-based systems have also been discussed in [2] for expert
systems and database management or [3] for Web policies and contracts. In the
domain of security policies, the problem of conflicts has been intensively stud-
ied. In surveys on security [4–6], conflict detection is a central problem but it is
typically treated together with other tasks like finding bugs, redundancies, mis-
configurations, etc. We propose a specific solution for static conflict detection,
that we believe to be one of most critical issues in modern rule-based systems.

There are already some efficient algorithms to statically detect conflicts in
access control policies [13–18]. The method is generally to look for conflict in all
combinations of a number of rules (often only two rules). However, most of these
methods support only policies with discrete conclusions (like permit and deny)
and even only handle discrete attributes as conditions (ABAC policies). Our
approach is more general because, except decidabiblity of satisfiability, we do not
assume constraints on the rule system, as we could have conditions, functions,
any kind of conclusions, possibly with quantifiers and free variables. Even with
unbounded rule systems we claim to generate all the undefined requests of the
system.

In case of complex systems with predicates in conclusions and allowing the
chaining of rules, the existing solutions are not numerous. There are approaches
based on testing, used in different contexts, e.g. [7,8,16,19]. A few studies rely on
checking satisfiability as in [20], but it is too weak since satisfiability is always a
system requirement. Other formal methods and verification, for instance [9–12],
use manual proof or derivation tools and are able to prove expected properties
of the system (e.g., an access is never both permitted and denied). In practice
these properties concern a finite set of authorizations, but in case of unrestricted
obligations and chaining of rules the enumeration of the property of interest can
be an issue. We do not expect to compete with these approaches on the side of
efficiency in detecting a single conflict. Differently from these works, our method
automatically computes all the conflicting requests of the system, even if it is
not a finite set.

In the domain of constraint solving, we think that techniques for extracting
minimal unsat core and maximal sat core are closely complementary to our work
(e.g. [21,22]). We concretely show in this work how to encode the exhaustive con-
flict detection problem of security policies as a satisfiability problem. To make
sure that the problem can be solved within reasonable time, we introduce perfor-
mance optimizations as symbolic manipulations, before providing the problems
to the constraint solver. We do not directly use minimal unsat core nor maximal
sat core techniques to solve our problem. However, our manipulations can be
also adapted for enhancing alternative solutions for conflict detection that rely
on sat/unsat core (e.g. [23]).
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3 Motivating Example

To exemplify our approach, we refer to a very simple example of rule-based policy
for a medical center, inspired from [24]. The example is illustrated in Listing 1.1
using the syntax of the Z3 solver, where we represent implication as an infix
operator. This example is a first-order example with predicates and free variables
but our approach, detailed in the next section, is applicable to any decidable
logic extending propositional logic. Here h, p are universally quantified variables
(respectively for hospital personnel and patients) and other terms are predicates
or boolean operators. The system decides about read and write access rights
to the information of a patient (pread, pwrite). Hospital personnel comprises
the doctor, nurse and chief roles. Personnel can be assigned to the ward of
a patient (sameward). Despite representing a simple policy, user-defined rules
in Listing 1.1 contain conflicts, missing information and redundancies. Briefly,
hospital employees with multiple roles can not be assigned to the ward of any
patient (rule 1), doctors have read and write access to any patient data (rule 2),
nurses can not get information on patients from other wards (rule 3), a doctor
can access data for the patients of his ward (rule 4), a chief has read access to
any patient data (rule 5).

Listing 1.1. Input for the hospital example

1 And(doctor(h), nurse(h)) => Not(sameward(h, p))
2 doctor(h) => And(pread(h, p), pwrite(h, p))
3 And(nurse(h), Not(sameward(h, p))) => Not(pread(h, p))
4 And(doctor(h), sameward(h, p)) => pread(h, p)
5 chief(h) => pread(h, p)

We provide an automatic prototype that, given a system like the one in List-
ing 1.1, identifies all undefined requests, e.g. requests having multiple ambiguous
answers because of rule conflicts. When provided with Listing 1.1, our prototype
produces the output in Listing 1.2.

Listing 1.2. Prototype output for the example

[0, 1, 0,-1,-1]
And(doctor(h), Not(nurse(h))) => And(pread(h, p), pwrite(h, p))

[0, 0, 1, 0, 0]
And(Not(doctor(h)), nurse(h), Not(sameward(h, p)), Not(chief(h)))

=> Not(pread(h, p))
[0, 0, 0, 0, 1]

And(Not(doctor(h)), Or(Not(nurse(h)), sameward(h, p)), chief(h))
=> pread(h, p)

# ----------- Unsafe --------------
[1, 1, 1]

And(doctor(h), nurse(h), Not(sameward(h, p))) => False
[1, 1, 0]

And(doctor(h), nurse(h), sameward(h, p)) => False
[0, 0, 1, 0, 1]

And(Not(doctor(h)), nurse(h), Not(sameward(h, p)), chief(h)) => False
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The rule system in Listing 1.2 is logically equivalent to the original rule system
and composed of pair-wise exclusive rules1. Furthermore, each rule is prefixed
by a sequence of digits indicating the combination of the original rules which
produces this rule. For instance, the first rule in Listing 1.2 comes from the com-
bination of the original rule 2 and negation of rule 1 and 3; −1 is a don’t care
digit for rule 4 and 5. The rules tagged as unsafe denote indeed set of undefined
requests, for instance And(doctor(h), nurse(h), Not(sameward(h, p))) is unde-
fined which results from the combination ([1, 1, 1]) of the three first rules.
That means that its conjunction with the rule system is unsatisfiable. The other
rules denote defined and undefined requests. On one side, the defined requests
should intersect the conjunction of the rule condition and the rule conclusion.
On the other side, undefined requests are included, by implication, in the con-
junction of the rule condition and the negation of the rule conclusion. Related
to the first not unsafe rule, And(doctor(h), Not(nurse(h))) is a defined request
and And(doctor(h), Not(nurse(h)), Not(pread(h, p))) is an undefined one.

With such information the user can exactly know what are all the conflicting
problems, and then what are the requests that this rule system can handle.
Furthermore, he can localize the problems in the rule system, by knowing what is
the rule combination leading to undefined requests. For instance, the first unsafe
rule comes from the combinations of rules 1, 2 and 3. It states that any request
about a personnel member that is at the same time a doctor and a nurse will lead
to a rule conflict, even if the person is not assigned to the ward of the patient.
The conflict involves the first three rules, since chaining rule 1 with respectively
rule 2 and 3 leads to contradictory answers, where the data from the patient can
and can’t be read at the same time (pread(h, p) and Not(pread(h, p))).

The next section will introduce the required concepts and Sect. 5 will present
the principles of our algorithm.

4 Background and Definitions

In this section, we define a terminology that will be consistently used in the rest of
the paper. Our focus are systems that process requests and produce replies. One
important problem is due to requests leading to evaluation failures and often
called conflict in the literature. Here we formalize the notion by defining the
term undefined request. We focus on rule systems: a conjunction of rules, a rule
is A => B with A and B in some logical language. Considering that satisfiability
decision has made important progress, we expect to build a new management
method of rule-based systems by reusing efficient tool support (e.g., Z3, SMT,
SPASS, TSPASS).

Let R be a satisfiable policy system with its set of expected requests REQ.
REQ is a finite set of satisfiable logical formulae that we are interested in answer-
ing. It represents the set of expected inputs to the policy system. Requests and
1 To improve readability, we simplify the actual output from our prototype in List-

ing 1.2. The complete output and our prototype can be found in https://github.com/
atlanmod/ACP.

https://github.com/atlanmod/ACP
https://github.com/atlanmod/ACP
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replies are satisfiable logical expressions, they could be ground (without vari-
ables) or containing free variables (implicitly universally quantified) or quantified
variables. Indeed all the expressions (requests, replies, conditions, conclusions,
...) are assumed to be written in a given logical language which may allow vari-
ables, quantifiers, modal operators, and so on, providing it has a satisfiability
procedure.

Definition 1 (Rule-based system). A rule-based system (R) consists of a
finite conjunction of rules noted R = r1≤i≤n, where each rule ri takes the format
of Di => Ci, where Di stands for the premise/condition of the rule, and Ci

stands for conclusion of the rule. In addition we assume that R is satisfiable and
does not contain tautological rules.

We should note that a rule-based system is interesting if it is satisfiable and not
valid. This means that it can derive non trivial facts from the request. Thus we
assume that R is satisfiable and it does not contain tautological rules, that is
Di ∧ ¬Ci is satisfiable for all i. A request will be a satisfiable logical expression
submitted to a rule-based system and leading to a reply, another logical expres-
sion. Note that a request should trigger at least one rule, otherwise its conjunc-
tion with the system is satisfiable but does not infer a reply. Thus we make the
natural hypothesis that our requests are satisfiable and imply

∨
1≤i≤n Di. We

will say that a set of rules is exclusive if their conditions are pair-wise disjoint.

Definition 2 (Request evaluation in rule-based system). Let req be a
logical expression, evaluating it against a given rep, called the reply, means that
req ∧ R => rep is valid or equivalently req ∧ R ∧ ¬rep is unsatisfiable.

We are interested in the evaluation problem raised due to undefined requests.

Definition 3 (Undefined requests). A req request is said undefined if and
only if req and R are both separately satisfiable but req ∧ R is unsatisfiable.

An undefined request in fact leads to a problem since its evaluation leads to mul-
tiple incompatible replies. This definition is stricter than satisfiability and covers
the usual notion of conflicts we found for instance in security policies [6,25]. This
has two simple consequences: (i) any useful system has undefined requests and
(ii) these undefined requests are included in

∨
1≤i≤n Di. Furthermore any rule

(Di => Ci) which is satisfiable and not valid has 1-undefined requests, that
is requests invalidating this rule alone (in other words requests which imply
Di ∧ ¬Ci). In this work, we aim to study a complete and efficient algorithm to
ensure the safety of a given rule-based system (Definition 4).

Definition 4 (Safety of rule-based system). A rule-based system with its
set of expected requests is safe if and only if it does not contain any undefined
requests, that is for all satisfiable request req ∈ REQ implies req∧R is satisfiable.

As we can see this property assumes that the input system is satisfiable, and it
is different from many approaches looking for logical inconsistencies in a system,
for instance [9,10,20].
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5 Characterizing Undefined Requests

The management of policies and requests requires to consider several activities:
looking for the existence of one undefined request, checking a request, finding all
the undefined requests, localizing the conflicting rules, resolving the undefined
requests and evaluating a request. We here focus on finding all the undefined
requests since this global knowledge is necessary to understand the failures in
the system and to globally fix them. We do not study the fixing process but we
will give a few related hints later. As we will see, one additional benefit of our
method is to get localization of conflicting rules for free.

This section shows a decision procedure for the safety property (if satisfia-
bility is decidable), its theoretical complexity is EXPSPACE. Our approach is
based on transformations of the original rule-based system. It is important to
preserve the conditions and conclusions of rules as they represent the expected
requests and replies. Hence we will build new rules by mixing the conditions on
the left hand side and conclusions on the right hand side.

5.1 The Enumerative Method with Exclusive Rules

Our enumerative method to compute undefined requests is based on rewriting
the original rule system into its equivalent form in terms of exclusive rules.

A minor point of the method is to allow requests with variables. By consid-
ering requests with variables rather than ground requests, we aim to cover the
whole (sometimes infinite) set of requests. For example, in Listing 1.1, a ground
request like And(doctor(Jack), nurse(Jack), Not(sameward(Jack, May))) with
constants Jack, and May is undefined. However, there are many other differ-
ent ground requests that expose this problem. To capture the essence of these
problems, we use the requests And(doctor(h), nurse(h), Not(sameward(h, p))),
which is a short hand for (∀h, p · (doctor(h) ∧ nurse(h) ∧ ¬ sameward(h, p))).

Furthermore, an undefined request is unsafe in the sense that it contains (i.e.,
it is deducible by logical implication from) only undefined requests. However,
defined requests are not safe in general, in the sense they are not maximally
defined.

Definition 5 (Safe request). Let R be a rule system, a satisfiable request req
is safe if and only if any satisfiable request which implies req is defined.

Second, Lemma 1 establishes that we can rewrite the original rule system into an
equivalent form, namely exclusive rules. The lemma can be proved by recurrence
on the size of rule system n.

Lemma 1 (Exclusive rules). Let R be a rule system, we have the equivalence
∧

1≤i≤n

(Di => Ci) <=>
∧

I

((∧i∈IDi ∧j /∈I ¬Dj) => ∧i∈ICi)

where I is any non-empty subset of {1, . . . , n}.
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The rewriting of a rule system with n rules generates 2n − 1 exclusive rules.
The rule system is composed only of pair-wise disjoint rules, and preserves the
original set of defined and undefined requests.

For example, the rewriting applied to the rule system shown in Listing 1.1,
results in a total of 31 exclusive rules (partially shown in Listing 1.3). As shown
in Listing 1.3, first, we abbreviate each rule by its appearance order in Listing 1.1,
e.g. R1 is And(doctor(h), nurse(h)) => Not(sameward(h, p)). Second, we use a
D function to get the condition part of a rule, and a C function to get the
conclusion part of a rule, e.g. D(R1) is And(doctor(h), nurse(h)) and C(R1) is
Not(sameward(h, p)). For instance, in Listing 1.4 we show the non-abbreviated
form of the first exclusive rule, corresponding to the first line of Listing 1.3. The
condition is obtained by conjunction of the first original rule R1 ’s condition,
with the negation of the conditions of the other rules (R2–R5 ). The conclusion
is simply the conclusion of R1.

Listing 1.3. Part of abbreviated exclusive rules generated by our enumerative method
for the example shown in Listing 1.1

1 And( D(R1), Not(D(R2)), Not(D(R3)), Not(D(R4)), Not(D(R5)) ) => C(R1)

2 And( D(R1), D(R2), Not(D(R3)), Not(D(R4)), Not(D(R5)) ) => And( C(R1), C(R2) )

3 And( D(R1), D(R2), D(R3), Not(D(R4)), Not(D(R5)) ) => And(C(R1), C(R2), C(R3))

4 ... Another 28 rules

Listing 1.4. The first exclusive rule of Listing 1.3 in non-abbreviated form

1 [1, 0, 0, 0, 0]
2 And(doctor(h), nurse(h)), Not(doctor(h)),
3 Not(And(nurse(h), Not(sameward(h, p)))),
4 Not(And(doctor(h), sameward(h, p))), Not(chief(h))
5 => Not(sameward(h, p))

As we previously saw, a rule (if not valid) has always 1-undefined requests and
the transformation above builds a system whose undefined requests are disjoint
unions of 1-undefined requests.

Lemma 2 (Undefined requests of exclusive rules). req is an undefined
request of an exclusive rule system R if and only it is a disjoint sum, req =⊕

1≤j≤m reqj, where
⊕

is the accumulative exclusive-or operator, and each reqj
is satisfiable and 1-undefined for a given rule j.

Lemma 2 simply results from the exclusive rules and the partition of req into
disjoint parts related to the conditions Di. Thus the set of safe requests is defined
as the disjoint union of all the safe requests associated to each rule. For each
rule the conjunction of the condition and the conclusion defines a safe request.
The maximal safe request is safe(R) =

∨
I ∧i∈IDi ∧j /∈I ¬Dj ∧i∈I Ci. A request

is safe if included in safe(R), it is defined if it intersects safe(R), and else it
is an undefined request. From that the safety property can be checked by the
satisfiability of elements in REQ against safe(R).

Discussion. While existing testing methods for rule systems are generally able
to show the existence of ground undefined requests, they can’t prove that a given
(unbounded) rule system is safe. The enumerative way has three main benefits:
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– it works with the same complexity in case of finite or infinite set of ground
requests while the testing approach is not suitable with infinite sets,

– it does not depend on the set of requests thus it outperforms the testing
approach in many non trivial examples,

– it may produce undefined requests with variables, that represent an abstrac-
tion of the system problems, with localization for free.

Compared to the verification approaches, our enumeration does not require
a large set of interesting properties to prove. Moreover, if the property is not
satisfied, in the best cases previous work on verification generates a counter-
example. In general, it is not possible to produce a characterization of all the
counter-examples as we did here.

On the performance side, the enumerative method implies the computation
of all the rule combinations, which has an expensive cost. Furthermore, we check
each rule for validity and valid rules are discarded as they do not contribute to the
set of undefined requests. The enumerative method can have worse performance
than the testing methods in case of propositional rule systems. However, we
expect our method to perform better than exhaustive testing of rule systems
with variables. For instance, with systems expressed in FOL, the exhaustive
testing requires a maximal number of 2P∗DV

test cases, where P is the number
of predicate occurrences in R, D the size of the domain of arguments and V the
number of arguments. The set of test cases is growing quickly, while the number
of exclusive rules is only dependent on the number of rules in the input system.

Work on minimal unsat core and maximal sat core are closely related to
our enumerative method [21,22]. For example, after our partition in order to
identify all the undefined requests of a rule-based system, we could send each
exclusive rule to a solver to extract all the minimal unsat cores. However, for the
sake of performance, we only check exclusive rules for satisfiability, since theo-
retically, the problem of extracting minimal unsat core is harder than checking
satisfiability.

5.2 The Iterative Method

We present a first improvement of the enumerative method, called the iterative
method. It is based on adding iteratively a new rule at each step and eliminating
some rules as soon as possible. The principle is based on the following property.
Assuming that R′ is a list of exclusive rules computed with the enumerative
method and rj a new rule. Note that each rule in R′ can be uniquely described
by its binary characteristic which is a binary integer of length n (where n is the
rule size of the initial rule system). Let b a binary integer we can construct a rule
of R′ in the following manner: the condition is the conjunction of the conditions
Di (respectively ¬Di) if the ith digit of b is 1 (respectively 0). The conclusion is
the conjunction of the conclusions of R for which digit is 1 in b. Thus speaking
of an exclusive rule or its binary characteristic is equivalent. We will say that
a rule i of the input system is active in an exclusive rule if the binary digit at
position i is 1.
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Proposition 1 (Iterative principle). Let R′ built from the enumerative
method, then the enumerative result for R′ ∧rj is obtained from the binary char-
acteristics of rules in R′ and for each b we will get two new binary characteristics
2 ∗ b and 2 ∗ b + 1 plus one single last characteristic equal to 1.

This results from a simple recursive analysis of the binary characteristics of
R′ compared to that of R′ ∧ rj . That means that if R′ has m rules we will get
2 ∗ m + 1 rule in R′ ∧ rj .

Furthermore, the main loop of the iterative method is based on the above
principle and two optimizations.

Definition 6 (Obvious rule). A rule D => C is an obvious rule iff D is
unsatisfiable.

The first optimization is to discard obvious rules during the iterative method
(Definition 6). Obvious rules are one specific kind of tautologies. Adding them
during the iterative method offers no value, since they will just generate two new
obvious exclusive rules and make no difference to the last generated exclusive rule
that in negation form. Notice that we keep exclusive rules that are tautologies
but not “obvious” during the iterative method. The reason is that they have
an impact on the iteration, e.g. affect the last generated rule. An additional
optimization is possible here but it is postponed to future work.

Definition 7 (Unsafe rule). A satisfiable rule D => C is an unsafe rule iff
it is equivalent to D => false.

The second improvement of the iterative method is to separate unsafe rules.
An unsafe rule implies no defined request matching its condition. Checking it
efficiently depends from the logical language used and should take care of quan-
tifiers in case of free variables. If a rule is not unsafe then (D ∧ C) is a safe
request and the rule has only 1-undefined requests in (D ∧ ¬C). A consequence
of this classification is that now the maximal safe request (safe(R)) is computed
only from rules that are not unsafe.

The above definition paves the way to a further optimization, which is to
check for unsafe rules and to store them separately from the others. Hence we
stop processing unsafe rules and present them in the final result (possibly with a
shorter binary characteristic w.r.t. not unsafe rules, e.g. see the first two unsafe
rules of Listing 1.2). With the iterative method and the classification (obvious,
unsafe and not unsafe) we expect to decrease the number of generated rules
which is a critical factor of the enumerative approach.

For example, by applying our iterative method on the rule system shown in
Listing 1.1, the first rule R1 is checked for its obviousness and unsafeness, and
the checks succeed. Then, R1 becomes the first exclusive rule and the iteration
starts. We show in Listing 1.5 the result of first iteration by adding R2 to the
first exclusive rule. Since R2 also passes obviousness and unsafeness checks, three
exclusive rules are built along with iterative method. Their binary characteristics
are [1, 1], [1, 0] and [0, 1] respectively.
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Listing 1.5. Exclusive rules generated by our iterative method for the example shown
in Listing 1.1 at the 1st iteration

1 [1, 1] And( D(R1), D(R2) ) => And( C(R1), C(R2) )
2 [1, 0] And( D(R1), Not(D(R2)) ) => C(R1)
3 [0, 1] And( Not(D(R1)), D(R2) ) => C(R2)

At the final iteration, we get a total of 6 exclusive rules (3 unsafe, 3 not
unsafe, plus 4 eliminated as obvious), which results in a total of 16 unsat checks.
Clearly, the iterative approach performs better than the enumerative approach
(that in this example would generate 31 rules, by 31 unsat checks), and we
anticipate that the effectiveness of the iterative approach would be more visible
on larger examples. Note that the iterative method is a quite general solution
which requires a logic extending propositional logic with a decision procedure
for satisfiability.

5.3 The Sorting Method

The analysis of relations between rule conclusions can lead to significant perfor-
mance improvements. We argue that in many practical examples, rule conclu-
sions are built on a set of finite predicates, and several rule systems have some
pairs of rules whose conclusions are related by inclusion. If we add in the itera-
tive process a new rule Dj => Cj and if we know that it exists i < j such that
Ci => Cj is valid then we can simplify the process using the following principle.
Let cond∧Di => conc∧Ci be the exclusive rule where rule i is active, in the step
before the addition of rule j. By adding rule j, the iterative process would gener-
ate two rules cond∧Di∧Dj => conc∧Ci∧Cj and cond∧Di∧¬Dj => conc∧Ci.
Given the inclusion relation between Ci and Cj , instead of these two rules, the
two rules simplify in cond ∧ Di => conc ∧ Ci, that was already present before
adding rule j. This rule will still be exclusive w.r.t. all the other rules gener-
ated during the addition of rule j. In the binary characteristic of this exclusive
rule, we insert a −1 at position j, to indicate that the condition of rule j does
not matter in this combination. This optimization eliminates two satisfiability
checks, but most of all it decreases the number of generated exclusive rules.

With this optimization the size of the result depends on the order of rules.
Thus, to take the maximal benefit from these relations, we sort the rules from
minimal conclusions to maximal conclusions (w.r.t. the implication relation). We
achieve this reordering by a simple adaptation of topological sorting, with a com-
plexity in O(n2) (where n being number of rules). The result of our topological
sorting is that each rule is preceded by all the rules with a smaller conclusion
than its proper conclusion. For example, the sorting result for our example shown
in Listing 1.1 is R1, R3, R2, R4, R5.

5.4 The Algorithm

To sum up, in Algorithm 1 we sketch our process to efficiently compute exclusive
rules and classify them as unsafe and not unsafe. Notations used in the algorithm
require some explanation.
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Algorithm 1 . Our algorithm to efficiently compute not unsafe and unsafe
requests
1: NotUnsafes, Unsafes, Negs, Zeros ← dict(), dict(), True, []
2: procedure Main(R)
3: R ← sort(R)
4: BuildExRule(D(hd(R)), C(hd(R)), [1])
5: Negs ← Negs ∧ ¬D(hd(R))
6: Zeros ← Zeros ++ [ 0 ]
7: for each rule ri ∈ tl(R) do
8: IterativeTableCtr(ri)
9: end for

10: end procedure
11:
12: procedure IterativeTableCtr(r)
13: prevNotUnsafes ← NotUnsafes
14: NotUnsafes ← dict()
15: for each bi ∈ prevNotUnsafes.keys() do
16: exrulei ← prevNotUnsafes[bi]
17: if C(exrulei) implies C(r) then
18: NotUnsafes ← NotUnsafes.update({ bi ++ [-1] : exrulei })
19: else
20: BuildExRule(D(exrulei) ∧ D(r), C(exrulei) ∧ C(r), bi ++ [1])
21: BuildExRule(D(exrulei) ∧ ¬D(r), C(exrulei), bi ++ [0])
22: end if
23: BuildExRule(Negs ∧ D(r), C(r), Zeros ++ [1])
24: Negs ← Negs ∧ ¬D(r)
25: Zeros ← Zeros ++ [ 0 ]
26: end for
27: end procedure
28:
29: procedure BuildExRule(d, c, b)
30: rule ← Rule(d, c)
31: if not isObvious(d) then
32: if isUnsafe(d, c) then
33: Unsafes ← Unsafes.update({ b : rule })
34: else
35: NotUnsafes ← NotUnsafes.update({ b : rule })
36: end if
37: end if
38: end procedure
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First, we use D and C to get the condition and conclusion of a rule respec-
tively. Second, we inherit traditional list operators hd, tl and ++ for head, tail
and concatenation of lists. Third, we use dict to initialize a dictionary, and use
update to add a pair to a dictionary, and overload a[b] for element access in a
dictionary (i.e. accessing element whose key is b in a dictionary a). Finally,
three predicates specific to our algorithm are sort, isObvious and isUnsafe. They
perform a topological sort of a list of rules w.r.t. implication between conclusions
(Sect. 5.3), check whether the rule is an obvious tautology (Sect. 5.2), and check
whether the rule is unsafe (Sect. 5.2), respectively.

The input of our algorithm is a list of rules, the output are classified exclusive
rules. To compute from input to output, we use 4 global variables in our compu-
tation (line 1). NotUnsafes and Unsafes are dictionaries, which are used to keep
track of the rules detected so far, that are unsafe and not unsafe. Notice that the
key of these two dictionaries is the binary characteristic of each exclusive rule,
and the value is the exclusive rule itself. Negs is a conjunction of formula that
represents negated conditions for rules that previously iterated on. Zeros is syn-
chronized with Negs to record binary characteristics. These two global variables
are used when building exclusive rules in negative form on line 23.

Our iterative construction is performed to categorize rules that are unsafe
or not unsafe (lines 2–27). It internally uses our sorting method to optimize its
efficiency (lines 17–18), and uses BuildExRule to interact with the solver to check
whether a newly constructed exclusive rule is unsafe (lines 29–38). The whole
process offers no surprise w.r.t. what we described in Sects. 5.2 and 5.3.

Once the two lists of rules NotUnsafes and Unsafes are computed by Algo-
rithm1, the set of undefined requests is precisely characterized as:

– each unsafe exclusive rule denotes a set of undefined requests, i.e. all the
requests included by implication in the rule condition,

– each exclusive rule that is not unsafe denotes a set of undefined requests,
i.e. all the requests included by implication in the conjunction of the rule
condition and the negation of the rule conclusion,

– no other undefined requests exist for the original system.

6 Evaluation and Discussion

We implement the three previous methods in Python 3 and we use the z3py
interface to interact with the Z3 solver [26]. Our input rules are defined using a
class of rules reusing the logical expression defined by Z3. The code is available
on our on-line repository2 with a set of examples. We prove, using the solver,
that the original rule system is equivalent to the new generated one.

Our evaluation objective is to experiment with middle size examples to
observe if the concrete performances are according to our expectations and suit-
able for a practical use. In our approach, we rely on the Z3 solver, but the solver

2 Efficiently characterizing the undefined requests of a rule-based system (on-line).
https://github.com/atlanmod/ACP.git.

https://github.com/atlanmod/ACP.git
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can be changed as long as it provides a decision procedure for satisfiability suit-
able for the input rule system. Our method is not limited to pure predicates
with free variables, however its success and efficiency depend on the ability of
the solver to check such construction.

6.1 The CONTINUE Example

We describe here the case of the CONTINUE A policy already used in [20,27]
and dedicated to conference management. This policy3 is specified in 25 XACML
files containing 44 rules. Our objective was not to exactly encode this policy but
rather to validate that our optimizations are effective in case of a non trivial
example. We deviate from the original CONTINUE example in several ways.
First, we consider a pure logical translation and this introduces a difference as
already discussed in [10]. We do not take into account the combining algorithms
since our objective is to observe the undefined requests occurring in the busi-
ness rules, not to provide an ad-hoc automatic resolution. We also handle free
variables and predicates (unary and binary), while this is not the case in the
XACML language.

Our initial rule system has 47 rules, with two types, two free variables, 6
binary predicates and 29 unary ones. We start with this example without addi-
tional relations. Figures 1, 2, and 3 depict the results we get with a MacBookPro
under El Capitan, 2.5 GHz Intel Core i7 and 16 Go 1600 MHz DDR3 RAM. The
resulting times were computed from an average of 10 runs.

In the figures we report the number of rules in the system and a few curves:
correct is the number of non tautology in the system, time the time in second,
exclusive, not unsafe, unsafe the number of exclusive, not unsafe and unsafe
rules. We process the example by taking the first n rules from an arbitrary
ordering. The correct curve shows that there is no tautology in this system.

The enumerative experiment (Fig. 1) shows clearly an exponential growth in
the number of generated rules and in the processing time. While the perfor-
mances of the iterative method (Fig. 2) are much higher, we still cannot process
the full example in a reasonable time. The sorting method (Fig. 3) provides
more interesting results in such a case. CONTINUE has many inclusion rela-
tions among conclusions (653 relations), which explains the good performances
by topological sorting. While this is not a universal property, in our experience,
this is often the case in security systems. This is obvious when conclusions are
only permit and deny as in some simple access control policies. More generally,
in security we expect to control the possible outcomes of the rules, thus defin-
ing a limited set of replies. Each rule can then combined these outcomes and
thus revealing relations between conclusions. We easily observe this on several
of our examples, but a statistical analysis should be perform to validate this
assumption.

We should also note that some rules have a great impact on the behavior
of the iterative and sorting methods. This is the case with predicate exclusivity

3 http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/.

http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/


Efficiently Characterizing the Undefined Requests of a Rule-Based System 83

Fig. 1. Enumerative experiments

which is often implicit. Indeed XACML, due to the use of the combining algo-
rithms, does not make hypothesis about the disjunction of roles or permissions
of different actions. To observe the stability of our performances we experiment
adding a few new rules about roles in the system. For instance, it makes sense to
consider that the PC chair is also a PC member and a subreviewer is not a PC
member. There are also some relations related to resources, for example there
are several different kinds of information about papers. These resources appears
only in conditions and alone but never in a conjunction, thus we may consider
these resources as disjoint. Adding these rules increases the size of the original
system to 57 rules. As shown in the curves in Fig. 4 these disjunctions decrease
the number of rules that are not unsafe. With this setting we generate 776 rules
(535 unsafe and 241 not unsafe) in nearly 100 s, including the verification of the
equivalence with the original system which takes 10 s.

Listing 1.6. An example of conflicting rules

// An unsafe case
UNSAFE [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
// The four active 10-13th rules (other negative rules are omitted)
pcchair(X) => pcmember(X)
Or(admin(X), pcchair(X), pcmember(X), subreviewer(X)) => subject(X)
And(PaperAssignments (R), subject(X), isConflicted(X))

=> And(Not(Pread(X, R)), Not(Pwrite(X, R)), Not(Pcreate(X, R)))
And(PaperReviewContent(R), pcmember(X), isEQuserID(X))

=> And(Pcreate(X, R), Pwrite(X, R), Pdelete(X, R))

As an example of output in this scenario, Listing 1.6 shows the binary character-
istic of one of the first unsafe rules detected (the 10th). As shown by the binary
characteristic, this rule denotes a set of undefined requests coming from the com-
position of the four active rules listed underneath. The four rules are conflicting
in a non-trivial way. The next challenge of our work is the automated analysis
of each group of undefined requests (like the one in Listing 1.6), for aiding in the
resolution of the conflict.
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Fig. 2. Iterative experiments

Another usage of this computation is to check if a request is safe, defined or
undefined. Starting from the rule classification, our prototype is able to compute
the maximal safe request as defined in Sect. 5 then we can check the request
against it. Listing 1.7 shows two examples: After the computation of Algorithm 1,
both of these examples are processed in less than one second.

Listing 1.7. Two safety tests

// Intersecting the maximal safe request it is a defined request
ForAll([X, R], And(Not(PcMember(R)), PaperReviewContent(R), pcmember(X),

Not(subreviewer(X)), isEQuserID(X)))
// It is contained in the negation of the maximal safe request
// thus it is an undefined request
ForAll([X, R], And(PaperAssignments (R), subject(X), isConflicted(X),

PaperReviewContent(R), pcmember(X), isEQuserID(X)))

Fig. 3. Sorting implementation
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Fig. 4. Sorting test with 57 rules

6.2 Discussion

In summary, through our evaluation, we experiment our approach on a middle-
size example, and observe its performances are according to our expectations
and suitable for a practical use. There are also some lessons we learned.

Correctness. Decidability of the satisfiability is required for our approach to
get an optimal rule classification and best performance. For example, we interact
with solver to check conclusion implication, and whether a rule is obvious, unsafe
or not unsafe. If the solver cannot give a reply to these questions within a given
timeout, an unknown will be returned as result. This would degrade the precision
of rule classification result and the performance of our approach. However, when
unknown results occur, we always defensively categorize them as not unsafe, and
thus will not give incorrect answers to the user.

Usability. It is important to simplify as much as possible the output, to facil-
itate the inspection of rule conflicts. Some simple cases are already handled in
the iterative and sorting steps. For instance, two rules with equivalent condi-
tions are simply merged into one rule with this condition and a conjunction of
each conclusion. However, more aggressive simplifications are complex and time
consuming. In our current solution, we think that it is better to first produce
a result which alerts the user on the presence of undefined requests. In a sec-
ond step, if the user wants to fix some problems we should provide a simplified
version of the rules, and perhaps some hints for resolution of conflicts.

While we do not think that automatic resolution will always match users’
expectation, our approach can be extended to suggest some automatic fixes to
the user. For instance, the user may want to restrict its set of expected requests
to the maximal set of safe requests.

Another idea is to add conditions occurring in the unsafe rules as extra
conditions of the not unsafe rules. One approach is to introduce the input rules
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one by one and to resolve the generated unsafe cases. If the system has no
chaining of rules then there is no further problem and this way will produce a
safe system. In the more general chaining case, the user should always cope with
1-undefined requests.

Generalization. While the number of rules is related to the complexity of
the rule system, they do not necessarily compromise the generalization of our
approach, e.g. the algorithm could take advantage of more obvious rules, or there
could have more implications between conclusions.

However, we do agree that more case studies are needed to confirm the gener-
alization for the performance and practicability of our approach. We processed
another example4, consisting of 61 rules for managing resources, hierarchy of
roles, permissions and revocation of permissions. The encoding of these rules
are more complex than the CONTINUE example, e.g. predicates to represent
discrete time. While the relationship between rules are more sparse (259 inclu-
sion relations among conclusions), our sorting method is still much more efficient
than the iterative one. For example, during the evaluation process, we observe
that iterative method takes about 13000 s to analysis 40 rules in this example.
Our sorting method only takes 735 s on the same set of rules. In our preliminary
result on this example, we also observe a reasonable growth in its analysis time
(5736 s), and find 4 unsafe rules and 17085 not unsafe ones. The last unsafe rule
reveals an unexpected conflict due to the hierarchy of resources and not seen in
the original description.

Optimization. Currently, our approach produces a logically equivalent sys-
tem for the input during its analysis. However, we think this restriction can
be relaxed, e.g. a new system that is stronger than the original one could still
be acceptable for analysis since it guarantees the behavior of the original. Our
future work will explore new optimizations based on this kind of relaxation.

Another track of optimization could be decompose input system into sub-
systems, and pave its way for a map-reduce-flavor algorithm.

7 Conclusion

In this paper we provide a new way to compute all the conflicting problems
occurring in a rule based system with chaining of rules. Our methods are rather
general since they require a logic extending propositional logic and a decision
procedure for its satisfiability. Existing methods rely either on testing or on
formal verification but they are not suitable to find the exhaustive set of poten-
tial problems. Mixing symbolic manipulations and satisfiability, we provide a
decidable enumerative approach to solve this problem but due to its exponential
complexity we must provide optimizations. We study two optimizations in order
to reduce the number of generated rules: an iterative method with a classification
of rules and the use of the topological sorting to take the maximal advantage of
4 RBAC and ARBAC policies for a small health care facility. http://www3.cs.

stonybrook.edu/∼stoller/ccs2007/.

http://www3.cs.stonybrook.edu/~stoller/ccs2007/
http://www3.cs.stonybrook.edu/~stoller/ccs2007/
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relations between rule conclusions. As an evaluation we successfully apply our
algorithm to a FOL rule system with more than forty rules. With this instance,
rather than computing 247 new rules, we produce less than 1000 rules in less
than 100 s. Note that when the rule system is complex, it contains many relations
between the predicates, and increases the risk of undefined requests. However,
in this case our method, especially the sorting optimization, is particularly effi-
cient. Our automatic method is able to handle middle size examples and more
improvements are needed to solve larger examples in reasonable time. In our
future work we expect to explore other practical optimizations, for instance by
relaxing the relation of equivalence that we impose between the original rule sys-
tem and its implementation. Another important research line will be to enrich
our method with automatic or assisted ways to fix the detected problems.
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