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Abstract. Many systems in automated production and industrial
automation operate in safety-critical environments and must meet rig-
orous safety requirements. To enable safe operation even in the case of
a power outage, the PLCs driving these systems feature battery-backed
memory areas to prevent loss of data and allow for implementation of
resumption strategies. However it is up to an automation engineer to
decide which variables to retain, and errors that only occur after pro-
gram restart are a common problem in industrial control code.

We present approaches to both verifying the absence of such errors
and synthesising safe configurations of retain variables with off-the-
shelf tooling. The synthesis problem reduces to solving particular exists-
forall quantified Horn clauses, for what we also propose a more efficient
counterexample-guided procedure.

Evaluation of our prototypical implementation on examples from the
PLCopen Safety library shows the techniques’ strengths and limitations.

Keywords: Software verification · Parameter synthesis
Restart-robustness · Integration of formal methods
Programmable logic controllers

1 Introduction

In industrial applications, such as chemical plants or assembly lines, control
software must meet high safety and reliability requirements as errors may entail
significant costs and hazards. Programmable logic controllers (PLCs) are rugged
computers which are particularly tailored to, and widely used in, the industrial
automation domain.

The IEC 61131 standard defines requirements to both hardware and software
aspects of PLCs as well as their cyclic mode of operation, i.e. reading inputs (from
sensors), executing a main program, writing outputs (to actuators) and starting
all over. To enable the design of systems that we call restart-robust w.r.t. some
specification, i.e. whose behaviour complies with the specification even when
resuming operation after a restart, the IEC 61131-3 defines a retain qualifier for
variables in PLC programming languages. Variables that are declared this way,
are stored in a dedicated battery-backed memory s.t. their values are available
even after a power outage.
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For example consider the use case of automated drilling of holes in workpieces.
If the drill’s position or mode of operation are not retained, a restart may result in
unintended movement of the drill and damage to the system itself, the payload,
or persons within reach – even if such a malfunction were not possible in a
restart-free operation.

While retain variables are standardised, the semantics of an assignment to
such a variable is not, and left to the PLC vendors. In this work, we focus on the
two most prominent implementations supported by major development environ-
ments for PLC software: immediate and delayed writing of retain variables. In
the former case, an assignment to a retain variable is translated to an immediate
write to the battery-backed memory. However, frequent writing to this memory
is often slower than accessing the main memory, and every immediate write
increases the number of corner-cases to consider when developing restart-robust
applications. By way of contrast, in the case of delayed writing, assignments to
retain variables during program execution are in fact writes to the main mem-
ory. The actual copying of these values to the battery-backed memory is delayed
until the end of the current PLC cycle. Depending on the application or PLC
vendor, one or the other semantics may have to be supported.

Due to the cyclic operation of PLCs, where outputs are only written at the
end of a program execution, the intermediate states of a PLC are not visible
to the environment. Therefore, when automation engineers or specifications talk
about a PLC’s state they implicitly refer to its observable state. Although most
specifications in this domain are formulated in natural language, they can usu-
ally be expressed formally in terms of invariants or temporal logics [16]. When
developing restart-robust control software or upgrading existing functionality to
handle restarts safely, it becomes an automation engineer’s task to manually
determine which variables must be retained without violating a given specifi-
cation of safe behaviour, and implement the functionality needed for resuming
operation. Since mistakes can easily be made, but be very subtle and hard to
detect, this is a common problem in industrial control code [20].

Contribution. The primary contribution of this paper is the design of auto-
mated verification procedures that aid in the engineering of restart-robust logic
control software. To this end,

1. we formalise the restart behaviour for delayed and immediate write seman-
tics, and sketch its integration with established approaches for PLC software
verification,

2. we show how these characterisations can be extended, to acquire procedures
that synthesise restart-robust configurations of retain variables using off-the-
shelf tools,

3. we propose a dedicated counterexample-guided procedure, which exploits
specifics of the problem, and makes synthesis of configurations practical in
the first place,
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4. we evaluate our approaches to both verification of a program’s restart-
robustness and synthesis of safe configurations of retain variables using exam-
ples from the PLCopen Safety [31,32] library, and

5. we provide all the artefacts needed to reproduce our results, or even improve
upon.

Related Work. Due to the safety critical nature of industrial automation,
the use of formal verification is advisable and many successful applications of
formal methods have been reported in the past. However most work operates
on model level, analysing drafts and models of the system to be implemented,
instead of the actual implementation [30]. While such analyses are necessary to
find conceptual problems early in the development cycle, they do not guarantee
that the implementation will be free of bugs.

The endeavour of verifying PLC software goes back to Moon [28], who used
the SMV formalism [27] to characterise programs written in the Ladder Diagram
programming language. Although SMV targets hardware verification, and Lad-
der Diagram indeed is a circuit-like language without control flow, most present
day PLC software verifiers still use SMV-based tooling for model checking higher-
level PLC programming languages [3,16,30]. However, with constrained Horn
clauses (CHCs) increasingly becoming a basis for automatic program verifica-
tion in recent years [7], they have been adopted in verification of logic control
software too [9,10]. Therefore, we examine the characterisation of restart seman-
tics in both formalisms.

To the best of our knowledge, we are the first to investigate formal verification
of a program’s restart-robustness and synthesis of safe retain configurations. The
only directly related work [20] assumes delayed write semantics and adapts static
value analysis to distinguish between variables’ values before and after a restart.
Crash recoverability of C programs [24] is a related problem, using a similar
modelling, but differing from restart-robustness in terms of requirements and
program transformations.

The search for constants s.t. a system satisfies some property is commonly
referred to as parameter synthesis, and we model the search for safe retain con-
figurations as such. Besides of our characterisation of the problem in terms of
the SMV formalism, SMV-based tooling has also been used in bioinformatics to
find parameters for models of gene regulatory networks [2]. Our counterexample-
guided approach is most similar to [13] but does not require quantifier elimina-
tion, is independent of the chosen theory to model values, and works with any
CHC-solving algorithm.

Outline. We commence with an example program, illustrating the concrete
problems and expected solutions. Section 3 recapitulates the formal concepts
relevant for characterisation of these problems in terms of existing formalisms
(Sect. 4) and understanding of the counterexample-guided synthesis procedure
(Sect. 5). In Sect. 6, we present experimental results and provide concluding
remarks in Sect. 7.
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2 Motivating Example

Consider the program from Fig. 1, which picks up on the example used in [20],
but is slightly modified to make a different point. For simplicity, it does not
feature input variables and operates on two integer variables a and b, and a
retentive Boolean flag fs. Intuitively, the flag fs is used to track whether the
program is in its first cycle, s.t. the initialisation of b (cf. line 11) is only exe-
cuted once. The program starts with the explicitly provided default initialisation
[fs �→ true, a �→ 0, b �→ 0].

Fig. 1. Running example program Fig. 2. CFA of the running example

Let a ≥ 0 be the invariant that needs to hold for every observable state. In a
regular execution this is indeed true. Both a and b are initially set to 0, but b is
set to 2 during the first cycle which results in a being set to 1234/2 = 617. Since
fs is only true in the first cycle, the values of b and a stay like that forever.

However, the program is not restart-robust w.r.t. to a ≥ 0 in the context
of delayed write semantics for retain variables. If a restart occurs after the first
cycle, i.e. once ¬fs ∧ b = 2 holds, fs will stay unchanged but b will be reset to 0
and let a take an arbitrary value, by causing an undefined division by 0. Since
immediate write semantics allow for a superset of the behaviours of delayed write
semantics, the program is not restart-robust for those either.

The next question is, whether it is possible to fix the program by changing
which variables to retain. The variable fs that is being retained currently, is
assumed to be retained for a reason and not in question to become volatile, but
close inspection and intuition will help with identifying b as a suitable candidate.
If b is retained too, the program becomes restart-robust w.r.t. a ≥ 0, since the
divisor in line 13 is always 2.
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Nevertheless, if the program is used in the context of immediate write
semantics for the retain variables, it suddenly becomes not restart-robust again.
Although the program is simple, the violating run is easy to miss and will even-
tually lead to unexpected behaviour. With immediate write semantics, a restart
might occur after the write to fs but before setting b to 2, i.e. leaving it at
its initial 0. Since ¬fs will hold, there will be no initialisation and the divi-
sion by 0 will be reached again. In fact, in this case there is no way to achieve
restart-robustness by changing the configuration of retain variables.

Keeping track of all the possible (mis-)behaviour in the context of restarts
is clearly prone to human error. It should not be surprising that unexpected
behaviour after a restart is a common problem [20], given that implementa-
tion of restart-robust systems is currently approached without aid of automatic
procedures.

3 Preliminaries

3.1 Program Representation

We restrict the presentation to a reduced programming language, featuring only
assignments, assumes and a havoc instruction, which models the assignment of
a nondeterministic value, visualised as x := e, g and x :=? respectively, where x
is a variable, e an expression, and g a Boolean expression acting as a guard. This
is a common approach [1,7,8], coming without loss of generality. In particular,
all calls can be inlined since recursion is prohibited in PLC programs.

We use Instr to denote the set of such instructions, and represent a program
using the notion of a control flow automaton (CFA).

Definition 1 (Control Flow Automaton). A CFA A = (L,E) is a directed
graph, where the vertices L are the program locations, and the edges E ⊆ L ×
Instr × L model the program’s instructions and their effect on control flow.

Definition 2 (Program). A program P = (X,Xin,A, lEoC, linit, def ) consists
of a set of variables X, input variables Xin ⊆ X, a CFA A whose instructions
refer to the variables from X, the end-of-cycle location lEoC ∈ L, the initial
program location linit ∈ L, and a partial mapping def from variables to their
default values. The characterisation I(X) of initial values is implicitly given by
the defined defaults, i.e.

∧
x∈X x = def (x).

Note that lEoC is both the only location where a PLC’s state is observable
and also the initial program location, although the formalism allows for them
to differ, e.g. as a result of instrumentation (cf. Sect. 4.1). Similarly, while all
variables of a logic control application have well-defined default values (cf. IEC
61131), later modelling steps may introduce variables for which def is undefined
and the initial value nondeterministic.

Figure 2 illustrates the CFA that models our running example. For the sake of
readability and intuition, we use an IO instruction to model the PLC’s reading
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of sensor values at the beginning of a new cycle, which is syntactic sugar for
a sequence of x :=? for each x ∈ Xin. Since this particular program has no
input variables anyway, it can be thought of as a plain goto, representable as the
assume (5, true, 1) ∈ E.

Semantics. The state of a program is an assignment σ that maps each variable
from {pc} ∪ X to a value, where pc represents the program counter, i.e. σ(pc) ∈ L.

Since a CFA is essentially a GOTO-program, its transition relation T ⊆
Σ × Σ, where Σ denotes the set of all states, can be derived from the weakest-
preconditions of unstructured programs [1], i.e.

T (pc,X, pc′,X′) =
∧

(l,instr ,l′)∈E

(pc = l → �instr� ∧ pc′ = l′), (1)

where the primed variables’ instances {pc′}∪X′ denote the next-state valuation
and �·� is the instruction’s characterisation:

�instr� =

⎧
⎪⎨

⎪⎩

(
∧

v∈X\{x} v′ = v) ∧ x′ = e instr = (x := e)
(
∧

v∈X\{x} v′ = v) instr = (x :=?)
(
∧

v∈X v′ = v) ∧ g instr = g

(2)

3.2 Symbolic Model Verifier

The Symbolic Model Verifier (SMV) formalism allows the symbolic definition of
a transition system S = (V, I, T ) in terms of a characterisation of the initial
states I over the variables V, and a transition relation T as seen in the previous
section. Accordingly, modelling the program semantics for SMV-based verifiers
is a straight-forward reuse of Eq. (1). Note though that SMV targets hardware-
verification, and with V = {pc} ∪ X the program counter is treated like any
other variable. Therefore, if the control flow is to be exploited by a SMV-based
verifier, some variant of large-block encoding [4] has to be employed.

The SMV formalism allows the definition of specifications in terms of invari-
ants and temporal logics – in particular CTL [14]. However, one needs to exercise
caution when expressing a specification for PLC software in SMV, since SMV
specifications are interpreted in the step-size that T is provided in, e.g. a single
instruction per step, while the original specification only refers to the observable
states, i.e. a step is a whole execution cycle. For an invariant ϕ(X) this can
be easily accounted for by only checking it at the end-of-cycle location, i.e. use
pc = lEoC → ϕ(X). Although we focus on invariants, the need for reformulation
of specifications can generally be avoided by characterising the whole program
as a single step [3,8].
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3.3 Constrained Horn Clauses in Software Verification

Definition 3 (Constrained Horn Clause). Given sets of variables V, func-
tion symbols F , and predicates P, a constrained Horn clause (CHC) is a formula

∀V p1(X1) ∧ · · · ∧ pk(Xk) ∧ ϕ
︸ ︷︷ ︸

body

→ h(X), k ≥ 0,

where ϕ is a constraint over F and V, Xi,X ⊆ V are possibly empty vectors of
variables, and pi(Xi) is an application of a predicate pi of arity |Xi|.
We use body to refer to the antecedent of the CHC and head to denote h. A CHC
is called a query if its head is free of P symbols and otherwise, it is called a rule.
Following the convention of logic programming literature, we use the shorthand
notation

h(X) ← p1(X1), . . . , pk(Xk), ϕ. (3)

A set of CHCs is satisfiable if there exists an interpretation of the predicates
that satisfies each ϕ. As illustrated by [22], intuitively, each pi represents an
unknown over-approximate summary, while a query defines a property to be
proved. In the context of CFAs, the pi correspond to over-approximations of
the reachable valuations at program location i. Therefore, checking whether a
program satisfies a safety property, amounts to establishing the satisfiability of
CHCs that encode the corresponding verification conditions, as shown below.

Following [7], a program P = (X,Xin, (L,E), lEoC, linit, def ) is characterised
by

pinit(X) ← I(X) (4)
pl′(X′) ← pl(X), �instr� for each (l, instr , l′) ∈ E (5)

Note that in contrast to the pi, I is not uninterpreted but explicitly given (cf.
Sect. 3.1).

To prove that the program complies with an invariant ϕ, we check whether
an interpretation of predicates pi exists s.t. all CHCs are satisfied and the over-
approximation of observable states pEoC(X) subsumes the safe states (cf. [26]),
by adding the query

ϕ(X) ← pEoC(X) . (6)

4 Modelling the Restart Semantics

Existing approaches for PLC software verification formalise only the nominal
program semantics, implementing the approaches from Sect. 3, and ignoring
possible restarts. In the following, we illustrate how restarts with delayed and
immediate write semantics for retain variables can be modelled in terms of these
established formalisms, to allow reuse of existing verification machinery.
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Similar to an interrupt, a restart may occur at any time during program
execution. When that happens, the program counter is reset to lEoC, and the
next execution cycle starts with all non-retain variables reinitialised with their
default values. The retain variables, however, take their corresponding values
that are stored in the battery-backed memory at that time. Note that marking
a variable as retained does not imply that all assignments to it are immediately
reflected in the battery-backed memory – this depends on the employed retain
semantics.

Keep in mind that for PLC programs, the initial and end-of-cycle location are
identical, and the following instrumentations are to be employed prior to other
modifications that may introduce a distinct entry linit for modelling purposes
(cf. Definition 7).

Delayed Write Semantics. If a logic controller is restarted in the middle of
an execution cycle and writing to retain variables is realised via delayed write
semantics, there will not have been any write to the battery-backed memory
since the end of the previous cycle. The resulting state will have all non-retain
variables reset to their initial values, and the retain variables back at the values
they had at the end-of-cycle location.

Since a cycle’s nominal semantics becomes irrelevant if a restart happens
during its execution, we model such a restart by a nondeterministic choice at
the end-of-cycle location. If a restart is chosen to occur, we can keep the current
values of all retain variables and reinitialise the others, otherwise we execute the
program’s nominal semantics.

Note that power outages during the delayed writes are omitted in the mod-
elling since these writes can be handled atomically by the PLC’s operating sys-
tem, e.g. by using auxiliary memory-backed variables that are written immedi-
ately.

Definition 4 (Delayed Write Instrumentation). Given a set of retain vari-
ables Xret ⊆ X for a program P = (X,Xin, (L,E), lEoC, lEoC, def ), its delayed
write instrumentation yields a program

Pdw = (X,Xin, (L � Linit, E � Einit � Erestart), lEoC, lEoC, def )

where

– Linit := {lx | x ∈ X \ Xret} are new program locations in between which the
resetting of values occurs – one for each non-retain variable,

– Einit := {(lx1 , x1 := def (x1), lx2), . . . , (lxn
, xn := def (xn), lEoC)} are the

reinitialising assignments for every non-retain variable,
– Erestart := {(lEoC, true, lx1)} models a restart during the execution of the

cycle,

with the non-retain variables denoted by x1, . . . , xn = X \ Xret.
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Fig. 3. Delayed write instrumentation Fig. 4. Immediate write instrumentation

Figure 3 illustrates the result of applying this instrumentation to our running
example. At the beginning of every execution cycle, either the edge (5, true, la)
leading to the reinitialisation, or the IO-edge leading to the nominal cycle seman-
tics will be taken.

Immediate Write Semantics. If a logic controller is restarted in the middle
of an execution cycle and writing to retain variables is realised via immediate
write semantics, all the assignments to retain variables on the path from the end-
of-cycle location to the location where the restart occurred will be reflected in
the battery-backed memory. The resulting state will have all non-retain variables
reset to their initial values, and the retain variables at the values they had at
the time of the restart.

Since only assignments to retain variables change the resulting state after a
restart, it suffices to model restarts with a nondeterministic choice after every
write to a retain variable – instead of a choice in every location. Note that,
although a restart that occurs before any write to a retain variable does not
lead to a new state, and is irrelevant for checking invariants, it may still cause
violations of other temporal specifications. To model the restarting before any
write to a retain variable, we also add a nondeterministic choice at the end-of-
cycle location, as in the case of delayed write semantics.

Definition 5 (Immediate Write Instrumentation). Given a set of retain
variables Xret ⊆ X for a program P = (X,Xin, (L,E), lEoC, lEoC, def ), its
immediate write instrumentation yields a program

Piw = (X,Xin, (L � Linit, E � Einit � Erestart), lEoC, lEoC, def )

where
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– Linit := {lx | x ∈ X \ Xret} are new program locations in between which the
resetting of values occurs – one for each non-retain variable,

– Einit := {(lx1 , x1 := def (x1), lx2), . . . , (lxn
, xn := def (xn), lEoC)} are the

reinitialising assignments for every non-retain variable,
– Erestart := {(lEoC, true, lx1)} ∪ {(l′, true, lx1) | (l, x := e, l′) ∈ E, x ∈ Xret}

models a restart before any and after every write to a retain variable dur-
ing the cycle,

with the non-retain variables denoted by x1, . . . , xn = X \ Xret.

Note that with Linit and Einit being the same as in the delayed write instrumenta-
tion, but more cases of restarts to consider, the immediate write instrumentation
yields a superset of its behaviours. As a result, if a program is restart-robust in
the context of these semantics, it is also restart-robust in the context of delayed
write semantics. If a program is not restart-robust in the context of delayed write
semantics, it will not be in the context of these semantics either.

Figure 4 illustrates the result of applying this instrumentation to our running
example. Besides the restart edge at the end-of-cycle location, which models a
restart occurring prior to any write to the battery-backed memory, we now also
consider a restart after the write to fs, since it was declared as a retain variable.

To check whether a program is restart-robust w.r.t. to some specification, we
can now use the appropriate instrumentation to reduce the problem to some-
thing, that we already have verification procedures for (cf. Sect. 3).

4.1 Characterising Parameter Synthesis with CHCs and SMV

While the proposed reductions enable checking a program’s restart-robustness
w.r.t. some specification, they do not aid the developing engineer in actually
designing programs that are restart-robust, or upgrading existing modules to
enable restarts-robustness by choosing appropriate retain variables. Therefore,
this section examines how the presented reductions can be modified, s.t. existing
tooling can also be used to synthesise configurations of retain variables that
make the program restart-robust w.r.t. a property of interest.

To enable the examination of different configurations of retain variables, the
configuration itself must become a parameter of the model. To this end, we add
Boolean constants to the model, one for each non-retain variable, which encode
whether the corresponding variable is to be retained. The constants’ values are
nondeterministically chosen at the start of the program and used to parametrise
the reinitialisation semantics. Furthermore, they are used to guard the restarts
that depend on whether a particular variable is retained, e.g. in the case of
immediate write semantics.

Definition 6 (Parametrisation of Retains). Given the result of a delayed or
immediate write instrumentation P = (X,Xin, (L�Linit, E�Einit�Erestart), lEoC,
lEoC, def ) and the used retain variables Xret ⊆ X, its parametrisation of retains
yields a program

Ppar = (X � Xpar,Xin, (L � Linit, E � EparInit � Erestart � EparRestart), lEoC, lEoC, def )
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Fig. 5. Immediate write instrumenta-
tion with dependence on retain config-
uration

Fig. 6. SMV-based synthesis requires
choice of retain variables to be part of the
model

where the non-retain variables are still denoted by x1, . . . , xn = X \ Xret, and

– Xpar := {retx | x ∈ X \ Xret} are new Boolean variables that parametrise
which of the currently non-retained variables to treat as retained,

– EparInit :=

{
(lx1 , x1 := retx1?x1 : def (x1), lx2), . . . ,
(lxn

, xn := retxn
?xn : def (xn), lEoC)

}

are the parametrised reinitialising assignments, using ternary if expressions,

– EparRestart :=

{
∅ delayed write

{(l′, retx, lx1) | (l, x := e, l′) ∈ E, x ∈ X \ Xret} otherwise

models a restart after every write to a variable that can be parametrised to be
retained in the case of immediate write semantics.

Figure 5 illustrates the result of parametrising the retain configuration,
applied to an immediate write instrumentation of our example program. In
comparison to Fig. 4, every static reinitialisation of a non-retain variable x has
been replaced with an expression dependent on a parameter retx, and additional
guarded edges that lead to the resetting have been added after assignments to
potential retain variables. Note that for the sake of readability, the visualisa-
tion of the reinitialisation sequence is simplified in that both assignments are
presented as a sequence on a single edge, instead of featuring the intermediate
location lb as in previous figures.

However, analysing a parametrised program with the techniques from Sect. 3
will not result in checking whether a restart-robust retain configuration exists,
but whether all possible retain configurations (of not yet retained variables) are
restart-robust.
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Existential Quantification. To determine whether a retain configuration
exists that makes the program restart-robust w.r.t. a property of interest, we
illustrate how the introduced parameters can be existentially quantified in the
context of both the CHC and SMV formalism.

Since the variables in CHCs are implicitly universally quantified, the syn-
thesis problem requires us to move on to the more complex case of exist-forall
quantified CHCs. Expressing parameter synthesis in this class of Horn clauses
is straightforward. We keep the actual clauses as illustrated in Sect. 3.3, but
replace the quantification ∀V by ∃Xpar∀V \ Xpar. The resulting constrains are
satisfiable if interpretations for both the parameters x ∈ Xpar and utilised pred-
icates p ∈ P exist, s.t. the clauses are satisfied for all values of the remaining
variables V \ Xpar. The downside is that a solver will not be able to use its
efficient procedures tailored to solving universally quantified Horn clauses, but
resort to general techniques for satisfiability modulo theories (SMT) [25].

While the SMV formalism itself does not support quantification, a CTL spec-
ification may reason about the existence of a path. In combination with another
modification of the CFA, the existence of a certain retain configuration can be
reduced to the existence of a path. Intuitively, we prepend a nondeterministic
choice of a retain configuration to the original program entry lEoC, and question
the existence of a path through this choice s.t. from lEoC on the program exhibits
restart-robust behaviour.

Definition 7 (Integration of Parameter Choice). Given a delayed or
immediate write instrumented and parametrised program P = (X � Xpar,Xin, )
(L,E), lEoC, lEoC, def , the integration of parameter choice yields a program

Pc = (X � Xpar,Xin, (L � Lc, E � Ec), lEoC, lx1 , def )

where the parameters are denoted by x1, . . . , xn = Xpar, and

– Lc := {lx | x ∈ Xpar} are new program locations in between which the choice
of retain variables occurs – one for each parameter,

– Ec := {(lx1 , x1 :=?, lx2), . . . , (lxn
, xn :=?, lEoC)} are the actual nondetermin-

istic choices for every parameter.

Figure 6 illustrates the result of integrating parameter choice into our running
example, assuming immediate write semantics. Note that, as in Fig. 5, we use
sequences of assignments instead of putting them on separate edges to avoid clut-
ter. This time, similar to the reinitialising assignments, we prepend a sequence
of havoc-instructions that realise the nondeterministic choice of a retain configu-
ration, before the actual program semantics are considered. To check whether a
retain configuration exists s.t. the program is restart-robust w.r.t. the invariant
ϕ(X), it suffices to formalise the program in the usual way (cf. Sect. 3.2) and
check whether the CTL specification EX EX(pc = lEoC → ϕ(X)) holds.

With the illustrated approach, the CTL formula will always need as many
EX as parameters are present, to quantify over the prepended path up to lEoC.
Note that in practice, this sequence of choices will usually be characterised as a
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single composite choice, and a single EX will suffice. Unfortunately, as with the
CHC-based modelling, switching to CTL will result in more general procedures
being used by a verifier.

5 Counterexample-Guided Synthesis of Safe Retain
Configurations

Due to the need for existential quantification in parameter synthesis, a reduction
to the previous formalisms will result in significantly more complex decision
procedures being used. However, our use of existential quantification is very
specific in that we only quantify over Boolean variables and their values also
stay constant throughout the possible executions. Therefore it seems natural to
manage the choice of parameters oneself, and reuse the efficient procedures for
reasoning about restart-robustness for fixed parameters.

Counterexample-guided abstraction refinement (CEGAR) [15] is a general
framework for computing an over-approximation, by finding counterexamples
that reveal issues with the current approximation and improving it w.r.t. them
iteratively. Similar to [13], we use this scheme to over-approximate the suppos-
edly “safe” choices for parameters and refine them iteratively, until all that
remains is a characterisation of choices that are guaranteed to exhibit only
restart-robust behaviour.

In Sect. 4.1 we have seen that the universally quantified CHCs of our
parametrised program check whether all parameter choices lead to restart-robust
behaviour. If we had a guess at a characterisation safe(Xpar) of safe choices, the
same machinery could be used to prove that all these choices indeed result in
restart-robustness, by checking whether our CHCs are satisfiable in the context
of the following query

ϕ(X) ← pEoC(X � Xpar), safe(Xpar). (7)

If no satisfying interpretation of predicates exists, safe is a wrong guess and
the CHC solver will provide a counterexample that describes a run through the
CFA to an end-of-cycle location where ϕ is violated, and in particular yield the
concrete Boolean parameters that led to this. For the next iteration, one would
improve safe by excluding the apparently bad choice from it.

Algorithm 1 shows the pseudocode of our procedure that follows this intu-
ition. To begin with, the already instrumented and parametrised program P is
characterised in terms of both universally quantified CHCs and a symbolic tran-
sition system, as presented in Sects. 3.3 and 3.2 respectively. Remember that in
the symbolic transition system the program counter is part of the variables, and
its V = {pc} ∪ X � Xpar should not to be mistaken for the V = X � Xpar used
in the CHCs.

The main loop, starting in line 4, implements the refinement procedure
described above. If no counterexample is found, safe already characterises
the retain configurations that lead to restart-robust behaviour. Note that the
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Algorithm 1. SynthRetainConf(P,ϕ)
Input : Program P = (X � Xpar,Xin, A, lEoC, lEoC, def ) with prametrised retains

Predicate ϕ(X) characterising safe states
Variables: Predicate safe(Xpar) charactering parameters that do not lead to violations

Universally quantified Horn clauses H
1 H ← toHorn(P ) // Represent program as ∀CHCs

2 (V, I, T ) ← toSymTS(P ) // and as symbolic transition system

3 safe(Xpar) ← true // All parameters are assumed to be safe

4 while ¬sat (H ∪ {ϕ(X) ← pEoC(X � Xpar), safe(Xpar)}) do // ∃ violating run?
5 k ← length of violating run
6 cpar ← cube of chosen (Boolean) parameter values in violating run
7 foreach lit in cpar do

8 c̄par ← cpar with negated lit // Flip literal

9 if sat (I(V) ∧ ∧
0≤i<k T (Vi,Vi+1) ∧ c̄par ∧ ¬ϕ(Xk)) then // Still violating?

10 cpar ← cpar \ lit // Drop literal

11 safe(Xpar) ← safe(Xpar) ∧ ¬cpar // Block unsafe parameters

12 return safe(Xpar) // (Potentially empty) region of safe parameters

returned predicate will characterise an empty set if no such configuration exists.
However if a counterexample exists, we determine its length and the chosen retain
configuration, as a conjunction of literals, to prevent the same choice being taken
in future iterations (cf. line 11).

To avoid enumerating every single counterexample, CEGAR schemes usually
generalise the found counterexample, s.t. a set of counterexamples that violate
the specification for the same reason can be excluded at once. Unlike in the
general setting of parameter synthesis [13], we do not need special quantifier
elimination procedures for the theories that the other variables are represented
in, but can adapt generalisation strategies for Boolean cubes.

Similar to the directed but expensive approach of explicitly trying to remove
the literals one by one [17], the loop starting in line 7 iterates over every lit-
eral once and probes whether it affects the reachability of a violation. To this
end, knowing the length of the counterexample, we construct a bounded model
checking (BMC) [6] instance that characterises the possible executions up to a
violation at this length (cf. line 9). To allow for the variables’ values to change
between different steps, the BMC query uses several instances Vi of the vari-
ables, and V0 simply denotes V.

Every literal from the cube cpar, that characterises the unsafe choice, is then
iteratively flipped to determine its impact on the violation. If flipping a literal
still leads to a violation, the literal is irrelevant and removed from the cube
during iteration (cf. line 10). Note that we use set operations on cubes, like set
difference or the subset relation, to denote the operations on the cubes’ sets of
literals.

Theorem 1 (Generalisation is Sound). The proposed generalisation proce-
dure always yields a cube cg ⊆ cpar that characterises only unsafe choices.
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Proof. Since the procedure only removes literals from cpar to acquire the result-
ing cube, the relation cg ⊆ cpar holds by construction. It remains to prove that
cg contains unsafe choices only, i.e. for all choices characterised by cg, a violating
run of length k exists:

∀
Xpar

cg(Xpar) → ∃
V\Xpar,V1,...,Vk

I(V) ∧
∧

0≤i<k

T (Vi,Vi+1) ∧ ¬ϕ(Xk). (8)

Base case: The cpar that the generalisation is entered with, characterises a single
choice that can lead to a violation, so for cg = cpar formula (8) holds trivially.

Inductive step: Let the formula hold for some cg. Flipping a literal lit in cg

yields c̄g, and two outcomes for the BMC query with c̄g have to be considered:
– If the query is satisfiable, a violation is reachable even with ¬lit instead

of lit . Since both cg and c̄g apparently characterise unsafe choices, the
formula still holds for their disjunction cg ∨ c̄g, which simplifies to the
cg \ lit that we keep.

– If the query is unsatisfiable, c̄g is a safe configuration and cg, for which
the formula is known to hold, will not be modified.

In fact, this approach is an anytime algorithm, since no matter in which order
the literals are probed, the formula always stays valid and generalisation can be
stopped at any time.

While a single iteration over all literals is not guaranteed to yield the most
general form, it already has a significant impact and is cheaper than repeating
the procedure until a fixed-point is reached.

6 Experiments

Implementation Details. We implemented Java-prototypes of both the
reduction-based and counterexample-guided approach, using the publicly avail-
able SMT solver Z3 [29] and the Arcade.PLC platform for analysis of PLC soft-
ware [5]. Unlike the presented characterisation of single instructions, we imple-
ment the common approach of encoding the whole execution cycle as one step
[3,8], which is required for efficient reasoning [4].

We use nuXmv [12] and Z3 as off-the-shelf verifiers for the SMV and CHC
formalisms that we reduce the verification tasks to. Although the analysed pro-
grams do not feature complex operations on bitvectors, and could as well have
been modelled with unbounded integers, we characterise the semantics through
the theory of fixed-size bitvectors since nuXmv does not support CTL checking
over infinite domains, and to the best of our knowledge, no other SMV-based
verifier does either.

Due to a bug in the latest version (4.6.0) of Z3 which causes segmentation-
faults on retrieval of certain counterexamples, the prototype of our guided app-
roach is linked with an older version (4.5.0) which does not feature CHC-solving
with Spacer [23] yet but uses the usually slower Property Directed Reachability
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(PDR) [21] instead. Since our approach is agnostic about the employed CHC
solving procedure, the switch amounted to changing a single parameter.

Furthermore, we do not construct the BMC instance in Algorithm1 anew in
every iteration, but reuse the same one in an incremental fashion and realise the
probing for violations by solving under assumptions [18].

Benchmarks. The PLCopen is an organisation which drives standardisation
and technical specifications in automation. The PLCopen Safety library is a
collection of such specified modules for domain-specific problems, e.g. how to
realise a safe emergency shutdown. We experimented with two groups of PLC
programs from this library, whose sizes range from 117 to 1450 program locations
per cycle. Programs from [31] are elementary modules, each one implementing a
particular safety concept, while [32] features user examples which combine these
to form more complex applications.

The considered specifications are invariants that have been used in other
case studies [8] and were either formulated by the PLCopen or derived from
their technical specifications – the concept is applicable to all specifications that
can be reduced to reachability checking though. The benchmark encompasses 56
specifications, 37 of which concern the elementary modules, while the remaining
19 refer to the composite applications.

These programs were not designed with restarts in mind, so we investigate
whether they happen to nevertheless be restart-robust w.r.t. the specifications,
and whether safe retain configurations exist at all. Since the elementary modules
exhibit state-machine semantics, featuring a DiagCode variable that tracks the
current mode of operation, we declare it to be a retain variable beforehand –
similar to fs in our running example.

Since the encoding of an execution cycle as a single step is negligibly fast and
needs to be performed only once for each program, independent of the checked
specification or chosen backend-verifier, we only compare the CPU time spent
by the verifiers to allow for a direct comparison of the techniques.

All experiments were performed on a 64 bit Linux machine with 3.5 GHz,
8 GB of RAM and a timeout of 1800 s. They can be reproduced with the artefacts
available on our website1. Note that for clarity, this package also features analysis
results of the running example, and the actual CFAs and their encodings.

Results of Restart-Robustness Checking. In the following, we discuss the
measurements for our experiments on verifying restart-robustness w.r.t. a given
specification, using the formalisation presented in Sect. 4. To this end, we mea-
sure the time it takes to check a specification on the original program, treating
retain variables like regular ones, and the time spent on delayed and immediate
write instrumented variants of the program. Overall this results in 168 verifica-
tion tasks.

1 https://arcade.embedded.rwth-aachen.de/ifm18 restart.tar.gz.

https://arcade.embedded.rwth-aachen.de/ifm18_restart.tar.gz
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Fig. 7. Time [s] spent on checking restart-robustness w.r.t. each specification and
semantics (Color figure online)

Figure 7 compares the runtime of the state-of-the-art tools nuXmv and Z3 on
these tasks, with the underlying verification procedures IC3 [11] and Spacer, for
the SMV and CHC formalism respectively. The colouring of the marks encodes
which restart semantics were considered, while their shape indicates whether the
analysed program was elementary or composite.

In our experiments both backends managed to perform all verification tasks
in the given time. At a first glance, what strikes the eye, is that nuXmv was
about an order of magnitude faster than Z3 on many of the composite examples,
while the elementary modules were mostly analysed in less than a second by both
tools. However, since this does not apply to all verification tasks for composite
modules, compositionality does seem not to be the relevant point here. On closer
inspection, we found that in all of the cases where Z3 performed worse, no
satisfying interpretation of the CHCs existed. While this is hardly noticeable
for the easier tasks, it becomes more apparent in the more complex cases. This
might be attributed to nuXmv being more tuned for reasoning over bitvectors,
thus quicker to identify unsatisfiable instances, or Spacer not being able to play
it’s strengths given the non-compositional encoding of program semantics [9,22].

According to the distribution of colours in Fig. 7, the additional considera-
tion of different variants of restart semantics does not seem to have a significant
impact on the verification times. The approximate clustering into tasks on ele-
mentary and composite programs suggests, that the complexity of the examined
program is still the deciding feature. Taken as a whole, the results show that this
approach to modelling and verification of restart-robustness w.r.t. some invariant
is indeed reasonably fast and feasible.

Results of Synthesis. In this section, we discuss the measurements for our
experiments on synthesis of retain configurations that realise restart-robust
behaviour w.r.t. a given specification. Since synthesis without retain variables
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Fig. 8. Time [s] spent on synthesis of restart-robust configuration for each spec and
semantics (Color figure online)

does not make sense, we consider the specifications only in the context of delayed
or immediate write instrumented and parametrised programs, as seen in Sect. 4.1.

The plots in Fig. 8 illustrate our measurements of the time the verifiers spent
on each of the 112 verification tasks, reusing the notation from Fig. 7. To begin
with, we focus on the left one, that again compares the runtime of nuXmv and
Z3, which now resort to more general decision procedures, i.e. BDD-based CTL
checking [27] and a variation of model-based quantifier instantiation (MBQI)
[19,33] respectively.

Unfortunately, purely BDD-based verification does not scale well for these
programs [8], causing nuXmv to run out of memory for 66 verification tasks.
In the plot these cases are visualised as timeouts too, i.e. the runtime is set
to 1800 s even though the running out of memory occurred earlier. While all
synthesis tasks for the composite programs ran out of memory, 27 tasks for
the elementary programs caused proper timeouts. Only 19 tasks, all of which
targeted elementary modules, could be performed within the resource limits.

Z3 turned out to be significantly more useful for parameter synthesis, timing
out only 47 times, and never running out of memory. In contrast to nuXmv,
it even manages to determine whether safe retain configurations exist for 14
specifications for the composite programs, and only times out in 11 cases for
the elementary ones. We can also observe that, in contrast to plain checking
of restart-robustness w.r.t. some property, the type of instrumentation has an
impact on the time needed for parameter synthesis. For example, looking at the
fastest runs of Z3 we find only yellow triangles, that is tasks on delayed write
instrumented elementary modules, ranging from 3 to about 30 s. The correspond-
ing cluster of red triangles, for the immediate write instrumented variants, ranges
from about 20 to 150 s.

Nevertheless these results suggest, that the established verification pipelines
for checking reachability properties are not practical for parameter synthesis.
This observation originally motivated us to devise our own procedure.
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Let us now consider the right plot of Fig. 8, which compares the counter-
example-guided technique from Sect. 5 with Z3’s approach. It is easy to see that
our guided approach performs significantly better – often even by more than an
order of magnitude. Although it still times out for two of the specifications that
refer to the biggest program in our benchmark, the remaining 110 synthesis tasks
finished in time. Furthermore, the fact that immediate write instrumented pro-
grams yield more complex synthesis problems, does not seem to have a noticeable
impact on the runtime. In particular, the clustering of delayed and immediate
write instrumented elementary modules that is visible in the x-coordinates, is
not apparent in the y-coordinates.

Looking at the plot one might also notice the clustering of data points right
above the 2 s mark for our approach. This is due to the fact that we measure the
runtime of a verifier from start to finish, i.e. not just the verification procedure,
and since our procedure builds upon Arcade.PLC, the first few seconds of
every run are spent on the JVM starting, the PLC program being compiled, and
the execution cycle being characterised as a single step.

It is interesting to see that although Z3’s approach was worse overall, it
managed to analyse one of the cases where our technique timed out. In the end,
only one verification task remains unsolved by all approaches.

7 Conclusion

While retain variables were introduced with better safety in mind, they allow for
subtle corner cases and unexpected behaviour that only occurs after program
restart. We are the first to formalise a logic controller’s restart behaviour in
the context of delayed or immediate write semantics for retain variables, and
approach verification of a program’s restart-robustness w.r.t. a specification.

To aid in the design of restart-robust software, we illustrated how synthesis
of safe retain configurations can be reduced to verification conditions for existing
tooling. We also proposed a counterexample-guided procedure which incremen-
tally approximates a region of safe retain configurations, by exploiting the fact
that the actual parameters of the formalisation are Boolean, independent of
the retain variables’ types. Our experimental results show that the verification
conditions for restart-robustness can be solved by established tooling in rea-
sonable time. However, synthesis was only feasible when approached with the
counterexample-guided technique.

Future Work. There are several ways in which we want to deepen this line
of research. On the one hand we want to examine the feasibility of obvious
optimisations, like employing an encoding that allows for compositional reason-
ing [9,22] or looking into more sophisticated generalisation schemes. This alone
might suffice to eliminate the last two timeouts in our benchmark.
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On the other hand, we plan on investigating whether a definition of restart-
robustness as a relational property between the nominal and restart-augmented
behaviour is practical, i.e. given no specification but the program’s nominal
behaviour, to what extent may the restart-augmented behaviour deviate from it
to still be considered robust?
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