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Abstract. Writing a formal model is a complicated and time-consuming
task. Usually, one successively refines a model with the help of proof,
animation and model checking. In case an error such as an invariant
violation is found, the model has to be adapted. However, finding the
appropriate set of changes is often non-trivial.

We propose to partially automate the process by combining synthesis
with explicit model checking and implement it in the context of the
B method: Guided by examples of positive and negative behavior, we
strengthen preconditions of operations or relax invariants of the model
appropriately. Moreover, by collecting initial examples from the user, we
synthesize new operations from scratch or adapt existing ones. All this is
done using user feedback, yielding an interactive assistant. In this paper,
we present the foundations of this technique, its implementation using
constraint solving for B, and illustrate the technique by synthesizing the
formal model of a process scheduler.

1 Introduction

Writing and adapting formal models is a non-trivial task, difficult for beginners
and time-consuming even for trained developers. Often, one iterates between
changing a model and proof or model checking. Once an error has been detected,
the model has to be adapted.

The premise of this paper is that, to some extent, this correction phase can be
automated, using negative and positive examples provided by a model checker or
by the user. For example, we can synthesize corrected preconditions or invariants
in order to repair invariant violations. If deciding to allow an invariant violating
state, we know that we need to synthesize relaxed invariants using the given
I/O examples. Otherwise, the precondition of the affected operation needs to be
strengthened to exclude the state from the model. Moreover, deadlocks can be
repaired either by generating a new operation or strengthening the precondition
of an existing operation.

When model checking has been exhaustive without finding any invariant
violation or deadlock state, we are able to extend the model by synthesizing new
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transitions based on state pairs for input and output. In case the machine already
contains an operation providing the desired behavior, we relax its precondition or
the invariants if necessary. Otherwise, a completely new operation is synthesized.

The tool mainly aims at providing better access to formal methods for begin-
ners. By allowing to define behavior by means of I/O examples the user might
be able to learn from the synthesized code. Moreover, if finding an invariant
violation or a deadlock state, an automated repair eases the workflow for any
user.

In this paper, we present this technique in the context of the B formal method
based on our previous publication [32]. In particular, the extensions include:

– extended interactive workflow for the repair of deadlocks and the adaption of
existing operations or machine invariants (Sect. 3)

– thorough presentation of the technique, along with support for if-statements
and operation parameters (Sect. 4)

– performance improvements due to dynamic expansion of the search space,
parallelization, randomized search and symmetry reduction (Sect. 5)

– graphical user interface (Sect. 6)
– performance evaluation (Sect. 8).

2 A Primer on the B-Method

The formal specification language B [1] follows the correct-by-construction app-
roach and is based on first-order-logic and set theory. A formal model in B
consists of a collection of machines starting from an abstract specification and
successively refining the behavior. The development in B is thus incremental,
which increases the maintainability and eases the specification of complex mod-
els. In this paper, we always refer to B formal models. The synthesis workflow
is applied to a single B machine. A machine consists of variable and type defini-
tions as well as possible initial states. A state is defined by the current evaluation
of the machine variables. By defining machine operations, one is able to specify
transitions between states. A machine operation has a unique name and consists
of B substitutions (aka statements) defining the machine state after its execu-
tion, i.e., the values of a set of machine variables are assigned. An operation
can have a precondition, allowing or prohibiting execution based on the current
state. For instance, a valid machine operation o is defined by o = PRE x>0 THEN
x:=x+1 END using the single assignment substitution of B. Several variables can
be assigned either in parallel or in sequence. A state s is called a deadlock if it has
no successors, i.e., no operation is enabled. To ensure certain behavior, the user
can define machine invariants, i.e., safety properties that have to hold in every
reachable state. Hence, the correctness of a formal model refers to the specified
properties. In addition to the types explicitly provided by the B language like
INTEGER or BOOL, one can provide user-defined sets. These sets can be defined
by a finite enumeration of distinct elements (the set is then referred to as an
enumerated set) or left open (called deferred sets). For instance, by defining a
set S = {s1} the element s1 is of type S and can be accessed by name within
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Fig. 1. Interactive workflow to repair and generate formal models using synthesis

the machine. Deferred sets are assumed to be non-empty during proof and also
finite for animation.

Using Atelier B [12] or ProB [24–26] one can verify a B model and analyze
its state space. In particular, ProB allows the user to animate formal models,
providing a model checker and constraint solver. ProB’s kernel [24] is imple-
mented in SICStus Prolog [7] using the CLP(FD) finite domain library [8]. Alter-
natively, a constraint solver based on Kodkod [33] is available [31]. Furthermore,
an integration with the SMT solver Z3 [28] can be used to solve constraints [22].

Below, we will focus on classical B [1] for software development, but our
approach also works for Event-B and could be extended to other languages
supported by ProB such as TLA+ [23].

3 Interactive Workflow

The process as outlined in Fig. 1 is guided and enforced by ProB. The workflow
itself is quite mature and has been fully implemented within the system. Repair is
performed successively, that means, we loop until no error can be found anymore
and the user is satisfied with the model. Each step starts with explicit model
checking performed by ProB. To that effect, the user at least needs to provide
a B machine defining variables and an initial state. The dotted nodes mark
the parts of the workflow where synthesis is applied. There are three possible
outcomes.

First, an invariant violation might be found. We then identify the machine
variables that violate the invariants and reduce the examples obtained by the
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model checker if possible. The user then can decide to disable the last transition,
leading from a state satisfying the invariants to one violating it, by synthesizing a
stronger precondition. Alternatively, the system can generate weaker invariants,
allowing the violating state.

As a second outcome, the model checker may have uncovered a deadlock
state s. The user can then decide between two options:

– Remove s by strengthening the precondition of the involved operation
– Keep s by synthesizing a new operation or adapting an existing one enabling

to transition from s to another state s’.

Third, the model has been checked and no error was found, that means,
model checking was exhaustive or a timeout occurred. We then query the user if
state transitions are missing. In case any operation is able to reach the missing
states but its precondition is too restrictive, we synthesize a relaxed precondition
covering the new state transitions. Otherwise, we synthesize a completely new
operation. In general, we need to verify generated programs using the model
checker by restarting the workflow. There is no fixed order that determines if an
invariant violation or a deadlock state is found first. This depends on the state
space and the order of its traversal.

Besides generating an operation from scratch, the user is able to modify an
existing operation. The tool initially provides some sample transitions cover-
ing the behavior of an operation. This results in providing positive transitions
describing the behavior of the operation’s substitution. In case the operation
provides a precondition, negative transitions are presented describing the behav-
ior of the precondition. The user is then able to provide new transitions either
strengthening or relaxing the precondition. Additionally, positive transitions can
be provided to modify the substitution of the operation. The machine invariants
can be modified in the same manner.

4 Synthesis Technique

The task of (semi-)automatically generating executable programs from a given
specification is called program synthesis. There are different approaches in spec-
ifying the behavior of a program, for instance, in the form of pre- and postcondi-
tions or partial implementations. Jha et al. [19] presented a synthesis technique
that uses explicit I/O examples of positive and negative behavior to synthesize
loop-free programs that are correct for a set of examples.

In order to restrict the search space, the approach resorts to a library of
program components D, each defined in a single static assignment represented
by a formula output = f(inputs). For example, for an addition instruction, a
constraint would ensure that o1 = i1 + i2 holds. Each component is unique
and located in a single line of the program. Each line is characterized by its own
output variable. The program inputs are also represented as program lines, char-
acterized by their own variable and located in the first lines of the program. The
program outputs are located in the last lines of the program overlapping with
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Fig. 2. An example for a possible location mapping between components

components, i.e., the program outputs are defined by compositions of compo-
nents. In a synthesized program each component is assigned to a unique program
line. Given N program inputs, the generated program thus has M = |D| + N
lines of code. Each component is used in the generated program but does not
necessarily has to participate in the output, i.e., we might generate dead code
which is ignored when translating the synthesized program.

Input and output variables are connected using location variables referring
to other components. An output location lok , k ∈ N, describes the program line
a component is defined in, while an input location lik can be interpreted as the
line of the program defining its value. Given a set of I/O examples E, synthesis
searches for a mapping of locations L between inputs and outputs of components.
Afterwards, the locations participating in the output of the synthesized program
can be collected and translated to a corresponding abstract syntax tree.

For instance, we search for a program with one input and one output, consid-
ering three components describing addition, subtraction, and an integer constant.
The set of I/O examples E consists of several examples describing an incremen-
tation of an integer by one. A possible solution is illustrated in Fig. 2, where the
solver enumerated the constant c to the value of 1. The single line arrows rep-
resent the mapping of the location variables (a solution for L) that participate
in the output of the program. Since line one of the program does not partic-
ipate in the output, the subtraction component is dead code which is ignored
when translating the program. In case a program has several outputs, we collect
the partial programs from the last lines of the synthesized solution representing
the program outputs. Afterwards, the partial programs are combined using the
parallel execution substitution of B.

We adapted this technique to synthesize B expressions and predicates using
ProB [25,26] as a constraint solver [21]. In order to synthesize B expressions, we
use explicit state transitions transforming input to output values and preserving
their types. In case of predicates, we replace output states by the evaluation of
the desired predicate using the corresponding input states. In this context, an
I/O example thus assigns an input state to output either true or false.

Initially, we are given a set of I/O examples by the user describing the com-
plete desired behavior as well as a list of library components D to be considered
during synthesis, which is either prepared automatically or provided by the user.
In B, the I/O examples are states of the current machine, i.e., values of machine
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variables. The authors refer to P and R as the set of input and output variables
of the used library components. Let Ii ⊆ P be the set of input variables of a
specific component with the output Oi ∈ R, 1 ≤ i ≤ N . We assume that we
derive the formula of the i-th library component using Φi(Ii, Oi). The library is
then encoded by the following constraint:

Φlib(P,R) :=
N∧

i=1

Φi(Ii, Oi)

For instance, having two components addition and subtraction the library is
encoded by (o1 = i1 + i2) ∧ (o2 = i3 − i4).

Let EI be the set of input values and EO the set of output values of a specific
I/O example. Let L be the set of integer valued location variables of inputs
and outputs of components d ∈ D. Moreover, L contains locations referring to
program parameters, that means, inputs of the overall program. A constraint
Ψwfp(L,P,R,EI , EO) defines the control flow of the program to be synthesized
and ensures well-formedness. This constraint consists of several parts.

For consistency, output locations are made unique by asserting inequalities
between each two locations in R, which is encoded by a constraint Ψcons(L,R).
Component input parameters have to be defined before they are used to prevent
cyclic references, which is encoded by

Ψacyc(L,P,R) :=
N∧

i=1

∧

Ii⊆P,x∈Ii,y∈R,y≡Oi

(lx < ly). (1)

Otherwise, a cyclic expression like 1 + (1 + (. . . )) would be part of the search
space where the location of the right input parameter maps to the addition
component itself.

The approach defines program input parameters to be located in the first
lines and component outputs in the ensuing lines of a program. To that effect,
all components are able to access the program input parameters with respect to
the acyclic constraint defined in Eq. (1). Program output parameters are defined
in the last lines of the program in order to be able to access all components
if necessary. To reduce the overhead, we additionally set each program output
parameter to a fixed position by enumerating their positions to one of the last
lines, which is achieved by a constraint ΦO(EO). The complete well-definedness
constraint is then encoded by

Ψwfp(L,P,R,EI , EO) :=
∧

x∈EI

(0 ≤ lx < |EI |) ∧
∧

x∈P

(0 ≤ lx < M)

∧
∧

x∈R

(|EI | ≤ lx < M) ∧ Ψcons(L,R) ∧ Ψacyc(L,P,R) ∧ ΦO(EO).

We furthermore extend the well-definedness constraint Ψwfp to ensure well-
defined programs according to B. For example, sequences have to be indexed
from 1 to n where n is the cardinality of the sequence.
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Component inputs can either refer to a program input parameter or another
component’s output. By setting up constraints for each location, the authors
define valid connections between program parameters and components as well as
in between components. This includes ensuring type compatibility, that means,
only defining connections between locations referring to the same type. We
explicitly add constraints preventing connections between differently typed loca-
tions to support the ProB constraint solver in finding a solution for the mapping
of location variables L. Let L = L1, .., Ln, n > 0, be a partition of the set of
location variables divided by the types they refer to. We then assert:

Ψconn(L) := ∀L1∈L(
∧

lx,ly∈L1

lx = ly ⇒ x = y) ∧ ∀L1,L2∈L∧L1 �=L2
(

∧

lx∈L1,ly∈L2

lx �= ly)

By combining these constraints, the behavior for a single example with a set
of inputs EI and outputs EO is encoded by

Φfunc(L,EI , EO) := ∃P,R : Ψwfp(L,P,R,EI , EO) ∧ Φlib(P,R) ∧ Ψconn(L).

The overall behavior for a set of examples E containing tuples of input and
output is then defined by asserting Φfunc(L,EI , EO) for each single example,
which is referred to as the behavioral constraint:

Behave(E)L :=
∧

(EI ,EO)∈E

Φfunc(L,EI , EO) (2)

When solving the behavioral constraint, we derive an explicit solution for the
integer valued location variables in L describing a candidate program satisfying
the provided behavior. Afterwards, another semantically different solution L̂ is
searched by excluding the solution for the location variables L from the behav-
ioral constraint defined in Eq. (2). Of course, we could also use the first solution
as is without a further search. However, the user may forget edge cases when
providing the set of I/O examples resulting in an ambiguous behavior. We thus
want to guide the user to the desired solution as much as possible.

When finding another solution L̂, the user chooses among the solutions based
on a distinguishing example. That is, a program input where the output of both
programs differs, which can be described by

∃EI , EO, ĒO : Behave(E)L ∧ Behave(E)L̂ ∧ Φfunc(L,EI , EO)

∧Φfunc(L̂, EI , ĒO) ∧ EO �= ĒO.
(3)

If no distinguishing example can be found, we assume both programs to be equiv-
alent and choose the smaller one. The system iterates through further solutions
in the same fashion. Continuous search for distinguishing inputs provides addi-
tional I/O examples, eventually leading to a semantically unique solution. Once
found, the synthesized program is returned. It should be noted that searching
for another solution possibly results in a solver timeout. In practice, the unique-
ness of a synthesized program is therefore only as far as we can decide using the
currently selected solver timeout.
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During the synthesis of an operation, the user is able to change the output
state of a distinguishing example. That means, we do not include an explicit
discovered state transition in the set of examples and maybe find it again after-
wards. To guarantee unique distinguishing transitions we memorize all results
to exclude them from the distinguishing constraint defined in Eq. (3).

When synthesizing explicit if-statement, i.e. using an expression, we have to
mix the generation of expressions and predicates leading to a larger search space
and a worse performance. To that effect, we also provide an implicit representa-
tion of if-statements and implement them as follows: We successively synthesize
new operations for each example of a given set of state transitions if neces-
sary, yielding the desired behavior split into several operations. Each operation
presents a conditioned block of the statement which is semantically equivalent to
explicitly providing if-statements. We start with the first example (EI , EO) ∈ E
and synthesize an operation probably with an appropriate precondition. That
is, we solve the functional constraint Φfunc(L,EI , EO). Afterwards, we decide
according to the next example and the so far synthesized operations:

– A previously synthesized operation’s substitution fits the current example but
the precondition is too restrictive. Hence, we relax the precondition.

– The example can be executed by a synthesized operation. We skip this exam-
ple since there is nothing to do.

– No operation executes the transition. We generate a new operation only using
this example for initialization.

In B, custom types are often accessed via operation parameters. In order to
support parameters when synthesizing an operation we add additional compo-
nents for each custom type. These components are implemented as constants
which values are set locally for each example, that means, for each functional
constraint of the behavioral constraint defined in Eq. (2). When synthesizing a
precondition for an operation that uses parameters, we extend the I/O examples
by adding each operation parameter. That means, we view each parameter as a
machine variable. The behavioral constraint then considers all necessary infor-
mation when generating an appropriate precondition. For instance, assuming
a machine violates an invariant caused by an operation that uses one param-
eter and we want to synthesize a strengthened precondition. Furthermore, the
machine defines one machine variable. We then extend the states obtained by
the model checker by computing the operation parameter for each example and
use these extended examples for synthesis.

The synthesis technique by Jha et al. [19] relies on two oracles. The I/O oracle
is used to define the desired output of the program to be synthesized based on a
given input. We replace it by the user. The validation oracle is used to check if a
synthesized program is correct. To provide it, we apply the synthesized changes
to the model and use the ProB model checker for verification.

Moreover, the technique is specialized on synthesis of loop-free programs.
However, loops are a special case of the B formal method that are not necessary
to be used. A finite loop can be unfolded to several operations providing the
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same semantics. In B, one can mistakenly define an infinite loop which, however,
is detected by ProB and prevented from execution.

5 Performance Considerations

5.1 Concerned Machine Variables

As we have to consider different combinations of program components, the search
space grows exponentially with the number of involved variables. When repairing
an invariant violation, we automatically reduce the examples from the model
checker to those taking part in the violating state. For instance, assuming we
have two machine variables m1,m2. Only the variable m1 is involved in the
violated invariant, while m2 is not. On the one hand, the user can decide to allow
the violating state by synthesizing a relaxed invariant. We then only consider
the variable m1 when modifying the machine and do not change any code that
involves m2. However, the synthesized changes may indirectly affect the behavior
of the variable m2. On the other hand, the user can decide to remove the violating
state from the model by strengthening the precondition of the operation leading
to the violating state. We then additionally consider the machine variables the
operation refers to. For instance, if the current precondition of the operation
refers to m2, we consider both variables during synthesis. If synthesis fails, we
can consider all machine variables as a last resort. As described in Sect. 4 the
validation oracle, i.e. the ProB model checker, verifies the modified machine.
In B, each operation may access all machine variables. In case of generating an
operation from scratch or repairing a deadlock, we cannot draw any conclusions
regarding the variables in use. To counter this, we allow the user to mark machine
variables that are known not to take part for being skipped.

5.2 Component Library Configuration

Given that B is strictly typed, we are able to reduce the component library to a
subset of B. The performance when solving the synthesis constraint itself highly
depends on the library configuration. For example, if we do not need arithmetic
but only logical operators, the unnecessary operators expand the search space
exponentially. To that effect, we consider the types of the variables that are
involved in the given examples and only use corresponding operators. Addition-
ally, we statically provide several library configurations for each type. By default,
we start with a restricted library configuration to search for simple programs at
first, i.e., programs using as few components as possible. In case we do not find a
solution, we successively expand the library and restart synthesis. For example,
for integers we can start with operators like addition and subtraction, while not
considering constants at first. If this configuration is not sufficient we succes-
sively increase the amount of used constants and consider additional operators.
When all library configurations failed and no solution can be found using the
current timeout, synthesis fails. At this stage, the user may choose to increase
the timeout or provide more concise I/O examples.
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Of course, in order to synthesize a complex program we probably need to
expand the library several times. Therefore, we parallelize synthesis for different
library configurations to overcome the loss of performance. In detail, we run
C = |CPU | instances of ProB at the same time, where |CPU | is the amount of
logical cores that are available to the JVM. All instances have loaded the same
model and are always in the same state. When running synthesis, we call the
backend C times using distinct library configurations. We listen to the instances
and decide as follows for each single instance:

– Success: we return the program and cancel synthesis for the other instances
– Failure: we try another library configuration or do not restart this instance

in case there is no library configuration left
– Distinguishing example found: synthesis on this instance is suspended, we

present the example to the user and restart the suspended instance after the
example has been validated.

To prevent enumerating constants to be synthesized without an upper or
lower bound we restrict each constant domain according to the initial examples,
which is automatically encoded in the behavioral constraint defined in Eq. (2).
As a last resort, we widen such domains if no solution can be found.

5.3 Avoiding Redundancy

To reduce the search space, we implement symmetry reduction for adequate
operators. This is done in a preliminary step and directly encoded within the
synthesis constraint. Let D be the set of library components and D̄ ⊆ D the
subset of symmetric components. Assuming n is the amount of input variables
of a specific component d ∈ D, we refer to d(i), i = 1, . . . , n, as the i-th input
of d. L(d(i)) is referred to as the location variable an input d(i) is mapped to
whilst L(d) refers to the output location variable of the component. We encode
symmetry reduction on the level of operands by the following constraint:

∀d ∈ D̄ :
n−1∧

i=1

L(d(i)) < L(d(i + 1))

When considering an addition having two inputs i1 and i2 this results in L(i1) <
L(i2). That is, we consider only o1 = i1 + i2 and avoid o1 = i2 + i1.

Furthermore, we implement symmetry reduction on the level of the same
operators to prevent changing the location of components without changing the
semantics of the program. This is encoded by the following constraint:

∀d, d̄ ∈ D, d ≡ d̄ : L(d) < L(d̄)

For example, using two components +1,+2, each representing an addition, this
results in L(+1) < L(+2), i.e., only x +1 y +2 z can be part of the synthesized
program while x +2 y +1 z can not.
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Besides that, the search of a semantically different program for a synthesized
solution is another performance bottleneck. There can be numerous equivalent
programs to discover, before we are able to determine the uniqueness of a solution
using the current timeout or find a program yielding a different semantics. By
design, a specific component can only have one output within a synthesized
program, and, thus, has to be duplicated if necessary. For instance, a synthesized
program uses an union encoded by o1 = i1∪1 i2. With respect to this component,
synthesis may find a solution mapping a program input parameter p1 and an
enumerated constant to the component inputs, like p1 ∪1 {1, 2, 3}. However, we
may need another union with a different output, for instance, to union p1 with
a program input parameter p2. We then need to use another distinct component
∪2. Given that, the ongoing search possibly results in swapping the inputs of
∪1 and ∪2, i.e., generating p1 ∪2 {1, 2, 3}, but providing the same semantics.
Let Lout(d(i)) be the output location variable that is mapped to the i-th input
location of the component d. Given a solution for L, we prevent swapping the
inputs of the same operators by asserting the following constraint to hold for the
new solution L̂:

∀d, d̄ ∈ D, d ≡ d̄ :
n∧

i=1

Lout(d(i)) �= L̂(d̄(i))

Unfortunately, the preliminary symmetry reduction is not strong enough to
exclude symmetric changes when searching for further solutions. Given the exam-
ple from above, we assert li1 < li2 to hold. This does not prevent the components
p1 and {1, 2, 3} to swap locations when searching for another semantically differ-
ent program, resulting in {1, 2, 3} ∪1 p1 with li1 < li2 being satisfied. Moreover,
we need to prevent symmetric changes between equivalent components. That
means, {1, 2, 3} ∪2 p1 should not be part of the solution. Therefore, we addi-
tionally implement a stronger symmetry reduction when searching for further
solutions. Let D̄sol(L) be the set of symmetric components that have been used
in the solution for L. We assert the following constraints to hold:

∀d ∈ D̄ :
n∧

i=1

(
n∧

j=1

Lout(d(i)) �= L̂(d(j)))

∀d, d̄ ∈ D̄sol(L), d ≡ d̄ :
n∧

i=1

(
n∧

j=1

Lout(d(i)) �= L̂(d̄(j)))

Given a solution for L, the first constraint ensures that no component output
that is mapped to an input of a symmetric component is mapped to any other
input of this component. The second constraint ensures the same behavior but in
between the same symmetric components, which is only necessary if a symmetric
component is included in the component library several times like +1,+2.

Another factor that has proven to speed up search is to increase variance
in synthesized programs and distinguishing examples. To do so, we randomize
enumeration order when solving constraints. Using a linear order often causes
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Fig. 3. Abstract visualization of an invariant violation in the user interface

only small syntactical changes among synthesized solutions resulting in more
equivalent programs to be generated. Moreover, finding dissimilar distinguishing
examples it is less likely to get stuck in some part of the search space where
there is no solution [14].

6 User Interface

The graphical user interface is implemented in Java using the JavaFX framework.
We use the ProB Java API [4]1 providing an interface to the ProB Prolog
kernel to animate and verify formal models and utilize the synthesis backend.
The application can be found on Github2.

When starting the application, the user is able to load a classical B machine.
The UI presents a main view split in two areas defining valid and invalid states
or transitions. States and transitions are represented as nodes that can be resized
and are connected respectively. The workflow starts with explicit model check-
ing as described in Sect. 3. The environment has two different states depending
on the result from the model checker: If the model is erroneous, we display the
invariant violating trace. Initially, we use a shortened version of the trace con-
taining valid and invalid states. Upon user request, we show further successor
and predecessor states. Manually added states are tentative by default and can
be validated using ProB. States from the model checker are immutable but
can be deleted. The final distribution of the nodes determines the type of the
synthesized program as abstracted in Fig. 3. Here, the model checker found an
invariant violation in the state i = 0 which is presented to the user. The states
violating an invariant are assumed to be invalid and thus set to be a negative
example by default. In the presented setting, the precondition of the operation
β will be strengthened to exclude the invariant violating state from the model. If
deciding to allow the state by moving it on the side of valid states, the machine
invariants will be relaxed. Graphically, a node which state violates an invariant
on the side of the pane presenting valid states or vice-versa leads to modify-
ing the invariants. Otherwise, the precondition of the affected operation will be
strengthened. If repairing an invariant violation by strengthening a precondition,
the considered operation is the one leading to the first state of the trace provided
by the model checker that is set to be invalid. During synthesis, distinguishing
states may be presented to the user who is asked to place them according to the
desired behavior.
1 The documentation is available online http://www.prob2.de.
2 https://github.com/joshua27/bsynthesis.

http://www.prob2.de
https://github.com/joshua27/bsynthesis
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Fig. 4. A partial scheduler used as a starting point

In case model checking was exhaustive, the user is able to synthesize a new
operation. An operation is specified by creating transition nodes and placing
them according to the desired behavior. Transition nodes consist of explicit input
and output states referring to the variables that should be considered during
synthesis. Furthermore, it is possible to modify an existing operation or the
machine invariants as described in Sect. 3.

If synthesis succeeds, the generated program is presented to the user who
can approve or discard the changes. On approval, the changes are applied to the
model followed by a complete run of the ProB model checker. The user interface
also presents a list of all B operators that are currently supported by the tool.

7 Example

As an example, we synthesize a B machine managing the states of several pro-
cesses, which we refer to as a scheduler. Since there are no similar approaches
to the semi-automated repair and generation of B formal models we are not
able to compare the results. Instead, this example should illustrate the workflow
described in Sect. 3.

Initially, we have started from the model shown in Fig. 4 defining only the
enumerated set PID containing processes, the three machine variables for the
different states of a process and their types as well as the initialization state. We
have already synthesized four invariants and two machine operations to create a
new process and to delete an existing one from the set of waiting processes. There
is no required order and we could have started by generating other operations.

The workflow starts with explicit model checking. Since no errorneous state
is found, we proceed to synthesize a new machine operation to activate a waiting
task. As a user, we provide six examples which we set to be valid. The machine
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Fig. 5. Operations that have been synthesized each at a time

invariant inv3 specifies that there can only be one activated process at a time.
To that effect, we additionally provide invalid examples for that the operation
should block execution, that is, states where either no process is in the set of
waiting tasks or there already is an activated task. Synthesis of the substitution
using the valid examples succeeds without any further interaction. In contrast
to that, the invalid examples do not describe unique behavior. The generation
of the precondition thus provides three distinguishing examples that we validate
according to the desired behavior. Afterwards, the operation set active shown
in Fig. 5 is returned. The operation set ready has been synthesized in the same
manner.

When running model checking, a violation of the invariant inv1 caused by
the operation new is found, and the user interface presents the trace leading
to the violating state. Moreover, the tool automatically decided that only the
machine variables waiting and ready are involved in this invariant violation.
We are presented four states that are set to be valid since they do not violate
any invariant and one invalid state. We do not change or add any states and
run synthesis. This results to synthesizing a strengthened precondition for the
operation new to remove the invariant violating state from the model. Without
any further interaction synthesis terminates and the predicate p PID /: ready
is added to the precondition of the operation new. Another run of the model
checker is exhaustive. We furthermore synthesized two operations to swap a task
from being active to either waiting or ready as shown in Fig. 5.

8 Performance Evaluation

In the following we will evaluate the synthesis backend regarding its runtime for
several examples. For each program, we provided a complete set of I/O examples
describing unique semantics. Consequently, synthesis terminates without any
interaction with the user. The synthesized programs evali can be found in the
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Table 1. An evaluation of the runtime of the synthesis backend

Program Exact
library (in
seconds)

Used
timeout

Default
library (in
seconds)

Used
timeout

Amount of
examples

no sym. sym. no sym. sym.

eval1 11.180 2.569 2.5 ⊥ 18.370 5.0 4

eval2 6.090 0.830 2.5 ⊥ 57.260 30.0 4

eval3 ⊥ 9.506 2.5 ⊥ ⊥ max 5

eval4 ⊥ 10.670 8.0 ⊥ 11.320 8.0 6

eval5 ⊥ 463.860 240.0 ⊥ ⊥ max 6

inv1 0.750 0.070 0.5 10.445 9.893 0.5 6

inv2 ⊥ 1.630 1.0 433.245 229.340 30.0 8

inv3 0.054 0.050 0.5 1.775 1.560 0.5 5

inv4 0.690 0.170 0.5 4.162 2.460 1.0 7

del 0.236 0.230 0.5 1.254 0.929 0.5 6

new 0.943 0.180 0.5 1.925 1.850 0.5 8

new pre ⊥ 0.046 0.5 ⊥ 2.609 1.0 8

set active 1.485 0.880 0.5 6.173 4.950 1.0 8

set ready 3.433 1.010 0.5 9.928 8.540 1.0 9

active to waiting 2.964 0.590 0.5 7.135 6.910 1.0 11

ready to active 2.792 1.730 1.0 11.459 9.210 1.0 10

Github repository mentioned in Sect. 6. The programs invi refer to the invariants
of the machine defined in Fig. 4. We will use the average time of ten independent
runs using the exact library that needs to be used to synthesize a program and
the default library configuration without parallelization as described in Sect. 5.2.
We used a maximum solver timeout of 10 min indicated by max. ⊥ indicates a
timeout considering the used timeout of a specific benchmark. The used solver
timeout and the amount of examples needed to synthesize a certain program are
listed in Table 1. Furthermore, we investigate the impact of symmetry reduction
suggested in Sect. 5.3. We use the same timeout when synthesizing a program
with and without symmetry reduction. All presented times are measured in
seconds. The benchmarks were run on a system with an Intel Core I7-7700HQ
CPU (2.8 GHz) and 32 GB of RAM.

Amongst other things, the complexity of the synthesis constraint depends on
the amount of considered machine variables. However, this also depends on their
types which directly affect the components to be considered during synthesis.
For instance, if we consider five variables that are all of the same type, it is more
complex to find a unique mapping of location variables since the components
overlap and can be used at several positions. In case of considering the same
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amount of variables but all referring to different types, the possible locations a
component can be mapped to are more restricted leading to better performance.

Besides the amount of considered machine variables, the runtime of the syn-
thesis tool also depends on the selected solver timeout. If a solution is found,
we search for another semantically different program by excluding the previous
solution from the synthesis constraint. On the one hand, this might lead to find-
ing a contradiction. On the other hand, we might need to exhaust the full solver
timeout to conclude that we cannot find another solution with the current set-
tings. We then definitely have a runtime higher than the selected timeout. For
instance, solving the synthesis constraint for the program eval1 using the exact
library that is necessary with symmetry reduction provides a solution after a
few milliseconds. Afterwards, we exhaust the solver timeout when searching for
another semantically different solution leading to the presented runtime.

When evaluating the impact of symmetry reduction as suggested in Sect. 5.3,
one can see that symmetry reduction gains performance for each benchmark.
For instance, synthesizing the program inv1 is around ten times faster using
symmetry reduction. Of course, the impact of symmetry reduction also depends
on the current settings like the library configuration or the solver timeout.

The program eval5 uses two explicit if-statements so that it is necessary to
mix the generation of expressions and predicates. By default, B does not feature
if-statements. However, the extended version of B understood by ProB provides
an if-then-else expression. When synthesizing a program, we use program con-
structs like expressions backwards. That means, given an output, we search for
matching inputs. Of course, ProB is not optimized in doing so for all opera-
tors, especially for extensions like if-statements. However, the native B operators
are handled efficiently by the ProB constraint solver, which can be seen at the
runtimes using the exact library components that are necessary.

When synthesizing the program eval2 or inv2, we have a large difference
between using the exact library and the default library configuration. Of course,
this highly depends on the configured library expansions. In this case, the tool
at first uses several library configurations that are not sufficient, which is either
indicated by finding a contradiction or by exhausting the full solver timeout.
Eventually, a sufficient library configuration is found. However, this configuration
uses several unnecessary components so that a larger timeout needs to be used
leading to the presented runtime. In practice, we parallelize synthesis for different
library configurations as described in Sect. 5 leading to better results.

Finally, the performance mostly depends on the amount of program lines
which is influenced by the amount of considered library components and program
inputs as described in Sect. 4. This can be seen when comparing the runtimes
using the exact library with the default library configuration.

9 Related Work

There are many other approaches to program synthesis which could in theory
be used to synthesize formal models as well. For instance, techniques to create
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divide and conquer algorithms using proof rather than constraint solving [30].
Inductive logic programming [29] is related in the sense that it also starts from
positive and negative examples, but is normally not user-guided and is less based
on constraint solving but on measures such as information gain. Compared to
approaches like [3,9] we synthesize entirely new programs based on input and
output values instead of transforming an existing model.

Beyer et al. [6] present a constraint-based algorithm for the synthesis of
inductive invariants expressed in the combined theory of linear arithmetic and
uninterpreted function symbols. As an input for synthesis, the user specifies a
parameterized form of an invariant. In theory, this approach can also be used
to synthesize B machine invariants. However, in order to partially automate the
development process our workflow is based on explicit model checking providing
traces of machine states. Moreover, we do not demand invariants to be inductive
and also want to synthesize preconditions and complete operations.

Gvero et al. [15] present a tool to synthesize Java code based on a statisti-
cal model derived from existing code repositories. The suggested approach uses
natural language processing techniques to accept free-form text queries from the
user and infer intentioned behavior from partial or defective Java expressions.
The tool learns a probabilistic context-free grammar which is used to generate
code. Finally, the user is offered a set of possible solutions ranked by the most
frequent uses in the training data. In contrast, we intend to find a unique solution
covering exactly the described behavior derived from explicit I/O examples.

In CEGAR [11], spurious counterexamples are used to refine abstractions.
Our synthesis tool is guided by real counterexamples and provides an interactive
debugging aid for model repair. Moreover, we not only rely on the model checker
to find counterexamples but also use ProB as a constraint solver. This leads to
more flexibility in model repair and generation, i.e., we can avoid or allow specific
states and even extend a machine in case model checking has been exhaustive.

Synthesis can also be applied to functional programming. For instance, Feser
et al. [13] present a tool synthesizing functional recursive programs in a λ-
calculus. The suggested synthesis approach resorts to a set of higher-order func-
tions as well as language primitives and constants. The tool specializes on synthe-
sizing data structure transformations from explicit I/O examples. The authors
define a cost model assigning a positive value to program constructs to find
programs with minimal costs using deductive reasoning and a best-first search.

In addition to synthesizing formal models, one can use model checkers and
model finders for program synthesis. For instance, Mota et al. [27] use the model
finder Alloy [18] to synthesize imperative programs. Programs are described in
terms of pre- and post-conditions together with an abstract program sketch
defined in Alloy*. To that effect, this approach for specifying programs is more
concise than using explicit I/O examples resulting in a smaller search space.
While this provides better performance, the user needs more knowledge about
the language specification and the program to be synthesized.
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10 Future Work

While the example performed in Sect. 7 shows that our approach is feasible in
practice, we still have to overcome performance limitations. The B-Method is
quite high-level, featuring constructs like sequences, functions or lambda expres-
sions. Powerset construction and arbitrary nesting is allowed as well, affecting
the performance of the synthesis tool.

We proposed a default library configuration starting with a small library for
each used type and successively considering more components if no solution can
be found. In practice, we are not able to efficiently decide for which type the
library needs to be expanded. Balog et al. [2] have shown that deep learning tech-
niques can be used to predict the components that are necessary to synthesize
a program for a given set of I/O examples, which we also intend to implement
for our tool.

One long-term vision would be to combine our approach to model repair
with generated models. Clark et al. [10] presented an extension to the internal
domain specific language of the ProB Java API which can be used to define
classical imperative algorithms. The tool generates an Event-B model describing
the algorithm, which can then be processed by ProB and the synthesis tool. If
finding an error, we can use our synthesis tool to repair the machine interactively
without the need for the end user to know formal methods.

Of course, one could extend our approach to other formal languages such
as TLA+ [23]. As there is an automatic translation of TLA+ in B [16] and
vice-versa [17], we could directly use our implementation inside ProB.

11 Discussion and Conclusion

When enforcing the interactive workflow, model checking is the bottleneck for
performance. In order to validate a synthesized program, we need a complete run
of the model checker. The performance in discovering a violating state depends
on the chosen search strategy as well as the current state of the machine. In
order to increase performance in validating synthesized programs it is possible
to use distributed model checking [5,20] for models with finite state spaces.

One concern about the suggested approach is that the repeated reparation of
a model using generated code affects its comprehensibility and maintainability.
Of course, the generated code will be biased to the used library configuration.
To counter this, we can use a B simplifier or pretty printer. Moreover, the user
could provide short comments for synthesized changes that are added to the
code. Besides affecting the code, an automated repair of formal models using
synthesis might be considered sceptical since such changes should be made wisely.
Using the suggested approach, a synthesized program always fulfils the provided
behavior without false positives. As described in Sect. 4, we want to guide the
user towards a unique solution as much as possible. However, in practice, we
might miss further solutions with a different semantics when searching for a
distinguishing example due to a solver timeout. Nevertheless, the user will either
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derive a program exactly supporting the described behavior or no solution at all
in case synthesis fails. In general, the user should provide an elaborated set of
I/O examples each describing different semantics of the desired program, and, in
the best case, covering all corner cases that overlap with semantically different
programs. Since B is based on states, the representation of system behavior
using explicit I/O examples seems to be justified. Nevertheless, the evolution of
complex models using synthesis needs to be evaluated in a more detailed way.

Independent from the actually used synthesis technique, we believe that an
interactive modelling assistant like the one we outlined above will have its merits
both for teaching and for professional use.
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