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Abstract. Industrial facilities and critical infrastructures are transform-
ing into “smart” environments that dynamically adapt to external events.
The result is an ecosystem of heterogeneous physical and cyber compo-
nents integrated in cyber-physical systems which are more and more
exposed to cyber-physical attacks, i.e., security breaches in cyberspace
that adversely affect the physical processes at the core of the systems.

We provide a formal compositional metric to estimate the impact of
cyber-physical attacks targeting sensor devices of IoT systems formalised
in a simple extension of Hennessy and Regan’s Timed Process Language.
Our impact metric relies on a discrete-time generalisation of Desharnais
et al.’s weak bisimulation metric for concurrent systems. We show the
adequacy of our definition on two different attacks on a simple surveil-
lance system.
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1 Introduction

The Internet of Things (IoT) is heavily affecting our daily lives in many domains,
ranging from tiny wearable devices to large industrial systems with thousands
of heterogeneous cyber and physical components that interact with each other.

Cyber-Physical Systems (CPSs) are integrations of networking and dis-
tributed computing systems with physical processes, where feedback loops allow
the latter to affect the computations of the former and vice versa. Historically,
CPSs relied on proprietary technologies and were implemented as stand-alone
networks in physically protected locations. However, the growing connectivity
and integration of these systems has triggered a dramatic increase in the number
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of cyber-physical attacks [14], i.e., security breaches in cyberspace that adversely
affect the physical processes, e.g., manipulating sensor readings and, in general,
influencing physical processes to bring the system into a state desired by the
attacker.

Cyber-physical attacks are complex and challenging as they usually cross
the boundary between cyberspace and the physical world, possibly more than
once [11]. Some notorious examples are: (i) the STUXnet worm, which repro-
grammed PLCs of nuclear centrifuges in Iran [6], (ii) the attack on a sewage
treatment facility in Queensland, Australia, which manipulated the SCADA sys-
tem to release raw sewage into local rivers [32], or the (iii) the recent BlackEnergy
cyber-attack on the Ukrainian power grid, again compromising the SCADA sys-
tem [15].

The points in common of these systems is that they are all safety critical
and failures may cause catastrophic consequences. Thus, the concern for conse-
quences at the physical level puts CPS security apart from standard IT security.

Timing is particularly relevant in CPS security because the physical state of
a system changes continuously over time and, as the system evolves in time, some
states might be more vulnerable to attacks than others. For example, an attack
launched when the target state variable reaches a local maximum (or minimum)
may have a great impact on the whole system behaviour [17]. Also the duration
of the attack is an important parameter to be taken into consideration in order
to achieve a successful attack. For example, it may take minutes for a chemical
reactor to rupture, hours to heat a tank of water or burn out a motor, and days
to destroy centrifuges.

The estimation of the impact of cyber-physical attacks on physical com-
ponents of the target system is a crucial task when protecting CPSs [10]. For
instance, in industrial CPSs, before taking any countermeasure against an attack,
engineers first try to estimate the impact of the attack on the system functioning
(e.g., performance and security) and weight it against the cost of stopping the
plant. If this cost is higher than the damage caused by the attack (as is some-
times the case), then engineers might actually decide to let the system continue
its activities even under attack. Thus, once an attack is detected, tmpact metrics
are necessary to quantify the perturbation introduced in the physical behaviour
of the system under attack.

The goal of this paper is to lay theoretical foundations to provide formal
instruments to precisely define the notion of impact of cyber-physical attack
targeting physical devices, such as sensor devices of IoT systems. For that we
rely on a timed generalisation of weak bisimulation metrics [5] to compare the
behaviour of two systems up to a given tolerance, for time-bounded executions.

Weak bisimulation metric allows us to compare two systems M and N, writ-
ing M ~, N, if the weak bisimilarity holds with a distance or tolerance p € [0, 1],
i.e., if M and N exhibit a different behaviour with probability p, and the same
behaviour with probability 1 — p. A useful generalisation is the n-bisimulation
metric [3] that takes into account bounded computations. Intuitively, the dis-
tance p is ensured only for the first n computational steps, for some n € N.
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However, in timed systems it is desirable to focus on the passage of time rather
than the number of computational steps. This would allow us to deal with situ-
ations where it is not necessary (or it simply does not make sense) to compare
two systems “ad infinitum” but only for a limited amount of time.

Contribution. In this paper, we first introduce a general notion of timed bisim-
ulation metric for concurrent probabilistic systems equipped with a discrete
notion of time. Intuitively, this kind of metric allows us to derive a timed weak
bisimulation with tolerance, denoted with k‘:’;, for k € NTU{oco} and p € [0,1], to
express that the tolerance p between two timed systems is ensured only for the
first k& time instants (tick-actions). Then, we use our timed bisimulation metric
to set up a formal compositional theory to study and measure the impact of
cyber-physical attacks on IoT systems specified in a simple probabilistic timed
process calculus which extends Hennessy and Regan’s Timed Process Language
(TPL) [12]. ToT systems in our calculus are modelled by specifying: (i) a physi-
cal environment, containing informations on the physical state variables and the
sensor measurements, and (ii) a logics that governs both accesses to sensors and
channel-based communications with other cyber components.

We focus on attacks on sensors that may eavesdrop and possibly modify the
sensor measurements provided to the controllers of sensors, affecting both the
integrity and the availability of the system under attack.

In order to make security assessments of our IoT systems, we adapt a well-
know approach called Generalized Non Deducibility on Composition (GNDC) [7]
to compare the behaviour of an IoT system M with the behaviour of the same
system under attack, written M || A, for some arbitrary cyber-physical attack A.
This comparison makes use of our timed bisimulation metric to evaluate not only
the tolerance and the vulnerability of a system M with respect to a certain attack
A, but also the impact of a successful attack in terms of the deviation introduced
in the behaviour of the target system. In particular, we say that a system M
tolerates an attack A if M || A =5° M, i.e., the presence of A does not affect the
behaviour of M; whereas M is said to be vulnerable to A in the time interval
m..n with impact p if m..n is the smallest interval such that M || A ~J*~' M and
M| A %’; M, for any k > n, i.e., if the perturbation introduced by the attack A
becomes observable in the m-th time slot and yields the maximum impact p in
the n-th time slot. In the concluding discussion we will show that the temporal
vulnerability window m..n provides several informations about the corresponding
attack, such as stealthiness capability, duration of the physical effects of the
attack, and consequent room for possible run-time countermeasures.

As a case study, we use our timed bisimulation metric to measure the impact
of two different attacks injecting false positives and false negative, respectively,
into a simple surveillance system expressed in our process calculus.

Outline. Section 2 formalises our timed bisimulation metrics in a general set-
ting. Section 3 provides a simple calculus of IoT systems. Section 4 defines cyber-
physical attacks together with the notions of tolerance and vulnerability w.r.t.
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an attack. In Sect. 5 we use our metrics to evaluate the impact of two attacks on
a simple surveillance system. Section 6 draws conclusions and discusses related
and future work. In this extended abstract proofs are omitted, full details of the
proofs can be found in the technical report [23].

2 Timed Bisimulation Metrics

In this section, we introduce timed bisimulation metrics as a general instrument
to derive a notion of timed and approximate weak bisimulation between prob-
abilistic systems equipped with a discrete notion of time. In Sect. 2.1, we recall
the semantic model of nondeterministic probabilistic labelled transition systems;
in Sect. 2.2, we present our metric semantics.

2.1 Nondeterministic Probabilistic Labelled Transition Systems

Nondeterministic probabilistic labelled transition systems (pLTS) [30] combine
classic LT'Ss [16] and discrete-time Markov chains [34] to model, at the same
time, reactive behaviour, nondeterminism and probability. We first provide the
mathematical machinery required to define a pLTS.

The state space in a pLTS is given by a set 7, whose elements are called
processes, or terms. We use t,t',.. to range over 7. A (discrete) probability sub-
distribution over 7 is a mapping A: T — [0,1], with }7, - A(t) € (0,1]. We
denote ), ., A(t) by |Al, and we say that A is a probability distribution if
|A|= 1. The support of A is given by [A] = {t € T : A(t) > 0}. The set of all
sub-distributions (resp. distributions) over 7 with finite support will be denoted
with Dy (7)) (resp. D(T)). We use A, 6, & to range over Dy, (7) and D(7).

Definition 1 (pLTS [30]). A pLTS is a triple (T,A,—), where: (i) T is a
countable set of terms, (ii) A is a countable set of actions, and (iii) — C
T x A x D(T) is a transition relation.

In Definition 1, we assume the presence of a special deadlocked term Dead €
T . Furthermore, we assume that the set of actions A contains at least two
actions: 7 and tick. The former to model internal computations that cannot be
externally observed, while the latter denotes the passage of one time unit in a
setting with a discrete notion of time [12]. In particular, tick is the only timed
action in A.

We write t -2+ A for (¢, a, A) € —, t = if there is a distribution A € D(T)
with ¢ = A, and t 4 otherwise. Let der(t,a) = {A € D(T) | t =+ A} denote
the set of the derivatives (i.e. distributions) reachable from term ¢ through action
a. We say that a pLTS is image-finite if der(t, @) is finite for all t € 7 and o € A.
In this paper, we will always work with image-finite pLT'Ss.

Weak Transitions. As we are interested in developing a weak bisimulation metric,
we need a definition of weak transition which abstracts away from 7-actions. In
a probabilistic setting, the definition of weak transition is somewhat complicated
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by the fact that (strong) transitions take terms to distributions; consequently if
we are to use weak transitions then we need to generalise transitions, so that
they take (sub-)distributions to (sub-)distributions.

To this end, we need some extra notation on distributions. For a term ¢t € 7,
the point (Dirac) distribution at t, denoted ¢, is defined by ¢(t) = 1 and £(¢') =0
for all ¢’ # t. Then, the convex combination . ; p; - 4; of a family {A;}e; of
(sub-)distributions, with I a finite set of indexes, p; € (0,1] and >, p; < 1,

is the (sub-)distribution defined by (3o, pi - A:)(2) = Y icr Di - Ai(t) for all

teT. Wewrite ) ,c;pi-Aiaspr-Ar+...+py- Ay when I ={1,...,n}.
Thus, we write t z, A, for some term t and some distribution A, if either
t = Aor A =1 Then, for a # 7, we write t — A if t = A. Relation — is

extended to model transitions from sub-distributions to sub-distributions. For a
sub-distribution A =, p; -1;, we write A - @ if there is a non-empty set

of indexes J C I such that: (i) t; 2, O; for all j € J, (ii) t; %&4, foralli e I'\J,
and (iil) © = 3, ; pj - ©;. Note that if o # 7 then this definition admits that

only some terms in the support of A make the 2, transition. Then, we define

g . T o . . T .
the weak transition relation => as the transitive and reflexive closure of —, i.e.,

#

= = ()*, while for o # 7 we let = denote AN

2.2 Timed Weak Bisimulation with Tolerance

In this section, we define a family of relations %’; over 7, with p € [0,1] and k €
N* U {0}, where, intuitively, ¢ z’; t’ means that ¢t and t' can weakly bisimulate
each other with a tolerance p accumulated in k timed steps. This is done by
introducing a family of pseudometrics m*: T x T — [0,1] and defining ¢ ~F '
iff m*(¢,#') = p. The pseudometrics m* will have the following properties for any
t,t' € T: (i) m* (¢,#') < m*2(t, ') whenever k; < ko (tolerance monotonicity);
(ii) m®(¢,¢') = p iff p is the distance between ¢ and t' as given by the weak
bisimilarity metric in [5] in an untimed setting; (iiii) m*(¢,¢') = 0 iff ¢ and ¢’
are related by the standard weak probabilistic bisimilarity [27].
Let us recall the standard definition of pseudometric.

Definition 2 (Pseudometric). A function d: T x T — [0,1] 4s a 1-bounded
pseudometric over T if

—d(t,t) =0 forallt €T,
—d(t, ') =d(t',t) for ol t,t' € T (symmetry),
—d(t,t') < d(t,t") + dt",t') for all t,t',t" € T (triangle inequality).

In order to define the family of functions m*, we define an auxiliary family

of functions m*": T x T — [0,1], with k,h € N, quantifying the tolerance
of the weak bisimulation after a sequence of computation steps such that: (i)
the sequence contains exactly k tick-actions, (ii) the sequence terminates with
a tick-action, (iii) any term performs exactly h untimed actions before the first
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tick-action, (iv) between any i-th and (i+1)-th tick-action, with 1 <4 < k, there
are an arbitrary number of untimed actions.

The definition of m*" relies on a timed and quantitative version of the classic
bisimulation game: The tolerance between ¢ and ¢’ as given by m*"(¢,¢') can be
below a threshold € € [0, 1] only if each transition ¢ -+ A is mimicked by a weak

transition ¢ = O such that the bisimulation tolerance between A and @ is, in
turn, below e. This requires to lift pseudometrics over 7 to pseudometrics over
(sub-)distributions in Dg,p (7). To this end, we adopt the notions of matching [37]
(also called coupling) and Kantorovich lifting [4].

Definition 3 (Matching). A matching for a pair of distributions (A,0) €
D(T) x D(T) is a distribution w in the state product space D(T x T) such that:

= Yperw(t,t’) = A(t), for allt € T, and
= Yperw(t,t) =0O(t), for allt' € T.

We write 2(A, ©) to denote the set of all matchings for (A, O).

A matching for (A, ©) may be understood as a transportation schedule for the
shipment of probability mass from A to © [37].

Definition 4 (Kantorovich lifting). Assume a pseudometric d: T x T —
[0,1]. The Kantorovich lifting of d is the function K(d): D(7T) x D(T) — [0,1]
defined for distributions A and © as:

K(d)(4,0) < mingcome) X, erw(s ) - dis, ).

Note that since we are considering only distributions with finite support, the
minimum over the set of matchings 2(A, @) used in Definition 4 is well defined.

Pseudometrics m*" are inductively defined on k and h by means of suitable
functionals over the complete lattice ([0,1]7 %7, C) of functions of type 7 x T —
[0,1], ordered by dy T dy iff dy(¢,t') < da(t,t’) for all t,¢' € T. Notice that in this
lattice, for each set D C [0,1]7 %7, the supremum and infimum are defined as
sup(D)(t,t") = supgep d(t,t') and inf(D)(t,t') = infaep d(t,t'), for all t,¢' € T.
The infimum of the lattice is the constant function zero, denoted by 0, and the
supremum is the constant function one, denoted by 1.

Definition 5 (Functionals for m*"). The functionals B, Byex: [0,1]7*7 —
[0, 1]7*7 are defined for any function d € [0,1)7*7 and terms t,t' € T as:

B(d)(t,t') = max{ d(t,"),
sup  max inf K(d)(A,6 + (1— |6|)Dead),
a€A\{tick} t—=>A t,:&>@
sup max  inf K(d)(A+ (1 |A|)Dead, ©) }
a€cA\{tick} =50 t:&>A
Biick(d)(¢,t') = max{ d(¢, ),
max  inf K(d)(A,O + (1 |6|)Dead),
=5 A =0
max inf K(d)(A+ (1— |A|)Dead, ©) }

tick tick

t——0 —=A

where inf ) = 1 and max () = 0.
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Notice that all max in Definition 5 are well defined since the pLTS is image-
finite. Notice also that any strong transitions from ¢ to a distribution A is mim-
icked by a weak transition from ', which, in general, takes to a sub-distribution
©. Thus, process ' may not simulate ¢ with probability 1— |©).

Definition 6 (Timed weak bisimilarity metrics). The family of the timed
weak bisimilarity metrics m*: (7 x T) — [0,1] is defined for all k € N by
0 f k=20
mF = o Z,f while the functions m*": (T x T) —[0,1]
sup,cym™® if k>0
are defined for all k € Nt and h € N by

B(m®"=1)  if h>0.

m® = SuUp;cyn mF.

B ic bl if h=
mhh = { ek(m™ ) if 0 Then, we define m™: (T x T) — [0,1] as

Note that any m*" is obtained from m*~! by one application of the functional
Biick, in order to take into account the distance between terms introduced by the
k-th tick-action, and h applications of the functional B, in order to lift such a
distance to terms that take h untimed actions to be able to perform a tick-action.
By taking supj,cy m™" we consider an arbitrary number of untimed steps.

The pseudometric property of m” is necessary to conclude that the tolerance

between terms as given by m” is a reasonable notion of behavioural distance.
Theorem 1. For any k > 1, m* is a 1-bounded pseudometric.

Finally, everything is in place to define our timed weak bisimilarity ~F with
tolerance p € [0, 1] accumulated after k time units, for k € NU {oco}.

Definition 7 (Timed weak bisimilarity with tolerance). Let t,t' € T,
k € N and p € [0,1]. We say that t and t' are weakly bisimilar with a toler-
ance p, which accumulates in k timed actions, written t z’; t', if and only if
m*(t,t') = p. Then, we write t ~p t'if and only if m™>(t,t') = p.

Since the Kantorovich lifting K is monotone [26], it follows that both func-
tionals B and By are monotone. This implies that, for any & > 1, (m’“h)hzo is
a non-decreasing chain and, analogously, also (mk)kzo is a non-decreasing chain,
thus giving the following expected result saying that the distance between terms
grows when we consider a higher number of tick computation steps.

Proposition 1 (Tolerance monotonicity). For all terms t,t' € T and
ki,ko € NT with ki < ko, t %’;} t' andt z’;g t' entail p1 < pa.

We conclude this section by comparing our behavioural distance with the
behavioural relations known in the literature.

We recall that in [5] a family of relations ~, for untimed process calculi
are defined such that ¢t ~, ¢’ if and only if ¢ and ¢’ weakly bisimulate each
other with tolerance p. Of course, one can apply these relations also to timed
process calculi, the effect being that timed actions are treated in exactly the
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same manner as untimed actions. The following result compares the behavioural
metrics proposed in the present paper with those of [5], and with the classical
notions of probabilistic weak bisimilarity [27] denoted ~.

Proposition 2. Let t,t' € T and p € [0,1]. Then,

—tROtfft e,
-ttt ifftat.

3 A Simple Probabilistic Timed Calculus for IoT Systems

In this section, we propose a simple extension of Hennessy and Regan’s timed
process algebra TPL [12] to express IoT systems and cyber-physical attacks. The
goal is to show that timed weak bisimilarity with tolerance is a suitable notion
to estimate the impact of cyber-physical attacks on IoT systems.

Let us start with some preliminary notations.

Notation 1. We use z,xy for state variables, ¢, ¢k, for communication chan-
nels, z 2z for communication variables, s, s; for sensors devices, while o ranges
over both channels and sensors. Values, ranged over by v,v’, belong to a finite
set of admissible values V. We use u, uy, for both values and communication vari-
ables. Given a generic set of names N, we write VN to denote the set of functions
N —V assigning a value to each name in N'. For m € N and n € NU {oo}, we
write m..n to denote an integer interval. As we will adopt a discrete notion of
time, we will use integer intervals to denote time intervals.

State variables are associated to physical properties like temperature, pres-
sure, etc. Sensor names are metavariables for sensor devices, such as thermome-
ters and barometers. Please, notice that in cyber-physical systems, state variables
cannot be directly accessed but they can only be tested via one or more sensors.

Definition 8 (IoT system). Let X be a set of state variables and S be a set of
sensors. Let range : X — 2V be a total function returning the range of admissible
values for any state variable x € X. An 10T system consists of two components:

- a physical environment & = (&4, &) where:

o & € V7V is the physical state of the system that associates a value to each
state variable in X, such that & (x) € range(x) for any x € X,

o (& i VY — S — D(V) is the measurement map that given a physical state
returns a function that associates to any sensor in S a discrete probability
distribution over the set of possible sensed values;

- a logical (or cyber) component P that interacts with the sensors defined in &,
and can communicate, via channels, with other cyber components.

We write £ X P to denote the resulting IoT system, and use M and N to range
over IoT systems.
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Let us now formalise the cyber component of an IoT system. Basically, we
adapt Hennessy and Regan’s timed process algebra TPL [12].

Definition 9 (Logics). Logical components of IoT systems are defined by the
following grammar:

P,Q =il | tickP | P|Q | |pfe.P|]Q | H{@) | if (b){P}else{Q} | P\c
pfr = ol | 07(2)

The process tick.P sleeps for one time unit and then continues as P. We write
P || Q to denote the parallel composition of concurrent processes P and Q. The
process | pfr.P|Q denotes prefizing with timeout. We recall that o ranges over
both channel and sensor names. Thus, for instance, |clv.P|Q sends the value
v on channel ¢ and, after that, it continues as P; otherwise, if no communica-
tion partner is available within one time unit, it evolves into Q. The process
|¢?(2).P]Q is the obvious counterpart for channel reception. On the other hand,
the process |s?(z).P]Q reads the sensor s, according to the measurement map
of the systems, and, after that, it continues as P. The process |slv.P|Q writes
to the sensor s and, after that, it continues as P; here, we wish to point out
that this a malicious activity, as controllers may only access sensors for read-
ing sensed data. Thus, the construct |slv.P|Q serves to implement an integrity
attack that attempts at synchronising with the controller of sensor s to provide
a fake value v. In the following, we say that a process is honest if it never writes
on sensors. The definition of honesty naturally lifts to IoT systems. In processes
of the form tick.Q and |pfz.P]|Q), the occurrence of @ is said to be time-guarded.
Recursive processes H{u) are defined via equations H(z1,...,zr) = P, where
(i) the tuple z1,..., zx contains all the variables that appear free in P, and (ii)
P contains only time-guarded occurrences of the process identifiers, such as H
itself (to avoid zeno behaviours). The two remaining constructs are standard;
they model conditionals and channel restriction, respectively.

Finally, we define how to compose IoT systems. For simplicity, we compose
two systems only if they have the same physical environment.

Definition 10 (System composition). Let M1 =& X Py and My =& x Py be
two IoT systems, and Q) be a process whose sensors are defined in the physical
environment . We write:

- M, || My to denote Ex (P || Py);
- M || Q to denote Ex (P || Q);
— Mi\c as an abbreviation for & x (Pi\c).

We conclude this section with the following abbreviations that will be used
in the rest of the paper.

Notation 2. We write P\{c1,ca,...,cn}, or P\¢, to mean P\c1\cs - - \c,. For
simplicity, we sometimes abbreviate both H (i) and H (i) with H;. We write pfx.P
as an abbreviation for the process defined via the equation H = |pfr.P|H, where
the process name H does not occur in P. We write tick®.P as a shorthand for
tick.tick. . .. tick. P, where the prefir tick appears k > 0 consecutive times. We
write Dead to denote a deadlocked IoT system that cannot perform any action.



Towards a Formal Notion of Impact Metric for Cyber-Physical Attacks 305

Table 1. Labelled transition system?2 for processes

(Write) olv (Read) 0?(z)
low.P|Q — P lo?(2).P|Q —— P
olv , 0?(z) , A / .
(Syne) P 4>pT Q Q (Par) P — PA A # tick
PQ — P Q{"):} PlQ =P |Q
A, G0 A o
(Res) P =P )\/\51 {olv,07(2)} (Rec) P{%:} — QA H(z) =P
P\o — P'\o H{®) —Q
(Then) [b] =true P 2 P’ (Else) [b] = false Q 2 @’
if (b) {P} else {Q} = P’ if (b) { P} else {Q} = Q'
TimeNil - Del -
(HimeNi) Pel) S = p
— tick ’ tick "
(Timeout) ok (TimePar) L Pt, - @0
lpfe.P]Q —— Q PlQ —P|Q

3.1 Probabilistic Labelled Transition Semantics

As said before, sensors serve to observe the evolution of the physical state of an
ToT system. However, sensors are usually affected by an error/noise that we rep-
resent in our measurement maps by means of discrete probability distributions.
For this reason, we equip our calculus with a probabilistic labelled transition
system. In the following, the symbol € ranges over distributions on physical envi-
ronments, whereas 7 ranges over distributions on (logical) processes. Thus, € X 7
denotes the distribution over IoT systems defined by (e x 7)(§ 1 P) = ¢(§) -7 (P).
The symbol v ranges over distributions on IoT systems.

In Table1, we give a standard labelled transition system for logical compo-
nents (timed processes), whereas in Table2 we rely on the LTS of Table1 to
define a simple pLTS for IoT systems by lifting transition rules from processes
to systems.

In Tablel, the meta-variable A ranges over labels in the set {r,tick,olv,
0?(z)}. Rule (Sync) serve to model synchronisation and value passing, on some
name (for channel or sensor) o: if 0 is a channel then we have standard point-to-
point communication, whereas if o is a sensor then this rule models an integrity
attack on sensor s, as the controller is provided with a fake value v. The remain-
ing rules are standard. The symmetric counterparts of rules (Sync) and (Par) are
omitted.

According to Table 2, IoT systems may fire four possible actions ranged over
by «. These actions represent: internal activities (7), the passage of time (tick),
channel transmission (clv) and channel reception (c?v).

Rules (Snd) and (Rev) model transmission and reception on a channel c
with an external system, respectively. Rule (SensRead) models the reading of
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Table 2. Probabilistic LTS for a IoT system & x P with & = (&x, &m)

clv / c?(z) ,
P — P P P
(Snd) clv = == (RCV) - —
ExP S Ex P exP s Ex PV}
s?(z) , _ o
(SensRead) L — Ij fm(fX)(s) = M v;
gNP Hgm Zielp’i'P/{vi/z}
P ;)P’ ) P ﬂ)Pl Ex P %é fleﬂeﬁt(f)
(Tau) —————— (Time) _
il / tick — @ —-
EMP ——EXP EwP T

the value detected at a sensor s according to the current physical environment
& = (&, &m)- In particular, this rule says that if a process P in a system & x P
reads a sensor s defined in & then it will get a value that may vary according to
the probability distribution resulting by providing the state function & and the
sensor s to the measurement map &,.

Rule (Tau) lifts internal actions from processes to systems. This includes com-
munications on channels and malicious accesses to sensors’ controllers. Accord-
ing to Definition 10, rule (Tau) models also channel communication between two
parallel IoT systems sharing the same physical environment.

A second lifting occurs in rule (Time) for timed actions tick. Here, &
denotes an admissible physical environment for the next time slot, nondeter-
ministically chosen from the finite set next((&x,&m)). This set is defined as
{{€L,&n) + &L(z) € range(x) for any x € X}.} As a consequence, the rules in
Table 2 define an image-finite pLTS.

For simplicity, we abstract from the physical process behind our IoT systems.

4 Cyber-Physical Attacks on Sensor Devices

In this section, we consider attacks tampering with sensors by eavesdropping
and possibly modifying the sensor measurements provided to the corresponding
controllers. These attacks may affect both the integrity and the availability of
the system under attack. We do not represent (well-known) attacks on communi-
cation channels as our focus is on attacks to physical devices and the consequent
impact on the physical state. However, our technique can be easily generalised
to deal with attacks on channels as well.

Definition 11 (Cyber-physical attack). A (pure) cyber-physical attack A is
a process derivable from the grammar of Definition 9 such that:

— A writes on at least one sensor;
— A never uses communication channels.

! The finiteness follows from the finiteness of V, and hence of range(z), for any = € X.
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In order to make security assessments on our IloT systems, we adapt
a well-known approach called Generalized Non Deducibility on Composition
(GNDC) [7]. Intuitively, an attack A affects an honest IoT system M if the
execution of the composed system M || A differs from that of the original sys-
tem M in an observable manner. Basically, a cyber-physical attack can influence
the system under attack in at least two different ways:

— The system M || A might have non-genuine execution traces containing
observables that cannot be reproduced by M; here the attack affects the
integrity of the system behaviour (integrity attack).

— The system M might have execution traces containing observables that can-
not be reproduced by the system under attack M || A (because they are
prevented by the attack); this is an attack against the awvailability of the
system (DoS attack).

Now, everything is in place to provide a formal definition of system tolerance
and system vulnerability with respect to a given attack. Intuitively, a system M
tolerates an attack A if the presence of the attack does not affect the behaviour
of M; on the other hand M is vulnerable to A in a certain time interval if the
attack has an impact on the behaviour of M in that time interval.

Definition 12 (Attack tolerance). Let M be a honest IoT system. We say
that M tolerates an attack A if M || A =3° M.

Definition 13 (Attack vulnerability and impact). Let M be a honest IoT
system. We say that M is vulnerable to an attack A in the time interval m..n
with impact p € [0,1], form € NT andn € NTU{oo}, if m..n is the smallest time
interval such that: (i) M || A~g~' M, (ii) M || A ~n M, (i) M || A2 M.?

Basically, the definition above says that if a system is vulnerable to an attack in
the time interval m..n then the perturbation introduced by the attack starts in
the m-th time slot and reaches the maximum impact in the n-th time slot.
The following result says that both notions of tolerance and vulnerability
are suitable for compositional reasonings. More precisely, we prove that they are
both preserved by parallel composition and channel restriction. Actually, channel
restriction may obviously make a system less vulnerable by hiding channels.

Theorem 2 (Compositionality). Let My = { x P; and My = £x Py be two
honest IoT systems with the same physical environment &, A an arbitrary attack,
and ¢ a set of channels.

— If both My and M tolerate A then (M || M2)\é tolerates A.

— If My is vulnerable to A in the time interval my..ny with impact p1, and Mo
is vulnerable to A in the time interval ma..ny with impact po, then My || Mo
is vulnerable to A in a the time interval min(my, ms).. max(ny, na) with an
impact p’ < (p1 + p2 — p1p2)-

2 By Proposition 1, at all time instants greater than n the impact remains p.
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— If My is vulnerable to A in the interval my..ny with impact py then Mi\é is
vulnerable to A in a time interval m’.n' C my..n1 with an impact p’ < p;.

Note that if an attack A is tolerated by a system M and can interact with
a honest process P then the compound system M || P may be vulnerable to
A. However, if A does not write on the sensors of P then it is tolerated by
M || P as well. The bound p’ < (p1 + p2 — p1p2) can be explained as follows.
The likelihood that the attack does not impact on M; is (1 — p;), for i € {1,2}.
Thus, the likelihood that the attack impacts neither on M7 nor on M is at least
(1 —p1)(1 —p2). Summarising, the likelihood that the attack impacts on at least
one of the two systems M; and M, is at most 1—(1—p1)(1—p2) = p1+p2 —p1pe.

An easy corollary of Theorem 2 allows us to lift the notions of tolerance and
vulnerability from a honest system M to the compound systems M || P, for a
honest process P.

Corollary 1. Let M be a honest system, A an attack, ¢ a set of channels, and
P a honest process that reads sensors defined in M but not those written by A.

— If M tolerates A then (M || P)\¢ tolerates A.
— If M is vulnerable to A in the interval m..n with impact p, then (M || P)\é
is vulnerable to A in a time interval m’..n’ C m..n, with an impact p’ < p.

5 Attacking a Smart Surveillance System: A Case Study

Consider an alarmed ambient consisting of three rooms, r; for i € {1,2, 3}, each
of which equipped with a sensor s; to detect unauthorised accesses. The alarm
goes off if at least one of the three sensors detects an intrusion.

The logics of the system can be easily specified in our language as follows:

Sys = (Mng || Ctrly || Ctrly || Ctrls) \{c1, c2,c3}
Mng = c17(21).c2?(22).c3?(23).if (\/>_, zi=on) {alarmlon.tick. Checky } else {tick. Mng}
Checky = Mng
Check; = alarmlon.c1?(z1).c2?(22).c3?(23).if (\/o_, 2i = on) {tick.Checky,}
else {tick.Check;—;} for j >0
Ctrly = si7(z).if (zi=presence) {c¢;lon.tick. Ctri; } else {c;loff .tick. Ctrl;} for ie{1,2, 3}.

Intuitively, the process Sys is composed by three controllers, Ctrl;, one for
each sensor s;, and a manager Mng that interacts with the controllers via private
channels ¢;. The process Mng fires an alarm if at least one of the controllers
signals an intrusion. As usual in this kind of surveillance systems, the alarm will
keep going off for k instants of time after the last detected intrusion.

As regards the physical environment, the physical state & : {r1,r2,r3} —
{presence, absence} is set to &« (r;) = absence, for any i € {1,2,3}. Further-
more, let pj and p; be the probabilities of having false positives (erroneously
detected intrusion) and false negatives (erroneously missed intrusion) at sen-
sor s;%, respectively, for i € {1,2,3}, the measurement function &,, is defined

3 These probabilities are usually very small; we assume them smaller than %
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as follows: &m(&x)(s;) = (1—p; ) presence + p; absence, if &(r;) = presence;
€m(&x)(si) = (1—pj) absence + p; presence, otherwise.

Thus, the whole IoT system has the form £ x Sys, with £ = (&, &m)-

We start our analysis studying the impact of a simple cyber-physical attack
that provides fake false positives to the controller of one of the sensors s;. This
attack affects the integrity of the system behaviour as the system under attack
will fire alarms without any physical intrusion.

Ezxample 1 (Introducing false positives). In this example, we provide an attack
that tries to increase the number of false positives detected by the controller of
some sensor s; during a specific time interval m..n, with m,n € N, n > m > 0.
Intuitively, the attack waits for m — 1 time slots, then, during the time interval
m..n, it provides the controller of sensor s; with a fake intrusion signal. Formally,

Agp(i,m,n) = tick™ ' .B(i,n —m + 1)
B(i,j) =if (j = 0) {nil} else {| s;!presence.tick.B(i,j — 1) | B(i,j — 1) }.

In the following proposition, we use our metric to measure the perturbation
introduced by the attack to the controller of a sensor s; by varying the time of
observation of the system under attack.

Proposition 3. Let & be an arbitrary physical state for the systems M; =
& x Cirly, for i € {1,2,3}. Then,

= M; || Agp(i,m,n) ~ M;, for j € 1.m—1;
= M; || Awp(i,m,n) =2 M;, with h=1— (p)I—m*L, for j € m.n;

— M; || Agp(i,myn) ~L M;, withr =1— (p;)"~™%, for j >n or j = ococ.

By an application of Definition 13 we can measure the impact of the attack Ag
to the (sub)systems & x Ctrl;.

Corollary 2. The IoT systems & x Ctrl; are vulnerable to the attack Agy (i, m,n)
in the time interval m..n with impact 1 — (p;r)"_m“.

Note that the vulnerability window m..n coincides with the activity period of
the attack Ag. This means that the system under attack recovers its normal
behaviour immediately after the termination of the attack. However, in general,
an attack may impact the behaviour of the target system long after its termina-
tion.

Note also that the attack Ag, (i, m, n) has an impact not only on the controller
Ctrl; but also on the whole system £ x Sys. This because the process Mng will
surely fire the alarm as it will receive at least one intrusion detection from Ctrl;.
However, by an application of Corollary 1 we can prove that the impact on the
whole system will not get amplified.

Proposition 4 (Impact of the attack Ag,). The system & x Sys is vulnerable
to the attack Agp(i,m,n) in a time interval m’.n’ C m..n with impact p’ <
1— (pf)nferl

: .
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Now, the reader may wonder what happens if we consider a complementary
attack that provides fake false negatives to the controller of one of the sensors
s;. In this case, the attack affects the availability of the system behaviour as the
system will no fire the alarm in the presence of a real intrusion. This because a
real intrusion will be somehow “hidden” by the attack.

Ezample 2 (Introducing false negatives). The goal of the following attack is to
increase the number of false negatives during the time interval m..n, with n >
m > 0. Formally, the attack is defined as follows:

Ag(i,m,n) = tick™ 1.C(i,n —m+ 1)
C(i,7) = if ( = 0) {nil} else {|s;!labsence.tick.C (i, j — 1) |C(i,j — 1)}.

In the following proposition, we use our metric to measure the deviation intro-
duced by the attack Ag, to the controller of a sensor s;. With no surprise we get
a result that is the symmetric version of Proposition 3.

Proposition 5. Let & be an arbitrary physical state for the system M; =
&Ex Cirly, fori € {1,2,3}. Then,

= M; || Awm(i,m,n) &~ M;, for j € 1.m—1;
- M; || A (i,m,n) =) M;, with h=1— (p; )I~™", for j € m..n;
- M; || Afn<i7m,n> ~J M;, withr =1— (pi_)n_m""l, for j >mn orj = oco.

T

Again, by an application of Definition 13 we can measure the impact of the
attack Ag, to the (sub)systems & x Ctri;.

Corollary 3. The IoT systems & x Ctrl; are vulnerable to the attack Ag, (i, m,n)
in the time interval m..n with impact 1 — (p; )"~ ™+,

As our timed metric is compositional, by an application of Corollary 1 we
can estimate the impact of the attack Ag, to the whole system & x Sys.

Proposition 6 (Impact of the attack Ag,). The system & x Sys is vulnerable
to the attack Agm{i,m,n) in a time interval m'.n’ C m..n with impact p' <
1— (p;)n—m-‘rl‘

6 Conclusions, Related and Future Work

We have proposed a timed generalisation of the n-bisimulation metric [3], called
timed bisimulation metric, obtained by defining two functionals over the com-
plete lattice of the functions assigning a distance in [0,1] to each pair of systems:
the former deals with the distance accumulated when executing untimed steps,
the latter with the distance introduced by timed actions.

We have used our timed bisimulation metrics to provide a formal and com-
positional notion of impact metric for cyber-physical attacks on IoT systems
specified in a simple timed process calculus. In particular, we have focussed on
cyber-physical attacks targeting sensor devices (attack on sensors are by far the
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most studied cyber-physical attacks [38]). We have used our timed weak bisim-
ulation with tolerance to formalise the notions of attack tolerance and attack
vulnerability with a given impact p. In particular, a system M is said to be vul-
nerable to an attack A in the time interval m..n with impact p if the perturbation
introduced by A becomes observable in the m-th time slot and yields the maxi-
mum impact p in the n-th time slot. Here, we wish to stress that the vulnerability
window m..n is quite informative. In practise, this interval says when an attack
will produce observable effects on the system under attack. Thus, if n is finite
we have an attack with temporary effects, otherwise we have an attack with per-
manent effects. Furthermore, if the attack is quick enough, and terminates well
before the time instant m, then we have a stealthy attack that affects the system
late enough to allow attack camouflages [11]. On the other hand, if at time m
the attack is far from termination, then the IoT system under attack has good
chances of undertaking countermeasures to stop the attack.

As a case study, we have estimated the impact of two cyber-physical attacks
on sensors that introduce false positives and false negatives, respectively, into
a simple surveillance system, affecting the integrity and the availability of the
ToT system. Although our attacks are quite simple, the specification language
and the corresponding metric semantics presented in the paper allow us to deal
with smarter attacks, such as periodic attacks with constant or variable period of
attack. Moreover, we can easily extend our threat model to recover (well-known)
attacks on communication channels.

Related Work. A number of papers have recently proposed different method-
ologies for assessing the direct and indirect impact of attacks on CPSs.

Bilis et al. [1] proposed a systematic approach that uses five metrics derived
from complex network theory to assess the impacts of cyber attacks on elec-
tric power systems. The metrics were used to rank nodes in a graph-based
representation of an electric grid. Sgouras et al. [31] evaluated the impact of
cyber attacks on a simulated smart metering infrastructure; the denial-of-service
attacks against smart meters and utility servers caused severe communications
interruptions. Sridhar and Govindarasu [33] evaluated the impacts of attacks
on wide-area frequency control applications in power systems; their research
showed that cyber attacks can significantly impact system stability by causing
severe drops in system frequency. Genge et al. [10] introduced a methodology,
inspired by research in system dynamics and sensitivity analysis, to compute
the covariances of the observed variables before and after the execution of a
specific intervention involving the control variables. Metrics are proposed for
quantifying the significance of control variables and measuring the impact prop-
agation of cyber attacks. Orojloo and Azgomi [25] investigated how an attack
against system parameters can affect the values of other parameters. The system
parameters are divided into two classes of cause and effect parameters, which
can be same as or different from each other. They proposed metrics to prioritise
the sensor readings and control signals based on their sensitivity to conducted
attacks. Urbina et al. [35] defined an evaluation metric for attack-detection algo-
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rithms that quantifies the negative impact of stealthy attacks and the inherent
trade-off with false alarms. The authors showed that the impact of such attacks
can be mitigated in several cases by the proper combination and configuration
of detection schemes. Huang et al. [13] proposed a risk assessment method that
uses a Bayesian network to model the attack propagation process and infers the
probabilities of sensors and actuators to be compromised. These probabilities
are fed into a stochastic hybrid system (SHS) model to predict the evolution
of the physical process being controlled. Then, the security risk is quantified by
evaluating the system availability with the SHS model.

Notice that only this last paper adopts formal methodologies. More generally,
we are aware of a number of works using formal methods for CPS security,
although they apply methods, and most of the time have goals, that are quite
different from ours.

Vigo et al. [36] proposed an untimed calculus of broadcasting processes
equipped with notions of failed and unwanted communication. They focus on
DoS attacks without taking into consideration timing aspects or attack impact.
Bodei et al. [2] proposed a different untimed process calculus, IoT-LySa, sup-
porting a control flow analysis that safely approximates the abstract behaviour
of ToT systems. Essentially, they track how data spread from sensors to the logics
of the network, and how physical data are manipulated. Rocchetto and Tippen-
haur [29] introduced a taxonomy of the diverse attacker models proposed for
CPS security and outline requirements for generalised attacker models; in [28§],
the same authors proposed an extended Dolev-Yao attacker model suitable for
CPSs. Nigam et al. [24] worked around the notion of timed Dolev-Yao intruder
models for cyber-physical security protocols by bounding the number of intruders
required for the automated verification of such protocols. Following a tradition in
security protocol analysis, they provided an answer to the question: How many
intruders are enough for verification and where should they be placed? Lanotte
et al. [19] did a static security analysis, based on model-checking, for a non-trivial
engineering case study to statically detect a variety of attacks targeting sensors
and/or actuators of the system under investigation. Finally, Lanotte et al. [20]
defined a hybrid process calculus to model both CPSs and cyber-physical attacks;
they defined a threat model for cyber-physical attacks to physical devices and
provided a proof methods to assess attack tolerance/vulnerability with respect
to a timed trace semantics (no tolerance allowed). They also advocated a timed
formalisation of the impact of an attack in terms of the deviation introduced in
the runtime behaviour of the system under attack.

Future Work. Recent works [8,9,18,21,22] have shown that bisimulation met-
rics are suitable for compositional reasoning, as the distance between two com-
plex systems can be often derived in terms of the distance between their com-
ponents. In this respect, Theorem 2 and Corollary 1 allows us compositional rea-
sonings when computing the impact of attacks on a target system, in terms of
the impact on its sub-systems. We believe that this result can be generalised to
estimate the impact of parallel attacks of the form A = A || ... || A in terms
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of the impacts of each malicious module A;. As future work, we also intend to
adopt our impact metric in more involved languages for cyber-physical systems
and attacks, such as the language developed in [20], with an explicit representa-
tion of physical processes via differential equations or their discrete counterpart,
difference equations.
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