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Abstract. Modeling and analysis of non-functional properties, such as
timing constraints, is crucial in automotive real-time embedded systems.
East-adl is a domain specific architectural language dedicated to safety-
critical automotive embedded system design. We have previously speci-
fied East-adl timing constraints in Clock Constraint Specification Lan-
guage (Ccsl) and proved the correctness of specification by mapping
the semantics of the constraints into Uppaal models amenable to model
checking. In most cases, a bounded number of violations of timing con-
straints in automotive systems would not lead to system failures when
the results of the violations are negligible, called Weakly-Hard (WH).
Previous work is extended in this paper by including support for prob-
abilistic analysis of timing constraints in the context of WH: Proba-
bilistic extension of Ccsl, called PrCcsl, is defined and the East-adl
timing constraints with stochastic properties are specified in PrCcsl.
The semantics of the extended constraints in PrCcsl is translated into
Uppaal-SMC models for formal verification. Furthermore, a set of map-
ping rules is proposed to facilitate guarantee of translation. Our approach
is demonstrated on an autonomous traffic sign recognition vehicle case
study.
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1 Introduction

Model-driven development is rigorously applied in automotive systems in which
the software controllers interact with physical environments. The continuous
time behaviors (evolved with various energy rates) of those systems often rely
on complex dynamics as well as on stochastic behaviors. Formal verification and
validation (V&V) technologies are indispensable and highly recommended for
development of safe and reliable automotive systems [3,4]. Conventional V&V,
i.e., testing and model checking have limitations in terms of assessing the reli-
ability of hybrid systems due to both the stochastic and non-linear dynamical
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 236–254, 2018.
https://doi.org/10.1007/978-3-319-98938-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98938-9_14&domain=pdf


Probabilistic Verification of Timing Constraints in Automotive Systems 237

features. To ensure the reliability of safety critical hybrid dynamic systems, sta-
tistical model checking (SMC) techniques have been proposed [11,12,25]. These
techniques for fully stochastic models validate probabilistic performance prop-
erties of given deterministic (or stochastic) controllers in given stochastic envi-
ronments.

Conventional formal analysis of timing models addresses worst case designs,
typically used for hard deadlines in safety critical systems, however, there is
great incentive to include “less-than-worst-case” designs to improve efficiency
but without affecting the quality of timing analysis in the systems. The challenge
is the definition of suitable model semantics that provide reliable predictions of
system timing, given the timing of individual components and their composi-
tions. While the standard worst case models are well understood in this respect,
the behavior and the expressiveness of “less-than-worst-case” models is far less
investigated. In most cases, a bounded number of violations of timing constraints
in systems would not lead to system failures when the results of the violations are
negligible, called Weakly-Hard (WH) [8,29]. In this paper, we propose a formal
probabilistic modeling and analysis technique by extending the known concept
of WH constraints to what is called “typical” worst case model and analysis.

East-adl (Electronics Architecture and Software Technology - Architecture
Description Language) [5,14], aligned with AUTOSAR (Automotive Open Sys-
tem Architecture) standard [1], is a concrete example of the MBD approach for
the architectural modeling of safety-critical automotive embedded systems. A
system in East-adl is described by Functional Architectures (FA) at dif-
ferent abstraction levels. The FA are composed of a number of interconnected
functionprototypes (fp), and the fps have ports and connectors for communica-
tion. East-adl relies on external tools for the analysis of specifications related
to requirements. For example, behavioral description in East-adl is captured
in external tools, i.e., Simulink/Stateflow[32]. The latest release of East-
adl has adopted the time model proposed in the Timing Augmented Descrip-
tion Language (Tadl2) [9]. Tadl2 expresses and composes the basic timing
constraints, i.e., repetition rates, end-to-end delays, and synchronization con-
straints. The time model of Tadl2 specializes the time model of MARTE, the
UML profile for Modeling and Analysis of Real-Time and Embedded systems
[30]. MARTE provides Ccsl, a time model and a Clock Constraint Specifi-
cation Language, that supports specification of both logical and dense timing
constraints for MARTE models, as well as functional causality constraints [27].

We have previously specified non-functional properties (timing and energy
constraints) of automotive systems specified in East-adl and MARTE/Ccsl,
and proved the correctness of specification by mapping the semantics of the con-
straints into Uppaal models for model checking [23]. Previous work is extended
in this paper by including support for probabilistic analysis of timing constraints
of automotive systems in the context WH: 1. Probabilistic extension of Ccsl,
called PrCcsl, is defined and the East-adl/Tadl2 timing constraints with
stochastic properties are specified in PrCcsl; 2. The semantics of the extended
constraints in PrCcsl is translated into verifiable Uppaal-SMC [2] models for
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formal verification; 3. A set of mapping rules is proposed to facilitate guaran-
tee of translation. Our approach is demonstrated on an autonomous traffic sign
recognition vehicle (AV) case study.

The paper is organized as follows: Sect. 2 presents an overview of Ccsl and
Uppaal-SMC. The AV is introduced as a running example in Sect. 3. Section 4
presents the formal definition of PrCcsl. Section 5 describes a set of translation
patterns from Ccsl/PrCcsl to Uppaal-SMC models and how our approaches
provide support for formal analysis at the design level. The applicability of our
method is demonstrated by performing verification on the AV case study in
Sect. 6. Sections 7 and 8 present related work and the conclusion.

2 Preliminary

In our framework, we consider a subset of Ccsl and its extension with stochastic
properties that is sufficient to specify East-adl timing constraints in the context
of WH. Formal Modeling and V&V of the East-adl timing constraints specified
in Ccsl are performed using Uppaal-SMC.

Clock Constraint Specification Language (Ccsl) [6,27] is a UML profile
for modeling and analysis of real-time systems (MARTE) [7,26]. In Ccsl, a
clock represents a sequence of (possibly infinite) instants. An event is a clock
and the occurrences of an event correspond to a set of ticks of the clock. Ccsl
provides a set of clock constraints that specifies evolution of clocks’ ticks. The
physical time is represented by a dense clock with a base unit. A dense clock
can be discretized into a discrete/logical clock. idealClock is a predefined dense
clock whose unit is second. We define a universal clock ms based on idealClock:
ms = idealClock discretizedBy 0.001. ms representing a periodic clock that
ticks every 1 ms in this paper. A step is a tick of the universal clock. Hence the
length of one step is 1 ms.

Ccsl provides two types of clock constraints, relation and expression: A
relation limits the occurrences among different events/clocks. Let C be a set of
clocks, c1, c2 ∈ C, coincidence relation (c1 ≡ c2) specifies that two clocks must
tick simultaneously. Precedence relation (c1 ≺ c2) delimits that c1 runs faster
than c2, i.e., ∀k ∈ N

+, where N
+ is the set of positive natural numbers, the kth

tick of c1 must occur prior to the kth tick of c2. Causality relation (c1 � c2)
represents a relaxed version of precedence, allowing the two clocks to tick at
the same time. Subclock (c1 ⊆ c2) indicates the relation between two clocks,
superclock (c1) and subclock (c2), s.t. each tick of the subclock must correspond
to a tick of its superclock at the same step. Exclusion (c1 # c2) prevents the
instants of two clocks from being coincident. An expression derives new clocks
from the already defined clocks: periodicOn builds a new clock based on a base
clock and a period parameter, s.t., the instants of the new clocks are separated by
a number of instants of the base clock. The number is given as period. DelayFor
results in a clock by delaying the base clock for a given number of ticks of a
reference clock. Infimum, denoted inf, is defined as the slowest clock that is
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faster than both c1 and c2. Supremum, denoted sup, is defined as the fastest
clock that is slower than c1 and c2.

UPPAAL-SMC performs the probabilistic analysis of properties by monitor-
ing simulations of complex hybrid systems in a given stochastic environment and
using results from the statistics to determine whether the system satisfies the
property with some degree of confidence. Its clocks evolve with various rates,
which are specified with ordinary differential equations (ODE). Uppaal-SMC
provides a number of queries related to the stochastic interpretation of Timed
Automata (STA) [12] and they are as follows, where N and bound indicate the
number of simulations to be performed and the time bound on the simulations
respectively:

1. Probability Estimation estimates the probability of a requirement property φ
being satisfied for a given STA model within the time bound: Pr[bound] φ.

2. Hypothesis Testing checks if the probability of φ being satisfied is larger than
or equal to a certain probability P0: Pr[bound] φ � P0.

3. Probability Comparison compares the probabilities of two properties being
satisfied in certain time bounds: Pr[bound1] φ1 � Pr[bound2] φ2.

4. Expected Value evaluates the minimal or maximal value of a clock or an integer
value while Uppaal-SMC checks the STA model: E[bound;N ](min : φ) or
E[bound;N ](max : φ).

5. Simulations: Uppaal-SMC runs N simulations on the STA model and mon-
itors k (state-based) properties/expressions φ1, ..., φk along the simulations
within simulation bound bound: simulate N [� bound]{φ1, ..., φk}.

3 Running Example: Traffic Sign Recognition Vehicle

An autonomous vehicle (AV) [21,22] application using Traffic Sign Recog-
nition is adopted to illustrate our approach. The AV reads the road signs,
e.g., “speed limit” or “right/left turn”, and adjusts speed and movement
accordingly. The functionality of AV, augmented with timing constraints and
viewed as Functional Design Architecture (FDA) (designFunctionTypes),
consists of the following fps in Fig. 1: System function type contains four fps,
i.e., the Camera captures sign images and relays the images to SignRecognition
periodically. Sign Recognition analyzes each frame of the detected images and
computes the desired images (sign types). Controller determines how the speed
of the vehicle is adjusted based on the sign types and the current speed of
the vehicle. VehicleDynamic specifies the kinematics behaviors of the vehicle.
Environment function type consists of three fps, i.e., the information of traffic
signs, random obstacles, and speed changes caused by environmental influence
described in TrafficSign, Obstacle, and Speed fps respectively.

We consider the Periodic, Execution, End-to-End, Synchronization,
Sporadic, and Comparison timing constraints on top of the AV East-adl
model, which are sufficient to capture the constraints described in Fig. 1. Fur-
thermore, we extend East-adl/Tadl2 with an Exclusion timing constraint
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Fig. 1. AV in East-adl augmented with Tadl2 constraints (R. IDs) specified in
PrCcsl (Spec. R. IDs)

(R8 in Fig. 1) that integrates relevant concepts from the Ccsl constraint, i.e.,
two events cannot occur simultaneously.

R1. The camera must capture an image every 50 ms. In other words, a Periodic
acquisition of Camera must be carried out every 50 ms.
R2. The captured image must be recognized by an AV every 200 ms, i.e., a
Periodic constraint on SignRecognition fp.
R3. The detected image should be computed within [100, 150] ms in order to gen-
erate the desired sign type, the SignRecognition must complete its execution
within [100, 150] ms.
R4. When a traffic sign is recognized, the speed of AV should be updated within
[150, 250] ms. An End-to-End constraint on Controller and VehicleDynamic,
i.e., the time interval from the input of Controller to the output of
VehicleDynamic must be within a certain time.
R5. The required environmental information should arrive to the controller
within 40 ms. Input signals (speed, signType, direct, gear and torque ports)
must be detected by Controller within a given time window, i.e., the tolerated
maximum constraint is 40 ms.
R6. If the mode of AV switches to “emergency stop” due to a certain obstacle,
it should not revert back to “automatic running” mode within a specific time
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period. It is interpreted as a Sporadic constraint, i.e., the mode of AV is changed
to Stop because of encountering an obstacle, it should not revert back to Run
mode within 500 ms.
R7. The execution time interval from Controller to VehicleDynamic must be
less than or equal to the sum of the worst case execution time interval of each
fp.
R8. While AV turns left, the “turning right” mode should not be activated.
The events of turning left and right considered as exclusive and specified as an
Exclusion constraint.

Delay constraint gives duration bounds (minimum and maximum) between
two events source and target. This is specified using lower, upper values
given as either Execution constraint (R3) or End-to-End constraint (R4).
Synchronization constraint describes how tightly the occurrences of a group of
events follow each other. All events must occur within a sliding window, speci-
fied by the tolerance attribute, i.e., the maximum time interval allowed between
events (R5). Periodic constraint states that the period of successive occur-
rences of a single event must have a time interval (R1–R2). Sporadic constraint
states that events can arrive at arbitrary points in time, but with defined mini-
mum inter-arrival times between two consecutive occurrences (R6). Comparison
constraint delimits that two consecutive occurrences of an event should have a
minimum inter-arrival time (R7). Exclusion constraint refers that two events
must not occur at the same time (R8).

Those timing constraints are formally specified (see as R. IDs in Fig. 1)
using the subset of clock relations and expressions (see Sect. 2) in the context
of WH. The timing constraints are then verified utilizing Uppaal-SMC and are
described further in the following sections.

4 Probabilistic Extension of Relation in CCSL

To perform the formal specification and probabilistic verification of East-adl
timing constraints (R1–R8 in Sect. 3.), Ccsl relations are augmented with prob-
abilistic properties, called PrCcsl, based on WH [8]. More specifically, in order
to describe the bound on the number of permitted timing constraint violations in
WH, we extend Ccsl relations with a probabilistic parameter p, where p is the
probability threshold. PrCcsl is satisfied if and only if the probability of relation
constraint being satisfied is greater than or equal to p. As illustrated in Fig. 1,
East-adl/Tadl2 timing constraints (R. IDs in Fig. 1) can be specified (Spec.
R. IDs) using the PrCcsl relations and the conventional Ccsl expressions.

A time system is specified by a set of clocks and clock constraints. An exe-
cution of the time system is a run where the occurrences of events are clock
ticks.

Definition 1 (Run). A run R consists of a finite set of consecutive steps where
a set of clocks tick at each step i. The set of clocks ticking at step i is denoted as
R(i), i.e., for all i, 0 � i � n, R(i) ∈ R, where n is the number of steps of R.
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Fig. 2. Example of a Run

Figure 2 presents a run R consisting of 10 steps and three clocks c1, c2 and c3.
The ticks of the three clocks along with steps are shown as “cross” symbols (x).
For instance, c1, c2 and c3 tick at the first step, hence R(1) = {c1, c2, c3}.

The history of a clock c presents the number of times the clock c has ticked
prior to the current step.

Definition 2 (History). For c ∈ C, the history of c in a run R is a function:
Hc

R: N → N. For all instances of step i, i ∈ N, Hc
R(i) indicates the number of

times the clock c has ticked prior to step i in run R, which is initialized as 0 at
step 0. It is defined as:

Hc
R(i) =

⎧
⎨

⎩

0, i = 0
Hc

R(i − 1), c /∈ R(i) ∧ i > 0
Hc

R(i − 1) + 1, c ∈ R(i) ∧ i > 0

Definition 3 (PrCCSL). Let c1, c2 and R be two logical clocks and a run. The
probabilistic extension of relation constraints, denoted c1∼pc2, is satisfied if the
following condition holds:

R � c1∼pc2 ⇐⇒ Pr(c1∼c2) � p

where ∼ ∈ {⊆,≡,≺,�,#}, P r(c1∼c2) is the probability of the relation c1∼c2
being satisfied, and p is the probability threshold.

The five Ccsl relations, subclock, coincidence, exclusion, causality
and precedence, are considered and their probabilistic extensions are defined.

Definition 4 (Probabilistic Subclock). Let c1, c2 and M be two logical
clocks and a system model. Given k runs = {R1, . . . , Rk}, the probabilistic exten-
sion of subclock relation between c1 and c2, denoted c1⊆pc2, is satisfied if the
following condition holds:

M � c1⊆pc2 ⇐⇒ Pr[c1⊆c2] � p

where Pr[c1⊆c2] = 1
k

k∑

j=1

{Rj |= c1⊆c2}, Rj ∈ {R1, . . . , Rk}, i.e., the ratio of

runs that satisfies the subclock relation out of k runs.

A run Rj satisfies the subclock relation between c1 and c2 “if c1 ticks, c2 must
tick” holds at every step i in Rj , s.t., (Rj |= c1⊆c2) ⇐⇒ (∀i 0 � i � n, c1 ∈
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R(i) =⇒ c2 ∈ R(i)). “Rj |= c1⊆c2” returns 1 if Rj satisfies c1⊆c2, otherwise
it returns 0.

Coincidence relation delimits that two clocks must always tick at the same
step, i.e., if c1 and c2 are coincident, then c1 and c2 are subclocks of each other.

Definition 5 (Probabilistic Coincidence). The probabilistic coincidence

relation between c1 and c2, denoted c1≡pc2, is satisfied over M if the following
condition holds:

M � c1≡pc2 ⇐⇒ Pr[c1≡c2] � p

where Pr[c1≡c2] = 1
k

k∑

j=1

{Rj |= c1≡c2} is determined by the number of runs

satisfying the coincidence relation out of k runs.

A run, Rj satisfies the coincidence relation on c1 and c2 if the assertion holds:
∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 ∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 ∈ R(i)). In
other words, the satisfaction of coincidence relation is established when the
two conditions “if c1 ticks, c2 must tick” and “if c2 ticks, c1 must tick” hold at
every step.

The inverse of coincidence relation is exclusion, which specifies two clocks
cannot tick at the same step.

Definition 6 (Probabilistic Exclusion). For all k runs over M, the prob-
abilistic exclusion relation between c1 and c2, denoted c1#pc2, is satisfied if
the following condition holds:

M � c1#pc2 ⇐⇒ Pr[c1#2] � p

where Pr[c1#c2] = 1
k

k∑

j=1

{Rj |= c1#c2} is the ratio of the runs satisfying the

exclusion relation out of k runs.

A run, Rj , satisfies the exclusion relation on c1 and c2 if ∀i, 0 � i � n,
(c1 ∈ R(i) =⇒ c2 /∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 /∈ R(i)), i.e., for every step, if
c1 ticks, c2 must not tick and vice versa.

The probabilistic extension of causality and precedence relations are
defined based on the history of clocks.

Definition 7 (Probabilistic Causality). The probabilistic causality rela-
tion between c1 and c2 (c1 is the cause and c2 is the effect), denoted c1�pc2, is
satisfied if the following condition holds:

M � c1�pc2 ⇐⇒ Pr[c1�c2] � p

where Pr[c1�c2] = 1
k

k∑

j=1

{Rj |= c1�c2}, i.e., the ratio of runs satisfying the

causality relation among the total number of k runs.
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A run Rj satisfies the causality relation on c1 and c2 if the condition holds: ∀i,
0 � i � n, Hc1

R (i) � Hc2
R (i). A tick of c1 satisfies causality relation if c2 does

not occur prior to c1, i.e., the history of c2 is less than or equal to the history
of c1 at the current step i.

The strict causality, called precedence, constrains that one clock must
always tick faster than the other.

Definition 8 (Probabilistic Precedence). The probabilistic precedence

relation between c1 and c2, denoted c1≺pc2, is satisfied if the following condition
holds:

M � c1≺pc2 ⇐⇒ Pr[c1≺c2] � p

where Pr[c1≺c2] = 1
k

k∑

j=1

{Rj |= c1≺c2} is determined by the number of runs

satisfying the precedence relation out of the k runs.

A run Rj satisfies the precedence relation if the condition (expressed as (1)∧(2))
holds: ∀i, 0 � i � n,

(Hc1
R (i) � Hc2

R (i))
︸ ︷︷ ︸

(1)

∧ (Hc2
R (i) = Hc1

R (i)) =⇒ (c2 /∈ R(i))
︸ ︷︷ ︸

(2)

(1) The history of c1 is greater than or equal to the history of c2; (2) c1 and c2
must not be coincident, i.e., when the history of c1 and c2 are equal, c2 must
not tick.

5 Translating CCSL and PrCCSL into UPPAAL-SMC

To formally verify the East-adl timing constraints given in Sect. 3 using
Uppaal-SMC, we investigate how those constraints, specified in Ccsl expres-
sions and PrCcsl relations, can be translated into STA and probabilistic
Uppaal-SMC queries [12]. Ccsl expressions construct new clocks and the rela-
tions between the new clocks are specified using PrCcsl. We first provide strate-
gies that represent Ccsl expressions as STA. We then present how the East-adl
timing constraints defined in PrCcsl can be translated into the corresponding
STAs and Uppaal-SMC queries based on the strategies.

5.1 Mapping CCSL to UPPAAL-SMC

We first describe how the universal clock (TimeUnit ms), tick and history of
Ccsl can be mapped to the corresponding STAs. Using the mapping, we then
demonstrate that Ccsl expressions can be modeled as STAs. The TimeUnit
is implicitly represented as a single step of time progress in Uppaal-SMC’s
clock [23]. The STA of TimeUnit (universal time defined as ms) consists of one
location and one outgoing transition whereby the physical time and the duration
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Fig. 3. Uppaal-SMC model of clock tick and history

of TimeUnit ms are represented by the clock variable t in Fig. 3(a). clock resets
every time a transition is taken. The duration of TimeUnit is expressed by the
invariant t � 1, and guard t � 1, i.e., a single step of the discrete time progress
(tick) of universal time.

A clock c, considered as an event in Uppaal-SMC, and its tick, i.e., an
occurrence of the event, is represented by the synchronization channel c!. Since
Uppaal-SMC runs in chronometric semantics, in order to describe the dis-
cretized steps of runs (Rs), we consider if c ticks in the time range of [i, i + 1)
(i + 1 is excluded), c ticks at step i. The STA of tick and history is shown in
Fig. 3(b). hc is the history of c, and tc indicates whether c ticks at the current
step. A function upper() rounds the time instant (real number) up to the near-
est greater integer. When c ticks via c? at the current time step, tc is set to 1
prior to the time of the next step (t < u). hc is then increased by 1 (hc++) at
the successive step (i.e., when t = u). For example, when c ticks at time = 1.5
(see Fig. 3(c)), upper() returns the value of 2 and tc becomes 1 during the time
interval [1.5, 2), followed by hc being increased by 1 at t = 2.

Based on the mapping patterns of ms, tick and history, we present how
periodicOn, delayFor, infimum and supremum expressions can be represented
as Uppaal-SMC models.

PeriodicOn: c � periodicOn ms period q, where � means “is defined as”.
PeriodicOn builds a new clock c based on ms and a period parameter q, i.e., c
ticks at every qth tick of ms. The STA of periodicOn is illustrated in Fig. 4(a).
This STA initially stays in the loop location to detect q occurrences (ticks) of
ms. The value x counts the number of ms ticks. When ms occurs (ms?), the
STA takes the outgoing transition and increases x by 1. It “iterates” until ms
ticks q times (x == q), then it activates the tick of c (via c!). At the successive
step (ms?), it updates the history of c (hc++) and sets x = 1. The STA then
returns to loop and repeats the calculation. This periodicOn STA can be used
for the translation of East-adl Periodic timing constraint (R1 in Fig. 1) into
its Uppaal-SMC model.

DelayFor: c � c1 delayFor d on c2. delayFor defines a new clock c based
on c1 (base clock) and c2 (reference clock), i.e., each time c1 ticks, at the dth

tick of c2, c ticks (each tick of c corresponds to a tick of c1). Kang et al. [23]
and Suryadevara et al. [33] presented translation rules of delayFor into Uppaal
models. However, their approaches are not applicable in the case after c1 ticks,
and c1 ticks again before the dth tick of c2 occurs. For example (see Fig. 2),
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Fig. 4. STA of Ccsl expressions

assume that d is 3. After the 1st tick of c1 (at step 0) happens, if c1 ticks again (at
step 2) before the 3rd tick of c2 occurs (at step 4), the 2nd tick of c1 is discarded
in their approaches. To alleviate the restriction, we utilize spawnable STA [12] as
semantics denotation of delayFor expression and the STA of delayFor is shown
in Fig. 4(c). As presented in Fig. 4(b), when the vth tick of c1 occurs (c1[v]?), its
delayFor STA is spawned by source STA. The spawned STA stays in the wait
location until c2 ticks d times. When c2 ticks d times (x == d), it transits to the
tick location and triggers c (c!). At the next step (ms?), the STA increases hc
by 1 and moves to finish location and then becomes inactive, i.e., calculation of
the vth tick of c is completed. This delayFor STA can be utilized to construct
the Uppaal-SMC models of East-adl timing requirements R3 – R7 in Sect. 3.

Given two clocks c1 and c2, their infimum (resp. supremum) is informally
defined as the slowest (resp. fastest) clock faster (resp. slower) than both c1
and c2. infimum and supremum are useful in order to group events occurring
at the same time and decide which one occurs first and which one occurs last.
The representative STAs for both expressions are utilized for the translation of
East-adl Synchronization timing constraint (R5 in Sect. 3) into the Uppaal-
SMC model.
Infimum creates a new clock c, which is the slowest clock faster than c1 and c2.
The STA of infimum is illustrated in Fig. 4(d). When c1 (c2) ticks via c1? (c2?),
the STA transits to the s1 (s2 ) location and compares the history of the two
clocks (h1 and h2) to check whether the current ticking clock c1 (c2) is faster
than c2 (c1). If so, i.e., the condition “h1 � h2 (h2 � h1)” holds, the STA takes
a transition to the tick location and activates the tick of c (c!). After updating
the history (hc++), it returns to the init location and repeats the calculation.
Supremum builds a new clock c, which is the fastest clock slower than c1 and
c2. It states that if c1 ticks at the current step and c1 is slower than c2, then
c ticks. The STA of supremum is shown in Fig. 4(e). When c1 (c2) ticks via c1?
(c2?), the STA transits to the s1 (s2 ) location and compares the history of the
two clocks and decides whether c1 (c2) is slower than c2 (c1). If c1 (c2) ticks
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slower than c2 (c1), i.e., h1 < h2 (h2 < h1), or c1 and c2 tick at the same rate,
i.e., “h1 == h2 && t2 == 1 (h1 == h2 && t1 == 1)” holds, the tick of c
is triggered. The STA then updates the history of c and goes back to init and
repeats the process.

5.2 Representation of PrCCSL in UPPAAL-SMC

In this section, the translation of East-adl timing constraints specified in
PrCcsl into STA and Hypothesis Testing query (refer to Sect. 2) is provided
from the view point of the analysis engine Uppaal-SMC.

Recall the definition of PrCcsl in Sect. 4. The probability of a relation being
satisfied is interpreted as a ratio of runs that satisfies the relation among all
runs. It is specified as Hypothesis Testing queries in Uppaal-SMC, H0: m

k � P
against H1: m

k < P , where m is the number of runs satisfying the given relation
out of all k runs. k is decided by strength parameters α (the probability of false
positives, i.e., accepting H1 when H0 holds) and β (probability of false negatives,
i.e., accepting H0 when H1 holds), respectively [10].

Based on the mapping patterns of tick and history in Sect. 5.1, the probabilis-
tic extension of exclusion, causality and precedence relations are expressed
as Hypothesis Testing queries straightforwardly.
Probabilistic Exclusion is employed to specify East-adl Exclusion timing
constraint, turnLeft #p rightOn (Spec. R8 in Fig. 1). It states that the two
events, turnLeft and rightOn (the vehicle is turning left and right), must be
exclusive. The ticks of turnLeft and rightOn events are modeled using the STA
in Fig. 3(b). Based on the definition of probabilistic exclusion (Sect. 4),
R8 is expressed in Hypothesis Testing query: Pr[bound] ([ ]((tturnLeft =⇒
¬ trightOn) ∧ (trightOn =⇒ ¬ tturnLeft))) � P , where tturnLeft and trightOn

indicate the ticks of turnLeft and rightOn, respectively. bound is the time bound
of simulation, in our setting bound = 3000.

Probabilistic Causality is used to specify East-adl Synchronization timing
constraint, sup �p {inf delayFor 40 on ms} (Spec. R5 in Fig. 1), where sup
(inf ) is the fastest (slowest) event slower (faster) than five input events, speed,
signType, direct, gear and torque. Let SUP and INF denote the supremum and
infimum operator, i.e., SUP(c1, c2) (resp. INF(c1, c2)) returns the supremum
(resp. infimum) of clock c1 and c2. sup and inf can now be expressed with the
nested operators (where � means “is defined as”):

sup � SUP(speed, SUP(SUP(signType, direct), SUP(gear, torque)))

inf � INF(speed, INF(INF(signType, direct), INF(gear, torque)))

For the translation of sup (inf) into Uppaal-SMC model, we employ the STA
of supremum (resp. infimum) (Fig. 4(d) and (e)) for each SUP (INF) operator.
A new clock dinf is generated by delaying inf for 40 ticks of ms: dinf �
{inf delayFor 40 on ms}. The Uppaal-SMC model of dinf is achieved by
adapting the spawnable DelayFor STA (Fig. 4). Based on the probabilistic
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causality definition, R5 is interpreted as: Pr[� bound]([ ] hsup � hdinf ) � P ,
where hsup and hdinf are the history of sup and dinf respectively. Simi-
larly, Execution (R3) and Comparison (R7) timing constraints specified in
probabilistic causality using delayFor can be translated into Hypothesis
Testing queries. For further details, refer to the technical report [20].

Probabilistic Precedence is utilized to specify East-adl End-to-End timing
constraint (R4). It states that the time duration between the source event signIn
(input signal on the signType port of Controller) and the target event spOut
(output signal on the speed port of VehicleDynamic) must be within a time
bound of [150, 250], and that is specified as Uppaal-SMC queries (1) and (2):

{signIn delayFor 150 on ms} ≺p spOut (1)

spOut ≺p {signIn delayFor 250 on ms} (2)

Two clocks, lower and upper, are defined by delaying signIn for 150 and 250
ticks of ms respectively: lower � {signIn delayFor 150 on ms}, and upper �
{signIn delayFor 250 on ms}. The corresponding Uppaal-SMC models of
lower and upper are constructed based on the delayFor STA (shown in Fig. 4).
Finally, R4 specified in PrCcsl is expressed as Uppaal-SMC queries (3) and
(4), where hlower, hupper and hspOut are the history of lower, upper and spOut.
tspOut and tupper represent the tick of upper and spOut respectively:

Pr[� bound]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒ tspOut == 0)) � P
(3)

Pr[� bound]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒ tupper == 0)) � P
(4)

Similarly, East-adl Sporadic timing constraint (R6) specified in
probabilistic precedence can be translated into Hypothesis Testing query
[20].

In the case of properties specified in either probabilistic subclock or
probabilistic coincidence, such properties cannot be directly expressed as
Uppaal-SMC queries. Therefore, we construct observer STA that capture the
semantics of standard subclock and coincidence relations. The observer STA
are composed to the system STA (namely a network STA, NSTA) in parallel.
Then, the probabilistic analysis is performed over the NSTA which enables us to
verify the East-adl timing constraints specified in probabilistic subclock
and probabilistic coincidence of the entire system using Uppaal-SMC.
Further details are given below.

Probabilistic Subclock is employed to specify East-adl Periodic timing
constraint, given as signRecTrig ⊆p cTrig (Spec. R2 in Fig. 1). The standard
subclock relation states that superclock must tick at the same step where sub-
clock ticks. Its corresponding STA is shown in Fig. 5(a). When signRevTrig ticks
(signRecTrig?), the STA transits to the wait location and detects the occur-
rence of cTrig until the time point of the subsequent step (u). If cTrig occurs
prior to the next step (tcTrig == 1), the STA moves to the success location,
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Fig. 5. Observer STA of Subclock and Coincidence

i.e., the subclock relation is satisfied at the current step. Otherwise, it transits
to the fail location. R2 specified in probabilistic subclock is expressed as:
Pr[bound]([ ]¬ Subclock.fail) � P . Uppaal-SMC analyzes if the fail location
is never reachable from the system NSTA, and whether the probability of R2
being satisfied is greater than or equal to P .

Probabilistic Coincidence is adapted to specify East-adl Periodic timing
constraint, given as cTrig ≡p {periodicOn ms period 50} (Spec. R1 in Fig. 1).
To express R1 in Uppaal-SMC, first, a periodic clock prdClk ticking every 50th

tick of ms is defined: prdClk � periodicOn ms period 50. The corresponding
Uppaal-SMC model of prdClk is generated based on the periodicOn STA
shown in Fig. 4(a) by setting q as 50. Then, we check if cTrig and prdClk are
coincident by employing the coincidence STA shown in Fig. 5(b). When cTrig
(prdClk) ticks via cTrig? (prdClk?), the STA checks if the other clock, prdClk
(cTrig), ticks prior to the next step, i.e., whether tprdClk == 1 (tcTrig == 1)
holds or not when t � u. The STA then transits to either the success or fail
location based on the judgement. R1 specified in probabilistic coincidence
is expressed as: Pr[bound]([ ]¬ Coincidence.fail) � P . Uppaal-SMC analyzes
if the probability of R1 being satisfied is greater than or equal to P .

6 Experiments: Verification and Validation

We have formally analyzed over 30 properties (associated with timing con-
straints) of the system including deadlock freedom [20]. A list of selected prop-
erties (Sect. 3) are verified using Uppaal-SMC and the results are listed in
Table.1. Five types of Uppaal-SMC queries are employed to specify R1–R8,
Hypothesis Testing (HT), Probability Estimation (PE), Probability Comparison
(PC), Expected Value (EV) and Simulations (SI).

1. Hypothesis Testing: All properties are established as valid with 95% level of
confidence; 2. Probability Estimation: The probability of each property being sat-
isfied is computed and its approximate interval is given as [0.902, 1]; 3. Expected
Value: The expected values of time durations of timing constraints (R1 – R7) are
evaluated. For example, during the analysis of R1, the time interval between two
consecutive triggerings of the Camera is evaluated as 50 and that validates R1.
Furthermore, Uppaal-SMC evaluates the expected maximum duration bound
of End-to-End timing constraint by checking R4 and generates the frequency
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Table 1. Verification results in Uppaal-SMC

R Q Expression Result Time Mem CPU

R1 HT Pr[�3000]([ ] ¬Coin.fail)�0.95 Valid 48.7 32.7 31.3

PE Pr[�3000]([ ] ¬Coin.fail) [0.902, 1] 12.6 35.6 29.8

EV E[�3000; 500]([ ] max : cam.t) 50± 0 83.3 33.3 31.7

SI simulate 500 [�3000](camtrig, p1trig) Valid 80.9 32.9 32.5

R2 HT Pr[�3000]([ ] ¬Sub.fail)�0.95 Valid 48.9 32.9 29.3

PE Pr[�3000]([ ] ¬Sub.fail) [0.902, 1] 12.3 35.5 30.4

EV E[�3000; 500]([ ] max : sf.t) 200± 0 80.6 32.5 32.2

SI simulate 500 [�3000](strig, p2trig) Valid 85.5 33.1 32.3

R3 HT Pr[�3000]([ ] hSU � hS) � 0.95 Valid 76.5 40.4 32.3

PE Pr[�3000]([ ] hSU � hS) [0.902, 1] 18.1 40.3 30.8

HT Pr[�3000]([ ] hS � hSL) � 0.95 Valid 77.6 37.7 31.7

PE Pr[�3000]([ ] hS � hSL) [0.902, 1] 16.5 40.0 31.5

PC Pr[�3000] ([ ] SR.exec =⇒ (SR.t � 100 ∧ SR.t � 125)) �
Pr[�3000] ([ ] SR.exec =⇒ (SR.t � 125 ∧ SR.t � 150))

�1.1 8.3 31.7 32.3

EV E[�3000; 500]([ ] max : checkexe.t) 147.2± 0.7 82.8 32.6 30.4

SI simulate 500 [�3000](hSU, hS, hSL) Valid 86.9 33.2 33.4

R4 HT Pr[�3000]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒
tspOut == 0)) � 0.95

Valid 54.2 32.9 31.4

PE Pr[�3000]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒ ¬tspOut)) [0.902, 1] 13.1 35.3 29.4

HT Pr[�3000]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒
tupper == 0)) � 0.95

Valid 1.3 h 32.2 32.6

PE Pr[�3000]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒ ¬tupper)) [0.902, 1] 19.8 34.1 32.0

EV E[�3000; 500]([ ] max : checke2e.t) 229.7± 0.9 83.3 32.5 30.6

SI simulate 500 [�3000](hCU, hVD, hCL, tCU, tVD) Valid 89.8 32.9 30.2

R5 HT Pr[�3000]([ ] hdinf � hsup) � 0.95 Valid 53.9 32.7 31.9

PE Pr[�3000]([ ] hdinf � hsup) [0.902, 1] 13.7 35.5 30.4

EV E[�3000; 500]([ ] max : checksync.t) 30.6± 0.21 72.4 32.6 31.6

SI simulate 500 [�3000](hdinf , hsup) Valid 86.8 32.6 32.0

R6 HT Pr[�3000]([ ] hv � ho ∧ ((hv == ho) =⇒ tva == 0)) � 0.95 Valid 3h 33.1 30.0

PE Pr[�3000]([ ] hv � ho ∧ ((hv == ho) =⇒ tva == 0)) [0.902, 1] 45.4 33.1 29.4

EV E[�3000; 500]([ ] max : obs.t) 667± 79 80.8 29.7 31.7

SI simulate 500 [�3000](hv, ho, v)) Valid 88.6 29.5 31.0

R7 HT Pr[�3000]([ ]

(excon == wcetcon ∧ exvd == wcetvd) =⇒ (hcu � hcom)) �
0.95

Valid 57.4 36.7 28.4

PE Pr[�3000]([ ]

(excon == wcetcon ∧ exvd == wcetvd) =⇒ (hcu � hcom))

[0.902, 1] 14.7 35.5 26.7

EV E[�3000; 500]([ ] max : control.t) 146.7± 0.28 74.9 29.4 32.7

EV E[�3000; 500]([ ] max : vd.t) 96.6± 0.27 74.2 29.4 31.4

SI simulate 500 [�3000](hcu, hcom)) Valid 86.6 29.5 32.5

R8 HT Pr[�3000]([ ] ¬(tRight == 1 ∧ tLeft == 1)) � 0.95 Valid 57.4 36.7 28.4

PE Pr[�3000]([ ] ¬(tRight == 1 ∧ tLeft == 1)) [0.902, 1] 14.7 35.5 26.7

SI simulate 500 [�3000](tRight, tLeft) Valid 85.5 29.6 32.6

histogram of the expected bound (see Fig. 7). It illustrates that the expected
bound is always less than 250 ms and 90% of the duration is within the range of
[207, 249]; 4. Probability Comparison: is applied to confirm that the probability
of SignRecognition fp completing its execution within [100, 125] ms is greater
than the probability of completion within [125, 150] ms (R3). The query results
in a comparison probability ratio greater than or equal to 1.1, i.e., the execution
time of SignRecognition fp is most likely less than 125 ms. 5. Simulation: The
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Fig. 6. Simulation result of R6. (Color figure online)

Fig. 7. Frequency histogram of End-to-End timing constraint (R4)

simulation result of Synchronization timing constraint (R5) is demonstrated
in Fig. 6. hinf , hsup and hdinf are history of inf , sup and dinf respectively.
Recall Spec. R5 (see Fig. 1), the causality relation between dinf and sup is
satisfied. As the simulation of R6 shows (Fig. 6), the rising edge of hsup (in blue)
always occurs prior to hdinf (in red). It indicates that sup always runs faster
than dinf , thus the causality relation is validated.

7 Related Work

In the context of East-adl, efforts on the integration of East-adl and for-
mal techniques based on timing constraints were investigated in several works
[15,17,24,31], which are however, limited to the executional aspects of system
functions without addressing stochastic behaviors. Kang [23] and Suryadevara
[33,34] defined the execution semantics of both the controller and the environ-
ment of industrial systems in Ccsl which are also given as mapping to Uppaal
models amenable to model checking. In contrast to our current work, those
approaches lack precise stochastic annotations specifying continuous dynamics
in particular regarding different clock rates during execution. Ling [35] trans-
formed a subset of Ccsl constraints to PROMELA models to perform formal
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verification using SPIN. Zhang [36] transformed Ccsl into first order logics
that are verifiable using SMT solver. However, their works are limited to func-
tional properties, and no timing constraints are addressed. Though, Kang et al.
[16,19] and Marinescu et al. [28] present both simulation and model checking
approaches of Simulink and Uppaal-SMC on East-adl models, neither for-
mal specification nor verification of extended East-adl timing constraints with
probability were conducted. Our approach is a first application on the inte-
gration of East-adl and formal V&V techniques based on probabilistic exten-
sion of East-adl/Tadl2 constraints using PrCcsl and Uppaal-SMC. An ear-
lier study [18,21,22] defined a probabilistic extension of East-adl timing con-
straints and presented model checking approaches on East-adl models, which
inspires our current work. Specifically, the techniques provided in this paper
define new operators of Ccsl with stochastic extensions (PrCcsl) and verify
the extended East-adl timing constraints of CPS (specified in PrCcsl) with
statistical model checking. Du et al. [13] proposed the use of Ccsl with proba-
bilistic logical clocks to enable stochastic analysis of hybrid systems by limiting
the possible solutions of clock ticks. Whereas, our work is based on the proba-
bilistic extension of East-adl timing constraints with a focus on probabilistic
verification of the extended constraints, particularly, in the context of WH.

8 Conclusion

We present an approach to perform probabilistic verification on East-adl
timing constraints of automotive systems based on WH at the early design
phase: 1. Probabilistic extension of Ccsl, called PrCcsl, is defined and the
East-adl/Tadl2 timing constraints with stochastic properties are specified
in PrCcsl; 2. The semantics of the extended constraints in PrCcsl is trans-
lated into verifiable Uppaal-SMC models for formal verification; 3. A set of
mapping rules is proposed to facilitate guarantee of translation. Our approach is
demonstrated on an autonomous traffic sign recognition vehicle (AV) case study.
Although, we have shown that defining and translating a subset of Ccsl with
probabilistic extension into Uppaal-SMC models is sufficient to verify East-
adl timing constraints, as ongoing work, advanced techniques covering a full
set of Ccsl constraints are further studied. Despite the fact that Uppaal-SMC
supports probabilistic analysis of the timing constraints of AV, the computa-
tional cost of verification in terms of time is rather expensive. Thus, we continue
to investigate complexity-reducing design/mapping patterns for CPS to improve
effectiveness and scalability of system design and verification.
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