
Carlo A. Furia   
Kirsten Winter (Eds.)

14th International Conference, IFM 2018
Maynooth, Ireland, September 5–7, 2018
Proceedings

Integrated 
Formal MethodsLN

CS
 1

10
23

Fo
rm

al
 M

et
ho

ds

 123



Lecture Notes in Computer Science 11023

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Carlo A. Furia • Kirsten Winter (Eds.)

Integrated
Formal Methods
14th International Conference, IFM 2018
Maynooth, Ireland, September 5–7, 2018
Proceedings

123



Editors
Carlo A. Furia
Università della Svizzera Italiana
Lugano
Switzerland

Kirsten Winter
University of Queensland
Brisbane, QLD
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-98937-2 ISBN 978-3-319-98938-9 (eBook)
https://doi.org/10.1007/978-3-319-98938-9

Library of Congress Control Number: 2018950771

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Broadening the adoption and applicability of formal methods hinges on being able to
combine different formalisms and different analysis techniques – because different
components may be more amenable to different techniques, or simply to express
complex properties and to reason about complex systems. The Integrated Formal
Methods (iFM) conference series targets research in formal approaches that combine
different methods for modeling and analysis. The conference covers a broad spectrum
of topics: from language design, to verification and analysis techniques, to supporting
tools and their integration into software engineering practice.

This volume contains the proceedings of iFM 2018, which took place in Maynooth
during September 5–7, 2018, and was hosted by the National University of Ireland. The
Program Committee (PC) received 60 paper submissions. After several weeks of
reviewing, followed by a lively online discussion among PC members, we selected 22
contributions (17 regular papers and five short papers) for inclusion in this proceedings
volume and presentation at the conference. The combination of topics covered by the
selected papers includes both theoretical approaches and practical implementations,
demonstrating that the underlying principle of integrating heterogeneous formal
methods can buttress rigorous solutions in different domains and at different levels of
abstraction.

The scientific program of iFM 2018 was completed by keynote talks given by
Cristian Cadar (Imperial College London, UK), Ana Cavalcanti (University of York,
UK), and Viktor Vafeiadis (MPI-SWS, Germany), whose content is also documented
in this volume. We would like to thank our invited speakers for delivering exciting
presentations that served as an inspiration to the iFM community.

We also thank the PC members and the reviewers who helped them for their
thorough reviewing work, and for animating a careful discussion of the merits of each
submission. Their names are listed on the following pages. The EasyChair system
provided indispensable practical support to the reviewing and discussion process.

The local organization in Maynooth ensured a successful and enjoyable conference.
We are grateful to all the organizers, and in particular to the general chair,
Rosemary Monahan, who took care of all organizational aspects with great resource-
fulness and punctuality. Thanks also to Hao Wu for helping with publicizing iFM 2018
and its related events.

Finally, we would like to acknowledge the organizations that sponsored the con-
ference: Maynooth University, Failte Ireland, Science Foundation Ireland, the Embassy
of France in Ireland, ACM SIGLOG, and Springer.

July 2018 Carlo A. Furia
Kirsten Winter
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Dynamic Symbolic Execution
for Software Analysis

Cristian Cadar

Imperial College London, UK
c.cadar@imperial.ac.uk

Abstract. Symbolic execution is a program analysis technique that can auto-
matically explore and analyse paths through a program. While symbolic exe-
cution was initially introduced in the seventies, it has only received significant
attention during the last decade, due to tremendous advances in constraint
solving technology and effective blending of symbolic and concrete execution
into what is often called dynamic symbolic execution. Dynamic symbolic
execution is now a key ingredient in many computer science areas, such as
software engineering, computer security, and software systems, to name just a
few.
In this talk, I will discuss recent advances and ongoing challenges in the area

of dynamic symbolic execution, drawing upon our experience developing sev-
eral symbolic execution tools for many different problems, such as
high-coverage test input generation, bug and security vulnerability detection,
patch testing and bounded verification, among many others.



Modelling and Verification
for Swarm Robotics

Ana Cavalcanti1, Alvaro Miyazawa1, Augusto Sampaio2, Wei Li3,
Pedro Ribeiro1 and Jon Timmis3

1 Department of Computer Science, University of York, UK
2 Centro de Informática, Universidade Federal de Pernambuco, Brazil

3 Department of Electronic Engineering, University of York, UK

Abstract. RoboChart is a graphical domain-specific language, based on UML,
but tailored for the modelling and verification of single robot systems. In this
paper, we introduce RoboChart facilities for modelling and verifying hetero-
geneous collections of interacting robots. We propose a new construct that
describes the collection itself, and a new communication construct that allows
fine-grained control over the communication patterns of the robots. Using these
novel constructs, we apply RoboChart to model a simple yet powerful and
widely used algorithm to maintain the aggregation of a swarm. Our constructs
can be useful also in the context of other diagrammatic languages, including
UML, to describe collections of arbitrary interacting entities.



Program Correctness
under Weak Memory Consistency

Viktor Vafeiadis

MPI-SWS, Germany

Abstract. It is fairly common knowledge that shared-memory concurrent pro-
grams running on modern multicore processors do not adhere to the interleaving
concurrency model, but rather exhibit weakly consistent behaviours, such as
store and load buffering. Formally, the semantics of shared-memory concurrent
programs is determined by a weak memory model, defined either by the pro-
gramming language (e.g., in the case of C/C++11 or Java) or by the hardware
architecture (e.g., for assembly and legacy C code).
These weak memory models pose two major challenges for software verifi-

cation. First, many standard proof techniques that were developed for inter-
leaving concurrency, such as the Owicki-Gries method, are unsound in the
context of weak memory consistency. Second, it is not even clear how to specify
the correctness of concurrent libraries when there is no a globally agreed notion
of time and state. To overcome these challenges, we therefore have to develop
new techniques for specifying and verifying weakly consistent concurrent
programs. The invited talk will present some first steps in this direction.
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Modelling and Verification for
Swarm Robotics

Ana Cavalcanti1(B), Alvaro Miyazawa1, Augusto Sampaio2, Wei Li3,
Pedro Ribeiro1, and Jon Timmis3

1 Department of Computer Science, University of York, York, UK
Ana.Cavalcanti@york.ac.uk

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
3 Department of Electronic Engineering, University of York, York, UK

Abstract. RoboChart is a graphical domain-specific language, based
on UML, but tailored for the modelling and verification of single robot
systems. In this paper, we introduce RoboChart facilities for modelling
and verifying heterogeneous collections of interacting robots. We propose
a new construct that describes the collection itself, and a new communi-
cation construct that allows fine-grained control over the communication
patterns of the robots. Using these novel constructs, we apply RoboChart
to model a simple yet powerful and widely used algorithm to maintain
the aggregation of a swarm. Our constructs can be useful also in the
context of other diagrammatic languages, including UML, to describe
collections of arbitrary interacting entities.

1 Introduction

In [15,22], RoboChart, a domain-specific language tailored for robotics, is pre-
sented. The core of RoboChart is based on state machines, a modelling construct
widely employed in the embedded-software and robotics domains. RoboChart is
endowed with a denotational semantics that supports both automatic and semi-
automatic verification in the form of model checking and theorem proving.

Unlike general purpose notations, like, for example, UML [12], RoboChart is
concise, with well defined syntax and well-formedness conditions that guaran-
tee meaningfulness of models. RoboChart also includes constructs for modelling
abstraction (given types, operations definitions via pre and postconditions, and
so on), nondeterminism, and time. Most languages of the same nature avoid
abstraction and nondeterminism since these features make code generation dif-
ficult or impossible. While time is considered in UML MARTE [11] and UML-
RT [18], the RoboChart approach based on budgets and deadlines is distinctive.

RoboChart is supported by RoboTool, which provides facilities for graphical
modelling, validation, and automatic generation of C++ simulations. RoboTool
automatically generates also the formal semantics of RoboChart models. The
semantics definition uses the process algebra CSP [20], and RoboTool also pro-
vides a direct connection to the FDR model checker for CSP [10].
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-98938-9_1
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2 A. Cavalcanti et al.

RoboChart as presented in [15], however, enforces the use of design patterns
appropriate for systems composed of a single robot. While such applications are
relevant and widespread, collections of robots, that is, swarms, are becoming
popular. In robotic swarms, a goal such as pushing a block is achieved by a
collection of simple and cheap robots that individually cannot complete the task,
but can in cooperation. Their relative low cost allows for defective robots to be
easily replaced, making a swarm more robust than single robot applications.

Here, we extend RoboChart to support modelling and verification of collec-
tions of interacting robots. We focus on the nature of the robots, and how they
communicate with each other. With these, we can specify the behaviour of a
swarm as the result of the interaction of a (n unspecified) number of robotic sys-
tems. We can describe abstractly heterogeneous collections of interacting robots
through the use of underspecified constants, different robot specifications, and
communication patterns. We introduce a new inter-robot communication mech-
anism for fine-grained control over interactions, supporting both identification
of the source of interactions and restriction of the possible targets.

Although our focus is on capturing precisely descriptions of swarm appli-
cations from the robotics literature, our modelling constructs can be useful to
model arbitrary heterogeneous distributed systems. As far as we know, our con-
structs are entirely novel. In UML or SysML [17], for instance, a variant of
UML for systems modelling, the definition of a collection and their connections
requires two diagrams, and fixes the number of components in the collection.

We note, however, that as a design language, RoboChart does not cover the
explicit specification of global properties of the swarm, such as aggregation. A
property language for RoboChart is part of our agenda for future work.

Section 2 briefly introduces the RoboChart notation by means of a sim-
ple example of an aggregation algorithm running on a single robot. Section 3
describes the extensions necessary to accommodate the new features, and
Sect. 4 describes their semantics. Section 5 reviews the tool support available for
RoboChart and its extensions. Section 6 discusses related work. Finally, Sect. 7
concludes and discusses further opportunities for work.

2 RoboChart and Its Semantics

Here, to illustrate the RoboChart notation, we present in Sect. 2.1 a model of
the alpha algorithm [4]1, whose goal is to maintain a collection of robots in an
aggregate. This algorithm estimates the number of neighbours of a robot, and
uses that to decide whether to maintain its direction or turn around. The idea is
that the robot recognises when it has moved away from the aggregate by counting
the number of neighbours. Later, we show how our support for collections allows
for a much simpler and clearer model. In Sect. 2.2, we briefly introduce CSP.
Finally, Sect. 2.3 gives an overview of the semantics of RoboChart.

1 www.cs.york.ac.uk/circus/RoboCalc/case-studies/.

www.cs.york.ac.uk/circus/RoboCalc/case-studies/
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Fig. 1. A robot implementing an aggregation algorithm.

2.1 The Notation

A RoboChart model describes two main aspects of an application: structure and
behaviours. The root element of a model is called a module, and provides an
overall view of the system. The module for our example is in Fig. 1. A module
specifies two aspects of the applications: (1) assumptions about the platform, and
(2) available behaviours. The assumptions are modelled via a robotic-platform
block, illustrated in Fig. 1 by the block ePuck, which describes the variables,
operations, and events that must be available for the application to be feasible.

In this example, the platform ePuck abstracts a piece of hardware containing
a number of sensors and actuators. The operation move that takes two param-
eters l and a, both of type real, models the actuator responsible for moving the
robot forward and turning. The event obstacle represents an obstacle sensor and
communicates the position of the obstacle. The events report and ack represent
sensors and actuators responsible for inter-robot communication.

The event obstacle carries a value of type Position that is defined by an
enumeration containing the values left and right. The event report carries a value
of type ID representing the source of the communication, and ack carries a pair
of ID values representing the source and target of the communication. ID is an
abstract type about which nothing is assumed except for its non-emptiness.

The behaviours of a RoboChart module are specified by one or more con-
trollers; they run in parallel and interact with each other and with the robotic
platform. The possible interactions are indicated by connections, which, at the
level of modules, are either synchronous or asynchronous.

In our example, the aggregation behaviour is decomposed into two con-
trollers: MovementC and CommunicationC. The first describes how the robot
moves based on the number of neighbours; the second uses inter-robot commu-
nications to estimate that number. There are four interaction points: the occur-
rence of the event obstacle represents an interaction between the robotic platform
and MovementC to communicate the position of the obstacle with respect to the
robot; report and ack are used to interact with other robots, intermediated by
the robotic platform, and communicating the identity of the robot; finally robots
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Fig. 2. Communication controller of the aggregation algorithm.

Fig. 3. Communication state machine of the aggregation algorithm.

in CommunicationC is used for interaction with MovementC through neighbours.
(Connected events do not need to have the same name, just the same type.)

Controllers are defined by one or more state machines interacting via syn-
chronous connections. Figure 2 shows CommunicationC. It declares two interfaces
CommHw and Internal, also shown in Fig. 2. They define the events report, ack and
robots, connected to identically named events in the referenced state machine
Communication, whose definition is shown in Fig. 3. Just like the connection
between CommunicationC and the platform, the connections for report and ack
are bidirectional. The connection for robots provides an output, matching the
connection between CommunicationC and MovementC.

Communication models a cyclic behaviour, where each cycle takes RC time
units. At each cycle, the machine indicates its presence via report, and then
monitors for responses from other robots through ack. At the same time, reports
from other robots are acknowledged. This allows estimating how many robots
are within the communication range. The size of the set of neighbours is sent
through robots and propagated to MovementC to decide how to move.
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Similarly to the controller CommunicationC, the machine Communication
declares the two interfaces CommHw and Internal to define the events it uses.
Additionally, it declares two constants: id of type ID, representing the identifier
of the robot and RC with type nat of natural numbers. There are also three
variables: x of type ID*ID (pair of values of type ID) records values received
through ack, y of type ID records values received through report, and neighs of
type Set(ID) (sets of values of type ID) records the identifiers of the robots that
respond to the event report. Finally, Communication declares a clock RCC.

Communication initially enters the state Broadcast executing its entry action,
which sends id through report. After that, the transition to the state Receive is
taken, since it has no guard or event. This resets the clock (#RCC) and assigns
the empty set ({}) to neighs. From Receive, there are three possible transitions.
If the clock runs out (since(RCC)>=RC), the size of neighs is communicated via
robots, and Broadcast is entered. If, before the clock runs out (since(RCC)<RC),
the event report occurs, the pair (|y,id|) formed input y taken and id is sent
through ack, and the machine stays in Receive. Finally, if an event ack, where
the first element x[1] of its tuple input x is id, happens before the clock runs out,
the second element of x is added to neighs, and the machine stays in Receive.

The semantics of RoboChart captures this behaviour and that of the whole
module as a CSP process. We next give a brief overview of CSP.

2.2 CSP

Systems and components are modelled in CSP via processes. They are all
regarded as black boxes and defined by the patterns of their interactions the
environment. Interaction is via atomic and instantaneous events.

Accordingly, the semantics of a RoboChart model is defined by a process
that captures the behaviour of its module. Each component, controller, and
state machine is defined by a process as well. The events of the module process
match the interface of the robotic system characterised by the robotic platform.
They correspond to accesses to variables, to calls to operations of the platform,
and to communications using the RoboChart events of the platform.

We explain the CSP notation as we use it; Table 1 gives a summary. A core
operator is prefixing c → P ; it describes a process that engages in a communi-
cation (event) c and then behaves as the process P . The event may be an input
c?x that records the value input via a channel c in a variable x , an output c!e
of the value of an expression e, or a simple synchronisation on c.

The parallel operators are also very important. P |[cs ]|Q defines the parallel
execution of P and Q , synchronising on the events in the set cs. Communications
internal to a component or system can be hidden using the operator P\cs, which
hides the events in the set cs in the execution of P .

A dialect of CSP, called tock-CSP, uses a special event tock to mark the pas-
sage of time. We use tock-CSP to capture the semantics of the timed constructs
of RoboChart: clocks, budgets, and deadlines.

Most importantly for our agenda of work, CSP has a relational predica-
tive semantics defined using the Unifying Theories of Programming (UTP) [13].
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Table 1. Summary of CSP operators

Symbol Name Description

Skip Skip Terminate immediately without any side
effects

P |[ cs ]| Q Parallel composition Run P and Q in parallel synchronising on
events in cs

P ||| Q Interleaving Run P and Q in parallel without
synchronisation

{|e|} Channel set Set of all possible events associated with
channel e

c → P Prefix Synchronise on channel c and then behave
like P

P\cs Hiding Run P with events in cs hidden

P [[c ← d ]] Renaming Rename the occurrences of event c to d in P

||| i : I • P(i) Replicated interleave Run P(i) in parallel for all i in I without
synchronisation

Support for this semantics in Isabelle/HOL [8] means that our CSP semantics
for RoboChart is a front-end for a UTP theory. With that, we can carry out
verification using theorem proving. For large models, and for swarm models in
particular, this is crucial to ensure scalability.

2.3 Semantics

The module process is defined by the parallel composition of the processes that
model its controllers, where events are renamed and the synchronisation set is
constructed so that the controllers interact according to the module connec-
tions. Asynchronous connections between controllers are modelled by single-cell
buffers. For example, the semantics of the module in Fig. 1 is as follows.

AggregationRobot =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

MovementC [MovementC obstacle.out ← ePuck obstacle.in]
|||

CommunicationC [CommunicationC report .out ← ePuck report .in,
CommunicationC report .in ← ePuck report .out ,
CommunicationC ack .out ← ePuck ack .in]
CommunicationC ack .in ← ePuck ack .out ]

⎞
⎟⎟⎟⎟⎟⎟⎠

|[{|CommunicationC robots,MovementC neighbours|}]|
Neighbours Buffer(〈〉)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

\ {|CommunicationC robots,MovementC neighbours|}
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AggregationRobot composes in parallel the controller processes MovementC and
CommunicationC , with their channels that represent events connected directly
to the platform, that is, CommunicationC report and CommunicationC ack ,
renamed to the platform channels ePuck report and ePuck ack . For each event,
we have a channel that takes tokens in and out that identify the direction of
communication: input or output. The renamings identify the events to establish
the connections between the controllers and the platform. The inputs of the
platform are identified with the outputs of the controllers and vice-versa. For an
unidirectional connection, like that for obstacle, just one renaming is needed.

In the above example, the controller processes do not communicate because
they do not interact synchronously. So, the parallelism is an interleaving (|||).

The parallel composition of the controller processes is composed in paral-
lel with a buffer process Neighbours Buffer(〈〉) that records RoboChart events
input through a channel CommunicationC robots modelling the RoboChart
event robots, and sends them through another channel MovementC neighbours
modelling neighbours. Communications using these channels are hidden as the
RoboChart events they represent are internal to the module (see Fig. 1). The set
{|c|} contains all events that represent communications over the channel c.

The semantics of controllers is similarly defined as the parallel composition of
the processes that model its state machines. Since all connections between state
machines are synchronous, there is no need for buffers. Channels correspond-
ing to events of the state machine connected to the controller are renamed to
channels of the controller. In our example, since the controller CommunicationC
contains only one state machine, only the renamings take place.

CommunicationC =
Communication[Communication robots ← CommunicationC robots

Communication report ← CommunicationC report
Communication ack ← CommunicationC ack ]

The renamings establish the connections between the events of the controller
CommunicationC and those of the state machine Communication.

The processes for state machines are defined in a compositional way in terms
of processes for states and transitions. They capture the control flow defined
by the machine in terms of CSP events that represent accesses and updates to
variables required or provided by the machine, calls to operations, and occurrence
of RoboChart events. Compositionality is important for verification and can be
achieved because we rule out constructs like inter-level transitions, for example.
The complete semantics of RoboChart is described and formalised in [22].

Next, we discuss the metamodel of the new constructs to deal with collections,
and present an updated version of our example that uses these constructs.

3 Collections in RoboChart: Overview and Metamodel

Our example models the controller of a single robot, but the application itself is a
swarm, where multiple robots communicate to estimate their numbers of neigh-
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Fig. 4. Collection for the aggregation system.

bours. To capture this behaviour, in the previous section we explicitly model the
source and destination of the event ack and the source of the event report.

To model the swarm as a whole and simplify the specification of the commu-
nications, we include two new features in RoboChart. We have a construct to
specify (heterogeneous) collections, and communications that support extraction
and restriction of attributes, namely, source and target robots.

Here, we describe our reworked example (Sect. 3.1), and discuss the collec-
tion (Sect. 3.2) and the extended communication (Sect. 3.3) mechanisms.

3.1 Extended Example

In the previous section, the model of our example focused on an individual robot.
Here, we model how multiple robots interact with each other, and show how the
original model can be reworked to use our extended communication mechanism.
We model a swarm of N robots interacting through broadcast events.

Figure 4 shows a collection diagram for our example. It defines the collection
as N instances of the module AggregationRobot indexed by values i ranging from
1 to N, where N is an uninitialised constant of type nat. The index specified in
the collection is used to identify its individual robots.

Within the bottom compartment of the collection diagram, there are two
placeholders for AggregationRobot, with their events report and ack connected.
The placeholders stand for any two distinct instances of AggregationRobot. They
show how any two robots modelled by AggregationRobot interact.

While communication within a robot (between controllers and state
machines) is one-to-one, communication between robots in a collection is a broad-
cast: all instances of a module with a broadcast event can potentially receive
messages from all other instances that are connected to that event as defined in
the collection. These events are indicated by the letter B inside the event box.

This system of idealised broadcast connections may seem too restrictive, but,
in conjunction with the communication mechanisms discussed in Sect. 3.3, it can
be used to model more constrained forms of interaction. We can, for example,
model that communication is only sent to a subset of other robots, or even to
a particular robot. These can capture the fact that there may be robots out of
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Fig. 5. Broadcast communication in the Communication state machine.

range, or that there is a communication device in the platform with a protocol
that identifies when the communications are directed to its robot.

A broadcast event has implicit from and to attributes of a generic type ID
to identify the source and target of the communication. The type ID is that
of robot identifiers; it is instantiated in a collection diagram via the definition
of instances of modules (robots). The diagram in Fig. 4, for example, defines
instances with identifiers i in the range 1 to N. In doing so, it instantiates the
type ID for AggregationRobot to the set of natural numbers between 1 and N.

Using the collection communication mechanism, we can rewrite the machine
in Fig. 3 to eliminate the parameters of the report and ack events, using the
attributes of the broadcast events instead. The updated version is in Fig. 5.

In this version, the transition triggered by a report event uses an assignment
to record its attribute from in the variable y. It is used in the action that sends the
event ack to restrict its attribute to in a predicate that equates to to y. We use a
predicate, not an assignment to restrict to, so that, in general, several robots can
be targetted. We record the source of the report to direct the acknowledgement
to the right robot, since the scope of from and to is the broadcast event.

Similarly, upon receipt of the event ack the source is stored in x. It is that
identifier x that is recorded in the set neighs. We note, in particular, that the con-
dition x[1]==id in the guard of the corresponding transition in Fig. 3, becomes
unnecessary, since ack is accepted only when the target is the robot id.

In what follows, we describe the metamodel and well-formedness conditions
for the collection diagrams and broadcast communications.

3.2 Collections

A collection diagram, illustrated in Fig. 4, describes exactly which types of
robots (RoboChart Modules) form the collection and how many instances of
each type exist. Furthermore, it specifies how different instances or types of
robots can communicate using connections of broadcast events.
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In the metamodel of RoboChart, a collection diagram is modelled by a con-
struct RCCollection shown in Fig. 6. It can contain four components. A variableList
declares the constants used to define the number of instances of each type of
robot. In the metamodel, they are identified as variables, but a well-formedness
condition ensures that they are constants. The value of a constant may or may
not be defined, like in our example in Fig. 4.

Collections can also have Instantiations consisting of an index with a range,
of the Module being instantiated, and of parameters that initialise unspecified
constants in the module, if any. For example, we could define the number alpha
of neighbours used as a threshold to determine whether a robot should turn as
a constant in AggregationRobot. In this case, we may define a value for alpha in
the collection, perhaps in terms of the number N of robots in the swarm.

A well-formedness condition ensures that the range is defined by an Expression
that denotes a finite set. We note that a collection may have just one instance of
a particular Module, so the range may be a singleton. This may be, for example,
a model for a collection that contains one robot controlling others.

Another well-formedness condition ensures that the parameters defined via
InstantiationParameters are values for constants of the Module instantiated. There
may be have several instantiations with different values for these constants.

Placeholders correspond to generic instances of modules. They are references
to a Module, that is, an element of ModuleRef. A well-formedness restriction
ensures that these are modules that occur in one of the instantiations. An extra
attribute IDInst of Module records an instantiation, if any, of the generic type ID
of identifiers for instances of the robots defined by the Module.

Since ID is a generic type, there are no operations beyond equality and
inequality that can be used to manipulate its elements. If more operations are
needed, ID needs to be instantiated. For example, if the models in a compo-
nent (module, controller, or machine) use arithmetic operations on identifiers,
the type ID needs to be instantiated to a numeric type. A well-formedness con-
dition ensures that the same instantiation is used in the collections that use the
module. Different instantiations cannot be used in the same context.

Finally, we can include Connections between the placeholders establishing the
possible interactions between instances. Connections are between ConnectionN-
odes, one of which is a ModuleRef. A Connection can be bidirectional, and in a
collection, a well-formedness guarantees that it is asynchronous.

If there are several instantiations for the same Module, giving different values
for its constants, there may be more than two placeholders for such a Module.
In general, for each instantiation, there may be up to one or two placeholders
for its Module, depending on whether the range is a singleton or a larger set. An
empty range has a well defined semantics that can be used to explore behaviour
in the presence of missing robots, perhaps due to failure. Normally, however,
we expect that such a range is left unspecified, so that the collection may have
instances of the robot defined by the Module in some scenarios.

Events have a type that define the values that can be communicated. In
addition, broadcast events model the form of communication used in swarms.
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Fig. 6. Metamodel of collections.

Well-formedness requires that all connected events in a collection are broadcast
events, and broadcast events are only connected to other broadcast events.

The complete metamodel of RoboChart is available at [22], where elements
omitted in Fig. 6, like Type or Expression, are defined.

3.3 Communications

The collection construct provides a general view of the potential communica-
tion patterns between robots. In particular, it clearly specifies which commu-
nications cannot happen. For example, in Fig. 4, it is specified that there are
no interactions using obstacle. Nevertheless, the actual communication pattern
cannot be specified at this level. For instance, in our example, while report is
used to communicate with all other robots in the swarm, ack is used in a more
restricted fashion to communicate only with the robot from which a report has
been received.

Although a communication device available in a platform may not be able
to enforce a restricted protocol like this, it is simple to program functionality
to provide directed communication. The possibility to specify interactions that
follow a particular protocol allows us to construct more abstract models, where
the programming of any particular protocol is assumed to be in place.

The restricted interactions need to be specified at the level of the commu-
nication definitions using intrinsic information about their source and target.
Triggers, which are used in transitions and actions to define communications,
include extra source and target attributes from and predicate. They allow
both identification and restriction of the participants.

The attribute from records the value of a predefined variable from: the
identifier of the source of the communication. The predicate attribute defines a
restriction on the target of the communication identified by a predefined variable
to. A well-formedness condition ensures that to is free in predicate. The variables
from and to have type ID and are local to a Trigger whose event is a broadcast.
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These extensions to Trigger to consider the predefined variables from and to
affects the usage of events in triggers in transitions and actions. In an input
c?x[|v = from|], the occurrence of the communication c?x is accepted, and the
identifier of the source of the communication is recorded in the variable v. An
output c!e[|to in S|], for example, sends the value of e via c to each instance
specified by the collection diagram whose identifier belongs to the set S.

In the next section, we define the semantics of our collection constructs.

4 Collections in RoboChart: Semantics

The semantics of RoboChart is given by a function [[ ]]M from RoboChart mod-
ules to CSP processes. This function is defined compositionally over the meta-
model of RoboChart, in terms of other functions that calculate the semantics of
the controllers and connections that form the module.

The timed semantics is also defined by a function from RoboChart modules,
but its range is the set of tock-CSP processes. The definition of this function
reuses much of the original (untimed) semantics. In particular the description of
the collection semantics we provide here is valid in the context of both semantics.
We note that a tock-CSP process is itself a CSP process.

We define a new semantic function from RCCollection to CSP processes, and
modify three functions of the original semantics. The function [[ ]]M is modified
just to add a parameter id to the module process to record the module identifier.
It is used by the processes defined by the functions [[ ]]Trigger and [[ ]]Statement , which
specify the semantics of triggers in transitions and in actions.

The definitions of [[ ]]Trigger and [[ ]]Statement deal with the extra properties
from and predicate of triggers. In addition, events corresponding to accesses

to variables of the platform, to calls to its operations, and to simple platform
events, that is, that are not for broadcast, get id as an extra parameter. This
is so that the individual interactions of the platform with the controller and
the environment can be distinguished. Before we discuss all the affected seman-
tics functions, we present the CSP process Aggregation below that defines our
example collection to illustrate the overall idea of the semantics.

Aggregation =

⎛
⎜⎜⎝

||| i : 1..N • AggregationRobot(i)
|[{|report .in, report .out , ack .in, ack .out |}]|

||| (i , j ) : 1..N × (1..N \ {i}) •(
Buffer(〈〉, report , i , report , j ) ||| Buffer(〈〉, ack , i , ack , j )

)

⎞
⎟⎟⎠

The robots do not communicate directly. Using, for example, infrared or radio
devices, they communicate asynchronously. So, formally, they communicate via
buffers. Accordingly, in Aggregation, we combine the instances with identifiers 1
to N in interleaving. Instantiation defines the parameter id of the module.

There is a buffer for each direction of each connection between each pair of
robots. So, for each pair (i , j ) of robots i and j , we have a buffer to connect their
report and their ack events. We note that i and j are different robots, since j is
taken from the set (1 . . N \{i}), which excludes i . Buffer(elems, e1, id1, e2, id2)
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Rule 1. Semantics of Collections [[c : RCCollection]]Col :CSPProcess =

||| inst : c.instantiations • ||| i : inst.range • [[inst.module]]M(i)

|[{|e1, e2 | (e1, e2) ← connectedEvents(c)|}]|⎛
⎜⎜⎜⎜⎝

( ||| conn : c.connections • ||| (i , j ) : inds(conn, c) •
Buffer(〈〉, eventId(conn.efrom), i , eventId(conn.eto), j )

)

|||( ||| conn : c.connections | conn.bidirec • ||| (i , j ) : inds(conn, c) •
Buffer(〈〉, eventId(conn.eto), j , eventId(conn.efrom), i)

)

⎞
⎟⎟⎟⎟⎠

where
connectedEvents(c : Collection) : P(Event × Event) =

{conn : c.connections •(eventId(conn.efrom), eventId(conn.eto))}
∪
{conn : c.connections | conn.bidirec •(eventId(conn.eto), eventId(conn.efrom))}

inds(conn : Connection, c : Collection) : P(ID × ID) =

if conn.from.ref = conn.to.ref then
range(conn.to, c) × range(conn.from, c) \ {i : range(conn.to, c) • (i , i)}

else
range(conn.to, c) × range(conn.from, c)

range(m : Module, c : Collection) : P ID = (ιi : c.instantiations | i.module = m).range

defines a buffer containing the elements in the sequence elems, taking inputs
from robot id1 via the events e1.in and producing outputs to robot id2 via
events e2.out . The buffers are initially empty: their sequence of elements is 〈〉.

The buffers do not interact with each other, so they are also combined in
interleaving. Their inputs and outputs are connected to the events of the module
processes. So, the module processes and the buffers are composed in parallel syn-
chronising on the events report .in, report .out , ack .in, and ack .out corresponding
to the ends of the bidirectional connections in Fig. 4.

Rule 1 defines the semantic function [[ ]]Col that specifies the CSP processes
for collections. We use a simple meta-notation based on CSP itself; its terms are
underlined. CSP terms are in the usual mathematical font.

The function [[ ]]Col takes an element c of the type RCCollection defined in the
metamodel and returns an element of CSPProcess, a CSP process, defined by the
parallel composition of two interleavings as illustrated above. For each instan-
tiation inst of c, that is, in the set c.instantiations, we have a replicated inter-
leave, which is itself combined in interleaving with the interleaving for the other
instantiations. For each index i in the range inst.range of the instantiation, we
have a process [[inst.module]]M(i) combined in interleaving, where [[inst.module]]M
defines the semantics of the referred module inst.module. This semantic function
is as defined in [22] and previously illustrated in Sect. 2, but now the process it
defines includes the extra parameter id as explained above.
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The second interleaving is of buffer processes. There are two groups of such
processes: the first models unidirectional communication, and the second com-
plements the first with buffers for the reverse direction of communication for
bidirectional connections. In each case, for each connection conn of c (from the set
c.connections), we have a replicated interleaving of processes modelling buffers.
We have a buffer for each pair of instances of each module connected by conn.

The replicated interleavings are indexed by pairs (i , j ) in the set inds(conn, c)
containing identifiers of the instances of the modules that can communicate
through the connection conn. The definition of inds(conn, c) presented in Rule
1 takes into account the module of the two connected instances. If they are
different (conn.from.ref = conn.to.refmodules is false), the pairs in inds(conn, c)
are those in the cartesian product of the indices of the source and target modules.
Otherwise, we need to discard the identity pairs (i , i), since there is no connection
associating an instance of a module to itself.

The set of indices is specified using the function range. It takes a module m
and a collection c in which it is instantiated, determines the unique (ι) instan-
tiation whose module is m, and returns the associated range.

The second group of interleavings corresponding to the bidirectional connec-
tions is similar, except that the parameters of the process Buffer are reversed.

The two top-level interleavings are composed in parallel synchronising on
the events corresponding to the source and target of the connections. This is
calculated by the function connectedEvents, which takes a collection c and returns
a set of pairs of events. It is presented in Rule 1. For each connection in c, we
have a pair formed of the channels that model the source event (efrom) and the
target event (eto) of the connection. For bidirectional connections (conn.bidirec),
we also include the reversed pair in connectedEvents(c).

The semantics of triggers uses the in and out components of the broadcast
channels as well as the source and target identifiers to coordinate the exchange
of events between the module instances. To illustrate, we present the semantics
of two communications in our example in Fig. 5.

The semantics of report[|y = from|] is given by the CSP process below, which
is used to define the semantics of the state machine, itself used as a component
in the module process and, therefore, in the collection. Here, id is the identifier
of the module defined, as explained above, as a parameter of its process.

report .out?from!id → set y !from → Skip

If the buffer process for the connection to the report event of a robot id contains
a value, it can synchronise with this process. It accepts the source from of the
connection as input, and assigns its value to the variable y using a communication
on a channel set y , and terminates (Skip). Variables in state machines are held
in memories represented by processes with set and get channels.
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The semantics of ack[|to == y|] is given by the CSP process below.

||| t : {to | to ← ID , to == y} • ack .in!id?t → Skip

While the trigger process for the previous example only synchronises with one
of the buffers, the above process synchronises with all buffers whose target iden-
tifiers t satisfy the predicate t == y . As previously indicated, the CSP trigger
processes illustrated above interact with the buffers in Aggregation.

The definition of the semantics of triggers requires a simple change to what
is presented in [22] to specify enriched processes like those shown above, which
can record identifier information, and synchronise with various buffers.

Validation of the semantics just described is provided by its mechanisation
RoboTool, which is presented in the next section.

5 Tool Support

Tool support for RoboChart is implemented in RoboTool2. It provides a graphi-
cal editor for RoboChart models, a parser for the textual elements of the graph-
ical notations (expressions, statements, transition labels, and so on), valida-
tors that check well-formedness conditions, and code generators. These tools are
implemented as Eclipse3 plugins using the Xtext4 and Sirius5 frameworks.

The RoboTool graphical editor is shown in Fig. 7. It has been enriched with
facilities for the creation of collections, and parsing of collection declarations and
of the new triggers. The validator has been extended to check for well-formedness
conditions for collections described in Sect. 2.

RoboTool provides three code generators: for the untimed semantics, the
timed semantics, and a C++ simulation. The CSP files that are generated can
be opened from RoboTool directly into FDR to verify properties of the models.
A number of assertions of classical properties are also automatically generated
for checking. The code generator for the untimed semantics has been updated to
implement the semantics of collections of the previous section, and the update
of the remaining code generators is part of our future work.

Using RoboTool and FDR, we have checked deadlock freedom for our example
collection. For the empty collection, with N = 0, we have a deadlock: if there
is no working robot, there is no observable behaviour. Similarly, for N = 1,
we have a deadlock, because there is no other robot to accept a report . In the
analyses for larger values of N , there is no deadlock, as expected6. Although we
have been able to analyse this example, analysis of swarm applications requires
theorem proving and our approach is well suited for that. Ongoing work allows
automated proof of deadlock freedom using Isabelle/UTP.

2 https://www.cs.york.ac.uk/circus/RoboCalc/robotool/.
3 www.eclipse.org.
4 www.eclipse.org/Xtext.
5 www.eclipse.org/sirius/.
6 www.cs.york.ac.uk/circus/RoboCalc/case studies/.

https://www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.eclipse.org
www.eclipse.org/Xtext
www.eclipse.org/sirius/
www.cs.york.ac.uk/circus/RoboCalc/case_studies/
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Fig. 7. Graphical editor for RoboChart.

6 Related Work

UML and its various extensions are widely used for modelling in a number of
different domains. Due to its generality, UML is an option for modelling robots
and swarms. However, while a number of formalisations have been proposed for
UML using techniques such as graph transformations [14], CSP [2,19], as well as
tailored semantic domains [1], these formalisations only cover subsets of UML.

RoboChart, on the other hand, is a small language, with a well defined process
algebraic semantics suitable for verification using model checking and theorem
proving. In addition, it caters for timed properties and now has specialised nota-
tion for collections of robots. Nordmann et al. [16] indicates that domain-specific
languages (DSL) for robotics are growing in popularity, further motivating our
choice of a small DSL over a more general notation such as UML.

Indeed, several robotic modelling notations have been proposed, but they
mostly aim at code generation for execution or simulation. In RoboChart, we also
focus on a formal semantics for verification and generation of sound simulations.

RobotML [3] is a UML-based notation for robotics that supports automatic
code generation, but support for formal verification is not yet available. Schlegel
et al. [21] propose the use of a UML-based framework for engineering robotic
systems, but formal verification is also not supported. Work on GenoM [9] is
one of the closest to ours. It supports verification of schedulability and dead-
lock checking. Unlike RoboChart, GenoM is an executable language (potentially
including C code) with limited support for abstractions.
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The approach in [7] uses model checking to identify optimal configurations,
but verification of behavioural properties is not the goal. Orccad [5] supports
modelling, simulation, programming, and verification of timed behavioural prop-
erties. Verification is supported by translating models into formal languages like
in our work. However, Orccad differs from RoboChart in its limited support for
graphical modelling and granularity of its modelling elements.

To the best of our knowledge, the notations for robotics in the literature do
not support modelling and verification of collections of robots. UML-like nota-
tions provide support for modelling of components. A distinguishing feature of
RoboChart, though, is that it allows specifying a swarm configuration by relat-
ing meta (as opposed to concrete) robot instances via placeholders. Therefore,
a model identifies the relevant communication patterns and specifies them as
templates. The number of robots that form a concrete configuration can be
a parameter of the more abstract configuration specification. As far as we are
aware, all other existing graphical notations require that configurations are spec-
ified by relating concrete instances. This is the case, for instance, when we use
Structure Diagrams to define a system configuration in terms of UML or SysML
components. For every change in the number of components, the diagram needs
to be revised. In RoboChart, we need to provide only a new value for a constant.

7 Conclusions

RoboChart supports modelling, verification, and simulation of robotic applica-
tions. Its concise design allows for the full specification of well-formedness con-
ditions and semantics, as well as the implementation in the form of RoboTool.
In this paper, we have described RoboChart support for explicit modelling of
collections, and complex communication patterns within collections. The formal
semantics of these facilities has been described and mechanised in RoboTool.

Currently, RoboChart is being extended with support for probabilistic mod-
elling and verification, and a library of robotic platforms and common behaviours
is under development. Furthermore, extensions to support modelling of the con-
tinuous aspects of the hardware and the environment are planned. All these
extensions under development are useful also for modelling swarms.

Model checking is limited in the size of the models that it can handle. Our
plan, especially for verification of swarms, is to explore compositional techniques
for the efficient verification of CSP specifications [6], and semi-automatic verifi-
cation using a CSP mechanisation in the theorem prover Isabelle [8].

The only form of communication available within a collection is perfect broad-
cast. We plan to provide: (1) a catalogue of types of communication media includ-
ing mechanisms to model message loss and corruption; and (2) constructs and a
library of models to support the specification of environments.
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Abstract. The railway sector has seen a large number of successful
applications of formal methods and tools. However, up-to-date, struc-
tured information about the industrial usage and needs related to for-
mal tools in railways is limited. As a first step to address this, we present
the results of a questionnaire submitted to 44 stakeholders with expe-
rience in the application of formal tools in railways. The questionnaire
was oriented to gather information about industrial projects, and about
the functional and quality features that a formal tool should have to be
successfully applied in railways. The results show that the most used
tools are, as expected, those of the B family, followed by an extensive
list of about 40 tools, each one used by few respondents only, indicat-
ing a rich, yet scattered, landscape. The most desired features concern
formal verification, maturity, learnability, quality of documentation, and
ease of integration in a CENELEC process. This paper extends the body
of knowledge on formal methods applications in the railway industry,
and contributes with a ranked list of tool features considered relevant by
railway stakeholders.

1 Introduction

The railway field is known for its robust safety requirements and its rigorous
development processes. In fact, formal methods and tools have been widely
applied to the development of railway systems during the last decades (cf.,
e.g., [1,2,4–7,9,11–17,21–24]) and the CENELEC EN 50128 standard for the
development of software for railway control and protection systems mentions
formal methods as highly recommended practices for SIL 3–4 platforms [8,10].
The extensive survey on formal methods applications by Woodcock et al. [25],
which included a structured questionnaire submitted to the participants of 56
projects, also identified the transport domain, including railways, as the one
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 20–29, 2018.
https://doi.org/10.1007/978-3-319-98938-9_2
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in which the largest number of projects including applications of formal meth-
ods has been performed. Relevant examples are the usage of the B method
for developing railway signalling systems in France, like, e.g., Line 14 of the
Paris Métro and the driverless Paris Roissy Airport shuttle [1]. Another is the
usage of Simulink/Stateflow for formal model-based development, code genera-
tion, model based-testing and abstract interpretation in the development of the
Metrô Rio ATP system [11]. Many projects have been also carried out, often in
collaboration with national railway companies, for the verification of interlocking
systems [13,20–24].

Despite this long tradition and history, no universally accepted formal
method or tool has emerged. Thus, on the one hand, railway companies wishing
to introduce formal methods have little guidance for the selection of the most
appropriate formal methods to use to develop their systems. On the other hand,
tool vendors lack a clear reference concerning the features that are relevant for
users of a tool in the railway domain. This paper aims to provide a first con-
tribution to address these issues by presenting the results of a questionnaire
submitted to experts in the theory and practice of formal methods in railways.
The questionnaire’s goal is to: (a) show the trends in the application of formal
methods to railway systems, and (b) identify the most relevant features that a
tool should support to be applied in railway systems’ development.

This work is the first output of a larger endeavour that the authors are
performing in the context of the ASTRail EU project1 (SAtellite-based Sig-
nalling and Automation SysTems on Railways along with Formal Method and
Moving Block Validation), funded by EU’s Shift2Rail initiative2. A specific work
stream of the project is concerned with an assessment of the suitability of formal
methods in supporting the transition to the next generation of ERTMS/ETCS
signalling systems [2–4]. The work stream’s roadmap follows the two phases:

1. An analysis phase dedicated to survey, compare and evaluate the main formal
methods and tools currently used in the railway industry.

2. An application phase in which selected formal methods are used to model and
analyse two main goals of the project (moving block distancing and automatic
driving) to validate that the methods not only guarantee safety, but also, more
in general, the software’s long-term reliability and availability.

The work presented in this paper is part of the analysis phase of ASTRail,
in which the information retrieved with the questionnaire will be complemented
with a systematic literature review and a systematic tool trial. Based on these
tasks, we aim to complement the survey of Woodcock et al. [25] with a specific,
in-depth focus on railway applications.

The paper is structured as follows: In Sect. 2, we provide information about
the criteria used to define the questionnaire, and afterwards we present its results
in Sect. 3. In Sect. 4, we provide conclusions and final remarks.

1 http://astrail.eu.
2 http://shift2rail.org.

http://astrail.eu
http://shift2rail.org
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2 Questionnaire Definition

For the nontrivial task of obtaining a significative amount of data from industrial
stakeholders, a survey was carried out by means of a structured questionnaire,
submitted to the participants of the recent RSSRail’17 conference3. This venue is
attended by academics and practitioners interested in applying formal methods
in railways, and as such a promising source for a population sample that might
be able to provide a well-informed judgement.

The goal of the questionnaire was to: (a) identify the current uptake of formal
and semi-formal methods and tools in the railway sector; (b) identify the features,
in terms of functional and quality aspects, that are considered more relevant for
the application of a certain formal tool in the development of railway products.
The questionnaire was designed to be easy to understand by the target group,
involving academics and practitioners, and to be filled within five minutes, to
limit the amount of time required for the people surveyed, and possibly increase
the number of respondents. The design of the questionnaire was performed by
the authors of the current paper, who include both academics with expertise
in formal methods applied to railways and practitioners from railway industry.
For the questions concerning the relevance of the tool features (cf. Sect. 3.3), a
two-hour brainstorming session based on the KJ-method [18] was organised to
identify possibly relevant features. The questionnaire was tested and validated
with industrial partners of the ASTRail consortium for clarity and the time
required. An online version of the questionnaire, which the reader can refer to
have a clear view of the proposed questions, can be found at the following link:
https://goo.gl/forms/4b9wSTJAMOK7VghW2.

3 Results of the Questionnaire

In the following sections, we report and interpret the results that we obtained.

3.1 Affiliations and Experience

The first part of the questionnaire was dedicated to identify the respondents in
terms of affiliation and experience in railways and formal/semi-formal methods
and tools. The 44 respondents are balanced between academics (50%) and prac-
titioners (50%, of which 47.7% from railway companies and 2.3% from aerospace
and defense). A large percentage of respondents has several years of experience
in railways (68% more than 3 years and 39% more than 10 years) and in formal
methods (75% more than 3 years, 52% more than 10 years), and this confirms
that our sample can provide informed opinions on the proposed questions4.

3 http://conferences.ncl.ac.uk/rssrail/.
4 We did not weigh the results based on the declared experience of the respondents,

because we wanted to give equal importance to their different answers, regardless of
the specific experience.

https://goo.gl/forms/4b9wSTJAMOK7VghW2
http://conferences.ncl.ac.uk/rssrail/
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3.2 Usage of Formal Methods in Railway Sector

The second part of the questionnaire was oriented to have an insight on the
usage of formal/semi-formal methods and tools in railways.

Projects. We asked in how many industrial railway projects the respondents, or
their teams, have used formal/semi-formal methods and tools. Since the respon-
dents included also academics, we expected that the industrial projects in which
they were involved were mainly technology transfer projects with companies.
Figure 1a shows that only 7% of the respondents—or their teams—did not have
any industrial experience in the application of formal methods in railways5.

(a) Number of projects (b) Type of products

Fig. 1. Usage of formal methods in the railway sector

Products. Figure 1b shows the main types of products developed with the support
of formal methods. The cited systems include an extensive range of signalling sys-
tems and components. The majority of the respondents applied formal methods
to interlocking systems (61% of the respondents6), but also automatic train pro-
tection/automatic train control (ATP/ATC) distancing systems (41.5%), espe-
cially in their standardised form for main lines (ERTMS/ETCS, 39%) or for metro
lines (CBTC, 39%) play a major role. Automatic train operation (ATO), auto-
matic train supervision (ATS), axle counter systems and centralised traffic con-
trol (CTC) are also mentioned. This prominence of in particular interlocking and
ATP/ATC systems is in line with the formal methods literature, for which these
types of systems are traditional applications [9].

Phases. With the aim of estimating the degree of integration of formal methods
in software engineering practice, respondents were asked to indicate the phase of
the development process in which formal methods are applied (cf. Fig. 2). We see
that all phases have been selected by at least one of the respondents, highlighting
the potential pervasiveness of formal methods within the development process.
5 When present, the subsequent answers of these respondents were discarded from our

statistics, since they were considered outliers with respect to our population sample.
6 For this and subsequent questions, respondents could select more than one answer.



24 D. Basile et al.

Most of the respondents (73.8%) used them for specification and formal ver-
ification. Also analysis of specifications (50%) and simulation (40.5%) appear
to be common, and a non-negligible amount of respondents (31%) used formal
methods also within model-based testing and code generation contexts. Less
common (7.1%) is their application to the static analysis of the source code.

Fig. 2. Phase of the process in which formal methods are applied

Tools. The respondents were also asked to list the tools they have used in the
context of their projects, and, in this case, we believe it is interesting to separate
the results of industrial respondents from those of academics. In Fig. 3, we can see
that the large majority of industrial and academic respondents mentioned tools
belonging to the B method family (e.g. B, ProB, AtelierB, EventB, RODIN). The
relationship between the B method and the railway sector is well established: as
Sun [19] puts it, “the B proved models are considered safe in French industry.”
Actually, there are only slightly more industrial users than academic users in
our sample, but we recall that the academic users were asked to report on their
collaborative projects with industry. Other methods and tools mentioned by both
groups are the Matlab toolsuite—including Simulink and Stateflow—SCADE,
Petri nets/CPN tools and Monte Carlo Simulation: the overlapping between
tools used in industry and in academia is actually limited to these five elements.
Industrial users named a few other tools as well, whereas a large list of other tools
has been named by academics, with popular model checkers like NuSMV and
SPIN leading this list. An interpretation of this can be that a frequent pattern of
collaboration between academia and industry includes the academic support in
adopting advanced formal verification techniques inside a collaborative project.

3.3 Feature Relevance

The final part of the questionnaire was dedicated to identify the most relevant
features that a formal/semi-formal tool should have to be used in the railway
industry. Features are partitioned into supported functional and quality aspects.
We asked to check at most three relevant functional features, among the seven
listed, and at most five relevant quality aspects, among the sixteen listed.
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Fig. 3. Tools cited in the questionnaire

Functional Features. Figure 4 shows the results for the most relevant functional
features. All the listed features are considered relevant by at least one of the
respondents. The functional features that are considered most relevant by the
majority of the respondents are formal verification (86.4% of the respondents),
followed by modelling—graphical or textual—(72.7%). These traditional func-
tional features of formal tools are followed by simulation (30%) and traceabil-
ity (27.3%). Indeed, simulation (often in the form of animation of a graphical
specification) is needed for a quick check of the behaviour of a model; traceability

Fig. 4. The most relevant functional features a (semi-)formal tool should support
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between the artefacts of the software development (requirements to/from models,
models to/from code, etc.) is mandatorily required by the main guidelines for the
development of safety-critical systems. Functional features, such as test genera-
tion and code generation, related to later activities of the development process,
are also considered relevant by a non-negligible amount of respondents (22.7%).
These numbers suggest that formal tools are seen to play a role mostly in the
early phases of the development process, for specification and formal verification.
These are also the phases in which formal methods cannot be substituted by any
other means—while this may happen in testing, code development and tracing.

Quality Aspects. Figure 5, finally, reports the most relevant quality aspects and,
also in this case, all the listed answers were checked by at least one of the respon-
dents. The maturity of the tool (stability and industry readiness) is considered to
be among the most relevant quality aspects by 75% of the respondents, followed
by learnability by a railway software developer (45.5%), quality of documenta-
tion (43.2%) and ease of integration in the CENELEC process (36.4%). Overall,
the most relevant quality aspects are associated to the usability of the tool. Less
relevant are deployment aspects, such as platforms supported (9.1%) and flexible
license management (11.4%). Interestingly, also the low cost of the tool (13.6%)
appears to be a not extremely relevant feature. This is a reasonable finding.
Indeed, the development and certification cost of railway products is high and,
hence, if a company expects to reduce these costs through a formal tool, it can
certainly tolerate the investment on the tool.

Fig. 5. The most relevant quality aspects a (semi-)formal tool should have
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3.4 Threats to Validity

Concerning construct and internal validity, the questions defined and the options
proposed as answers may be incomplete to identify practical uses of tools, and
desired features. Furthermore, the respondents may have misunderstood the
meaning of the questions. To mitigate these threats, the questions were designed
and tested in collaboration between academic and industrial partners.

Concerning statistical conclusion validity, we do not have an estimate of the
whole population of subjects applying formal methods in railways, and our sam-
ple was limited to the participants of RSSRail. However, assuming that the pop-
ulation of persons applying formal methods in railways is 1, 000, our results on a
sample of 44 persons are valid for a confidence level of 85% and margin of error
of 10.5%. While higher values are normally targeted in qualitative research, the
answers to the questionnaire show that the sample is made of high-quality (i.e.
informed) respondents, which increases the reliability of our results. However, we
cannot exclude that important industrial applications of formal methods are not
public, and people working on them may not attend conferences like RSSRail,
also for confidentiality policies.

4 Conclusion

Formal methods and tools have been applied quite extensively in specific indus-
trial domains, especially those in which safety-critical software is produced,
either in pilot projects or in daily production. On the other hand, industry
often confronts itself with the choice among a large variety of techniques and
tools, with little help for selecting the ones that better fit their needs. Within
the H2020 ASTRail project, the authors are working on providing information
to guide railway practitioners interested in the adoption of formal methods.

To this end, we performed the questionnaire presented in this paper and we
are working on a literature survey on formal methods for railways, as well as on
a systematic tool evaluation (cf. [14,16] for preliminary comparisons of formal
modelling and verification frameworks). The current work provides preliminary
information on the industrial uptake of formal methods in railways. The results
show that, although the B method appears to be the one that is mostly used in
the railway industry, several other tools have been used, and some of them are
not even considered by the academics that were part of the respondents. Fur-
thermore, we observed that industrial needs concerning formal tools are mostly
related to usability features, such as maturity of the tools, learnability, and qual-
ity of documentation. Interestingly, the cost of the tools is not a highly relevant
issue, suggesting that industry appears to be available to invest in formal tools,
if these guarantee a process cost reduction and the expected safety assurance.

Acknowledgements. This work has been partially funded by the ASTRail project.
This project received funding from the Shift2Rail Joint Undertaking under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No. 777561.
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Abstract. To increase the impact and capabilities of formal verifica-
tion, it should be possible to apply different verification techniques on
the same specification. However, this can only be achieved if verification
tools agree on the syntax and underlying semantics of the specification
language and unfortunately, in practice, this is often not the case.

In this paper, we concentrate on one particular example, namely Java
programs annotated with JML, and we present a case study in under-
standing differences in the treatment of these specifications. Concretely,
we take a collection of JML-annotated programs, that we tried to rever-
ify using KeY and OpenJML. This effort led to a list of syntactical and
semantical differences in the JML support between KeY and OpenJML.
We discuss these differences, and then derive some general principles on
how to improve interoperability between verification tools, based on the
experiences from this case study.

Keywords: Java Modeling Language · Static verification
OpenJML · KeY

1 Introduction

As a society, we increasingly rely on digital technology driven by software, and
therefore we need formal techniques to provide guarantees about the quality and
reliability of software. There is a wide plethora of tools and techniques available
that contribute to this. However, all these tools and techniques have their own
strong and weak points, and in order to increase impact and usability of formal
techniques, we will need to find ways to combine them.

Unfortunately, combining tools is often not that straightforward, because
even though in principle they implement the same specification language, they
differ in the details, both in the syntax and the semantics.

This paper presents a case study to investigate the chances and difficulties
for tool interoperability in one specific setting, namely Java programs annotated
with JML (the Java Modeling Language) [18]. A wide range of different tools
exist that take JML-annotated Java programs as input, and implement checks
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to establish whether the program behaves as specified by the annotations. More-
over, there are even tools that try to automatically come up with a suitable
JML specification for a given Java program, see e.g. [5] for an overview of JML
tools. Despite efforts to agree on a common core language for JML, in prac-
tice there are still a lot of differences between all these tools, both syntactically
and semantically. To improve this situation it is important to obtain a precise
understanding of these differences.

In this paper, we consider two tools that take JML-annotated Java programs
as input, and then apply static verification support, namely KeY [1] and Open-
JML [9]. KeY is an interactive program verifier, based on dynamic logic, which
typically makes it suitable for the verification of complex methods, because the
user can incrementally build the proof. In constrast, OpenJML works fully auto-
matically: from the annotated program, verification conditions are generated and
sent to a first-order prover. This makes verification very fast for typical boiler-
plate methods (getters and setters) where the correct specifications can be given
directly, but is less suited for incremental development of a specification. Thus,
there is a high potential to increase verification efficiency if a user can smoothly
switch between OpenJML and KeY during the verification process.

In order to investigate whether this switching could indeed be a smooth
process, we took several sources of annotated examples that we tried to rever-
ify in KeY and OpenJML. These include the examples from the KeY website
(from www.key-project.org), as well as some hand-crafted examples that came
up in the investigation of which keywords are supported and which are not.
This resulted in a list of syntactical and semantical differences between the tools
that should be addressed, or at least made explicit, so a user knows where to
expect the differences. For all these examples of interest, we developed a minimal
variant of the program in order to illustrate the issue in isolation. We do not
believe this list of differences to be exhaustive, however we believe that it nicely
illustrates the typical issues that have to be understood in order to enable tool
interoperability.

It is important to stress that with this paper, we do not wish to argue for
one tool over the other; we only would like to make it clear that there are
differences in their behaviour, which can be unexpected for a tool user. We
hope that the comparison helps eventually to make it easier to switch between
different verification tools. Importantly, the authors of this paper have not been
involved in the development of OpenJML or KeY, but they have a thorough
experience with JML annotations, and are teaching JML-style specifications to
Bachelor and Master students. Therefore, even though we try to find reasons
to explain the differences in behaviour of KeY and OpenJML, the real reasons
might be different. And of course, the differences that we identify between KeY
and OpenJML are not just a warning for users of these tools: they are also an
invitation to developers of these tools and developers of the JML standard to
come to an agreement on a unified semantics for JML.

Finally, the last part of this paper tries to derive some general lessons from
the experiences obtained with this case study in tool comparison. How can we

www.key-project.org
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avoid having to do such tool comparisons between all possible combinations of
verification tools? How can we improve the situation upfront, in such a way that
the potential differences between tools become more apparent? Or should we
simply aim for a situation where all differences between tools are resolved? We
hope that these lessons learned will inspire the community to look more closely
at tool interoperability and the necessary steps to achieve this.

Contributions. The main contribution of this case study is that it presents a
collection of small JML-annotated programs for which verification behaves dif-
ferently in KeY and OpenJML. Each program is designed to be minimal, and to
illustrate a single issue in isolation, which makes them easy to understand and
analyze for users and developers of tools and the JML language.

These examples should help users of KeY and OpenJML to better understand
how easy or difficult it will be to switch between the two tools. They should also
help KeY and OpenJML developers to better understand the strengths and
weaknesses of their own tool, in comparison to the other tool. Finally, they
should help developers of the JML standard to know what parts of the standard
need to be clarified and what needs to be accounted for.

Scope of the Examples. Even though this paper may not cover all differences
between KeY and OpenJML, we tried to choose our example set in a systematic
manner. First, we systematically went through the documentation of JML [18]
and tried to verify ‘firsttouch’ features individually. Second, we took the exam-
ples from the KeY website, and tried to verify these both in KeY and OpenJML.
Third, we looked at the self-reported differences from the JML standard [12,13],
to come up with examples there. Finally, we created our own small examples
in an ad-hoc fashion if a suspicion arose of a possible difference, while working
with the examples stated above.

Related Work. There are two webpages that list differences between JML and
OpenJML [13], and differences between JML and KeY [12], respectively. How-
ever, these webpages focus on keyword support only – we will discuss in Sect. 3 –
and are very brief.

Another comparison is made in the appendix of the JML standard itself [18,
Sect. D], namely between JML and the specification language of ESC/Java
(Extended Static Checker for Java) [19], which is a Java annotation language
very similar to JML. Unfortunately, this comparison is outdated: it seems not
to have been updated since 2003. And in particular, it does not contain a com-
parison between JML and the successors of ESC/Java, ESC/Java2, and later
OpenJML. Fortunately, such a comparison is made upon the introduction of
ESC/Java2 by the authors themselves [8].

We are not aware of many similar comparisons between tools. One of the
authors of this paper has made a comparison between the interactive theorem
provers PVS and Isabelle/HOL [10]. A comparison between several tools (includ-
ing KeY and OpenJML) is made by Thüm et al. [21] for the purpose of aggregat-
ing the tools into a single model checking and theorem proving, focusing mainly
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on similarities. What is new in this case study is that we take a collection of
externally developed examples, and base our experiences on this.

After reading an earlier version of this paper, David Cok, the main author of
OpenJML, has given us some feedback through private communication. Where
relevant, we included his remarks (clearly indicated as being his).

Overview of This Paper. The remainder of this paper is organised as follows.
Section 2 gives a short introduction to JML and briefly describes OpenJML and
KeY. Section 3 then discusses several syntactical differences between JML as
supported by KeY and by OpenJML. Then, Sect. 4 continues with the semantical
differences we have observed. Finally, Sect. 5 draws some general lessons from
our experiences.

2 Background: Static Verification with KeY and
OpenJML

One way to verify correctness of Java code is by adding contracts to methods, and
verifying those contracts. The standard in which to describe contracts for Java
is JML [16–18]. A JML method contract essentially consists of two parts: one is
called ‘requires’ and indicates the assumptions under which a method is called;
the other is called ‘ensures’ and indicates the guarantees that the method gives.
A small example is given in Fig. 1. This specification states that the method
should only be called with arguments d and v being strictly positive, and that
it will return a value in the interval [v - d, v]. JML allows several variants
on this: depending on whether or not a method is expected to always terminate,
and whether or not it could throw exceptions, different kinds of contracts can
be chosen.

Verifying JML contracts can be done in several ways. Popular approaches
include runtime verification and static verification. Runtime verification will
check validity of contracts during the execution of the program, while static ver-
ification will try to establish statically, without executing the program, whether
the contracts are always respected. Runtime and static verification are orthog-
onal approaches: runtime verification finds errors when they happen, but does
not verify the correctness of all possible programs, while static verification aims
to prove correctness of all executions, but might indicate errors that will never
happen during an execution. In particular, if a program does not have sufficient
annotations, static verification might fail, even though the program is correct.
However, if there is an issue with the program, it will be reported.

In static verification, typically only the contract of a method is used to reason
about invocations of that method: The ‘requires’ part of a contract is the pre-
condition, to be proven in the state before a method is called. Then the ‘ensures’
part of that contract, which is its postcondition, can be assumed in the state
after its call. This makes static verification with JML highly modular: imple-
mentations can be changed freely as long as the contract remains provable, and
the rest of the verification effort will remain valid. For a detailed analysis on
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Fig. 1. Method with a contract

the benefits of using contracts for verification (over inlining), see the work by
Knüppel et al. [15], which includes experiments in KeY.

A static verification tool transforms the specified program and its contracts
into proof obligations. How the translation is done depends on the tool used.
These proof obligations are then checked in some way, which again depends on
the verification tool used. Not only the contract specification is translated during
such a transformation, but certain implicit language rules are as well. In Fig. 1,
there is a potential division-by-zero-error on line 7. However, the precondition
of the method suffices to show that this division-by-zero-error will not occur.

OpenJML. OpenJML [9] is developed as the successor of ESC/Java2 and the
runtime verification tool suite for JML [7]. For static verification, it transforms
a JML-annotated program into a static single assignment form, and then gener-
ates first-order logic verification conditions from this transformed program. This
output format is suitable for a satisfiability modulo theory (SMT) solver. As
such, it is given as input to an SMT solver, which by default is Z3 [20].

OpenJML can be used by invoking it from the command line, or as an Eclipse
plugin. OpenJML can do run time verification as well as static verification.
Throughout this case study, we invoke OpenJML from the command line with
-esc plus a file name, to do static verification. The result can be a set of
warnings and errors, or if the program has no issues, nothing at all. Indeed, for
the program in Fig. 1, no output is given, indicating the program is correct. If
verification does not go through, the warning or error points to the places in the
program that are causing the issue. For instance, changing line 7 to return d;
will give a postcondition violation error that points to line 4, as well as to line 7.

David Cok let us know that OpenJML also has an IDE in which counterex-
amples can be explored. We did not try the IDE for this work.

KeY. The KeY project positions itself as a portfolio of tools for program veri-
fication [1]. It has a tool for static program verification, allows test generation
based on contracts, and has an Eclipse plugin for symbolic debugging. All of
these tools are built on a common code base that includes an interactive prover
and a symbolic evaluator of programs. KeY is based on dynamic logic, shared
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by the symbolic evaluation and the interactive prover, into which programs and
annotations are translated.

KeY allows additional axioms and strategies to be added to its prover through
a feature called ‘add user defined taclets’. Even the assumptions made in KeY’s
built-in taclets can be tweaked: there is a setting called ‘taclet options’ that
allow us to determine how certain Java commands are treated. For instance,
one can tell KeY to ignore assert commands to mimic the behavior of when the
Java Virtual Machine (JVM) is called in the same way. Alternatively, one can
tell KeY to treat failing assert commands as runtime exceptions, or to generate
proof requirements that ensure that they hold. Proving that assertions hold
means that the JVM will not report any assertion failures, regardless of whether
assertion checking is enabled in the JVM. KeY allows us to save proofs, both
completed and incomplete proofs. For this case study, we refrained from using
any user defined taclets.

In the tool KeY, one opens a directory from a GUI. The tool then lists
all proof obligations for all JML annotated files in that directory. When one
is selected, one can interactively create a proof for it. There is also an auto-
matic option. Using the automatic option on the program in Fig. 1 produces
a proof with two open subgoals: One where a proof of jmod(v, d) <= d is
required, and another where jmod(v, d) < 0 is assumed, where jmod refers
to the built-in function of the JVM that computes the modulo, which arises as a
translation of %. KeY makes no assumptions about the JVM’s implementation of
jmod, so we cannot complete the proof. This does not depend on modes of taclets
(like whether or not arithmetic is verified with overflow checks). We could, how-
ever, proceed by adding these assumptions to KeY manually by adding taclets,
and in this way complete the proof.

3 Syntactical Differences

This section describes differences between KeY and OpenJML for which a syn-
tactic criterion can be given. We first discuss differences in the parts of the JML
standard that are covered by OpenJML and KeY. Then, we continue with the
extensions to the JML standard offered by either KeY or OpenJML. Finally, we
also briefly discuss what could be done to decrease the syntactical gaps. Table 1
summarizes the discussion in this section, and gives an overview which keywords
are supported by which tool (and by the JML standards). This table does not
show what is supported by the parser built into each tool, but rather by the tool
when performing static verification. We have also omitted keywords for which
we could not find clear differences, such as \forall.

Covered JML Subset. For most syntactical differences, the JML standard seems
to be a driving force: both KeY and OpenJML implementers aim to let JML
keywords behave as described in the JML manual. The developers are generally
aware of the syntactical differences: both the KeY website and the OpenJML
website feature lists of differences and similarities between the tool and the JML
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Table 1. Syntactic elements evaluated, and support in JML, OpenJML and KeY

Keywords JML KeY OpenJML

\sum \product \num of Yes Yes No

\strictly nothing strictly pure No Yes No

\not assigned Yes No No

\bSum \bProduct No Yes No

\locset \intersect \set union No Yes No

\distinct No No Yes

\index No Yes Yes

Certain Java arithmetic: % ˆ Via Java No Yes

standard [12,13]. Some JML keywords that KeY supports, but OpenJML does
not are: \sum, \product and \num of.

Non-JML Extensions. Other syntactic differences come from non-JML exten-
sions to KeY. KeY has greater flexibility than OpenJML in indicating that
certain variables may not be assigned: in OpenJML, like KeY, one can state
for which variables the value may change through the execution of the method.
All other variables should never be assigned. In KeY, however, one by default
states that other variables will eventually return to their original value. The
difference can be useful in concurrent programs (although neither KeY nor
OpenJML currently support the verification of such programs). In KeY, within
an assignable clause, the \strictly nothing keyword indicates that no
global variables may be assigned, even if they are eventually restored to their old
value. Similarly, strictly pure indicates the same thing. These keywords are not
part of the JML standard, they implement what according to the JML standard
should be the behaviour of \nothing and pure respectively. OpenJML does
not offer a choice on how assignable is interpreted, but it does implement
the JML standard by default. The JML keyword \not assigned, which also
serves this purpose in the JML standard, is not supported by OpenJML or KeY.

In conditions, the keywords \bsum and \bProduct are used as a bounded
verifier-friendly version of \sum and \Product, respectively, which gets the
range over which the sum or product is calculated as two integers.

For modeling the heap, KeY introduces the \locset type, as well as set oper-
ations like \intersect, \set minus and \intersect, \set union. Rea-
soning about the heap was introduced to support dynamic framing in KeY [2,22].

Like KeY, OpenJML has some non-JML extensions that are not supported
by KeY. For conveniently writing that every pair in a set of variables is distinct,
OpenJML writes \distinct, which can be considerably shorter than using !=
pairwise for large sets of variables.

Interestingly, the keyword \index is supported in both OpenJML and KeY,
even though this keyword is not part of the JML standard. Within an enhanced
for-loop (a for-each loop), \index is used to indicate the current index. The
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\index keyword was discussed at a JML workshop, and may become part of
JML as the \count keyword.

We did not focus on finding out which subset of Java is supported by KeY
or OpenJML. However, as mentioned in the introduction, Fig. 1 did not auto-
matically verify in KeY while it did verify in OpenJML. This seems to happen
because KeY does not have a built-in axiomatization of % by default. Similarly,
KeY could not verify any properties about the bit-wise xor, or ˆ in Java, while
OpenJML could. In contrast to OpenJML, KeY does not allow the use of Java
generics, although the KeY website claims that these can be removed statically
via an Eclipse plugin (which we did not test).

Reducing the Gap. The syntactical differences between KeY and OpenJML can
be a nuisance for someone trying to use different tools for different parts of the
same specification, and therefore these differences should be clearly documented
and avoided as much as possible.

We recommend that KeY supports the \not assigned keyword, and depre-
cates \strictly nothing and strictly pure. With the exception of \locset
and the corresponding set operations, all keywords can be expressed in standard
JML. For the use of \locset, it is worth considering adding this to the JML
standard. We also recommend to add \index to the JML standard.

At some point, there has been a proposal to add markers to annotations,
to indicate that they were tool-specific, because KeY would require different in-
code annotations than e.g. OpenJML. One could imagine that annotations that
use /*KEY@ ....*/ as surrounding comments are considered only by KeY.
This idea was introduced during a JML workshop, and is now supported by at
least OpenJML through the markers RAC, ESC, and OPENJML.

4 Semantical Differences

The previous section discussed syntactical differences between the JML speci-
fications supported by OpenJML and KeY. However, even more important are
semantical differences, where the specifications are the same (maybe modulo
syntactical differences), but the behaviour of the tools is different.

This section provides a list of such differences. We do not believe that this
list is exhaustive, but we believe it gives a good impression of the semantical
differences in tool behaviour that one should be aware of. In fact, we are not
sure whether it is possible to give a fully exhaustive list of such differences, but
we believe that understanding and discussing the differences is important for a
better interoperability between tools.

The sources of the differences that we list here can vary: sometimes they are
caused by the underlying prover technology (or might even be caused by a bug
in the underlying solver), but they can also be related to a different semantical
interpretation of the Java or JML semantics.
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Compiler Checks. A difference that stands out immediately is that KeY does
not require a class to be compilable, while OpenJML does require this. David
Cok told us this is due to OpenJML’s use of OpenJDK to produce ASTs.

The KeY approach provides flexibility, and has several advantages:

– it makes it possible to verify classes in isolation, without considering the
complete hierarchy of all classes surrounding this class, and

– it is possibly to quickly copy the class that is being verified into a different
file, without having to change the class name accordingly.

However, the disadvantage and major risk is that one might spend a lot of time
on the verification of a non-compilable program (and this time might thus be
completely wasted). The KeY approach thus requires more discipline from the
users to make sure that they are indeed working on a correct Java file.

In contrast, OpenJML builds this check in, and thus immediately identifies
program errors, but does not make it easy to verify single classes in isolation.
As a result, in OpenJML one often has to spend a lot of time on stripping
irrelevant imports, function calls etc., in order to make the tool actually check
some specification.

Visibility Checks. Related is that KeY does not do visibility checks on fields
and methods. In particular, it does not do these checks in the specifications. As
a result, KeY does not complain if a publicly visible specification uses private
variables. For example, in Fig. 2 the KeY-verified example uses private fields
in the public method specification: both the private variable a and the private
method ReturnFive occur in the ensures statement. In contrast, OpenJML
immediately reports all visibility issues in this specification.

Fig. 2. Publicly visible specification with private variables

This lack of visibility checking in KeY is in violation with the JML stan-
dard [18, Sect. 2.4], and we believe that this is an omission in the KeY imple-
mentation, because it breaks the standard rules of encapsulating an object’s
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internal state. Moreover, a simple solution is available by declaring the variable
spec public, which implicitly declares a model variable that abstracts from
this internal state (and thus, if the internal state is changed, only the relation
between the model variable and the internal state has to be adapted, but the
public method specifications do not change).

Fig. 3. Method without a contract

Inlining. KeY and OpenJML have a different approach to handling method calls.
OpenJML uses a very puristic approach: any method call will be abstracted
by its method specification. Thus, consider the example in Fig. 3. Method
InitPublic calls method ReturnFive. As method ReturnFive does not
have any method specification, OpenJML will simply assume that any behaviour
of this call is possible, and it will not be able to prove the postcondition
a == 5 (even though we can clearly see that the implementation of method
ReturnFive achieves exactly this).

KeY follows a different approach here. If no postcondition is specified, i.e., no
ensures clause is present, KeY will inline this method call, and thus the post-
condition of method InitPublic can be proven. Notice that when a postcondi-
tion of ReturnFive is specified, even when this is only ensures true;, inlin-
ing will not happen anymore, and verification of method InitPublic will fail
(except of course if the postcondition of ReturnFive captures that it returns
5).

KeY thus requires a user to think carefully about whether a method call
will indeed always end up invoking the same method invocation. If the method
ReturnFive may be overwritten, the postcondition of method InitPublic
might not hold anymore after the call to ReturnFive in the subclass. Thus,
again KeY provides extra flexibility, i.e., not requiring every call to be annotated,
but at the risk of verifying something that is not correct. The JML semantics
does not explicitly describe whether unfolding is a valid proof step for static
verification.
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The use of contracts, rather than inlining, can greatly speed up time required
for running the automated verification, as witnessed by experiments in KeY done
by Knüppel et al. [15]. Obviously, using inlining for program verification can
avoid the need of even having to write contracts.

David Cok brought to our attention that OpenJML has some undocumented
support for inlining. He suggests the introduction of an inline keyword to steer
the desired behavior.

Memory Safety and Exceptional Behaviour. An interesting difference that we
noted between KeY and OpenJML is in the checks that are implicitly added
to ensure memory safety. The JML semantics advocates a non-null by default
semantics, but it does not exclude other exceptions by default.

KeY has three ways of dealing with exceptions, depending on a taclet settings.
One setting requires you to prove that no kind of exception will ever be thrown.
This does not allow you to verify any program for which throwing errors is part
of the specification. Another setting assumes no exceptions occur, making the
analysis unsound, but possibly still useful for catching certain kinds of bugs. A
final setting, and the one used in the discussion below, is to treat all exceptions
as exceptional behavior.

Consider for example the small fragment in Fig. 4. This specification expresses
that it will throw an ArrayIndexOutOfBoundsException. KeY verifies this
example without any problem, but OpenJML does not. Instead, it complains
that for the expression a[-1] it cannot verify that the index -1 is within the
bounds of the array. Thus: OpenJML adds implicit checks that ensure that this
runtime exception will never be thrown, and does not allow the user to prove
that this exception actually will be thrown here.

Fig. 4. Method with an exception as its contract

As a consequence, implicitly OpenJML reduces the use of exceptional
behaviour specifications only to explicit exceptions, and is more rigorous on
runtime exceptions than is prescribed by the JML standard [18, Sect. 9.8].

A related difference is that OpenJML checks for bounds within the pre-
conditions of contracts, while KeY does not. Therefore, the example of Fig. 5
results in a warning in OpenJML, while KeY proves its correctness. The JML
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Fig. 5. Method raising an exception in its contract

standard states two things about errors in contracts: First, it states that state-
ments in a contract are to be evaluated in order, such that an exception like
this can be prevented by verifying that the index is within bounds (i.e. ver-
ifying that a.length<a.length for our example). Second, it states that a
condition is valid if it evaluates to true (also referred to as ‘strong semantics’).
This means that if exceptions are thrown in the evaluation of a condition, that
condition is false. Consequently, this requirement makes the contract trivially
valid (see also [3,6] for related discussions). Despite these two statements, we
cannot deduce from the JML standard how static verification tools should deal
with exceptions in preconditions. We argue that preconditions that evaluate as
exceptions are always undesirable and point to errors, agreeing with Chalin [6]
on this point. Therefore, we suggest OpenJML’s way of dealing with this issue
to become standard.

Initialisation Checks. OpenJML and KeY also differ in the checks that they
insert for variable initialisation. Consider the example in Fig. 6. JML specifies
that variables are always non-null by default, so the getLength function satis-
fies its contract. Therefore, we should reasonably deduce that the InitArray
function contains an error.

This example is verified in KeY, but OpenJML complains. OpenJML reports
that there is no explicit constructor, and mentions line 2 as problematic. Using
the non-null default, the reference to array a should always be non-null, but this
is not guaranteed in this program. Adding the initialisation a = new int[0];
by uncommenting line 4 solves this issue.

We believe this difference is caused because KeY simply forgets to generate
a proof goal for the initialisation of arrays, while OpenJML adds the implicit
fact that a should be non-null as an implicit class invariant to the variable
declaration, and therefore signals a problem.

Power of Underlying Solver. In some cases, the capabilities of the underlying
prover determine what can be verified. We previously stated that it can be worth-
while to combine different provers, depending on which prover is most suitable
for the task. In doing this, we implicitly assume that differences exist in which
annotated programs can be proven automatically, and which cannot. We show
that this is indeed the case, even though this does not give us fundamental
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Fig. 6. No array initialisation

insights into how KeY and OpenJML interpret programs. We give three exam-
ples: one where both provers fail, a second where OpenJML is able to prove
correctness automatically while KeY is not, and a third example where it is the
other way around.

Consider first the code fragment in Fig. 7.

Fig. 7. Complicated loop invariant

This program, with the loop invariant as specified, could not be verified
automatically by KeY: After letting KeY run automatically for an hour, still no
solution was found. We believe a manual KeY proof exists, as this is claimed for
a more elaborate version of this code [14].
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When we try to verify this with OpenJML, verification fails within ten sec-
onds. This makes the example one where both OpenJML and KeY fail to verify
a program. Fortunately there was an easy fix, by splitting the big loop invari-
ant into two separate loop invariants. That is: replace the && on line 9 by
; loop_invariant. This verified the program without any problem, again
in roughly ten seconds. Notice that this is logically completely equivalent, but
apparently using the full conjunction in the generated proof obligation is too
complicated for the underlying first-order prover Z3. Thus, the OpenJML user
has to be aware of this issue, and make sure that his or her specification style fits
the capabilities of the underlying prover. If we run KeY on the changed program,
it again fails to find a solution (in reasonable time).

For our second example, we did not manage to solve the issue. Consider the
Least Common Prefix (LCP) program in Fig. 8, which is part of a solution to a
VerifyThis 2012 challenge [4,11]. Verification of this algorithm works in KeY, but
not OpenJML. David Cok pointed out that OpenJML can verify the example
by replacing the maintaining clause on line 13 and 14 with:

(\forall int z; x <=z && z < x+l; a[z] == a[y+z-x])

David Cok also points out that the issue is indeed with the underlying Z3
solver, which has trouble with quantified expressions that have arbitrary expres-
sions as array indices.

Fig. 8. Modified LCP example
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5 Lessons Learned

This case study investigated differences among JML, OpenJML and KeY. Both
tools aim to verify JML-annotated Java programs, but this case study shows that
the differences in their behaviour are substantial. Therefore, at the moment it is
a non-trivial exercise to reuse verified specifications from one tool by the other
tool, even though the developers of OpenJML and KeY have had discussions to
agree on a common semantics for a core of JML.

The differences fall in different categories: syntax of the specification lan-
guage, interpretation of the JML semantics, behaviour of the underlying prover,
and choice of defaults in programs and specifications. To improve interoperabil-
ity between tools, we need to investigate if we can reduce these differences and
if this is not possible, we should make sure that we document them. We believe
that tool developers should take much more responsibility than they do currently
to improve interoperability between tools. Looking at the different categories of
differences that we identified, we believe the following should be aimed for:

– Syntactical differences should simply be avoided. If tool developers feel the
need to define their own syntax, we believe that they should provide users
with a script to turn the annotated program into a standard-JML compliant
version, or use special markers for the non-JML-compliant annotations.

– Differences in behaviour caused by the underlying prover should be avoided
as much as possible. These are caused by the format in which proof obliga-
tions are sent to the underlying prover (and by the use of different underlying
provers). Finding the optimal format is a research challenge, and it is impor-
tant that tool developers exchange their experiences with this. The issue can
probably also be further reduced by supporting different back-end provers.

– The differences due to a different interpretation of the JML semantics should
be avoided as much as possible. Therefore, it is important to continue the dis-
cussion on a common semantics of core JML, and to document the outcome of
this discussion. Also, tool developers should agree to adhere to the decisions
made during this discussion, and if necessary, adapt their tool implementa-
tion. If a tool developer still decides to deviate from this common semantics,
he or she should document this, or preferably provide a flag that allows one
to still use the common semantics.

– For the differences caused by the choice of defaults in programs and specifica-
tions, the same applies: these should be documented, and an option could be
provided as a special flag. In some cases, the tool might also decide to issue
an explicit warning about the defaults chosen, and that other tools might
deviate from this. For example, it would help if the KeY tool would issue
a warning that it did not check whether the Java program actually can be
compiled.

And very importantly, these choices and assumptions that cause differences
should be documented in a way that is understandable and accessible for people
who did not develop KeY or OpenJML, as they are ones that are the most likely
to benefit from tool interoperability. Ideally, tools should be developed with this
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idea of interoperability in mind. We understand that it might not be easy to
change the complete implementation of a tool, but it would help users a lot if
OpenJML could be invoked with a -KeY flag, and vice versa1.

To improve the current situation, a first starting point would be to define a
collection of verification benchmarks with intended behaviours (similar to the
litmus tests for relaxed memory models). The examples discussed in this paper
could be a starting point for this, but further extensions will be necessary.

In this case study, and also in the conclusions, we focused very much on JML-
annotated programs. However, we believe that the general lessons learned also
apply to other verification tools, and that it is time for the formal verification
community to really put more effort in tool interoperability, in order to increase
the impact of formal verification.
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Abstract. Many systems in automated production and industrial
automation operate in safety-critical environments and must meet rig-
orous safety requirements. To enable safe operation even in the case of
a power outage, the PLCs driving these systems feature battery-backed
memory areas to prevent loss of data and allow for implementation of
resumption strategies. However it is up to an automation engineer to
decide which variables to retain, and errors that only occur after pro-
gram restart are a common problem in industrial control code.

We present approaches to both verifying the absence of such errors
and synthesising safe configurations of retain variables with off-the-
shelf tooling. The synthesis problem reduces to solving particular exists-
forall quantified Horn clauses, for what we also propose a more efficient
counterexample-guided procedure.

Evaluation of our prototypical implementation on examples from the
PLCopen Safety library shows the techniques’ strengths and limitations.

Keywords: Software verification · Parameter synthesis
Restart-robustness · Integration of formal methods
Programmable logic controllers

1 Introduction

In industrial applications, such as chemical plants or assembly lines, control
software must meet high safety and reliability requirements as errors may entail
significant costs and hazards. Programmable logic controllers (PLCs) are rugged
computers which are particularly tailored to, and widely used in, the industrial
automation domain.

The IEC 61131 standard defines requirements to both hardware and software
aspects of PLCs as well as their cyclic mode of operation, i.e. reading inputs (from
sensors), executing a main program, writing outputs (to actuators) and starting
all over. To enable the design of systems that we call restart-robust w.r.t. some
specification, i.e. whose behaviour complies with the specification even when
resuming operation after a restart, the IEC 61131-3 defines a retain qualifier for
variables in PLC programming languages. Variables that are declared this way,
are stored in a dedicated battery-backed memory s.t. their values are available
even after a power outage.
c© Springer Nature Switzerland AG 2018
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For example consider the use case of automated drilling of holes in workpieces.
If the drill’s position or mode of operation are not retained, a restart may result in
unintended movement of the drill and damage to the system itself, the payload,
or persons within reach – even if such a malfunction were not possible in a
restart-free operation.

While retain variables are standardised, the semantics of an assignment to
such a variable is not, and left to the PLC vendors. In this work, we focus on the
two most prominent implementations supported by major development environ-
ments for PLC software: immediate and delayed writing of retain variables. In
the former case, an assignment to a retain variable is translated to an immediate
write to the battery-backed memory. However, frequent writing to this memory
is often slower than accessing the main memory, and every immediate write
increases the number of corner-cases to consider when developing restart-robust
applications. By way of contrast, in the case of delayed writing, assignments to
retain variables during program execution are in fact writes to the main mem-
ory. The actual copying of these values to the battery-backed memory is delayed
until the end of the current PLC cycle. Depending on the application or PLC
vendor, one or the other semantics may have to be supported.

Due to the cyclic operation of PLCs, where outputs are only written at the
end of a program execution, the intermediate states of a PLC are not visible
to the environment. Therefore, when automation engineers or specifications talk
about a PLC’s state they implicitly refer to its observable state. Although most
specifications in this domain are formulated in natural language, they can usu-
ally be expressed formally in terms of invariants or temporal logics [16]. When
developing restart-robust control software or upgrading existing functionality to
handle restarts safely, it becomes an automation engineer’s task to manually
determine which variables must be retained without violating a given specifi-
cation of safe behaviour, and implement the functionality needed for resuming
operation. Since mistakes can easily be made, but be very subtle and hard to
detect, this is a common problem in industrial control code [20].

Contribution. The primary contribution of this paper is the design of auto-
mated verification procedures that aid in the engineering of restart-robust logic
control software. To this end,

1. we formalise the restart behaviour for delayed and immediate write seman-
tics, and sketch its integration with established approaches for PLC software
verification,

2. we show how these characterisations can be extended, to acquire procedures
that synthesise restart-robust configurations of retain variables using off-the-
shelf tools,

3. we propose a dedicated counterexample-guided procedure, which exploits
specifics of the problem, and makes synthesis of configurations practical in
the first place,
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4. we evaluate our approaches to both verification of a program’s restart-
robustness and synthesis of safe configurations of retain variables using exam-
ples from the PLCopen Safety [31,32] library, and

5. we provide all the artefacts needed to reproduce our results, or even improve
upon.

Related Work. Due to the safety critical nature of industrial automation,
the use of formal verification is advisable and many successful applications of
formal methods have been reported in the past. However most work operates
on model level, analysing drafts and models of the system to be implemented,
instead of the actual implementation [30]. While such analyses are necessary to
find conceptual problems early in the development cycle, they do not guarantee
that the implementation will be free of bugs.

The endeavour of verifying PLC software goes back to Moon [28], who used
the SMV formalism [27] to characterise programs written in the Ladder Diagram
programming language. Although SMV targets hardware verification, and Lad-
der Diagram indeed is a circuit-like language without control flow, most present
day PLC software verifiers still use SMV-based tooling for model checking higher-
level PLC programming languages [3,16,30]. However, with constrained Horn
clauses (CHCs) increasingly becoming a basis for automatic program verifica-
tion in recent years [7], they have been adopted in verification of logic control
software too [9,10]. Therefore, we examine the characterisation of restart seman-
tics in both formalisms.

To the best of our knowledge, we are the first to investigate formal verification
of a program’s restart-robustness and synthesis of safe retain configurations. The
only directly related work [20] assumes delayed write semantics and adapts static
value analysis to distinguish between variables’ values before and after a restart.
Crash recoverability of C programs [24] is a related problem, using a similar
modelling, but differing from restart-robustness in terms of requirements and
program transformations.

The search for constants s.t. a system satisfies some property is commonly
referred to as parameter synthesis, and we model the search for safe retain con-
figurations as such. Besides of our characterisation of the problem in terms of
the SMV formalism, SMV-based tooling has also been used in bioinformatics to
find parameters for models of gene regulatory networks [2]. Our counterexample-
guided approach is most similar to [13] but does not require quantifier elimina-
tion, is independent of the chosen theory to model values, and works with any
CHC-solving algorithm.

Outline. We commence with an example program, illustrating the concrete
problems and expected solutions. Section 3 recapitulates the formal concepts
relevant for characterisation of these problems in terms of existing formalisms
(Sect. 4) and understanding of the counterexample-guided synthesis procedure
(Sect. 5). In Sect. 6, we present experimental results and provide concluding
remarks in Sect. 7.
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2 Motivating Example

Consider the program from Fig. 1, which picks up on the example used in [20],
but is slightly modified to make a different point. For simplicity, it does not
feature input variables and operates on two integer variables a and b, and a
retentive Boolean flag fs. Intuitively, the flag fs is used to track whether the
program is in its first cycle, s.t. the initialisation of b (cf. line 11) is only exe-
cuted once. The program starts with the explicitly provided default initialisation
[fs �→ true, a �→ 0, b �→ 0].

Fig. 1. Running example program Fig. 2. CFA of the running example

Let a ≥ 0 be the invariant that needs to hold for every observable state. In a
regular execution this is indeed true. Both a and b are initially set to 0, but b is
set to 2 during the first cycle which results in a being set to 1234/2 = 617. Since
fs is only true in the first cycle, the values of b and a stay like that forever.

However, the program is not restart-robust w.r.t. to a ≥ 0 in the context
of delayed write semantics for retain variables. If a restart occurs after the first
cycle, i.e. once ¬fs ∧ b = 2 holds, fs will stay unchanged but b will be reset to 0
and let a take an arbitrary value, by causing an undefined division by 0. Since
immediate write semantics allow for a superset of the behaviours of delayed write
semantics, the program is not restart-robust for those either.

The next question is, whether it is possible to fix the program by changing
which variables to retain. The variable fs that is being retained currently, is
assumed to be retained for a reason and not in question to become volatile, but
close inspection and intuition will help with identifying b as a suitable candidate.
If b is retained too, the program becomes restart-robust w.r.t. a ≥ 0, since the
divisor in line 13 is always 2.
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Nevertheless, if the program is used in the context of immediate write
semantics for the retain variables, it suddenly becomes not restart-robust again.
Although the program is simple, the violating run is easy to miss and will even-
tually lead to unexpected behaviour. With immediate write semantics, a restart
might occur after the write to fs but before setting b to 2, i.e. leaving it at
its initial 0. Since ¬fs will hold, there will be no initialisation and the divi-
sion by 0 will be reached again. In fact, in this case there is no way to achieve
restart-robustness by changing the configuration of retain variables.

Keeping track of all the possible (mis-)behaviour in the context of restarts
is clearly prone to human error. It should not be surprising that unexpected
behaviour after a restart is a common problem [20], given that implementa-
tion of restart-robust systems is currently approached without aid of automatic
procedures.

3 Preliminaries

3.1 Program Representation

We restrict the presentation to a reduced programming language, featuring only
assignments, assumes and a havoc instruction, which models the assignment of
a nondeterministic value, visualised as x := e, g and x :=? respectively, where x
is a variable, e an expression, and g a Boolean expression acting as a guard. This
is a common approach [1,7,8], coming without loss of generality. In particular,
all calls can be inlined since recursion is prohibited in PLC programs.

We use Instr to denote the set of such instructions, and represent a program
using the notion of a control flow automaton (CFA).

Definition 1 (Control Flow Automaton). A CFA A = (L,E) is a directed
graph, where the vertices L are the program locations, and the edges E ⊆ L ×
Instr × L model the program’s instructions and their effect on control flow.

Definition 2 (Program). A program P = (X,Xin,A, lEoC, linit, def ) consists
of a set of variables X, input variables Xin ⊆ X, a CFA A whose instructions
refer to the variables from X, the end-of-cycle location lEoC ∈ L, the initial
program location linit ∈ L, and a partial mapping def from variables to their
default values. The characterisation I(X) of initial values is implicitly given by
the defined defaults, i.e.

∧
x∈X x = def (x).

Note that lEoC is both the only location where a PLC’s state is observable
and also the initial program location, although the formalism allows for them
to differ, e.g. as a result of instrumentation (cf. Sect. 4.1). Similarly, while all
variables of a logic control application have well-defined default values (cf. IEC
61131), later modelling steps may introduce variables for which def is undefined
and the initial value nondeterministic.

Figure 2 illustrates the CFA that models our running example. For the sake of
readability and intuition, we use an IO instruction to model the PLC’s reading
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of sensor values at the beginning of a new cycle, which is syntactic sugar for
a sequence of x :=? for each x ∈ Xin. Since this particular program has no
input variables anyway, it can be thought of as a plain goto, representable as the
assume (5, true, 1) ∈ E.

Semantics. The state of a program is an assignment σ that maps each variable
from {pc} ∪ X to a value, where pc represents the program counter, i.e. σ(pc) ∈ L.

Since a CFA is essentially a GOTO-program, its transition relation T ⊆
Σ × Σ, where Σ denotes the set of all states, can be derived from the weakest-
preconditions of unstructured programs [1], i.e.

T (pc,X, pc′,X′) =
∧

(l,instr ,l′)∈E

(pc = l → �instr� ∧ pc′ = l′), (1)

where the primed variables’ instances {pc′}∪X′ denote the next-state valuation
and �·� is the instruction’s characterisation:

�instr� =

⎧
⎪⎨

⎪⎩

(
∧

v∈X\{x} v′ = v) ∧ x′ = e instr = (x := e)
(
∧

v∈X\{x} v′ = v) instr = (x :=?)
(
∧

v∈X v′ = v) ∧ g instr = g

(2)

3.2 Symbolic Model Verifier

The Symbolic Model Verifier (SMV) formalism allows the symbolic definition of
a transition system S = (V, I, T ) in terms of a characterisation of the initial
states I over the variables V, and a transition relation T as seen in the previous
section. Accordingly, modelling the program semantics for SMV-based verifiers
is a straight-forward reuse of Eq. (1). Note though that SMV targets hardware-
verification, and with V = {pc} ∪ X the program counter is treated like any
other variable. Therefore, if the control flow is to be exploited by a SMV-based
verifier, some variant of large-block encoding [4] has to be employed.

The SMV formalism allows the definition of specifications in terms of invari-
ants and temporal logics – in particular CTL [14]. However, one needs to exercise
caution when expressing a specification for PLC software in SMV, since SMV
specifications are interpreted in the step-size that T is provided in, e.g. a single
instruction per step, while the original specification only refers to the observable
states, i.e. a step is a whole execution cycle. For an invariant ϕ(X) this can
be easily accounted for by only checking it at the end-of-cycle location, i.e. use
pc = lEoC → ϕ(X). Although we focus on invariants, the need for reformulation
of specifications can generally be avoided by characterising the whole program
as a single step [3,8].
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3.3 Constrained Horn Clauses in Software Verification

Definition 3 (Constrained Horn Clause). Given sets of variables V, func-
tion symbols F , and predicates P, a constrained Horn clause (CHC) is a formula

∀V p1(X1) ∧ · · · ∧ pk(Xk) ∧ ϕ
︸ ︷︷ ︸

body

→ h(X), k ≥ 0,

where ϕ is a constraint over F and V, Xi,X ⊆ V are possibly empty vectors of
variables, and pi(Xi) is an application of a predicate pi of arity |Xi|.
We use body to refer to the antecedent of the CHC and head to denote h. A CHC
is called a query if its head is free of P symbols and otherwise, it is called a rule.
Following the convention of logic programming literature, we use the shorthand
notation

h(X) ← p1(X1), . . . , pk(Xk), ϕ. (3)

A set of CHCs is satisfiable if there exists an interpretation of the predicates
that satisfies each ϕ. As illustrated by [22], intuitively, each pi represents an
unknown over-approximate summary, while a query defines a property to be
proved. In the context of CFAs, the pi correspond to over-approximations of
the reachable valuations at program location i. Therefore, checking whether a
program satisfies a safety property, amounts to establishing the satisfiability of
CHCs that encode the corresponding verification conditions, as shown below.

Following [7], a program P = (X,Xin, (L,E), lEoC, linit, def ) is characterised
by

pinit(X) ← I(X) (4)
pl′(X′) ← pl(X), �instr� for each (l, instr , l′) ∈ E (5)

Note that in contrast to the pi, I is not uninterpreted but explicitly given (cf.
Sect. 3.1).

To prove that the program complies with an invariant ϕ, we check whether
an interpretation of predicates pi exists s.t. all CHCs are satisfied and the over-
approximation of observable states pEoC(X) subsumes the safe states (cf. [26]),
by adding the query

ϕ(X) ← pEoC(X) . (6)

4 Modelling the Restart Semantics

Existing approaches for PLC software verification formalise only the nominal
program semantics, implementing the approaches from Sect. 3, and ignoring
possible restarts. In the following, we illustrate how restarts with delayed and
immediate write semantics for retain variables can be modelled in terms of these
established formalisms, to allow reuse of existing verification machinery.
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Similar to an interrupt, a restart may occur at any time during program
execution. When that happens, the program counter is reset to lEoC, and the
next execution cycle starts with all non-retain variables reinitialised with their
default values. The retain variables, however, take their corresponding values
that are stored in the battery-backed memory at that time. Note that marking
a variable as retained does not imply that all assignments to it are immediately
reflected in the battery-backed memory – this depends on the employed retain
semantics.

Keep in mind that for PLC programs, the initial and end-of-cycle location are
identical, and the following instrumentations are to be employed prior to other
modifications that may introduce a distinct entry linit for modelling purposes
(cf. Definition 7).

Delayed Write Semantics. If a logic controller is restarted in the middle of
an execution cycle and writing to retain variables is realised via delayed write
semantics, there will not have been any write to the battery-backed memory
since the end of the previous cycle. The resulting state will have all non-retain
variables reset to their initial values, and the retain variables back at the values
they had at the end-of-cycle location.

Since a cycle’s nominal semantics becomes irrelevant if a restart happens
during its execution, we model such a restart by a nondeterministic choice at
the end-of-cycle location. If a restart is chosen to occur, we can keep the current
values of all retain variables and reinitialise the others, otherwise we execute the
program’s nominal semantics.

Note that power outages during the delayed writes are omitted in the mod-
elling since these writes can be handled atomically by the PLC’s operating sys-
tem, e.g. by using auxiliary memory-backed variables that are written immedi-
ately.

Definition 4 (Delayed Write Instrumentation). Given a set of retain vari-
ables Xret ⊆ X for a program P = (X,Xin, (L,E), lEoC, lEoC, def ), its delayed
write instrumentation yields a program

Pdw = (X,Xin, (L � Linit, E � Einit � Erestart), lEoC, lEoC, def )

where

– Linit := {lx | x ∈ X \ Xret} are new program locations in between which the
resetting of values occurs – one for each non-retain variable,

– Einit := {(lx1 , x1 := def (x1), lx2), . . . , (lxn
, xn := def (xn), lEoC)} are the

reinitialising assignments for every non-retain variable,
– Erestart := {(lEoC, true, lx1)} models a restart during the execution of the

cycle,

with the non-retain variables denoted by x1, . . . , xn = X \ Xret.



Design and Verification of Restart-Robust Industrial Control Software 55

Fig. 3. Delayed write instrumentation Fig. 4. Immediate write instrumentation

Figure 3 illustrates the result of applying this instrumentation to our running
example. At the beginning of every execution cycle, either the edge (5, true, la)
leading to the reinitialisation, or the IO-edge leading to the nominal cycle seman-
tics will be taken.

Immediate Write Semantics. If a logic controller is restarted in the middle
of an execution cycle and writing to retain variables is realised via immediate
write semantics, all the assignments to retain variables on the path from the end-
of-cycle location to the location where the restart occurred will be reflected in
the battery-backed memory. The resulting state will have all non-retain variables
reset to their initial values, and the retain variables at the values they had at
the time of the restart.

Since only assignments to retain variables change the resulting state after a
restart, it suffices to model restarts with a nondeterministic choice after every
write to a retain variable – instead of a choice in every location. Note that,
although a restart that occurs before any write to a retain variable does not
lead to a new state, and is irrelevant for checking invariants, it may still cause
violations of other temporal specifications. To model the restarting before any
write to a retain variable, we also add a nondeterministic choice at the end-of-
cycle location, as in the case of delayed write semantics.

Definition 5 (Immediate Write Instrumentation). Given a set of retain
variables Xret ⊆ X for a program P = (X,Xin, (L,E), lEoC, lEoC, def ), its
immediate write instrumentation yields a program

Piw = (X,Xin, (L � Linit, E � Einit � Erestart), lEoC, lEoC, def )

where
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– Linit := {lx | x ∈ X \ Xret} are new program locations in between which the
resetting of values occurs – one for each non-retain variable,

– Einit := {(lx1 , x1 := def (x1), lx2), . . . , (lxn
, xn := def (xn), lEoC)} are the

reinitialising assignments for every non-retain variable,
– Erestart := {(lEoC, true, lx1)} ∪ {(l′, true, lx1) | (l, x := e, l′) ∈ E, x ∈ Xret}

models a restart before any and after every write to a retain variable dur-
ing the cycle,

with the non-retain variables denoted by x1, . . . , xn = X \ Xret.

Note that with Linit and Einit being the same as in the delayed write instrumenta-
tion, but more cases of restarts to consider, the immediate write instrumentation
yields a superset of its behaviours. As a result, if a program is restart-robust in
the context of these semantics, it is also restart-robust in the context of delayed
write semantics. If a program is not restart-robust in the context of delayed write
semantics, it will not be in the context of these semantics either.

Figure 4 illustrates the result of applying this instrumentation to our running
example. Besides the restart edge at the end-of-cycle location, which models a
restart occurring prior to any write to the battery-backed memory, we now also
consider a restart after the write to fs, since it was declared as a retain variable.

To check whether a program is restart-robust w.r.t. to some specification, we
can now use the appropriate instrumentation to reduce the problem to some-
thing, that we already have verification procedures for (cf. Sect. 3).

4.1 Characterising Parameter Synthesis with CHCs and SMV

While the proposed reductions enable checking a program’s restart-robustness
w.r.t. some specification, they do not aid the developing engineer in actually
designing programs that are restart-robust, or upgrading existing modules to
enable restarts-robustness by choosing appropriate retain variables. Therefore,
this section examines how the presented reductions can be modified, s.t. existing
tooling can also be used to synthesise configurations of retain variables that
make the program restart-robust w.r.t. a property of interest.

To enable the examination of different configurations of retain variables, the
configuration itself must become a parameter of the model. To this end, we add
Boolean constants to the model, one for each non-retain variable, which encode
whether the corresponding variable is to be retained. The constants’ values are
nondeterministically chosen at the start of the program and used to parametrise
the reinitialisation semantics. Furthermore, they are used to guard the restarts
that depend on whether a particular variable is retained, e.g. in the case of
immediate write semantics.

Definition 6 (Parametrisation of Retains). Given the result of a delayed or
immediate write instrumentation P = (X,Xin, (L�Linit, E�Einit�Erestart), lEoC,
lEoC, def ) and the used retain variables Xret ⊆ X, its parametrisation of retains
yields a program

Ppar = (X � Xpar,Xin, (L � Linit, E � EparInit � Erestart � EparRestart), lEoC, lEoC, def )



Design and Verification of Restart-Robust Industrial Control Software 57

Fig. 5. Immediate write instrumenta-
tion with dependence on retain config-
uration

Fig. 6. SMV-based synthesis requires
choice of retain variables to be part of the
model

where the non-retain variables are still denoted by x1, . . . , xn = X \ Xret, and

– Xpar := {retx | x ∈ X \ Xret} are new Boolean variables that parametrise
which of the currently non-retained variables to treat as retained,

– EparInit :=

{
(lx1 , x1 := retx1?x1 : def (x1), lx2), . . . ,
(lxn

, xn := retxn
?xn : def (xn), lEoC)

}

are the parametrised reinitialising assignments, using ternary if expressions,

– EparRestart :=

{
∅ delayed write

{(l′, retx, lx1) | (l, x := e, l′) ∈ E, x ∈ X \ Xret} otherwise

models a restart after every write to a variable that can be parametrised to be
retained in the case of immediate write semantics.

Figure 5 illustrates the result of parametrising the retain configuration,
applied to an immediate write instrumentation of our example program. In
comparison to Fig. 4, every static reinitialisation of a non-retain variable x has
been replaced with an expression dependent on a parameter retx, and additional
guarded edges that lead to the resetting have been added after assignments to
potential retain variables. Note that for the sake of readability, the visualisa-
tion of the reinitialisation sequence is simplified in that both assignments are
presented as a sequence on a single edge, instead of featuring the intermediate
location lb as in previous figures.

However, analysing a parametrised program with the techniques from Sect. 3
will not result in checking whether a restart-robust retain configuration exists,
but whether all possible retain configurations (of not yet retained variables) are
restart-robust.



58 D. Bohlender and S. Kowalewski

Existential Quantification. To determine whether a retain configuration
exists that makes the program restart-robust w.r.t. a property of interest, we
illustrate how the introduced parameters can be existentially quantified in the
context of both the CHC and SMV formalism.

Since the variables in CHCs are implicitly universally quantified, the syn-
thesis problem requires us to move on to the more complex case of exist-forall
quantified CHCs. Expressing parameter synthesis in this class of Horn clauses
is straightforward. We keep the actual clauses as illustrated in Sect. 3.3, but
replace the quantification ∀V by ∃Xpar∀V \ Xpar. The resulting constrains are
satisfiable if interpretations for both the parameters x ∈ Xpar and utilised pred-
icates p ∈ P exist, s.t. the clauses are satisfied for all values of the remaining
variables V \ Xpar. The downside is that a solver will not be able to use its
efficient procedures tailored to solving universally quantified Horn clauses, but
resort to general techniques for satisfiability modulo theories (SMT) [25].

While the SMV formalism itself does not support quantification, a CTL spec-
ification may reason about the existence of a path. In combination with another
modification of the CFA, the existence of a certain retain configuration can be
reduced to the existence of a path. Intuitively, we prepend a nondeterministic
choice of a retain configuration to the original program entry lEoC, and question
the existence of a path through this choice s.t. from lEoC on the program exhibits
restart-robust behaviour.

Definition 7 (Integration of Parameter Choice). Given a delayed or
immediate write instrumented and parametrised program P = (X � Xpar,Xin, )
(L,E), lEoC, lEoC, def , the integration of parameter choice yields a program

Pc = (X � Xpar,Xin, (L � Lc, E � Ec), lEoC, lx1 , def )

where the parameters are denoted by x1, . . . , xn = Xpar, and

– Lc := {lx | x ∈ Xpar} are new program locations in between which the choice
of retain variables occurs – one for each parameter,

– Ec := {(lx1 , x1 :=?, lx2), . . . , (lxn
, xn :=?, lEoC)} are the actual nondetermin-

istic choices for every parameter.

Figure 6 illustrates the result of integrating parameter choice into our running
example, assuming immediate write semantics. Note that, as in Fig. 5, we use
sequences of assignments instead of putting them on separate edges to avoid clut-
ter. This time, similar to the reinitialising assignments, we prepend a sequence
of havoc-instructions that realise the nondeterministic choice of a retain configu-
ration, before the actual program semantics are considered. To check whether a
retain configuration exists s.t. the program is restart-robust w.r.t. the invariant
ϕ(X), it suffices to formalise the program in the usual way (cf. Sect. 3.2) and
check whether the CTL specification EX EX(pc = lEoC → ϕ(X)) holds.

With the illustrated approach, the CTL formula will always need as many
EX as parameters are present, to quantify over the prepended path up to lEoC.
Note that in practice, this sequence of choices will usually be characterised as a
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single composite choice, and a single EX will suffice. Unfortunately, as with the
CHC-based modelling, switching to CTL will result in more general procedures
being used by a verifier.

5 Counterexample-Guided Synthesis of Safe Retain
Configurations

Due to the need for existential quantification in parameter synthesis, a reduction
to the previous formalisms will result in significantly more complex decision
procedures being used. However, our use of existential quantification is very
specific in that we only quantify over Boolean variables and their values also
stay constant throughout the possible executions. Therefore it seems natural to
manage the choice of parameters oneself, and reuse the efficient procedures for
reasoning about restart-robustness for fixed parameters.

Counterexample-guided abstraction refinement (CEGAR) [15] is a general
framework for computing an over-approximation, by finding counterexamples
that reveal issues with the current approximation and improving it w.r.t. them
iteratively. Similar to [13], we use this scheme to over-approximate the suppos-
edly “safe” choices for parameters and refine them iteratively, until all that
remains is a characterisation of choices that are guaranteed to exhibit only
restart-robust behaviour.

In Sect. 4.1 we have seen that the universally quantified CHCs of our
parametrised program check whether all parameter choices lead to restart-robust
behaviour. If we had a guess at a characterisation safe(Xpar) of safe choices, the
same machinery could be used to prove that all these choices indeed result in
restart-robustness, by checking whether our CHCs are satisfiable in the context
of the following query

ϕ(X) ← pEoC(X � Xpar), safe(Xpar). (7)

If no satisfying interpretation of predicates exists, safe is a wrong guess and
the CHC solver will provide a counterexample that describes a run through the
CFA to an end-of-cycle location where ϕ is violated, and in particular yield the
concrete Boolean parameters that led to this. For the next iteration, one would
improve safe by excluding the apparently bad choice from it.

Algorithm 1 shows the pseudocode of our procedure that follows this intu-
ition. To begin with, the already instrumented and parametrised program P is
characterised in terms of both universally quantified CHCs and a symbolic tran-
sition system, as presented in Sects. 3.3 and 3.2 respectively. Remember that in
the symbolic transition system the program counter is part of the variables, and
its V = {pc} ∪ X � Xpar should not to be mistaken for the V = X � Xpar used
in the CHCs.

The main loop, starting in line 4, implements the refinement procedure
described above. If no counterexample is found, safe already characterises
the retain configurations that lead to restart-robust behaviour. Note that the
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Algorithm 1. SynthRetainConf(P,ϕ)
Input : Program P = (X � Xpar,Xin, A, lEoC, lEoC, def ) with prametrised retains

Predicate ϕ(X) characterising safe states
Variables: Predicate safe(Xpar) charactering parameters that do not lead to violations

Universally quantified Horn clauses H
1 H ← toHorn(P ) // Represent program as ∀CHCs

2 (V, I, T ) ← toSymTS(P ) // and as symbolic transition system

3 safe(Xpar) ← true // All parameters are assumed to be safe

4 while ¬sat (H ∪ {ϕ(X) ← pEoC(X � Xpar), safe(Xpar)}) do // ∃ violating run?
5 k ← length of violating run
6 cpar ← cube of chosen (Boolean) parameter values in violating run
7 foreach lit in cpar do

8 c̄par ← cpar with negated lit // Flip literal

9 if sat (I(V) ∧ ∧
0≤i<k T (Vi,Vi+1) ∧ c̄par ∧ ¬ϕ(Xk)) then // Still violating?

10 cpar ← cpar \ lit // Drop literal

11 safe(Xpar) ← safe(Xpar) ∧ ¬cpar // Block unsafe parameters

12 return safe(Xpar) // (Potentially empty) region of safe parameters

returned predicate will characterise an empty set if no such configuration exists.
However if a counterexample exists, we determine its length and the chosen retain
configuration, as a conjunction of literals, to prevent the same choice being taken
in future iterations (cf. line 11).

To avoid enumerating every single counterexample, CEGAR schemes usually
generalise the found counterexample, s.t. a set of counterexamples that violate
the specification for the same reason can be excluded at once. Unlike in the
general setting of parameter synthesis [13], we do not need special quantifier
elimination procedures for the theories that the other variables are represented
in, but can adapt generalisation strategies for Boolean cubes.

Similar to the directed but expensive approach of explicitly trying to remove
the literals one by one [17], the loop starting in line 7 iterates over every lit-
eral once and probes whether it affects the reachability of a violation. To this
end, knowing the length of the counterexample, we construct a bounded model
checking (BMC) [6] instance that characterises the possible executions up to a
violation at this length (cf. line 9). To allow for the variables’ values to change
between different steps, the BMC query uses several instances Vi of the vari-
ables, and V0 simply denotes V.

Every literal from the cube cpar, that characterises the unsafe choice, is then
iteratively flipped to determine its impact on the violation. If flipping a literal
still leads to a violation, the literal is irrelevant and removed from the cube
during iteration (cf. line 10). Note that we use set operations on cubes, like set
difference or the subset relation, to denote the operations on the cubes’ sets of
literals.

Theorem 1 (Generalisation is Sound). The proposed generalisation proce-
dure always yields a cube cg ⊆ cpar that characterises only unsafe choices.
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Proof. Since the procedure only removes literals from cpar to acquire the result-
ing cube, the relation cg ⊆ cpar holds by construction. It remains to prove that
cg contains unsafe choices only, i.e. for all choices characterised by cg, a violating
run of length k exists:

∀
Xpar

cg(Xpar) → ∃
V\Xpar,V1,...,Vk

I(V) ∧
∧

0≤i<k

T (Vi,Vi+1) ∧ ¬ϕ(Xk). (8)

Base case: The cpar that the generalisation is entered with, characterises a single
choice that can lead to a violation, so for cg = cpar formula (8) holds trivially.

Inductive step: Let the formula hold for some cg. Flipping a literal lit in cg

yields c̄g, and two outcomes for the BMC query with c̄g have to be considered:
– If the query is satisfiable, a violation is reachable even with ¬lit instead

of lit . Since both cg and c̄g apparently characterise unsafe choices, the
formula still holds for their disjunction cg ∨ c̄g, which simplifies to the
cg \ lit that we keep.

– If the query is unsatisfiable, c̄g is a safe configuration and cg, for which
the formula is known to hold, will not be modified.

In fact, this approach is an anytime algorithm, since no matter in which order
the literals are probed, the formula always stays valid and generalisation can be
stopped at any time.

While a single iteration over all literals is not guaranteed to yield the most
general form, it already has a significant impact and is cheaper than repeating
the procedure until a fixed-point is reached.

6 Experiments

Implementation Details. We implemented Java-prototypes of both the
reduction-based and counterexample-guided approach, using the publicly avail-
able SMT solver Z3 [29] and the Arcade.PLC platform for analysis of PLC soft-
ware [5]. Unlike the presented characterisation of single instructions, we imple-
ment the common approach of encoding the whole execution cycle as one step
[3,8], which is required for efficient reasoning [4].

We use nuXmv [12] and Z3 as off-the-shelf verifiers for the SMV and CHC
formalisms that we reduce the verification tasks to. Although the analysed pro-
grams do not feature complex operations on bitvectors, and could as well have
been modelled with unbounded integers, we characterise the semantics through
the theory of fixed-size bitvectors since nuXmv does not support CTL checking
over infinite domains, and to the best of our knowledge, no other SMV-based
verifier does either.

Due to a bug in the latest version (4.6.0) of Z3 which causes segmentation-
faults on retrieval of certain counterexamples, the prototype of our guided app-
roach is linked with an older version (4.5.0) which does not feature CHC-solving
with Spacer [23] yet but uses the usually slower Property Directed Reachability
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(PDR) [21] instead. Since our approach is agnostic about the employed CHC
solving procedure, the switch amounted to changing a single parameter.

Furthermore, we do not construct the BMC instance in Algorithm1 anew in
every iteration, but reuse the same one in an incremental fashion and realise the
probing for violations by solving under assumptions [18].

Benchmarks. The PLCopen is an organisation which drives standardisation
and technical specifications in automation. The PLCopen Safety library is a
collection of such specified modules for domain-specific problems, e.g. how to
realise a safe emergency shutdown. We experimented with two groups of PLC
programs from this library, whose sizes range from 117 to 1450 program locations
per cycle. Programs from [31] are elementary modules, each one implementing a
particular safety concept, while [32] features user examples which combine these
to form more complex applications.

The considered specifications are invariants that have been used in other
case studies [8] and were either formulated by the PLCopen or derived from
their technical specifications – the concept is applicable to all specifications that
can be reduced to reachability checking though. The benchmark encompasses 56
specifications, 37 of which concern the elementary modules, while the remaining
19 refer to the composite applications.

These programs were not designed with restarts in mind, so we investigate
whether they happen to nevertheless be restart-robust w.r.t. the specifications,
and whether safe retain configurations exist at all. Since the elementary modules
exhibit state-machine semantics, featuring a DiagCode variable that tracks the
current mode of operation, we declare it to be a retain variable beforehand –
similar to fs in our running example.

Since the encoding of an execution cycle as a single step is negligibly fast and
needs to be performed only once for each program, independent of the checked
specification or chosen backend-verifier, we only compare the CPU time spent
by the verifiers to allow for a direct comparison of the techniques.

All experiments were performed on a 64 bit Linux machine with 3.5 GHz,
8 GB of RAM and a timeout of 1800 s. They can be reproduced with the artefacts
available on our website1. Note that for clarity, this package also features analysis
results of the running example, and the actual CFAs and their encodings.

Results of Restart-Robustness Checking. In the following, we discuss the
measurements for our experiments on verifying restart-robustness w.r.t. a given
specification, using the formalisation presented in Sect. 4. To this end, we mea-
sure the time it takes to check a specification on the original program, treating
retain variables like regular ones, and the time spent on delayed and immediate
write instrumented variants of the program. Overall this results in 168 verifica-
tion tasks.

1 https://arcade.embedded.rwth-aachen.de/ifm18 restart.tar.gz.

https://arcade.embedded.rwth-aachen.de/ifm18_restart.tar.gz
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Fig. 7. Time [s] spent on checking restart-robustness w.r.t. each specification and
semantics (Color figure online)

Figure 7 compares the runtime of the state-of-the-art tools nuXmv and Z3 on
these tasks, with the underlying verification procedures IC3 [11] and Spacer, for
the SMV and CHC formalism respectively. The colouring of the marks encodes
which restart semantics were considered, while their shape indicates whether the
analysed program was elementary or composite.

In our experiments both backends managed to perform all verification tasks
in the given time. At a first glance, what strikes the eye, is that nuXmv was
about an order of magnitude faster than Z3 on many of the composite examples,
while the elementary modules were mostly analysed in less than a second by both
tools. However, since this does not apply to all verification tasks for composite
modules, compositionality does seem not to be the relevant point here. On closer
inspection, we found that in all of the cases where Z3 performed worse, no
satisfying interpretation of the CHCs existed. While this is hardly noticeable
for the easier tasks, it becomes more apparent in the more complex cases. This
might be attributed to nuXmv being more tuned for reasoning over bitvectors,
thus quicker to identify unsatisfiable instances, or Spacer not being able to play
it’s strengths given the non-compositional encoding of program semantics [9,22].

According to the distribution of colours in Fig. 7, the additional considera-
tion of different variants of restart semantics does not seem to have a significant
impact on the verification times. The approximate clustering into tasks on ele-
mentary and composite programs suggests, that the complexity of the examined
program is still the deciding feature. Taken as a whole, the results show that this
approach to modelling and verification of restart-robustness w.r.t. some invariant
is indeed reasonably fast and feasible.

Results of Synthesis. In this section, we discuss the measurements for our
experiments on synthesis of retain configurations that realise restart-robust
behaviour w.r.t. a given specification. Since synthesis without retain variables
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Fig. 8. Time [s] spent on synthesis of restart-robust configuration for each spec and
semantics (Color figure online)

does not make sense, we consider the specifications only in the context of delayed
or immediate write instrumented and parametrised programs, as seen in Sect. 4.1.

The plots in Fig. 8 illustrate our measurements of the time the verifiers spent
on each of the 112 verification tasks, reusing the notation from Fig. 7. To begin
with, we focus on the left one, that again compares the runtime of nuXmv and
Z3, which now resort to more general decision procedures, i.e. BDD-based CTL
checking [27] and a variation of model-based quantifier instantiation (MBQI)
[19,33] respectively.

Unfortunately, purely BDD-based verification does not scale well for these
programs [8], causing nuXmv to run out of memory for 66 verification tasks.
In the plot these cases are visualised as timeouts too, i.e. the runtime is set
to 1800 s even though the running out of memory occurred earlier. While all
synthesis tasks for the composite programs ran out of memory, 27 tasks for
the elementary programs caused proper timeouts. Only 19 tasks, all of which
targeted elementary modules, could be performed within the resource limits.

Z3 turned out to be significantly more useful for parameter synthesis, timing
out only 47 times, and never running out of memory. In contrast to nuXmv,
it even manages to determine whether safe retain configurations exist for 14
specifications for the composite programs, and only times out in 11 cases for
the elementary ones. We can also observe that, in contrast to plain checking
of restart-robustness w.r.t. some property, the type of instrumentation has an
impact on the time needed for parameter synthesis. For example, looking at the
fastest runs of Z3 we find only yellow triangles, that is tasks on delayed write
instrumented elementary modules, ranging from 3 to about 30 s. The correspond-
ing cluster of red triangles, for the immediate write instrumented variants, ranges
from about 20 to 150 s.

Nevertheless these results suggest, that the established verification pipelines
for checking reachability properties are not practical for parameter synthesis.
This observation originally motivated us to devise our own procedure.
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Let us now consider the right plot of Fig. 8, which compares the counter-
example-guided technique from Sect. 5 with Z3’s approach. It is easy to see that
our guided approach performs significantly better – often even by more than an
order of magnitude. Although it still times out for two of the specifications that
refer to the biggest program in our benchmark, the remaining 110 synthesis tasks
finished in time. Furthermore, the fact that immediate write instrumented pro-
grams yield more complex synthesis problems, does not seem to have a noticeable
impact on the runtime. In particular, the clustering of delayed and immediate
write instrumented elementary modules that is visible in the x-coordinates, is
not apparent in the y-coordinates.

Looking at the plot one might also notice the clustering of data points right
above the 2 s mark for our approach. This is due to the fact that we measure the
runtime of a verifier from start to finish, i.e. not just the verification procedure,
and since our procedure builds upon Arcade.PLC, the first few seconds of
every run are spent on the JVM starting, the PLC program being compiled, and
the execution cycle being characterised as a single step.

It is interesting to see that although Z3’s approach was worse overall, it
managed to analyse one of the cases where our technique timed out. In the end,
only one verification task remains unsolved by all approaches.

7 Conclusion

While retain variables were introduced with better safety in mind, they allow for
subtle corner cases and unexpected behaviour that only occurs after program
restart. We are the first to formalise a logic controller’s restart behaviour in
the context of delayed or immediate write semantics for retain variables, and
approach verification of a program’s restart-robustness w.r.t. a specification.

To aid in the design of restart-robust software, we illustrated how synthesis
of safe retain configurations can be reduced to verification conditions for existing
tooling. We also proposed a counterexample-guided procedure which incremen-
tally approximates a region of safe retain configurations, by exploiting the fact
that the actual parameters of the formalisation are Boolean, independent of
the retain variables’ types. Our experimental results show that the verification
conditions for restart-robustness can be solved by established tooling in rea-
sonable time. However, synthesis was only feasible when approached with the
counterexample-guided technique.

Future Work. There are several ways in which we want to deepen this line
of research. On the one hand we want to examine the feasibility of obvious
optimisations, like employing an encoding that allows for compositional reason-
ing [9,22] or looking into more sophisticated generalisation schemes. This alone
might suffice to eliminate the last two timeouts in our benchmark.
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On the other hand, we plan on investigating whether a definition of restart-
robustness as a relational property between the nominal and restart-augmented
behaviour is practical, i.e. given no specification but the program’s nominal
behaviour, to what extent may the restart-augmented behaviour deviate from it
to still be considered robust?
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control software. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 508–522. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-
0 32

17. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of prop-
erty directed reachability. In: International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2011, Austin, TX, USA, 30 October–02 Novem-
ber 2011, pp. 125–134 (2011)
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Abstract. Rule-based systems are used to define complex policies in
several contexts, because of the flexibility and modularity they provide.
This is especially critical for security systems, which may require to com-
pose evolving policies for privacy, accountability, access control, etc. The
inclusion of conflicting rules in complex policies, results in the inability
of the system to unambiguously answer to certain requests, with pos-
sibly unpredictable effects. The static identification of these undefined
requests is particularly challenging for unconstrained rule-based systems,
including quantifiers, computations and chaining of rules. In this paper
we introduce a static method to precisely characterize the set of all unde-
fined requests for a given unconstrained rule-based system, providing the
user with a global view of the rule conflicts. We propose an enumerative
approach, made usable in practice by two key performance optimizations:
a finer classification of the rules and the resort of the topological sorting.
We demonstrate its application on a well-known policy with more than
fifty rules.

1 Introduction

Rule-based systems are widely used in very different contexts, ranging from
knowledge representation and reasoning to system configuration, from logic
programming to databases. Among these contexts, security systems are espe-
cially witnessing a significant growth in production of critical, complex and
rapidly evolving rule-based policies aiming to offer strong guarantees (of privacy,
accountability, etc.) in modern networking environments (including Internet of
Things, Software-Defined Networks, etc.). A rule expresses in a concise and nat-
ural manner the link between some conditions and a conclusion. This if then
else semantics is familiar to many software stakeholders, and allows for the
definition of modular systems and their flexible evolution.

In this paper we consider a strict logical context, where a rule system is a
finite set of logical implications and in conjunction with a request it ensures a
reply. Efficient methods for verifying the correctness of such systems in practice
is an important research subject [1]. We are particularly interested in one type of
error, namely rule conflicts, that cause some requests to be undefined, i.e. to have
c© Springer Nature Switzerland AG 2018
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several incompatible replies. The risk of rule conflicts is very relevant in modern
security systems, that often compose independent and evolving policies. We are
here interested in a general notion of conflicts entailing the system execution and
leading to a runtime bug. We are not focusing on redundancies, misconfigurations
or other similar problems which can be considered either as simplifications or
holes in the rule system.

There are already several verification methods and algorithms for rule-based
policies, in expert systems and databases [2], for Web policies and contracts [3],
and in the security domain [4–6]. In this paper we will focus on formal methods
and assume a formal policy written in a decidable logic. Moreover we will con-
sider unconstrained systems with complex conclusions and chaining of rules (i.e.
the conclusion of one rule can be used to match other rules and produce new
derivations). For these systems we want to provide a precise characterization
of the set of all undefined requests the user can present, that is in general an
infinite set. This characterization constitutes a global view of the conflicts in the
system, and a valuable aid in debugging extensive rule sets.

Techniques that have the potential to check for conflicts in unconstrained
systems with chaining, divide in two categories. The testing method (e.g., [7,8])
computes the set of undefined requests by generating large sets of ground sen-
tences as test requests, and checking the unsatisfiability of each of them in con-
junction with the rule system. The testing method suffers from two main draw-
backs: (i) the global cost of the request generation and evaluation is very high and
(ii) the test set has finite coverage over the infinite set of undefined requests. The
verification method (e.g., [9–12]) considers consistency properties (e.g., it is not
possible to deny and permit an access at the same time) and tries to prove these
properties. It has similar drawbacks since it is generally costly, and does not aim
at an exhaustive view of all possible conflicts.

Our contribution is to provide an enumerative method based on symbolic
manipulation of the rules and a satisfiability procedure to exhaustively find the
precise set of undefined requests in a rule system. The computation complexity
is exponential, but we provide two optimization steps to enhance its practical
applicability: an iterative method with rule classification and a sorting algorithm.
Finally, we evaluate our approach on a well-known case study in XACML, trans-
lated into FOL. The experimentation shows that our method is suitable for the
verification of rule systems of this size (i.e., 47 rules), where in less than one
hundred seconds it produces and analyzes less than one thousand new rules
(summarizing the analysis of 247 rule combinations).

The content of this paper is structured as follows. Section 2 describes related
work in the area of rule-based systems and checking for conflicting rules. Section 3
presents a motivating example. Section 4 provides the necessary background and
definitions to understand our approach. Section 5 illustrates our enumerative
method and optimizations. In Sect. 6 we evaluate our method, based on a well-
known case study. Lastly, In Sect. 7 we conclude and sketch future work.
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2 Related Work

An extensive literature studies the management of rule-based systems. The sur-
vey [1] shows that verification and validation of rule-based systems in practice
is mainly based on testing or code review which are of course not sufficient to
prove that a system is free from bugs. Validation and verification techniques for
various kinds of rule-based systems have also been discussed in [2] for expert
systems and database management or [3] for Web policies and contracts. In the
domain of security policies, the problem of conflicts has been intensively stud-
ied. In surveys on security [4–6], conflict detection is a central problem but it is
typically treated together with other tasks like finding bugs, redundancies, mis-
configurations, etc. We propose a specific solution for static conflict detection,
that we believe to be one of most critical issues in modern rule-based systems.

There are already some efficient algorithms to statically detect conflicts in
access control policies [13–18]. The method is generally to look for conflict in all
combinations of a number of rules (often only two rules). However, most of these
methods support only policies with discrete conclusions (like permit and deny)
and even only handle discrete attributes as conditions (ABAC policies). Our
approach is more general because, except decidabiblity of satisfiability, we do not
assume constraints on the rule system, as we could have conditions, functions,
any kind of conclusions, possibly with quantifiers and free variables. Even with
unbounded rule systems we claim to generate all the undefined requests of the
system.

In case of complex systems with predicates in conclusions and allowing the
chaining of rules, the existing solutions are not numerous. There are approaches
based on testing, used in different contexts, e.g. [7,8,16,19]. A few studies rely on
checking satisfiability as in [20], but it is too weak since satisfiability is always a
system requirement. Other formal methods and verification, for instance [9–12],
use manual proof or derivation tools and are able to prove expected properties
of the system (e.g., an access is never both permitted and denied). In practice
these properties concern a finite set of authorizations, but in case of unrestricted
obligations and chaining of rules the enumeration of the property of interest can
be an issue. We do not expect to compete with these approaches on the side of
efficiency in detecting a single conflict. Differently from these works, our method
automatically computes all the conflicting requests of the system, even if it is
not a finite set.

In the domain of constraint solving, we think that techniques for extracting
minimal unsat core and maximal sat core are closely complementary to our work
(e.g. [21,22]). We concretely show in this work how to encode the exhaustive con-
flict detection problem of security policies as a satisfiability problem. To make
sure that the problem can be solved within reasonable time, we introduce perfor-
mance optimizations as symbolic manipulations, before providing the problems
to the constraint solver. We do not directly use minimal unsat core nor maximal
sat core techniques to solve our problem. However, our manipulations can be
also adapted for enhancing alternative solutions for conflict detection that rely
on sat/unsat core (e.g. [23]).
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3 Motivating Example

To exemplify our approach, we refer to a very simple example of rule-based policy
for a medical center, inspired from [24]. The example is illustrated in Listing 1.1
using the syntax of the Z3 solver, where we represent implication as an infix
operator. This example is a first-order example with predicates and free variables
but our approach, detailed in the next section, is applicable to any decidable
logic extending propositional logic. Here h, p are universally quantified variables
(respectively for hospital personnel and patients) and other terms are predicates
or boolean operators. The system decides about read and write access rights
to the information of a patient (pread, pwrite). Hospital personnel comprises
the doctor, nurse and chief roles. Personnel can be assigned to the ward of
a patient (sameward). Despite representing a simple policy, user-defined rules
in Listing 1.1 contain conflicts, missing information and redundancies. Briefly,
hospital employees with multiple roles can not be assigned to the ward of any
patient (rule 1), doctors have read and write access to any patient data (rule 2),
nurses can not get information on patients from other wards (rule 3), a doctor
can access data for the patients of his ward (rule 4), a chief has read access to
any patient data (rule 5).

Listing 1.1. Input for the hospital example

1 And(doctor(h), nurse(h)) => Not(sameward(h, p))
2 doctor(h) => And(pread(h, p), pwrite(h, p))
3 And(nurse(h), Not(sameward(h, p))) => Not(pread(h, p))
4 And(doctor(h), sameward(h, p)) => pread(h, p)
5 chief(h) => pread(h, p)

We provide an automatic prototype that, given a system like the one in List-
ing 1.1, identifies all undefined requests, e.g. requests having multiple ambiguous
answers because of rule conflicts. When provided with Listing 1.1, our prototype
produces the output in Listing 1.2.

Listing 1.2. Prototype output for the example

[0, 1, 0,-1,-1]
And(doctor(h), Not(nurse(h))) => And(pread(h, p), pwrite(h, p))

[0, 0, 1, 0, 0]
And(Not(doctor(h)), nurse(h), Not(sameward(h, p)), Not(chief(h)))

=> Not(pread(h, p))
[0, 0, 0, 0, 1]

And(Not(doctor(h)), Or(Not(nurse(h)), sameward(h, p)), chief(h))
=> pread(h, p)

# ----------- Unsafe --------------
[1, 1, 1]

And(doctor(h), nurse(h), Not(sameward(h, p))) => False
[1, 1, 0]

And(doctor(h), nurse(h), sameward(h, p)) => False
[0, 0, 1, 0, 1]

And(Not(doctor(h)), nurse(h), Not(sameward(h, p)), chief(h)) => False
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The rule system in Listing 1.2 is logically equivalent to the original rule system
and composed of pair-wise exclusive rules1. Furthermore, each rule is prefixed
by a sequence of digits indicating the combination of the original rules which
produces this rule. For instance, the first rule in Listing 1.2 comes from the com-
bination of the original rule 2 and negation of rule 1 and 3; −1 is a don’t care
digit for rule 4 and 5. The rules tagged as unsafe denote indeed set of undefined
requests, for instance And(doctor(h), nurse(h), Not(sameward(h, p))) is unde-
fined which results from the combination ([1, 1, 1]) of the three first rules.
That means that its conjunction with the rule system is unsatisfiable. The other
rules denote defined and undefined requests. On one side, the defined requests
should intersect the conjunction of the rule condition and the rule conclusion.
On the other side, undefined requests are included, by implication, in the con-
junction of the rule condition and the negation of the rule conclusion. Related
to the first not unsafe rule, And(doctor(h), Not(nurse(h))) is a defined request
and And(doctor(h), Not(nurse(h)), Not(pread(h, p))) is an undefined one.

With such information the user can exactly know what are all the conflicting
problems, and then what are the requests that this rule system can handle.
Furthermore, he can localize the problems in the rule system, by knowing what is
the rule combination leading to undefined requests. For instance, the first unsafe
rule comes from the combinations of rules 1, 2 and 3. It states that any request
about a personnel member that is at the same time a doctor and a nurse will lead
to a rule conflict, even if the person is not assigned to the ward of the patient.
The conflict involves the first three rules, since chaining rule 1 with respectively
rule 2 and 3 leads to contradictory answers, where the data from the patient can
and can’t be read at the same time (pread(h, p) and Not(pread(h, p))).

The next section will introduce the required concepts and Sect. 5 will present
the principles of our algorithm.

4 Background and Definitions

In this section, we define a terminology that will be consistently used in the rest of
the paper. Our focus are systems that process requests and produce replies. One
important problem is due to requests leading to evaluation failures and often
called conflict in the literature. Here we formalize the notion by defining the
term undefined request. We focus on rule systems: a conjunction of rules, a rule
is A => B with A and B in some logical language. Considering that satisfiability
decision has made important progress, we expect to build a new management
method of rule-based systems by reusing efficient tool support (e.g., Z3, SMT,
SPASS, TSPASS).

Let R be a satisfiable policy system with its set of expected requests REQ.
REQ is a finite set of satisfiable logical formulae that we are interested in answer-
ing. It represents the set of expected inputs to the policy system. Requests and
1 To improve readability, we simplify the actual output from our prototype in List-

ing 1.2. The complete output and our prototype can be found in https://github.com/
atlanmod/ACP.

https://github.com/atlanmod/ACP
https://github.com/atlanmod/ACP
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replies are satisfiable logical expressions, they could be ground (without vari-
ables) or containing free variables (implicitly universally quantified) or quantified
variables. Indeed all the expressions (requests, replies, conditions, conclusions,
...) are assumed to be written in a given logical language which may allow vari-
ables, quantifiers, modal operators, and so on, providing it has a satisfiability
procedure.

Definition 1 (Rule-based system). A rule-based system (R) consists of a
finite conjunction of rules noted R = r1≤i≤n, where each rule ri takes the format
of Di => Ci, where Di stands for the premise/condition of the rule, and Ci

stands for conclusion of the rule. In addition we assume that R is satisfiable and
does not contain tautological rules.

We should note that a rule-based system is interesting if it is satisfiable and not
valid. This means that it can derive non trivial facts from the request. Thus we
assume that R is satisfiable and it does not contain tautological rules, that is
Di ∧ ¬Ci is satisfiable for all i. A request will be a satisfiable logical expression
submitted to a rule-based system and leading to a reply, another logical expres-
sion. Note that a request should trigger at least one rule, otherwise its conjunc-
tion with the system is satisfiable but does not infer a reply. Thus we make the
natural hypothesis that our requests are satisfiable and imply

∨
1≤i≤n Di. We

will say that a set of rules is exclusive if their conditions are pair-wise disjoint.

Definition 2 (Request evaluation in rule-based system). Let req be a
logical expression, evaluating it against a given rep, called the reply, means that
req ∧ R => rep is valid or equivalently req ∧ R ∧ ¬rep is unsatisfiable.

We are interested in the evaluation problem raised due to undefined requests.

Definition 3 (Undefined requests). A req request is said undefined if and
only if req and R are both separately satisfiable but req ∧ R is unsatisfiable.

An undefined request in fact leads to a problem since its evaluation leads to mul-
tiple incompatible replies. This definition is stricter than satisfiability and covers
the usual notion of conflicts we found for instance in security policies [6,25]. This
has two simple consequences: (i) any useful system has undefined requests and
(ii) these undefined requests are included in

∨
1≤i≤n Di. Furthermore any rule

(Di => Ci) which is satisfiable and not valid has 1-undefined requests, that
is requests invalidating this rule alone (in other words requests which imply
Di ∧ ¬Ci). In this work, we aim to study a complete and efficient algorithm to
ensure the safety of a given rule-based system (Definition 4).

Definition 4 (Safety of rule-based system). A rule-based system with its
set of expected requests is safe if and only if it does not contain any undefined
requests, that is for all satisfiable request req ∈ REQ implies req∧R is satisfiable.

As we can see this property assumes that the input system is satisfiable, and it
is different from many approaches looking for logical inconsistencies in a system,
for instance [9,10,20].
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5 Characterizing Undefined Requests

The management of policies and requests requires to consider several activities:
looking for the existence of one undefined request, checking a request, finding all
the undefined requests, localizing the conflicting rules, resolving the undefined
requests and evaluating a request. We here focus on finding all the undefined
requests since this global knowledge is necessary to understand the failures in
the system and to globally fix them. We do not study the fixing process but we
will give a few related hints later. As we will see, one additional benefit of our
method is to get localization of conflicting rules for free.

This section shows a decision procedure for the safety property (if satisfia-
bility is decidable), its theoretical complexity is EXPSPACE. Our approach is
based on transformations of the original rule-based system. It is important to
preserve the conditions and conclusions of rules as they represent the expected
requests and replies. Hence we will build new rules by mixing the conditions on
the left hand side and conclusions on the right hand side.

5.1 The Enumerative Method with Exclusive Rules

Our enumerative method to compute undefined requests is based on rewriting
the original rule system into its equivalent form in terms of exclusive rules.

A minor point of the method is to allow requests with variables. By consid-
ering requests with variables rather than ground requests, we aim to cover the
whole (sometimes infinite) set of requests. For example, in Listing 1.1, a ground
request like And(doctor(Jack), nurse(Jack), Not(sameward(Jack, May))) with
constants Jack, and May is undefined. However, there are many other differ-
ent ground requests that expose this problem. To capture the essence of these
problems, we use the requests And(doctor(h), nurse(h), Not(sameward(h, p))),
which is a short hand for (∀h, p · (doctor(h) ∧ nurse(h) ∧ ¬ sameward(h, p))).

Furthermore, an undefined request is unsafe in the sense that it contains (i.e.,
it is deducible by logical implication from) only undefined requests. However,
defined requests are not safe in general, in the sense they are not maximally
defined.

Definition 5 (Safe request). Let R be a rule system, a satisfiable request req
is safe if and only if any satisfiable request which implies req is defined.

Second, Lemma 1 establishes that we can rewrite the original rule system into an
equivalent form, namely exclusive rules. The lemma can be proved by recurrence
on the size of rule system n.

Lemma 1 (Exclusive rules). Let R be a rule system, we have the equivalence
∧

1≤i≤n

(Di => Ci) <=>
∧

I

((∧i∈IDi ∧j /∈I ¬Dj) => ∧i∈ICi)

where I is any non-empty subset of {1, . . . , n}.
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The rewriting of a rule system with n rules generates 2n − 1 exclusive rules.
The rule system is composed only of pair-wise disjoint rules, and preserves the
original set of defined and undefined requests.

For example, the rewriting applied to the rule system shown in Listing 1.1,
results in a total of 31 exclusive rules (partially shown in Listing 1.3). As shown
in Listing 1.3, first, we abbreviate each rule by its appearance order in Listing 1.1,
e.g. R1 is And(doctor(h), nurse(h)) => Not(sameward(h, p)). Second, we use a
D function to get the condition part of a rule, and a C function to get the
conclusion part of a rule, e.g. D(R1) is And(doctor(h), nurse(h)) and C(R1) is
Not(sameward(h, p)). For instance, in Listing 1.4 we show the non-abbreviated
form of the first exclusive rule, corresponding to the first line of Listing 1.3. The
condition is obtained by conjunction of the first original rule R1 ’s condition,
with the negation of the conditions of the other rules (R2–R5 ). The conclusion
is simply the conclusion of R1.

Listing 1.3. Part of abbreviated exclusive rules generated by our enumerative method
for the example shown in Listing 1.1

1 And( D(R1), Not(D(R2)), Not(D(R3)), Not(D(R4)), Not(D(R5)) ) => C(R1)

2 And( D(R1), D(R2), Not(D(R3)), Not(D(R4)), Not(D(R5)) ) => And( C(R1), C(R2) )

3 And( D(R1), D(R2), D(R3), Not(D(R4)), Not(D(R5)) ) => And(C(R1), C(R2), C(R3))

4 ... Another 28 rules

Listing 1.4. The first exclusive rule of Listing 1.3 in non-abbreviated form

1 [1, 0, 0, 0, 0]
2 And(doctor(h), nurse(h)), Not(doctor(h)),
3 Not(And(nurse(h), Not(sameward(h, p)))),
4 Not(And(doctor(h), sameward(h, p))), Not(chief(h))
5 => Not(sameward(h, p))

As we previously saw, a rule (if not valid) has always 1-undefined requests and
the transformation above builds a system whose undefined requests are disjoint
unions of 1-undefined requests.

Lemma 2 (Undefined requests of exclusive rules). req is an undefined
request of an exclusive rule system R if and only it is a disjoint sum, req =⊕

1≤j≤m reqj, where
⊕

is the accumulative exclusive-or operator, and each reqj
is satisfiable and 1-undefined for a given rule j.

Lemma 2 simply results from the exclusive rules and the partition of req into
disjoint parts related to the conditions Di. Thus the set of safe requests is defined
as the disjoint union of all the safe requests associated to each rule. For each
rule the conjunction of the condition and the conclusion defines a safe request.
The maximal safe request is safe(R) =

∨
I ∧i∈IDi ∧j /∈I ¬Dj ∧i∈I Ci. A request

is safe if included in safe(R), it is defined if it intersects safe(R), and else it
is an undefined request. From that the safety property can be checked by the
satisfiability of elements in REQ against safe(R).

Discussion. While existing testing methods for rule systems are generally able
to show the existence of ground undefined requests, they can’t prove that a given
(unbounded) rule system is safe. The enumerative way has three main benefits:
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– it works with the same complexity in case of finite or infinite set of ground
requests while the testing approach is not suitable with infinite sets,

– it does not depend on the set of requests thus it outperforms the testing
approach in many non trivial examples,

– it may produce undefined requests with variables, that represent an abstrac-
tion of the system problems, with localization for free.

Compared to the verification approaches, our enumeration does not require
a large set of interesting properties to prove. Moreover, if the property is not
satisfied, in the best cases previous work on verification generates a counter-
example. In general, it is not possible to produce a characterization of all the
counter-examples as we did here.

On the performance side, the enumerative method implies the computation
of all the rule combinations, which has an expensive cost. Furthermore, we check
each rule for validity and valid rules are discarded as they do not contribute to the
set of undefined requests. The enumerative method can have worse performance
than the testing methods in case of propositional rule systems. However, we
expect our method to perform better than exhaustive testing of rule systems
with variables. For instance, with systems expressed in FOL, the exhaustive
testing requires a maximal number of 2P∗DV

test cases, where P is the number
of predicate occurrences in R, D the size of the domain of arguments and V the
number of arguments. The set of test cases is growing quickly, while the number
of exclusive rules is only dependent on the number of rules in the input system.

Work on minimal unsat core and maximal sat core are closely related to
our enumerative method [21,22]. For example, after our partition in order to
identify all the undefined requests of a rule-based system, we could send each
exclusive rule to a solver to extract all the minimal unsat cores. However, for the
sake of performance, we only check exclusive rules for satisfiability, since theo-
retically, the problem of extracting minimal unsat core is harder than checking
satisfiability.

5.2 The Iterative Method

We present a first improvement of the enumerative method, called the iterative
method. It is based on adding iteratively a new rule at each step and eliminating
some rules as soon as possible. The principle is based on the following property.
Assuming that R′ is a list of exclusive rules computed with the enumerative
method and rj a new rule. Note that each rule in R′ can be uniquely described
by its binary characteristic which is a binary integer of length n (where n is the
rule size of the initial rule system). Let b a binary integer we can construct a rule
of R′ in the following manner: the condition is the conjunction of the conditions
Di (respectively ¬Di) if the ith digit of b is 1 (respectively 0). The conclusion is
the conjunction of the conclusions of R for which digit is 1 in b. Thus speaking
of an exclusive rule or its binary characteristic is equivalent. We will say that
a rule i of the input system is active in an exclusive rule if the binary digit at
position i is 1.
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Proposition 1 (Iterative principle). Let R′ built from the enumerative
method, then the enumerative result for R′ ∧rj is obtained from the binary char-
acteristics of rules in R′ and for each b we will get two new binary characteristics
2 ∗ b and 2 ∗ b + 1 plus one single last characteristic equal to 1.

This results from a simple recursive analysis of the binary characteristics of
R′ compared to that of R′ ∧ rj . That means that if R′ has m rules we will get
2 ∗ m + 1 rule in R′ ∧ rj .

Furthermore, the main loop of the iterative method is based on the above
principle and two optimizations.

Definition 6 (Obvious rule). A rule D => C is an obvious rule iff D is
unsatisfiable.

The first optimization is to discard obvious rules during the iterative method
(Definition 6). Obvious rules are one specific kind of tautologies. Adding them
during the iterative method offers no value, since they will just generate two new
obvious exclusive rules and make no difference to the last generated exclusive rule
that in negation form. Notice that we keep exclusive rules that are tautologies
but not “obvious” during the iterative method. The reason is that they have
an impact on the iteration, e.g. affect the last generated rule. An additional
optimization is possible here but it is postponed to future work.

Definition 7 (Unsafe rule). A satisfiable rule D => C is an unsafe rule iff
it is equivalent to D => false.

The second improvement of the iterative method is to separate unsafe rules.
An unsafe rule implies no defined request matching its condition. Checking it
efficiently depends from the logical language used and should take care of quan-
tifiers in case of free variables. If a rule is not unsafe then (D ∧ C) is a safe
request and the rule has only 1-undefined requests in (D ∧ ¬C). A consequence
of this classification is that now the maximal safe request (safe(R)) is computed
only from rules that are not unsafe.

The above definition paves the way to a further optimization, which is to
check for unsafe rules and to store them separately from the others. Hence we
stop processing unsafe rules and present them in the final result (possibly with a
shorter binary characteristic w.r.t. not unsafe rules, e.g. see the first two unsafe
rules of Listing 1.2). With the iterative method and the classification (obvious,
unsafe and not unsafe) we expect to decrease the number of generated rules
which is a critical factor of the enumerative approach.

For example, by applying our iterative method on the rule system shown in
Listing 1.1, the first rule R1 is checked for its obviousness and unsafeness, and
the checks succeed. Then, R1 becomes the first exclusive rule and the iteration
starts. We show in Listing 1.5 the result of first iteration by adding R2 to the
first exclusive rule. Since R2 also passes obviousness and unsafeness checks, three
exclusive rules are built along with iterative method. Their binary characteristics
are [1, 1], [1, 0] and [0, 1] respectively.
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Listing 1.5. Exclusive rules generated by our iterative method for the example shown
in Listing 1.1 at the 1st iteration

1 [1, 1] And( D(R1), D(R2) ) => And( C(R1), C(R2) )
2 [1, 0] And( D(R1), Not(D(R2)) ) => C(R1)
3 [0, 1] And( Not(D(R1)), D(R2) ) => C(R2)

At the final iteration, we get a total of 6 exclusive rules (3 unsafe, 3 not
unsafe, plus 4 eliminated as obvious), which results in a total of 16 unsat checks.
Clearly, the iterative approach performs better than the enumerative approach
(that in this example would generate 31 rules, by 31 unsat checks), and we
anticipate that the effectiveness of the iterative approach would be more visible
on larger examples. Note that the iterative method is a quite general solution
which requires a logic extending propositional logic with a decision procedure
for satisfiability.

5.3 The Sorting Method

The analysis of relations between rule conclusions can lead to significant perfor-
mance improvements. We argue that in many practical examples, rule conclu-
sions are built on a set of finite predicates, and several rule systems have some
pairs of rules whose conclusions are related by inclusion. If we add in the itera-
tive process a new rule Dj => Cj and if we know that it exists i < j such that
Ci => Cj is valid then we can simplify the process using the following principle.
Let cond∧Di => conc∧Ci be the exclusive rule where rule i is active, in the step
before the addition of rule j. By adding rule j, the iterative process would gener-
ate two rules cond∧Di∧Dj => conc∧Ci∧Cj and cond∧Di∧¬Dj => conc∧Ci.
Given the inclusion relation between Ci and Cj , instead of these two rules, the
two rules simplify in cond ∧ Di => conc ∧ Ci, that was already present before
adding rule j. This rule will still be exclusive w.r.t. all the other rules gener-
ated during the addition of rule j. In the binary characteristic of this exclusive
rule, we insert a −1 at position j, to indicate that the condition of rule j does
not matter in this combination. This optimization eliminates two satisfiability
checks, but most of all it decreases the number of generated exclusive rules.

With this optimization the size of the result depends on the order of rules.
Thus, to take the maximal benefit from these relations, we sort the rules from
minimal conclusions to maximal conclusions (w.r.t. the implication relation). We
achieve this reordering by a simple adaptation of topological sorting, with a com-
plexity in O(n2) (where n being number of rules). The result of our topological
sorting is that each rule is preceded by all the rules with a smaller conclusion
than its proper conclusion. For example, the sorting result for our example shown
in Listing 1.1 is R1, R3, R2, R4, R5.

5.4 The Algorithm

To sum up, in Algorithm 1 we sketch our process to efficiently compute exclusive
rules and classify them as unsafe and not unsafe. Notations used in the algorithm
require some explanation.
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Algorithm 1 . Our algorithm to efficiently compute not unsafe and unsafe
requests
1: NotUnsafes, Unsafes, Negs, Zeros ← dict(), dict(), True, []
2: procedure Main(R)
3: R ← sort(R)
4: BuildExRule(D(hd(R)), C(hd(R)), [1])
5: Negs ← Negs ∧ ¬D(hd(R))
6: Zeros ← Zeros ++ [ 0 ]
7: for each rule ri ∈ tl(R) do
8: IterativeTableCtr(ri)
9: end for

10: end procedure
11:
12: procedure IterativeTableCtr(r)
13: prevNotUnsafes ← NotUnsafes
14: NotUnsafes ← dict()
15: for each bi ∈ prevNotUnsafes.keys() do
16: exrulei ← prevNotUnsafes[bi]
17: if C(exrulei) implies C(r) then
18: NotUnsafes ← NotUnsafes.update({ bi ++ [-1] : exrulei })
19: else
20: BuildExRule(D(exrulei) ∧ D(r), C(exrulei) ∧ C(r), bi ++ [1])
21: BuildExRule(D(exrulei) ∧ ¬D(r), C(exrulei), bi ++ [0])
22: end if
23: BuildExRule(Negs ∧ D(r), C(r), Zeros ++ [1])
24: Negs ← Negs ∧ ¬D(r)
25: Zeros ← Zeros ++ [ 0 ]
26: end for
27: end procedure
28:
29: procedure BuildExRule(d, c, b)
30: rule ← Rule(d, c)
31: if not isObvious(d) then
32: if isUnsafe(d, c) then
33: Unsafes ← Unsafes.update({ b : rule })
34: else
35: NotUnsafes ← NotUnsafes.update({ b : rule })
36: end if
37: end if
38: end procedure
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First, we use D and C to get the condition and conclusion of a rule respec-
tively. Second, we inherit traditional list operators hd, tl and ++ for head, tail
and concatenation of lists. Third, we use dict to initialize a dictionary, and use
update to add a pair to a dictionary, and overload a[b] for element access in a
dictionary (i.e. accessing element whose key is b in a dictionary a). Finally,
three predicates specific to our algorithm are sort, isObvious and isUnsafe. They
perform a topological sort of a list of rules w.r.t. implication between conclusions
(Sect. 5.3), check whether the rule is an obvious tautology (Sect. 5.2), and check
whether the rule is unsafe (Sect. 5.2), respectively.

The input of our algorithm is a list of rules, the output are classified exclusive
rules. To compute from input to output, we use 4 global variables in our compu-
tation (line 1). NotUnsafes and Unsafes are dictionaries, which are used to keep
track of the rules detected so far, that are unsafe and not unsafe. Notice that the
key of these two dictionaries is the binary characteristic of each exclusive rule,
and the value is the exclusive rule itself. Negs is a conjunction of formula that
represents negated conditions for rules that previously iterated on. Zeros is syn-
chronized with Negs to record binary characteristics. These two global variables
are used when building exclusive rules in negative form on line 23.

Our iterative construction is performed to categorize rules that are unsafe
or not unsafe (lines 2–27). It internally uses our sorting method to optimize its
efficiency (lines 17–18), and uses BuildExRule to interact with the solver to check
whether a newly constructed exclusive rule is unsafe (lines 29–38). The whole
process offers no surprise w.r.t. what we described in Sects. 5.2 and 5.3.

Once the two lists of rules NotUnsafes and Unsafes are computed by Algo-
rithm1, the set of undefined requests is precisely characterized as:

– each unsafe exclusive rule denotes a set of undefined requests, i.e. all the
requests included by implication in the rule condition,

– each exclusive rule that is not unsafe denotes a set of undefined requests,
i.e. all the requests included by implication in the conjunction of the rule
condition and the negation of the rule conclusion,

– no other undefined requests exist for the original system.

6 Evaluation and Discussion

We implement the three previous methods in Python 3 and we use the z3py
interface to interact with the Z3 solver [26]. Our input rules are defined using a
class of rules reusing the logical expression defined by Z3. The code is available
on our on-line repository2 with a set of examples. We prove, using the solver,
that the original rule system is equivalent to the new generated one.

Our evaluation objective is to experiment with middle size examples to
observe if the concrete performances are according to our expectations and suit-
able for a practical use. In our approach, we rely on the Z3 solver, but the solver

2 Efficiently characterizing the undefined requests of a rule-based system (on-line).
https://github.com/atlanmod/ACP.git.

https://github.com/atlanmod/ACP.git
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can be changed as long as it provides a decision procedure for satisfiability suit-
able for the input rule system. Our method is not limited to pure predicates
with free variables, however its success and efficiency depend on the ability of
the solver to check such construction.

6.1 The CONTINUE Example

We describe here the case of the CONTINUE A policy already used in [20,27]
and dedicated to conference management. This policy3 is specified in 25 XACML
files containing 44 rules. Our objective was not to exactly encode this policy but
rather to validate that our optimizations are effective in case of a non trivial
example. We deviate from the original CONTINUE example in several ways.
First, we consider a pure logical translation and this introduces a difference as
already discussed in [10]. We do not take into account the combining algorithms
since our objective is to observe the undefined requests occurring in the busi-
ness rules, not to provide an ad-hoc automatic resolution. We also handle free
variables and predicates (unary and binary), while this is not the case in the
XACML language.

Our initial rule system has 47 rules, with two types, two free variables, 6
binary predicates and 29 unary ones. We start with this example without addi-
tional relations. Figures 1, 2, and 3 depict the results we get with a MacBookPro
under El Capitan, 2.5 GHz Intel Core i7 and 16 Go 1600 MHz DDR3 RAM. The
resulting times were computed from an average of 10 runs.

In the figures we report the number of rules in the system and a few curves:
correct is the number of non tautology in the system, time the time in second,
exclusive, not unsafe, unsafe the number of exclusive, not unsafe and unsafe
rules. We process the example by taking the first n rules from an arbitrary
ordering. The correct curve shows that there is no tautology in this system.

The enumerative experiment (Fig. 1) shows clearly an exponential growth in
the number of generated rules and in the processing time. While the perfor-
mances of the iterative method (Fig. 2) are much higher, we still cannot process
the full example in a reasonable time. The sorting method (Fig. 3) provides
more interesting results in such a case. CONTINUE has many inclusion rela-
tions among conclusions (653 relations), which explains the good performances
by topological sorting. While this is not a universal property, in our experience,
this is often the case in security systems. This is obvious when conclusions are
only permit and deny as in some simple access control policies. More generally,
in security we expect to control the possible outcomes of the rules, thus defin-
ing a limited set of replies. Each rule can then combined these outcomes and
thus revealing relations between conclusions. We easily observe this on several
of our examples, but a statistical analysis should be perform to validate this
assumption.

We should also note that some rules have a great impact on the behavior
of the iterative and sorting methods. This is the case with predicate exclusivity

3 http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/.

http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/
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Fig. 1. Enumerative experiments

which is often implicit. Indeed XACML, due to the use of the combining algo-
rithms, does not make hypothesis about the disjunction of roles or permissions
of different actions. To observe the stability of our performances we experiment
adding a few new rules about roles in the system. For instance, it makes sense to
consider that the PC chair is also a PC member and a subreviewer is not a PC
member. There are also some relations related to resources, for example there
are several different kinds of information about papers. These resources appears
only in conditions and alone but never in a conjunction, thus we may consider
these resources as disjoint. Adding these rules increases the size of the original
system to 57 rules. As shown in the curves in Fig. 4 these disjunctions decrease
the number of rules that are not unsafe. With this setting we generate 776 rules
(535 unsafe and 241 not unsafe) in nearly 100 s, including the verification of the
equivalence with the original system which takes 10 s.

Listing 1.6. An example of conflicting rules

// An unsafe case
UNSAFE [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
// The four active 10-13th rules (other negative rules are omitted)
pcchair(X) => pcmember(X)
Or(admin(X), pcchair(X), pcmember(X), subreviewer(X)) => subject(X)
And(PaperAssignments (R), subject(X), isConflicted(X))

=> And(Not(Pread(X, R)), Not(Pwrite(X, R)), Not(Pcreate(X, R)))
And(PaperReviewContent(R), pcmember(X), isEQuserID(X))

=> And(Pcreate(X, R), Pwrite(X, R), Pdelete(X, R))

As an example of output in this scenario, Listing 1.6 shows the binary character-
istic of one of the first unsafe rules detected (the 10th). As shown by the binary
characteristic, this rule denotes a set of undefined requests coming from the com-
position of the four active rules listed underneath. The four rules are conflicting
in a non-trivial way. The next challenge of our work is the automated analysis
of each group of undefined requests (like the one in Listing 1.6), for aiding in the
resolution of the conflict.
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Fig. 2. Iterative experiments

Another usage of this computation is to check if a request is safe, defined or
undefined. Starting from the rule classification, our prototype is able to compute
the maximal safe request as defined in Sect. 5 then we can check the request
against it. Listing 1.7 shows two examples: After the computation of Algorithm 1,
both of these examples are processed in less than one second.

Listing 1.7. Two safety tests

// Intersecting the maximal safe request it is a defined request
ForAll([X, R], And(Not(PcMember(R)), PaperReviewContent(R), pcmember(X),

Not(subreviewer(X)), isEQuserID(X)))
// It is contained in the negation of the maximal safe request
// thus it is an undefined request
ForAll([X, R], And(PaperAssignments (R), subject(X), isConflicted(X),

PaperReviewContent(R), pcmember(X), isEQuserID(X)))

Fig. 3. Sorting implementation
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Fig. 4. Sorting test with 57 rules

6.2 Discussion

In summary, through our evaluation, we experiment our approach on a middle-
size example, and observe its performances are according to our expectations
and suitable for a practical use. There are also some lessons we learned.

Correctness. Decidability of the satisfiability is required for our approach to
get an optimal rule classification and best performance. For example, we interact
with solver to check conclusion implication, and whether a rule is obvious, unsafe
or not unsafe. If the solver cannot give a reply to these questions within a given
timeout, an unknown will be returned as result. This would degrade the precision
of rule classification result and the performance of our approach. However, when
unknown results occur, we always defensively categorize them as not unsafe, and
thus will not give incorrect answers to the user.

Usability. It is important to simplify as much as possible the output, to facil-
itate the inspection of rule conflicts. Some simple cases are already handled in
the iterative and sorting steps. For instance, two rules with equivalent condi-
tions are simply merged into one rule with this condition and a conjunction of
each conclusion. However, more aggressive simplifications are complex and time
consuming. In our current solution, we think that it is better to first produce
a result which alerts the user on the presence of undefined requests. In a sec-
ond step, if the user wants to fix some problems we should provide a simplified
version of the rules, and perhaps some hints for resolution of conflicts.

While we do not think that automatic resolution will always match users’
expectation, our approach can be extended to suggest some automatic fixes to
the user. For instance, the user may want to restrict its set of expected requests
to the maximal set of safe requests.

Another idea is to add conditions occurring in the unsafe rules as extra
conditions of the not unsafe rules. One approach is to introduce the input rules
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one by one and to resolve the generated unsafe cases. If the system has no
chaining of rules then there is no further problem and this way will produce a
safe system. In the more general chaining case, the user should always cope with
1-undefined requests.

Generalization. While the number of rules is related to the complexity of
the rule system, they do not necessarily compromise the generalization of our
approach, e.g. the algorithm could take advantage of more obvious rules, or there
could have more implications between conclusions.

However, we do agree that more case studies are needed to confirm the gener-
alization for the performance and practicability of our approach. We processed
another example4, consisting of 61 rules for managing resources, hierarchy of
roles, permissions and revocation of permissions. The encoding of these rules
are more complex than the CONTINUE example, e.g. predicates to represent
discrete time. While the relationship between rules are more sparse (259 inclu-
sion relations among conclusions), our sorting method is still much more efficient
than the iterative one. For example, during the evaluation process, we observe
that iterative method takes about 13000 s to analysis 40 rules in this example.
Our sorting method only takes 735 s on the same set of rules. In our preliminary
result on this example, we also observe a reasonable growth in its analysis time
(5736 s), and find 4 unsafe rules and 17085 not unsafe ones. The last unsafe rule
reveals an unexpected conflict due to the hierarchy of resources and not seen in
the original description.

Optimization. Currently, our approach produces a logically equivalent sys-
tem for the input during its analysis. However, we think this restriction can
be relaxed, e.g. a new system that is stronger than the original one could still
be acceptable for analysis since it guarantees the behavior of the original. Our
future work will explore new optimizations based on this kind of relaxation.

Another track of optimization could be decompose input system into sub-
systems, and pave its way for a map-reduce-flavor algorithm.

7 Conclusion

In this paper we provide a new way to compute all the conflicting problems
occurring in a rule based system with chaining of rules. Our methods are rather
general since they require a logic extending propositional logic and a decision
procedure for its satisfiability. Existing methods rely either on testing or on
formal verification but they are not suitable to find the exhaustive set of poten-
tial problems. Mixing symbolic manipulations and satisfiability, we provide a
decidable enumerative approach to solve this problem but due to its exponential
complexity we must provide optimizations. We study two optimizations in order
to reduce the number of generated rules: an iterative method with a classification
of rules and the use of the topological sorting to take the maximal advantage of
4 RBAC and ARBAC policies for a small health care facility. http://www3.cs.

stonybrook.edu/∼stoller/ccs2007/.

http://www3.cs.stonybrook.edu/~stoller/ccs2007/
http://www3.cs.stonybrook.edu/~stoller/ccs2007/
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relations between rule conclusions. As an evaluation we successfully apply our
algorithm to a FOL rule system with more than forty rules. With this instance,
rather than computing 247 new rules, we produce less than 1000 rules in less
than 100 s. Note that when the rule system is complex, it contains many relations
between the predicates, and increases the risk of undefined requests. However,
in this case our method, especially the sorting optimization, is particularly effi-
cient. Our automatic method is able to handle middle size examples and more
improvements are needed to solve larger examples in reasonable time. In our
future work we expect to explore other practical optimizations, for instance by
relaxing the relation of equivalence that we impose between the original rule sys-
tem and its implementation. Another important research line will be to enrich
our method with automatic or assisted ways to fix the detected problems.
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Abstract. Testing is currently the main technique adopted by the
industry for improving the quality, reliability, and security of software.
In order to lower the cost of manual testing, automatic testing tech-
niques have been devised, such as random and symbolic testing, with
their respective trade-offs. For example, random testing excels at fast
global exploration of software, while it plateaus when faced with hard-to-
hit numerically-intensive execution paths. On the other hand, symbolic
testing excels at exploring such paths, while it struggles when faced with
complex heap class structures. In this paper, we describe an approach for
automatic unit testing of object-oriented software that integrates the two
techniques. We leverage feedback-directed unit testing to generate mean-
ingful sequences of constructor+method invocations that create rich heap
structures, and we in turn further explore these sequences using dynamic
symbolic execution. We implement this approach in a tool called JDoop,
which we augment with several parameters for fine-tuning its heuristics;
such “knobs” allow for a detailed exploration of the various trade-offs
that the proposed integration offers. Using JDoop, we perform an exten-
sive empirical exploration of this space, and we describe lessons learned
and guidelines for future research efforts in this area.

1 Introduction

The software industry nowadays heavily relies on testing for improving the qual-
ity of its products. There are, of course, good reasons for adopting this practice.
First, as opposed to more heavy-weight techniques such as static analysis, testing
is easy to deploy and understand, and most developers are familiar with software
testing processes and tools. Second, testing is scalable (i.e., millions of tests can
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Fig. 1. Class with an assertion in one method (left). Input x is not properly sanitized
in method setX. Consequence: assertion can be violated by combination of method
sequence and specific input values (right).

be executed within hours even on large programs) and precise (i.e., it does not
generate false alarms that impede developers’ productivity). Third, while testing
cannot prove the absence of bugs, there is ample evidence that testing does find
important bugs that are fixed by developers. Despite these advantages, testing
is not a silver bullet since crafting good tests is a time consuming and costly
process, and even then achieving high coverage and catching all defects using
testing can be challenging. For example, tester to developer ratio at Microsoft
is around 1-to-1, and yet important defects still escape into production. Natu-
rally, there has been a great deal of research on alleviating these problems by
developing techniques that aim to improve the automation and effectiveness (in
terms of achieved coverage and defects found) of software testing.

Random testing is the most basic and straightforward approach to automat-
ing software testing. Typically, it completely automatically generates and exe-
cutes millions of test cases within hours, and quickly covers many statements (or
branches) of a software under test (SUT). However, a drawback of random test-
ing is that, depending on the characteristics of the SUT, the achieved coverage
plateaus due to unlikely execution paths. Figure 1 gives our motivating example
Java program that illustrates this point (left) together with a specific test case
that triggers an assertion violation (top right). To apply random testing on the
example, we generate randomized unit test shown in the middle of the right half
of the figure. Clearly, it is trivial to execute this simple unit test many times,
each time with a new pair of random numbers being generated. It is impossible,
however, that executing it would generate inputs that violate the assertion. We
would additionally need to generate more complex sequences of method calls
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(as is shown in lower right of the figure). Exploring both dimensions (parameter
values and method sequences) randomly tends to plateau and not hit paths that
require specifc combinations of method sequence and parameters values.

A more heavyweight approach could be based on symbolic execution, which
leverages automatic constraint solvers to compute test inputs that cover such
hard-to-cover branches. For example, the JDart [26] dynamic symbolic exe-
cution tool when run on method testHardToHit2 generates test cases covering
all branches in less than a second, thereby triggering an assertion violation. The
authors also show that JDart improves coverage over random testing for a class
of numerically-intensive SUTs. However, symbolic-testing-based methods mainly
excel in automatically generating test inputs over primitive numeric data types,
and have hence been successfully applied as either system-level (e.g., SAGE [18],
KLEE [6]) or method-level (e.g., JDart [26], JCute [35]) test generators.

Generalizing from the above example, generating unit tests for object-
oriented software poses a two-dimensional challenge: instead of taking just primi-
tive types as input, methods in object-oriented software require a rich heap struc-
ture of class objects to be generated. While several approaches have been pro-
posed that automatically generate symbolic heap structures [25], logical encod-
ing of such structures results in more complex constraints that put an additional
burden on constraint solvers; hence, these approaches have not yet seen wider
adoption on large SUTs. On the other hand, generating heap structures by ran-
domly creating sequences of constructor+method invocations was shown to be
effective, in particular when advanced search- and feedback-directed algorithms
are employed (e.g., Randoop [29], EvoSuite [13]). It is then natural to attempt
to integrate the two approaches by using random testing to perform global/-
macro exploration (by generating heap structures using sequences of construc-
tor+method invocations at the level of classes) and dynamic symbolic execution
to perform local/micro exploration (by generating inputs of primitive types using
constraint solvers at the level of methods). In this paper, we describe, implement,
and empirically evaluate such a hybrid approach.

Our hybrid approach integrates feedback-directed unit testing with dynamic
symbolic execution. We leverage feedback-directed unit testing to generate con-
structor+method sequences that create heap structures and drive a SUT into
interesting global (i.e., macro) states. We feed the generated sequences to a
dynamic symbolic execution engine to compute inputs of primitive types that
drive the SUT into interesting local (i.e., micro) states. We implemented this
approach as a tool named JDoop,1 which integrates feedback-directed unit test-
ing tool Randoop [29] with state-of-the-art dynamic symbolic execution engine
JDart [26]. Given that such an integration has not been thoroughly empiri-
cally studied in the past, we also assess the merits of this approach through a
large-scale empirical evaluation.

1 Note that a very preliminary version of JDoop was presented earlier as a short
workshop extended abstract [11].
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Our main contributions are as follows:

– We developed JDoop, a hybrid tool that integrates feedback-directed unit
testing with dynamic symbolic execution to be able to experiment with large-
scale automatic testing of object-oriented software.

– We implemented a distributed benchmarking infrastructure for running
experiments in isolation on a cluster of machines; this allows us to execute
large-scale experiments that ensure statistical significance, and also advances
the reproducibility of our results.

– We performed an extensive empirical evaluation and comparison between ran-
dom (our baseline) and hybrid testing approaches in the context of automatic
testing of object-oriented software.

– We identified several open research questions during our evaluation, per-
formed additional targeted experiments to obtain answers to these questions,
and provided guidelines for future research efforts in this area.

2 Background

We provide background on dynamic symbolic execution and feedback-directed
random testing.

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution [6,17,36] is a program analysis technique that exe-
cutes a program with concrete and symbolic inputs at the same time. It system-
atically collects constraints over the symbolic program inputs as it is exploring
program paths, thereby representing program behaviors as algebraic expressions
over symbolic values. The program effects can thus be expressed as a function
of such expressions.

Dynamic symbolic execution maintains—in addition to the concrete state
defined by the concrete program semantics—the symbolic state, which is a tuple
containing symbolic values of program variables, a path condition, and a pro-
gram counter. A path condition is a conjunction of symbolic expressions over the
symbolic inputs that characterizes an execution path through the program. It is
generated by accumulating (symbolic) conditions encountered along the execu-
tion path, so that concrete data values that satisfy it can be used to drive its
concrete execution. Path conditions are stored as a symbolic execution tree that
characterizes all the paths exercised as part of the symbolic analysis.

In dynamic symbolic execution, the symbolic execution tree is built by repeat-
edly augmenting it with new paths that are obtained from unexplored branches
in the tree. This is done by employing an exploration strategy such as depth-
first, breadth-first, or random. A constraint solver is used to obtain a valuation
for a yet-unexplored branch by feeding it the corresponding path condition.
The new valuation drives a new iteration of dynamic symbolic execution that
augments the symbolic execution tree with a new path. JDart is a dynamic
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symbolic execution engine that uses the Java PathFinder framework [23,44]
and for executing Java programs and recording path conditions. Maintaining
the symbolic state is achieved by a customized implementation of the byte-
code instructions in the JVM of Java PathFinder that performs concrete and
symbolic operations simultaneously. In JDoop, we configure JDart to use the
Z3 [9] constraint solver for finding concrete inputs that drive execution along
previously unexplored symbolic paths.

A limitation of this approach is that native code is outside the scope of the
analysis. Based on the Nhandler extension [38] to Java PathFinder, JDart
offers two strategies for dealing with native code.

– Concrete Native. In this mode, JDart executes native code on concrete
data values, and no symbolic execution of native parts is performed—only
concrete values are passed to and from native calls, and symbolic values are
not updated and cannot taint native return values. The return value is anno-
tated with a new symbolic variable. As a consequence, the concrete side of an
execution is faithful to the respective execution on a normal JVM. However,
branches in the native code are not recorded in symbolic path conditions,
which can lead to JDart not being able to explore branches after a native
call as well. Another downside of this mode is that the implementation in
Java PathFinder is relatively slow.

– No Native. In this mode, JDart does not execute native code at all. Instead,
it returns a default concrete value every time a native method is called and
a return value is expected. The concrete value is annotated with the corre-
sponding symbolic variable, using the method signature of the native method
as the name of that variable. Concrete execution, in this case, is not faithful
to the respective execution on a normal JVM as the introduced default values
in most cases are not equal to the values that would be returned by the actual
method invocations (and side effects are ignored as well). Recorded symbolic
branches cannot be explored even if solutions are found by a constraint solver
as there currently is no mechanism that allows feeding these values into the
execution (instead of the default return values of native methods).

Since the ‘No Native’ mode is more performant and since currently there is
no way of solving most of the recorded constraints in ‘Concrete Native’ mode
(cf. results in Sect. 4), JDoop runs JDart in ‘No Native’ mode for native code.
We use the ‘Concrete Native’ mode in our evaluation for analyzing the potential
limiting impact of not executing native code faithfully and not being able to find
and inject values that target branches in native code.

JDart produces the following outputs: a symbolic execution tree that con-
tains all explored paths along with performance statistics, vectors of concrete
input values that execute paths in the tree, and a suite of test cases (based on
these vectors). A symbolic execution tree contains leaf nodes for all explored
paths and additionally leaves for branches off of executed paths that could not
be explored because the constraint solver was not able to produce adequate con-
crete values or because native code is not executed (in fully symbolic mode). For
these leaves JDart does not generate input vectors or test cases.
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2.2 Feedback-Directed Random Testing

A simple approach to automatic unit testing of object-oriented software is to
completely randomly generate sequences of constructor+method invocations
together with the respective concrete input values. However, this typically results
in a large overhead since numerous sequences get generated with invalid prefixes
that lead to violations of common implicit class or method requirements (e.g.,
passing null reference to a method that expects an allocated object). Moreover,
such sequences cause trivial, uninteresting exceptions to be thrown early, thereby
preventing deep exploration of the SUT state space. Hence, instead of generating
unit tests blindly and in a completely random fashion, useful feedback can be
gathered from previous test executions to direct the creation of new unit tests.
In this way, unit tests that execute long sequences of method calls to comple-
tion (i.e., without exceptions being thrown) can be generated. This approach is
known as feedback-directed random testing and is implemented in the Randoop
automatic unit testing tool [29].

Randoop uses information from previous test executions to direct further
unit test generation. The tool maintains two sets of constructor+method invo-
cation sequences: those that do not violate a property (i.e., property-preserving)
and those that do (i.e., property-violating). The property-violating set is initially
empty, while the property-preserving set is initialized with an empty sequence.
The default property that is maintained is unit test termination without any
errors or exceptions being thrown. Randoop randomly selects a public method
(or a constructor) and an existing sequence from the property-preserving set. It
then appends the invocation of the selected constructor/method to the end of
the sequence, and replaces primitive type arguments with concrete values that
are randomly selected from a preset pool of values. Next, the newly generated
sequences are compared against all previously generated sequences in the two
sets. If it already exists, it is simply dropped and random selection is repeated.
Otherwise, Randoop executes the new sequence and checks for property vio-
lations. If no properties are violated, the sequence is added to the property-
preserving set and otherwise to the property-violating set. Randoop keeps on
extending property-preserving sequences until it reaches a provided time limit.

3 Hybrid Approach

In this section, we describe our hybrid approach that integrates dynamic sym-
bolic execution and feedback-directed random testing into an algorithm for auto-
matic testing of object-oriented software. We implemented this algorithm as the
JDoop tool that is freely available.2 Figure 2 shows the flow of the algorithm,
which is iterative and each iteration consists of several stages that we describe
next.

2 JDoop is available under the GNU General Public License version 3 (or later) at
https://github.com/psycopaths/jdoop.

https://github.com/psycopaths/jdoop
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3.1 Generation of Sequences

The first stage of every iteration of our algorithm is feedback-directed ran-
dom testing using Randoop, which generates constructor+method sequences as
described in Sect. 2.2. Randoop takes advantage of a pool of concrete primitive
values to be used as constructor/method arguments when generating sequences.
In the first iteration, we use the default pool with few values, which for the inte-
ger type are −1, 0, 1, 10, 100. Hence, an instance of a generated sequence for our
running example from Fig. 1 is the one shown in the middle of the right half of
the figure. Our algorithm grows the pool for subsequent iterations with concrete
inputs generated by dynamic symbolic execution, which we describe later. The
sequences generated in this stage serve two purposes. First, we employ them
as standalone unit tests that exercise the SUT, which is their original intended
purpose. Second, our hybrid algorithm also employs them as driver programs to
be used in the subsequent dynamic symbolic execution stage.

3.2 Selection and Transformation of Sequences

Fig. 2. Iterative algorithm of JDoop
for unit test generation. The algorithm
integrates dynamic symbolic execution
and feedback-directed random testing.

The previous stage typically generates
far too many sequences to be success-
fully explored with a dynamic symbolic
execution engine in a reasonable amount
of time. For example, several thousands
of valid sequences are often generated in
just a few seconds. Hence, it is prudent to
select a promising subset of the generated
sequences to be transformed into inputs
for the subsequent dynamic symbolic exe-
cution with JDart. The second stage
implements the selection and transforma-
tion of constructor+method sequences.

Note that dynamic symbolic execu-
tion techniques have limitations, which
is why we implemented the hybrid app-
roach in the first place. In particular, they
can typically treat symbolically only method arguments of primitive types. For
example, if a sequence contains method calls with non-primitive types only,
JDart will not be able to explore any additional paths. Hence, not every gener-
ated sequence is suitable for dynamic symbolic execution with JDart, and as the
first step of this stage, we filter out all sequences with no arguments of a prim-
itive type. Next, we have two strategies (i.e., heuristics) for selecting promising
sequences. The first strategy randomly selects a subset of sequences. The second
strategy prioritizes candidate sequences with more symbolic variables, which is
based on the intuition that having more symbolic variables leads to more paths
(and also branches and instructions) being covered. We compare the two strate-
gies in our empirical evaluation. Once promising sequences are selected, they
have to be appropriately transformed into driver programs for JDart.
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Every candidate sequence is transformed for the final stage that performs
dynamic symbolic execution. We achieve this by turning all constructor and
method arguments of primitive types, which are supported by JDart, into sym-
bolic input values. In our implementation, this is a simple source-to-source trans-
formation. For instance, our example sequence results in the following driver
program:

public class TestClass {

void test1(int s0,int s1,int s2) {

HardToHit h = new HardToHit(s0);

h.setX(s1);

h.distance(s2);

}

static void main(String[] a) {

TestClass tc = new TestClass();

@Symbolic int x, y, z;

tc.test1(x, y, z);

}

}

In the driver, the integer inputs to constructor HardToHit and methods setX

and distance are transformed into the arguments of the test1 test method. The
test1 method is called from the main method that is added as an entry point
for dynamic symbolic execution. Finally, JDart is instructed that the s0, s1,
and s2 inputs to test1 are treated symbolically.

3.3 Dynamic Symbolic Execution of Sequences

The last stage of every iteration is exploring the generated driver programs
using dynamic symbolic execution as implemented in JDart. JDart explores
paths through each driver program by solving path constraints over the specified
symbolic inputs as described in Sect. 2.1. In the process, it generates additional
unit tests, where each unit test corresponds to an explored path. The generated
unit tests are added into the final set of unit tests. In addition to generating these
unit tests, we also collect all the concrete input values that JDart generates in
the process. We add these values back into the Randoop’s concrete primitive
value pool for the sequence generation stage of the next iteration. By doing this,
we feed the information that the dynamic symbolic execution generates back
into the feedback-directed random testing stage.

4 Empirical Evaluation

We aim to answer the following research questions using the results of our empir-
ical evaluation.

1. Can JDoop cover paths that plain random test case generation does not,
and how big is the positive impact of covering such paths? To answer this
question, we compare the performance of Randoop (as our baseline) and
JDoop, using code coverage as a metric for the quality of the generated test
suites.
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Table 1. SF110 Benchmarks we use in the evaluation. Column #B is the number of
branches, #I instructions, #M methods, and #C classes.

2. Can dynamic symbolic execution enable randomized test case generation to
access regions of a SUT that remain untested otherwise, i.e., does the feed-
back loop from JDart to Randoop (see Fig. 2) have a measurable impact
on achieved coverage? To answer this question, we run JDoop in multiple
configurations with varying amounts of runtime attributed to Randoop and
JDart, enabling a feedback loop in some configurations and preventing it in
others.

3. What are the constituting factors impacting the effectiveness of JDoop in
terms of the code coverage that can be achieved through automated genera-
tion of test suites? More specifically, can we confirm or refute the conjecture
from related work [14] that robustness of the used dynamic symbolic execu-
tion engine is pivotal or do other factors exist that have an impact on the
achievable coverage (e.g., selection of test cases for symbolic execution)? To
answer this question, we analyze statistics produced by JDart and vary the
strategy in JDoop for selecting method sequences for execution with JDart
as discussed in Sect. 3 (either selecting sequences randomly or prioritizing
those with many symbolic variables).

In the remainder of this section, we introduce the benchmarks we used in our
evaluation, describe our experimental setup, and present and discuss the results
of the evaluation.

4.1 Benchmarks

We performed our empirical evaluation using the SF110 benchmark suite [37].
The suite consists of 110 Java projects that were randomly selected from the
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SourceForge repository of free software to reduce the threat to external valid-
ity (see Sect. 5). In our evaluation, we chose the largest subset of SF110 that
both JDoop and Randoop can successfully execute on. Benchmarks that were
excluded can be grouped into the following categories: unsuitable environment,
inadequate or empty benchmarks, and deficiencies of testing tools. In the unsuit-
able environment category, benchmarks require privileged permissions in the
operating system, a properly set configuration file, or a graphical subsystem to
be available. There are several empty benchmarks, benchmarks that call the
System.exit() method that is not trapped by testing tools, and benchmarks
that are otherwise inadequate because of conflicting dependencies with our test-
ing infrastructure. Finally, for some benchmarks Randoop generates test cases
that do not compile. All such problematic benchmarks were excluded from con-
sideration, which left us with 41 benchmarks total, as listed in Table 1. For each
benchmark we list the number of instructions, branches, methods, and classes,
which demonstrates we use a wide range of SUTs in terms of their size and
complexity.

4.2 Experimental Setup

We used two tools in our empirical evaluation: JDoop and Randoop (version
3.0.10). We explored several configurations of JDoop, where each configuration
is determined by three parameters. The first parameter is the time limit for
the first stage of every iteration, which is when Randoop runs (see Sect. 2.2);
we vary this parameter as 1, 9, and 20 min. The second parameter is the time
limit for the second and third stages combined, which is when JDart runs;
we vary this parameter as 1, 9, and 40 min. The third parameter determines
the strategy for selecting constructor+method call sequences as candidates for
dynamic symbolic execution between: (1) random selection (denoted by R), and
(2) prioritization based on the number of symbolic variables (denoted by P).
Each configuration is code-named as JD-O-J-S, where O is the time limit for
Randoop, J is the time limit for JDart, and S is the sequence selection strategy
used. We explored the following six JDoop configurations: JD-1-9-P, JD-1-9-R,
JD-9-1-P, JD-9-1-R, JD-20-40-P, and JD-20-40-R.

We carried out the evaluation in the Emulab testbed infrastructure [45]. We
used 20 identical machines, each of which was equipped with two 2.4 GHz 64-
bit 8-core processors, 64 GB of DDR4 RAM, and an SSD disk; the machines
were running Ubuntu 16.04. We developed our testing infrastructure around the
Apache Spark cluster computing framework. To facilitate reproducibility, each
execution of a testing tool on a benchmark is performed in a pristine sand-
boxed virtualization environment. This is achieved via LXC containers running
a reproducible build of Debian GNU/Linux code-named Stretch. We allocated 4
dedicated CPU cores and 8 GB of RAM to each container. Both Randoop and
JDoop are multi-threaded, and hence they utilized the multiple available CPU
cores. Our testing infrastructure is freely available for others to use and extend.3

3 The testing infrastructure is available under the GNU Affero GPLv3+ license at
https://github.com/soarlab/jdoop-wrapper.

https://github.com/soarlab/jdoop-wrapper
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Table 2. Branch coverage (including standard deviations) averaged across 5 runs. The
highest and lowest numbers per benchmark are given in bold and italic, respectively.

We allocate a one hour time limit per benchmark per testing tool/configura-
tion for test case generation. Subsequent test case compilation and code coverage
measurement phases are not counted toward the 1 h time limit. Given that both
Randoop and JDoop employ randomized heuristics, we repeat each run 5 times
to account for this variability—for each benchmark we compute an average and
a standard deviation. In terms of code coverage metrics, we measured instruction
and branch coverage at the Java bytecode level using JaCoCo [20]. Furthermore,
to get more insight into the performance of JDart, we collect statistics on the
number of successful and failed runs, additional test cases it generates, symbolic
variables in driver programs, times a constraint solver could not find valuation for
a path condition, and JDart runs that explored one path versus multiple paths.

4.3 Evaluation of Test Coverage

Table 2 gives branch coverage results for each tool and configuration on all of
the benchmarks. Most results are stable across multiple runs, meaning that the
calculated standard deviations are very small. In particular, the standard devi-
ations for Randoop on a vast majority of benchmarks are 0, even though we
used a different random seed for every run. This suggests that Randoop reaches



100 M. Dimjašević et al.

Fig. 3. Increases in branch coverage per benchmark by JDoop over baseline of Ran-
doop (in % of coverage by baseline).

saturation and is unable to cover more branches. For the most part there are only
small differences in the achieved coverage between different tools/configurations
when looking at the total number of covered branches. However, JDoop (in
one of its configurations) consistently achieves higher coverage than Randoop.
Given that pure Randoop saturates, we can conclude that the improvements
in coverage we observe with JDoop are due to leveraging dynamic symbolic
execution. Among JDoop configurations, best-performing are the two 9-1 con-
figurations where in an iteration Randoop runs for 9 min and JDart for 1 min;
there are 6 such iterations in the 1 h time limit.

Figure 3 shows the increase in branch coverage per benchmark over pure
Randoop that is achieved by some configuration of JDoop. The increase is
measured as a percent increase in number of branches covered by JDoop over
Randoop. Standard deviation is omitted in this graph as it was small in most
instances (cf. Table 2). In two benchmarks JDoop performes slightly worse than
pure Randoop. In roughly half of the benchmarks no change is observed—
and in most cases with no variance. This suggests that these benchmarks are
simply not amenable to increasing coverage by use of symbolic execution. In
the remaining half of the benchmarks, branch coverage is increased. Increases
range from 101.1% to 143.8% achieved coverage relative to the baseline of pure
Randoop, with an average increase of 109.6% across this half of benchmarks.

4.4 Profiling Dynamic Symbolic Execution

To analyze the potential impact of the robustness of dynamic symbolic execution
on the validity of our results, we collected data from runs on all benchmarks for
all configurations. We perform this analysis on data from single runs of JDoop
as the other results show very little variation of results between different runs in
most cases. Table 3 reports statistics on the JDart operation in different series
of experiments. Data in the table is explained and discussed in the following
paragraphs.
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Table 3. Statistics produced by JDart for single runs of all benchmarks in different
configurations of JDoop. JDart uses Nhandler in the ‘No Native’ mode, except for
one experiment that we performed in the ‘Concrete Native’ (CN) mode.

JD-20-40 JD-1-9 JD-9-1 JD-9-1 (CN)
Sequence Selection Strategy R P R P R P R

Potential Impact / Best Mode of Operation

# Successful Runs 33,390 28,316 46,976 43,770 4,629 1,017 3,885
Successful Runs (%) 98.5 97.8 98.2 97.5 98.5 100.0 96.3
# Additional Tests 6,436 10,802 11,272 16,588 914 5,382 n/a
# Benchmarks with Additional Tests 19 9 20 13 18 4 n/a

Robustness and Scalability of JDart

# Failed Runs 507 648 853 1,121 69 0 148
due to unhandled native code 3 1 14 6 1 0 10
due to classloading in SUT 504 647 839 1,115 68 0 138

Failed Runs (%) 1.5 2.2 1.8 2.5 1.5 0.0 3.7
# D/K Paths 17 192 170 84 5 0 26,915
D/K Paths (%) 0.3 1.8 1.5 0.5 0.0 0.0 93.6

Amenable Test Cases

# Symbolic Variables per Test Case (Avg.) 2.1 6.6 1.9 4.7 2.0 6.2 1.9
# Runs of Single Paths 32,410 27,293 45,268 42,162 4,495 988 2,801
# Runs with Multiple Paths 980 1,023 1,708 1,608 134 29 1,084

Modes of Operation. For all of the analyzed configurations of JDoop, JDart
runs successfully in the vast majority of cases and produces significant numbers
of test cases (up to 16, 588 in total for all benchmarks in one experiment). Most
additional test cases are produced in the JD-1-9 configurations that enable the
feedback loop between Randoop and JDart but grant the bulk of runtime
to JDart. Across all configurations, random selection of method sequences for
JDart leads to generating additional test cases for more benchmarks than pri-
oritizing sequences with many symbolic variables. Prioritization, on the other
hand, leads to more additional test cases in total.
Robustness and Scalability. Our data indicates that JDart is robust. Only
a small number of runs fail (between 0.0% and 2.5%). Of these failures, only a
tiny fraction is due to unhandled native code (less than 1%).4 The vast majority
of failed runs is caused by class-path issues in the benchmarks (more than 99%).
There are only very few cases in which the constraint solver was not able to solve
constraints of all paths in symbolic execution trees (between 0.0% and 1.8%).

Using Nhandler in the ‘Concrete Native’ mode leads to native calls being
executed faithfully and to longer recorded path conditions, as discussed in Sect. 2.
This yields constraints that are marked as not solvable (‘don’t know’ or D/K for
short) in 93.6% of all discovered paths in symbolic execution trees. This indicates
the likelihood of JDart not being able to explore most of the paths that could be
explored with proper symbolic treatment of native methods. Table 4 reports the

4 These are methods for which Nhandler was not configured to take over execution,
leading to a crash of JDart. We configured Nhandler to take care of all native
methods of java.lang.String.
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Table 4. Symbolic Variables introduced by Nhandler in the ‘Concrete Native’ mode
in a single run of JD-9-1.

Method Occurrences

java.lang.String.charAt(I)C 2,157,258
java.lang.String.indexOf(I)I 430,951
java.lang.String.indexOf(II)I 18,199

java.lang.Character.isWhitespace(C)Z 63,723
java.lang.Character.isLetterOrDigit(C)Z 18,517
java.lang.Character.toLowerCase(C)C 16,506

java.lang.Math.min(II)I 2,800
java.lang.Float.floatToRawIntBits(F)I 81
sun.misc.Unsafe.compareAndSwapInt(Ljava/lang/Object;JII)Z 4,008

number of occurrences for all encountered native methods in one run of JDoop.
As can be seen from the data, the charAt method of the String class offers by
far the greatest potential for improving on the number of explored paths. Note,
however, that numbers in the table do not necessarily translate into the same
number of additional paths as occurrences are counted along paths in trees and
the same method call may appear on multiple paths.
Amenable Test Cases. The number of symbolic variables per test case behaves
as expected: it increases when using prioritization of sequences with many vari-
ables. Prioritization, however, comes at a cost since there tends to be more runs
of JDart in configurations that do not use prioritization. For all benchmarks,
a high number of runs yields only one path and hence no additional test cases.
A considerable number of these runs may be attributed to using Nhandler in
the ‘No Native’ mode, thereby hiding branches by not executing native code.
On the other hand, even in the experiment in which Nhandler was used in the
‘Concrete Native’ mode, two thirds of all runs explored only a single path. This
indicates that many method sequences that were selected for JDart simply do
not branch on symbolic variables.

4.5 Discussion

The obtained results allow us to provide answers to our research questions.
Question 1: Covering More Paths. JDoop consistently outperforms Ran-
doop on roughly 50% of the benchmarks (see Table 2 and Fig. 3). Measured
in absolute number of branches, the margins are relatively slim in many cases.
There are, however, cases in which the achieved branch coverage is increased
by 28%—resulting in an increase in code coverage by 5.4% points (26 jipa). On
about 50% of the benchmarks no variation can be seen in coverage between both
approaches. Together with the little variance that is observed between different
runs this indicates that Randoop in many cases reaches a state where achievable
coverage is (nearly) saturated. It makes sense that in such a scenario JDoop
does not add many percentage points in code coverage. It merely adds coverage
through those hard-to-hit corner cases.
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Question 2: Reachable Regions. Our results indicate that the feedback loop
has a positive impact. The JD-9-1 configurations perform better than other
configurations in most cases. Regarding the time distribution between Randoop
and JDart the picture is not as clear. There is a lot more variation in the margins
of coverage increase (or decrease sometimes) for the configuration that grants
most of the time to JDart. In one particularly amenable case this results in
coverage increase by 43% (from 13.7% to 19.7% for 49 diebierse).
Question 3: Robustness of Symbolic Execution. Here, we have to refute
the conjecture that was made in related work [14], namely that a robust dynamic
symbolic execution engine can reap big increases in code coverage—or at least
curb expectations about achievable coverage increases. Our experiments showed
that JDart handles most benchmarks without many problems. Proper analysis
of native code (especially for String methods) certainly has the potential to
improve code coverage further, but the consistently high number of symbolic
analyses that result in a single path (even in the control experiment) points to
another important factor that contributes to small margins: the generated test
cases simply do not allow exploring many new branches in most cases.

The experiments even indicate that it does not pay off to prioritize method
sequences with many variables for JDart. Prioritization adds cost twice: once
for analyzing test cases and then for exploring with many variables. Taking into
account the observation from the first answer, that Randoop (almost) achieves
saturation of coverage in one hour, this again indicates that in JDoop corner
cases are discovered by JDart. Covering more search space beats investigating
the few locations more intensively in such a scenario.
Remark on Achievable Coverage. Our observations correlate well with the
observations made in [12], where the results of a static analysis of the SF110
benchmark suite are reported. The analysis revealed that only 6.6% of methods
in the benchmark suite have path constraints that are exclusively composed of
primitive type elements. On the other hand, the study identified objects in path
constraints, calls to external libraries or native code, and exception-dependent
paths as challenges to symbolic execution. The authors report that one third of
methods have paths that deal with exceptions.

The low coverage (in absolute numbers) and low variance across all bench-
marks for Randoop and JDoop in our experiments suggests that many
branches simply cannot be covered by test cases that only rely on calling meth-
ods of objects from a project under test. Many branches rely on return values
of calls to external libraries or the occurence of exceptions, which are not trig-
gered in a simple testing environment. Since there is no simple or automated
approach for determining the achievable coverage for a benchmark, we sampled
a few individual benchmarks and indeed quickly found cases where catch-blocks
in the code contained comments to the effect that the block is unreachable.

Taking into account the results from [12] and our findings, we conjecture that
the branch coverage that is achieved by JDoop is close to the coverage that can
be achieved without making the environment of a tested project symbolic.
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5 Threats to Validity

Threats to External Validity. While the main purpose of the SF110 corpus
of benchmarks is to reduce the threat to external validity since they were chosen
randomly, we cannot be absolutely sure that the benchmarks we used are repre-
sentative of Java programs. In addition, we excluded a number of problematic
benchmarks from our evaluation (see Sect. 4.1). Hence, our results might not gen-
eralize to all programs. In JDoop we integrated Randoop and JDart, and we
usedRandoop as the baseline in our evaluation. We attempted to include another
contemporary state-of-the-art Java testing tool into the comparison, and EvoSuite
was an obvious choice to try. However, to the best of our ability we did not man-
age to get it to work with JaCoCo (the tool we use for measuring code coverage)
on our benchmark suite despite exchanging numerous emails with the EvoSuite
authors. This is a well-known problem caused by the online bytecode modifications
that EvoSuite often performs.5 While others successfully combined EvoSuite and
JaCoCo in the past, that was accomplished only on very simple programs; in
addition, others also reported differences in coverage results between EvoSuite’s
internal measurements and JaCoCo.6,7 Hence, we could not perform a direct
comparison and our results might not generalize to other tools. However, earlier
work on EvoSuite reports similar results to ours with respect to using dynamic
symbolic execution in combination with random testing [14]. Finally, note that
we do not include the environment and dependencies of benchmarks into unit test
generation, which might lead to sub-optimal coverage.
Threats to Internal Validity. In our evaluation, we experimented with 3 dif-
ferent time allocations for Randoop and JDart that we identified as represen-
tative. While our results show no major differences between these different time
allocations, we did not fully explore this space and there might be a ratio that
would lead to a different outcome. JDart currently cannot symbolically explore
native calls, which might lead to not being able to cover program paths (and
hence also branches and instructions) that depend on such calls. Our evaluation
shows that this indeed happens and that native implementations of methods of
the String class in Java are the main culprit, but it does not allow us to pro-
vide an estimate of the impact on the achieved code coverage. Finally, while we
extensively tested JDoop to make sure it is reliable and performed sanity checks
of our results, there is a chance for a bug to have crept in that would influence
our results.
Threats to Construct Validity. Here, the main threat is the metrics we
used to assess the quality of the generated test suites, and in particular branch
coverage in the presence of dead code [3,27]. This threat is reduced by previous
work showing that branch coverage performs well as a criterion for comparing
test suites [16].

5 http://www.evosuite.org/documentation/measuring-code-coverage.
6 https://groups.google.com/forum/#!topic/evosuite/ctk2yPIqIoM.
7 https://stackoverflow.com/questions/41632769/evosuite-code-coverage-does-not-

match-with-jacoco-coverage.

http://www.evosuite.org/documentation/measuring-code-coverage
https://groups.google.com/forum/#!topic/evosuite/ctk2yPIqIoM
https://stackoverflow.com/questions/41632769/evosuite-code-coverage-does-not-match-with-jacoco-coverage
https://stackoverflow.com/questions/41632769/evosuite-code-coverage-does-not-match-with-jacoco-coverage
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6 Related Work

Symbolic Execution. Dynamic symbolic execution [17,36] is a well-known
technique implemented by many automatic testing tools (e.g., [6,18,35,43]). For
example, SAGE [18] is a white-box fuzzer based on dynamic symbolic execution.
It has been routinely applied to large software systems, such as media players
and image processors, where it has been successful in finding security bugs.
Khurshid et al. [25] extend symbolic execution to support dynamically allocated
structures, preconditions, and concurrency.

Several symbolic execution tools specifically target Java bytecode programs.
A number of them implement dynamic symbolic execution via Java bytecode
instrumentation. JCute [35], the first dynamic symbolic execution engine for
Java, uses Soot [39] for instrumentation and lp solve for constraint solving.
CATG [41] uses ASM [2] for instrumentation and CVC4 [10] for constraint solv-
ing. Another dynamic symbolic execution engine, LCT [24], supports distributed
exploration; it uses Boolector and Yices for solving, but it does not have support
for float and double primitive types. A drawback of instrumentation-based tools
is that instrumentation at the time of class loading is confined to the SUT. For
example, LCT does not by default instrument the standard Java libraries thus
limiting symbolic execution only to the SUT classes. Hence, the instrumentation-
based tools discussed above provide the possibility of using symbolic models for
non-instrumented classes or using pre-instrumented core Java classes.

Several dynamic symbolic execution tools for Java are not based on instru-
mentation. For example, the dynamic symbolic white-box fuzzer jFuzz [21] is
based on Java PathFinder (as is JDart) and can thus explore core Java
classes without any prerequisites. Symbolic PathFinder (SPF) [32] is a Java
PathFinder extension similar to JDart. In fact, JDart reuses some of the
core components of an older version of SPF, notably the solver interface and its
implementations. While at its core SPF implements symbolic execution, it can
also switch to concrete values in the spirit of dynamic symbolic execution [30].
That enables it to deal with limitations of constraint solvers (e.g., non-linear
constraints).
Hybrid Approaches. There are several approaches similar to ours that com-
bine fuzzing or a similar testing technique with dynamic symbolic execution.
Garg et al. [15] propose a combination of feedback-directed random testing
and dynamic symbolic execution for C and C++ programs. However, they are
addressing challenges of a different target language and on a much smaller collec-
tion of benchmarks that they simplified before evaluation. The Driller tool [40]
interleaves fuzzing and dynamic symbolic execution for bug finding in program
binaries, and it targets single-file binaries in search of security bugs. Galeotti
et al. [14] apply dynamic symbolic execution in the EvoSuite tool to explore
test cases generated with a genetic algorithm. Even though their evaluation is
carried out in a different way than the one presented in this paper, the general
conclusion is the same in spirit—dynamic symbolic execution does not provide a
lot of additional coverage on real-world object-oriented Java software on top of
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a random-based test case generation technique. MACE [7] combines automata
learning with dynamic symbolic execution to find security vulnerabilities in pro-
tocol implementations.

There are other automated hybrid software testing tools that do not strictly
combine with symbolic execution (e.g., OCAT [22], Agitator [5], Evacon [19],
Seeker [42], DSD-Crasher [8]). Because these tools either focus on a single method
at a time or just form random method call sequences, they often fail to drive pro-
gram execution to hard-to-reach sites in a SUT, which can result in suboptimal
code coverage.
Random Testing. Randoop [29] is a feedback-directed random testing algo-
rithm that forms random test cases that are sequences of method calls, while
ensuring basic properties such as reflexivity, symmetry, and transitivity. Search-
based software testing [28] approaches and tools are gaining traction, which is
reflected in four annual search-based software testing tool competitions in recent
years [33]. A prominent search-based tool is EvoSuite [13], which combines a
genetic algorithm and dynamic symbolic execution. T3 [31] is a tool that gener-
ates randomized constructor and method call sequences based on an optimization
function. JTExpert [34] keeps track of methods that can change the underlying
object and constructs method sequences that are likely to get the object into a
desired state. All the search-based testing tools are geared toward testing at the
class level, while JDoop performs testing at the application/library level.
Benchmarking Infrastructures. In computer science, any extensive empiri-
cal evaluation, software competition, or reproducible research requires a signifi-
cant software+hardware infrastructure. The Software Verification Competition’s
BenchExec [4] is a software infrastructure for evaluating verification tools on pro-
grams containing properties to verify. It comes with an interface for verification
tools to follow, which did not fit our needs: our coverage measurement outcomes
cannot be judged in terms of program correctness. The Search-based Software
Testing Competition [33] community created an infrastructure for the competi-
tion as well. However, just like tools that participate in the competition, their
infrastructure is geared toward running a testing tool on just one class at a
time. Emulab [45] and Apt [1] are testbeds that provide researchers with an
accessible hardware and software infrastructure. They allow for repeatable and
reproducible research, especially in the domain of computer systems, by provid-
ing an environment to specify the hardware to be used, on top of which users
can install and configure a variety of systems.

7 Conclusions

We introduced a hybrid automatic testing approach for object-oriented soft-
ware, described its implementation JDoop, and performed an extensive empiri-
cal exploration of this space. Our approach is an integration of feedback-directed
random testing (Randoop) and dynamic symbolic execution (JDart), where
random testing performs global exploration, while dynamic symbolic execution
performs local exploration (around interesting global states) of a SUT. It is an
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iterative algorithm where these two exploration techniques are interleaved in
multiple iterations. Our evaluation on real-world object-oriented software shows
that dynamic symbolic execution provides consistent improvements in terms of
code coverage on top of our baseline (pure feedback-directed random testing) on
those examples that are amenable to this method of testing.
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Abstract. In the interleaving model of concurrency, where events are
totally ordered, linearizability is compositional: the composition of two
linearizable objects is guaranteed to be linearizable. However, lineariz-
ability is not compositional when events are only partially ordered, as
in the weak-memory models that describe multicore memory systems.
In this paper, we present a generalisation of linearizability for concur-
rent objects implemented in weak-memory models. We abstract from the
details of specific memory models by defining our condition using Lam-
port’s execution structures. We apply our condition to the C11 memory
model, providing a correctness condition for C11 objects. We develop a
proof method for verifying objects implemented in C11 and related mod-
els. Our method is an adaptation of simulation-based methods, but in
contrast to other such methods, it does not require that the implemen-
tation totally orders its events. We apply our proof technique and show
correctness of the Treiber stack that blocks on empty, annotated with
C11 release-acquire synchronisation.

1 Introduction

Linearizability [23,24] is a well-studied [16] condition that defines correctness
of a concurrent object in terms of a sequential specification. It ensures that for
each history (i.e., execution trace) of an implementation, there is a history of the
specification such that (1) each thread makes the same method invocations in
the same order, and (2) the order of non-overlapping operation calls is preserved.
The condition, however, critically depends on the existence of a total order of
memory events (e.g., as guaranteed by sequential consistency (SC) [31]) to guar-
antee contextual refinement [20] and compositionality [24]. Unfortunately, most
modern execution environments can only guarantee a partial order of memory
events, e.g., due to the effects of relaxed memory [3,5,8,34]. It is known that
a naive adaptation of linearizability to the partially ordered setting of weak
memory is problematic from the perspective of contextual refinement [18]. In
this paper, we propose a generalisation of linearizability to cope with partially
ordered executions, which we show satisfies compositionality.
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Fig. 1. Writing to shared variables Fig. 2. Writing to shared stacks

To motivate the problem consider the following. Figures 1 and 2 show two
examples1 of multi-threaded programs on which weak memory model effects can
be observed. Figure 1 shows two threads writing to and reading from two shared
variables x and y. Under SC, the assert in process 2 never fails: if y equals
1, x must also equal 1. However, this is not true in weak memory models like
C11 [8,28]: if the writes to x and y are relaxed, process 2 may observe the write
to y, yet also observe the initial value x (missing the write to x by process 1).

Such effects are not surprising to programmers familiar with memory mod-
els [8,28]. However, programmer expectations for linearizable objects, even in a
weak memory model like C11, are different: if the two stacks S and S′ in Fig. 2
are linearizable, the expectation is that the assert will never fail since lineariz-
able objects are expected to be compositional [23,24], i.e., any combination of
linearizable objects must itself be linearizable. However, it is indeed possible for
the two stacks to be linearizable (using the classical definition), yet for the pro-
gram to generate an execution in which the assert fails, i.e., the composition
of the two stacks is not linearizable. The issue here is that linearizability, when
naively applied to a weak memory setting, allows too many operations to be
considered “unordered”.

Failure of compositionality is repaired by strengthening the requirements of
linearizability on partial orders. Namely, we require the ability to infer enough
order in an execution to ensure that the method call S.Push(1) precedes S.Pop,
forcing S.Pop to return 1, whenever S’.Push(1) precedes S’.Pop.

The contributions of this paper are as follows.
– Our main contribution is the development of a new compositional notion of

correctness; we call this condition causal linearizability.
– We establish two meta-theoretical properties of causal linearizability. First, we

show that, as expected, causal linearizability reduces to linearizability when
the underlying memory model is totally ordered. Second, we show that that
causal linearizability is the weakest possible strengthening of linearizability
that guarantees compositionality, i.e., any correctness condition stronger than
linearizability that is also compositional must imply causal linearizability.

– We present a new inductive simulation-style proof technique for verifying
causal linearizability of weak memory implementations of concurrent objects,
where the induction is over linear extensions of the happens-before relation.
This is the first such proof method for weak memory, and one of the first

1 Example in Fig. 2 inspired by H.-J. Boehm talk at Dagstuhl, Nov. 2017.
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that enables refinement-based verification, building on existing techniques
for linearizability in SC [13,16,36].

– We apply this proof technique and verify causal linearizability of a blocking
version of the Treiber Stack executing in the C11 weak memory model. For
the standard Treiber Stack under C11, we identify a synchronisation pitfall
when using only release-acquire synchronisation.

Causal linearizability is so called because it takes into account the causal
relationship between events in a way that is relevant to weak memory models.
There is an earlier definition of a condition also called “causal linearizability”
introduced by Doherty and Derrick in [11]. However, this earlier definition con-
siders causality at the level of (interleaved) sequences and only applies to memory
models such as TSO, that satisfy certain operational properties.2 In contrast,
the definition in this paper (Definition 6) considers causality directly over partial
orders, making it applicable to a wider range of memory models.

The definition of causal linearizability in this paper is built on the same
concerns as the earlier definition in [11], but is not a generalisation of it in a
technical sense. Thus Definition 6 does not reduce to the condition in [11], or
vice versa, although both reduce to classical linearizability [24]. All mentions of
“causal linearizability” in this paper refers to Definition 6. Further comparisons
to related correctness conditions are given in Sect. 8.

Causal linearizability is defined in terms of an execution structure [32], tak-
ing two different relations over operations into account: a “precedence order”
(describing operations that are ordered in real time) and a “communication rela-
tion”. Execution structures allow one to infer the additional precedence orders
from communication orders (see Definition 3 (A5)). Applied to Fig. 2, for a weak
memory execution in which the assert fails, the execution restricted to stack S
would not be causally linearizable in the first place (see Sect. 3 for full details).
Execution structures are generic, and can be constructed for any weak memory
execution that includes method invocation/response events. We develop one such
scheme for mapping executions to execution structures based on the happens-
before relation of the C11 memory model.

This paper is structured as follows. We present our motivating example, the
Treiber Stack in C11 in Sect. 2; describe the problem of compositionality and
motivate our execution-structure based solution in Sect. 3; and formalise causal
linearizability and compositionality in Sect. 4. Causal linearizability for C11 is
presented in Sect. 5, and verification of the stack described in Sect. 6. Section 7
describes a synchronisation pitfall.

2 Treiber Stack in C11

The example we consider (see Algorithm 1) is the Treiber Stack [40] (well-studied
in a SC setting, but not in a weak memory one), executing in a recent version
of the C11 [30] memory model. In C11, commands may be annotated, e.g., R

2 In retrospect, the name “causal linearizability” is more fitting to this current paper.
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Algorithm 1. Release-Acquire Treiber Stack
1: procedure Init
2: Top := null;

3: procedure Push(v)
4: n := new(node) ;
5: n.val := v ;
6: repeat
7: top :=A Top ;
8: n.nxt := top ;
9: until CASR(&Top, top, n)

10: function Pop
11: repeat
12: repeat
13: top :=A Top ;
14: until top �= null ;
15: ntop := top.nxt ;
16: until CASR(&Top, top, ntop)
17: return top.val ;

(for release) and A (for acquire), which introduces extra synchronisation, i.e.,
additional order over memory events [8,28]. We assume racy read and write
accesses that are not part of an annotated command are unordered or relaxed,
i.e., we do not consider the effects of non-atomic operations [8]. Full details of
the C11 memory model are deferred until Sect. 5.

Due to weak memory effects, the events under consideration, including
method invocation and response events are partially ordered [5,6,14,28,30]. As
we show in Sect. 3, it turns out that one cannot simply reapply the standard
notion of linearizability in this weaker setting; compositionality demands that
we use modified correctness condition, causal linearizability, that additionally
requires “communication” across conflicting operations.

In Algorithm 1, all accesses to Top are via an annotated command. Thus,
any read of Top (lines 7, 13) reading from a write to Top (lines 9, 16) induces
happens-before order from the write to the read. This order, it turns out, is
enough to guarantee invariants that are in turn strong enough to guarantee3

causal linearizability of the Stack (see Sect. 6).
Note that we modify the Treiber Stack so that the Pop operation blocks by

spinning instead of returning empty. This is for good reason - it turns out that
the standard Treiber Stack (with a non-blocking Pop operation) is not naturally
compositional if the only available synchronisation is via release-acquire atomics
(see Sect. 7).

3 Compositionality and Execution Structures

This section describes the problems with compositionality for linearizability of
concurrent objects under weak execution environments (e.g., relaxed memory)
and motivates a generic solution using execution structures [32].

3 Note that a successful CAS operation comprises both a read and a write access to
Top, but we only require release synchronisation here. The corresponding acquire
synchronisation is provided via the earlier read in the same operation. This synchro-
nisation is propagated to the CAS by sequenced-before (aka program order), which,
in C11, is included in happens-before (see Sect. 6 for details).
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Notation. First we give some basic notation. Given a set X and a relation
r ⊆ X × X, we say r is a partial order iff it is reflexive, antisymmetric and
transitive, and a strict order, iff it is irreflexive, antisymmetric and transitive.
A partial or strict order r is a total order on Xiff either (a, b) ∈ r or (b, a) ∈ r
for all a, b ∈ X. We typically use notation such as <, ≺, to denote orders,
and write, for example, a < b instead of (a, b) ∈ <. We let X∗ denote the set
of all finite sequences over X, let 〈〉 denote the empty sequence and use ◦ as
a concatenation operator on sequences. For a sequence w, we let w be the
(total) order on its elements: e w e′ if w = w1 ◦ 〈e〉 ◦ w2 ◦ 〈e′〉 ◦ w3.

Fix a set of invocations Inv and a set of responses Res. A pair from Inv ×Res
represents an operation. Each invocation includes both a method name and any
arguments passed to the method; each response includes any values returned
from the method. For example, for a stack S of natural numbers, the invocations
of the stack might be represented by the set {Push(n) | n ∈ N} ∪ {Pop}, and
the responses by N ∪ {⊥, empty}, and the set of operations of the stack is

ΣS = {(Push(n),⊥), (Pop, n) | n ∈ N} ∪ {(Pop, empty)}.

In an execution, an occurrence of an invocation, response, or operation will
take the form of an event. In a full treatment, events would have the form
e = (l, t, g), where l is a label of type Inv ∪ Res (for executions of a concrete
implementation) or Inv × Res (for executions of an abstract specification), t is
a thread identifier t from some given set of threads (or processes) Tid and g
is a tag uniquely identifying the event in the execution. However, for clarity of
presentation, we omit tags in this paper. Furthermore, for uniformity, we assume
that all invocations, responses and operations are indexed by thread identifiers.
For example, the invocations are now given by the set {Pusht(n),Popt | t ∈
T ∧ n ∈ N}. We only make thread ids explicit when necessary. We let tid(e) be
the thread identifier of event e. For a sequence or partial order of events w, we
let w�t be the restriction of w to events e with tid(e) = t only.

The standard notion of linearizability is defined for a concurrent history,
which is a sequence (or total order) of invocation and response events of opera-
tions. Since operations are concurrent, an invocation of an operation may not be
directly followed by its matching response in this sequence, and hence, a history
induces a partial order on operations (through the total order on events). For lin-
earizability, we focus on the precedence order (denoted ), where, for operations
o and o′, we say o o′ in a history iff the response of operation o occurs before
the invocation of operation o′ in the history. A concurrent implementation of an
object is linearizable if the precedence order ( ) for any history of the object
can be extended to a total order that is legal for the object’s specification [24]. It
turns out that linearizability in this setting is compositional [23,24]: any history
of a family of linearizable objects is itself guaranteed to be linearizable.

Unfortunately, histories in modern execution contexts (e.g., due to relaxed
memory or distributed computation) are only partially ordered since processes do
not share a single global view of time. It might seem that this is unproblematic for
linearizability and that the standard definition can be straightforwardly applied
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to this weaker setting. However, it turns out that a naive application fails to
satisfy compositionality. To see this, consider the following example.

Example 1. Consider an execution of Fig. 2 where the operations are only
ordered by a happens-before relation, which is a relation present in many weak-
memory models [3,5,8,34]. Since we do not have a global notion of time, we say
operation o precedes o′ (denoted o o′) if the response of o happens before
the invocation of o′ (also see [18]). For the C11 memory model, happens-before
includes program order, and hence, the progam in Fig. 2 may generate the fol-
lowing execution, where operations executed by the same thread are precedence
ordered.

(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

If we restrict the execution above to S only, we can obtain a legal stack
behaviour by linearizing (S.Pop, empty) before (S.Push(1),⊥) without contra-
dicting the precedence order in the diagram above. Similarly, the execution
when restricted to S′ is linearizable. However, the full execution is not lineariz-
able: ordering the pop of S before its push, and the push of S’ before its pop
contradicts the precedence order . ��

A key contribution of this paper is the development of a correctness condition,
causal linearizability, that recovers compositionality of concurrent objects with
partially ordered histories. Our definition is based on two main insights.

Our first insight is that one must augment the precedence order with addi-
tional information about the underlying concurrent execution. In particular, one
must introduce information about the communication between operations, e.g.,
when one operation sees the effects of another one. In our example, a pop would
see the effect of a push; in the Treiber algorithm it would specifically see the
change of Top. Causal linearizability states that the ordering we impose during
linearization has to (a) preserve the precedence order of operations and (b) has
to be consistent with the communication order. We represent communication by
a relation .

Example 2. Consider again the partial order in Example 1. For stack S, we must
linearize pop before push, and for stack S’, push before pop. Causal linearizabil-
ity mandates the existence of a logical order that contains such that all linear
extensions of the logical order are legal w.r.t. the specification object. Moreover,
it requires that this logical order is contained within the communication rela-
tion. Hence, in Example 1, neither S nor S’ is causally linearizable: for S, the
only valid logical order is S.Pop before S.Push(1), but there is currently no
communication from S.Pop to S.Push(1). Thus, the execution in Example 1 is
not a counterexample to compositionality of causal linearizability. Now consider
changing the example by introducing communication as follows:
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(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

Here, communication is introduced in a manner consistent with the logical order,
which requires that (S.Pop, empty) is linearized before (S.Push(1),⊥) and that
(S’.Push(1),⊥) is linearized before (S’.Pop, 1). So far, we would consider this
to be a valid counterexample to compositionality. We describe why this cannot
be the case below. ��
Our second insight is that the operations (taken as events) together with the
precedence order and the communication relation must form an execution
structure [32].

Definition 3 (Execution structure). If E is a finite4 set of events, and
, ⊆ E × E are relations over E (the precedence order and communication

relation), an execution structure is a tuple (E, , ) satisfying the following
axioms for e1, e2, e3 ∈ E.

A1. The relation is a strict order.
A2. Whenever e1 e2, then e1 e2 and ¬(e2 e1).
A3. If e1 e2 e3 or e1 e2 e3, then e1 e3.
A4. If e1 e2 e3 e4, then e1 e4. ��
Example 4. We apply Definition 3 to Example 2. The requirements of an execu-
tion structure, in particular axiom A4 necessitate that we introduce additional
precedence order edges as follows.

(S.Push(1),⊥) (S’.Push(1),⊥)

(S’.Pop, 1) (S.Pop, empty)

For example, the edge (S’.Pop, 1) (S’.Push(1),⊥) is induced by the combina-
tion of edges (S.Push(1),⊥) (S’.Push(1),⊥) (S’.Pop, 1) (S.Pop, empty)
together with axiom A4. However, this structure now fails to satisfy axiom A2
and is thus no longer a proper execution structure. ��

Hence, for our running example, compositionality no longer fails. We conclude
that for causally linearizable stacks, the assert in Fig. 2 always holds if it is
executed.

4 The original presentation allows infinite execution structures but requires that
be well founded.
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4 Causal Linearizability

Causal linearizability extends linearizability to cope with partially ordered exe-
cutions. Next, we will formally define it and its compositionality property.

Like ordinary linearizability, causal linearizability is defined by comparing the
behaviour of concurrent executions to legal sequential ones. The comparison typ-
ically proceeds by bringing concurrent operations in sequence under some given
constraints. This basic principle is kept for the partially ordered case. Legality
is defined by a sequential object specification, which we define operationally.

Definition 5. A sequential object is a 4-tuple (Σ,Γ, init , τ), where Σ is a set
of labels, Γ is a set of states, init ∈ Γ is an initial state, and τ ⊆ Γ × Σ × Γ
is a transition relation.

The set Σ ⊆ Inv × Res consists of pairs of invocations and responses. For our
stack example, Γ = N

∗, init = 〈〉 and

τ = {(s, (Push(n),⊥), 〈n〉 ◦ s) | n ∈ N} ∪ {(〈n〉 ◦ s, (Pop, n), s) | n ∈ N}
∪ {(〈〉, (Pop, empty), 〈〉)}

We write s
op

τ s′ for (s, op, s′) ∈ τ . For a sequence w ∈ Σ∗, we write s
w

τ s′

iff either w = 〈〉 and s = s′, or w = 〈op〉 ◦ w′ and there exists an s′′ such that

s
op

τ s′′ and s′′ w′
τ s′. The set of legal histories of an object S = (Σ,Γ, init , τ)

is given by legalS = {w ∈ Σ∗ | ∃s ∈ Γ. init w
τ s}.

In general, executions of concurrent processes might invoke operations on
more than one object. To capture this, we define a notion of an object product.
If S1 = (Σ1, Γ1, init1, τ1) and S2 = (Σ2, Γ2, init2, τ2) are two sequential objects
with Σ1 ∩ Σ2 = ∅, the object product of S1 and S2 is defined by S1 ⊗ S2 =
(Σ1 ∪ Σ2, Γ1 × Γ2, (init1, init2), τ1 ⊗ τ2), where

τ1 ⊗ τ2 ={((s1, s2), op1, (s′
1, s2)) | op1 ∈ Σ1 ∧ (s1, op1, s′

1) ∈ τ1}
∪ {((s1, s2), op2, (s1, s′

2)) | op2 ∈ Σ2 ∧ (s2, op2, s′
2) ∈ τ2}.

Clearly, this construction can be generalised to products of more than two
objects, provided their sets of actions are pairwise disjoint. We abstain from
such a treatment here since a compositionality result for two objects is sufficient
to ensure compositionality over multiple objects.

Causal linearizabilty compares the concurrent execution given by an execu-
tion structure to the legal sequential behaviour. The constraint on this sequen-
tialization is that the precedence and the communication order of execution
structures provide lower and upper bounds for the allowed ordering. More pre-
cisely, we use a partial order < that contains all orders necessary to ensure
legality, i.e., there is no linear extension of < that is not legal. Causal lineariz-
ability requires (a) the precedence order of execution structures to be preserved
by this order, and (b) this order to be contained in the communication rela-
tion. We say a strict partial order < is a logical order of an execution structure
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E = (E, , ) iff < ⊆ E × E and ⊆ < ⊆ . For concurrent objects, one
possible instantiation of a logical order is given in [12], where the logical order
corresponds to a conflict-based notion of causality.

For a partial order < ⊆ E × E, we let LE (<) = {w ∈ E∗ | < ⊆ w} be the
set of linear extensions of <.

Definition 6. Let S be a sequential object. An execution structure E is causally
linearizable w.r.t. S iff there exists a logical order < of E such that LE (<) ⊆
legalS.

Causal linearizability guarantees compositionality, i.e., the composition of
causally linearizable concurrent objects is causally linearizable. More formally,
for an execution structure E = (E, , ) and events X ⊆ E, we let E �X be
the execution structure restricted to X, i.e., (X, ∩ (X × X), ∩ (X × X)).

Theorem 7 (Compositionality). If S1 = (Σ1, . . .) and S2 = (Σ2, . . .) are
sequential objects with Σ1 ∩ Σ2 = ∅ and E = (E, , ) is an execution struc-
ture, then E �Σ1

is causally linearizable w.r.t. S1 and E �Σ2
causally linearizable

w.r.t. S2 iff E is causally linearizable w.r.t. S1 ⊗ S2. ��

Standard linearizability as introduced by Herlihy and Wing [24] is defined on
executions (histories) which are totally ordered sequences of invocations and
responses of operations, i.e. a history h is an element of (Inv ∪ Res)∗. Note that
this allows executions in which operations are concurrent because invocation and
response events are now separated. Histories are required to be well-formed and
complete5, which means that the projection of a history onto one thread forms
a sequence of invocations and corresponding responses.

A strict order ≺ on Inv ∪ Res is well-formed and complete iff for all threads
t ∈ Tid, ≺ �t is sequential, i.e., forms an alternating total order of invocations
and responses starting with an invocation. Invocations and responses thus form
matching pairs as defined by a function mp. For a strict order ≺ such that i ≺ r,
(i, r) ∈ mp(≺) iff tid(i) = tid(r) and there is no event e such that i ≺ e ≺ r and
tid(e) = tid(i). This allows us to derive an execution structure from any strict
order and thus also from a history h by using its ordering h.

Definition 8. Let ≺ be a well-formed and complete strict order on Inv ∪ Res.
We say exec(≺) = (E, , ) is the execution structure corresponding to ≺ if

E = mp(≺),
= {((i1, r1), (i2, r2)) ∈ E × E | r1 ≺ i2},

= {((i1, r1), (i2, r2)) ∈ E × E | i1 ≺ r2}.

Note that this construction guarantees a saturation property: for two events e, e′,
we either have e e′ or e′ e.

The classical definition of linearizability only employs the precedence ordering
of an execution structure. That is, (E, , ) is linearizable w.r.t. a sequential
5 Note that we only assume completeness for the sake of simplicity here.
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object S iff there exists a sequence hs ∈ legalS such that (i) �t = hs �t for
all t ∈ Tid (threads execute the same sequence of operations) and (ii) ⊆ hs

( precedence ordering between operations is preserved). We say that a strict order
≺ is linearizable iff exec(≺) is linearizable and that a history h is linearizable iff

h is linearizable.

Theorem 9. Suppose h is a history and S a sequential object. Then h is lin-
earizable w.r.t. S iff exec( h) is causally linearizable w.r.t. S. ��

We now provide an adequacy result for causal linearizability, i.e., show that
causal linearizability is, in fact, the weakest possible strengthening of lineariz-
ability that is compositional. The technical exposition is formalised in terms of
correctness conditions that guarantee linearizability. Here, we regard a correct-
ness condition to be a function mapping a sequential object to the set of all
well-formed strict orders on Inv ∪ Res accepted as being correct for the object,
where the mapping is closed under renaming of the operations.

We let S be the set of all possible sequential objects and H the set of all
possible well-formed complete strict orders on Inv ∪ Res . To formalise closure
under renaming, we assume a bijection b : X → Y between sets X and Y . If
S = (X,Γ, init , τ) is a sequential object, define b[S] = (Y, Γ, init , b[τ ]), where
b[τ ] = {(s, b(x), s′) | (s, x, s′) ∈ τ} and if w ∈ X∗, define b[w] ∈ Y ∗ to be the
sequence obtained from w by replacing each wi by b(wi).

Definition 10. We say a function Δ : S → 2H is a correctness condition iff Δ
is closed under renaming of operations, i.e., for all bijective functions b : Σ → Σ′

and for all S = (Σ, . . . ) ∈ S, we have ≺ ∈ Δ(S) iff b[≺] ∈ Δ(b[S]).

Definition 11. We say Δ : S → 2H guarantees linearizability iff for all S ∈ S,
each ≺ ∈ Δ(S) is linearizable w.r.t. S.

Our adequacy result for causal linearizability is defined for well-formed strict
orders that have exactly one possible legal linearization. Formally, for a correct-
ness condition Δ and sequential object S, we say ≺ ∈ Δ(S) is strongly synchro-
nised iff it is linearizable w.r.t. exactly one hs ∈ legalS.

Theorem 12. Let Δ be a compositional correctness condition, and let S be a
sequential object. Then for any strongly synchronised strict order ≺ ∈ Δ(S),
exec(≺) is causally linearizable.

Strong synchronisation may always arise for some specifications, e.g., a data
structure such as a stack or a counter object that only provides a fetch-and-
increment operation. In general, the execution of any object may be strongly
synchronised due to interactions with other objects or a client (see [18]), causing
additional precedence order to be introduced. For example, a client thread of a
concurrent object may introduce precedence order via program order, inserting
fences between operation calls, or calling objects that induce additional order [6,
18]. Thus for typical sequential objects, a correctness condition that prohibited
strongly synchronized executions would be overly restrictive. Theorem12 ensures
that, for such executions, if the correctness condition is compositional then it is
at least as strong as causal linearizability.
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5 C11 Executions

We now briefly introduce the C11 memory model as to be able to reason about
programs executing within C11. To this end, we simply give a (condensed) adap-
tion of the programming-language oriented presentation of C11 [14,28], but we
ignore various features of C11 not needed for our discussion, including non-
atomic operations and fences. For a more complete explanation see e.g. [28].

The C11 Memory-Model. The memory model specifies how read and write
operations access shared state. Let L be a set of such shared locations (ranged
over by x, y) and let V be a set of values (ranged over by u, v). Our model
employs a set of memory events, which can be partitioned into read events,
R, write events, W , and update (read-modify-write) events, U . A read event
would e.g. take the form rd(x, 0). An update event occurs for instance when
a CAS operation is executed: a shared location is read, compared to a local
variable and then possibly written to. We let Mod = W ∪ U be the set of events
that modify a location, and Qry = R ∪ U be the set of events that query a
location. For any memory event e, let loc(e) be the event’s accessed location and
Loc(x) = {e | loc(e) = x} the set of events accessing location x. For any query
event let rval(e) be the value read; and for any modification event let wval(e) be
the value written. An event may carry a synchronisation annotation, which (in
our restricted setting) may either be a release, R, or an acquire, A, annotation,
and we let ann(e) be an event e’s annotation.

Definition 13. A C11 execution is a tuple D = (D, sb, rf ,mo), where D is a
set of events, and sb, rf ,mo ⊆ D × D define the sequenced-before, reads-from
and modification order relations, respectively.

We say a C11 execution is valid when it satisfies the following constraints:
(V1) sb is a strict order, such that, for each process p, the projection of sb onto
p is a total order; the reads-from relation specifies the write a particular read
event reads-from: rf ⊆ Mod × Qry and (V2) for all (w, r) ∈ rf , loc(w) = loc(r)
and wval(w) = rval(r) as well as (V3) for all r ∈ D ∩ Qry, there exists some
w ∈ D ∩ Mod such that (w, r) ∈ rf ; the modification order relates writes to the
same location and these writes are totally ordered: (V4) for all (w,w′) ∈ mo,
loc(w) = loc(w′); and (V5) for all w,w′ ∈ Mod such that loc(w) = loc(w′),
(w,w′) ∈ mo or (w′, w) ∈ mo.

Other relations can be derived from these basic relations. For example, assum-
ing DR and DA denote the sets of events with release and acquire annota-
tions, respectively, the synchronises-with relation, sw = rf ∩ (DR × DA), cre-
ates interthread ordering guarantees based on synchronisation annotations. The
annotations R and A can thus be used by programmers to achieve certain visi-
bility effects of their write events. The from-read relation, fr = (rf −1;mo)\Id,
relates each query to the events in modification order after the modification
that it read from. Our final derived relation is the happens before relation
hb = (sb ∪ sw)+, which formalises causality. We say that a C11 execution is
consistent if (C1) hb is acyclic, and (C2) hb; (mo ∪ rf ∪ fr) is irreflexive.
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Method Invocations and Responses. So far, the events appearing in our
memory model are low level read and write events. Our goal is to model algo-
rithms such as the Treiber stack. Thus, we add method events to the standard
model, namely, invocations, Inv , and responses, Res . Unlike weak memory at
the processor architecture level, where program order may not be preserved [18],
program order in C11 is consistent with happens-before order, and hence, invo-
cation and response events can be introduced here in a straightforward manner.
The only additional requirement is that validity also requires (V6) sb for each
process projected restricted Inv ∪ Res must be an alternating sequence of invo-
cations and matching responses, starting with an invocation. In any execution
of a well-formed program, this condition is naturally satisfied.

From C11 Executions to Execution Structures. A C11 execution with
method invocations and responses naturally gives rise to an execution structure.
First, for a C11 execution D and IR = Inv ∪ Res , we let hbir = hb ∩ (IR × IR),
i.e., the happens-before relation of D restricted to the invocation and response
events. By (V6), hbir is well-formed and complete. Thus, we can apply the
construction defined in Sect. 4 to build an execution structure exec(hbir).

Definition 14. We say that a C11 execution D is causally linearizable w.r.t. a
sequential object if exec(hbir) is. ��

Compositionality of causal linearizability thus naturally carries over to C11
executions. Finally, we say that a data structure (like the Treiber stack) is
causally linearizable on C11 when all its C11 executions are. Thus, we will in
the following investigate how we can prove such a property.

6 Verification

We now describe an operational method for proving that a given C11 execution
is causally linearizable w.r.t. a given sequential object. Our method is based on a
simulation-based proof rule described in Sect. 6.1. We illustrate our technique on
the Treiber Stack (Sect. 6.2), which is often used as an exercise in the verification
literature [16]. Unlike these existing verifications, we consider weak memory, and
hence, the stack in Algorithm 1 generates more behaviours than in a standard
sequentially consistent setting. The proof in Sect. 6.2 below is the first to verify
that the stack under C11 satisfies causal linearizability. Moreover, our proof
technique, which considers simulation over a happens-before relation, is novel to
this paper.

6.1 A Simulation Relation over Happens-Before

For the remainder of this section, fix a C11 execution D = (D, sb, rf ,mo), and
a sequential object S = (Σ,Γ, init , τ). We describe a method for proving that
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D is causally linearizable w.r.t. S. In what follows, we write e hb e′ when
(e, e′) ∈ hbD.

As in the interleaving setting our method depends on assigining lineariza-
tion points [16] to each operation. Therefore, the verifier must define a func-
tion lp : D ∩ Inv → D, which returns the memory event that linearizes the
given high-level operation, represented by its invocation. For simplicity, in this
presentation, we require that our linearizations be injective.6 Recall from the
previous section that the operations in the execution structure exec(hbir) are
elements of matching pairs from the set mp(hbir). To recover the abstract order
of operations corresponding to a linearization, we use <lp= {((i, r), (i′, r′)) |
lp(i) hb lp(i′) ∧ (i, r), (i′, r′) ∈ mp(hbir)}.

Definition 15. We say lp is a linearization iff for each i ∈ D∩Inv, and match-
ing response r, i hb lp(a) hb r. Furthermore, we say lp is a legal linearization
iff LE (<lp) ⊆ legalS.

Note that, for a legal linearization, we require that every linear extension of <lp

yields a legal history under the linearization function lp. Of course, if hb were
total, this would reduce to essentially the standard notion of linearization point,
and thus our proof technique is a generalization of a standard technique.

The existence of a legal linearization is sufficient to prove causal linearizability
of the C11 execution.

Theorem 16 (Legal linearizations guarantee causal linearizability). If
there is a legal linearization lp, then D is causally linearizable w.r.t. S.

The key difficulty in using Theorem16 is showing that a given linearization
function is legal. To this end, we extend the standard simulation method to prove
legality of a linearization function [16].

In the usual setting, a simulation relation relates states of the implementation
to states of the specificiation, and this relation encodes an induction hypothesis
for an induction on the executions of the specification. In our current setting, the
simulation relation (which we denote ρ, below) relates sets of low-level actions
to abstract states. The simulation relation encodes an induction hypothesis for
an induction on the linear extensions of the hb-relation. Thus, at each stage of
the induction we can assume ρ(Z, γ) for some set of events Z ⊆ D and state
γ ∈ Γ , where Z is downwards-closed with respect to the hb order. The set Z is
the set of low-level actions already considered by the induction. In order to be
a simulation, the relation ρ must satisfy the conditions given in the following
definition.

Definition 17 (hb-simulation). Suppose lp is a linearization. An hb-
simulation is a relation ρ ⊆ 2D × Γ such that:

1. ρ(∅, init), and (initialisation)
2. for all Z ⊆ D, events e ∈ D\Z and γ ∈ Γ , if ∀e′ ∈ D. e′

hb e ⇒ e′ ∈ Z
and ρ(Z, γ) then

6 Thus, each low-level event can linearize at most one action of the specification.
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(a) if e /∈ ran lp, then ρ(Z ∪ {e}, γ), and (stutter step)
(b) if e = lp(i) for some i ∈ D ∩ Inv,

then, letting r be the matching response of i in D, (γ, (i, r), γ′) ∈ τ and
ρ(Z ∪ {e}, γ′) for some γ′ ∈ Γ . (linearization step)

Condition 1 ensures that the initial states match up: at the concrete level this
is the empty set and at the abstract level, this is the initial state. The induction
considers the low-level actions in hb order, the low-level action under consider-
ation must be an element of D\Z such that all its hb predecessors are already
in Z. For each such event e, there are two possibilities: either e is a stutter step
(in which case the abstract state is unchanged), or e linearizes the operation
invoked by i (in which case the abstract system takes a step). In either case, the
event e is added to the set Z, and we must show that the simulation relation is
preserved.

The existence of an hb-simulation guarantees that lp is a legal linearization.
This fact is captured by the next theorem.

Theorem 18 (hb-simulation guarantees legal linearization). If lp is a
linearization and ρ is an hb-simulation with respect to lp, then lp is a legal
linearization.

Thus, if we can exhibit a linearization lp and an hb-simulation ρ, then D is
causally linearizability w.r.t. S.

6.2 Case Study: The Treiber Stack

We now describe a linearization function lp and an hb-simulation relation ρ,
demonstrating causal linearizability of the Treiber stack. We fix some arbitrary
C11 execution D = (D, sb, rf ,mo) that contains an instance of the Treiber stack.
That is, the invocations in D are the stack invocations, and the responses are
the stack responses (as given in Sect. 3). Furthermore, the low-level memory
operations between these invocations and responses are generated by executions
of the operations of the Treiber stack (Algorithm1). As before, we write e hb e′

when (e, e′) ∈ hbD.
The linearization function lp for the Treiber stack is completely standard:

referring to Algorithm 1 on page 4, each operation is linearized at the unique
update operation generated by the unique successful CAS at line 9 (for pushes)
or line 16 (for pops).

The main component of our simulation relation ρ guarantees correctness of
the data representation, i.e., the sequence of values formed by following next
pointers starting with & Top forms an appropriate stack, and we focus on this
aspect of the relation. As is typical with verifications of shared-memory algo-
rithms, there are various other properties that would need to be considered in a
full proof.

In a sequentially consistent setting, the data representation can easily be
obtained from the state (which maps locations to values). However, for C11
executions calculating the data representation requires a bit more work. In what
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follows, we define various functions that depend on a set Z of events, representing
the current stage of the induction.

We define the latest write in Z to a location x as

latestZ(x) = max(mo �(Z∩Loc(x)))

and the current value of a location x in some set Z as cvalZ(x) =
wval(latestZ(x)), which is the value written by the last write to x in modifi-
cation order. It is now straightforward to construct the sequence of values corre-
sponding to a location as stackOf Z(x) = v ·stackOf Z(y), where v = cvalZ(x.val)
and y = cvalZ(x.nxt).

Now, assuming that s is a state of the sequential stack, our simulation
requires:

stackOf Z(cvalZ(&Top)) = s (1)

Further, we require that all modifications of &Top are totally ordered by hb:

∀m,m′ ∈ Z ∩ Mod(&Top). m hb m′ ∨ m′
hb m (2)

to ensure that any new read considered by the induction sees the most recent
version of &Top.

In what follows, we illustrate how to verify the proof obligations given in
Definition 17, for the case where the new event e is a linearization point. Let
e be an update operation that is generated by the CAS at line 9 of the push
operation in Algorithm 1. The first step is to prove that every modification of
&Top in Z is happens-before the update event e. Formally,

∀m ∈ Z ∩ Mod ∩ Loc(&Top). m hb e (3)

Proving this formally is somewhat involved, but the essential reason is as follows.
Note that there is an acquiring read r to &Top executed at line 7 of e’s operation
and sb-prior to e. r reads from some releasing update u. Thus, by Property 2,
and the fact the hb contains sb, e is happens after u, and all prior updates. If
there were some update u′ of &Top such that (u′, e) /∈ hb, then (u′, u) /∈ hb
so by Property 2, u hb u′. But it can be shown in this case that the CAS
that generated e could not have succeeded, because u′ constitutes an update
intervening between r and e. Therefore, there can be no such u′.

Property 3 makes it straightforward to verify that Condition 2b of Defini-
tion 17 is satisfied. To see this, note that every linearization point of every oper-
ation is a modification of & Top. Thus, if (i′, r′) is some operation such that
lp(i′) ∈ Z (so that this operation has already been linearized) then lp(i′) hb e.

Using Property 3 it is easy to see that both Propertys 1 and 2 are pre-
served. We show by contradiction that latestZ′(&Top) = e. Otherwise, we
have (e, latestZ′(&Top)) ∈ mo. Therefore (latestZ′(&Top), e) /∈ hb, but
latestZ′(&Top) is a modification operation, so this contradicts Property 3.

It follows from latestZ′(&Top) = e that stackOf (cvalZ′) = stackOf (wval(e)).
Given this, it is straightforward to show that Property 1 is preserved. This step of
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the proof relies on certain simple properties of push operations. Specifically, we
need to show that the current value of the val field of the node being added to the
stack (formally, cvalZ((wval(e)).nxt)) is the value passed to the push operation;
and that the current value of the nxt field (formally, cvalZ((wval(e)).nxt)) is the
current value of &Top when the successful CAS occurs. These properties can be
proved using the model of dynamic memory given in Sect. 5.

7 A Synchronisation Pitfall

We now describe an important observation regarding failure of causal lineariz-
ability of read-only operations caused by weak memory effects. The issue can be
explained using our abstract notion of an execution structure, however, a solu-
tion to the problem is not naturally available in C11 with only release-acquire
annotations. Note that this observation does not indicate that our definition of
causal linearizability is too strong, but rather that release-acquire annotations
cannot guarantee the communication from a read-only operation to a writing
operation necessary for compositionality.

Fig. 3. Read-only operations without communication (not compositional)

Consider the Treiber Stack in Algorithm 1 that returns empty instead of
spinning; namely where the inner loop (lines 12–14) is replaced by code block

top :=A Top ; if top = null then return empty
Such an implementation could produce executions such as the one in Fig. 3 which,
like the examples in Sect. 3, is not compositional. Recovering compositionality
requires one to introduce additional communication edges from the pops return-
ing empty to the corresponding push operations. In the C11 memory model,
these correspond to “from-read” anti-dependencies from a read to a write over-
writing the value read. However, release-acquire synchronisation is not adequate
for promoting from-read order in the memory to happens-before.

One fix would be to disallow read-only operations, e.g., by introducing a
release-acquire CAS operation on a special variable that always succeeds at the
start of each operation. However, such a fix is somewhat unnatural. Another
would be to use C11’s SC annotations, which can induce synchronisation across
from-read edges. However, the precise meaning of these annotations is still a
topic of active research [7,30].
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8 Conclusion and Related Work

We have presented causal linearizability, a new correctness condition for
objects implemented in weak-memory models, that generalises linearizability
and addresses the important problem of compositionality. Our condition is not
tied to a particular memory model, but can be readily applied to memory models
such as C11, that feature a happens-before relation. We have presented a proof
method for verifying causal linearizability. We emphasise that our proof method
can be applied directly to a standard axiomatic memory model. Unlike other
recent proposals [15,25], we model C11’s relaxed accesses without needing to
prohibit their problematic dependency cycles (so called “load-buffering” cycles).
Although causal linearizability has been presented as a condition for concurrent
objects, it is possible to extend this condition to cover, for example, transactional
memory.

Causal linearizability is closely related to causal hb-linearizability defined
in [18], which is a causal relaxation of linearizability that uses specifications
strengthened with a happens-before relation. The compositionality result there
requires that either a specification is commuting or that a client is unobstructive
(does not introduce too much synchronisation). Our result is more general as we
place no such restriction on the object or the client. In previous work (see also
Sect. 1), we have defined a correctness condition that is only compositional when
the client satisfies certain constraints [11]; in contrast, the treatment in this paper
achieves a full decoupling between the client and object. Furthermore, that con-
dition is only defined when the underlying memory model is given operationally,
rather than axiomatically like C11. Early attempts, targeting TSO architec-
tures, used totally ordered histories but allowed the response of an operation to
be moved to a corresponding “flush” event [10,17,21,39]. Others have considered
the effects of linearizability in the context of a client abstraction. This includes a
correctness condition for C11 that is strictly stronger than linearizability under
SC [6]. Although we have applied causal linearizability to C11, causal lineariz-
ability itself is more general as it can be applied to any weak memory model with
a happens-before relation. Causal consistency [4] is a related condition, aimed
at shared-memory and data-stores, which has no notion of precedence order and
is not compositional.

There exists a rich body of work on the semantics of weak memory models,
including semantics for the C11 memory model [3,5,7,8,26,30,35]. This has been
used as a basis for program logics [14,15,22,25,29,38] and given rise to auto-
mated tools for analysis of weak memory programs [1,2,27,37]. These logics and
associated verification tools however, are typically not designed to reason about
simulation and refinement as is essential for proofs of (causal) linearizability
of concurrent data structures [16]. There are several existing automated tech-
niques for checking (classical) linearizability [9,19,33,41] that use simulation-
based techniques. We anticipate that such techniques could be extended to verify
hb-simulation and causal linearizability, however, leave such extensions as future
work.
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Abstract. Cryptographic protocols are used in different environments,
but existing methods for protocol analysis focus only on the protocols,
without being sensitive to assumptions about their environments.

lpa is a tool that analyzes protocols in context. lpa uses two pro-
grams, cooperating with each other: cpsa, a well-known system for pro-
tocol analysis, and Razor, a model-finder based on SMT technology. Our
analysis follows the enrich-by-need paradigm, in which models of proto-
col execution are generated and examined.

The choice of which models to generate is important, and we motivate
and evaluate lpa’s strategy of building minimal models. “Minimality”
can be defined with respect to either of two preorders, namely the homo-
morphism preorder and the embedding preorder (i.e. the preorder of
injective homomorphisms); we discuss the merits of each. Our main tech-
nical contributions are algorithms for building homomorphism-minimal
models and for generating a set-of-support for the models of a theory, in
each case by scripting interactions with an SMT solver.

1 Introduction

Cryptographic protocol analysis is well-developed. Many tools and rigorous tech-
niques can determine what confidentiality, authentication (e.g. [5,11,16,35]), and
indistinguishability properties (e.g. [6,8,9]) protocols satisfy.

However, what goals a protocol needs to achieve depends on the applications
that use it. The applications require certain security functionality; a protocol
is acceptable if it achieves at least what that functionality relies on. Often,
an attack shows that a protocol ensures less than an application needed. For
instance, the TLS resumption attacks [37], cf. [4,41] show that the protocol
did not allow the server application to distinguish unauthenticated input at the
beginning of a data stream from subsequent authenticated input. This may lead
to erroneous authorization decisions.

Conversely, a protocol may be good enough for an application because of
environmental assumptions the application ensures. For instance, some protocols
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Fig. 1. DoorSEP protocol

fail if the same long-term key is ever used by a principal when playing the server
role and also when playing a client role. However, some applications ensure that
no server ever executes the protocol in the client role at all. This policy would
ensure that an otherwise weak protocol reliably supports the application’s needs.

Logical Protocol Analysis is our term for combining a protocol analyzer with
these additional concerns, which we analyze via model finding. Our goal is to
analyze cryptographic protocols that include trust axioms that cannot be stated
using the typical input to a protocol analyzer. We will carry this idea out using
the model finder Razor [42] and cpsa, a specialized protocol analysis tool [20,36].

Flawed protocols are often deployed before the flaws are understood, and
embedded in widely used devices. Such protocols can still achieve desired security
goals when used in a restricted context. If the context can be modeled using
environmental assumptions and other trust axioms, Logical Protocol Analysis
can be used to discover whether the goals are met in the actual context of use.

An Example: DoorSEP. As a motivating scenario consider the Door Simple
Example Protocol (DoorSEP), derived from an expository protocol [7] that was
designed to have a weakness. Despite this, the protocol achieves the needs of an
application, given a trust assumption. Section 4.1 has more detail.

Imagine a door D that is equipped with a badge reader, and a person P
equipped with a badge. When the person swipes the badge, the protocol executes.
Principals such as doors or persons are identified by the public parts of their key
pairs, with D−1 and P−1 being the corresponding private keys. We write {|M |}K

for the encryption of message M with key K. We represent digital signatures
{|M |}P−1 as if they were the result of encrypting with P ’s private key.

P initiates the exchange by creating a fresh symmetric key K, signing it,
and sending it to the door D encrypted with the door’s public key. D extracts
the symmetric key after checking the signature, freshly generates a token T , and
sends it—encrypted with the symmetric key—back to P . P demonstrates they
are authorized to enter by decrypting the token and sending it as plaintext to
the door. The two roles of DoorSEP are shown in Fig. 1, where each vertical
column displays the behavior of one of the roles.

cpsa finds an undesirable execution of DoorSEP. Assume the person’s private
key P−1 is uncompromised and the door has received the token it sent out.
Then cpsa finds that P freshly created the symmetric key K. However, nothing
ensures that the person meant to open door D. If P ever initiates a run with
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Fig. 2. DoorSEP weakness

a compromised door C, the adversary can perform a man-in-the-middle attack,
decrypting using the compromised key C−1 and re-encrypting with D’s public
key, as elided in the · · · in Fig. 2. Thus, without additional assumptions, the
door cannot authenticate the person requesting entry.

But possibly we can trust the person to swipe her badge only in front of
doors our organization controls. And we can ensure that our doors have uncom-
promised private keys. If so, then the adversary cannot exercise the flaw. We
regard this as a trust assumption, and we can express it as an axiom:

Trust Assumption 1. If an uncompromised signing key P−1 is used to prepare
an instance of the first DoorSEP message, then its owning principal has ensured
that the selected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be split between P
and the organization controlling D. P makes sure to swipe her badge only at
legitimate doors of the organization’s buildings. The organization maintains a
security posture that protects the corresponding private keys.

Is DoorSEP good enough, assuming the trust axiom? To analyze DoorSEP
under trust assumption 1, we use a model finder, namely Razor [42]. We provide
it a theory leading to a model containing the man-in-the-middle attack. We then
add the trust axiom above. The axiom entails that the adversary cannot decrypt
the message sent by the P .

The generated model is then given to cpsa, which infers that the door can
decrypt the person’s message only if C = D, i.e. if P intended it D. Thus,
the protocol does its job; namely, ensuring that the door opens only when an
authorized person requests it to open.

1.1 Protocols and Theories

Security conclusions require protocol analysis combined with other properties,
which we will assume are given axiomatically by a theory G. We also regard a
protocol Π as determining an axiomatic theory Th(Π), namely the theory of Π’s
executions, as Π runs possibly in the presence of a malicious adversary. Thus,
we would like to understand the joint models of G ∪ Th(Π), where of course
these theories may share vocabulary. In the DoorSEP case, G is the trust axiom.
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The models of G ∪ Th(Π) are runs of DoorSEP in which the doors and people
act as assumed in G.

Enrich-by-Need. Indeed, our approach is to construct minimal models in a
homomorphism order. We refer to these minimal models as shapes [20]. The
shapes show all of the minimal, essentially different things that can happen sub-
ject to G ∪ Th(Π): every execution contains instances—meaning homomorphic
images—of the shapes. This is useful to the security analyst who can inspect the
minimal models and appraise whether they are compatible with his needs. The
analyst can do this even without being able to explicitly state the key security
goals. In the case in which G = ∅, so that only Th(Π) matters, generating these
shapes is the central functionality of cpsa [36].

We call this approach to security analysis enrich-by-need, since we build
homomorphism-minimal models by rising stepwise in the homomorphism order,
gradually generating them all. cpsa does so using a “authentication test”
method, which yields a compact, uniform way to generate the set of minimal
models of the protocol theory [20,27].

Indeed, when the set of shapes is finite, we can summarize them in a formula,
the disjunction of the diagrams of each. We regard this as the conclusion of an
implication; the diagram of the starting scenario is the hypothesis. This shape
analysis sentence is a strongest security goal achieved by the protocol that has
the hypothesis chosen [21,34]. Lemma 8 justifies this idea.

We extend cpsa here to cooperate with another tool to provide models of
the whole theory G ∪ Th(Π). We effectively split Th(Π) into two parts, a hard
part Th and an easy part Te. Only cpsa will handle the hard part.

We use a general-purpose model-finder, Razor [42] to look for minimal models
of G∪Te that extend a fragment of a model. When the resulting model A contains
additional behavior of Π, we return to cpsa to handle the hard part Th, enriching
A with some possible executions. We then return these extensions to Razor. If
this process terminates, we have a minimal joint model. By iterating our search,
we obtain a covering set of minimal joint models. Razor, in turn, is built as
a wrapper around a Satisfiability Modulo Theories (SMT) solver, specifically
Z3 [12].

Contributions. We have two goals. First, we define and justify the methods
that the new Razor uses to drive Z3 to generate homomorphism-minimal models
of a given theory. These homomorphisms are not necessarily embeddings; that is,
a homomorphism to construct may map distinct values in its source model to the
same value in its target model. To begin with, we need a method to construct,
from a model A, a set of sentences homFromA, true in precisely those models
B such that there is a homomorphism from A to B. We also need a method to
construct, from a model A, a set of sentences homToA, true in precisely those
models B such that there is a homomorphism from B to A. We show how to use
these two resources to compute a set of minimal models that covers all of the
models; this method is codified in Razor.

Second, we develop a particular architecture for coordinating Razor and
cpsa. In this architecture, Razor handles all aspects of G ∪ Th(Π) except that
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it does not enrich a fragmentary execution of Π to obtain its shapes, i.e. the
minimal executions that are its images. Instead, we generate an input to cpsa
that contains the substructure A0 containing only protocol behavior. cpsa com-
putes the shapes and extracts the strongest security goal that applies to A0. It
returns this additional information to Razor, which then iterates. We call this
cooperative architecture lpa for Logical Protocol Analysis.

Structure of the Paper. In Sect. 2 we fix some preliminary definitions and
notation; we introduce the two existing tools that coordinate to make lpa in
Sect. 3. In Sect. 4 we describe lpa itself and how it is used to analyze the
DoorSEP protocol. Section 5 is a development of some of the underlying the-
ory of using SMT solving to compute and present models, with an emphasis on
the question: which models should be presented to the user? We end with con-
clusions and a discussion of future work. Some proofs have been omitted, and
some discussion condensed, for lack of space; see [14] for a fuller treatment.

Related Work. Model-finding is an active area of investigation [3,10,29,38,43].
But existing model-finders compute an essentially random set of models. Close
in spirit to our goals and techniques are lightweight formal methods tools such as
Alloy [26] and Margrave [31]. Aluminum [32] supports exploration by returning
minimal models: it instruments the model-finding engine of Alloy.

Logic programming languages produce single, least models as a consequence
of their semantics; this is not a notion of minimality based on homomorphisms,
and is traditionally tied to Horn-clause theories. Generalizations of minimality
for non-Horn theories have already been used in specifying the semantics of
disjunctive logic programming [28] and in non-monotonic reasoning, especially
circumscription [39].

Our previous work on a Cryptographic Protocol Programming Language [22,
24] led to a programming language that would allow protocol actions to be
controlled by a trust management policy.

The Tamarin prover [30] can limit the context in which a protocol is to be
analyzed by restricting its analysis to a user-specified subset of all protocol traces.
In contrast, our primary interests lie in enriching the context in which analysis
is done and in generating principled output instances. There was also related
work in the applied π-calculus [18,19]. Protocol analysis sometimes builds in
environmental assumptions in a security goal hypothesis, by assuming that some
keys are uncompromised, or that some principal names are unequal. However,
the focus of research has been on the pure problem of determining the security
properties of protocols in isolation.

2 Foundations

2.1 Models and Homomorphisms

In this chapter we present some of the foundations of model-finding, focusing on
the use of an SMT solver. In broadest terms, model-finding is the following task:
given a logical theory T , produce one or more (finite) models of T .



Security Protocol Analysis in Context 135

Of course a typical satisfiable theory will have many models. Special empha-
sis is given in this paper to the question of which models should be presented to
the user? One answer—embodied in the lpa tool—is based on the fundamen-
tal notion of homomorphism between models, with a focus on models that are
minimal (see Sect. 5) in the pre-order determined by homomorphism.

Fix a signature Σ. A model A for signature Σ is defined as usual: a collection
of sets interpreting the sorts of Σ, and a collection of functions and relations
interpreting the function and relation symbols of Σ. In this paper we work with
finite models exclusively.

Definition 1. Let A and B be Σ-models. A homomorphism from A to B is a
sort-indexed family of maps such that

1. A |= f [a1, . . . , an] = a implies B |= f [h(a1), . . . , h(an)] = h(a) and
2. A |= R[a1, . . . , an] implies B |= R[h(a1), . . . , h(an)].

Write A � B if there is a homomorphism h : A → B, and write A ≈ B

if A � B and B � A. Write A �i
B if there is an injective homomorphism

h : A → B, and write A ≈
i

B if A �i
B and B �i

A. We will sometimes use
the phrase “hom-cone of A” to refer to the set of models B for which there is a
homomorphism h : A → B.

Definition 2. Let M be a class of models. A model M ∈ M is a-minimal for M
if whenever A ∈ M and A � M, we have A ≈ M. The definition of i-minimal
is similar, using injective homomorphisms. (The modifier “a−” is to suggest
“arbitrary”.)

The notion of the core of a model is standard [17,25]; it is important for us
because cores will give canonical representatives of ≈ equivalence classes.

Core are defined in terms of retractions, as follows.

Definition 3. A retraction r : A → B is a homomorphism such that there is a
homomorphism e : B → A with r ◦ e = idB.

A submodel C of A is a core of A if there is a retraction r : A → C but no
retract r′ : A → C

′ for any proper submodel C
′ of C.

A model C is a core if it is a core of itself.

Definition 4 (PE formula, Geometric theory). A formula is positive-
existential, or PE, if it is built from atomic formulas (including true and false)
using ∧, ∨ and ∃. A geometric sentence is one of the form

∀�x. α(�x) → β(�x)

where α and β are positive-existential.

Theorem 5. The following are equivalent, for a formula α(�x):

1. α is preserved by homomorphism: if h : A → B is a homomorphism, and �a is
a vector of elements from A such that A |= α[�a], then B |= α[ �ha].
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2. α is logically equivalent to a PE formula.
3. α is equivalent, in the category MΣ of finite models, to a PE formula.

Proof. The equivalence of (1) and (2) is a classical result in model theory when
considering arbitrary models. The equivalence of (1) and (3) is a deep result of
Rossman [40].

The case for geometric logic as a logic of observable properties was made clearly
by Abramsky [1]. As detailed in [21], typical security goals for protocols are natu-
rally expressed as geometric sentences. (As is well-known, any theory is equisat-
isfiable with one in conjunctive normal form, by introducing Skolem functions.
Such an enrichment of the theory signature is not innocent, however, since it has
consequences for the existence of homomorphisms between models.)

It is straightforward to see that when T is geometric, if A is a model of T
then a retraction of A is a model of T .

Lemma 6. Let T be a geometric theory, A |= T , and r : A → B a retraction.
Then B |= T .

Definition 7. If M is a class of Σ-models and M0 ⊆ M say that M0 is an
a-set of support for M if for all B ∈ M, there exists A ∈ M0 with A � B.
Similarly for i-set of support.

A set of support for a class of models provides a complete “testbed” for entail-
ment of geometric sentences:

Lemma 8. Let σ ≡ ∀�x. α(�x) → β(�x) be geometric and let M be a class of
models. Let M0 be an a-set of support for {A ∈ M | A |= ∃�x. α(�x)}. If every
model in M0 satisfies σ then every model in M satisfies σ.

Proof. Let P ∈ M with P |= α[�a]; we want to show that P |= β[�a]. Let M ∈ M0

with M � P. Since M |= σ, M |= β[�a]. Since β is PE and M � P, P |= β[�a].

2.2 Strand Spaces

We can formalize protocol executions as models, as follows. A run of a protocol is
viewed as an exchange of messages by a finite set of local sessions of the protocol.
Each local session is called a strand: a strand is a sequence of nodes n, each of
which is a transmission or a reception of the message msg(n) at that node.

A strand space Θ is a finite sequence of strands. A message that originates in
exactly one strand of Θ is uniquely originating, and represents a freshly chosen
value. A message is mentioned in Θ if it occurs in a strand of Θ, or if it is an
asymmetric key, its inverse occurs in a strand of Θ. A message that is men-
tioned but originates nowhere in Θ is non-originating, and often represents an
uncompromised key.

A protocol Π is a finite set of strands, which are the roles of the protocol. A
strand s is an instance of a role ρ ∈ Π, if s = α(ρ), i.e. if s results from ρ by
applying a substitution α to parameters in ρ.
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Skeletons are fragmentary executions of the regular participants, which factor
out adversary behavior. A skeleton K = (nodes,, non, unique) consists of a finite
set of regular nodes, a partial ordering on them, a set of values assumed non-
originating, and a set of values assumed uniquely originating. These components
are designed to code in the aspects of executions that we care about, namely
the ordering, and what values are uncompromised (“non”) or freshly chosen
(“unique”).

A skeleton K is an execution, or realized, iff for every message received in K,
the Dolev-Yao adversary [13] can derive that message with the help of earlier
transmissions in K.

Associated with each cpsa protocol Π is a first-order language L(Π) used
to specify security goals [21]. The language can be used to exchange information
between cpsa and an smt solver. These mechanisms are described in Sect. 4.

3 Constituent Tools

CPSA. The Cryptographic Protocol Shapes Analyzer [35] (cpsa) can be used
to determine if a protocol achieves authentication and secrecy goals. cpsa will—
given a protocol Π and a skeleton of interest K—generate all of the minimal,
essentially different realized skeletons that are homomorphic images of K. We
call these minimal, essentially different skeletons shapes, and, although in general
there could be infinitely many of them, frequently there are very few of them.

cpsa begins a run with a protocol description and an initial scenario K0.
The initial scenario is a partial description of executions of a protocol. If cpsa
terminates, it characterizes all the executions of the protocol consistent with the
initial scenario. For example, if it is assumed that one role of a protocol runs to
completion, cpsa will determine what other roles must have executed.

Each skeleton K has a characteristic sentence σK such that, for all K
′, h :

K → K
′ (for some homomorphism h) iff K

′ |= σK.
Homomorphisms play an essential role in cpsa. At each step in the algorithm,

an unrealized skeleton K is replaced by a set of skeletons {K1, . . . , Kn}, called a
cohort, by solving an authentication test [23]. The skeletons {K1, . . . , Kn} form
an a-set of support for the realized skeletons that are homomorphic images of K.
That is, if there is an execution (or “realized skeleton”) Kr such that h : K → Kr,
then there exists some homomorphism h′ : Ki → Kr such that h = h′ ◦ hi.

For an initial scenario K0, cpsa produces a set of realized skeletons
{K1, . . . , Kn} and homomorphisms hi : K0 → Ki. These are built up by a suc-
cession of cohort steps; thus, they remain an a-set of support for the realized
skeletons that are homomorphic images of K0. The set hi : K0 → Ki—called the
shapes of this scenario—are a compact way of describing all of the executions
compatible with the initial scenario. By Lemma8, if a geometric sentence σ holds
in each shape, then σ holds in every realized skeleton that is an image of K0.
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There is a key geometric sentence that can be extracted from the results of
a run of cpsa. A Shape Analysis Sentence (sas) [34] encodes everything that
has been learned about the protocol from a cpsa analysis starting with a given
initial scenario. It holds in every realized skeleton of the protocol. A sas is used
to import the results of a cpsa analysis into the smt solver.

The antecedent of a sas is a conjunction of atomic formulas that specify the
initial scenario K0. The universally quantified variables are the ones that occur in
the antecedent. The conclusion is a disjunction of formulas, one for each shape.
The ith disjunct is an existentially quantified conjunction of atomic formulas
that describes the mapping hi and the additions to the antecedent required to
specify shape Ki.

Razor. Razor is a general-purpose model-finder: it takes as input an arbi-
trary first-order theory T and attempts to find finite models of T (cpsa can
be viewed as a domain-specific model-finder, working over various theories of
strand spaces).

Razor finds models by (i) preprocessing the input theory as described below,
(ii) using an off-the-shelf SMT solver, currently Z3, and (iii) postprocessing the
results of the solver’s output to fulfill certain goals: return minimal models by
default, allowing the user to explore and augment models, and computing a set-
of-support of models for T . Razor can be used in REPL mode or batch mode;
only the latter is used as part of lpa (refer to [42] for a fuller description of
Razor’s REPL mode).

Once the SMT solver has determined that a theory T is satisfiable, and
computed—internally—a model for T , the application must extract the model
from the solver. But the API mandated by the SMT-Lib Standard (v.2.6) [2] for
doing this is quite restricted. The model can be inspected only through certain
commands returning the solver’s internal representation of values of terms.

This is inconvenient for us, especially since the solver might create only a
partial model internally.

To address this, we first ensure that the language we use to communicate
with the solver has enough ground terms at each sort to name all elements of a
model, by adding fresh constants. Then we can query the solver for the values
of the functions and predicates, and build a “basic” model representation

equations ci = cj and
equations f�c = c and

facts R�c

where the ci range over the fresh constants. Using standard techniques we then
construct from these equations a convergent (terminating and confluent) ground
rewrite system, which facilitates working with the models.
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4 LPA

This section shows how to use cpsa and Razor to analyze cryptographic proto-
cols in context. Our architecture for lpa is displayed in Fig. 3. An analysis begins
with a cpsa protocol Π and an initial theory T0. The initial theory contains a
specification of the trust policy and a description of the initial scenario of the
protocol as a collection of sentences in L+(Π), an extension of L(Π).

protocol
(cpsa)

init
theory
(smt2)

first
theory
(smt2)

current
model

current
theory
(smt2)

prot2smt2

copy copy

razorcpsa +
friends

Fig. 3. lpa architecture

The program prot2smt2 uses
protocol Π to generate a set
of geometric axioms Th(Π) [14,
Sect. 2.1.5]. These axioms allow
Razor to produce models from which
skeletons can be extracted. For
example, an axiom about the transi-
tivity of node orderings allows Razor
to compute the partial ordering of
the nodes. Other axioms ensure
that a uniquely originating value is

received only after it is transmitted and that the double inverse of each asym-
metric key is equal to itself.

The initial theory is appended to Th(Π) to form the first theory T1 to be
analyzed by Razor. A skeleton is extracted from each model. If the skeleton is
realized, the model describes the impact of the trust policy on complete exe-
cutions of the protocol. If the skeleton is not realized, it is used as the initial
scenario for cpsa. The results of cpsa is turned into a sas (shape analysis
sentence, cf. Sect. 3) and added to the current theory for further analysis. The
process is repeated until all of the extracted skeletons are realized.

4.1 Analyzing the Door Simple Example Protocol

We now expand on the analysis of the DoorSEP protocol introduced in Sect. 1.
In this protocol, a person begins by generating a fresh symmetric key, signing it,
and then encrypting the result using the door’s public key. If the door accepts the
first message, it responds by freshly generating a token and uses the symmetric
key to encrypt it. If the door receives the token back unencrypted, the door
concludes the person that generated the key is at the door and opens.

The initial theory specifies Trust Assumption 1 and the fact that the door
is open. To assert the door is open, one asserts there is a strand that is a full
length instance of the door role. We further assert that the person’s private key
is uncompromised.

Recall the diagram in Fig. 3 to visualize the analysis process. After appending
the initial theory to the protocol axioms Th(Π), Razor finds model M0. As
expected, model M0 specifies a full length door strand in which the person’s
private key is uncompromised and other facts such as the fact that double inverse
of the model’s asymmetric keys are equal to themselves.
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At this stage, we have a model that characterizes an unrealized skeleton, and
we would like to use cpsa to find out what else must have happened. The shape
produced by cpsa is displayed in Fig. 2. The shape shows the lack of mutual
authentication built into this flawed protocol.

The next step in the analysis makes use of the trust axiom. The result of
the cpsa analysis is transformed into a sas. The antecedent specifies the initial
scenario described by the first model. The consequence specifies what else must
be added to make the initial scenario into the complete execution shown in Fig. 2.

When the sas is added to the current theory, Razor finds one model M1.
The skeleton extracted from this model is very similar to the shape in Fig. 2
with one crucial difference: the key D′ is uncompromised. Razor applied the
trust axiom. The skeleton extracted from M1 is unrealized, so cpsa can make a
contribution. It finds a sas that extends the length of the person strand to full
length and equates D and D′. The addition of this sas produces model M2 that
characterizes a realized skeleton with full agreement between the door and person
strands. Because the skeleton is realized, cpsa has nothing more to contribute
and the analysis terminates.

5 Minimality, Cores, and Set-of-Support

In this section we explore the question which models should we compute and
show to the user of a model-finding tool? Our proposal, motivated by Lemma8
and implemented by lpa, is: compute a set-of-support for the input theory com-
prised of minimal models. As we have observed there are two natural notions
of minimality; we point out some theoretical differences between them. Most
importantly, we present algorithms for computing minimal models and sets-of-
support: these involve programming against the functionality of SMT solvers.

5.1 Comparing i-Minimal and a-Minimal

One way to think about a-minimality of a model M is that if any atomic fact of
M is removed, the resulting model would no longer be a model of the theory at
hand. In particular, since equality is an atomic predicate, if two terms denote—
unnecessarily—the same model-element, this is a failure of a-minimality.

Neither of i-minimality or a-minimality implies the other.

Example 9.

– Let T be the single sentence ∃x.P (x) ∧ ∃x.Q(x), and let A have one element
a with A |= P [a] ∧ Q[a].
Then A is i-minimal but not a-minimal: the model B with two elements a1

and a2 such that B |= P [a1] ∧ Q[a2] is strictly below A in the � preorder. (B
is a-minimal for T .)

– Let T be ∃x.P (x) and let A have two elements a1 and a2 with A |=
P [a1] and A |= P [a2]. Then A is a-minimal but is not i-minimal: the induced
model determined by a1 is a model of T .
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However, an a-minimal model that is a core will be i-minimal.

Lemma 10. If A is a-minimal for T and is a core, then A is i-minimal for T .

Proof. Suppose B is a model of T and j : B → A is injective. Since A is a-
minimal, there is a homomorphism h : A → B. The composition j ◦ h is an
endomorphism of A. Since A is a core this map is injective, so h is injective, and
A ≈

i
B.

We should observe that for a given theory there might be no finite a-minimal
models at all. An example is the theory with one unary function and no axioms.
The initial (hence unique minimal) model of this theory is the natural numbers.
Another way to put this is: the � preorder is not well-founded in general.

On the other hand, we will typically add axioms to a theory to ensure that
there is an upper bound on the size of its models. In such a case there will be
only finitely many models of T , and the � preorder will be well-founded. This
is the key to the termination of many of the algorithms in this section. (There
will always be a-minimal models for theories T that are bounded in this way.)

Lemma 11. Let T be a theory with only finitely many models. Then the � and
�

i preorders on models of T are well-founded.

Proof. Suppose for the sake of contradiction that we have an infinite descending
chain . . . � M2 � M1 � M0 of strict homomorphisms. Then we have Mi+k �

Mi for any k ≥ 0. Since T has finitely many models, we eventually get i and
k ≥ 0 with Mi+k+1 isomorphic to Mi. So Mi+k+1 � Mi+1. But that implies
Mi � Mi+1, a contradiction.

The same argument applies to �i as well.

5.2 Minimal Models for Protocol Analysis

When model-finding is used for protocol analysis, specifically when reasoning
about an authentication goal, minimality with respect to arbitrary homomor-
phisms is of particular interest. Consider, for example, the analysis of the authen-
tication properties of DoorSEP. The model A corresponding to the failure of
authentication described in the Introduction is one in which there are keys for
two different doors D and D′ involved in the protocol run. The model B that
would arise from identifying D and D′ would still represent a protocol execution
(indeed, the hoped-for behavior of the protocol). But A is strictly below this
B in the � ordering, and it is A that gives insight in to the possibility of the
man-in-the-middle attack (in the absence of the trust axiom, of course).

5.3 Computing Minimal Models and Set-of-Support

We present the following algorithms, each of which relies on the primitive oper-
ation of asking an SMT solver for a single finite model of a given theory. Recall
that an SMTLib-compliant solver need not return any particular model for a
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satisfiable theory, and that repeated requests to a solver for the same theory will
typically return the same model.

Fix a theory T .

– iMinimize: given model A |= T , compute an i-minimal model M |= T with
M �i

A.
– aMinimize: given model A |= T , compute an a-minimal model M |= T with

M � A.
– computeCore: given model A, compute the core of A.
– SetOfSupport (resp. iSetOfSupport): compute a stream of models comprising

a (resp. injective) set of support for theory T .
– aHomTo (resp. iHomTo): given model A |= T , compute a sentence homToA

defining the models P |= T such that there is a (resp. injective) homomor-
phism h : P → A.

– aHomFrom (resp. iHomFrom): given model A |= T , compute a sentence
homFromA defining the models P |= T such that there is a (resp. injective)
homomorphism h : A → P.

The algorithms aMinimize and computeCore each rely on the sentences
homToA and homFromA. The latter of these is subtle, so we first present the
other algorithms in terms of these, then develop aHomTo and aHomFrom.

5.4 i-Minimization

The following procedure was originally developed for use in the Aluminum tool
[33] For this algorithm we use the notation flipP to denote

∧
{¬α | α is atomic, P |= ¬α} ∧

∨
{¬β | β is atomic, P |= β}

Note in particular that if c and c′ are constants naming distinct elements of
a model P, then c �= c′ is one of the conjuncts of flipP.

Algorithm 12 (i-Minimize).

input: theory T and model A |= T
output: model P |= T such that P is i-minimal for T and P �i

A

initialize: set P to be A

while T ′ def
= T ∪ {flipP} is satisfiable

set P to be a model of T ′
return P

Lemma 13. Algorithm12 is correct: if A is a finite model of T then Algo-
rithm12 terminates on A, and the output P is an i-minimal model of T with
P �i

A

Proof. Each iteration goes down in the �
i ordering, thus termination. To show

that the result is i-minimal for T , it suffices to argue that the result is a minimal
T -submodel of the input, under the submodel ordering. But this is clear from
the definition of the sentences flip .
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5.5 a-Minimization

Computing a-minimal models is harder. If we bound the size of the domain(s) of
our models then a-minimal models exist: the � preorder is well-founded, so the
set of minimal elements with respect to this order is non-empty. The question
is, how to compute a-minimal models?

The idea is that, given a model A, we can use the sentences homToA and
homFromA to iterate the process of constructing a model that is strictly below
A in the � ordering.

Algorithm 14 (a-Minimize).

input: theory T and model A |= T
output: model P |= T such that P is a-minimal for T and N � A

initialize: set P to be A

while T ′ def
= T ∪ {homToP} ∪ {¬homFromP} is satisfiable

set P to be a model of T ′

return P

Lemma 15. Algorithm14 is correct: if A is a finite model of T then Algo-
rithm12 terminates on A, and the output P is an a-minimal model of T with
P � A

Proof. Each iteration constructs a model lower in the � ordering; termination
follows from well-foundedness of the � ordering.

5.6 Computing Cores

Cores are interesting for us because—when the input theory T is geometric—
they give a way to build models that are both a-minimal and i-minimal.

Testing whether a model is a core is NP-complete [25]. So computing cores
is presumably expensive, from a worst-case complexity perspective. But it is not
difficult, using an SMT solver, to write a program that behaves well in practice.
The key point is the well-known observation that a model C has no proper
retracts if and only if it has no proper endomorphisms.

Definition 16. If A is a finite model for signature Σ, the sentence endoA, over
the signature Σh that extends Σ by adding a new function symbol hs : S → S at
each sort S, is the conjunction of

– the diagram of A,
– the sentence expressing “h is a homomorphism”, and
– the sentence expressing “h is not injective.”

Algorithm 17 (ComputeCore).

input: model A over signature Σ
output: a core P of A

initialize: Set P to be A
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while endoP is satisfiable
let P

′ be a model of endoP;
let P0 be the image of endoP in P’;
let P be the reduct of P0 to the original signature Σ

return P

Lemma 18. Algorithm17 computes a core of its input.

Proof. The algorithm terminates because the size of the model P decreases at
each iteration. The resulting model is a core, since it has no proper endomor-
phisms.

5.7 Set of Support

We take the ability to generate a set-of-support for the class of all models of a
theory T to be a natural notion of “completeness” in model-finding. Lemma8
makes a precise claim of completeness with respect to reasoning about geometric
consequences of T .

It should be noted that if a class C is a set-of-support for a theory T with
respect to i-homomorphisms then C is a set-of-support for T with respect to
a-homomorphisms; this is immediate from the definitions.

There will be typically many more models comprising an i-set of support.
However, it is true that if there is a finite C that is a set-of-support for a theory
T with respect to a-homomorphisms then there is a finite C′ set-of-support for
T with respect to i-homomorphisms. To see this, suppose C is a set of support
for a class of models. Each A in this set has a finite number of i-minimal models
B1, . . . Bk below it. The collection of all these taken over the models in C makes
a i-set of support.

Computing sets-of-support is another application of the homFromA tech-
nique. Given theory T and model A, if we construct the theory T ′ def

= T ∪
{¬homFromA} then calls to the SMT solver on theory T ′ are guaranteed to
return models of T outside the hom-cone of A if any exist. So a set-of-support
for T can be generated by iterating this process.

Completeness of this strategy does not require that the models A we work
with are minimal. But if we do work with minimal models there will be fewer
iterations. We give SetOfSupport here, for iSetOfSupport simply use i-minimal
models and the iHomFromA sentence.

Algorithm 19 (SetOfSupport).

input: theory T and profile prf
output: a stream M1, M2, . . . of minimal models of T such that for any
prf -model P |= T , there is some i such that Mi � P.
initialize: set theory T ∗ to be T
while T ∗ is satisfiable

let M be an a-minimal model of T ∗

output M

set T ∗ to be T ∗ ∪ ¬homFromM
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5.8 Hom-To

This is straightforward “solver programming”. Given model A, we want to char-
acterize those P such that there is a hom h : P → A, by constructing a sentence
homToA axiomatizing such models.

Algorithm 20 (HomTo).

input: model A over signature Σ.
output: sentence homToA in an expanded signature Σ+, such that for any
model P |= Σ, P � A iff there is an expansion P

+ of P to Σ+ with P
+ |=

homTomM .

define Σ+ to be the extension of Σ obtained by
– adding a set of fresh constants naming elements of the domain of A

– adding a function symbol hS : S → S at each sort S
return homToA as the conjunction of the following sentences, one for each
function symbol f and predicate R in Σ. Here �e and e′ range over the names
for elements of A.

∀�x, y. f�x = y =⇒
∨

{( �hx = �e ∧ y = e′) | A |= f�e = e′}

∀�x. R�x = true =⇒
∨

{( �hx = �e) | A |= R�e = true}

For iHomTo, simply add a sentence to say that h is injective.

Lemma 21. There is a homomorphism from B to A iff there is a model B
+ |=

homToA such that B is the reduction to Σ of B
+.

5.9 Hom-From

Our eventual goal is: given a model A, find a formula to capture not being in the
hom-cone of A. This is more interesting than the aHomTo problem, because we
are going to negate the sentence we build, to express hom-cone-avoidance. Since
universal quantifiers can be bottlenecks in SMT-solving, we want to minimize
the number of existential quantifiers we use here.

The ideal outcome would be to construct an existential sentence capturing
the complement of the hom cone of A. Equivalently we might look for a structure
D such that for any X, X � D iff A �� X. This is called “homomorphism duality”
in the literature [15]. Such a structure doesn’t always exist, and even if it does, it
can be exponentially large in the size of A [15]. So we turn to heuristic methods.

Our strategy is to construct a sentence (to be negated) which is guaran-
teed to characterize models in the hom-cone of M, then refine this sentence to
eliminate (some) quantifiers. We start with the equations of the standard model
representation for A as described in Sect. 2. By replacing the Razor-defined con-
stants by existentially-quantified variables we arrive at a sentence repA, which
is a positive-existential sentence (without disjunctions).

By the fact that homomorphisms preserve positive existential formulas and
the fact that the equations of repA completely describe the functions and predi-
cates true of A we have:
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Lemma 22. Let A and F be Σ models. Then A � F iff F |= repA.

The trouble with repA is that it has as many existential quantifiers in repA

as there are domain elements. If we were to take homFromA to be repA, simply
negating this would lead to a sentence inconvenient for the SMT solver. We can
compress the representation, though. This will lead to a nicer representation
sentence, which we will take as our homFromM.

Algorithm 23 (HomFrom).

input: model A over signature Σ
output: sentence homFromA over signature Σ, such that for any model P |=
Σ, A � P iff P |= homFromA.
comment: sentence homFromA is designed to use as few existential quanti-
fiers as possible, in a “best-effort” sense.
initialize: Set sentence homFromA to be repA, the standard model represen-
tation sentence for A.
while there is a conjunct in the body of homFromA of the form f(t1, . . . , tn) =
x such that x does not occur in any of the ti,

– replace all occurrences of x in homFromA by f(t1, . . . , tn). Erase the
resulting trivial equation f(t1, . . . , tn) = f(t1, . . . , tn) and erase the (∃x)
quantifier in front.

For iHomFrom , first enrich repA to say that each of the fresh constants naming
elements of A is distinct. The rest of the development goes through as described.

Lemma 24. For any model P |= Σ, A � P iff P |= homFromA. Similarly for
iHomFromA and �i.

The order in which we do these rules matters, in the sense that smaller formu-
las result if we process nodes as follows. Construct a graph in which the nodes are
the variables occurring in the set of equations, and in which, if fx1 . . . xn = x is
a rule, then there is an edge from each xi to x. Then process the nodes according
to the preorder given by this graph.

Example 25. Start with

σ ≡ ∃x0x1x2 . fx0 = x2 ∧ fx1 = x0 ∧ fx2 = x1 ∧ c = x2

Making the graph as defined above, we treat the variables in the order x2, then
x1 then x0. We then derive, in order:

∃x0x1 . fx0 = c ∧ fx1 = x0 ∧ fc = x1

∃x0 . fx0 = c ∧ ffc = x0

fffc = c

An SMT solver will work more happily with fffc �= c than with ¬σ.
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5.10 Section Summary

1. i-minimal models for a theory T always exist; there may be no finite a-minimal
models for a given theory.

2. a-minimal models are better suited to protocol analysis since they do not
make unnecessary identifications between terms.

3. i-minimal models are easier to compute than a-minimal models.
4. If T is a geometric theory, and M is an a-minimal model and a core, then M

is i-minimal (Lemma 10).
5. If a class C is a set-of-support for a theory T with respect to i-homomorphisms

then C is a set-of-support for T with respect to a-homomorphisms.
6. If there is a finite C that is a set-of-support for a theory T with respect to

a-homomorphisms then there is a finite C′ set-of-support for T with respect
to i-homomorphisms.

6 Conclusions and Future Work

In this paper, we have developed a method for analyzing systems with crypto-
graphic protocols in the context of first-order theories such as trust assumptions,
and presented a detailed analysis of a specific example, the DoorSEP protocol.

We have described an implementation of these methods as the Logical Pro-
tocol Analysis (lpa) system. lpa is a coordination between a general-purpose
model-finder, Razor, and a cryptographic protocol-specific tool, cpsa. We have
shown how to share labor between Razor and cpsa so that the latter can apply
its authentication test solving methods, while Razor is handling the remainder
of the axiomatic theory of the protocol together with some non-protocol axioms.

We explored the comparative virtues of minimality with respect to injective
homomorphisms versus arbitrary homomorphisms, and developed algorithms for
finding minimal models and computing a set-of-support of models for a theory.

Unfortunately, as the size of a protocol grows, so does the size of its the-
ory, and SMT solvers struggle with performance in the presence of a significant
number of universal quantifiers. In future work, we plan to reorganize the soft-
ware architecture to be one in which only subtheories are delivered to the solver,
preferably governing smaller parts of the domain.
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Abstract. Pictorial languages, while intuitive and descriptive, are
rarely used as the primary reasoning language in program verification
due to lack of precision. In this paper, we introduce a precise pictorial
language for specifying array invariants that preserves visual perspicuity.
The language extends Reynold’s partition diagrams with the notion of a
coloring, allowing assertions over portions of an array to be expressed by
color-coding. The semantics of a coloring is given by a legend, mapping a
colored partition of an array into a universally quantified predicate over
the array. The pictorial syntax is an extension toinvariant diagrams,
transition graphs where preconditions, postconditions and invariants,
rather than the program code, determine the main program structure.
We demonstrate the approach with three examples, verified using the
Why3 theorem prover frontend.

1 Introduction

Deductive program verification is the process of establishing correctness by prov-
ing verification conditions (VCs) extracted from a program. It relies on a formal
pre- and postcondition specification as well as loop invariants being provided by
the programmer. This task by itself requires proficiency in mathematical logic.
Further challenges include assessing completeness of the specification, whether
invariants are sufficiently strong to establish the postcondition while sufficiently
weak to be maintained, and using automatic theorem provers. Training in formal
methods aims at giving the necessary conceptual and technical skills to address
these challenges.

In instructional settings, verification is often taught by examples from tan-
gible and visually perspicuous domains, such as arrays of colored objects in the
case of the famous Dutch national flag three-way-partitioning problem [1]. While
such examples are a valuable pedagogical device, how to generalize the reason-
ing to more typical programming problems is often left unexplained. Also, the
transition from instructional pictures to a mathematically precise reasoning lan-
guage does not always follow a happy path. Even though influential authors have
already several decades ago highlighted the benefits of pictures in formal reason-
ing [2,3], pictures have by and large been employed as stepping stones towards
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some final, textual, formalization suitable for conventional symbolic reasoning.
While reasons therefore (lack of precision, technical limitations, convention) may
be legitimate, we suspect that this demoted role of pictures means their full ben-
efit as reasoning tools is not being realized.

A notable exception is Reynold’s interval and partition diagrams [4], which
integrate pictures with mathematical notation seamlessly, allowing invariants
and even proofs over arrays to be expressed in a way that simultaneously main-
tains visual perspicuity and mathematical precision. It is on this trajectory that
we position the approach described in this paper. A partition diagram, in its
base form, is a precise, compact and embeddable diagram stating that a collec-
tion of integer indexes subdivides an array into disjoint partitions. Precise means
that the language has a well-defined mathematical meaning, compact that it is
space-conserving, and embeddable that it can be integrated into another dia-
gram or a textual formula. Associated with a partitioning is some collection of
properties, that the elements in the partitions should satisfy. A property can
be expressed precisely by a formula universally quantifying over the partition
diagram (e.g., [4, p. 94]), or by (less formally) annotating the partition diagrams
with the properties (e.g., [3, p. 94]). In line with the second approach, we extend
partition diagrams with the notion of coloring a partition. Formally, a coloring
is a function from array indexes to a small finite set (“palette”) of programmer-
defined colors. The programmer gives interpretation to the colors through the
legend construct. Analogously to its cartography namesake, a legend is a map-
ping from colors to a universally-quantified predicate over the colored partitions.
Together, partitionings, colorings and legends provide a precise and expressive
pictorial language for array invariants.

As an umbrella framework we use invariant-based programming (IBP), a
correct-by-construction formal verification approach geared towards teaching [5].
In IBP, preconditions, postconditions and invariants—under the common nomen
situations—serve as the main organizing structures of a program. The program
is represented by an invariant diagram, a graph of nested situations connected
by transitions. The situations represent state predicates, such as pre- and post-
conditions and invariants, while the transitions constitute the actual executable
code. We define the semantics of colorings and legends by translation into pred-
icates over the program state. After translation, the VCs of the diagram are
extracted using the proof rules of invariant diagrams. Nesting allows substitu-
tions to inherit constraints from outer situations. In our extension, nesting also
allows legends to be shared by multiple situations, as well as to be extended in
substitutions with additional color interpretations. We illustrate the approach
with examples from the domain of searching and sorting. The examples have
been mechanically verified using the Why3 platform [6], a front-end for a num-
ber of automatic theorem provers.

We proceed as follows. Section 2 introduces the pictorial language in the con-
text of two search programs. Section 3 describes the verification semantics. A ver-
ification of a slightly more complex program is given in Sect. 4. We discuss related
work in Sect. 5 and end the paper with conclusions and future work in Sect. 6.
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Fig. 1. Linear and binary search

2 Pictorial Invariant Diagrams

Consider the leftmost invariant diagram in Fig. 1. Each rounded rectangle—
called a situation—identifies a subset of all possible program states. The role
of a situation in a program is determined by the transitions, guarded program
statements, connecting to it: a situation with no incoming transitions corre-
sponds to a precondition (LinearSearch); a situation with no outgoing transi-
tions corresponds to a postcondition (Found and NotFound). A situation with
both incoming and outgoing transitions is an intermediate situation; an inter-
mediate situation (or collection of intermediate situations) connected through
a cycle of transitions corresponds to a loop (Searching). There are five types of
declarations that can appear inside a situation:

Variable declarations introduce program variables and associate them with
types. For example, the declaration “A :array[N]of int” in the situation
LinearSearch types the variable A as an integer array of length N, indexed
from 0 to N − 1.

Legends introduce colors and assign them their meanings. For instance, the
legend “A| i : A(i) �= x” states that the red elements in A are different
from x. A legend is not a state assertion; rather it introduces an implication,
allowing invariants over an array to be expressed visually by “painting” sub-
arrays with a relevant property (in this case, that the sub-array is known to
not hold the value x). We make this notion more precise in the next section.
Legends may introduce any number of new colors, but the color palettes for
distinct arrays must be disjoint.
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Invariants are assertions over the program variables of the situation. We can
express invariants using standard mathematical and logical notation. E.g.,
“0 ≤ k ≤ N” expresses that the value of k is between 0 and N, inclusively.
For asserting that a collection of variables form a partitioning we prefer to
use Reynolds-style partition diagrams. The basic partition diagram is a rect-
angular contour:

ji

where i and j are integer expressions over the program variables. It stands
for the predicate “i < j”. The bounds may be juxtaposed with respect to the
adjacent edge to specify whether they are inclusive or exclusive:

i j = j − 1i = i < j − 1
i j = j − 1i − 1 = i − 1 < j − 1
i j = ji − 1 = i − 1 < j

Conjunctions of partition diagrams, when the upper bound of the predecessor
coincides with the lower bound of its successor, may be written in chained
form:

ji k = ji ∧ kj

i j k = ji ∧ j k

The following abbreviations denote singleton intervals:

i = i i

i = i + 1 i + 1

i = i − 1 i − 1

Using partition diagrams, the aforementioned predicate is equivalently
expressed as:

0 k N = 0 ≤ k ≤ N

As mentioned, partition diagrams can be embedded in textual formulas; e.g.,
the invariant of BinarySearch states that A is sorted.

Colorings are pictorial invariants similar to partition diagrams, but appear as
colored regions rather than as contours. The basic form is

/c/ ji

where c is the chosen color of the regions (for contrast, we chiefly pick ,
and ). It stands for the partial definition of a coloring function over

the integer interval (i, j]. Colorings allow the same syntactic shorthands as
partition diagrams (bound juxtaposition, chaining and singleton intervals).
For example, the following coloring asserts that the coloring function takes
the value between 0 (inclusive) and k (exclusive):

0 k
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For compact representation, partitioning and coloring invariants may be
drawn overlapping when their bounds coincide. For example, the invariant
of situation BinarySearch � Searching is the conjunction of a partitioning
and a coloring:

0 k N = 0 k N ∧ 0 k

Variants are written in the upper right corner of intermediate situations that
are part of a loop. To verify termination, we need to show that the variant
(N − k) is decreased by each transition through the situation and does not
decrease below the lower bound (0).

Finally, we note that situations can be nested. Nesting is conjunctive: an inner
situation inherits all declarations, with the exception of variants, from the enclos-
ing situations.

3 Verification of Pictorial Invariant Diagrams

An invariant diagram is correct iff it is consistent, terminating and live. A tran-
sition t from a situation satisfying predicate p to situation satisfying predicate q
is consistent if p ⇒ wp(t, q) is true, where wp is the weakest precondition trans-
former. For termination, we check that the variant v decreases and that its lower
bound is maintained on re-entry to the situation, i.e., v = v0∧p ⇒ wp(t, 0 ≤ v <
v0). A situation satisfying p is live if at least one outgoing transition is always
enabled, i.e, p ⇒ wp(t, g1 ∨ · · · ∨ gn), where g1, . . . , gn are the guards of outgoing
transitions. Next, we describe how the pictorial elements of a situation (legends
and colorings) combine into a predicate onto which these rules can be applied.
For a formal treatment of the proof rules themselves, see [7].

For a given situation s, let x be the declared variables, T their types, and a
the subset of x containing only the variables of array type. The coloring function
associated with a variable A ∈ a of type array[N] in situation s is a total function
from the program state and an array index

cols,A : T × [0,N) → Cs,A ∪ { }
where the set Cs,A is the color palette associated with A in s, and is a spe-
cial value indicating that no coloring has been specified. The coloring function
formalizes the mapping between legends and invariants, is fully defined, and is
intended to be fully eliminated from the final VC. Given the colorings declared
for array A in situation s:

/c1/ j1i1 . . . /cn/ jnin

where c1, . . . , cn ∈ Cs,A, the coloring function is defined as:

cols,A(x)(i) = if (i1 < i ≤ j1) then c1
...
else if (in < i ≤ jn) then cn
else
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Disjointness of partitioning means that the if-conditions are mutually exclusive,
and the else-clause ensures that the function is total. A legend declaration for
variable a in situation s has the general form:

A | /c1/ j1i1 . . . /cn/ jnin : p(x, i1, . . . , in, j1, . . . , jn)

where c1, . . . , cn ∈ Cs,a and p is a predicate on the program state. Semantically,
this legend stands for the following predicate:

lgds,A(x) = (∀i1, . . . , in, j1, . . . , jn . (0 ≤ i1 < j1 < N) ∧ · · · ∧ (0 ≤ in < jn < N)
∧ (∀k . i1 < k ≤ j1 ⇒ cols,A(x)(k) = c1)
...
∧ (∀k . in < k ≤ jn ⇒ cols,A(x)(k) = cn)
⇒ p(x, i1, . . . , in, j1, . . . , jn))

That is, a legend is an assertion that p holds for subintervals of A matching the
sequence of colorings given in the legend. Like invariants, legends are conjunctive.

To verify a diagram, we generate a theory including the coloring functions,
legend predicates and invariants of each situation, and a lemma to be proved for
each transition. For example, the theory of BinarySearch � Searching in Fig. 1
contains the following declarations (for brevity, in lgdSearching,A we have omitted
the inner quantifications, as the ranges are singletons in both cases):

colSearching,A(A, s, t)(i) = if (−1 ≤ i ≤ s) then
else if (t ≤ i < N) then
else

lgdSearching,A(A, s, t) = (∀i . (0 ≤ i < N) ∧ (colSearching,A(i) = ) ⇒ A(i) �= x)
∧ (∀i . (0 ≤ i < N) ∧ (colSearching,A(i) = ) ⇒ A(i) = x)

invSearching,A(A, s, t) = −1 ≤ s < t ≤ N
∧ (∀i, j.0 ≤ i ≤ j ≤ N ⇒ A(i) ≤ A(j))

To generate the VCs for situation Searching, we can now apply the proof
rules of IBP, taking the conjunction of lgdSearching,A and invSearching,A as
the situation predicate. For example, to prove that the loop transition
“[t − s > 1]; k := (s + t) div 2; [x > A(k)]; s := k” is consistent we will need to
discharge the following VC:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ t − s > 1 ∧ k = (s + t) div 2 ∧ x > A(k) ∧ s′ = k
⇒ lgdSearching,A(A, s′, t) ∧ invSearching,A(A, s′, t))

Additionally, to prove that the same transition is decreasing the variant of
Searching:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ t − s > 1 ∧ k = (s + t) div 2 ∧ x > A(k) ∧ s′ = k
⇒ 1 ≤ t − s′ < t − s)
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Note that the antecedents are identical to those of the consistency VC. Finally,
the liveness condition for situation Searching is:

(∀A, s, t . lgdSearching,A(A, s, t) ∧ invSearching,A(A, s, t)
∧ k = (s + t) div 2
⇒ (t − s = 1) ∨ (t − s > 1 ∧ (x > A(k) ∨ x < A(k) ∨ x = A(k))))

The VCs can now be discharged using an automatic theorem prover.

4 Example: Insertion Sort

Figure 2 shows an invariant diagram interpretation of insertion sort. It consists of
an outer loop (Sorting) maintaining a sorted partition (green), and an inner loop
(Inserting) moving the next element from the unsorted partition into its correct
position in the sorted partition. The inner loop, as it moves the element back
one step per iteration, maintains two sorted partitions (green and blue). The
control flow transfers from the inner to the outer loop when the concatenation
of the partitions becomes sorted. The outer loop terminates when every element
of the array has been processed. Transitions must additionally ensure that A is
a permutation of the original A0.

Fig. 2. Insertion sort (Color figure online)

Like invariants, legends are inherited from outer situations. For instance,
that any two adjacent green elements are sorted is visible to both Sorting and
Inserting. We note that legends may introduce new colors limited in scope to the
declaring situation and its nested situations. For example, blue introduced by the
legend of Inserting is visible only within Inserting. The coloring functions, legend
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Fig. 3. Coloring function, invariant and legend predicate of situations Sorting and
Inserting. (Color figure online)

predicates and invariant predicates for situations Sorting and Inserting are shown
in Fig. 3. Given these functions and predicates, the VCs for the transitions are
formulated as described in the previous section (omitted here for brevity). The
VCs are automatically proved by Why3 and its associated SMT solvers Z3 [8]
and CVC4 [9].

5 Related Work

Reynolds [4] introduced interval and partition diagrams to express constraints
on arrays. Gries’s seminal textbook [3] uses array pictures in several exam-
ples. Astrachan [2] suggests pictorial representations of arrays and linked lists.
Ginat [10] considers loop invariants as mathematical games, with emphasis on
the heuristics of invariant identification. Some recent approaches have explored
transforming invariant problems into games [11,12] and crowdsourcing verifi-
cation to online communities. Partitioning has been employed in static analysis
and heuristics-driven loop invariant generation [13,14]. Reasoning on range pred-
icates is the basis of the axiomatic rules on array manipulations for correctness
proofs of programs involving arrays in [15]. The converse problem, generating
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visual representations from textual specifications, has been addressed in the con-
text of the Z language [16], and also with the purpose of visualizing VCs on arrays
[17]. While pictures and colors are a staple in algorithm animation, we are not
aware of prior work combining partitionings and colorings for formal reasoning.

6 Conclusions and Future Work

In this paper, we have introduced a pictorial language for invariants over arrays.
The language extends two existing visual formalisms: the notation for invariants
and predicates builds on Reynold’s partition diagrams, extending them with col-
orings to connect partitions with desired properties; the language for specifying
the invariant structure and program statements is invariant diagrams, extended
with a hierarchical mapping of colorings to predicates. Partition diagrams, col-
orings and legends seem to be rather expressive visual constructs, allowing many
common array invariants to be stated.

This work is in its initial phases with multiple directions to be explored.
First and foremost, tool support (in the form of editors and VC generators)
would be needed for practical use. Existing tools for IBP [18] do not support the
array-specific visual notations introduced here. Secondly, we would like to gener-
alize the approach to more advanced data structures, such as trees and graphs.
One challenge here is finding equally expressive and intuitive visual partition-
ing notations to state invariants over these non-linear data structures. Thirdly,
we believe that colorings could serve runtime visualization and animation by
overlaying the colors on a data structure instance picture, and analogously, to
produce color-coded counterexamples during verification.
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Abstract. Robotic systems are multi-dimensional entities, combining
both hardware and software, that are heavily dependent on, and influ-
enced by, interactions with the real world. They can be variously cat-
egorised as embedded, cyber-physical, real-time, hybrid, adaptive and
even autonomous systems, with a typical robotic system being likely to
contain all of these aspects. The techniques for developing and verifying
each of these system varieties are often quite distinct. This, together with
the sheer complexity of robotic systems, leads us to argue that diverse
formal techniques must be integrated in order to develop, verify, and pro-
vide certification evidence for, robotic systems. Furthermore, we propose
the fast evolving field of robotics as an ideal catalyst for the advance-
ment of integrated formal methods research, helping to drive the field
in new and exciting directions and shedding light on the development of
large-scale, dynamic, complex systems.

1 Introduction

Formal methods are used in a variety of domains to establish the correctness of
both hardware and software systems. Integrating formal methods so that they
may be used in a complementary fashion continues to be a difficult challenge
that is only exacerbated by the plethora of languages, logics, theorem provers,
and model-checkers available. In this paper, we propose robotic systems as an
ideal candidate for the large-scale application of integrated formal methods. In
fact, it is a fast evolving area where only integrated formal methods will suffice.
Further, the application of integrated formal methods in the robotics domain
will enhance integrated formal methods research and promote their adoption for
other large-scale, engineered systems.

Robotic systems are complex and multi-dimensional, with a wide range of
concerns: software, hardware, human control, autonomous agent control, recon-
figurability, etc. They present numerous challenges for formal verification such as
modelling a dynamic environment, providing sufficient evidence for certification
and trust, modelling multi-robot systems and, ensuring that autonomous robots
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are safely reconfigurable and their decisions do not have dangerous side-effects.
We discuss each of these challenges in Sect. 2 as well as the current approaches
to tackling them. Our position is that the use of integrated formal methods can
mediate these difficulties. In Sect. 3, we illustrate the benefits of integrated formal
methods with respect to these challenges and outline potential future directions
for this research. Finally, Sect. 4 provides concluding remarks. The work cited
here is not a complete list, it is drawn from a larger survey of formal specification
and verification approaches for autonomous robotic systems1, which is still in
progress.

2 Formal Approaches to Robotic Challenges

This section discusses some of the most crucial challenges to the formal verifica-
tion of robotic systems and how current formal techniques approach them. First,
we discuss the verification of a robotic system’s interaction with an unknown and
dynamic environment (Sect. 2.1). A further challenge is ensuring that verification
methods can provide suitable evidence either for certification or to gain public
trust (Sect. 2.2). Certain types of robotic systems present specific challenges and
we discuss the challenges posed by modelling multi-robot systems in Sect. 2.3.
Finally, Sect. 2.4 describes the challenges when verifying an autonomous or recon-
figurable robotic system.

Other challenges include the formal refinement of robotic system specifica-
tions to implementable code and ensuring that this final implementation corre-
sponds to its specification in a provably correct way. The heterogeneous nature of
robotic systems where various programming languages are used in the implemen-
tation of distinct components of the system means that this final specification-
to-code step is not trivial. Since humans interact with these systems, it is also
necessary to model the human component of the system, however, the verifica-
tion of human behaviour is largely beyond the reach of current formal verification
approaches [34,35].

2.1 Modelling the Physical Environment

To ensure that a robotic system can cope in real-world scenarios, it must be
able to react appropriately to an unknown and dynamic environment. When
formally modelling robotic systems, the environment is often ignored [19] or
assumed to be static and known, prior to the robot’s deployment [17,23,34],
which is often neither possible nor feasible in the real world. Other approaches
abstract away from the environment and rely on predicates representing sensor
data about the environment [13]. This insulates the high-level control from the
detailed environment, but leaves issues such as sensor and actuator correctness
to be dealt with. Formal models of a robotic system’s environment must bridge
the reality gap, the difficulty of transferring models of the environment to the

1 http://tiny.cc/Luckcuck2018.

http://tiny.cc/Luckcuck2018
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real world [13]. This is especially problematic when real-world interactions can
impact safety. Reducing the impact of the reality gap often produces intractable
models which makes the verification task particularly difficult [11].

Two popular approaches are to either model or monitor the physical environ-
ment. Temporal logics have been used to model robotic systems’ environments.
For example, safety rules and the environment of a robotic assistant captured in
Probabilistic Temporal Logic (PTL) [34]. However, as the rules and environment
become more complex this approach may not be feasible due to the current lim-
itations of model-checking techniques, unless the properties to be verified can be
simplified.

Specifying a monitor to restrict the robotic system to safe behaviours within
its environment reduces the verification burden, as only the monitor needs to
be verified [21]. For example, a robot’s environment can be captured by timed
automata and safety properties written in temporal logic [2]. This can be used
to build a run-time monitor for the safety properties. This combination of veri-
fication methods can help to handle the dynamic environment.

Navigating an unknown and dynamic environment is a challenging task for
robotic systems and a number of navigation algorithms exist. However, not all
can be employed in safety-critical scenarios as they have not been verified [25].
This suggests that there are limitations of current formal methods to verify these
algorithms, and also leads to hybrid approaches that have high computational
complexity. KeYmaera is a hybrid theorem prover that has been used to verify
both the discrete and continuous behaviour of robotic vehicle navigation using
differential dynamic logic for hybrid systems [22].

2.2 Trust and Certification Evidence

Robotic systems are often safety-critical, such as those in nuclear or aerospace
applications, and so require certification. Other robotic systems operate in unreg-
ulated areas that require public trust, such as domestic assistants. Emerging
robotic systems, like autonomous vehicles, require both certification and public
trust. Therefore, ensuring that formal verification of robotic systems can pro-
vide appropriate trust and certification evidence is crucial. Generally, robotic
systems development provides insufficient evidence for certification and public
trust, which can hamper their adoption [34]. This is an area where integrat-
ing formal methods with current non-formal engineering techniques may prove
fruitful.

Further to extensive testing, safety cases are generally used to provide evi-
dence for certification bodies. A safety case is a structured argument that is
supported by a collection of evidence providing a compelling, comprehensible
and valid case that a system is safe for a given application in a specific envi-
ronment [9]. Automating the generation of such documentation is a challenging
task that must account for heterogeneous content such as physical formulae from
the design of the physical system, maintenance procedures, and software (which
itself, may be of a heterogeneous nature). Recent work in this area includes a
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methodology for automatically generating such safety cases for the Swift pilotless
aircraft system using a domain theory and AUTOCERT [9].

Formal methods can provide suitable evidence for certification. For example,
Isabelle/HOL and temporal logic have been used to formalise a subset of traffic
rules for vehicle overtaking [29]. Furthermore, a model-checking approach has
been used to capture the rules and expectations of pilots in order to to provide
certification evidence for an autonomous pilotless aircraft [33]. Here, it is verified
that the agent controlling the aircraft (in place of a pilot) preserves the rules
and recommendations specified by the Civil Aviation Authority (captured as
temporal logic formulae).

There are currently no guidelines to help developers choose the most suitable
formal method to verify their system [20]. Similarly, regulators and certification
bodies are often hesitant to suggest suitable formal methods for safety-critical
systems – though guidance has started to appear more recently. Regulators,
developers, and academia thus face the challenge of how to determine suitable
and robust formal methods for particular types of robotic system.

2.3 Multi-robot Systems

Historically, the development of multi-robot systems has taken inspiration from
biological systems such as swarms of insects. Robot swarms are difficult to
develop because they are programmed at the microscopic level (that of indi-
vidual robots) but are intended to exhibit emergent, macroscopic behaviour (at
the level of the whole swarm). They are often developed bottom-up, using trial
and error to form a swarm with the desired emergent behaviour [23]. Ensuring
that macroscopic behavioural requirements (or restrictions) are implemented (or
obeyed) at microscopic level can be difficult because of their different abstraction
levels.

Robot swarms can be quite large, and so a challenge when verifying robot
swarms using current model-checking techniques is state space explosion caused
by the large number of concurrent, interacting agents and the system’s dynamic
environment [1]. This can be mitigated by making use of the homogeneity of the
swarm’s robots, for example by exploiting symmetry reduction [3] or abstracting
the swarm to a single state machine with a counting abstraction [19]. However,
both of these approaches only consider swarms with homogeneous behaviour.

The emergent behaviour of robot swarms can be captured using temporal
logic [38] and often lend themselves to probabilistic models. In particular, PRISM
has been used to encode probabilistic state machines which can then be checked
for properties specified in a probabilistic temporal logic [19].

Further, robotic systems may consist of a team of heterogeneous robots. In
hazardous environments such as nuclear plants, it is conceivable that multiple
robots may be required in order to complete a specific task. Each robot would
have a distinct role, for example, a robotic arm to examine a piece of debris and
a more mobile robot to monitor, calibrate and mend the robotic arm should it
malfunction. The robot team can be verified at the macroscopic level, but at the
microscopic level each robot must be verified individually. For example, one robot
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in the team may be characterised by a verifiably correct Z specification, whereas
another may be verified by model-checking its source code. The behaviour of
the robot team might be different to the behaviour of each individual robot and
thus another approach may be used to verify the team’s behaviour. It is not
clear how best to link the verification approaches taken at these different levels
of abstraction because the approaches most amenable to the verification of each
individual robot might be different.

2.4 Adaptation, Reconfigurability and Autonomy

A self-adaptive system continually alters its behaviour in a feedback loop that is
driven by its environment. A literature survey found that there are no standard
tools for the formal modelling and verification of self-adaptive systems [36]. Of
the tools surveyed, 30% use model-checking. One avenue of research suggests
using (both semi-formal and formal) models to check run-time behaviour [6].
This agenda considers approaches such as automatic test case generation and
formal model-checking. The aim being to reduce state explosion by quantifying
as many variables as possible at run-time.

Related to this is the notion of a reconfigurable system, which senses its
environment and makes a decision about how best to reconfigure itself to suit
changes in its requirements or the environment. Reconfiguration is essential for
ensuring the fault tolerance of safety-critical robotic systems [32]. There are
two key open questions when applying formal methods to these systems: (1)
how to specify and analyse a configuration, and (2) how to compare different
configurations of the same system [24]? The design of reconfigurable hardware
has received much attention, but autonomous software reconfiguration remains
a challenge [4]. One approach involves building a flexible control system that can
reconfigure itself once a fault is detected [5]. Z models can be used to describe an
arbitrary reconfigurable system [37]. The model provides a method for describing
and comparing different configurations of the system’s architecture.

Since reconfigurability requires the system to make an autonomous decision
as to how best to reconfigure itself, it is vitally important that the decisions made
by the system are rational, meaning that the system can explain its reasoning.
This leads us to model the motivations and decisions of the system, ideally as
first class objects [13].

Agent-based systems are one way of describing autonomy; there are many
different models of agent systems, based on different models of autonomy. Agents
are used to model a robot’s interactions with other actors, its environment, and
the physical environment itself. For example, probabilistic temporal logics have
been used for modelling an autonomous mine detector robot, controlled by an
agent, and its environment [16]. The model of the agent can be used for both
design- and run-time verification.

A formal model of a style of agent system using Z has been devised that
gives its agents a formal semantics [12]. The interactions of multiple interacting
agents can also be modelled using finite state machines. These are converted into
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Alloy specifications for automatic verification [26]. The size of these specifications
meant that keeping the models tractable was challenging.

Relating agent programs, written in an agent programming language, and
agent (verification) logics remains an open problem. One approach has been
to define an agent programming theory combining an agent programming lan-
guage and verification logic [15]. Program model-checking such as the Model-
Checker for Multi-Agent Systems (MCMAS), has been used to verify heteroge-
neous agents interacting with an environment [7]; and Agent Java PathFinder
(AJPF) [10], which can model-check programs written in a particular style of
agent language.

3 Integrated Formal Approaches to Robotic Challenges

In Sect. 2, we outlined the challenges encountered when developing reliable
robotics and a number of current (non-integrated) approaches to addressing
them. It is clear that only by using a combination of specialised tools and
methodologies can we achieve a high level of confidence in software. For exam-
ple, the NASA Remote Agent uses specialized languages for each of the planner,
executive, and fault diagnosis components [30].

There is currently no general framework integrating formal methods for
robotic systems. However, Sect. 3.1 describes recent trends and some notable
bespoke examples of integrated formal methods (iFM) for robotics. In Sect. 3.2
we discuss how robotics and iFM can benefit from one another. We do not ignore
the important role that validation techniques, such as testing and simulation,
play in the development of robotic systems. These too, should be integrated into
the development process to be used alongside formal methods [35].

3.1 Adopting iFM for Robotics

Current approaches to formal verification in robotics typically centre around
one tool or technique that is suited to verifying properties of a particular type
(concurrency, probability, etc.). It is clear from the increasingly complex nature
of robotic systems that this is not a sustainable approach to ensuring the cor-
rectness of these systems. These approaches suffer from a number of drawbacks
that are mostly caused by the limitations of their logic or the tool being used.

A comparison of four different specification formalisms (CSP, WSCCS, Unity
Logic, and X-Machines) for specifying and verifying emergent swarm behaviour,
concluded that a blending of these formalisms offered the best approach to spec-
ify emergent swarm behaviour as none was sufficient in isolation [14]. This claim
is further supported by the use of MAZE (an extension of Object-Z for multi-
agent systems) that uses Back’s action refinement to facilitate a top-down devel-
opment process of the swarm, from the macroscopic to microscopic level [31].

It is therefore clear that the use of iFM can help to mediate the issues sur-
rounding the development of robotic systems as has been illustrated by the fol-
lowing bespoke examples. We outlined the importance of reconfigurable systems
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in Sect. 2.4, and a combination of Event-B and the PRISM model-checker has
been used to derive a reconfigurable architecture for an on-board satellite system
[32]. The combination of these formal notations allows not only for the formal
specification and derivation (via refinement) of the system in Event-B, but also
the probabilistic assessment of its reliability and performance using PRISM.

The combination of AJPF for agent verification, Uppaal for timing proper-
ties and, spatial reasoning has been used to verify the procedures for a driverless
car joining and leaving a vehicle platoon [17,18]. This work verifies the coop-
eration between the vehicles, and the abstract behaviour of the real physical
vehicle. Related work uses CSP‖B to correctly model a real physical platooning
vehicle [8].

Finite State Processes (FSP) and πADL (π-calculus combined with the Archi-
tecture Description Language) have been combined to capture safety and liveness
properties of multi-agent robotic systems [1]. The FSP specifications of the rel-
evant safety and liveness properties are transformed into Labelled Transition
Systems, then the agent programs and architecture (described in πADL) are
checked to see if they satisfy the required properties. Designed as a generic nota-
tion for modelling robotic systems, RoboChart integrates the process algebra
CSP with a graphical timed state machine notation [28]. This allows graphical
visualisation of the specification and automatic model-checking of its behaviour.
The use of a process algebra in these cases is ideal for modelling communication
across a channel with πADL and timed state machines, respectively, providing
a robust model of the system’s state that could not be achieved using a process
algebra in isolation.

Furthermore, several views of the same system or component often require
integration of analysis, even for one specification element. For example, model-
checking, model-based testing, and user evaluation have all been applied to
the same robotic system [35]. Each, however, works at a very different level of
abstraction and formality and so the challenge here is to integrate this breadth
of techniques in a holistic framework.

3.2 Future Directions for iFM

The benefits of iFM are well known. Specifically with respect to robotics, iFM
can: (1) enable us to capture detailed physical environments by combining static
and dynamic models; (2) provide a formal mechanism for linking the macro-
scopic and microscopic levels of multi-robot systems; (3) provide robust evidence
for trust and certification, and; (4) express the complex properties of adaptive,
reconfigurable, and autonomous systems. This unique set of challenges posed by
robotics provides tangible targets for iFM researchers. Thus, robotics can benefit
from and be a catalyst for iFM research, and the adoption of these techniques
for large-scale, dynamic, and complex systems.

Integrating multiple approaches to verification for systems in the safety-
critical domain presents its own set of familiar challenges, such as increased com-
plexity and ensuring the correctness of the integrated model. Until now, these
challenges have generally been addressed using theoretical frameworks, small
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case studies, and prototype tools. Robotic systems are a complex and practical
field where iFM is crucial to provably correct advances and adoption. Further to
these challenges, usability is a concern from both perspectives. Firstly, the iFM
community is tasked with providing a set of robust tools that are intuitive and
usable for the developers of robotic systems. Secondly, robotic systems should
be developed with iFM in mind using a set of standardised, modular constructs
that are amenable to iFM.

Combining formal methods with different strengths and weaknesses, such as
exhaustive model-checking and proof-based methods, provides a useful balance
of complexity and robustness. While model-checking exhaustively examines the
system’s state space to check if a property is preserved, formal proofs provide
a step-by-step mathematical argument as to why the property holds. Although,
both model-checking and theorem proving generally involve abstracting to a for-
mal specification in order to verify the system, an advantage of model-checking is
that it can be used directly on the implemented code, whereas theorem proving
cannot. In contrast, theorem proving techniques do not suffer from the explosion
in state space that limits the complexity of the properties that can be verified
using model-checking. Formalisms that support formal refinement of specifica-
tions, such as Event-B, facilitate a verification process that provides a proof of
the properties that are verified at each level of abstraction. Integrating model-
checking and proof-based approaches to verification will provide fast identifica-
tion of bugs and a list of the properties that are verified using model-checkers,
as well as robust mathematical arguments for correctness in the form of proofs.
These techniques, in combination, can thus provide the more robust certification
evidence required for robotic systems.

Robotic systems are layered entities containing both hardware and software
components. In general, each layer is built upon the lower layers and assumes
that they behave correctly. In this scenario it is likely that the formalisms and
tools used for both the verification and implementation of each layer are different.
This presents a huge challenge for ensuring the correctness of the entire system,
and in particular, verifying the interactions between these layers. Contemporary
robotics software is often highly modular, with components loosely connected.
For example the Robot Operating System (ROS) allows architectures comprising
heterogeneous components, written in different programming languages, which
can interface with a range of hardware and software components [27]. There will
undoubtedly be different techniques relevant to, and optimal for, the verification
and validation of each of the different components. These include stochastic
analysis of a learning component, a range of testing techniques for a vision
component, or model-checking of an autonomous decision-maker. These must
all be combined to provide a coherent and comprehensive analysis of the whole
system.

We propose the verification of middleware architectures, such as ROS, as an
ideal starting point for this research agenda. For example, the specification and
verification of individual ROS nodes using pre- and post-conditions or assume-
guarantee clauses, written using a heterogeneous collection of logics, would prove
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useful here. This approach could also aid in the verification of heterogeneous
teams of robots as discussed in Sect. 2.3. It is clear that a common framework
for translating between, relating, or integrating different formal methods and
validation techniques will prove useful. Such a framework would enable easy
conversion between formalisms and verification tools. This would facilitate the
use of heterogeneous models that are each suited to a particular type of behaviour
or property. Moreover, the use of iFM can save time in the development process
by avoiding duplicate specifications and exploiting different types of verification
tools for proving different properties of the same system.

4 Conclusions

Robotic systems are inherently multi-dimensional entities that combine both
hardware and software components that interact with humans and the physical
world. These systems can be modelled in a variety of ways and thus must inte-
grate verification and validation techniques from the fields of embedded, cyber-
physical, real-time, hybrid adaptive and even autonomous systems. In Sect. 2,
we discussed the challenges that are encountered when developing certifiably
correct robotic systems and the current formal approaches to tackling them. It
is clear that current (non-integrated) formal methods are not robust enough,
particularly in isolation, to ensure the correctness of these systems. Although
not without its challenges, in Sect. 3, we have illustrated the benefits of employ-
ing integrated formal methods in this setting and outlined future directions for
this work. Furthermore, we have argued that although robotics actually necessi-
tates the use of integrated formal methods, integrated formal methods can utilise
robotics as a viable and impactful means for advancing integrated formal meth-
ods research and their adoption for large-scale, complex systems. The challenges
that we have outlined throughout this paper can be achieved through funding
streams such as EPSRC at a national level and Horizon 2020 at an international
level.
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Abstract. This paper investigates the application of Carma, a recently
developed quantitative process-algebra-based modelling language, to the
stochastic modelling of software defined networking (SDN). In SDN, a
single controller (or hierarchy of controllers) determines the behaviour
of the switches that forward traffic through the network, and it is used
in a variety of settings including cloud and data centres. This research is
the initial phase of developing a methodology for agile formal modelling
of performance and security aspects of SDN, and focusses on the fat-tree
network topology. The results demonstrate that the Carma language
and its software tools which include the MultiVeStA statistical model
checker provide a good basis for modelling SDN.

1 Introduction

Traditionally, network modelling has been done by emulation on virtual machines
using a tool called mininet [29] or simulation using a tool such as ns-3 [9,26]. Both
of these approaches consider the full network stack, which can be very expensive
in terms of initial setup, as well as computational resources to execute. Other
simulation approaches allow for some abstraction [6,8,30] from these details, in
order to reduce these overheads and various formal approaches have also been
suggested [3,4,7,27,33–36,40,42], most of which have no quantitative features.

Our goal is to provide a novel approach to modelling the behaviour of networks
at a moderately high level of abstraction but with the ability to measure perfor-
mance, something that is missing from most formal approaches for networks. This
will still allow for a quantitative assessment of network behaviour which is cru-
cial to evaluate different configurations but provide a lighter-weight approach that
the full-stack emulation and simulation methods. Our approach models individ-
ual packets traversing a network but abstracts from lower level concerns of the
network stack. This may reduce what questions can be answered by the model;
however, it will still allow many questions of interest such as packet latency, to be
answered much more quickly than the traditional full stack emulation and simu-
lation approaches, and hence provides an alternative approach. As is well known,
formal modelling of computer systems has multiple benefits including the ability
to reason about a system before it is built, and to conduct experiments using a
model of an existing system without disrupting the system itself.
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 172–193, 2018.
https://doi.org/10.1007/978-3-319-98938-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98938-9_11&domain=pdf
http://orcid.org/0000-0001-8914-1122


Formal Modelling of Software Defined Networking 173

This paper considers how an existing probabilistic modelling language can
be used to simulate the behaviour of software defined networking (SDN) [15] at
the packet level, allowing for the investigation of performance and security prop-
erties, as well as trade-offs between these properties. Specifically, we work with
the quantitative formal modelling language Carma and examine how Carma
and CaSL, the textual language of the Carma Eclipse Plug-in tool [25,32] sup-
port this type of modelling. MultiVeStA [38] is integrated into a command-line
version of the tool, allowing statistical model checking of Carma models on top
of simulation.

The textual language of the Carma tool provides an explicit syntax and a
location type for expressing location with respect to a structure that describes
discrete space. This motivated the choice of Carma to model physical network
topology and allows for a parametric approach to network topology description.
Also importantly for practical application of Carma, the tool also provides a
rich choice of attribute types, including integer, real, enumerated types, Boolean,
and finite lists and sets of these types. Functions can be defined over all data
types, to support programmatic aspects of models, and goes beyond process-
algebra-style behaviour and interaction.

Our experiments show that there is a good match between the discrete space
syntax provided by Carma and modelling network topology. This makes it pos-
sible to separate network topology (and traffic) from the definition of generic
network elements such as hosts, switches and controllers. This has advantages
in terms of speed of model construction as well as ease of debugging models.
The three major contributions of this research are as follows. First, it provides
an assessment of Carma for modelling network performance and security in
SDN through the development of a model that permits packet-level modelling.
The model contains generic controller, switch and host components that allow
for the controller to send flow table rules to switches which are then able to
direct packets from one host to another through the network. Packets are mod-
elled explicitly and their header content is used by switches to determine how
they should be handled depending on the flow rule that applies. Furthermore,
the model is parametric with respect to the network description, allowing fast
development of models with different topologies.

Second, it allows for experimentation with the fat-tree topology in a SDN set-
ting that considers the scalability of the topology with respect to packet latency
which is a standard measure of network performance, considering both uniform
and MapReduce traffic; with the goal of determining the packet rates at which
the network become congested and can no longer operate at line speed (the speed
of the underlying network connections) because of queues at switches. The per-
formance cost of mitigation of attacks is also considered. Finally, it explores the
use of MultiVeStA for statistical model checking of switch queue sizes, allow-
ing for the exploration of the parameter space of MapReduce traffic patterns,
thereby integrating the use of different formal methods approaches.
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2 Background

This research contributes the first phase of the development of a general method-
ology for modelling of networks and network security, and it is necessary to select
a particular case study for exploration of the potential of the approach. We have
chosen to consider the use of software defined networking (SDN) in data centres.
This specifies the focus and helps identify suitable examples with which to work.
SDN is an ideal setting since it is an industry standard whose deployment is
wide-spread and increasing. As networking requirements become more complex
in cloud and data centre scenarios, SDN provides a different approach based on
a full network overview compared to other approaches. One of the complexities
that must be addressed is security and SDN offers opportunities and challenges
in this domain [12]. Furthermore, there is an ongoing need for assessment of SDN
performance due to the range of implementations and switch types [17].

The distinct roles of network elements in SDN maps well to Carma compo-
nents which describe behaviour with the addition of store, allowing for internal
state, which is not often a feature of process algebras. Focussing on data cen-
tres allows the consideration of regular topologies which is a good starting point
for modelling. Regular topologies also make large networking scenarios possible
programmatically and we will show later in the paper how Carma supports this.

2.1 Software Defined Networking

In traditional networking, routers direct packets and have enough knowledge
about the state of the network to make forwarding decisions. Software defined
networking [15] takes a very different approach whereby the network switches
are provided with flow rules (by the controller which has an overview of all
network behaviour) that specify how packets should be directed. Each switch has
a flow table that is stored in fast (but expensive) ternary content-addressable
memory (TCAM) which allows for fast look-up. When a packet arrives at a
switch, its header is compared with the flow table entries. These entries may
contain wildcards, and different packet headers may match a single flow rule.
If a match is found, the action specified by the rule is followed and counters
for the rule are updated, and if not the packet header is sent to the controller
(which may add a new rule to the switch for that packet header). The two most
common actions for a rule are forward on a port number, or drop where the
packet is not forwarded.

Rules in the flow table can be divided into proactive and reactive. Reactive
rules are those that are installed when the controller must decide what to do
with a packet that does not match the rules at a switch. By contrast, proactive
rules are those that are installed by the controller as a switch becomes active,
based on an overview of the network topology and specific choice of a single route
between each pair of hosts. We focus on proactive rules and the performance of
a balanced routing over a network. This is not a limitation of the modelling as a
variant of this model has been used to consider reactive rules in the evaluation
of an attack mitigation [10].
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Fig. 1. Fat tree with 6-port switches

The controller makes decisions programmatically about the flows through the
network, determined routes from information about network topology, existing
traffic and updating routes when necessary. This route choice can have different
aims such as performance (efficient use of network bandwidth) or security (for
example, mitigation for covert channel attacks [41]).

2.2 Fat-Tree Topology

Our focus is on the fat-tree topology [2] that is used in data centres and is suitable
for use with SDN. In a standard tree topology, there may be a single switch at the
top level of the tree (the core) and this is a bottleneck. By contrast, the fat-tree
topology is based on k-port switches and provides more than one core switch.
Figure 1 illustrates the fat-tree topology obtained using 6-port switches The top
block of nine switches are the core. There are then k pods, each containing k
switches. The layer of switches immediately under the core is referred to as the
aggregate and the layer before the hosts, the edge. The 6-port topology supports
54 hosts and there are 9 routes between each pair of hosts that are in different
pods, as can be seen from the figure by considering the first host of the first
pod and the first host of the last pod. The controller is not included in this
diagram and there is research into where controllers should be placed for best
performance [22]. In this research, we abstract from these details, as discussed
later.

More generally, a 3-level fat tree based on commodity switches with k ports
has a core of k2/4 switches and k2 switches at the aggregate and edge level.
This allows for the support of k3/4 hosts. Between each pair of hosts, there are
k2/4 routes, one through each switch of the core. The use of commodity switches
allows for a cheap but efficient topology, and it is well suited for SDN because
of multiple routes.

Over and above modelling topologies, we need to model traffic patterns as
well. In the experiments, we will consider two traffic patterns: one where there
is traffic between all hosts where we consider at what traffic levels, the packet
latency becomes too high. The second considers the MapReduce pattern where
many hosts communicate with a single host to convey the results of calculations
done in parallel.
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3 Related Work

In the case of SDN, mininet [29] allows for emulation by modelling actual network
behaviour on multiple virtual machines. A limitation of mininet is that it runs
in real-time as an emulator and hence does not scale to large systems. Network
simulators such as ns-3 [9,26] simulate the full network stack behaviour. Both
of these approaches are costly in terms of initial set-up and have steep learning
curves. An alternative is a much more abstract approach such as CloudSim
which is used to model large SDN data centres [6] but this is an understanding
of network performance before building the model, and hence is not suitable
for the type of network performance and security modelling proposed here. A
different approach is taken using TopoGen in modelling of SDN topologies [30]
where the focus of the tool is in supporting large topologies and then using
hybrid modeling, simulation and control of data networks based on a hybrid
DEVS (Discrete Event System Specification) formalism where some packets are
modelled explicitly and some as flows [8].

Various formal approaches have been suggested such as NetKat [4], Veriflow
[27] and others [3,7,33–36,40,42]. Probabilistic NetKat [39] is the closest to
our approach but is limited to a time-homogeneous approach. Using Carma,
it is possible to consider behaviour over time as parameters vary, allowing for
the dynamic modelling of the effects together with mitigation of attacks, as
illustrated later. Some process algebras have also been proposed for network
modelling such as [28] but most focus on wireless or ad hoc networks and are
not quantitative such as [16]. In the case of the spatial extension of PEPA (which
is a stochastic process algebra that influenced the development of Carma) [18],
Carma offers a much richer way to specify behaviour.

4 Overview of Carma

Carma (Collective Adaptive Resource-sharing Markovian Agents) is a process-
algebra-based quantitative modelling language developed for the modelling of
collective adaptive systems with explicit support for the modelling of discrete
space, as well as separate specification of an environment. [25,32]. It has roots
in process algebras developed for performance evaluation such as PEPA [23]
and biological modeling such as Bio-PEPA [11], and has (time-inhomogeneous)
continuous-time Markov chain semantics. It has richer interaction than PEPA
or Bio-PEPA, and uses attribute-based communication similar to that of SCEL
[14] and AbC [1]. It has been used to model taxi movement [24], carpooling [43],
ambulance deployment [19] and pedestrian mobility [21].

The language has two forms: the mathematical definition of Carma [25]
and the language CaSL [20] of the Carma Eclipse Plug-in (available at
quanticol.sourceforge.net). Both will be used in this paper. The former will be
used to provide abstract presentations of the models, and the latter to describe
how measures and spatial concepts are defined with the software tools, and
thereby illustrate the power of the implementation with respect to network topol-
ogy modelling.

http://quanticol.sourceforge.net/
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The basic behavioural unit of a Carma model is a component which con-
sists of communicating behaviour specified using process-algebra-style prefixes
(actions), an initial behaviour and a store of attributes that characterise the
component. Interaction between components can be unicast or broadcast. The
components of a model form a collective which then operates within an envi-
ronment. The environment includes a global store, and updates to elements in
the store are triggered by actions performed by components. It also specifies
the rates and probabilities at which actions are performed, and allows for new
components to be added to the collective when given actions are performed by
components. In the context of the SDN model, packet rates will appear in the
environment as will global attributes to calculate packet latency.

To understand the basic behaviour of component, consider a component that
has three attributes v, x and y in its store. Behaviour in this component can be
specified in the following form. Here � indicates true and ⊥ false.

A
def= signal[�]〈v〉{a ← a − 1}.A +

new signal count�[my.b < b](new a){a ← new a}.A +
[a = 0]finished�[⊥]〈〉.nil

Process A can repeatedly send out a signal of v to one other component (and wait
until it is received) at which point the value of a is decreased by one. It can also
receive a broadcast communication (indicated by the asterisk) from any other
component which has a larger b value than it, which communicates a value that
is then stored as a. This is attribute-based communication: A can only “hear”
from components with a larger b value. However, if a becomes 0, then the process
can perform an internal action and become the process with no behaviour. The
use of a broadcast action with a false predicate leads to an internal action since
no other component can satisfy the predicate, and broadcast is not blocking.
Thus the action happens without interaction. As will be seen in the SDN model,
sometimes an attribute is updated by calling a function, and no interaction with
other components is necessary, and hence we use this form of action.

The component containing behaviour A, say CompA, can be described as
a component that attempts to communicate (by unicast) the value v a certain
number of times after which it ceases communication. However, imagine that
there are other components (not specified here) which are allowed to communi-
cate a new value of a to CompA. This can either reduce or increase how many
more times the value v is sent by CompA. The other components which can
communicate new values must have larger b values (which could be a priority)
than CompA to successfully change a.

Formally, components have the syntax C ::=0 | (P, γ) where 0 is the null
component, P is a process that describes behaviour and γ is the store. Stores
map from attribute names to basic values. The syntax of processes that define
the behaviour of components are specified by the following
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P,Q ::= nil | kill
| act.P | P + Q
| P | Q | [π]P
| A (A def= P )

act ::= α�[π]〈−→e 〉σ | α [π]〈−→e 〉σ
| α�[π](−→x )σ | α [π](−→x )σ

e ::= a | my.a | x | v | now | · · ·
π ::= � | ⊥ | e1 �� e2 | ¬π | π ∧ π | · · ·

where

– α is an action type; π is a predicate;
– e is an expression; x is a variable; −→· indicates a sequence of elements;
– a is an attribute name; v is a basic value;
– σ is an update defined by a function from Γ to Dist(Γ ) where Dist(Γ ) is the

set of probability distributions over Γ . This allows for stochastic updates.

The behaviour includes the absence of behaviour nil, the ability to remove a
component from the collective kill, action prefix act.P , choice P + Q, parallel
composition P | Q, predicate prefix [π]P where the behaviour as P is only
available if the guard π defined over the component’s attributes is true, and
constant definition. Expressions include now for the current simulation time and
my.a which refers to the value of the attribute a in the current component. When
referring to an attribute shared by a two components, my.a allows for distinction
between the two in predicates that constrain interaction.

The different prefixes specify the type of interaction.

Broadcast output: α�[π]〈−→e 〉σ
Broadcast input: α�[π](−→x )σ
Unicast output: α[π]〈−→e 〉σ
Unicast input: α[π](−→x )σ

Here α is an action name, π is a predicate over attributes of the sender and
the receiver, and σ specifies attribute updates. For output, −→e is a list of output
expressions, and for input, −→x is a list of variables, as is standard. Broadcast
actions are indicated by the presence of an asterisk. As mentioned above, an
internal action has the form α�[⊥]〈〉σ.

The predicates after the action name in a prefix determine who takes part in
the communication. Rates, probabilities and weights associated with an action
name are recorded in the environment element of the model and may depend on
attributes of the sender (in the case of broadcast which is non-blocking) and on
the sender and receiver (in the case of unicast which is blocking). We use pred-
icates in the SDN model to ensure unicast communication only occurs between
components that are directly connected in the network and this is specified by
the space description.

A collective N consist of either a component C or the parallel composition
of two collectives, N ::= C | N ‖ N , and a Carma model then consists of a
collective together with an environment S ::=N in E . The environment collects
together all of the information necessary for the collectives to operate including
rules that regulate the system such as rates of interaction and probabilities that
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interaction may occur, as well as global information. The environment consists
of two elements: a global store γg to record the value of global attributes, and
an evolution rule ρ. This is a function which, depending on the current time
(using now), the global store and the current state of the collective returns four
functions defined on stores and action names. These are known as the evaluation
context.

Probabilities: μp(γs, γr, α) determines the probability that a component with
store γr can receive a message from a component with store γs when α is
executed;

Weights: μw(γs, γr, α) determines the weight allocated to α executed by a com-
ponent with store γr receiving a message from a component with store γs.
This weighting determines the probabilities between different unicast actions.

Rates: μr(γ, α) provides the execution rate of action α executed at a component
with store γ;

Updates: μu(γ, α) determines the updates on the environment (global store and
collective) induced by the execution of action α at a component with store
γ. The execution of an action can modify the values of global variables and
also add new components to the collective.

Figure 6 provides an example of this evaluation context as used in the SDN
model. For the rates and updates, the function is expressed as a series of cases
based on the particular action involved. For the SDN model, there is little use
of the component stores in the definitions. The only explicit occurrence is in the
update for the action log packet�, although there are more occurrences in the
elided details of the rates for packet generation and the traffic patterns which
could be determined by the identity of the source or destination of a packet.

The operational semantics of Carma specifications are defined through tran-
sition relations. The semantic rules can be found in [32]. These relations are
defined in the FuTS style [13] and are described using a triple (N, 
,N ) where
the first element is a component, or a collective, or a system; the second element
is a transition label; and the third element is a function associating each compo-
nent, collective, or system with a non-negative number. If this value is positive, it
represents the rate of the exponential distribution characterising the time needed
for the execution of the action represented by 
. A zero value is associated with
unreachable terms. FuTS style semantics are used because it makes explicit an
underlying (time-inhomogeneous) Action Labelled Markov Chain, which can be
simulated with standard kinetic Monte Carlo algorithms.

Two further elements are important for modelling with Carma. Measures
define the outputs of a Carma model when it is simulated. A space description
defines the discrete space model over which a Carma model will operate. It
defines a weighted graph structure, and each component can be located at a
node in this graph. To aid clarity of presentation, these two elements will be
presented using CaSL, the textual language of the software tools, in the next
section where the model is introduced.
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5 The SDN Model

Carma is a rich formalism developed for a specific purpose; however it is appli-
cable to a variety of systems. For SDN, an important goal of the model is to be
parametric with respect to the network specification. Therefore, generic compo-
nents model various aspects of the system and there is no specification of the
network details outside of the portion of the model that describes the network
topology and traffic parameters. Thus we need only define four generic com-
ponents for our model: host, switch, controller and timer. For some scenarios,
deterministic time delays are required and the timer component supports their
modelling. In the model presented here, it determines when data should be col-
lected from the switches by the controller. Each switch has a unique location
and each host is located at a switch.

The interaction between the components is illustrated in Fig. 2 where com-
ponents with a single border have a single occurrence, and with double borders,
multiple occurrences. The Carma components for all four are given in Figs. 3
and 4. The notation xi refers to element i of array x, except in the case of action
names, where actioni refers to indexed action names. The model presented is an
abstraction of the CaSL model developed (for reasons of space) and some aspects
are only mentioned in passing. Furthermore, this model concentrates on proac-
tive flow rules, and the procedure for dealing with packets that do not match a
rule are not described.

The controller and switch components call various functions to support their
behaviour. Examples of controller functions are SelectRoutes which generates
specific routings from the network topology, CalcStats and CalcFlow which takes
switch counter information and calculates overall flows between hosts which can
be then used by functions to update the routing array. Additional functional-
ity within the SDN paradigm can be added by providing new functions rather
than modifying the components, in most cases. It is also possible to add novel
behaviour that SDN does not currently support such as probabilistic choice of
rules to decide forwarding of packets in switches. With just these four component
types and a separate network description, it is possible to create large network
examples for analysis.

The host component (Fig. 3) allows for different traffic patterns specified as
separate parallel components. An example of this is MapReduce which will be
used in the experiments. Details of these have been elided for reasons of space.
However, the basic idea is that certain traffic patterns will either be switched
on or off as indicated by a Boolean attribute in the component. When a pattern
is on, a packet corresponding to that traffic pattern can be sent. The host com-
ponent repeatedly generates and sends packets, keeping count of the number.
For measurement of packet latency, the time a packet is sent is included in the
packet itself, together with the source, destination and protocol. In parallel, the
host receives packets for which it is the destination and counts them. Both of
these are done using the comm action together which a predicate that ensures
that communication can only occur between connected network elements. This
is discussed further in Sect. 5.2 below.
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Fig. 2. Interaction of generic components

The switch component (Fig. 3) first receives its rule table from the controller
and then processes incoming packets that are put into a queue when they arrive.
For each packet, a matching rule is sought from the flow table where the flow
table is an array of rule records which include source host identifier, destination
host identifier, protocol, action to be done and counter to record how many
times the rule is used. The action associated with the rule is applied: a packet
can be dropped, sent to the controller, or forwarded. Parallel components wait
for communication from the controller for statistics requests and rule updates,
and set appropriate flags. Packet processing must be paused to update rules or
send the flow table to the controller whenever an update is available or a request
has been sent. Switch components use a single action comm to communicate with
each other and hosts, and the significance of this will be discussed in Sect. 5.2.

The controller component uses the function GenTop to generate all possible
routes between each pair of switches from the space description (see Sect. 5.1
for details of this description). From this collection of routes, a routing array
is obtained using the function SelectRoutes to describe the route that a packet
from one host to another will take. In SDN, exactly one route is chosen for a
flow of packets from one host to another. In the model, the routes chosen can be
balanced with respect to the number of hosts, so flows are evenly spread across
core switches. They can also be unbalanced where a single core switch is used
for all flows, or flows can be randomly assigned to different routes. The function
ConstructTables is used to construct the flow tables for each switch which are
then communicated to each switch, one by one. The controller component then
interacts with the timer component to wait until it is time for the next collection
of statistics, which is also done one-by-one from each switch. The counts in the
flow tables of each switch are compared with the counts at the previous collection
and traffic flows between hosts are obtained which can then be used to determine
switch updates. As mentioned previously, this model considers proactive aspects
of SDN rather than reactive, and hence the details of switch updates have not
been included.

5.1 Space Syntax for Network Description

To specify a network description in a Carma SDN model requires the expression
of the network topology in the space syntax which is independent of the generic
components defined above, as well as traffic information for the network which
is captured in two arrays for a specific traffic pattern. The first specifies the rate
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Fig. 3. Host, switch and timer components
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Fig. 4. Controller component

at which each host generates packets, and the second specifies the distribution
of destinations for the packets, allowing for stochastic behaviour to be defined.

There is also second level of parametericity in Carma SDN modelling. The
size and shape of various topologies can be parametric and the space description
can be defined to take this into account. For example, in the fat-tree topology,
the parameter that specifies the size of the network is the number of ports in the
type of switch used. For the experiments described later, the network topology
description is parametric in this number, and increasing the parameter, increases
the size of the network without time-consuming model updates as would be
necessary with an emulator such as mininet.

The space syntax of CaSL, developed to model discrete space in collective
adaptive systems, provides a mechanism to describe a directed graph, and this
separates the network topology information from that of component behaviour.
In the SDN model, each switch is assigned a unique location and each host is
assigned the location of the switch to which it is attached (multi-homed hosts
can not be modelled currently). Each edge in the network graph is described
by [a] -> [b] { port = p }. This specifies that there is a network connection
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const k = 6; // number of ports in each switch
space kPort_FatTree_Pod (){

universe <int x>
nodes { for i from 0 to k {[i];} }
connections { for i from k/2 to k {

for j from 0 to k/2 {
[i] -> [j] { port=j };
[j] -> [i] { port=i }; } } }

}
const Host_Switch = [: [3] ,[3] ,[3] ,[4] ,[4] ,[4] ,[5] ,[5] ,[5] :];
const Host_Port = [: 3,4,5,3,4,5,3,4,5 :];

Fig. 5. Space specification for one pod of Fig. 1 (partially parameterised)

from switch a to switch b and it is accessed through port p on switch a. Figure 5
illustrates how this language can be used to describe the left-most pod of Fig. 1
and the nine hosts it supports.

We number the six switches in the left-most pod with 0, . . . , 6 from left to
right and top to bottom, and the six ports of a single switch are numbered in the
same way. The nine hosts are numbered from 0 to 8. The bottom right switch
of the pod is switch 5, with port 0 connected to switch 0, port 1 to switch 1
and port 2 to switch 2. Furthermore, port 3 is connected to host 6, port 4 to
host 7 and port 5 to host 8. The ports 0, 1 and 2 of switches 0, 1 and 2 are not
connected since we are considering the pod on its own for this example. Using this
numbering of switches, ports and hosts, we can describe the network topology
using the space keyword. Six locations are defined in the nodes section, one for
each switch. In the connections section, links between switches are defined and
labelled with port numbers. Only switch locations are defined, and two constant
arrays are required to specify the location of each host in terms of the switch to
which it is connected, and the port number of each host.

In the specification in Fig. 5, the actual space specification is parametric and
hence solely dependent on the value of k. By contrast, the constant definitions
are specific for k = 6. In the full SDN model, all of these are defined parametrically
and hence a fat-tree topology of any size can be specified by changing the value
of k.

The definition of the collective in Fig. 6 defines the location of each switch and
host component using the @[. . .] notation. Each switch is located at its switch
location, and Host Switch is used to determine the location of each host. In the
current model, hosts are not mobile, and hence their locations are fixed. However,
it would be straightforward to have mobile hosts whose locations (represented
by the switch to which they are currently attached) change over time. In this
case, the array would be used to define the initial location of each host.

5.2 Space and Communication

All communication between switches and hosts use a single unicast action comm
(we discuss communication between switches and controller below). The fact
that a single action is used is exactly what allows for the definition of generic
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components. If comm were replaced with actions that describe communication
between specific components, it would be necessary to describe each network
element as a separate component. In many process-algebra-style languages, the
use of a single action would mean that all process with that action would be able
to communicate with each other (assuming various forms of hiding are not used).
Because Carma implements attribute-based communication, predicates can be
used to ensure that this free-for-all does not happen. The predicates used in the
SDN model use the space description to determine which network elements are
directly connected to each other. These are captured by the functions appearing
in Fig. 3, specifically ReceiverIsConn and SenderIsConn. These functions take
two arguments, my.loc and loc, which are the location of the sender and receiver
respectively. In the case of communication between a switch and a host com-
munication, it is necessary to check that the switch and host have the same
location. In the case of communication between a switch and another switch,
it is necessary to check that the receiver switch is in the post set of the send-
ing switch with respect to the topology defined by the space description. This
is checked with the syntax loc in my.loc.post. There are additional checks on
port numbers which are defined on the connections.

By contrast, ReceiverIsContr and SenderIsContr , and the predicates loc = [i]
in the controller in Fig. 4 just check that the identifier is correct rather than for
any connectivity. This provides for different levels of abstraction of network-
ing in the model. To focus on network performance between hosts, we have
chosen to model the movement of packets in the network between hosts at a
fine-grained level (but not so fine-grained that we model varying packet sizes)
whereas the communication between switches and controller is modelled more
abstractly without packet-level details. This choice allows a focus on specific
aspects of the model; in our case, the measurement of latency of actual traffic
in the network. For the two scenarios we are considering, the secondary traffic
between switches and controller is only for data collection and plays a negligible
role and hence we can omit its detailed modelling.

5.3 The Collective and Environment

Figure 6 describes global constants and variables, together with the initial spec-
ification of the collective and the evolution functions of the environment. The
number of ports in a switch is a global constant as are the total number of
switches and host. Additional aspects of the space description are global con-
stants. Globally, two variables are tracked. The number of packets that have
been received, together with total amount of time taken by these packets in
traversing the next allowing the creation of a measure to describe this with the
following syntax.

measure average_latency

= global.pkt_time / global.pkt_count

As mentioned previously, the collective defines the individual copies of com-
ponents with their locations. The timer component is not located. The evolution
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Fig. 6. Global constants, global store, collective and environment functions

rule functions for probabilities and weights have a default value of 1 as these are
not used in the SDN modelling. Most actions have the rate fast which means that
they are essentially immediate. Other actions include communication, sending
of statistics, updating of rules have constant rates, and as discussed previously
traffic pattern rates may be based on information about senders and receivers.

The update function does nothing for all actions except packet log�. In the
case of this action, when a packet is received by any host, the packet count is
increased and the total time taken is increased appropriately, using information
about when the packet was sent which is stored in the packet itself. This abstracts
from the details relating to clock drift that can be involved in measuring packet
latency in real networks. None of the actions introduce new components to the
collective. In the SDN model described here, there is a fixed number of network
elements which neither increase nor decrease during the model execution. In
a model where hosts may appear and disappear, the update function would
specify the action that would trigger the introduction of new host which would be
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Fig. 7. Packet latency for balanced and unbalanced routing

instantiated with the relevant attribute values. Host components can disappear
through the use of kill. It is also possible to add behaviour to capture the
temporary impairment of all network elements.

6 Experiments and Results

We consider two experiments to illustrate the use of Carma and MultiVeStA
in considering the scalability of the fat-tree topology in the context of SDN
and data centres [5]. These experiments report of the averages of measures and
probabilities over multiple simulation runs performed by the Carma software.
We also mention the results of a security-focussed experiment that has been
reported elsewhere [10]. These models assume the use of gigabit per second
networks and have the communication and switch rates calibrated accordingly.

6.1 Scalability of Topology

This experiment considers two important aspects of fat-tree topology. In the first
place, it compares the effect of multiple routes and how this allows for higher
traffic loads to be viable. This is achieved by considered a balanced routing over
the network and an unbalanced routing where all routes go through a single core
switch of the network. Furthermore, we consider these for different number of
ports, to assess whether the scaling is similar for different size networks. For this
scenario, we assume equal traffic between each pair of hosts, and increase the
rate of this traffic to the point that the switches start to become overloaded,
and the packet latency increases so that the switches are unable to support the
line speed of the network. These results are reported in Fig. 7. Data points are
only included for experiments where latency reached steady state. The fat-tree
topology scales moderately well when routing is balanced. For k of 6 or more,
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Fig. 8. Heat maps of queue size probabilities

performance starts to drop off at a rate of 1.00. In the case of k = 8, there are
16256 flows at this rate, and for k = 10, there are 62250 flows at this rate (the
table in Fig. 9 shows how the number of flows increase as k increases). In the case
when routing is unbalanced to the extent that all flows go through a single core
router, performance declines at lower rates as k increases. This emphasises the
need for an SDN controller to utilise good load balancing algorithms to ensure
good performance.

6.2 MapReduce Traffic Modelling

MapReduce describes a particular pattern of interaction between computers per-
forming large computations [2]. A fixed number of hosts, say n, first perform a
number of computations that can be done independently (the map phase). Once
this phase is over, the results of the computation must be integrated via some
computation and hence must be transferred to a single host (the reduce phase).
This results in periods of limited traffic and then high traffic for the communi-
cation of results.

The SDN Carma model supports the modelling of this traffic pattern. When
this pattern is activated, then there is an exponentially distributed duration in
which there is limited communication between hosts, followed by a duration
(drawn from a different exponential distribution) during which there are high
levels of traffic from n − 1 of the hosts to the remaining host, and this alter-
nating pattern repeats. We will refer to these as the computation phase and the
communication phase, respectively.

In the previous experiment above that considered uniform traffic, it was
assumed that the data centre network was being used by a single client (or
alternatively that each host was shared by every client in the data centre) since
there was traffic between all hosts. In the MapReduce experiment, a more con-
strained scenario is considered. First, for reasons of security, we assume that
each host is used by a single client; second, we assume that each client has been
allocated 2k2/4 hosts, and these hosts are connected to two pods. Thus, some
of the traffic in the communication phase must traverse core switches to move
between pods. For a fat-tree topology-based on k-port switches, this means that
there are k/2 clients, each with a MapReduce traffic pattern (using the same
exponential rates for periods of computation and communication).
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Fig. 9. Packet latency for path hopping mitigation of the Sneak-Peek attack [10] (left).
Execution times for different values of k (right).

We are interested in understanding the effect on maximum queue size of
different rates for the MapReduce traffic pattern. We use a MultiVeStA query
to determine the probabilities of a particular queue size for variations in the
duration of the computation phase and variations in rate of traffic during the
communication phase. We do not vary the duration of the communication phase.
Figure 8 illustrates the probabilities obtained when considering a queue size of
2, 4 and 8. As can be seen, the rate of traffic during the communication phase
has a greater impact on the queue size than the average duration of the gap
(expresses as milliseconds) for the range of value considered. Since larger queue
sizes (over 2) are associated with increased packet latency, these results demon-
strate that decreased performance is likely to occur with packet rates over 4 for
communication duration of up to 60 ms.

6.3 Trade-Offs in Network Security

We have also investigated security-performance trade-offs for the fat-tree topol-
ogy [10] when considering mitigations of a covert channel attack call Sneak-Peek
[41]. The mitigations involves changing route frequently (called path hopping)
to disrupt an existing covert channel. Path hopping requires that new routes
are sent to switches which causes delays in packet processing and increases
latency. Realistic data for switch update delays have been used [37]. Experi-
mentation (shown in Fig. 9) revealed that very frequent path hopping (every
25 ms) results in a 50% increase in latency. However, path hopping every second
did not appear to increase the latency. Since the ability to create a covert channel
with the Sneak-Peek attack requires shared network infrastructure, this model
has been further investigated with MultiVeStA queries of the form “What is the
probability that there will be a shared network component for a duration of x
milliseconds?” thereby quantifying the risk of an attack [10].

7 Evaluation and Conclusion

We now evaluate the use of Carma and MultiVeStA and consider some metrics
of relevance. We compare various metrics for the uniform traffic experiment
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described in Sect. 6.1 and the figures in right-hand-side of Fig. 9 were obtained
on a single core of a 2.66 Hz processor with 8 GB of memory available. Each time
unit (tu) of simulation represents a millisecond of network time. The packet rate
was chosen to be at a level where the network was fully loaded but not congested.
The table includes the number of flows (between each pair of hosts), the packet
rate and the number of packets transmitted in 1000tu. The last line is the number
of components in the Carma model. The time for the simulation of almost 20 s of
network time in the 10-port case is moderately high; however, many independent
simulations can be spread over different cores or computers, and hence averages
over all simulations can be obtained in that time.

In terms of model construction, the fat-tree size can be increased by changing
a single constant in the model code. Traffic patterns such as the MapReduce pat-
tern can be specified parametrically as well. Hence it is possible to investigate
regular topologies by only changing the model for the topology and relevant
traffic patterns. Irregular network structures are likely to require more modi-
fications of the mode code. The current model is around 1200 lines of CaSL
code. Of this, about 25% of the code is components, collective, environment and
measures; 10% is network and traffic specification; and 10% is parameters and
data structure definition. The remainder are the function definitions required for
the model, including the topology and routing determination, the predicates for
constraining interaction between components, and calculations of network flows.

Further research includes comparison of model-building time and effort
needed for the Carma approach and the use of mininet, both for the initial
model and for model changes; validation of small-scale Carma models using
mininet emulation, and experimentation with data and configurations from a
real datacentre.

This research has demonstrated that Carma is indeed suitable for modelling
network and there is a good match between the discrete space syntax and the
requirement for the description of network topology. Furthermore, this supports
generic component definition, and leads to a model with a few generic com-
ponents which aids comprehension. The richness of Carma in terms of data
structures and support for functions provides a step beyond what is usually
possible in process-algebra-style modelling.

The comparison of the usability of our approach to others is hard to assess,
partly because of different levels of abstraction. Certainly, our approach pro-
vides a level of abstraction that is novel in terms of assessing the performance of
SDN networks. Furthermore, if we know that the generic components work cor-
rectly, then debugging can focus on the network specification. Hence, this level
of abstraction allows for speed in developing, debugging and simulating models
with a fast turn-around which is not possible with full-stack emulation or simu-
lation methods, as shown by similar formal methods research [31]. Furthermore,
very few formal methods take a quantitative approach which is required if per-
formance is to be measured. The hybrid simulation approach using DEVS and
TopoGen [8,30] is the closest to our research and works with network specifica-
tion languages that could be used to obtain the Carma network description. We
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believe that our style of light-weight modelling style has a role to play, and the
next phase of development is to embody our approach in software that conceals
the details of the Carma from a user without experience of formal methods to
provide a software tool which enables specification of network topologies and
traffic patterns in a simple format with graphical elements where appropriate.
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Abstract. Virtually timed ambients is a calculus of nested virtualiza-
tion, which models timing and resource consumption for hierarchically
structured virtual machines. This structure may change dynamically to
support load-balancing, migration, and scaling. This paper introduces
resource-awareness for virtually timed ambients, which enables processes
to actively query the system about the resources necessary for a task
and to reconfigure accordingly. Technically we extend virtually timed
ambients with context-expressions using modal logic operators, give a
formal semantics for the extension, and define bisimulation for resource-
aware virtually timed systems. The paper also provides a proof of con-
cept implementation in Maude and a case study involving dynamic auto
scaling.

1 Introduction

In cloud-computing, horizontal scaling describes scaling by adding more
machines into the given pool of resources. Cloud-service providers offer differ-
ent kinds of scaling policies that allow their clients to monitor applications and
automatically adjust capacity to maintain steady performance at low costs. For
example, Amazon EC2 Auto Scaling [1] allows to dynamically and automati-
cally scale the virtual capacity up or down according to conditions defined by
the client. This paper provides a formalization to support dynamic auto scaling
via resource-awareness for virtually timed ambients.

The calculus of virtually timed ambients [11] is a calculus of explicit resource
provisioning, based on mobile ambients [3], and has been used to model nested
virtualization in cloud systems. Virtualization technology enables the resources
of an execution environment to be represented as a software layer, a so-called
virtual machine. Dynamic nested virtualization, first introduced in [7], is a cru-
cial technology to support cloud systems, as it enables virtual machines to
migrate between different cloud providers [22]. It is also necessary to host virtual
machines with operating systems which themselves support virtualization [2],
such as Microsoft Windows 7 and Linux KVM. The time model used to realize
the resource provisioning for virtually timed ambients is called virtual time. The
time of a virtually timed ambient proceeds in the context of its parental ambient
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and is relative to the parent’s time progression, With nested levels of virtualiza-
tion, virtual time becomes a local notion of time which depends on an ambient’s
position in the nesting structure. Virtually timed ambients are mobile, reflecting
that virtual machines may migrate between host virtual machines. Observe that
such migration affects the execution speed of processes in the migrating virtually
timed ambient, as well as in the virtually timed ambient which is left, and in the
virtually timed ambient which is entered.

Resource-awareness allows processes or programs to know about available
resources and about resources necessary for a task, and react accordingly. For
virtually timed ambients, resource awareness enables, e.g.,horizontal scaling, by
adding more virtual machines to a server in the cloud. The notion of resource-
aware virtually timed ambients is based on context-aware ambients (CCA) [21],
which introduce context-guarded processes to enable context-awareness of mobile
ambients. We enhance the given context expressions to cover the notions of tim-
ing and resources of virtually timed ambients and extend the theory of resource-
aware virtually timed ambients by contextual bisimulation. We further provide
a case study for modeling dynamic auto scaling on the cloud. Thus, we define a
calculus to model explicit resource management in cloud computing.

Contributions. The main contributions of this paper are the following:

– we define and discuss a calculus of resource-aware virtually timed ambients;
– we define weak timed context bisimulation for resource-aware virtually timed

ambients;
– we show the feasibility of virtually timed ambients as a modelling language

for cloud computing with a case study of dynamic auto scaling on Amazon
EC2 modelled in a prototype implementation of our calculus in the Maude
rewriting system;

– all concepts are illustrated by examples.

To the best of our knowledge, this is the first implementation of resource aware-
ness for mobile ambients in rewriting logic.

Paper Overview. We introduce resource-aware virtually timed ambients in
Sect. 3. Section 4 discusses the implementation and contains the case study,
exemplifying dynamic auto scaling on the cloud. We discuss related work and
conclude in Sects. 5 and 6.

2 Virtually Timed Ambients

Virtually timed ambients [10,11] is a calculus of explicit resource provisioning,
based on mobile ambients. Mobile ambients [3] are processes with a concept of
location, arranged in a hierarchy which may change dynamically. Virtually timed
ambients interpret these locations as places of deployment and extend mobile
ambients with notions of virtual time and resource consumption. The timed
behavior depends on the one hand on the local timed behavior, and on the other
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Table 1. Syntax of virtually timed ambients, x ∈ N0.

n name
tick virtual time slice

Timed processes:
P, Q ::= 0 inactive process

| P | Q parallel composition
| (νn) P restriction
| !C.P replication
| C.P prefixing
| n[Sched | tickx | P ] virtually timed ambient

Timed capabilities:
C ::= in n enter n and adjust the local scheduler there

| out n exit n and adjust the local scheduler
on the outside

| open n open n and adjust own local scheduler
| c consume a resource

hand on the placement or deployment of the virtually timed ambient or the
process in the hierarchical ambient structure. Virtually timed ambients combine
timed processes and timed capabilities with the features of mobile ambients.

Definition 1 (Virtually timed ambients). The syntax of virtually timed
ambients is given by the grammar in Table 1.

Timed processes differ from mobile ambients in that each virtually timed
ambient contains, besides possibly further (virtually timed) subambients, a local
scheduler. In the sequel, we omit the qualification “timed” or “virtually timed”,
when speaking about processes, capabilities, or ambients when the context of
virtually timed ambients is clear. In the calculus, virtually timed ambients are
represented by names and time slices are written as tick. The inactive process
0 does nothing. The parallel composition P | Q allows both processes P and Q
to proceed concurrently, where the binary operator | is commutative and asso-
ciative. The restriction operator (νm)P creates a new and unique name with
process P as its scope. Replication of processes is given as !C.P . A process P
located in an virtually timed ambient named n is written n[Sched | tickx | P ],
where tick0 ≡ 0. Ambients can be nested, and the nesting structure can change
dynamically, this is specified by prefixing a process with a capability C.P . Timed
capabilities extend the capabilities of mobile ambients by including a resource
consumption capability c and by giving the opening, exiting, and entering capa-
bilities of ambients a timed interpretation. These capabilities restructure the
hierarchy of an ambient system, so the behavior of local schedulers and resource
consumption changes, as these depend on the placement of the timed ambient
in the hierarchy.

In a virtually timed ambient, the local scheduler triggers timed behavior and
local resource consumption. Each time slice emitted by a local scheduler triggers
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the scheduler of a subambient or is consumed by a process as a resource in a
preemptive, yet fair way, which makes system behavior sensitive to co-located
virtually timed ambients and resource consuming processes.

Definition 2 (Local and root schedulers). Let the sets unserved and served
contain the names of virtually timed ambients as well as processes (these are
represented directly, lacking names). A local scheduler is denoted by

Schedspeed{in, out, rest, unserved, served},

where speed ∈ Q relates externally received to internally emitted time slices;
in ∈ N records the number of received time slices; out ∈ N records the numbers
of time slices than can be distributed for each incoming time slice, while rest ∈ N

records additional distributable time slices depending on the speed; and unserved
contains local ambients with a positive speed and processes which are intended
to receive one time slice in this round of the scheduling, while served contains
processes scheduled for the next round.

Root schedulers, represented as Sched†{in, out, 0, unserved, served}, are local
schedulers which do not need an input to distribute time slices and therefore have
no defined speed.

The semantics of virtually timed ambients is given as a reduction system,
similar to the semantics of mobile ambients. The rules for structural congruence
P ≡ Q are equivalent to those for mobile ambients (and therefore omitted here).
The reduction relation P � Q for virtually timed ambients makes use of observ-
ables, also known as barbs. Barbs, originally introduced for the π-calculus [16],
capture a notion of immediate observability. In the ambient calculus, these obser-
vations concern the presence of a top-level ambient whose name is not restricted.
Let m̃ describe a tuple of names, then the observability predicate ↓n or “barb”
is defined as follows:

Definition 3 (Barbs, from [14]). Process P strongly barbs on n, written P↓n,
if P ≡ (νm̃)(n[P1] | P2), where n /∈ {m̃}.
A process that does not contain ν-binders is said to be ν-binder free. By moving
the ν-binders to the outside and only considering the inside of their scope, we
can observe the bound ambients inside the scope of the ν-binders.

Definition 4 (Timed top-level ambients). For a process P , let P↓ denote
the sets of all timed top-level ambients: P↓ = {n | P ≡ (νm̃)P ′ ∧ P ′ is ν−
binder free ∧ P ′↓n ∧ speedn > 0}.

Timed Capabilities. The reduction rules for virtually timed ambients are given
in Tables 2 and 3. The timed capabilities in n, out n, and open n enable
virtually timed ambients to move in the hierarchical ambient structure. The
local schedulers need to know about the current subambients, so their lists of
subambients need to be adjusted when virtually timed ambients move. Observe
that without adjusting the schedulers, the moving subambient would not receive
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Table 2. Timed reduction rules for timed capabilities. Here, a blue backdrop marks
the trigger of the reduction, red the changes in the schedulers, and green eventual
constraints.

time slices from the scheduler in its new surrounding ambient. In TR-In and
TR-Out, the schedulers of the old and new surrounding ambient of the moving
ambient are updated by removing and adding, respectively, the name of the
moving ambient, if it has a speed greater zero. The scheduler of the moving
subambient is also updated as it needs to contain the barbs of the process that
was hidden behind the movement capability. In TR-Open, the scheduler of the
opening ambient itself is updated by removing the name of the opened ambient
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Table 3. Reduction rules for fair, preemptive distribution of virtual time and resources,
where by ∈ N. A blue backdrop marks the reduction trigger and red the changes.
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and adding the barbs of the processes inside this ambient as well as the barbs
of the process hidden behind the open capability. The scheduler of the opened
ambient is deleted. In TR-Resource, the time consuming process moves into
the scheduler, where it awaits the distribution of a time slice as resource before it
can continue. This reduction can only happen in virtually timed ambients with
speed greater zero, meaning ambients which actually emit resources.

The RR-Tick and RR-Tock rules in Table 3 distribute time slices via the
local schedulers. We want to enable the schedulers to distribute time slices as
soon as possible. The ratio of output time slices to input time slices is defined by
the speed ∈ Q of the scheduler. For example, for a speed of 3/2 the first incoming
tick should trigger one outgoing time slice and the second input should trigger
two, emitting in total three time slices for two inputs. Thus, in order to imple-
ment a simple eager scheduling strategy, we make use of the so-called Egyptian
fraction decomposition to decide the number of time slices to be distributed by a
local scheduler for each input time slice tick. For every rational number q ∈ Q

it holds that q = x +
∑z

y=1
1
by

for x, by ∈ N, which is solvable in polynomial
time. A greedy algorithm (e.g. [6]) yields the desirable property that a time
slice is distributed as soon as possible. From this decomposition, it follows that
for each input time slice the local scheduler with speed q will distribute x time
slices, plus one additional time slice for every by-th input. In RR-Tick, the local
scheduler receives a time slice, which it registers in the counter in. At the same
time out and rest initiate the distribution of time slices depending on the Egyp-
tian fraction decomposition of the speed of the scheduler. These steps of the
time slice distribution are shown in the RR-Tock rules, which allow transfer-
ring a new tick to a timed subambient or using the time slice as a resource for
a consume capability, which is waiting in the scheduler. The RR-Tock1 rules
concern the number x of time slices that are given out for every input time slice,
while the RR-Tock2 rules only allow to give out a time slice if the input step
is a multiple of one of the fraction denominators by. This amounts to a concrete
implementation of a fair scheduler where progress is uniform over the queue of
timed subambients and time consuming processes. Once all waiting subambients
and processes inside the set unserved have been served one time slice and are
moved to the set served, either the rule RR-NewRound ensures that the next
round of time slice distribution can begin, or, if the queue is empty, the rule
RR-Empty is applied. This scheduling strategy ensures fairness in the compe-
tition for resources between processes, without enforcing a particular order in
each round of the scheduler. The root scheduler Sched† reduces without time
slices from surrounding ambients in RR-Root.

Example 1 (Virtually timed subambients, scheduling and resource consumption).
The virtually timed ambient cloud, exemplifying a cloud server, emits one time
slice for every time slice it receives, Sdlcloud = Sched1{0, 0, 0, ∅, ∅}. It contains
two tick and is entered by a virtually timed subambient vm.

cloud[Sched1{0, 0, 0, ∅, ∅} | tick | tick]
| vm[Sched3/4{0, 0, 0, ∅, ∅} |in cloud. c .P ]
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The ambient vm exemplifies a virtual machine containing a resource consuming
task, where Sdlvm = Sched3/4{0, 0, 0, ∅, ∅}. The Egyptian fraction decomposi-
tion of the speed yields 3/4 = 0+1/2+1/4 meaning that there is no time slice given
out for every incoming time slice, but one time slice for every second incoming
time slice, and one for every fourth. The process reduces as follows:

�cloud[Sched1{0, 0, 0, ∅, vm} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P ]] (TR-In)

�cloud[Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P ]] (RR-NewRound)

�cloud[Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, c .P} | 0]] (TR-Resource)

�cloud[Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-NewRound).

Here the ambient vm enters the ambient cloud and is registered in the sched-
uler. Furthermore, the resource consuming process in vm is registered. In the
next steps the time slices move into the scheduler of the cloud ambient and are
distributed further down in the hierarchy.

�cloud[Sched1{1, 1, 0, vm, ∅} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-Tick)

�cloud[Sched1{1, 0, 0, ∅, vm} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tock1-ambient)

�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-NewRound)

�cloud[Sched1{2, 1, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tick)

�cloud[Sched1{2, 0, 0, ∅, vm}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-Tock1-ambient)

�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-NewRound).

Now the ambient vm can use the time signals to enable resource consumption.
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�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 1, c .P, ∅} | tick]] (RR-Tick)

�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 0, c .P, ∅} | tick]] (RR-Tock2-no action)

�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 1, c .P, ∅} | 0]] (RR-Tick)

�cloud[Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 0, P↓, ∅} | P ]] (RR-Tock2-consume)

Note that as the calculus is non-deterministic, the reduction rules can be applied
in arbitrary order, making several outcomes possible.

Table 4. Syntax of contexts and context expressions

:snoisserpxetxetnoC:txetnoC
E ::= 0 nil κ ::= True true

| � hole | � hole
| n[E] location | ¬κ negation
| E | P parallel composition | κ1 | κ2 parallel composition

| κ1 ∧ κ2 conjunction
| n[κ] location
| ⊕κ spatial next modality
| ♦(speed,s)κ somewhere modality
| �x@nκ sometime modality
| ∃x.κ existential quantification
| c consumption

3 Resource-Aware Virtually Timed Ambients

We now consider context-guarded actions for the calculus of virtually timed ambi-
ents, building on properties of context aware ambients [21].

Definition 5 (Resource-aware virtually timed ambients). The syntax
of resource-aware virtually timed ambients is given by the grammar in Table 1
together with the process

κ?P (context-guarded process),

where κ is a context expression. The semantics of resource-aware virtually timed
ambients is given by the reduction rules in Tables 2 and 3 and the rule

E � κ

E(κ?P ) � E(P )
(TR-Context).
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A context-guarded process κ?P has to fulfil a context requirement before it
can be reduced, meaning that a guard is removed when it is satisfied by the
environment. The context model is given in Table 4, where E denotes a context
or environment and 0 is the empty context. Ambient names and processes are
defined as in Table 1. The symbol � is the hole context, showing the position of
a process in the surrounding context. A ground context is defined to be a normal
process with no holes. Multi-hole contexts are omitted.

Definition 6 (Context evaluation, from [21]). Let E1 and E2 be contexts.
The evaluation of context E1 at context E2, denoted E1(E2), is the context
obtained by replacing the hole in E1 (if any) by E2 as follows

E1(E2) =

{

E1 if E1 is a ground context,
E1{� ← E2} otherwise,

where E1{� ← E2} is the substitution of E2 for � in E1.

Context expressions are defined in Table 4. We enhance the context expres-
sions for context-aware ambients from [21] with a consumption formula, stating
the existence of consume capabilities in a process, as well as resource-aware
sometime and somewhere modalities capturing the number of resources con-
sumed in a certain ambient during the reduction, and the relative speed and
number of siblings of the target ambient, respectively. To expose these num-
bers in reductions, we define a labeled reduction relation. While � refers to all
reduction steps in virtually timed ambients, we denote by tick−−−� the steps of the
(RR-Tick) rule, i.e., the internal reductions in the schedulers enabling timed
reduction of processes. All other reduction steps are marked by τ−�.

Definition 7 (Tick-reduction). P
tick−−−� P ′ iff P | tick −→ P ′. We write

tickx−−−� if x time signals tick are used; i.e., P
tickx−−−� P ′ iff P | tick | · · · |

tick −→∗ P ′, where the number of time signals tick is x. The weak version
of this reduction is defined as P

tickx===⇒ P ′ iff P ( τ−�∗ tick−−−� τ−�∗
)xP ′, where τ−�∗

describes the application of an arbitrary number of τ -steps.

The relation tickx===⇒n captures the number of resources used inside an ambient n
inside a process.

Definition 8 (Tick-reduction inside an ambient). P
tickx===⇒n P ′ iff P �

∗

P ′ and there exists Q,Q′ such that P ↓∗ n[Q], P ′ ↓∗ n[Q′] and Q
tickx===⇒ Q′.

Lastly, we define accumulated speed [10] based on the eager distribution strat-
egy for time slices. The accumulated speed accum{m}P ∈ Q in a subambient m
which is part of a process P , is the relative speed of the ambient m with respect
to the speed of the parental ambient and the siblings of m.
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Table 5. Satisfaction relation for context expressions

E � True
E � � iff E = �
E � ¬κ iff E �� κ
E � κ1 | κ2 iff exist E1, E2, such that E = E1 | E2 and E1 � κ1 and E2 � κ2

E � κ1 ∧ κ2 iff E � κ1 and E � κ2

E � n[κ] iff exist E′, such that E = n[E′] and E′ � κ
E � ⊕κ iff exist E′, such that E �� E′ and E′ � κ
E � ♦(speed,s)κ iff exists E′, E′′, n s.t. (E ≡ n[Sdl | E′] | E′′ ∨ E ��∗ n[Sdl | E′])

∧E′ � κ ∧ accum{n}E ≥ speed ∧ |USdl ∪ SSdl| ≤ s

E � �x@nκ iff exist E′, such that E
ticky

===⇒n E′, y ≤ x and E′ � κ
E � ∃x.κ iff exist n, such that E � κ{x ← n}
E � c iff exist E′, E′′, E′′′, such that E ↓∗ E′ and E′ ≡ E′′. c .E′′′

Definition 9 (Accumulated speed). Let speedk ∈ Q and children(k) denote
the speed and number of children of a virtually timed ambient k. Let m be a
timed subambient of a process P , the name parent denoting the direct parental
ambient of m, and C the path of all parental ambients of m up to the level of
P . The accumulated speed for preemptive scheduling in a subambient m up to
the level of the process P is given by

accum{m}P = speedm · 1/children(parent) · speedparent
= speedm ·

∏

k∈C

1/children(k) ·
∏

k∈C

speedk

Schedulers distribute time slices preemptively, as child processes get one time
slice at a time in iterative rounds. Consequently, an ambient’s accumulated speed
is influenced by both the speed and the number of children n of the parental
ambient. Thus, scheduling is not only path sensitive but also sibling sensitive.

The formal semantics for context expressions is given by the satisfaction
relations in Table 5. The spatial reduction relation ��, which describes the option
to go exactly one step deep into the nesting of ambients, is defined as follows.

Definition 10 (Spatial reduction). E ��E′ iff there exist a name n and con-
text E′′ such that E = (n[E′] | E′′) and ��∗ is the reflexive and transitive closure.

Thus, the spatial next modality ⊕ is satisfied if and only if the expression follow-
ing it is satisfied after stepping one level down in the context. The consumption
expression c is satisfied by any context which contains a consumption capability
anywhere inside. A context E satisfies the sometime modality if and only if it
can reduce to a context satisfying the formula, while using less than x resources
in the ambient n in the reduction. Lastly, the somewhere modality is satisfied if
and only if there exists a subcontext of E satisfying the formula and the relative
speed in the sublocation containing the context is greater or equal the given
speed and the sublocation has less or equal than s timed subambients.
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We use the virtually timed system from Example 1 to show the meaning of
some context expressions.

Example 2 (Context expressions and context-guards). It holds that

cloud[Sdlcloud | tick | tick | vm[Sdlvm |c .0]] � �2@vm¬c.
This means that two resources are used in the virtual timed ambient before the
consume capability reduces. This reduction can be seen in Example 1. Further,
it holds that

cloud[Sdlcloud | � | tick | tick | vm[Sdlvm |c .P ]] � ⊕(vm[True] | � | True)

or, omitting the hole,

cloud[Sdlcloud | tick | tick | vm[Sdlvm |c .P ]] � ⊕(vm[True] | True)

as there is an ambient named vm directly under the top level in the system. Using
the context expression as context-guard we can define the following process

cloud[Sdlcloud | ⊕vm[True]? open vm | tick | tick | vm[Sdlvm |c .P ]],

which aims to open the subambient vm if it is the only process on the top level
in the system. As this is true after the ticks have been moved into the scheduler,
the guard is removed and the process reduces to cloud[Sdlcloud |c .P ].

Weak Timed Context Bisimulation. We define weak timed context bisimulation
for resource-aware ambients, which extends the definition of weak bisimulation
for virtually timed ambients [11] by treating the context-guarded processes as
τ actions in the timed labelled transition system and adding notions of context
bisimulation [19,20] to the bisimulation relation.

The following definitions make use of the notion of timed systems, which are
special processes without capabilities on the outermost level.

Definition 11 (Timed systems). Timed systems are given as follows:

M,N :: = 0
| M | N
| (νn)M
| n[P ],

where P is a timed process as given in Table 1.

The behavior of a timed system interacting with its environment is given as
a transmission system with transition labels.

Definition 12 (Labels). Let the set of labels Lab, with typical element α, be
given as follows:

α ∈ Lab :: = τ
| k.enter n | k.exit n | k.enter n | n.open k
| ∗.exit n | ∗.enter n
| k.tick



206 E. B. Johnsen et al.

Table 6. Rules for timed labeled transition systems, where in (Co-Enter) given
Sdlk = Schedspeedk{in, out, rest, unserved, served} the updated scheduler is denoted
by Sdl∗

k = Schedspeedk{in, out, rest, unserved ∪ {n}, served} if speedn > 0 as described
in Table 2.

(νm̃)(m[Sdl |in n.P | Q] | M), m ∈ m̃
∗.enter n−−−−−−→ (νm̃)(n[m[(Sdl | P ) | Q] | ◦ ] | M) (Enter Shh)

(νm̃)(k[Sdl |in n.P | Q] | M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(n[k[(Sdl | P ) | Q] | ◦ ] | M) (Enter)

(νm̃)(m[Sdl |out n.P | Q] | M), m ∈ m̃
∗.exit n−−−−−→ (νm̃)(m[(Sdl | P ) | Q] | n[M | ◦ ]) (Exit Shh)

(νm̃)(k[Sdl |out n.P | Q] | M), k /∈ m̃
k.exit n−−−−−→ (νm̃)(k[(Sdl | P ) | Q] | n[M | ◦ ]) (Exit)

(νm̃)(k[(Sdlk | P )] | M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(k[Sdl∗

k | n[◦] | P ] | M) (Co-Enter)

(νm̃)(k[(Sdl | P )] | M)
n.open k−−−−−→ n[ ◦ | (νm̃)(P | M (]) Open)

(νm̃)(k[Sdl | Q] | M), k /∈ m̃
k.tick−−−−→ (νm̃)(k[Sdl | tick | Q] | M) (Tick)

where k and n represent names of ambients. The label τ is called the inter-
nal label, the rest are called observable labels. We refer to labels of the forms
∗.exit n and ∗.enter n as anonymous and other labels as non-anonymous, and
let the untimed labels exclude the k.tick label.

Note that the c capability does not represent an interaction with an envi-
ronment but an internal action and is therefore not captured by a separate
observable label apart from τ .

Definition 13 (Timed labeled transitions). The observable steps M
α−→ M ′

of the timed labeled transition semantics for timed systems is given by the rules
of Table 6. For internal behavior, τ -steps are the result of reduction steps, i.e.,
M � M ′ implies M

τ−→ M ′.

The untimed labels, which record the system-environment interactions (i.e.,
ambient movements induced by capabilities), coincide with the labels from the
untimed case of mobile ambients [14]. In rules Enter and Exit, an ambient k
enters, respectively exits, from an ambient n provided by the environment. The
rules Enter Shh and Exit Shh model the same behavior for ambients with
private names. In rule Co-Enter, an ambient n, provided by the environment,
enters an ambient k of the process. In rule Open, the environment provides an
ambient n in which the ambient k of the process is opened. In rule Tick, the



Resource-Aware Virtually Timed Ambients 207

transition M
k.tick−−−−→ M ′ expresses that the top-level ambient k of the system M

receives one time slice tick from the root scheduler on the global level.
The post-configurations after the transitions contain the symbol ◦, which

is used as placeholder variable. The labels, which capture interaction with the
environment, carry partial information about the “data” exchanged with the
environment. For example, label k.enter n carries information about the iden-
tity k of the ambient being entered, which is contained in the system, as well as
the identity of the entering ambient named n, which, before the step, is still part
of the environment. If the enter-label conceptually indicates that some arbitrary
ambient n[R | Sdl] enters the system as an effect of executing the in n-capability,
then the name n is mentioned as part of the label but its “body” R | Sdl is not.
We want to relate the actions of the two systems by a notion of bisimulation.
Intuitively, if one system does a transition where n[R | Sdl] enters, the second
system must be able to exhibit the same transition, i.e., have the “same” ambi-
ent entering without breaking their (bi)simulation relationship. In principle, the
second system can simulate the first doing a step where an ambient n[R] enters,
with the body S ≡ R | Sdl. To achieve that (without overburdening the labels
by interpreting them up-to structural congruence ≡), the definition uses the
placeholder ◦ and requires preservation of the relationship for all instantiations
of the placeholders for both systems by the same body (cf. Definition 14 below).
The substitution of the placeholder by a pair consisting of a process and its local
scheduler, is written as P • (Sdl | Q) and defined as expected.

The reduction semantics of a process can be encoded in the labelled transition
system, because a reduction step can be seen as an interaction with an empty
context. We are interested in bisimulations that abstract from τ -actions and use
the notion of weak actions; let ==⇒ denote the reflexive and transitive closure of
τ−→, let α=⇒ denote ==⇒ α−→==⇒, and let α̂=⇒ denote ==⇒ if α = τ and α=⇒ otherwise.

Definition 14 (Weak timed context bisimulation). A symmetric relation
R over timed systems is a weak timed context bisimulation if M R N and
M

α−→ M ′, α ∈ {k.enter n, k.exit n, k.enter n, n.open k, ∗.exit n, ∗.enter n,
k.tick, τ} implies:

1. If α is a non-anonymous label, then N
α̂=⇒ N ′ for some N ′, such that such that

for all schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

2. For anonymous labels:
(a) If α = ∗.enter n, then N | n[◦] ==⇒ N ′ for some N ′, such that for all

schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

(b) If α = ∗.exit n, then n[ ◦ | N ] ==⇒ N ′ for some N ′, such that for all
schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

The preservation of bisimilarity by system contexts follows from this definition:

Theorem 1. Weak timed context bisimilarity is preserved by system contexts.
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The given bisimulation relation is a congruence. Furthermore, the relation coin-
cides with reduction barbed congruence, defined as the largest relation which is
preserved by all constructs of the language, by the internal steps of the reduction
semantics, and by so-called barbs, which are simple observables of terms.

Definition 15 (Reduction barbed congruence over timed systems).
Reduction barbed congruence over timed systems is the largest symmetrical rela-
tion over timed systems which is preserved by all system contexts, is reduction
closed and barb preserving.

We can show that the bisimulation relation coincides with reduction barbed
congruence by following the proof given in [11].

Theorem 2. Weak timed context bisimulation and reduction barbed congruence
over resource-aware virtually timed systems coincide.

4 Implementation and Case Study

We implement resource-aware virtually timed ambients in the rewriting logic sys-
tem Maude [5,17]. Rewriting logic is a flexible semantic and logical framework
which can be used to represent a wide range of systems with low representational
distance [15]. Rewriting logic embeds membership equational logic, which lets a
specification or program contain both equations and rewrite rules. When exe-
cuting a Maude specification, rewrite steps are applied to normal forms in the
equational logic. Both equations and rewrite rules may be conditional, meaning
that specified conditions must hold for the rule or equation to apply.

The calculus of virtually timed ambient and a modal logic model checker
for virtually timed ambients have been implemented in Maude [12]. The timed
reduction rules (Tables 2 and 3) are represented as rewrite rules and modal logic
formulas are built from operator declarations in Maude. We now extend this
implementation with guarded processes and the corresponding reduction rule,
and with replication and restricted names, thereby allowing non-unique names
for ambients1. The syntax of resource-aware virtually timed ambients, given in
Table 3, is represented by Maude terms, constructed from operators:

op zero : -> VTA [ctor] .

op _|_ : VTA VTA -> VTA [id: zero assoc comm] .

op _._ : Capability VTA -> VTA .

op _[_|_] : Name Scheduler VTA -> VTA .

op !_ : VTA -> VTA .

op !<_>_ : Names VTA -> VTA .

op _?_ : Formula VTA -> VTA [frozen (2)] .

1 The full source code for the calculus and the case study is available at: https://
github.com/larstvei/Check-VTA/tree/resource-aware.

https://github.com/larstvei/Check-VTA/tree/resource-aware
https://github.com/larstvei/Check-VTA/tree/resource-aware
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The correlation between our formal definition and the Maude specification is
easy to see. The operator zero represents the inactive process. Parallel compo-
sition has the algebraic properties of being associative, commutative and having
zero as identity element. Concatenation is represented by a dot. Virtually timed
ambients are represented by a name followed by brackets containing a scheduler
and processes. Replication is represented by an exclamation mark and context-
guarded processes by a question mark. The frozen attribute prevents subterms
behind the guard from being rewritten before the guard has been resolved.

The prototype implementation currently covers a negation free fragment of
the logic. Context expressions (defined in Table 4) are implemented explicitly as
modal logic formulas, their duals have been implemented as necessary for the case
study. We explain the implementation of the reduction rules by the rewrite rule
for context-guards, corresponding to TR-Context. The guards express global
properties, which make it necessary to capture the entire environment. This is
achieved by wrapping the top-level ambient in brackets op {_} : VTA -> VTA,
which syntactically distinguish the top-level ambient from subambients. Using
these brackets, we can express that a rewrite rule may only be applied at the
global level. Guards are resolved by invoking the given modal logic model checker
for virtually timed ambients during execution:

crl [RemoveGuard] : { P } => { removeGuard(P, G) }

if G, Gs := findGuards(P) /\

removeGuardedProcess(P, G) |= G => true .

Here, findGuards(P) provides the set of all active guards found in the pro-
cess, and some guard G is arbitrarily selected. Using the satisfaction relation
|= the model checker is invoked on the top-level ambient, where the opera-
tion removeGuardedProcess(P, G) removes the guard together with the pro-
cess behind it and thus yields the environment of the guarded process. If the
environment satisfies the guard, the guard is removed by removeGuard(P, G).

A Case Study of Dynamic Auto Scaling on Amazon EC2. In the follow-
ing, we show how resource-aware virtually timed ambients can model dynamic
auto scaling of Amazon EC2 instances, based on the Auto Scaling User Guide by
Amazon Web Services [1]. An auto scaling group is a collection of EC2 instances,
which are essentially virtual machines, illustrated in Fig. 1. The user can spec-
ify the minimum and maximum number of instances in an auto scaling group,
and auto scaling ensures that the given group never goes below or above these
bounds. By specifying scaling policies the user enables auto scaling to adjust the
number of instances depending on the demand on the application.

We model a cloud server as a top-level ambient with a scheduler sdl(’asg),
an auto scaling group asg, a garbage bin garbage, and a number of requests,
demanding resources. A minimal example of scaling can be given by using two
requests request(2), each expecting two resources:
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Fig. 1. Example of an auto scaling group as given in [1].

op example : -> VTA .

eq example =

{ ’cloud[sdl(’asg) | asg | request(2) | request(2) | garbage] } .

The expressions asg, garbage and request(2) reduce to resource-aware vir-
tually timed ambients, containing other ambients and processes. For example,
request(K) is an ambient containing an empty scheduler sdl, movement capa-
bilities and a number K of consume capabilities, representing load on the machine.

eq request(K) =

’request[sdl | in(’asg) . open(’move) . zero | consumes(K)] .

The ambient asg, which models the auto scaling group, manages the virtual
machines and dynamically scales depending on the load. A request may enter
the asg where an idle virtual machine seizes it or, if no virtual machine is idle
and the maximal number of virtual machines is not reached, the asg scales up
and produces a new virtual machine to handle the request. Scaling up is achieved
by means of replicated ambients with restricted names, representing new virtual
machines, protected by a scaling guard which realizes the scaling policy:

eq scalingGuard(MIN, MAX) =

(+) someone(’asg[<> 0 MIN someone(’isRegistry[True]) \/

someone(’request[True]) /\

<> 0 MAX someone(’isRegistry[True]) /\

no-one(NotConsume /\ (+) someone(’isVM[True]))]) .

The guard checks the number of virtual machines, their load and the existence
of a request. The formula someone(F) is introduced to capture a recurring pat-
tern in the case study, namely the satisfaction of a formula by one ambient in
the process. The dual is expressed by no-one(F). The guard uses the somewhere
modality and is satisfied if there are less then the minimal number of subambi-
ents in a ’registry ambient (marked by the subambient ’isRegistry) which
contains a subambient for every active virtual machine. It is also satisfied if there
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exists a request inside the auto scaling group, the maximal number of machines
is not reached, and there is no idle virtual machine (marked by the property
NotConsume and the subambient ’isVM). Idle virtual machines move into the
garbage ambient, if the number of virtual machines is not below the minimum.
By running the example in Maude, we can see how the scaling process and the
virtual machines react dynamically to the load on the auto scaling group.

Maude> frew example .

result VTA:

{’cloud[sched 0{0,0,0,’asg,none}

| ’asg[sched 1{10,0,0,’vm1,none}

| ...

| !< ’vm > (open(’scaling_lock) . scalingGuard ? scalingProcess)

| ’vm1[...]]

| ’garbage[sched 0{0,0,0,’vm0,none}

| ’vm0[...] | ...]]}

Initially, the auto scaling group produces a virtual machine ’vm0[...], in accor-
dance with the scaling policy which requires at least one running instance. The
first request is handled by ’vm0[...], and a new virtual machine ’vm1[...]
is produced and handles the second request. Once ’vm0[...] has resolved its
request, it moves itself into the garbage ambient. The second virtual machine
’vm1[...] is prevented from deleting itself, due to the scaling policy. The model
autonomously creates virtual machines to deal with incoming requests and scales
back down when the machines are not needed anymore.

5 Related Work

The calculus of virtually timed ambients, first introduced in [10], is based on
mobile ambients [3]. Mobile ambients model both location mobility and nested
locations, and capture processes executing at distributed locations in networks
such as the Internet. Gordon proposed a simple formalism for virtualization
(without notions of timing or resources) loosely based on mobile ambients in [8].
The calculus of virtually timed ambients [10,11] stays closer to the syntax of
the original mobile ambient calculus, while at the same time including notions
of time and explicit resource provisioning. Our notion of resource provisioning
extends work on deployment models in ABS [9] to additionally cover nested
virtualization and the capabilities of mobile ambients. Resource-awareness for
virtually timed ambients draws on the Calculus of Context Aware Ambients
[21] which introduces context-guarded processes to enable context-awareness of
mobile ambients. The context expressions in this paper are adapted to cover the
timing and resource aspects of virtually timed ambients.

Cardelli and Gordon defined a labeled transition system for their mobile
ambients [4], but no bisimulation. A bisimulation relation for a fragment of
mobile ambients, called mobile safe ambients, is defined in [13] and provides the
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basis for later work. A labelled bisimulation for mobile ambients is defined by
Merro and Nardelli [14], who prove that this bisimulation is equivalent to reduc-
tion barbed congruence and develop up-to-proof techniques. The weak timed
bisimulation defined in [11] is a conservative extension of this approach, which is
extended further in this paper using notions of context bisimulation developed
in [19,20].

In [12] we use the Maude [5] system to implement a model checker, exploiting
the low representational distance which distinguishes Maude [15]. The reduction
rules for mobile ambients as well as a type system have been implemented in
Maude in [18]. In contrast, our implementation focuses on capturing the timed
reduction rules of virtually timed ambients as well as the modal formulas to
define guards and resource-awareness.

6 Concluding Remarks

Virtualization opens for new and interesting foundational models of computation
by explicitly emphasizing deployment and resource management. The calculus
of virtually timed ambients is a formal model of hierarchical locations of exe-
cution with explicit resource provisioning. Resource provisioning for virtually
timed ambients is based on virtual time, a local notion of time reminiscent of
time slices provisioned by an operating system to virtual machines in the context
of nested virtualization. This paper introduces resource-awareness for virtually
timed ambients, which enables horizontal scaling. We define weak timed con-
text bisimulation for resource-aware virtually timed ambients as an extension
of bisimulation for mobile ambients. We implement the calculus in the rewrit-
ing logic system Maude and illustrate its use by a case study of dynamic auto
scaling. Future work aims to develop optimization strategies for resource-aware
scaling as well as a notion of higher order resources.
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Abstract. It is notoriously hard to correctly implement a multiparty
protocol which involves asynchronous/concurrent interactions and con-
straints on states of multiple participants. To assist developers in imple-
menting such protocols, we propose a novel specification language to
specify interactions within multiple object-oriented actors and the side-
effects on heap memory of those actors. A behavioral-type-based analysis
is presented for type checking. Our specification language formalizes a
protocol as a global type, which describes the procedure of asynchronous
method calls, the usage of futures, and the heap side-effects with a first-
order logic. To characterize runs of instances of types, we give a model-
theoretic semantics for types and translate them into logical constraints
over traces. We prove protocol adherence: If a program is well-typed
w.r.t. a protocol, then every trace of the program adheres to the proto-
col, i.e., every trace is a model for the formula of the protocol’s type.

1 Introduction

The combination of actors [25] with futures [4] in object-oriented languages
(e.g., Scala [34] and ABS [28]), sometimes called Active Objects [12], is an active
research area for system models and is frequently used in practice [37]. Processes
of Active Objects communicate internally within an object via the object’s heap
memory. External communication works via asynchronous method calls with
futures: constructs for synchronizing executions invoked by those calls. Encap-
sulated heap memory and explicit synchronization points make it easy to locally
reason about Active Objects, but hard to specify and verify global protocols.

The main obstacle is to bridge the gap between local perspectives of single
objects and global perspectives of the whole system. As Din and Owe [15] pointed
out, it is non-trivial to precisely specify the communication within an object’s
heap memory from a global perspective [16]. Multiparty session types (short as
MPST) [27], one important member of behavioral types [3,19], are established
theories for typing globally stateless concurrent interactions (i.e., method calls)
among multiple participants (i.e., objects) to ensure communication safety. Cur-
rent works in MPST [6,38] have attempted to specify state in communication by
using global values and assuming channels as the only communication concept.

c© Springer Nature Switzerland AG 2018
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Global values are not sufficient to specify the non-trivial interplay of processes
when taking the heap memory inside of an object into account. Furthermore,
channels are not able to fully represent the usage of futures, because futures,
unlike channels, could expose some inner state of their object. Namely, it exposes
that the computing process has terminated and the object was inactive before
and after.

We integrate the stateful analysis and specification of traces of Din et al. [15]
into MPST, where local verification of the endpoints compositionally guarantees
the global specification of the whole system. Functional properties are specified
as a part of the communication pattern. We ensure that from the perspective of
each actor, its trace is not distinguishable from the global specification and that
the whole system is deadlock free.

We specify passed data and modifications of heap memory with first-order
logic (FOL) formulas and transform behavioral types into logical constraints on
traces. Moreover, from the model-theoretic perspective, we define protocol adher-
ence as the property that every generated trace of a well-typed(�) program is a
model(|=) for the translation of the type. The running example below illustrates
the challenges for protocols in Active Objects.

Consider a GUI U, a computation server S, and an
interface server I such that U, without knowing S, wants
to compute some data by sending it to I via a method
call. After executing this call, U prepares for the next
action by setting field intern to value expect and ter-
minating its process to stay responsive. I delegates U’s
task to S and remains responsive to other requests with-

out waiting for S’s computation by invoking another method on U with future x,
which will carry the computation result, back to U. The code and figure below
implement this scenario:

1 object U{
2 TState intern = init;
3 Int resume(Fut〈Int〉 x){
4 if( this.intern!=expect } return −1;
5 Int r = x.get; return r; }
6 Unit start(Int j){
7 Fut〈Unit〉 f = I!cmp(j);
8 this.intern = expect; }}

9 object I{
10 Unit cmp(Int dat){
11 Fut〈Int〉 f = S!cmp(dat);
12 Fut〈Int〉 f’ = U!resume(f);}}
13
14 object S{ Int cmp(Int i){ ... }}
15
16 main { U!start(20); }

In the code, ! denotes a non-blocking call, I!cmp
calls method cmp of I, U!start calls U.start, U!resume
calls method resume for continuation, and S!cmp

starts the actual computation at S. The challenge for
formal specifications is to express that (1) I is trans-
parent to U and S such that I must pass the same
data to S that it received from U, and I does not read
the return value from S; and (2) U changes its heap
to expect and reads the correct future.
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Contributions. We propose (1) a specification language for actors’ behaviors,
that integrates FOL to specify heap memory, (2) model-theoretic semantics for
protocol adherence, and (3) a static type system integrating a FOL validity
calculus, which guarantees protocol adherence and deadlock freedom.

Roadmap. Section 2 provides an overview of our approach. Section 3 introduces
a core language for Active Objects, Async, and its dynamic logic, Sect. 4 gives
the types and operations on them and Sect. 5 gives the type system. Section 6
extends the concept to repetition. Section 7 concludes and discusses related work.

2 Scope, Challenges and an Overview of the Workflow

We aim to specify and verify session-based systems. A session-based system is a
system which has a fixed, finite set of participating objects. Each object has an
assigned role within the protocol of a session. Our analysis is fully static and is
aimed at system validation: Ensuring that an existing system follows a certain
specification.

We consider object-oriented actors, which use method calls, futures, and heap
memory for communication. Every method call is asynchronous and starts a new
process at the callee object. At each such call, the active caller obtains a fresh
future identity, on which one may synchronize on the termination of the started
process. An object may only switch its active process to another process if the
currently active process terminates. The usage of futures provides programmers
with the control of when synchronize – however, combining futures with object-
oriented actors leads to the following complications:

Protocols with State. In an object-oriented setting, one must take the heap
memory into account when reasoning about concurrent computations. For
one, the heap memory influences the behavior of objects. For another, changes
of the heap memory (among coordinated actors) are not only a by-effect
of communication but often the aim of a protocol. Actors enforce strong
encapsulation and restrict communication between object to asynchronous
method calls and future reads – coordinated memory changes must be part
of the specification.

Unexposed State. In the Active Object concurrency model, each process has
exactly one future. Thus reading from a future is synchronizing with an
unknown process and depends on the state of the process’s object. To avoid
deadlocks, futures cannot be analyzed in isolation—reading from a future
must take the unexposed state of the object into account.

Mixed Communication Paradigms. Processes inside an object communicate
through the heap memory. This kind of communication is hard to describe
with data types, as it requires fine-grained specification of computation and
has no explicit caller or callee. Thus, it is difficult to isolate the parts of the
program which realize the communication protocol. Furthermore, method
calls are asynchronous, while future reads are synchronous.
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Two-Fold Endpoints. In the Active Object model, the callee endpoints of
methods calls are objects, but the caller endpoints and the endpoints for
future synchronization are processes. The interplay of multiple objects, which
contain multiple processes, must be captured in the analysis by a two-fold
notion of endpoints such that objects and processes are both endpoints.

In the following, we use the example from Sect. 1 to show how our approach
works and addresses these issues.

Example 1: Specifying global types. Our specification language for side-effects
is a FOL for specifying local memory instead of global values since (1) global
values are not natural in an Active Object setting, and (2) a logic over memory
locations (variables and fields) allows us to use a well-established theory of first
order dynamic logic [22] to capture the semantics of methods. We formalize the
scenario in Sect. 1 by the following global type in our specification language:

G =main−→U :start〈U.state .= expect〉 . U−→ I :cmp〈�,�〉 .

I
f−→S :cmp〈i .= dat, result > 0〉 . I−→U :resume〈x .= f,�〉 . U↑x . End

We formally define the above syntax in Sect. 4 and only give the intuition here:
� denotes true. U −→ I : cmp denotes a message cmp from U to I, i.e., the call to
a method cmp. Formula U.state

.= expect is the postcondition for the process
started by this call at the callee object. If two formulas are provided, the first is
the precondition describing the state of the caller and the second is the postcon-
dition describing the state of the callee and the return value, which is denoted by
keyword result. The annotation f denotes the memory location where the future
of the denoted call is stored. Formula i

.= dat states that dat, the parameter of
S.cmp, carries the same value as received by I.cmp on parameter i, while formula
x

.= f requires that parameter x of the call at method resume carries the future of
the previous call to cmp. Finally, U↑x describes a read of U on the future stored
in the location x. Note that we specify locations in formulas and avoid a situa-
tion where an endpoint must guarantee an obligation containing values that it
cannot access. Other approaches (e.g., Bocchi et al. [6]) allow this situation and
thus require additional analyses of history-sensitivity and temporal-satisfiability.

For the analysis, we adopt an approach similar to MPST: We project a global
type on endpoints defined inside it, to automatically derive local specifications
for all objects and methods. Additionally, formulas, which are used to specify
conditions on the heap memory, are projected on the logical substructure of the
callee, because the callee cannot access the caller’s fields.

Two-Phase Analysis. The analysis requires that the protocol is encoded as a
global type, which defines the order of method calls and future reads between
objects, annotated with FO specifications of heap memory and passed data. Our
analysis has two phases. In Phase 1, the global type is used to generate local
types for all endpoints. In Phase 2, the endpoints are type checked against their
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Fig. 1. Workflow for Phase 1: G is a global type and � denotes projection on object X
resp. method m. Function prp∗ is the function propagating guarantees.

local types and a causality graph is generated for checking for deadlocks. The
workflow of Phase 1 is based on MPST’s approach, but is adjusted to the Active
Object concurrency model:

Phase 1. The workflow of Phase 1 is shown in Fig. 1.

– Step 1 : The global type is projected onto the participating objects and gener-
ates object types. Such a type specifies the obligation of an object for running
methods in a certain order, and for guaranteeing the FOL specifications of
the object’s state. During projection, the FO-specifications are projected onto
the substructure of the object in question.

– Step 2 : FO-specifications are propagated within an object type: as the order
of method executions is specified by the specification, the postcondition of a
method can be assumed as a precondition for the next method.

– Step 3 : An object type is projected on its methods, producing method types.

A global type encodes the following obligations (short as Obl.) for the imple-
mentation: (Obl. a) for each object, the observable events (calls and reads) are
ordered as specified in the global type, (Obl. b) for each method, the observable
events are ordered as specified in the local type derived from the global type and
(Obl. c) the whole system does not deadlock, and adhere to the FO-specifications.

In the following, we demonstrate the workflow of Phase 1 for the global type
in Example 1. We do not formally introduce the syntax at this point.

Step 1: Object Types. Projecting G from Example 1 on object U results in

?start〈�〉.I!cmp〈�〉.Put state .
= expect.?resume〈∃f. x

.
= f〉.Read x.Put result > 0

Type ?start〈�〉 denotes a starting point for runtime execution. Type I!cmp〈�〉
denotes an invocation of method cmp. Type Put ϕ specifies the termination of
the currently active process in a state where ϕ holds. Position and postcondition
of Put state

.= expect are automatically derived. The position is just before the
next method start and the postcondition is taken from the call in the global type.
The analysis ensures that no method executes in-between. The precondition of
resume is weakened, since field f is not visible to U and callee U cannot use all
information from caller I. Weakening ensures that all locations in ϕ are visible
to U. Type Read x specifies a synchronization on the future stored in x.
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Step 2: Propagation. In the next step we propagate the postcondition of the
last process to the precondition of the next process. No process is specified
as active between start and resume, so the heap is not modified—thus, the
postcondition of start still holds when resume starts. Adding state

.= expect to
the precondition of resume strengthens the assumption for the type checking of
resume. The propagation of conditions results in:

prp∗(G� U) =?start〈�〉 . I!cmp〈�〉 . Put state = expect .

?resume〈∃f. x
.= f ∧ state

.= expect〉 . Read x . Put result > 0

Step 3: Method Types. We generate a method type to specify a method in isola-
tion. Projecting the object type in Step 2 on method resume generates:

prp∗(G� U)�resume =?resume〈∃f. x
.
= f ∧ state

.
= expect〉.Read x.Put result > 0

Method types share the syntax with object types. Projection from object types
splits the object type at positions where one method ends and another one starts.

Phase 2. After generating method types, Phase 2 of the analysis checks the
implementation of methods against their method types, and checks the formulas
for validity. The type checking of method types guarantees the correct local
order of events (Obl. b). State specifications are checked by integrating a validity
calculus [15] into the type system. To guarantee (Obl. a and c), we require the
following analyses:

Causality Graph. We generate a causality graph to ensure deadlock freedom
(Obl. c): A deadlock free causality graph for Active Objects is cycle-free [17,24].
A causality graph is also used to ensure that methods of one object are executed
in the order specified in the global type that the object obeys to (Obl. a).

U ? ! ↓ ? ↑ ↓
I ? ! ! ↓
S ? ↓

The nodes are the local types from the projected object types. A solid edge
connecting two nodes models that the statement for the first type directly causes
the statement for the second type; for example, there are edges from a call to
the corresponding receiving type. The graph is partially generated from G, and
partially generated from the code: The edge connecting the gray nodes is added
by a Points-To analysis, which maps a location of a future to the methods
resolving this future. The termination of a method causes the start of the next
(as the object cannot switch the active process otherwise), but does not select
the next method itself. A dotted edge models such indirect causality: Indirect
causality edges are considered when checking cycle-freedom check for deadlock
freedom, but not for checking the method order.
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Model-Theoretic Semantics. One of our contributions is the definition and verifi-
cation of protocol adherence from a model-theoretic point of view: The property
that a program follows a specified scenario (the protocol) if every generated
trace is a model for the translation of the global type. We thus define protocol
adherence through a logical characterization of global types and translate types
into constraints over traces, which are sequences of configurations generated by
the program.

G

L

Fig. 2. Workflow for Phase 2 in our analysis.

This declarative approach for defining protocol adherence allows us to connect
the FO properties embedded in the type to the execution of methods by using a
dynamic logic: For a statement s the dynamic logic formula ϕ ⇒ [s]ψ expresses
that the first-order formula ψ holds after executing s, if ϕ holds in the beginning.
From the perspective of the trace logic, FOL describes a single configuration in
the trace, while the modality [s] relates the configuration before executing s with
the configuration after executing s. We use modalities during type checking.

3 Async, a Core Actor-Based Language Using Futures

We introduce Async, a simple Active Object language based on ABS [28]. Due
to space limitations, we only present the basic constructs of Async below. For
branching constructs we refer to [30]; repetition is introduced in Sect. 6. An
Async-program consists of a main statement and a set of actors, which are objects
that have fields and method but do not share state. Inside an object, processes do
not interleave and the currently active process must terminate before another one
is scheduled. Therefore, single methods can be considered sequential for analysis.
We assume standard operations, literals and types for booleans, integers, lists
and Object.

Definition 1 (Async-Syntax). Let e denote expressions, T denote data types, x
denote variable and field names, X denote object names, and Fut<T> denote future
types. · represents possibly empty lists and [·] represents optional elements.

Prgm:: = O main{X!m(e)} O:: = object X {M T x = e} M:: = T m(T x){s; return e}
s:: =

[
[Fut<T>] x =

]
X!m(e) | [T] x = e | [

T
]
x = e.get | skip | s; s
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Objects communicate only by asynchronous method calls using futures. Upon
a method call, a fresh future is generated on callee side and is passed to the
caller. The callee writes the return value into the future upon termination of the
corresponding process; anyone with the access to the future can read, but not
write, into it. We only consider static sessions, in which all objects are created
before the start of the system. Async is a standard imperative language with two
additional statements: (1) x = X!m(e) calls method m with parameters e on object
X. The generated future is stored in x. The caller continues execution, while the
callee is computing the call on m or scheduling m for later execution if another
process is currently active. (2) e.get reads a value from the future stored in e.
If the process computing this future has not terminated, the reading process
blocks.

To define a small-step reduction relation over events for the semantics of
Async, we first define an event as a process action with visible communication:

Definition 2 (Events). Let f, f ′ range over futures. An event, denoted by ev,
is defined by the following grammar:

ev:: =iEv(X,X′, f, m, e) | iREv(X, f, m) | fEv(X, f, m, e) | fREv(X, f, e) | noEv

An invocation iEv(X,X′, f, m, e) models that X calls X′.m using f and passes e as
parameters. An invocation reaction iREv(X, f, m) models that X starts executing
m to resolve f . A resolving fEv(X, f, m, e) models that X resolves f , which contains
e at the moment, by finishing the execution of m. A fetch fREv(X, f, e) models
that X reads value e from f . Finally, noEv models no visible communication.

A configuration is composed of processes and objects. A process has a unique
future f , a store σ which maps variables to literals, and the name X of its object.
An object has a unique name X, an active future f , and a store ρ which maps
fields to literals.

Definition 3 (Runtime Syntax of Processes and Objects). The following
grammar defines runtime processes and objects as configurations C:

C:: = prc(X, f, m(s), σ) | prc(X, f, val(e), σ) | ob(X, f, ρ) | C C

A process either is executing a method m for a request carried by f at some
object X, represented by prc(X, f, m(s), σ), or has returned e, represented by
prc(X, f, val(e), σ). An object ob(X, f, ρ) has its name X, the future of the active
process f and the heap ρ. We write ob(X,⊥, ρ) to indicate that X is inactive.
Composition of configurations is commutative and associative, i.e., C C′ = C′ C
and C (C′ C′′) = (C C′) C′′. We denote the initial configuration of a program
Prgm with I(Prgm). If all processes of a configuration C have terminated, the
configuration also terminates. The body of method m is denoted by M(m). We
write ̂M(m, e) for the initial local store of a task executing m with parameters e.

We use traces, sequences of pairs of events and configurations, to capture the
behavior of a program. We only consider terminating runs and define big-step
semantics Prgm ⇓ tr for finite traces:
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Definition 4 (Run and Big-Step Semantics). A run from C1 to Cn is a
sequence of configurations C1, . . . ,Cn with events ev1, . . . , evn−1 such that:

C1 →ev1 C2 →ev2 . . . →evn−1 Cn

The trace tr of a run is a sequence (ev1,C1), . . . , (evm,Cm) where for every
1 ≤ j < m ≤ n there is a C such that Cj →evjC is in the run and evj �= noEv.
An Async program Prgm generates tr, written Prgm ⇓ tr, if there is a run from
its initial configuration to a terminated configuration such that tr is the trace of
this run.

Figure 3 defines the reduction relation →ev for the semantics. �e�σ,ρ denotes
the evaluation of an expression e under stores σ and ρ. Rule (call) executes a
method call on the object stores in e by generating a fresh future f ′ and an
invocation event. The new process is not set as active upon creation by (call).
By rule (start), the object X must be inactive, when the process is started. An
invocation reaction event is generated. Rule (sync) synchronizes on a future f ′

stored in e, by checking whether the configuration contains prc(X′, f ′, val(e′), σ′),
i.e. f ′ is resolved, and reads the return value e′. Rule (end) terminates a process.
In all other rules, the ev parameter is noEv.

Dynamic Logic. A dynamic logic combines FO-formulas over the heap with
symbolic executions [1,32] of statements. A symbolic execution uses symbolic
values to describe a possible set of actual values. It does not reason about one
execution of the statement, but describes a set of executions.

Example 2. Formula ∃Int a.
(

a > 0 ∧ i > a
) → [j = i*2;]j > 0 describes that if

there is a number a bigger than 0 and smaller than the value stored in i, then
after executing j = i*2;, variable j contains a positive value.

Based on ABSDL [14], we present Async Dynamic Logic (short as ADL), which
extends first-order logic over program variables and heap memory with modal-
ities that model the effect of statements. In this logic, method parameters are
special variables and a modality is a formula [s]ϕ which holds in a configuration,
say C, if ϕ holds in every configuration reached from C after executing s. We focus
on the semantics of modality-free formulas, which have configurations as models;
the semantics of modalities is a transition relation between configurations.

Definition 5 (Formulas ϕ). We define the set of formulas ϕ and terms t
by the following grammar, where p ranges over predicate symbols, f ranges over
function symbols, x ranges over logical variables, and v ranges over logical and
program variables. The set of formulas is denoted by ADL.

ϕ:: = tt | ¬ϕ | ϕ ∨ ϕ | p(t . . . t) | t ≥ t | t .= t | ∃T x;ϕ | [s]ϕ t:: = v | f(t . . . t)
Local program variables (i.e., v) are modeled as special function symbols. To

model heap accesses, following Schmitt et al. [36], we use two function symbols
store and select with (at least) the axiom select(store(heap, f, o, value), f, o) =
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Fig. 3. The selected semantics rules. Full rules are provided in [30].

value where heap is a special local program variable modeling the heap explicitly.
A special function symbol result is interpreted as the return value of a method,
and a logical variable is free if it is not bound by any quantifier.

Definition 6. A formula ϕ is valid if it evaluates to true in every configuration.

Formulas are global or X-formulas. Global formulas refer to the heap of multiple
objects, while X-formulas refer only to X. The latter contains only the function
symbols for elements from X and the special function symbol self modeling the
reference to X. For proving that an X-formula holds for a given state, if suffices
to locally check the code of X. A validity calculus for ADL is presented in [15].

Definition 7. Let ϕ be a formula. The weakened X-formula ϕ@X is obtained by
replacing all function symbols in ϕ which are not exclusive to X (i.e., refer to the
fields of other objects) by free variables and existentially quantifying over them.

Example 3. Let fl be a field, X an object and i the parameter of some method
in class X. Consider ϕ = X.fl > 0 ∧ i > X.fl. The formula ϕ is an X-formula, as
ϕ = ϕ@X. The weakening for some object X′ is ϕ@X′ = ∃Int a.a > 0 ∧ i > a.
ϕ@X′ does not reason about X.fl, but still has the information of i > 1.

4 Behavioral-Type-Based Stateful Specification

We define a specification language for global types to specify the behavior of
the system. Following Sect. 3, we only represent the key constructs and leave
branching to our technical report [30] and repetition to Sect. 6.

Definition 8 (Syntax of Global Types). Let ϕ,ψ range over modality-free
ADLformulas and Xi range over object names. [·] denotes optional elements.

G:: = main−→X :m〈ϕ〉.G G :: = X1
[x]−−→X2 :m〈ϕ,ψ〉.G | X↑e.G | End
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The calling type X1
[x]−−→ X2 : m〈ϕ,ψ〉 specifies a method call from X1 to m at

X2. If x is not omitted above the arrow, the future of this call must be stored
in location x. The ADL-formula ϕ specifies (1) the call parameters passed to the
callee and (2) the memory of X1 at the moment of the call. Formula ψ is the
postcondition of the callee process and specifies the state of X2 and the return
value once m terminates. The exact point of termination is derived during pro-
jection. The initial method call main−→X :m〈ψ〉 only specifies the postcondition
of the process running X.m. Type X↑e specifies a synchronization on the future,
to which the expression e evaluates. Every synchronization must be specified.
End specifies the end of communication.

G denotes a complete protocol with an initializing method call, while G
denotes partial types. Even without fields in the formula, the implementation
is referenced in the specification, as endpoints are object names. Object and
method types share the same syntax. Together we call them local types. The
grammar of local types is defined as follows:

Definition 9 (Syntax of Local Types). Let ϕ range over modality-free
ADLformulas and Xi range over object names. [·] denotes optional elements.

L:: =?m〈ϕ〉.L L:: =?m〈ϕ〉.L | X![x]m〈ϕ〉.L | Put ϕ.L | Read e.L | skip.L | End

The type ?m〈ϕ〉 denotes the start of a process computing m in a state where
formula ϕ holds. Formula ϕ is the precondition of m and describes the local state
and method parameters of m. Type Put ϕ denotes the termination in a state
where ϕ holds. Formula ϕ is a postcondition and describes the return value
and the local store. Contrary to global types, a postcondition of a process is
not annotated at the call, but at the point of termination because the point
of termination is now explicit. Type X![x]m〈ϕ〉 corresponds to the caller side of

X1
[x]−−→ X2 : m〈ϕ,ψ〉. Type Read e models a read from e and skip denotes no

communication. As for global types, End models the end of communication. In
our examples, we omit End for brevity’s sake. We use L for complete local types
and L for partial local types.

Projection has three steps: (1) projection of global types on objects, (2)
condition propagation, and (3) projection of object types on methods.

Projection on Objects. The projection on objects ensures that every object can
access all locations occurring in its specification and adds Put ϕ at the correct
position. This requires an additional parameter in the projection to keep track
of which process is specified to be active and what its postcondition is.

To track the postcondition of the last active method of an object, we use a
partial function ac : O ⇀ ADL to map objects to formulas. If no method was
active on X yet, ac is undefined, written ac(X) = ⊥. The projection of G on an
object X is denoted by G �ac X. The selected projection rules for methods calls
and termination are given in Fig. 4. We write ac⊥ for the function defined by

∀X. ac(X) = ⊥. For updates, we write ac[X �→ ψ](X′) =
{

ψ if X = X′

ac(X′) otherwise .
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X1 −→X2 : 〈ϕ, ψ〉.G �ac X1 = X2! 〈ϕ〉.(G �ac[X2 �→ψ] X1) ac(X1) �= ⊥ ∧ ϕ = ϕ@X1

X1 −→X2 : 〈ϕ, ψ〉.G �ac X2 =
{
? 〈ϕ@X2〉.(G �ac[X2 �→ψ] X1) ac(X2) = ⊥
Put ac(X2).? 〈ϕ@X2〉.(G �ac[X2 �→ψ] X1) ac(X2) �= ⊥

X1 −→X2 : 〈ϕ, ψ〉.G �ac X = skip.(G �ac[X2 �→ψ] X) X2 �= X �= X1

main−→X2 : 〈ϕ〉.G �ac⊥ X1 =
{
? 〈ϕ@X2〉.(G �ac[X2 �→ψ] X1) X2 = X1

skip.(G �ac[X2 �→ψ] X1) X2 �= X1

End�ac X =
{
Put ac(X).End ac(X) �= ⊥
End ac(X) = ⊥

Fig. 4. The selected rules for projection on objects.

When projecting on caller X1, a sending local type is generated by (1) if X1 has
an active process (ac(X1) �= ⊥) and the precondition can be proven by the caller
(ϕ = ϕ@X1). If the callee has an active process (i.e., the last active postcondition
exists: ac(X2) �= ⊥), then the termination type for the active process is added
by (2) before the receiving type. If the callee is specified as being inactive (i.e.,
no process was running before and no postcondition is tracked ac(X2) = ⊥),
then only the receiving type is added by (2). When projecting on any other
object, skip is added by (3). In any case, ac is updated and maps the callee to a
new postcondition. Rules (4) and (5) are straightforward. As usual, projection is
undefined if no rule matches, and we omit ac⊥ and write just G� X.

Propagation. In our concurrency model the heap does not change if no process is
active. All guarantees from the last active process still hold for the next process.
By propagation, formulas are added from the postcondition of one method to
the precondition of the next. Propagation moves formulas from where they must
hold to all points where they still are assumed to hold. Propagation replaces a
partial local type, if the partial type matches the given pattern.

Definition 10 (Propagation). The propagation function prp is defined via
term rewriting (denoted �) as follows. prp∗ denotes the fixpoint of rewriting.

(1) Put ϕ.?m〈ψ〉 � Put ϕ.?m〈ψ ∧ ϕ@X〉 whereX is the target object

Projection on Methods. The projection on a method, denoted by L �m′ m, results
in a set of method types. A method may have multiple method types, as long
as the method types are distinguishable, which means that they have non-
overlapping preconditions. Formally, two preconditions ϕ1 and ϕ2, are distin-
guishable if the formula ¬(ϕ1 ∧ ϕ2) is valid. In the case of overlapping precondi-
tions, multiple preconditions can hold at the same time and it is not guaranteed
that the correct type will be realized.

The rules for projection on a method are straightforward and we refer to
Sect. 2 for an example and to our technical report [30] for full definitions.
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Definition 11 (Well-Formedness). A global type G is well-formed, if the pro-
jections on all methods are defined and all types of a method are distinguishable.

Semantics of Types as Constraints on Traces. To formalize the behavioral types
of the previous section, we transform them into first-order constraints over traces.

We define C as a function transforming global types to constraints on traces.
Recall that we have defined C for configurations and ev for events. The primitive
C(i) references the ith configuration and ev(i) references the ith event in a trace.
We use events and formulas as colors and thus include futures, method names,
literals and object names in the domain. Constraints refer to ADL formulas ϕ
with C(i) |= ϕ, meaning that in the ith configuration, ϕ holds.

To restrict a constraint to a subtrace, we use relativization [23], a syntactic
restriction of constraint γ to a substructure described by another constraint χ.

Definition 12. Let χ(x) be a constraint with a free variable x of data type T

and γ another constraint. The relativization of γ with χ(x), written γ[x ∈ T/χ],
replaces all subconstraints of the form ∃y ∈ T.γ′ in γ by ∃y ∈ T.χ(y) ∧ γ′.

The main rules for translating G into a constraint C(G) are defined as follows.

Definition 13 (Semantics of Global Types). Predicate res(i) holds if ev(i)
is a resolving event and A(i,X) holds if X is active in C(i).

(1) C(main−→X2 :m〈ψ〉.G) = ∃j, k. ∃f. ∃e′. ev(j) .
= iREv(X2, f, m) ∧ C(j) |=ϕ@X2∧

ev(k)
.
= fEv(X2, f, e′) ∧ C(k) |=ψ ∧ ∀l.l �=j ∧ l �=k ⇒ res(l) ∧ C(G)

(2) C(X1
x−→X2 :m〈ϕ, ψ〉) = ∃i, j, k. ∃f. ∃e, e′.

ev(i)
.
= iEv(X1,X2, f, m, e) ∧ C(i) |=ϕ ∧ ev(j)

.
= iREv(X2, f, m) ∧ C(j) |=ϕ@X2∧

ev(k)
.
= fEv(X2, f, e′) ∧ C(k) |=ψ ∧ C(i) |=(X1.x

.
=f) ∧ ∀l. l �= i ∧ l �=j ∧ l �=k ⇒ res(l)

(3) C(G1.G2) =
∧

X

(∃i ∈ N. C(G1)[j ∈ N/A(j,X) ⇒ j < i] ∧ C(G2)[j ∈ N/A(j,X) ⇒ j ≥ i]
)

The constraint (1) for the call type has three events modeling (1) a call, (2)
the start of the process and (3) the existence of the termination of the process.
Moreover, the projected formulas hold at the configurations for these events.
Every other event is a fEv. The exact position of termination (i.e., fEv events)
is not specified in global types, so we do not constrain them. Reading from a
location is defined analogously. The translation of G1.G2 models that there is a
position i such that, for every object X, the events described in C(G1) are in the
subtrace before i and those in C(G2) are in the subtrace after i.

The restriction is applied for every object, to ensure the following property:
If a trace is a model for the translation of a type G, then for each participating
object (1) all events of this objects have the same order as specified in G and (2)
at the moment of the event, the corresponding FO formula holds. The translation
of, e.g., X1 −→X2 : m2.X1 −→X3 : m3 describes that X2.m2 is called before X2.m2, but
does not describe that the execution start in the same order. Thus, there are
multiple possible event order satisfying this constraint, but from every local point
of view the differences between these traces are not visible.
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5 Analysis

Verifying deadlock freedom requires a Points-To analysis in addition to a type
system. Deadlock freedom is equivalent to cycle-freedom of causality graphs [17]
in Active Objects. The causality graph of a global type G is G(G) = (V,E).
Each node L ∈ V is a local type, and each edge (L1,L2) ∈ E models that L2

must happen after L1.

Definition 14 (Causality Graph). Let G be a well-formed global type. The
nodes of its causality graph G(G) are all partial local types derived from pro-
jecting G on all endpoints. An edge (L1,L2) is added if either (1) L1 = L.L2

is a partial type for some L in some projection on some object or (2) L1 is the
sending type and L2 the receiving type from the projection of a single calling type.

Note that global types do not contain sufficient information to deduce all
causality, e.g., the causality of get statements cannot be deduced from a global
type because synchronizations on futures are specified over locations.

We use a Points-To analysis for futures [17] instead. For generating a causality
graph, we first derive a partial causality graph from the global type, and then we
apply the Points-To analysis during type checking for the graph completion by
deducing the missing edges. The Points-To analysis, defined below, determines
which methods are responsible to resolve the futures in a given expression.

Definition 15 (Points-To). The Points-To analysis determines the set p2(e)
of methods, which may have resolved the future stored in an input expression e.
We can express this using constraints, to integrate it into the type system:

∀i ∈ N. C(i)
.
= prc(X′, f, val(e′), σ) prc(X, f ′, m′(x = e.get; s′′), σ′′) C ∧ �e�σ,ρ = f →

∃j ∈ N. j < i ∧ C(j)
.
= prc(X′, f, m(s), σ′) C′ ∧ m ∈ p2(e)

Whenever a e.get-statement is checked against a type Read e, edges are added
between the node of termination type of the methods which e can point to, and
the node of the current type Read e. Although Points-To is undecidable, well-
scaling tools which safely overapproximate are available [2].

Definition 16 (Admissibility). A causality graph is admissible if (1) every
path is cycle-free and (2) for every object X, and for any pair of receiving types
of X, there exists a connecting path without an edge of the form (Put ϕ, ?m〈ψ〉).

The graph on page 6 is admissible. With a non-admissible graph, methods
may deadlock (violating (1)) or be executed in the wrong order (violating (2)).

Type System and Analysis. The auxiliary ADL-formula post(X.m, ϕ) models that
the value in every future resolved by X.m satisfies ϕ, while formula Post(G)
represents the conjunction of all postconditions specified in G. Figure 5 shows
selected typing rules invoking the validity calculus [15] and Points-To analysis.

Before introducing the typing rules, we define Roles(G) as the set of objects
in G, G(G)+E as the set of edges of G(G) and E (i.e., E is added into G(G)),
term(m) as the set of ↓ nodes of method m, and node(s) as the set of nodes referring
to the types that have typed s. We define three kinds of type judgments:
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(I) The Type Judgment for Programs. � Prgm : G checks Prgm against global
type G. The well-formedness of G (Definition 11) is ensured during type check-
ing. Rule (T-Main) checks that every endpoint in G is implemented in Prgm, the
main block makes the correct initializing call and checks each object against its
object type. The edges collected from the typing rules for objects are added to
the partial causality graph G(G) and the resulting graph is checked for admis-
sibility.

(II) The Type Judgment for Objects. Φ � O : L � E checks whether O is well-
typed by L under a given E with Φ. E is a set of causality edges and Φ is a set
of ADL formulas. Rule (T-Object) projects L on all methods, checks each method
mi by L� mi and collects all resulting edges.

Oi = Xi{. . . } Roles(G) = {X1, . . . ,Xn} G(G) +
⋃

i≤n Ei

∃j ≤ n. G = −→Xj : 〈ϕ〉.G ∀i ≤ n. Post(G) � Oi : prp∗(G� Xi) � Ei

� O1 . . . On {Xj ! ()} : G

∀i ≤ n. L�ac i =? i〈ϕi〉.Li

∀i ≤ n. Φ, ϕi, � i : Li � Ei E =
⋃

i≤n Ei

Φ � X{ 1 1( ){ 1} . . . n n( ){ n} = e} : L � E

Φ ⇒ [ ; e]ϕ

Φ, � e : Put ϕ � E

Φ, ; = X! (e) � ′ : L � E
Φ ⇒ [ ; = X! (e)]ϕ

Φ, � = X! (e); ′ : X! 〈ϕ〉.L � E

Φ, ; = e. � ′ : L � E′

E = E′ ∪ {(n, n′)|∃ ∈ p2(e). n ∈ term( ) ∧ n′ ∈ node( ; e. )}
Φ, � = e. ; ′ : Read e.L � E

Fig. 5. The selected typing rules.

(III) The Type Judgment for Statements. Φ, s � s : L � E checks whether s is
well-typed by L under a given E with Φ, s. The environment s are the statements
type-checked so far. Whenever an ADL formula is checked, a validity check is
performed and s is added in the modality to consider the side-effects on the
heap memory so far. However, these are not recorded in E: The causality edges
only record which method a get statement synchronizes on. Rule (T-Return) checks
that after executing all the type-checked statements, the return statement results
in a state where ϕ holds. Rule (T-Call) also checks the formula ϕ which describes
the state when the call has to be executed. Rule (T-Get) additionally executes the
Points-To analysis and adds all the edges as described in the previous section.

Theorem 1 (Deadlock Freedom and Protocol Adherence). Let Prgm be
a program and G be a global type. If Prgm is well-typed against G then (1) Prgm
does not deadlock and (2) every generated trace from Prgm satisfies C(G):

� Prgm : G → (∀tr. Prgm⇓tr → tr |= C(G)
)
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6 Loops and Repetition

In this section we present the whole workflow of the previous section for Async
extended with repetition. The language is extended with loops and the types
with repetition types (G)∗

ϕ (resp. (L)∗
ϕ). A repetition type resembles a Kleene-

star and models the finite repetition of the type G (resp. L). The formula ϕ is a
loop invariant and has to be satisfied whenever a loop iteration starts or ends.

Definition 17 (Syntax with Repetition).

s:: = . . . | while(e){s} G :: = . . . | (G)∗
ϕ.G L:: = . . . | (L)∗

ϕ . L

By syntactic restrictions, the local type L of an object cannot have the form
(L)∗

ϕ.L′, which forbids it to start with a loop. The intuition behind this restric-
tion is that every loop has an invariant that an object must guarantee before
executing the next iteration. If an object is not active before the loop, it cannot
guarantee the invariant in the very beginning, thus repetition can start with the
second action at the earliest. Below give an example for using invariants.

Example 4. Consider a big data analysis webtool with a client-side GUI U and
a server-side computational server S. We model the following scenario:

U S
U sends data to the computational server by calling

S.comp. To stay responsive, U ends its initial process. U
is called repeatedly on G.up by the server to update the
progress. Whenever U is updated, the server also gets infor-
mation by reading from the future of the last call to U.up.
The sequence diagram to the right illustrates the protocol.
During updating, U must stay in a state expecting to receive
updates from the server. It is therefore important to specify
that field U.expect is not Nil.

main−→U : run〈�〉 . U−→S :comp〈�, �〉 .
(
S
x−→U :up〈�, �〉 . S↑x

)∗

U.expect �=Nil
. end

The invariant U.expect �= Nil specifies the condition that field U.expect is a non-
empty list. This is propagated during projection, which results in the following
local type for U.up

?update〈self .expect �= Nil〉.Put self .expect �= Nil

There is no repetition because being repeatedly called is only visible for the whole
object, not a single process. The type of S.cmp however contains a repetition:

?comp〈�〉.(U!xup〈�〉.Read x
)

∃l. l 	=Nil.Put �

The workflow is the same as described above. We provide the projection,
translation, propagation and typing rules as extension of the previous systems.
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Definition 18 (Projection Rules for Loops). The auxiliary predicate
rcv(X, G) holds if X is specified as being called in G.

(
(G)∗

ϕ.G ′)�ac X =

⎧
⎨

⎩

Put ac(X).(L′′)∗
ϕ@X.L′ if L �= skip∧ rcv(X,G)∧ac(X) �=⊥∧cs(ϕ)

(L)∗
ϕ@X.L′ if L �= skip∧¬rcv(X,G)∧ac(X) �=⊥∧cs(ϕ)

L′ if L = skip∧cs(ϕ)

WhereG.End�ac[X�→⊥] X = L′′,G �ac X = L and G ′ �ac X = L′

The auxiliary formula cs(ϕ) specifies that all weakenings of ϕ imply ϕ. This
is necessary to reject invariants that connect multiple heaps: e.g., this condition
would reject G.i

.= S.i, as it cannot be guaranteed by G and S separately. This
condition, however, admits G.i .= 1 ∧ S.i = 1. The first rule projects global types
to object types. The first case is applied if the object participates in the repetition
of the inner type G by being repeatedly called. The last active process must
terminate first and the repeatedly called method must terminate within the
repetition. The termination inside the loop is ensured by projecting the inner
type with an appended End. The second case is applied if the object participates
in the repetition (L �= skip) by any other repeated action then being called
(¬rcv(X, G)). Finally, the last case skips the repetition if the object does not
participate in it.

The second rule projects object types to methods. The rule distinguishes
whether the whole process is inside the repetition or not. If the process is com-
pletely inside, the repetition is removed, as it is not visible to the method.

In presence of repetition, invariants have to be propagated inside the
repeated, the previous, and the next types. The following definition summarizes
gives the rules for repetition, additionally to rule (1) in Definition 10.

Definition 19 (Rules for Propagation for Repetition).

(2) Put ϕ.(L)∗
ψ � Put ϕ ∧ ψ.(L)∗

ψ (3) (L)∗
ψ.?m′〈ϕ〉 � (L)∗

ψ.?m′〈ϕ ∧ ψ〉
(4) (L)∗

ϕ.(L)∗
ψ � (L)∗

ϕ∧ψ.(L)∗
ψ (5) (?m′〈ϕ〉.L.Put ϕ′)∗

ψ � (?m′〈ϕ ∧ ψ〉.L.Put ϕ′ ∧ ψ)∗
ψ

Since loop invariants have to hold before the first repetition, rule (2) ensures
that the last process before a repetition satisfies the invariant when terminating.
Rule (3) adds an invariant to the next process, as the invariant also holds after
the last repetition. Rule (4) is another case of the first one, in case two repetitions
are succeeding each other. Finally, rule (5) adds the invariant to the processes
inside the repetition. This rule enables the use of the invariant in the first method
of the repetition and ensures that the last method reestablishes the invariant.

For the translation into constraints, first-order constraints are not expressive
enough. The Kleene star constraint resembles regular languages and we thus use
monadic second order logic (MSO) to capture repetition. MSO extends first-
order logic with a quantifier ∃Y ⊆ Z which quantities over subsets of Z and a
∈ primitive to express membership of those sets. The extension of relativization
is straightforward [23,30]. We now extend the semantics of types as constraints
from Definition 13 to repetition:
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Definition 20 (Semantics of Repetition). The semantics of repeated types
uses a set of boundary indices X, between which the inner translation must. Also,
the invariant has to hold at every boundary.

C
(

(G∗
ϕ)

)

= ∃X ⊆ N. ∃i, j ∈ X.
(∀k ∈ N. i < k ≤ j

) ∧ ∀i ∈ X. C(i) |= ϕ∧
∀i, j ∈ X.

(

(∀k ∈ X. k ≥ j ∨ k ≤ i
) ⇒ (

C(G)
)

[n ∈ N/i < n ≤ j]
)

The typing rule for repetition resembles invariant rules from Hoare calculi [26]:

(T-While)

ϕ ∧ Post(G), skip � s′ : L′ � E′′ Φ ⇒ [s′′]ϕ ϕ ∧ Post(G) ⇒ [s]ϕ
ϕ ∧ Post(G), skip � s : L � E′ E = E′ ∪ E′′

Φ, s′′ � while e {s}; s′ : (L)∗
ϕ . L′ � E

The first premise continues the type checking of the program, in an environment
where only the information in the invariant (and the global information in Post,
as defined in Sect. 5) is available. The second and third premises check that the
invariant holds initially and is preserved by the loop body. The forth premise
checks the loop body and the last premise combines the derived causality edges.
The extension of the causality graph is described in [29].

Corollary 1. Theorem1 holds for the system with repetition.

7 Conclusion and Related Work

In this paper we generalize MPST for Active Objects to a two-phase analysis that
handles protocols where information is not only transmitted between objects via
asynchronous method calls but also inside the object through the heap mem-
ory of Active Objects. Additionally, we provide a model-theoretic semantics for
MPST, which allows us to give a declarative definition of protocol adherence
and integrate further static analyses. These analyses are used to reason about
method order and future synchronization within a type system.

7.1 Discussion

Decidability and Types for Validation. The judgment � Prgm : G is undecid-
able if the validity of the FO logic used for specifying side-effects is undecid-
able. A developer can choose an FOL fragment with decidable validity to trade
off expressiveness against analyzability, e.g., if the developer chooses a more
restricted fragment, which may limit the expressiveness of the specification, then
the validity of the FO logic used for specifying side-effects may become decidable.

When using an undecidable FOL fragment, our approach can be used as a
validation tool to check whether the implemented (sub-)system will be behaving
as expected. Our approach can be integrated into the development process sim-
ilarly as invariant-based approaches, and applies techniques proposed by MPST
to connect global and local views of concurrent programs, a notoriously difficult
problem when using contracts and invariants [15].
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Protocol Adherence. Current work on MPST defines protocol adherence as a
fidelity theorem, which states that every sequence of interactions in a session fol-
lows the scenario declared in MPST [27] as follows: An operational semantics for
types is defined and it is shown that the semantics of the language is a refinement
of the semantics of the types. Similarly, behavioral contracts [10] define protocol
adherence by compliance, which compares the interaction of contracts. These
are operational approaches to specification. We define protocol adherence from
a declarative perspective by requiring a logical property to hold for all traces of
a well-typed program. A declarative specification can be analyzed with tools for
logical specification, and can enable easier integration of other static analysis
tools (e.g., to consider state), because they are only required to have a logical
characterization.

7.2 Related Work

This work extends our previous system for Active Objects [31], which could not
specify and verify state, required an additional verification step for the scheduler
and explicit termination points within the global type.

Actors and Objects. Crafa and Padovani [11,35] investigate behavioral types for
the object-oriented join calculus with typestate, a concurrency model similar
to actors. Gay et al. [18] model channels as objects, integrating MPST with
classes; Dezani-Ciancaglini et al. [13] use MPST in the object-oriented language
MOOSE, where types describe communication through shared channels. We ensure
deadlock freedom similarly to Giachino et al. [20,21], who ensure deadlock free-
dom by inferring behavioral contracts and applying a cycle detection algorithm;
however, they do not consider protocol adherence.

State and Contracts. Bocchi et al. [5–7] develop a MPST discipline with asser-
tions for endpoint state. The work considers neither objects nor heap memory.
The specifications use global values in global types and require complex checks
for history-sensitivity and temporal-sensitivity to ensure that an endpoint proves
its obligations. We evade this by specifying inherently class-local memory loca-
tions. They explicitly track values over several endpoints, while we implicitly do
so by equations over locations. In a stateless setting, Toninho and Yoshida use
dependent MPST [38] to reason about passed data.

Logics. Session types as formulas have been examined by Caires et al. [8] and
Carbone et al. [9] for intuitionistic and linear logics as types-as-proposition for
the π-calculus. Our work uses logic not for a proof-theoretic types-as-proposition
theorem, but to use a model-theoretic notion of protocol adherence and to inte-
grate static analysis and dynamic logic. Lange and Yoshida [33] also characterize
session types as formulas, but their characterization characterizes the subtyping
relation, not the execution traces as in our work.

Acknowledgments. This work is partially supported by FormbaR, part of the Inno-
vation Alliance between TU Darmstadt and Deutsche Bahn AG.
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1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-
6

2. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: May-happen-in-
parallel analysis for actor-based concurrency. ACM Trans. Comput. Log. 17(2), 11
(2016)

3. Ancona, D., Bono, V., Bravetti, M.: Behavioral Types in Programming Languages.
Now Publishers Inc., Hanover (2016)

4. Baker, H.G., Hewitt, C.: The incremental garbage collection of processes. SIGART
Newsl. 64, 55–59 (1977)

5. Bocchi, L., Demangeon, R., Yoshida, N.: A multiparty multi-session logic. In:
Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 97–111.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41157-1 7

6. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

7. Bocchi, L., Lange, J., Tuosto, E.: Three algorithms and a methodology for amend-
ing contracts for choreographies. Sci. Ann. Comp. Sci. 22(1), 61–104 (2012)

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

9. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
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14. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

15. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebr. Meth. Program. 83(5–6), 360–
383 (2014)
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Abstract. Modeling and analysis of non-functional properties, such as
timing constraints, is crucial in automotive real-time embedded systems.
East-adl is a domain specific architectural language dedicated to safety-
critical automotive embedded system design. We have previously speci-
fied East-adl timing constraints in Clock Constraint Specification Lan-
guage (Ccsl) and proved the correctness of specification by mapping
the semantics of the constraints into Uppaal models amenable to model
checking. In most cases, a bounded number of violations of timing con-
straints in automotive systems would not lead to system failures when
the results of the violations are negligible, called Weakly-Hard (WH).
Previous work is extended in this paper by including support for prob-
abilistic analysis of timing constraints in the context of WH: Proba-
bilistic extension of Ccsl, called PrCcsl, is defined and the East-adl
timing constraints with stochastic properties are specified in PrCcsl.
The semantics of the extended constraints in PrCcsl is translated into
Uppaal-SMC models for formal verification. Furthermore, a set of map-
ping rules is proposed to facilitate guarantee of translation. Our approach
is demonstrated on an autonomous traffic sign recognition vehicle case
study.

Keywords: East-adl · Uppaal-SMC · Probabilistic Ccsl
Weakly-Hard System · Statistical model checking

1 Introduction

Model-driven development is rigorously applied in automotive systems in which
the software controllers interact with physical environments. The continuous
time behaviors (evolved with various energy rates) of those systems often rely
on complex dynamics as well as on stochastic behaviors. Formal verification and
validation (V&V) technologies are indispensable and highly recommended for
development of safe and reliable automotive systems [3,4]. Conventional V&V,
i.e., testing and model checking have limitations in terms of assessing the reli-
ability of hybrid systems due to both the stochastic and non-linear dynamical
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features. To ensure the reliability of safety critical hybrid dynamic systems, sta-
tistical model checking (SMC) techniques have been proposed [11,12,25]. These
techniques for fully stochastic models validate probabilistic performance prop-
erties of given deterministic (or stochastic) controllers in given stochastic envi-
ronments.

Conventional formal analysis of timing models addresses worst case designs,
typically used for hard deadlines in safety critical systems, however, there is
great incentive to include “less-than-worst-case” designs to improve efficiency
but without affecting the quality of timing analysis in the systems. The challenge
is the definition of suitable model semantics that provide reliable predictions of
system timing, given the timing of individual components and their composi-
tions. While the standard worst case models are well understood in this respect,
the behavior and the expressiveness of “less-than-worst-case” models is far less
investigated. In most cases, a bounded number of violations of timing constraints
in systems would not lead to system failures when the results of the violations are
negligible, called Weakly-Hard (WH) [8,29]. In this paper, we propose a formal
probabilistic modeling and analysis technique by extending the known concept
of WH constraints to what is called “typical” worst case model and analysis.

East-adl (Electronics Architecture and Software Technology - Architecture
Description Language) [5,14], aligned with AUTOSAR (Automotive Open Sys-
tem Architecture) standard [1], is a concrete example of the MBD approach for
the architectural modeling of safety-critical automotive embedded systems. A
system in East-adl is described by Functional Architectures (FA) at dif-
ferent abstraction levels. The FA are composed of a number of interconnected
functionprototypes (fp), and the fps have ports and connectors for communica-
tion. East-adl relies on external tools for the analysis of specifications related
to requirements. For example, behavioral description in East-adl is captured
in external tools, i.e., Simulink/Stateflow[32]. The latest release of East-
adl has adopted the time model proposed in the Timing Augmented Descrip-
tion Language (Tadl2) [9]. Tadl2 expresses and composes the basic timing
constraints, i.e., repetition rates, end-to-end delays, and synchronization con-
straints. The time model of Tadl2 specializes the time model of MARTE, the
UML profile for Modeling and Analysis of Real-Time and Embedded systems
[30]. MARTE provides Ccsl, a time model and a Clock Constraint Specifi-
cation Language, that supports specification of both logical and dense timing
constraints for MARTE models, as well as functional causality constraints [27].

We have previously specified non-functional properties (timing and energy
constraints) of automotive systems specified in East-adl and MARTE/Ccsl,
and proved the correctness of specification by mapping the semantics of the con-
straints into Uppaal models for model checking [23]. Previous work is extended
in this paper by including support for probabilistic analysis of timing constraints
of automotive systems in the context WH: 1. Probabilistic extension of Ccsl,
called PrCcsl, is defined and the East-adl/Tadl2 timing constraints with
stochastic properties are specified in PrCcsl; 2. The semantics of the extended
constraints in PrCcsl is translated into verifiable Uppaal-SMC [2] models for
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formal verification; 3. A set of mapping rules is proposed to facilitate guaran-
tee of translation. Our approach is demonstrated on an autonomous traffic sign
recognition vehicle (AV) case study.

The paper is organized as follows: Sect. 2 presents an overview of Ccsl and
Uppaal-SMC. The AV is introduced as a running example in Sect. 3. Section 4
presents the formal definition of PrCcsl. Section 5 describes a set of translation
patterns from Ccsl/PrCcsl to Uppaal-SMC models and how our approaches
provide support for formal analysis at the design level. The applicability of our
method is demonstrated by performing verification on the AV case study in
Sect. 6. Sections 7 and 8 present related work and the conclusion.

2 Preliminary

In our framework, we consider a subset of Ccsl and its extension with stochastic
properties that is sufficient to specify East-adl timing constraints in the context
of WH. Formal Modeling and V&V of the East-adl timing constraints specified
in Ccsl are performed using Uppaal-SMC.

Clock Constraint Specification Language (Ccsl) [6,27] is a UML profile
for modeling and analysis of real-time systems (MARTE) [7,26]. In Ccsl, a
clock represents a sequence of (possibly infinite) instants. An event is a clock
and the occurrences of an event correspond to a set of ticks of the clock. Ccsl
provides a set of clock constraints that specifies evolution of clocks’ ticks. The
physical time is represented by a dense clock with a base unit. A dense clock
can be discretized into a discrete/logical clock. idealClock is a predefined dense
clock whose unit is second. We define a universal clock ms based on idealClock:
ms = idealClock discretizedBy 0.001. ms representing a periodic clock that
ticks every 1 ms in this paper. A step is a tick of the universal clock. Hence the
length of one step is 1 ms.

Ccsl provides two types of clock constraints, relation and expression: A
relation limits the occurrences among different events/clocks. Let C be a set of
clocks, c1, c2 ∈ C, coincidence relation (c1 ≡ c2) specifies that two clocks must
tick simultaneously. Precedence relation (c1 ≺ c2) delimits that c1 runs faster
than c2, i.e., ∀k ∈ N

+, where N
+ is the set of positive natural numbers, the kth

tick of c1 must occur prior to the kth tick of c2. Causality relation (c1 � c2)
represents a relaxed version of precedence, allowing the two clocks to tick at
the same time. Subclock (c1 ⊆ c2) indicates the relation between two clocks,
superclock (c1) and subclock (c2), s.t. each tick of the subclock must correspond
to a tick of its superclock at the same step. Exclusion (c1 # c2) prevents the
instants of two clocks from being coincident. An expression derives new clocks
from the already defined clocks: periodicOn builds a new clock based on a base
clock and a period parameter, s.t., the instants of the new clocks are separated by
a number of instants of the base clock. The number is given as period. DelayFor
results in a clock by delaying the base clock for a given number of ticks of a
reference clock. Infimum, denoted inf, is defined as the slowest clock that is
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faster than both c1 and c2. Supremum, denoted sup, is defined as the fastest
clock that is slower than c1 and c2.

UPPAAL-SMC performs the probabilistic analysis of properties by monitor-
ing simulations of complex hybrid systems in a given stochastic environment and
using results from the statistics to determine whether the system satisfies the
property with some degree of confidence. Its clocks evolve with various rates,
which are specified with ordinary differential equations (ODE). Uppaal-SMC
provides a number of queries related to the stochastic interpretation of Timed
Automata (STA) [12] and they are as follows, where N and bound indicate the
number of simulations to be performed and the time bound on the simulations
respectively:

1. Probability Estimation estimates the probability of a requirement property φ
being satisfied for a given STA model within the time bound: Pr[bound] φ.

2. Hypothesis Testing checks if the probability of φ being satisfied is larger than
or equal to a certain probability P0: Pr[bound] φ � P0.

3. Probability Comparison compares the probabilities of two properties being
satisfied in certain time bounds: Pr[bound1] φ1 � Pr[bound2] φ2.

4. Expected Value evaluates the minimal or maximal value of a clock or an integer
value while Uppaal-SMC checks the STA model: E[bound;N ](min : φ) or
E[bound;N ](max : φ).

5. Simulations: Uppaal-SMC runs N simulations on the STA model and mon-
itors k (state-based) properties/expressions φ1, ..., φk along the simulations
within simulation bound bound: simulate N [� bound]{φ1, ..., φk}.

3 Running Example: Traffic Sign Recognition Vehicle

An autonomous vehicle (AV) [21,22] application using Traffic Sign Recog-
nition is adopted to illustrate our approach. The AV reads the road signs,
e.g., “speed limit” or “right/left turn”, and adjusts speed and movement
accordingly. The functionality of AV, augmented with timing constraints and
viewed as Functional Design Architecture (FDA) (designFunctionTypes),
consists of the following fps in Fig. 1: System function type contains four fps,
i.e., the Camera captures sign images and relays the images to SignRecognition
periodically. Sign Recognition analyzes each frame of the detected images and
computes the desired images (sign types). Controller determines how the speed
of the vehicle is adjusted based on the sign types and the current speed of
the vehicle. VehicleDynamic specifies the kinematics behaviors of the vehicle.
Environment function type consists of three fps, i.e., the information of traffic
signs, random obstacles, and speed changes caused by environmental influence
described in TrafficSign, Obstacle, and Speed fps respectively.

We consider the Periodic, Execution, End-to-End, Synchronization,
Sporadic, and Comparison timing constraints on top of the AV East-adl
model, which are sufficient to capture the constraints described in Fig. 1. Fur-
thermore, we extend East-adl/Tadl2 with an Exclusion timing constraint
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Fig. 1. AV in East-adl augmented with Tadl2 constraints (R. IDs) specified in
PrCcsl (Spec. R. IDs)

(R8 in Fig. 1) that integrates relevant concepts from the Ccsl constraint, i.e.,
two events cannot occur simultaneously.

R1. The camera must capture an image every 50 ms. In other words, a Periodic
acquisition of Camera must be carried out every 50 ms.
R2. The captured image must be recognized by an AV every 200 ms, i.e., a
Periodic constraint on SignRecognition fp.
R3. The detected image should be computed within [100, 150] ms in order to gen-
erate the desired sign type, the SignRecognition must complete its execution
within [100, 150] ms.
R4. When a traffic sign is recognized, the speed of AV should be updated within
[150, 250] ms. An End-to-End constraint on Controller and VehicleDynamic,
i.e., the time interval from the input of Controller to the output of
VehicleDynamic must be within a certain time.
R5. The required environmental information should arrive to the controller
within 40 ms. Input signals (speed, signType, direct, gear and torque ports)
must be detected by Controller within a given time window, i.e., the tolerated
maximum constraint is 40 ms.
R6. If the mode of AV switches to “emergency stop” due to a certain obstacle,
it should not revert back to “automatic running” mode within a specific time
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period. It is interpreted as a Sporadic constraint, i.e., the mode of AV is changed
to Stop because of encountering an obstacle, it should not revert back to Run
mode within 500 ms.
R7. The execution time interval from Controller to VehicleDynamic must be
less than or equal to the sum of the worst case execution time interval of each
fp.
R8. While AV turns left, the “turning right” mode should not be activated.
The events of turning left and right considered as exclusive and specified as an
Exclusion constraint.

Delay constraint gives duration bounds (minimum and maximum) between
two events source and target. This is specified using lower, upper values
given as either Execution constraint (R3) or End-to-End constraint (R4).
Synchronization constraint describes how tightly the occurrences of a group of
events follow each other. All events must occur within a sliding window, speci-
fied by the tolerance attribute, i.e., the maximum time interval allowed between
events (R5). Periodic constraint states that the period of successive occur-
rences of a single event must have a time interval (R1–R2). Sporadic constraint
states that events can arrive at arbitrary points in time, but with defined mini-
mum inter-arrival times between two consecutive occurrences (R6). Comparison
constraint delimits that two consecutive occurrences of an event should have a
minimum inter-arrival time (R7). Exclusion constraint refers that two events
must not occur at the same time (R8).

Those timing constraints are formally specified (see as R. IDs in Fig. 1)
using the subset of clock relations and expressions (see Sect. 2) in the context
of WH. The timing constraints are then verified utilizing Uppaal-SMC and are
described further in the following sections.

4 Probabilistic Extension of Relation in CCSL

To perform the formal specification and probabilistic verification of East-adl
timing constraints (R1–R8 in Sect. 3.), Ccsl relations are augmented with prob-
abilistic properties, called PrCcsl, based on WH [8]. More specifically, in order
to describe the bound on the number of permitted timing constraint violations in
WH, we extend Ccsl relations with a probabilistic parameter p, where p is the
probability threshold. PrCcsl is satisfied if and only if the probability of relation
constraint being satisfied is greater than or equal to p. As illustrated in Fig. 1,
East-adl/Tadl2 timing constraints (R. IDs in Fig. 1) can be specified (Spec.
R. IDs) using the PrCcsl relations and the conventional Ccsl expressions.

A time system is specified by a set of clocks and clock constraints. An exe-
cution of the time system is a run where the occurrences of events are clock
ticks.

Definition 1 (Run). A run R consists of a finite set of consecutive steps where
a set of clocks tick at each step i. The set of clocks ticking at step i is denoted as
R(i), i.e., for all i, 0 � i � n, R(i) ∈ R, where n is the number of steps of R.
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Fig. 2. Example of a Run

Figure 2 presents a run R consisting of 10 steps and three clocks c1, c2 and c3.
The ticks of the three clocks along with steps are shown as “cross” symbols (x).
For instance, c1, c2 and c3 tick at the first step, hence R(1) = {c1, c2, c3}.

The history of a clock c presents the number of times the clock c has ticked
prior to the current step.

Definition 2 (History). For c ∈ C, the history of c in a run R is a function:
Hc

R: N → N. For all instances of step i, i ∈ N, Hc
R(i) indicates the number of

times the clock c has ticked prior to step i in run R, which is initialized as 0 at
step 0. It is defined as:

Hc
R(i) =

⎧
⎨

⎩

0, i = 0
Hc

R(i − 1), c /∈ R(i) ∧ i > 0
Hc

R(i − 1) + 1, c ∈ R(i) ∧ i > 0

Definition 3 (PrCCSL). Let c1, c2 and R be two logical clocks and a run. The
probabilistic extension of relation constraints, denoted c1∼pc2, is satisfied if the
following condition holds:

R � c1∼pc2 ⇐⇒ Pr(c1∼c2) � p

where ∼ ∈ {⊆,≡,≺,�,#}, P r(c1∼c2) is the probability of the relation c1∼c2
being satisfied, and p is the probability threshold.

The five Ccsl relations, subclock, coincidence, exclusion, causality
and precedence, are considered and their probabilistic extensions are defined.

Definition 4 (Probabilistic Subclock). Let c1, c2 and M be two logical
clocks and a system model. Given k runs = {R1, . . . , Rk}, the probabilistic exten-
sion of subclock relation between c1 and c2, denoted c1⊆pc2, is satisfied if the
following condition holds:

M � c1⊆pc2 ⇐⇒ Pr[c1⊆c2] � p

where Pr[c1⊆c2] = 1
k

k∑

j=1

{Rj |= c1⊆c2}, Rj ∈ {R1, . . . , Rk}, i.e., the ratio of

runs that satisfies the subclock relation out of k runs.

A run Rj satisfies the subclock relation between c1 and c2 “if c1 ticks, c2 must
tick” holds at every step i in Rj , s.t., (Rj |= c1⊆c2) ⇐⇒ (∀i 0 � i � n, c1 ∈



Probabilistic Verification of Timing Constraints in Automotive Systems 243

R(i) =⇒ c2 ∈ R(i)). “Rj |= c1⊆c2” returns 1 if Rj satisfies c1⊆c2, otherwise
it returns 0.

Coincidence relation delimits that two clocks must always tick at the same
step, i.e., if c1 and c2 are coincident, then c1 and c2 are subclocks of each other.

Definition 5 (Probabilistic Coincidence). The probabilistic coincidence

relation between c1 and c2, denoted c1≡pc2, is satisfied over M if the following
condition holds:

M � c1≡pc2 ⇐⇒ Pr[c1≡c2] � p

where Pr[c1≡c2] = 1
k

k∑

j=1

{Rj |= c1≡c2} is determined by the number of runs

satisfying the coincidence relation out of k runs.

A run, Rj satisfies the coincidence relation on c1 and c2 if the assertion holds:
∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 ∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 ∈ R(i)). In
other words, the satisfaction of coincidence relation is established when the
two conditions “if c1 ticks, c2 must tick” and “if c2 ticks, c1 must tick” hold at
every step.

The inverse of coincidence relation is exclusion, which specifies two clocks
cannot tick at the same step.

Definition 6 (Probabilistic Exclusion). For all k runs over M, the prob-
abilistic exclusion relation between c1 and c2, denoted c1#pc2, is satisfied if
the following condition holds:

M � c1#pc2 ⇐⇒ Pr[c1#2] � p

where Pr[c1#c2] = 1
k

k∑

j=1

{Rj |= c1#c2} is the ratio of the runs satisfying the

exclusion relation out of k runs.

A run, Rj , satisfies the exclusion relation on c1 and c2 if ∀i, 0 � i � n,
(c1 ∈ R(i) =⇒ c2 /∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 /∈ R(i)), i.e., for every step, if
c1 ticks, c2 must not tick and vice versa.

The probabilistic extension of causality and precedence relations are
defined based on the history of clocks.

Definition 7 (Probabilistic Causality). The probabilistic causality rela-
tion between c1 and c2 (c1 is the cause and c2 is the effect), denoted c1�pc2, is
satisfied if the following condition holds:

M � c1�pc2 ⇐⇒ Pr[c1�c2] � p

where Pr[c1�c2] = 1
k

k∑

j=1

{Rj |= c1�c2}, i.e., the ratio of runs satisfying the

causality relation among the total number of k runs.
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A run Rj satisfies the causality relation on c1 and c2 if the condition holds: ∀i,
0 � i � n, Hc1

R (i) � Hc2
R (i). A tick of c1 satisfies causality relation if c2 does

not occur prior to c1, i.e., the history of c2 is less than or equal to the history
of c1 at the current step i.

The strict causality, called precedence, constrains that one clock must
always tick faster than the other.

Definition 8 (Probabilistic Precedence). The probabilistic precedence

relation between c1 and c2, denoted c1≺pc2, is satisfied if the following condition
holds:

M � c1≺pc2 ⇐⇒ Pr[c1≺c2] � p

where Pr[c1≺c2] = 1
k

k∑

j=1

{Rj |= c1≺c2} is determined by the number of runs

satisfying the precedence relation out of the k runs.

A run Rj satisfies the precedence relation if the condition (expressed as (1)∧(2))
holds: ∀i, 0 � i � n,

(Hc1
R (i) � Hc2

R (i))
︸ ︷︷ ︸

(1)

∧ (Hc2
R (i) = Hc1

R (i)) =⇒ (c2 /∈ R(i))
︸ ︷︷ ︸

(2)

(1) The history of c1 is greater than or equal to the history of c2; (2) c1 and c2
must not be coincident, i.e., when the history of c1 and c2 are equal, c2 must
not tick.

5 Translating CCSL and PrCCSL into UPPAAL-SMC

To formally verify the East-adl timing constraints given in Sect. 3 using
Uppaal-SMC, we investigate how those constraints, specified in Ccsl expres-
sions and PrCcsl relations, can be translated into STA and probabilistic
Uppaal-SMC queries [12]. Ccsl expressions construct new clocks and the rela-
tions between the new clocks are specified using PrCcsl. We first provide strate-
gies that represent Ccsl expressions as STA. We then present how the East-adl
timing constraints defined in PrCcsl can be translated into the corresponding
STAs and Uppaal-SMC queries based on the strategies.

5.1 Mapping CCSL to UPPAAL-SMC

We first describe how the universal clock (TimeUnit ms), tick and history of
Ccsl can be mapped to the corresponding STAs. Using the mapping, we then
demonstrate that Ccsl expressions can be modeled as STAs. The TimeUnit
is implicitly represented as a single step of time progress in Uppaal-SMC’s
clock [23]. The STA of TimeUnit (universal time defined as ms) consists of one
location and one outgoing transition whereby the physical time and the duration
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Fig. 3. Uppaal-SMC model of clock tick and history

of TimeUnit ms are represented by the clock variable t in Fig. 3(a). clock resets
every time a transition is taken. The duration of TimeUnit is expressed by the
invariant t � 1, and guard t � 1, i.e., a single step of the discrete time progress
(tick) of universal time.

A clock c, considered as an event in Uppaal-SMC, and its tick, i.e., an
occurrence of the event, is represented by the synchronization channel c!. Since
Uppaal-SMC runs in chronometric semantics, in order to describe the dis-
cretized steps of runs (Rs), we consider if c ticks in the time range of [i, i + 1)
(i + 1 is excluded), c ticks at step i. The STA of tick and history is shown in
Fig. 3(b). hc is the history of c, and tc indicates whether c ticks at the current
step. A function upper() rounds the time instant (real number) up to the near-
est greater integer. When c ticks via c? at the current time step, tc is set to 1
prior to the time of the next step (t < u). hc is then increased by 1 (hc++) at
the successive step (i.e., when t = u). For example, when c ticks at time = 1.5
(see Fig. 3(c)), upper() returns the value of 2 and tc becomes 1 during the time
interval [1.5, 2), followed by hc being increased by 1 at t = 2.

Based on the mapping patterns of ms, tick and history, we present how
periodicOn, delayFor, infimum and supremum expressions can be represented
as Uppaal-SMC models.

PeriodicOn: c � periodicOn ms period q, where � means “is defined as”.
PeriodicOn builds a new clock c based on ms and a period parameter q, i.e., c
ticks at every qth tick of ms. The STA of periodicOn is illustrated in Fig. 4(a).
This STA initially stays in the loop location to detect q occurrences (ticks) of
ms. The value x counts the number of ms ticks. When ms occurs (ms?), the
STA takes the outgoing transition and increases x by 1. It “iterates” until ms
ticks q times (x == q), then it activates the tick of c (via c!). At the successive
step (ms?), it updates the history of c (hc++) and sets x = 1. The STA then
returns to loop and repeats the calculation. This periodicOn STA can be used
for the translation of East-adl Periodic timing constraint (R1 in Fig. 1) into
its Uppaal-SMC model.

DelayFor: c � c1 delayFor d on c2. delayFor defines a new clock c based
on c1 (base clock) and c2 (reference clock), i.e., each time c1 ticks, at the dth

tick of c2, c ticks (each tick of c corresponds to a tick of c1). Kang et al. [23]
and Suryadevara et al. [33] presented translation rules of delayFor into Uppaal
models. However, their approaches are not applicable in the case after c1 ticks,
and c1 ticks again before the dth tick of c2 occurs. For example (see Fig. 2),
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Fig. 4. STA of Ccsl expressions

assume that d is 3. After the 1st tick of c1 (at step 0) happens, if c1 ticks again (at
step 2) before the 3rd tick of c2 occurs (at step 4), the 2nd tick of c1 is discarded
in their approaches. To alleviate the restriction, we utilize spawnable STA [12] as
semantics denotation of delayFor expression and the STA of delayFor is shown
in Fig. 4(c). As presented in Fig. 4(b), when the vth tick of c1 occurs (c1[v]?), its
delayFor STA is spawned by source STA. The spawned STA stays in the wait
location until c2 ticks d times. When c2 ticks d times (x == d), it transits to the
tick location and triggers c (c!). At the next step (ms?), the STA increases hc
by 1 and moves to finish location and then becomes inactive, i.e., calculation of
the vth tick of c is completed. This delayFor STA can be utilized to construct
the Uppaal-SMC models of East-adl timing requirements R3 – R7 in Sect. 3.

Given two clocks c1 and c2, their infimum (resp. supremum) is informally
defined as the slowest (resp. fastest) clock faster (resp. slower) than both c1
and c2. infimum and supremum are useful in order to group events occurring
at the same time and decide which one occurs first and which one occurs last.
The representative STAs for both expressions are utilized for the translation of
East-adl Synchronization timing constraint (R5 in Sect. 3) into the Uppaal-
SMC model.
Infimum creates a new clock c, which is the slowest clock faster than c1 and c2.
The STA of infimum is illustrated in Fig. 4(d). When c1 (c2) ticks via c1? (c2?),
the STA transits to the s1 (s2 ) location and compares the history of the two
clocks (h1 and h2) to check whether the current ticking clock c1 (c2) is faster
than c2 (c1). If so, i.e., the condition “h1 � h2 (h2 � h1)” holds, the STA takes
a transition to the tick location and activates the tick of c (c!). After updating
the history (hc++), it returns to the init location and repeats the calculation.
Supremum builds a new clock c, which is the fastest clock slower than c1 and
c2. It states that if c1 ticks at the current step and c1 is slower than c2, then
c ticks. The STA of supremum is shown in Fig. 4(e). When c1 (c2) ticks via c1?
(c2?), the STA transits to the s1 (s2 ) location and compares the history of the
two clocks and decides whether c1 (c2) is slower than c2 (c1). If c1 (c2) ticks



Probabilistic Verification of Timing Constraints in Automotive Systems 247

slower than c2 (c1), i.e., h1 < h2 (h2 < h1), or c1 and c2 tick at the same rate,
i.e., “h1 == h2 && t2 == 1 (h1 == h2 && t1 == 1)” holds, the tick of c
is triggered. The STA then updates the history of c and goes back to init and
repeats the process.

5.2 Representation of PrCCSL in UPPAAL-SMC

In this section, the translation of East-adl timing constraints specified in
PrCcsl into STA and Hypothesis Testing query (refer to Sect. 2) is provided
from the view point of the analysis engine Uppaal-SMC.

Recall the definition of PrCcsl in Sect. 4. The probability of a relation being
satisfied is interpreted as a ratio of runs that satisfies the relation among all
runs. It is specified as Hypothesis Testing queries in Uppaal-SMC, H0: m

k � P
against H1: m

k < P , where m is the number of runs satisfying the given relation
out of all k runs. k is decided by strength parameters α (the probability of false
positives, i.e., accepting H1 when H0 holds) and β (probability of false negatives,
i.e., accepting H0 when H1 holds), respectively [10].

Based on the mapping patterns of tick and history in Sect. 5.1, the probabilis-
tic extension of exclusion, causality and precedence relations are expressed
as Hypothesis Testing queries straightforwardly.
Probabilistic Exclusion is employed to specify East-adl Exclusion timing
constraint, turnLeft #p rightOn (Spec. R8 in Fig. 1). It states that the two
events, turnLeft and rightOn (the vehicle is turning left and right), must be
exclusive. The ticks of turnLeft and rightOn events are modeled using the STA
in Fig. 3(b). Based on the definition of probabilistic exclusion (Sect. 4),
R8 is expressed in Hypothesis Testing query: Pr[bound] ([ ]((tturnLeft =⇒
¬ trightOn) ∧ (trightOn =⇒ ¬ tturnLeft))) � P , where tturnLeft and trightOn

indicate the ticks of turnLeft and rightOn, respectively. bound is the time bound
of simulation, in our setting bound = 3000.

Probabilistic Causality is used to specify East-adl Synchronization timing
constraint, sup �p {inf delayFor 40 on ms} (Spec. R5 in Fig. 1), where sup
(inf ) is the fastest (slowest) event slower (faster) than five input events, speed,
signType, direct, gear and torque. Let SUP and INF denote the supremum and
infimum operator, i.e., SUP(c1, c2) (resp. INF(c1, c2)) returns the supremum
(resp. infimum) of clock c1 and c2. sup and inf can now be expressed with the
nested operators (where � means “is defined as”):

sup � SUP(speed, SUP(SUP(signType, direct), SUP(gear, torque)))

inf � INF(speed, INF(INF(signType, direct), INF(gear, torque)))

For the translation of sup (inf) into Uppaal-SMC model, we employ the STA
of supremum (resp. infimum) (Fig. 4(d) and (e)) for each SUP (INF) operator.
A new clock dinf is generated by delaying inf for 40 ticks of ms: dinf �
{inf delayFor 40 on ms}. The Uppaal-SMC model of dinf is achieved by
adapting the spawnable DelayFor STA (Fig. 4). Based on the probabilistic
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causality definition, R5 is interpreted as: Pr[� bound]([ ] hsup � hdinf ) � P ,
where hsup and hdinf are the history of sup and dinf respectively. Simi-
larly, Execution (R3) and Comparison (R7) timing constraints specified in
probabilistic causality using delayFor can be translated into Hypothesis
Testing queries. For further details, refer to the technical report [20].

Probabilistic Precedence is utilized to specify East-adl End-to-End timing
constraint (R4). It states that the time duration between the source event signIn
(input signal on the signType port of Controller) and the target event spOut
(output signal on the speed port of VehicleDynamic) must be within a time
bound of [150, 250], and that is specified as Uppaal-SMC queries (1) and (2):

{signIn delayFor 150 on ms} ≺p spOut (1)

spOut ≺p {signIn delayFor 250 on ms} (2)

Two clocks, lower and upper, are defined by delaying signIn for 150 and 250
ticks of ms respectively: lower � {signIn delayFor 150 on ms}, and upper �
{signIn delayFor 250 on ms}. The corresponding Uppaal-SMC models of
lower and upper are constructed based on the delayFor STA (shown in Fig. 4).
Finally, R4 specified in PrCcsl is expressed as Uppaal-SMC queries (3) and
(4), where hlower, hupper and hspOut are the history of lower, upper and spOut.
tspOut and tupper represent the tick of upper and spOut respectively:

Pr[� bound]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒ tspOut == 0)) � P
(3)

Pr[� bound]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒ tupper == 0)) � P
(4)

Similarly, East-adl Sporadic timing constraint (R6) specified in
probabilistic precedence can be translated into Hypothesis Testing query
[20].

In the case of properties specified in either probabilistic subclock or
probabilistic coincidence, such properties cannot be directly expressed as
Uppaal-SMC queries. Therefore, we construct observer STA that capture the
semantics of standard subclock and coincidence relations. The observer STA
are composed to the system STA (namely a network STA, NSTA) in parallel.
Then, the probabilistic analysis is performed over the NSTA which enables us to
verify the East-adl timing constraints specified in probabilistic subclock
and probabilistic coincidence of the entire system using Uppaal-SMC.
Further details are given below.

Probabilistic Subclock is employed to specify East-adl Periodic timing
constraint, given as signRecTrig ⊆p cTrig (Spec. R2 in Fig. 1). The standard
subclock relation states that superclock must tick at the same step where sub-
clock ticks. Its corresponding STA is shown in Fig. 5(a). When signRevTrig ticks
(signRecTrig?), the STA transits to the wait location and detects the occur-
rence of cTrig until the time point of the subsequent step (u). If cTrig occurs
prior to the next step (tcTrig == 1), the STA moves to the success location,
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Fig. 5. Observer STA of Subclock and Coincidence

i.e., the subclock relation is satisfied at the current step. Otherwise, it transits
to the fail location. R2 specified in probabilistic subclock is expressed as:
Pr[bound]([ ]¬ Subclock.fail) � P . Uppaal-SMC analyzes if the fail location
is never reachable from the system NSTA, and whether the probability of R2
being satisfied is greater than or equal to P .

Probabilistic Coincidence is adapted to specify East-adl Periodic timing
constraint, given as cTrig ≡p {periodicOn ms period 50} (Spec. R1 in Fig. 1).
To express R1 in Uppaal-SMC, first, a periodic clock prdClk ticking every 50th

tick of ms is defined: prdClk � periodicOn ms period 50. The corresponding
Uppaal-SMC model of prdClk is generated based on the periodicOn STA
shown in Fig. 4(a) by setting q as 50. Then, we check if cTrig and prdClk are
coincident by employing the coincidence STA shown in Fig. 5(b). When cTrig
(prdClk) ticks via cTrig? (prdClk?), the STA checks if the other clock, prdClk
(cTrig), ticks prior to the next step, i.e., whether tprdClk == 1 (tcTrig == 1)
holds or not when t � u. The STA then transits to either the success or fail
location based on the judgement. R1 specified in probabilistic coincidence
is expressed as: Pr[bound]([ ]¬ Coincidence.fail) � P . Uppaal-SMC analyzes
if the probability of R1 being satisfied is greater than or equal to P .

6 Experiments: Verification and Validation

We have formally analyzed over 30 properties (associated with timing con-
straints) of the system including deadlock freedom [20]. A list of selected prop-
erties (Sect. 3) are verified using Uppaal-SMC and the results are listed in
Table.1. Five types of Uppaal-SMC queries are employed to specify R1–R8,
Hypothesis Testing (HT), Probability Estimation (PE), Probability Comparison
(PC), Expected Value (EV) and Simulations (SI).

1. Hypothesis Testing: All properties are established as valid with 95% level of
confidence; 2. Probability Estimation: The probability of each property being sat-
isfied is computed and its approximate interval is given as [0.902, 1]; 3. Expected
Value: The expected values of time durations of timing constraints (R1 – R7) are
evaluated. For example, during the analysis of R1, the time interval between two
consecutive triggerings of the Camera is evaluated as 50 and that validates R1.
Furthermore, Uppaal-SMC evaluates the expected maximum duration bound
of End-to-End timing constraint by checking R4 and generates the frequency
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Table 1. Verification results in Uppaal-SMC

R Q Expression Result Time Mem CPU

R1 HT Pr[�3000]([ ] ¬Coin.fail)�0.95 Valid 48.7 32.7 31.3

PE Pr[�3000]([ ] ¬Coin.fail) [0.902, 1] 12.6 35.6 29.8

EV E[�3000; 500]([ ] max : cam.t) 50± 0 83.3 33.3 31.7

SI simulate 500 [�3000](camtrig, p1trig) Valid 80.9 32.9 32.5

R2 HT Pr[�3000]([ ] ¬Sub.fail)�0.95 Valid 48.9 32.9 29.3

PE Pr[�3000]([ ] ¬Sub.fail) [0.902, 1] 12.3 35.5 30.4

EV E[�3000; 500]([ ] max : sf.t) 200± 0 80.6 32.5 32.2

SI simulate 500 [�3000](strig, p2trig) Valid 85.5 33.1 32.3

R3 HT Pr[�3000]([ ] hSU � hS) � 0.95 Valid 76.5 40.4 32.3

PE Pr[�3000]([ ] hSU � hS) [0.902, 1] 18.1 40.3 30.8

HT Pr[�3000]([ ] hS � hSL) � 0.95 Valid 77.6 37.7 31.7

PE Pr[�3000]([ ] hS � hSL) [0.902, 1] 16.5 40.0 31.5

PC Pr[�3000] ([ ] SR.exec =⇒ (SR.t � 100 ∧ SR.t � 125)) �
Pr[�3000] ([ ] SR.exec =⇒ (SR.t � 125 ∧ SR.t � 150))

�1.1 8.3 31.7 32.3

EV E[�3000; 500]([ ] max : checkexe.t) 147.2± 0.7 82.8 32.6 30.4

SI simulate 500 [�3000](hSU, hS, hSL) Valid 86.9 33.2 33.4

R4 HT Pr[�3000]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒
tspOut == 0)) � 0.95

Valid 54.2 32.9 31.4

PE Pr[�3000]([ ]hlower � hspOut ∧ ((hlower == hspOut) =⇒ ¬tspOut)) [0.902, 1] 13.1 35.3 29.4

HT Pr[�3000]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒
tupper == 0)) � 0.95

Valid 1.3 h 32.2 32.6

PE Pr[�3000]([ ]hspOut � hupper ∧ ((hspOut == hupper) =⇒ ¬tupper)) [0.902, 1] 19.8 34.1 32.0

EV E[�3000; 500]([ ] max : checke2e.t) 229.7± 0.9 83.3 32.5 30.6

SI simulate 500 [�3000](hCU, hVD, hCL, tCU, tVD) Valid 89.8 32.9 30.2

R5 HT Pr[�3000]([ ] hdinf � hsup) � 0.95 Valid 53.9 32.7 31.9

PE Pr[�3000]([ ] hdinf � hsup) [0.902, 1] 13.7 35.5 30.4

EV E[�3000; 500]([ ] max : checksync.t) 30.6± 0.21 72.4 32.6 31.6

SI simulate 500 [�3000](hdinf , hsup) Valid 86.8 32.6 32.0

R6 HT Pr[�3000]([ ] hv � ho ∧ ((hv == ho) =⇒ tva == 0)) � 0.95 Valid 3h 33.1 30.0

PE Pr[�3000]([ ] hv � ho ∧ ((hv == ho) =⇒ tva == 0)) [0.902, 1] 45.4 33.1 29.4

EV E[�3000; 500]([ ] max : obs.t) 667± 79 80.8 29.7 31.7

SI simulate 500 [�3000](hv, ho, v)) Valid 88.6 29.5 31.0

R7 HT Pr[�3000]([ ]

(excon == wcetcon ∧ exvd == wcetvd) =⇒ (hcu � hcom)) �
0.95

Valid 57.4 36.7 28.4

PE Pr[�3000]([ ]

(excon == wcetcon ∧ exvd == wcetvd) =⇒ (hcu � hcom))

[0.902, 1] 14.7 35.5 26.7

EV E[�3000; 500]([ ] max : control.t) 146.7± 0.28 74.9 29.4 32.7

EV E[�3000; 500]([ ] max : vd.t) 96.6± 0.27 74.2 29.4 31.4

SI simulate 500 [�3000](hcu, hcom)) Valid 86.6 29.5 32.5

R8 HT Pr[�3000]([ ] ¬(tRight == 1 ∧ tLeft == 1)) � 0.95 Valid 57.4 36.7 28.4

PE Pr[�3000]([ ] ¬(tRight == 1 ∧ tLeft == 1)) [0.902, 1] 14.7 35.5 26.7

SI simulate 500 [�3000](tRight, tLeft) Valid 85.5 29.6 32.6

histogram of the expected bound (see Fig. 7). It illustrates that the expected
bound is always less than 250 ms and 90% of the duration is within the range of
[207, 249]; 4. Probability Comparison: is applied to confirm that the probability
of SignRecognition fp completing its execution within [100, 125] ms is greater
than the probability of completion within [125, 150] ms (R3). The query results
in a comparison probability ratio greater than or equal to 1.1, i.e., the execution
time of SignRecognition fp is most likely less than 125 ms. 5. Simulation: The
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Fig. 6. Simulation result of R6. (Color figure online)

Fig. 7. Frequency histogram of End-to-End timing constraint (R4)

simulation result of Synchronization timing constraint (R5) is demonstrated
in Fig. 6. hinf , hsup and hdinf are history of inf , sup and dinf respectively.
Recall Spec. R5 (see Fig. 1), the causality relation between dinf and sup is
satisfied. As the simulation of R6 shows (Fig. 6), the rising edge of hsup (in blue)
always occurs prior to hdinf (in red). It indicates that sup always runs faster
than dinf , thus the causality relation is validated.

7 Related Work

In the context of East-adl, efforts on the integration of East-adl and for-
mal techniques based on timing constraints were investigated in several works
[15,17,24,31], which are however, limited to the executional aspects of system
functions without addressing stochastic behaviors. Kang [23] and Suryadevara
[33,34] defined the execution semantics of both the controller and the environ-
ment of industrial systems in Ccsl which are also given as mapping to Uppaal
models amenable to model checking. In contrast to our current work, those
approaches lack precise stochastic annotations specifying continuous dynamics
in particular regarding different clock rates during execution. Ling [35] trans-
formed a subset of Ccsl constraints to PROMELA models to perform formal
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verification using SPIN. Zhang [36] transformed Ccsl into first order logics
that are verifiable using SMT solver. However, their works are limited to func-
tional properties, and no timing constraints are addressed. Though, Kang et al.
[16,19] and Marinescu et al. [28] present both simulation and model checking
approaches of Simulink and Uppaal-SMC on East-adl models, neither for-
mal specification nor verification of extended East-adl timing constraints with
probability were conducted. Our approach is a first application on the inte-
gration of East-adl and formal V&V techniques based on probabilistic exten-
sion of East-adl/Tadl2 constraints using PrCcsl and Uppaal-SMC. An ear-
lier study [18,21,22] defined a probabilistic extension of East-adl timing con-
straints and presented model checking approaches on East-adl models, which
inspires our current work. Specifically, the techniques provided in this paper
define new operators of Ccsl with stochastic extensions (PrCcsl) and verify
the extended East-adl timing constraints of CPS (specified in PrCcsl) with
statistical model checking. Du et al. [13] proposed the use of Ccsl with proba-
bilistic logical clocks to enable stochastic analysis of hybrid systems by limiting
the possible solutions of clock ticks. Whereas, our work is based on the proba-
bilistic extension of East-adl timing constraints with a focus on probabilistic
verification of the extended constraints, particularly, in the context of WH.

8 Conclusion

We present an approach to perform probabilistic verification on East-adl
timing constraints of automotive systems based on WH at the early design
phase: 1. Probabilistic extension of Ccsl, called PrCcsl, is defined and the
East-adl/Tadl2 timing constraints with stochastic properties are specified
in PrCcsl; 2. The semantics of the extended constraints in PrCcsl is trans-
lated into verifiable Uppaal-SMC models for formal verification; 3. A set of
mapping rules is proposed to facilitate guarantee of translation. Our approach is
demonstrated on an autonomous traffic sign recognition vehicle (AV) case study.
Although, we have shown that defining and translating a subset of Ccsl with
probabilistic extension into Uppaal-SMC models is sufficient to verify East-
adl timing constraints, as ongoing work, advanced techniques covering a full
set of Ccsl constraints are further studied. Despite the fact that Uppaal-SMC
supports probabilistic analysis of the timing constraints of AV, the computa-
tional cost of verification in terms of time is rather expensive. Thus, we continue
to investigate complexity-reducing design/mapping patterns for CPS to improve
effectiveness and scalability of system design and verification.
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Abstract. We introduce HDBIP an extension of the Behavior Interaction
Priority (BIP) framework. BIP is a component-based framework with a
rigorous operational semantics and high-level and expressive interaction
model. HDBIP extends BIP interaction model by allowing heterogeneous
interactions targeting distributed systems. HDBIP allows both multiparty
and direct send/receive interactions that can be directly mapped to an
underlying communication library. Then, we present a correct and effi-
cient code generation from HDBIP to C++ implementation using Message
Passing Interface (MPI). We present a non-trivial case study showing the
effectiveness of HDBIP.

1 Introduction

Developing correct and reliable distributed systems is challenging mainly because
of the complex structures of the interactions between distributed processes. On
the one hand, the use of abstract interaction models may simplify the devel-
opment process but may deteriorate the performance of the generated imple-
mentation. On the other hand, the use of low-level primitives makes modeling
error prone and time consuming. Although different frameworks [3,15] exist to
model interactions between distributed processes, building correct, reliable and
scalable distributed systems is still challenging and a hardly predictive task.

In this paper, we introduce HDBIP an extension of the Behavior, Interac-
tion, and Priority (BIP) framework. BIP is a component-based framework used
to model heterogeneous and complex systems. BIP has an expressive interac-
tion model [5] that handles synchronization and communication between pro-
cesses/components. Using only multiparty interactions simplifies the modeling
of distributed barriers with local non-determinism, by automatically generat-
ing controllers to handle conflicts [6]. Nonetheless, restricting the language to
only multiparty interactions affects the performance of the distributed imple-
mentations for instance to model a simple asynchronous send/receive primitive.
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 255–274, 2018.
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In that case, the implementation requires an explicit buffer component/process.
As such, this allows the creation of extra processes that are not needed. This
extra buffer is practically duplicated as system buffers are usually provided by
the low-level communication libraries (e.g., MPI). Moreover, it is required to use
multiparty interactions to connect the send primitives and the receive primitives
with the explicit buffers. As such, those connections may introduce conflicts
between themselves and between multiparty interactions, which may drastically
affect the performance of the distributed implementation.

This paper introduces HDBIP, which allows the modeling of both multiparty
and asynchronous send receive interactions in an elegant way. Moreover, we pro-
vide an efficient code generation that allows by-construction to directly execute
the send receive interactions with no need to create the extra buffers and instead
use the system buffers. We show the effectiveness of HDBIP on distributed two-
phase commit protocol. We mainly compare with respect to BIP the execution
time and the lines of code needed.

The remainder of this paper is structured as follows. Section 2 presents
the existing BIP framework. Section 3 introduces HDBIP, an extension of BIP.
Section 4 defines how it is possible to generate efficient implementations from
HDBIP along with the arguments supporting correctness of the generated imple-
mentation. In Sect. 5, we evaluate the performance of HDBIP by comparing it to
BIP. Section 6 presents related work. Finally, Sect. 7 draws some conclusions and
presents future work.

2 Behavior Interaction Protocol (BIP) Framework

The Behavior Interaction Priority (BIP) framework [3] offers high-level synchro-
nization primitives that simplify system development and allow for the genera-
tion of both centralized and distributed implementations from high-level mod-
els. It consists of three layers: Behavior, Interaction and Priority. Behavior is
expressed by Labeled Transition Systems (LTS) describing atomic components
extended with data and C functions. Moreover, transitions of atomic components
are labeled with ports that are exported for communication/synchronization
with other components. Interaction models the synchronization and communi-
cation between ports of atomic components. Priority specifies scheduling con-
straints on interactions.

2.1 Atomic Components

Let us consider a set of local variables X.

Definition 1 (Port). A port is a tuple 〈p,Xp〉 where p is an identifier and
Xp ⊆ X is a set of exported local variables. A port is referred to by its identifier.

Definition 2 (Atomic component - Syntax). An atomic component is a
tuple

〈
P,L, T,X, {gτ}τ∈T , {fτ}τ∈T

〉
, such that:
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Fig. 1. Atomic component in BIP

– 〈P,L, T 〉 is an LTS over a set of ports P , L is a set of control locations, and
T ⊆ L × P × L is a set of transitions;

– X is a finite set of variables;
– Every transition τ ∈ T has a guard gτ (a predicate over X), and a function

fτ ∈ {x := fx(X) | x ∈ X}∗, triggered by this transition, that updates the
values of variables in X.

A transition τ = 〈l, p, l′〉 ∈ T , where l (resp. l′) is the source (resp. desti-
nation) of τ . p is the label of τ used as an interface to synchronize with other
components. Moreover, a transition can be augmented with a guard gτ and a
function fτ , thus defined as τ = 〈l, p, gτ , fτ , l′〉. The port attached to a transition
is said to be enabled only if the guard of the transition gτ holds.

Definition 3 (Atomic component - semantics). The semantics of atomic
component 〈P,L, T,X, {gτ}τ∈T , {fτ}τ∈T 〉 is the LTS 〈Q,P, T0〉, where:

– Q = L × [X → Data] × (P ∪ {null});
– T0 = {〈〈l, v, p〉 , p′(vp′), 〈l′, v′, p′〉〉 ∈ Q × P × Q | ∃τ = 〈l, p′, l′〉 ∈ T : gτ (v) ∧

v′ = fτ (v/vp′)}, where vp′ ∈ [Xp′ → Data].

A configuration/state of an atomic component is a triple 〈l, v, p〉 ∈ Q where
l ∈ L, v ∈ [X → Data] is a valuation of variables in X, and p ∈ P is the
port of the last-executed transition (or null otherwise, i.e., in case of the initial

configuration). The evolution 〈l, v, p〉 p′(vp′ )→ 〈l′, v′, p′〉, where vp′ is a valuation of
the variables in Xp′ , is possible if there exists a transition 〈l, p′, gτ , fτ , l′〉, s.t. p′

is enabled or gτ (v) = true. Valuation v is modified to v′ = fτ (v/vp′).
We use the dot notation to denote the elements of an atomic component B.

For instance, we refer to its set of ports as B.P , its set of locations as B.L and
its set of local variables as B.X.

Figure 1 depicts an atomic component B . B has four ports p0, p1, p2 and p3 and
four local variables x, y, z and t. Port p1 exports variable x, p2 exports z, and p3
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exports y. In addition, B has three locations �0, �1 and �2 with initial location �0.
Each transition between locations has a guard, a port and an update function or
the computation to be applied. For example, the transition between locations �1
and �2 is labeled by port p2 and guarded by x < y and applies computation (x =
x + y) when executed. When this transition is executed, the value of z exported
by p2 is changed according to the valuation received through p2.

2.2 Composite Components

We consider a set of atomic components {Bi}i∈I with I ⊆ [1, n] and Bi =〈
Pi, Li, Ti,Xi, {gτ}τ∈T i

, {fτ}τ∈T i

〉
, where atomic components have disjoint sets

of locations, variables and ports, i.e., for all i, j ∈ I such that i 
= j, Li ∩
Lj = ∅, Pi ∩ Pj = ∅ and Xi ∩ Xj = ∅. We denote the set of all ports (resp.
locations, variables) of a composite component by P =

⋃
i∈I Pi (resp. L =⋃

i∈I Li, X =
⋃

i∈I Xi). Atomic components synchronize and exchange data
through interactions.

Definition 4 (Interaction). An interaction is defined as a tuple a =
〈Pa, Ga, Fa〉, where:

– Pa is a non-empty set such that Pa ⊆ P , and, for every i ∈ I |Pi ∩ Pa| ≤ 1,
i.e., an interaction a consists of at most one port of every atomic component
in B;

– Ga is a guard over valuation of Xa, where Xa are the variables attached to
ports Pa; and

– Fa is an update function over the valuation of Xa.

We denote the ports associated in an interaction a as Pa = {pi}i∈I where
i is the identification index of the atomic component because at most one port
of every atomic component can be included in the same interaction. Moreover,
an interaction can include variables that are denoted as Xa =

⋃
p∈Pa

Xp. The
updated value of Xpi

, transferred to Bi as an interaction outcome, after project-
ing the update function Fa is denoted as Fai

.

Definition 5 (Composite component). A composite component C consists
in applying a set of interactions γ to a set of distinct atomic components {Bi}i∈I

with I ⊆ [1, n]. Therefore, a composite component C is defined as γ({Bi}i∈I)

Figure 2 shows an example of a composite component C = γ({B1, B2, B3})
where B1, B2 and B3 are atomic components, and γ = {a1, a2, a3, a4, a5}.

Definition 6 (Semantics of composite components). A state q of com-
posite component C = γ({B1, . . . , Bn}) is an n-tuple 〈q1, . . . , qn〉 where qi =
〈li, vi, pi〉 is a state of Bi. The semantics of C is an LTS Sc = 〈Q, γ,−→〉,
where:

– Q = B1.Q × . . . × Bn.Q;
– γ is the set of all possible interactions; and
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Fig. 2. Composite component in BIP

– −→ is the least set of transitions satisfying the following rule:
∃a ∈ γ : a =

〈{pi}i∈I , Ga, Fa

〉
Ga(v(Xa))

∀i ∈ I : qi
pi(vi)−→ i q′

i ∧ vi = Fai
(v(Xa)) ∀i 
∈ I : qi = q′

i

〈q1, . . . , qn〉 a−→ 〈q′
1, . . . , q

′
n〉

Xa is the set of variables attached to the ports of a, v is the global valuation.
Fai

is the projection of F to the variables of pi yielding to the valuation vpi

of the variables in Xi exported by pi.

The above rule means that whenever all the ports of an interaction a are
enabled and the guard corresponding to a, (Ga(v(Xa))) holds, a is enabled. One
enabled interaction is selected and the state of the components whose ports
are involved in the interaction a changes by executing location function and
moving to the next set of locations. The state of the components that are not
involved in this interaction remain unchanged. A straightforward implementation
of this semantics can be realized by a centralized engine that allows the execution
of one enabled interaction at a time. Note, practically, it is also possible to
concurrently execute independent interactions (which do not share components),
while preserving the above semantics.

Figure 2 represents a composite component C made up of three compo-
nents atomic = {B1, B2, B3} by applying a set of five interactions γ =
{a1, a2, a3, a4, a5}. For instance, interaction a1 is enabled when all of its involved
ports, i.e., B1.p0, B2.p0 and B3.p0, are enabled and its corresponding guard g1
holds. But, in this example, the ports are not associated with guards which
means that by default all ports are enabled. Assuming that guard of a1 holds,
this interaction is said to be enabled. In case it is selected to execute, its func-
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tion f1 is also applied upon its execution. Furthermore, upon the execution of
a1, transitions 〈B1.l0,B1.p0,B1.l1〉, 〈B2.l0,B2.p0,B2.l1〉, 〈B3.l0,B3.p0,B3.l1〉 will,
also, execute for their ports are involved in a1.

2.3 Distributed Implementation - Send/Receive BIP

A high-level BIP model can be transformed into a distributed implementation
to achieve parallelism between components and interactions [6]. To do so, a BIP
model is transformed into its equivalent send/receive BIP. Send/receive BIP
consists of three layers: (1) an atomic components layer that consists of atomic
components transformed to interact with the upper layer to execute multiparty
interactions; (2) an interaction layer that consists of components responsible to
execute interactions; (3) a conflict resolution layer that is responsible to forbid
the concurrent execution of two conflicting interactions (to preserve the seman-
tics of the initial model). The obtained model consists of transforming multi-
party interactions into send/receive communication protocols. More precisely,
each transition of atomic components is split in two transitions: (1) send offer-
ing, which sends the enabled ports to the components (that are handling the
interactions corresponding to enabled ports) in the interaction layer; (2) receive,
which waits for an acknowledgment from the interaction layer to execute the
selected port. As such, the interaction protocol collects all enabled ports and
determines what are the enabled interactions. As the interaction layer consists
of several components handling different interactions, it is possible that two
conflicting interactions are marked to be enabled by different components of the
interaction layer, which may lead to the concurrent execution of two conflicting
interactions. To remedy this, the interaction layer consults first with the conflict
resolution, which is responsible for handling conflicts between interactions. Note,
two interactions are said to be conflicting iff either: (1) there is a common port
involved in them, or (2) if they include two distinct ports belonging to the same
component where those ports are the label of two distinct transitions outgoing
from the same source location.

Remark. Implementing a system with multiparty interactions requires solving
potential conflicts, which is addressed in [6] for systems without priorities and
in [7] for systems with priorities. Independently, we focus on those interactions
that can be realized by asynchronous send/receive communication over multi-
party interaction. For the sake of simplicity, and without lost of generality we
consider systems without priorities.

3 Heterogeneous Distributed BIP - HDBIP

BIP uses multiparty interactions to model communication and synchronization
between components, which is expressive enough to model any communication
or synchronization primitives [5]. Nonetheless, modeling a simple asynchronous
send/receive primitive requires to (1) explicitly create components represent-
ing buffers; (2) create intermediate schedulers to coordinate the execution of
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Fig. 3. Atomic component in HDBIP (Color figure online)

the interactions. This may drastically affect the performance of the generated
distributed implementations. To overcome this, we introduce HDBIP that com-
bines both multiparty and direct asynchronous send/receive (DASR) interac-
tions. This simplifies the modeling of distributed systems and allows for efficient
code generation. For instance, implementing DASR primitives can benefit from
the underlying primitives such as system buffers and does not require to create
extra components for scheduling with other interactions (i.e., conflict-resolution)
or for buffer modeling. The components composing the HDBIP model are known
as partially asynchronous (PA) atomic components.

3.1 HDBIP Syntax

A PA atomic component B� is a regular BIP atomic component where transitions
are labeled with three types of ports: ordinary, direct send and direct receive:
(1) ordinary ports are the same to those defined in BIP; (2) direct send ports are
used to model asynchronous direct communication with receive ports. Hereafter,
we represent ordinary, direct send and direct receive ports, by black circle, blue
rectangle and red diamond, respectively.

Definition 7 (Partially Asynchronous Atomic component). A PA
atomic component B� is tuple 〈B, t〉 where:

– B is an atomic component;
– t : P → {ordinary, send, receive} is a function that maps ports to their types.

Figure 3 depicts a PA atomic component B� in HDBIP. B� has four ports
p0, ps1 , ps2 , and pr and four local variables x, y, z, and t. Port ps1 exports x,
ps2 exports z and pr exports y. In addition, B has three locations �0, �1 and �2
with initial location �0. Hereafter, we consider a set of PA atomic components
{B�

i }i∈I , where ∀i ∈ I, B�
i = 〈Bi, ti〉. Let Po =

⋃
i∈I B�

i .Po (resp. Ps, Pr, P )
denotes the set of all the ordinary (resp. direct send, direct receive, all) ports.
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Moreover, without loss of generality, we assume that from any location, the out-
going transitions can be labeled with both ordinary and send or receive ports
(i.e., either only ordinary ports or a mix of send or receive ports). This allows to
efficiently generate distributed implementation and makes the interaction model
not ambiguous to the developers of the atomic components. Note that the tran-
sitions requirements hold in the PA component depicted in Fig. 3.

We distinguish two types of interactions: (1) ordinary; and (2) DASR. Ordi-
nary interaction is the same as regular BIP interaction, i.e., allows to model mul-
tiparty interaction. Hence, it connects ordinary ports. DASR interaction allows
to model asynchronous send receive interaction and connects a sender port of a
component to receiver ports of different components.

Definition 8 (Ordinary Interaction). An ordinary interaction a is defined
by the tuple 〈Pa, Ga, Fa〉 where:

– Pa ⊆ P is a non-empty set such that Pa ⊆ Po and, ∀i ∈ I, |B�
i .P ∩ Pa| ≤ 1;

and
– Ga and Fa are the guard and the function of the ordinary interaction, the

same as the ones defined in the BIP interaction.

Definition 9 (DASR Interaction). A DASR interaction a is defined by Pa

where:

– Pa ⊆ P , with |Pa| > 1, is a set such that |Pa ∩ Ps| = 1, |Pa ∩ Po| = 0,
|Pa ∩ Pr| > 0 and, ∀i ∈ I, |Pi ∩ Pa| ≤ 1;

– all ports have the same type; (3) its guard is always hold, however, its send
port can have a local guard;
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– its function allows only for data transfer of data attached to the sender port
to the data attached to the receiver ports.

Note that a send port can only participate in one DASR interaction, whereas
a receive port can participate in several DASR interactions.

Definition 10 (Partially asynchronous composite component). A PA
composite component C�denoted by γ�({B�

i }i∈I) consists of a set of atomic com-
ponents {B�

i }i∈I composed by applying a set of ordinary and DASR interactions
γ�.

Given a PA composite component γ�({B�
i }i∈I) where B�

i = 〈Bi, ti〉 for all
i ∈ I, we define:

– type : γ� → {ordinary, sendreceive} is a function that maps interactions to
their types;

– γo = {a ∈ γ� | type(a) = ordinary} the set of all ordinary interactions; and
– γsr = {a ∈ γ� | type(a) = sendreceive} the set of all DASR interactions.

Clearly, γ� = γo ∪ γsr and γo ∩ γsr = ∅. Figure 4 depicts a PA composite compo-
nent made up of a set of three PA components B� = {B�

1 , B�
2 , B�

3} by applying
a set of five interactions γ� = {a1, a2, a3, a4, a5}, where only a1 is a DASR inter-
action while the rest (a2, a3, a4 and a5) are ordinary interactions. a1 is a DASR
interaction because it consists of a direct send port B�

2 .p0 and the receive ports
B�

1 .p0 and B�
3 .p0. a1 is said to be a valid DASR interaction because it does

not include any ordinary port. Moreover, B�
2 .p0 cannot participate in further

interactions.

3.2 HDBIP Semantics

We define the semantics of a PA composition component C� by transforming
it into its equivalent BIP model C = [[C�]]. The transformation consists of the
following steps: (1) create buffer atomic components; (2) create interactions con-
necting send and receive ports with buffer components.

Creating Buffer Components. We first create a buffer component Bui
p for

every receive port p ∈ ⋃
i∈I B�

i .P r. Bui is an atomic component where: (1)
Bu.X = Xs ∪Xr ∪D such that D is a queue that can hold data of the same type
of the port, Xs = {xs | x ∈ p.X} is the set of received variables that correspond
to port p, and Xr = {xr | x ∈ p.X} is the set of send variables that correspond
to port p; (2) Bu.P = {send, receive}, where send port exports the set of
variables Xs, and receive port exports the set Xr; (3) Bu.L = {l0, l1}, where l0
is the initial location; (4) Bu.T = {τ1, τ2, τ3, τ4} such that τ1 = 〈l0, receive, l1〉,
τ2 = 〈l1, receive, l1〉, τ3 = 〈l1, send, l1〉 and τ4 = 〈l1, send, l0〉. The guards of
transitions are predicates over the queue D and its size. Assuming the queue size
can be denoted as D.size, guard g1 of τ1 is D.size = 0, g2 of τ2 is D.size > 0, g3
of τ3 is D.size > 1, and, finally, g4 of τ4 is D.size = 1. Yet, the size of the queue
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Fig. 5. Buffer component

is not determined by the size of the message received, but by the number of
messages received. The functions, on transitions including the port receive, from
l0 to l1, involve adding the values of Xr (as one list) to the list D and updating
the values of Xs to that of Xr, whereas, from l1 to l1, the values of Xr are only
added to D. Initially, in τ1, Xs is updated to the values of the first received
message. Thus, the functions, on transitions including the port send, from l1 to
l1, involve removing data from the list D first, then updating the values of Xs

to be the oldest list of values received and pushed to D. On the other hand,
from l1 to l0, only the last list of values in D is removed emptying D. The set
of all buffers for all receive ports in C� is denoted by BU =

⋃
i∈I{Bui

p | p ∈
B�

i .P ∧ ti(p) = receive}. Note that port receive of the buffer is always enabled,
i.e., its guard is true, whereas port send is enabled when there are messages
to be sent, i.e., the internal queue is not empty. Figure 5 shows an example of
a buffer component that corresponds to port p[Xr] (port p exporting a set of
variables Xr).

Integration. We now are ready to define the semantics of a partially asyn-
chronous composite component C� as follows: (1) create a buffer component for
each receive port; (2) append ordinary interactions; (3) for each DASR interac-
tion we create one interaction connecting the send port of the DASR interaction
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Fig. 6. Transformation of HDBIP composite in Fig. 4 to BIP

to the receive ports of the buffers that correspond to the receive ports of the
DASR interaction, and we create one binary interaction for each receive port,
which is connected to send port of its corresponding buffer. Finally, all send and
receive ports in HDBIP become ordinary.

Definition 11 (PA composite component semantics). Given a partially
asynchronous composite component C� = γ�({B�

i }i∈I), its semantics is defined
by the transformation into a regular BIP system C = [[C�]], such that C =
γ({Bi}i∈I ∪ BU) where:

– Bi is the atomic component that corresponds to B�
i by removing labeling of

the ports;
– BU is the set of buffers created for each receive port in C�;
– γ is the set of interactions applied to the set of atomic components {Bi}i∈I ∪

BU such that γ = γo ∪ γs ∪ γr where, γo is the set of all ordinary inter-
actions in C�, γs =

⋃
a∈γsr

{(Pa, true, identity) | Pa = {a.send} ∪
⋃

r∈a.recvs{Bui
p.recv}} is the set of interactions between each direct send

port in interaction a and the corresponding buffer receive port, and γr =⋃
p∈Pr

{(Pa, true, identity) | p ∈ B�
i .P ∧ Pa = {p,Bui

p.send}} is the set of
interactions between each receive port and its corresponding send buffer port.

Figure 6 shows how the HDBIP model presented in Fig. 4 is transformed to its
equivalent BIP model. All the PA atomic components B�

1 , B�
2 and B�

3 are trans-
formed to their equivalent BIP versions (ignoring ports types) B1, B2 and B3
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respectively. For every direct receive port (B�
1 .p0, B�

3 .p0) we added a correspond-
ing buffer component in the BIP model. Then, the DASR interaction, in the
HDBIP model, from the send port B�

2 .p0 to B�
1 .p0 and B�

3 .p0 is replaced by an
interaction involving B2.p0 and the port receive of each of the buffer compo-
nents corresponding to the receive ports of the HDBIP model. Additionally, DASR
replacement includes adding other interactions involving the port send of every
buffer component and its corresponding previous receive port. For this example,
we included two interactions: (1) involving B1.p0 and Buffer1 .send , (2) B3.p0
and Buffer2 .send .

4 Efficient Code Generation

Given an HDBIP system, it is possible to transform it to a regular BIP (i.e.,
consisting only of regular ports) and use the code generation provided by BIP
(three-layer model). However, this may lead to the generation of inefficient imple-
mentations mainly because of: (1) the buffer components that correspond to
receive ports will be replaced with actual threads or processes; (2) interactions
between send/receive ports and the buffer components will be mixed with the
multiparty interactions and will be added to the interaction protocol compo-
nents; hence, their execution requires communication between base components,
interaction protocols and possibly with conflict resolution components in case
of conflicts. Although using HDBIP simplifies the development process by auto-
matically generating buffer components and the corresponding communications,
a naive implementation would impose an additional overhead due to the extra
communication as well as the creation of unnecessary threads/processes to repre-
sent the buffer components. Therefore, we introduce an efficient code generation
that allows to avoid the creation of buffer components and the communication
with the interaction and conflict resolution layers. To do so, we first transform
PA atomic components of HDBIP system by splitting (following [6]) the tran-
sitions labeled with ordinary ports into two transitions to interact and receive
notifications from the interaction protocol components, respectively. As for the
transitions labeled with send and receive ports are not split and kept unchanged.
Figure 7 presents an example of the transformation of a PA atomic component
into its equivalent PA send/receive atomic component. Second, we generate the
three layer send/receive model by only creating components in the interaction
layer for ordinary interactions. DASR interactions are not integrated with the
interaction layer and remain in the transformed model.

4.1 Correctness

The aim of the proof is to show that the efficient code generation is equivalent
to the one provided by transforming HDBIP into regular BIP. The proof consists
of two independent steps: (1) preservation of the buffer components; (2) no need
for conflicts handling.
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Fig. 7. HDBIP transitions transformation in 3-layer model

Preservation of the Buffer Components. Our code generation pro-
duces C++ implementation that uses MPI for the communication between
threads/processes. As MPI has its internal system buffer, sending a message
to a specific receive port (i.e., labeled with the name of the receive port) is
implicitly added to the system buffer of MPI with the corresponding label. As
such, there is no need to create buffer components.

No Need for Conflict Handling. In the equivalent BIP model obtained from
HDBIP (Definition 11), conflicts may occur between: (1) only ordinary interac-
tions; (2) ordinary and DASR interactions; (3) only direct/send interactions.
Recall that our efficient code generation only requires to integrate ordinary
interactions into interaction and conflict resolution layer, whereas DASR inter-
actions are kept unchanged in the 3-layer send/receive model. As such, con-
flicts between only ordinary interactions are resolved by the interaction protocol
and the conflict resolution protocol layers in the usual way (Sect. 2). As from
any state, the outgoing transitions can be labeled with either ordinary ports or
send/receive ports, it is not possible to get conflicts between ordinary and direct
send/receive interactions. Regarding direct send/receive interactions, a conflict
may arise between two interactions that either involve: (1) a common direct
receive port; (2) a common direct send port; (3) two ports of the same compo-
nent that are the labels of two outgoing transitions from a same state. As for
the (1) the execution of the receive port allows the buffer component to remain
in state l1 (see Fig. 5). As such, even in the case of two concurrently-executing
interactions connected to the same receive port, the final state will still belong
to the state space of the semantics of the transformed regular BIP. As for (2) a
direct send port can be connected to only one interaction. As for (3) we consider
several cases either: (3a) the two ports are send ports, then the component will
pick one of the two ports and execute the corresponding send; (3b) the two ports
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are receive ports, then the component can execute the corresponding receive port
that has a message on its buffer, that is; (3c) one port is send and another is
receive, in order to avoid deadlock of the execution, we consider giving priority
to send port if its guard is enabled, otherwise, we can safely wait until a message
on one of the receive ports is available. Consequently, in all the cases a conflict
can be resolved locally.

5 Performance Evaluation

We evaluate the execution times and the number of lines of code in HDBIP ver-
sus BIP on distributed two-phase commit protocol [13]. Two-phase commit is
a consensus protocol used to commit or abort a distributed transaction. A dis-
tributed transaction consists of a sequence of operations applied to several pro-
cesses/participants. The system consists of n resource managers (participant of
the transaction) rm1, rm2, . . . , rmn and a transaction manager tm. Executing a
distributed transaction consists of the following steps: (1) the client sends a begin
transaction message to tm; (2) client executes the operations of the transaction
on its participants (resource managers); (3) client sends a commit transaction
message to tm; (4) tm starts running two-phase commit protocol by sending a
vote request message to all the resource managers; (5) each resource manager
has the ability to commit or abort the transaction by sending local commit or
local abort; (6) tm receives all the votes and broadcasts global commit to all
resource managers if it has received a local commit from all the resource man-
agers, otherwise it broadcasts global abort message; finally (7) depending on the
receive message a resource manager either aborts or commits the transaction.
For the sake of simplicity, we omit the handling of crash/recovery and timeouts
that are handled by running specific termination protocols and by assuming the
existence of persistent storage to keep track of the logs.

We provide two implementations of two-phase commit protocol using stan-
dard BIP and HDBIP. Figures 8a and b show the atomic components of the clients
in standard BIP and HDBIP, respectively. It mainly initiates the transaction by
calling remote procedure calls on the resource managers accompanied with the
current transaction id j. It then notifies tm through the port commit and waits
for the reception of the global decision. In case of standard BIP all ports are
ordinary. In HDBIP only globalAbort and globalCommmit ports are ordinary
as they require a global agreement (multiparty interaction), and all the other
remaining ports are send ports.

The behavior of the resource manager rm and transaction manager tm in
HDBIP are shown in Figs. 9a and b (in regular BIP, we have the same behavior
but all ports are ordinary). Each rm starts the transaction by executing the
function. Then, a decision is made to abort or commit the transaction. Accord-
ingly, it either synchronizes with tm with the port localCommit or localAbort.
tm collects all the responses and synchronizes with all the resource managers as
well as the clients to globally commit or abort the transaction.

Figures 10 and 11 show the composite component of the whole system in
regular BIP and HDBIP, respectively. Recall that in regular BIP all buffers should
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Fig. 8. Client component in BIP and HDBIP

Fig. 9. Resource and transaction managers in HDBIP

be explicitly modeled with components and all ports are ordinary ports. In HDBIP
the design is much simpler as buffer components will be implicitly replaced by
the system buffers during code generation.

Efficiency. We compare the execution times of the distributed implementations
generated from BIP and the one generated from HDBIP. Note that in case of
HDBIP the direct send receive interactions are treated in a special way and are
not integrated with the regular code generation of multiparty interactions. We
consider two different scenarios by varying the number of resource managers
and the number of transactions. For both scenarios, we consider a cluster of
four Linux machines (64-bit Ubuntu 16.04), each with 8 cores, Intel Core i7-
6700 processor, and 32 GB memory. In the first scenario, we vary the number
of transactions from 20,000 to 200,000 by a step of 20,000 and we fix the num-
ber of resource managers to be 10. In the second scenario, we vary the number
of resource managers from 2 to 20 by a step of 2, and we fix the number of
transactions to be 10,000. Figures 12a and b show the execution times of theses
scenarios for both implementations, respectively. In both scenarios, it is clear
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Fig. 10. Two-phase commit in BIP
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that the implementation of HDBIP drastically outperforms regular BIP. This is
mainly due to the extra messages exchanged in case of the regular BIP with the
buffer components, and the multiparty interactions between the buffer compo-
nents. In case of HDBIP, we can still execute multiparty interactions, however,
direct send receive can be directly executed with no need to create message
buffer and benefit from the system buffers that are already available.
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Fig. 12. Performance evaluation of two-phase commit

Lines of code (LOC). Using HDBIP requires less LOC than BIP as there is no
need to create (1) the buffer component type and the corresponding instances;
(2) the interactions between send/receive ports and the buffer components. For
instance, modeling two-phase commit in case of 10 resource managers, requires
280 LOC in case of HDBIP and 390 LOC in case of BIP.

6 Related Work

In [11], a method is introduced to automatically generate correct asynchronously
communicating processes starting from a global communication protocol. Unlike
our model, the proposed method considers a simple communication model where
each message has a unique sender and receiver. As such, modeling multiparty
interactions requires to explicitly defining the communication protocol and con-
flict resolution handling, which is time consuming and error prone.

Session types [4,8,12,15,17] model interactions between distributed pro-
cesses, and are based on the following methodology: (1) interactions are described
as a global protocol between processes; (2) Local protocols are synthesized by
projecting global protocol to local processes; (3) implementation of local pro-
cesses; (4) type-checking of local types with respect to local processes. The
design methodology of session type has major drawbacks: (1) there is a huge
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gap between design and implementation; (2) the design flow includes redun-
dancy (global protocol, local protocol, process implementation), which is error
prone; (3) there is no clear separation between communication and computation
in local processes.

LASP [16] is a programming model designed to facilitate the development of
reliable and large-scale distributed computing. It combines ideas from determin-
istic data-flow programming and conflict-free replicated data types (CRDTs).
However, LASP is tailored to consistency over replicated data types. It would
be interesting to integrate LASP with HDBIP to support fault-tolerance in HDBIP.

Other industrial frameworks simplify the development of large scale dis-
tributed systems such as AzureBot [1]. However, using such frameworks model-
ing communication models and synchronization are too abstract, which does not
allow the expressiveness of explicit communication models. Moreover, AzureBot
supports only applications written in C# and hosted in the Azure cloud plat-
form.

Some recent research efforts tackle correctness-preserving code genera-
tion from models to asynchronously communicating systems. For example,
in AlbertBBM16,HenrioR16, they introduce a formal translation from abstract
behavioral specification (ABS) to object-oriented implementation, where [2]
(resp. [14]) specifically targets parallel (resp. distributed) systems. However, the
underlying communication model of ABS does not support multiparty interac-
tions but only asynchronous calls.

7 Conclusion and Perspectives

We introduce a rigorous model to facilitate the development of correct, efficient
and scalable distributed systems. In particular, HDBIP allows both multiparty
and asynchronous send/receive primitives. Moreover, our method (1) uses the
primitives provided by the underlying systems such as system buffers; and (2)
makes a clear separation, which is correct-by-construction, between multiparty
interactions and asynchronous send/receive interactions; which allow the gener-
ation of efficient distributed implementations

For future work, we first consider to develop a source-to-source transfor-
mation from session types to HDBIP. This would avoid code redundancy of the
methodology provided by session types. Moreover, we consider using other prim-
itives provided by the underlying library (e.g., MPI) such as barriers in order
to support efficient implementation of multiparty interactions. We also work on
extending HDBIP to support fault tolerance. We also consider to leverage the
asynchronous send/receive communication primitive to improve the efficiency of
the runtime verification [10] and enforcement [9] of component-based systems.

Acknowledgment. The authors acknowledge the support of the University Research
Board (URB) at American University of Beirut and the ICT COST (European Coop-
eration in Science and Technology) Action IC1402 Runtime Verification beyond Mon-
itoring (ARVI).



Facilitating the Implementation of Distributed Systems 273

References

1. Agarwal, D., Prasad, S.K.: AzureBOT: a framework for bag-of-tasks applications
on the azure cloud platform. In: 2013 IEEE International Symposium on Parallel
and Distributed Processing, Workshops and Ph.D. Forum (2013). https://doi.org/
10.1109/ipdpsw.2013.261

2. Albert, E., Bezirgiannis, N., de Boer, F., Martin-Martin, E.: A formal, resource
consumption-preserving translation of actors to Haskell. In: Hermenegildo, M.,
Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 21–37. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 2

3. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

4. Bejleri, A., Yoshida, N.: Synchronous multiparty session types. Electron. Notes
Theor. Comput. Sci. 241, 3–33 (2009). https://doi.org/10.1016/j.entcs.2009.06.
002

5. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in
BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/
TC.2008.26

6. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Distrib.
Comput. 25(5), 383–409 (2012). https://doi.org/10.1007/s00446-012-0168-6

7. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Model-based implementation of dis-
tributed systems with priorities. Des. Autom. Embed. Syst. 17(2), 251–276 (2013).
https://doi.org/10.1007/s10617-012-9091-0

8. Bonelli, E., Compagnoni, A.: Multipoint session types for a distributed calculus. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-4 17

9. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based
systems with formal and sound recovery. STTT 19(3), 341–365 (2017). https://
doi.org/10.1007/s10009-016-0413-6

10. Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.: Runtime verification
of component-based systems in the BIP framework with formally-proved sound and
complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015). https://doi.
org/10.1007/s10270-013-0323-y

11. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model
for asynchronously communicating systems. Int. J. Softw. Tools Technol. Transf.
19(4), 465–485 (2017)

12. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, 17–23 January 2010, pp. 299–312 (2010). https://doi.
org/10.1145/1706299.1706335

13. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Trans. Database
Syst. 31(1), 133–160 (2006). https://doi.org/10.1145/1132863.1132867

14. Henrio, L., Rochas, J.: From modelling to systematic deployment of distributed
active objects. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 208–226. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39519-7 13

https://doi.org/10.1109/ipdpsw.2013.261
https://doi.org/10.1109/ipdpsw.2013.261
https://doi.org/10.1007/978-3-319-63139-4_2
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/s00446-012-0168-6
https://doi.org/10.1007/s10617-012-9091-0
https://doi.org/10.1007/978-3-540-78663-4_17
https://doi.org/10.1007/s10009-016-0413-6
https://doi.org/10.1007/s10009-016-0413-6
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.1145/1132863.1132867
https://doi.org/10.1007/978-3-319-39519-7_13
https://doi.org/10.1007/978-3-319-39519-7_13


274 S. Kobeissi et al.

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, USA, 7–12 January 2008,
pp. 273–284 (2008). https://doi.org/10.1145/1328438.1328472

16. Meiklejohn, C., Van Roy, P.: Lasp: a language for distributed, coordination-free
programming. In: Proceedings of the 17th International Symposium on Principles
and Practice of Declarative Programming, PPDP 2015, pp. 184–195. ACM, New
York (2015). https://doi.org/10.1145/2790449.2790525

17. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of software
components using session types. Fundam. Inform. 73(4), 583–598 (2006). http://
iospress.metapress.com/content/82bf1qafeel5g8n4/

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2790449.2790525
http://iospress.metapress.com/content/82bf1qafeel5g8n4/
http://iospress.metapress.com/content/82bf1qafeel5g8n4/


State-of-the-Art Model Checking for B
and Event-B Using ProB and LTSmin

Philipp Körner1(B) , Michael Leuschel1, and Jeroen Meijer2

1 Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
p.koerner@uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
j.i.g.meijer@utwente.nl

Abstract. In previous work, we presented symbolic reachability analy-
sis by linking ProB, an animator and model checker for B and Event-B,
and LTSmin, a language-independent model checker offering state-of-
the-art model checking algorithms. Although the results seemed very
promising, it was a very basic integration of these tools and much poten-
tial of LTSmin was not covered by the implementation.

In this paper, we present a much more mature version of this tool inte-
gration. In particular, explicit-state model checking, efficient verification
of state invariants, model checking of LTL properties, as well as partial
order reduction and proper multi-core model checking are now available.
The (improved) performance of this advanced tool link is benchmarked
on a series of models with various sizes and compared to ProB.

1 Introduction

Formal methods, e.g., the B-Method [3], are vital to ensure correctness in soft-
ware where failure means loss of money or even risking human lives. Yet, for
industrial application, tooling often remains unsatisfactory [6,34]. One such tool
is ProB, an animator and model checker for B and Event-B. While ProB is fairly
mature after hundreds of man-years of engineering effort, it may still struggle
with industrial-sized models containing several millions of states. LTSmin, how-
ever, is a language-independent model checker that offers symbolic algorithms
and many optimizations in order to deal with the state space explosion problem.

In [4], we linked LTSmin with ProB in order to obtain a symbolic reachability
analysis for B and Event-B. ProB was computing the B operational semantics
and providing static information about possible state transitions while LTSmin
was performing the symbolic reachability algorithm.

LTSmin offers further model checking algorithms and optimizations, both for
its symbolic and for its sequential backend. In this paper, we describe how we
extended the link between LTSmin and ProB using ZeroMQ [18] in order to
obtain a model checking tool for B and Event-B and evaluate the performance
on a set of real life, industrial-sized models. LTSmin’s language frontend that
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interacts with ProB can directly be used with any model checker that speaks
the same protocol via ZeroMQ. The extension is based on [20] and includes:

– invariant checking (for both the symbolic and sequential backend),
– guard splitting for symbolic analysis of B models,1
– partial order reduction (with the sequential backend),
– (parallel) LTL model checking (with the sequential/multi-core backend),
– effective caching of transitions and state labels,
– short states, to transmit only relevant variables for each transition.

1.1 LTSmin

LTSmin [8] is an open-source, language-independent, state-of-the-art model
checker that offers many model checking algorithms including partial order
reduction, LTL verification and distributed model checking. An overview of its
architecture can be found in Fig. 1. By implementing the Pins, i.e., the parti-
tioned interface to the next-state function, new language frontends can employ
these algorithms. At its core, Pins consists of three functions: one that provides
an initial state vector, a second, partitioned transition function that calculates
successor states and, lastly, a state labelling function.

Specification
Languages

Pins2Pins
Wrappers

Reachability
Tools

mcrl2 Promela . . . ProB

front-end

back-end

Transition
Caching

Variable Reordering,
Transition Grouping LTL Partial Order

Reduction

Distributed Multi-core Symbolic Sequential

Fig. 1. Modular Pins architecture of LTSmin [19]

LTSmin provides four backends:

– a sequential backend that implements an explicit state model checking algo-
rithm similar to the one implemented in ProB,

– a symbolic backend that stores states as LDDs (List Decision Diagrams) [7],
– a multi-core backend that works similar to the sequential backend, but is

capable of using multiple CPU cores on the same machine,
– a distributed backend in order to utilize multiple machines for model checking.

For this article, we will focus on the advances of the integration with ProB
using the sequential and symbolic backends but also experiment with the multi-
core backend. We have not done any experiment with the distributed backend
yet.
1 Due to technical limitations in ProB, we have not added this for Event-B yet.
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1.2 ProB and the B-Method

ProB [25] is an open-source animator and model checker for several formalisms
including B, Event-B, CSP, Z and TLA+. It can be used in order to find
invariant or assertion violations or deadlock states in machine specifications.
While it implements a straightforward explicit state model checker, it also ships
more advanced techniques, e.g., symmetry reduction [29], partial order reduc-
tion [15,16] or symbolic model checking [22]. This style of symbolic model check-
ing [9], where states are stored as predicates, must not be confused with the sym-
bolic model checking that LTSmin provides, where states are stored as decision
diagrams. ProB’s core is written in SICStus Prolog [10] and may also employ
SMT solvers [23], such as Z3 and CVC4, or SAT solvers, such as Kodkod [28].

When integrating ProB into LTSmin, we focus on two formalisms: B (some-
times referred to as “classical B”) is part of the B-Method [3], where software
is developed starting with a very abstract model that iteratively is refined to
a concrete implementation. This method aims for software to be “correct by
construction”. Event-B [1] is considered to be the successor of B that does not
include constructs that often hinder formal proof in the language, e.g., condi-
tional assignments or loops. Both formalisms offer a very high level of abstraction
and are based on set theory and first-order logic.

1.3 Theoretical Background

We repeat the most important definitions used in [4] on the following contrived
example:

MACHINE example
CONSTANTS c
PROPERTIES c = 100
VARIABLES x , y
INVARIANT x : INTEGER & y : INTEGER &

x <= c & x + y <= 2 ∗ c
INITIALISATION x := 0 | | y := 0
OPERATIONS

incx = SELECT x < c THEN x := x + 1 END;
doublex = SELECT x < c /2 & x > 0 THEN x := x ∗ 2 END;
incy (n) = SELECT n > 0 & n < c & y < c

THEN y := y + n END;
incxmaybey = SELECT x < c

THEN x := x + 1 | |
IF x mod 2 = 0 THEN y := y + 1 END

END

Fig. 2. Contrived B machine example
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Definition 1 (Transition System). A Transition System (TS) is a structure
(S,→, I), where S is a set of states, → ⊆ S × S is a transition relation and
I ⊆ S is a set of initial states. Furthermore, let →∗ be the reflexive and transitive
closure of →, then the set of reachable states is R = {s ∈ S | ∃s′ ∈ I . s′ →∗ s}.

Such transition systems are induced by both B and Event-B models. As all
variables have to be typed, the set of states S is the Cartesian product of all
types. All possible initial states are given in the INITIALISATION machine clause.
The union of all operations define the transition relation →. For symbolic model
checking however, it is very important that the transition relation is split into
groups.

Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (Sn, T ,→m, In), where

– Sn = S1 × . . . × Sn is the set of states, which are vectors of n values,
– T = (→1, . . . ,→m) is a vector of M relations, called transition groups, →i ⊆

Sn ×Sn (∀1 ≤ i ≤ m),
– →m =

⋃m
i=1 →i is the overall transition relation induced by T , i.e., the union

of the m transition groups, and
– In ⊆ Sn is the set of initial states.

We write s →i t when (s, t) ∈ →i for 1 ≤ i ≤ m, and s→m t when (s, t) ∈ →m.

Strictly speaking, the transition relation in Definition 2 is not partitioned, as
individual B operations can have same effect. We implemented an easy mental
model where each transition group represents exactly one operation in the B
model.

For the example in Fig. 2, the only initial state is init (c,x,y) = (100, 0, 0).
We agree on a notation where the ordering of the variables in an individual
state is given once as a superscript. In LTSmin, the ordering of the variables
is fixed and unambiguous. Then, In = {(100, 0, 0)}, Sn = Z × Z × Z and T =
(incx, doublex, incy, incxmaybey) with, e.g., incx = {(100, 0, 0) →1 (100, 1, 0) ,
(100, 0, 1) →1 (100, 1, 1) , (100, 1, 0) →1 (100, 2, 0) , . . .}.

Symbolic Model Checking and Event Locality. In many B models, opera-
tions only read from and write to a small subset of variables, which is known as
event locality [11]. Symbolic model checking benefits from event locality, allow-
ing reuse of successor states when only variables changed that are irrelevant to
the state transition.

In order to employ LTSmin’s symbolic algorithms [7,26,27], ProB provides
several dependency matrices about the B model that shall be checked: A read
matrix and may-write matrix is used in order to determine independence between
transition groups for symbolic model checking. These two matrices for Fig. 2 are
given in Fig. 3. Entries are set to 1, if the operation reads or writes the variable,
and otherwise to 0. Further matrices are shown once their use-case is introduced.
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⎡
⎢⎢⎣

c x y

incx 1 1 0
doublex 1 1 0
incy 1 0 1
incxmaybey 1 1 1

⎤
⎥⎥⎦

(a) Read Matrix

⎡
⎢⎢⎣

c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 0 1 1

⎤
⎥⎥⎦

(b) May-Write Matrix

Fig. 3. Dependency matrices
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Fig. 4. Overview of the tool integration LTSmin↔ProB

2 Architecture Overview of LTSmin↔ProB Integration

LTSmin and ProB typically run as two separate processes which can be launched
both manually or start each other. They are linked as shown in Fig. 4. The pro-
cesses are linked via one IPC (local inter-process communication) socket per tool
provided by ZeroMQ [18], a library offering distributed messaging. We employ a
request-reply pattern on these sockets, where LTSmin sends requests and ProB
responds. In order to handle messaging in ProB, we added a small layer in C.

In order to expose information about the loaded model to LTSmin, ProB’s
response to an initial request includes, amongst others, names of state variables
and transition groups, an initial state and dependency matrices.

LTSmin expects a model to have a single initial state, while B and Event-B
models allow for nondeterministic initialization. Thus, the initial state trans-
ferred to LTSmin consists of dummy values for all variables. Furthermore, we
add a state variable named is_init that is initially set to false. Via a special
transition $init_state which is only applicable if is_init is false, the actual
initial states of the specification are exposed. For all these states (and their suc-
cessors), is_init is set to true. This technicality leads to special cases in the
entire implementation which we will omit.

In order to call ProB’s next-state function, LTSmin sends a request contain-
ing the transition group and a state. ProB then will answer with a list of suc-
cessor states. Since ProB is implemented in Prolog, it is hard to exchange states
reasonably. Prolog terms have a limited life-span when using SICStus’ foreign
function interface. Thus, we serialize and deserialize state variables into/from
blobs (binary large objects) by making use of an undocumented Prolog library
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named fastrw. Each variable is stored in a separate blob, such that, a state is
only a vector of blobs for LTSmin. Naturally, repeated (de)serialization comes
with an overhead that we chose to accept for now.

The labelling function is called in the same way, providing a label name and
a state. ProB will answer with either true or false.

3 Implementation

In order to extend the prior integration, ProB needs to expose more of the B
model to LTSmin. In this section, we describe what information is additionally
exchanged, how it is calculated and used by considering the running example in
Fig. 2.

3.1 State Labels and Invariant Checking

In a labelled transition system, a set of atomic propositions is assumed. An
atomic proposition is any predicate that we will call “state label”. ProB will
implement the labelling function, i.e., it will receive a state and a state label and
return true or false.

The entire invariant can be seen as a single atomic proposition. However, if
only some variables change from one state to its successor, not all conjuncts need
to be re-evaluated. Thus, we split the invariant into its conjuncts. Each conjunct
is announced as a state label to LTSmin by providing a unique identifier. In order
to expose which state label depends on which variable, additionally a state label
matrix is included.

In our example in Fig. 2, initially, four state labels are created. The corre-
sponding state label matrix is shown in Fig. 5.

⎡
⎢⎢⎣

c x y

x ∈ Z 0 1 0
y ∈ Z 0 0 1
x ≤ c 1 0 1
x+ y ≤ 2c 1 1 1

⎤
⎥⎥⎦

Fig. 5. State label dependency matrix

Since predicates are split at conjunctions, well-definedness issues might arise.
As an example, consider the following predicate: x �= 0∧100 mod x = 1. ProB’s
constraint solver will reorder the conjuncts in order to exclude any division by
zero. Once the predicate is split into x �= 0 and 100 mod x = 1, it will only
receive a single conjunct and cannot do any reordering. Thus, in a state with
x = 0, the second conjunct on its own will result in a well-definedness error.

Thus, if a well-definedness error arose, another part of the original predicate
has to be unsatisfied and we can assume the offending conjunct to be false as
well.
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Proof Information. Event-B models exported from Rodin [2] include infor-
mation about discharged proof information. ProB uses this information, e.g.,
in order to avoid checking an invariant that has been proven to be preserved
when a specific action is executed [5]. If an invariant has been fully proven to be
correct, i.e., that it holds in the initial states and all transitions preserve it, we
can exclude it from the list of invariants exposed to LTSmin.

Even though the machine in Fig. 2 is written in classical B, i.e., there is no
proof information available, the two invariant conjuncts x ∈ Z and y ∈ Z are
dropped. The type checker can already prove that they will hold. Thus, there is
no need to check them separately.

3.2 Short States

In order to call ProB via an interface function, LTSmin needs to transmit the
entire state to ProB. ProB then deserializes all variables individually before the
interpreter is called. Obviously, not all values are required in order to calculate a
state transition or evaluate a predicate, rendering some overhead obsolete. Such
an interface function is called long function, analogously a state that consists of
all state variables is called a long state.

Instead of transmitting the entire state, LTSmin can make use of the depen-
dency matrix in order to project a long state to state vector that only contains
the values of accessed variables. Such a state is named short state and is relative
to either a state label or transition group. An interface function that receives
a short state is, analogously, named a short function. Short states can also be
expanded back to long states by inserting values for the missing variables, e.g.,
those of a predecessor or initial state.

Short states come in two flavors: firstly, regular short states are of a fixed
size per transition group or state label and only contain values both written to
and read from. Consider the initial state init (c,x,y) = (100, 0, 0) from Fig. 2. The
corresponding short state for incx only contains c and x since y is not accessed.
The projected short state, thus, is init (c,x)short = (100, 0).

On the other hand, R2W short states (read to write) differ in the contained
variables. LTSmin passes only read variables to ProB which in turn answers with
written variables only. For incx, the R2W short state that is passed to ProB
also is init (c,x)read = (100, 0) because all written variables also are read. However,
c is a constant, thus the value does not change. Thus, the returned state only
consists of x, i.e., init (c,x)read →1= init (x)write with init (x)write = (1).

Because there might be non-deterministic write accesses to variables (“may
write”), a so-called copy vector is additionally passed to LTSmin. This copy
vector is a bitfield marking which variables were actually written to and which
values are taken from an earlier state. Additionally, the must-write matrix is
given to LTSmin in order to expose which variables will be updated every single
time.

The must-write matrix for Fig. 2 is given in Fig. 6. The difference to the may-
write matrix is printed in bold. Note that if an entry in the must-write matrix
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⎡
⎢⎢⎣

c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 0 1 0

⎤
⎥⎥⎦

Fig. 6. Must-write matrix

is 1, it has to be 1 in the may-write matrix, but not vice versa. Then, consider
the operation incxmaybeincy from Fig. 2. This operation only writes to y when
x is an even number. Thus, for s

(c,x,y)
read = (100, 2, 2) and s →4 s′, s′(x,y)

write = (3, 3)
and cpy

(x,y)
s→s′ = (0, 0), because both variables were actually written to. However,

for ŝ
(c,x,y)
read = (100, 3, 2) and ŝ →4 ŝ′, ŝ′(x,y)

write = (4, 2). Yet, cpy(x,y)ŝ→ŝ′ = (0, 1) since
y was not written to and the old value was copied.

Internally, LTSmin may use both long and short states and convert freely
between them. The ProB language frontend always communicates R2W short
states in order to minimize overhead by communication and (de)serialization.
However, the caching layer works on regular short states, while, e.g., the variable
reordering uses long states.

3.3 Caching Mechanism

While the symbolic backend calls the next-state function once with a state that
represents a set of states, the sequential backend calls it for each of the states
and transition groups. Analogously, the same holds true for state labels and calls
to the labelling function.

Since we already calculate dependency matrices, which contain information
about which variables are read and, in case of the next-state function, are written
to, we can calculate the corresponding short state instead. Then, in order to
avoid transferring and (de)serializing states as well as calculating the same state
transition or state label multiple times, we can store results in hash maps, one per
transition group and state label each. These hash maps map the corresponding
short state to either a list of (short) successors states or a Boolean value in case
of state labels. Only if the lookup in the hash table fails, the state is transferred
to ProB. Otherwise, LTSmin can calculate the result by itself.

Currently, all operations are cached. Obviously, as more variables are accessed
by an operation, caching offers lower benefit in exchange to the amount of mem-
ory consumed.

3.4 Guard Splitting

Operations (aka events or state transitions) are guarded, i.e., the action part that
substitutes variables may only be executed if the guard predicate is satisfied.
When LTSmin asks ProB to calculate successor states for a given transition
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group, ProB will evaluate the guard and, if applicable, try to find all (or a
limited amount of) successors.

It is easy to make the following two observations: firstly, it is often more
performant to evaluate single conjuncts of a guard individually. Usually, they
access only a very limited amount of variables and can easily be cached. As
an example, the guard x < c of incx in Fig. 2 only reads two state variables
(of which one is constant). Secondly, the same conjunct might guard multiple
operations and, if evaluated for one operation in the same state, does not require
additional evaluation for another operation. In Fig. 2, both incx and incxmaybey
share the same guard x < c.

LTSmin’s symbolic backend supports splitting the action from evaluating its
guard. A new interface function next-action is provided that works similar to
the next-state function, but assumes the guard of an operation to be true. Then,
only the action part is evaluated. A special matrix (reads-action) is required for
the next-action function that only contains variables that are read during the
action part.

Additionally, each guard predicate is split into its conjuncts and associated
with the corresponding transition groups in the guard matrix. Each conjunct is
added to the state labels announced to LTSmin and their accessed variables are
stored in the state label matrix. Parameter constraints however are considered
to be part of the action. E.g., the guard n > 0∧n < c∧y < c of incy(n) in Fig. 2
is split into two: only y < c is the actual guard for LTSmin and n > 0∧ n < c is
evaluated when calling the next-action function. The new matrices and the new
rows in the state label matrix can be found in Fig. 7. Differences between the
read matrix from Fig. 3 and the reads-action matrix are highlighted in bold.

⎡
⎢⎢⎣

c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 1 1 1

⎤
⎥⎥⎦

(a) Reads-Action Matrix

⎡
⎢⎢⎣

c x y

x < c 1 1 0
x < c/2 1 1 0
x > 0 0 1 0
y < c 1 0 1

⎤
⎥⎥⎦

(b) Extension of the
State Label Matrix

⎡
⎢⎢⎣

x < c x < c/2 x > 0 y < c

incx 1 0 0 0
doublex 0 1 1 0
incy 0 0 0 1
incxmaybey 1 0 0 0

⎤
⎥⎥⎦

(c) Guard Matrix

Fig. 7. Matrices for guard-splitting
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3.5 Partial Order Reduction

Partial order reduction (POR) [30,31] is a technique that reduces the amount of
considered states based on a property that is checked. This is achieved by making
use of additional information that can usually be inferred by static analysis.

In the following, we describe which relationships need to be calculated in
order to achieve the best reduction with LTSmin.

Definition 3 (According with, based on [24]). Let t1, t2 ∈ T be any two
operations. We define t1 to be according with t2, iff

∀s, s1, s2 ∈ R : s t1−→ s1 ∧ s
t2−→ s2 =⇒ ∃s′ : s1

t2−→ s′ ∧ s2
t1−→ s′

or as graphical representation:

s

s1 s2

s′

⇒s2

s

s1

t1 t2

t2 t1

t1 t2

We define that no t ∈ T accords with itself.

Accordance of transition groups expresses that they are independent from
each other, i.e., depending on the property, not all interleavings have to be
considered. ProB underapproximates the according-with relationship. Instead,
the constraint ∀s, s1, s2 ∈ S : s ti−→ s1 ∧ s

tj−→ s2 =⇒ ∃s′ : s1
tj−→ s′ ∧ s2

ti−→ s′

is evaluated for a given pair ti, tj ∈ T , i �= j, considering the guards and the
before-after predicates of both transitions. This does not ensure that any state
is reachable. However, it is a valid overapproximation of the does not accord
relationship matrix that is passed to LTSmin by negating all entries.

LTSmin uses a heuristic in order to determine which of the calculated stub-
born sets [30] might yield the best state space reduction. It requires a good
approximation of the necessary enabling sets to do so:
Definition 4 (Necessary Enabling Set (NES), based on [24]). Let g be
any state label that is disabled in some state s ∈ R, i.e. ¬g(s).

A set of transitions Ng is called the necessary enabling set for g in s, if
for all states s′ ∈ R with some sequence s

t1,...,tn−−−−−→ s′ and g(s′), for at least one
transition ti (1 ≤ i ≤ n) we have ti ∈ Ng.

We can use an already existing implementation of the test_path procedure
(cf. [14], definition 2) in order to calculate the necessary enabling set. In the
implementation, it is just tested for any given state, whether a single transition
can enable the guard label. In particular, this means that the states s and s′

in Definition 4 may not be reachable at all. This results in a safe approximation
but may lose precision.

Along with the NES, a necessary disabling set (NDS) is approximated. It is
calculated in the same way but uses the negation of the state label.
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s

s1 s2

s′ s̄

t1 t2

t2 t1

t′

Fig. 8. Reduction using co-
enabledness

Information about the NES and NDS matrices
can syntactically be approximated from the depen-
dency matrix. Solving the given constraints often
results in a better approximation and, thus, a better
reduction.

Furthermore, with additional information one
might prove that out of at least three transition, e.g.,
t1, t2 and t′, some transitions, e.g., t2 and t′ might
not be enabled at the same time. Then, not all inter-
leaving of t1 and t2 need to be considered. This situ-
ation is depicted in Fig. 8, where s1 does not have to be visited. Then, a may-be
co-enabled matrix is calculated, based on the following definition:

Definition 5 (Co-Enabledness, based on [24]). Two state labels l, l′ ∈ L are
co-enabled in a state s ∈ R iff they both evaluate to true in s, i.e. l(s) = true =
l′(s).

Again, instead of working on reachable states, it is checked whether there is
any state in the Cartesian product of types where both labels are enabled. If the
co-enabledness of two state labels cannot be determined, they are considered as
may-be co-enabled.

While ProB offers an implementation partial order reduction as well [15,16],
the partial order reduction algorithm implemented in LTSmin uses a finer heuris-
tic. ProB checks whether a transition can enable another transition, LTSmin
uses information about whether individual guards of the event can be enabled,
often resulting in a better reduction.

However, this reduction comes with a tradeoff: to calculate the additional
matrices, more constraints have to be solved by ProB in order to determine the
additional relationships, resulting in a longer analysis time. ProB only calculates
accordance of transitions and one row in the NES matrix per transition instead
of per guard conjunct. Furthermore, LTSmin does not allow both transitions to
be enabled and not generating any successors at the same time. This is possible
in ProB when no suitable parameters exist. Thus, an additional guard is added
which is an existential quantification of the parameters and often rather costly
to evaluate. This quantification has to be solved both on evaluation of the guard
and computation of successor states.

3.6 LTL Formula Checking

In order to check LTL properties, both tools need to have access to the for-
mula: only ProB is capable of dealing with atomic propositions properly since
it implements the syntax and semantics of the B language. LTSmin, however,
requires the formula in order to generate the corresponding Büchi automaton.

Thus, ProB parses the formula first. All atomic propositions in the formula
are replaced with a newly generated state label. In order to evaluate these new
atomic propositions, the state labelling function is extended in ProB. Further-
more, the formula is wrapped in a “next” operator in order to skip the artificial
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initial state introduced earlier. This modified formula is then pretty printed into
a format that LTSmin can parse.

4 Evaluation

In this section, we will evaluate the performance of the tool integration of LTSmin
and ProB using both the sequential and symbolic backend. We will compare the
model checking time on several models from literature and industrial applications
which are publicly available under https://github.com/pkoerner/prob-ltsmin-
models. Benchmark scripts are included in the repositories as well.

Furthermore, we will compare the impact of the implementations of par-
tial order reduction for a different set of models, where the state space can be
reduced.

Each benchmark was run on a machine featuring two Intel Xeon IvyBridge
E5-2697 with twelve cores each running at 2.70GHz and 100 GB of RAM. Two
CPUs were reserved for each run of invariant verification, partial order reduction
and LTL model checking. For multi-core benchmarks, we reserved as many CPUs
as there are worker threads plus one CPU for ZeroMQ overhead.

The given values are the median value of ten repetitions.

4.1 Invariant Checking

We benchmarked three backends on multiple B and Event-B models:

– ProB: the vanilla ProB model checker
– LTSmin (seq): the sequential backend of LTSmin with the ProB interpreter,
– LTSmin (sym): the symbolic backend of LTSmin without guard-splitting and

the ProB interpreter.

We omit results with guard-splitting enabled since they are very similar to
the symbolic backend without guard-splitting for applicable models, i.e., those
written in classical B.

Runtimes and memory consumption can be found in Table 1. Runtimes of
LTSmin’s sequential and symbolic backend do not include ProB’s startup time
which includes parsing and minor analysis of the model. None of the considered
models has any invariant violation and, thus, all models have to be explored
exhaustively.

Only for one of models benchmarked, the “Set Laws” machine, a single back-
end of LTSmin is slower than ProB. Apart from that, we can observe speed-ups
ranging from two-fold up to more than two hundred times. For most models,
LTSmin is at least an order of magnitude faster than ProB.

The “Train” machine cannot be checked by vanilla ProB on the benchmark-
ing machine, as it runs out of main memory after three days, exploring about
half the state space. Both LTSmin backends manage to verify the entire state
space in several hours. Only in few instances, LTSmin requires more memory

https://github.com/pkoerner/prob-ltsmin-models
https://github.com/pkoerner/prob-ltsmin-models
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Table 1. Invariant checking performance (runtime in seconds, memory in MB) of
ProB alone compared to LTSmin with ProB. †: Estimated runtime, ‡: limited amount
of initializations

Tool ProB LTSmin (seq) LTSmin (sym)

Four Slot Runtime 26.33 0.99 1.12
(Simpson’s Algorithm) Speed-up 1.00 26.60 23.51
46657 states Memory 227.21 11.14 426.07
Landing Gear Runtime 61.38 1.04 0.65
[17] Speed-up 1.00 59.02 94.43
43306 states Memory 244.01 11.95 425.77
RETHER protocol Runtime 77.75 4.87 6.09
[33] Speed-up 1.00 15.97 12.77
42253 states Memory 304.08 12.61 430.36
Set Laws Runtime 232.37 120.57 301.03

Speed-up 1.00 1.93 0.77
35937 states Memory 428.45 87.05 501.86
Earley Parser Runtime 24612.00 15153.00 6476.00
(J.-R. Abrial) Speed-up 1.00 1.62 3.80
472886 states Memory 4218.62 5224.57 4833.13
CAN Bus Runtime 131.51 2.68 2.80
(John Colley) Speed-up 1.00 49.07 46.97
132599 states Memory 346.74 24.14 435.50
Mercury Orbiter Runtime 2608.28 14.14 10.76
[13] Speed-up 1.00 184.46 242.41
589278 states Memory 2360.06 68.66 428.34
Mode Protocol Runtime 1393.97 317.90 381.20
‡ [13] Speed-up 1.00 4.38 3.66
336648 states Memory 1097.70 151.36 536.55
Core Runtime 1921.58 315.77 320.05

Speed-up 1.00 6.09 6.00
160946 states Memory 1751.64 314.94 742.17
Train Runtime 600000 † 33124.00 49120.00
[1] Speed-up 1.00 18.11 12.21
61648077 states Memory >100000 18887.32 19815.79
Train Runtime 98.59 51.79 71.01
(reduced version) Speed-up 1.00 1.90 1.39
24636 states Memory 198.48 39.00 493.39
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than ProB. Surprisingly, the sequential backend often requires an order of mag-
nitude less memory, even though it maintains a cache. In the only instance where
it uses more memory, i.e., “Earley Parser”, only few variables re-use the same val-
ues. Thus, almost no sharing between in states is possible and the entire fastrw
representation for almost every state has to be stored.

Overall, LTSmin is able to outperform ProB in almost all instances. Obvi-
ously, caching is really important for the sequential backend. We tried two imple-
mentations of a similar caching mechanism for ProB in order to benefit from
similar speed-ups: firstly, by hashing short states as well as asserting them as
Prolog facts, and, secondly, by serializing the state via the fastrw library and
storing the result in a hash map in C. However, neither implementation had a
similar impact. Often, they even slowed ProB down. In the first case, we assume
that the hashing algorithms for Prolog terms are too slow. For the second imple-
mentation, the overhead to serialize every state, in particular for cache lookups,
was too costly.

4.2 LTL Model Checking

We benchmarked LTL model checking on a few of aforementioned models that
are reasonably sized. Since no LTL formulas were included in the models, we
arbitrarily picked some that allow reasoning about the models. ProB’s special
syntax is used in the formulas: e(x) means that the operation x is enabled. The
results are given in Table 2.

We can see that for LTL formulas that hold, the good speed-ups and low
memory consumption of LTSmin that was presented in Sect. 4.1 can also be
observed for LTL model checking. If a formula is not satisfied, LTSmin can
be more than thousandfold faster. While ProB generates the state space of
the transition system first, LTSmin features an on-the-fly LTL model checking
algorithm where the state space consisting of the Cartesian product of the cor-
responding Büchi automaton and the actual transition system is generated as
necessary. Thus, accepting loops can be found quickly without exploring the
entire transition system and speed-ups may be more than thousandfold.

4.3 Partial Order Reduction

From benchmarks conducted in [16,20], it became clear that, in typical B and
Event-B models, partial order reduction usually does not work well in combina-
tion with invariant verification. For the models above, none or very little reduc-
tion was achievable. Instead, we compare the results of partial order reduction
for deadlock checking.

In ProB, we use the “least” heuristic for the partial order reduction. In order
to reduce analysis time for LTSmin, the timeout is set to 20ms per predicate.
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Table 2. Runtimes (in seconds) and speed-ups of LTL model checking. †: LTL formula
does not hold. Speed-up compared to ProB without LTSmin.

Tool ProB LTSmin

RETHER protocol [33]
G (not e(reserve)
=⇒ X(e(grant) & e(no_grant))) †

Runtime 76.67 0.14
Speed-up 1.00 547.64
Memory 335.92 5.57

RETHER protocol [33]
GF e(pass_token)

Runtime 77.50 4.79
Speed-up 1.00 16.18
Memory 335.31 15.02

CAN Bus (John Colley)
GF e(Update)

Runtime 125.49 3.18
Speed-up 1.00 39.46
Memory 439.01 29.21

CAN Bus (John Colley)
G (e(T1Wait) =⇒ X(T1_timer > 0)) †

Runtime 126.80 0.24
Speed-up 1.00 528.33
Memory 435.25 6.23

Mode Protocol [13]
GF e(evt_DeliverOK) †

Runtime 1406.91 0.30
Speed-up 1.00 4689.70
Memory 1336.25 6.39

Results are shown in Table 3 comparing the performance of ProB’s POR for
deadlock checking with the one of LTSmin. B models that offer no reduction
with either tool are omitted (which are more than half). Again, the startup time
of ProB that includes parsing the machine file, is not included.

As can be seen in Table 3, LTSmin is – as discussed in Sect. 3.5 – able to find a
reduction that is equal to ProB’s or even better (for the “Set Laws” machine, the
additional state is the artificial initial state). Indeed, for the “Mercury Orbiter”
and “Landing Gear”, ProB cannot reduce the state space at all with the given
heuristic, whereas LTSmin reduces the state space by about a quarter up to a
half.

However, fine-tuning of the time-outs for the static analysis is important.
For machines with many unique guards, analysis time can easily exceed model
checking time. This can be observed for the “Landing Gear” and the extremely
reduced “Four Slot”. With the default time-out value of 300ms, the analysis time
of the “Mercury Orbiter” can exceed a minute, which is more than four times the
time required for model checking without any reduction. A reason could be that
the constraint solver cannot solve the necessary predicates easily and time-outs
are raised often.
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Table 3. Runtimes (in seconds) and impact of POR in ProB alone and LTSmin with
ProB for deadlock checking.

Tool ProB LTSmin

Four Slot
46657 states

Analysis time 0.08 0.23

Model checking time 24.37 0.90
States (after reduction) 44065 44065

Landing Gear [17]
43306 states

Analysis Time 0.98 2.43

Model checking time 87.94 1.25
States (after reduction) 43306 29751

Set Laws
35937 states

Analysis time 0.30 0.37

Model checking time 0.14 0.07
States (after reduction) 33 34

CAN Bus (John Colley)
132599 states

Analysis time 1.38 1.49

Model checking time 94.90 2.24
States (after reduction) 85515 67006

Mercury Orbiter [13]
589278 states

Analysis time 51.00 9.29

Model checking time 2757.33 16.19
States (after reduction) 589278 316164

4.4 Multi-core Model Checking

In order to evaluate the performance of the multi-core backend, we performed
multi-core invariant verification on the five B models with the largest runtime
in Sect. 4.1.

The runtime of runs with different amount of workers are shown in Table 4.
Speed-ups are visualized in Fig. 9. This time, ProB’s startup time is included
because the multi-core extension of LTSmin starts up ProB.

Currently, each worker thread maintains its own cache. Since caching works
fairly well for many B machines, it is quite costly to fill each cache individually.
This explains that often, for the first few workers the speed-up is nearly linear,
but grows slower when more than ten workers participate.

An exception is the “Earley Parser”: the standalone sequential backend does
not offer much speed-up (cf. Sect. 4.1). Thus, the caching effects are lower. Addi-
tionally, ProB spends much time deserializing the state variables because the
Prolog terms grow quite large. Hence, a more linear speed-up is possible for
many workers.
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Fig. 9. Speed-ups of multi-core LTSmin+ProB model checking for complex models

Table 4. Runtimes (in seconds) and speed-ups of multi-core LTSmin with ProB model
checking on the high-performance cluster. ‡: Limited amount of initializations

Earley Parser Workers 1 4 8 12 16 20 23
(J.-R. Abrial) Runtime 15152 4051 2030.76 1358.06 1030.59 834.46 735.76
472886 states Speed-up 1.00 3.74 7.46 11.16 14.70 18.16 20.59

Mode Protocol Workers 1 4 8 12 16 20 23
‡ [13] Runtime 328.29 150.71 94.23 68.74 62.46 45.96 48.48
336648 states Speed-up 1.00 2.18 3.48 4.78 5.26 7.14 6.77

Core Workers 1 4 8 12 16 20 23
Runtime 317.48 93.18 54.73 44.82 36.48 27.57 28.60

160946 states Speed-up 1.00 3.41 5.80 7.08 8.70 11.52 11.10

Train Workers 1 4 8 12 16 20 23
[1] Runtime 32805 11215 5889 4464 3612 3536.60 3710
61648077 states Speed-up 1.00 2.93 5.57 7.35 9.08 9.28 8.84

Train Workers 1 4 8 12 16 20 23
(reduced) Runtime 62.39 30.59 14.43 12.18 15.54 8.68 9.02
24636 states Speed-up 1.00 2.04 4.32 5.12 4.01 7.19 6.92

5 Conclusion, Related and Future Work

In this paper, we presented and evaluated significant improvements of the exist-
ing link of ProB and LTSmin. It allows state-of-the-art model checking of
industrial-sized models with large state spaces, where the vanilla ProB model
checker struggles due to time or memory constraints. E.g., the “Train” exam-
ple can only be checked successfully with ProB on its own by distributing the
workload onto several machines, whereas with LTSmin, it could be verified on
an ordinary notebook or workstation.
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We have compared symbolic reachability analysis to the impact of alternative
techniques that can speed up state space generation, e.g., partial order reduction
and symmetry reduction in [4]. A discussion of the impact of algorithms that
are implemented in both LTSmin and ProB can also be found in Sect. 4.

Additionally, there is another toolset named libits [12]. It supports, like
LTSmin, symbolic model checking using decision diagrams, variable reordering
and LTL as well as CTL model checking. As we understand, its input formalisms
are translated into its guarded action language (GAL). An integration for B
might prove to be infeasible because a constraint solver is required in order to
compute some state transitions and would have to be implemented in GAL itself.
We do not know yet whether linking ProB with libits in order to compute
state transitions is possible.

The caching performed by LTSmin seems to be particularly efficient. For
several realistic examples, the ProB and LTSmin link achieves two to three
orders of magnitude improvements in runtime. Yet, there are several aspects
that require future work: currently, the ProB front-end of LTSmin does not
support parallel symbolic model checking with Sylvan [32]. Furthermore, caches
are local per worker. A shared cache will most likely improve the scaling for
massive parallel model checking. Additionally, the cache does not implement
R2W semantics, which loses information about write accesses and requires more
memory and additional state transformations.

Moreover, there is room for interesting research: while we know from expe-
rience that, for most B models, partial order reduction often only has little to
no impact on the state space, we are unsure why. Would alternative algorithms
perform better? Is the constraint solver not strong enough? Is the approximation
given to LTSmin not precise enough? Does partial order reduction not perform
with the modeling style employed in B? If so, are there any patterns which hin-
der it? Additionally, a proper survey of distributed model checking of B and
Event-B specifications – which we did not touch upon due to page limitations
– between, e.g. LTSmin’s distributed backend, ProB’s distb [21] and TLC [35]
should be considered.

With the gained experience and shared know-how about both LTSmin and
ProB, we now aim to extend the implementation for CSP‖B, where the execu-
tion of classical B machine is guided by a CSP specification. While ProB pro-
vides both an animator and model checker for this formalism, ProB currently
is not a satisfactory tool for this formalism. Interleaving of several processes
causes an enormous state space explosion that we hope the symbolic capabilities
of LTSmin can manage.
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Abstract. Industrial facilities and critical infrastructures are transform-
ing into “smart” environments that dynamically adapt to external events.
The result is an ecosystem of heterogeneous physical and cyber compo-
nents integrated in cyber-physical systems which are more and more
exposed to cyber-physical attacks, i.e., security breaches in cyberspace
that adversely affect the physical processes at the core of the systems.

We provide a formal compositional metric to estimate the impact of
cyber-physical attacks targeting sensor devices of IoT systems formalised
in a simple extension of Hennessy and Regan’s Timed Process Language.
Our impact metric relies on a discrete-time generalisation of Desharnais
et al.’s weak bisimulation metric for concurrent systems. We show the
adequacy of our definition on two different attacks on a simple surveil-
lance system.

Keywords: IoT system · Cyber-physical attack · Impact metric
Probabilistic metric semantics

1 Introduction

The Internet of Things (IoT) is heavily affecting our daily lives in many domains,
ranging from tiny wearable devices to large industrial systems with thousands
of heterogeneous cyber and physical components that interact with each other.

Cyber-Physical Systems (CPSs) are integrations of networking and dis-
tributed computing systems with physical processes, where feedback loops allow
the latter to affect the computations of the former and vice versa. Historically,
CPSs relied on proprietary technologies and were implemented as stand-alone
networks in physically protected locations. However, the growing connectivity
and integration of these systems has triggered a dramatic increase in the number
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of cyber-physical attacks [14], i.e., security breaches in cyberspace that adversely
affect the physical processes, e.g., manipulating sensor readings and, in general,
influencing physical processes to bring the system into a state desired by the
attacker.

Cyber-physical attacks are complex and challenging as they usually cross
the boundary between cyberspace and the physical world, possibly more than
once [11]. Some notorious examples are: (i) the STUXnet worm, which repro-
grammed PLCs of nuclear centrifuges in Iran [6], (ii) the attack on a sewage
treatment facility in Queensland, Australia, which manipulated the SCADA sys-
tem to release raw sewage into local rivers [32], or the (iii) the recent BlackEnergy
cyber-attack on the Ukrainian power grid, again compromising the SCADA sys-
tem [15].

The points in common of these systems is that they are all safety critical
and failures may cause catastrophic consequences. Thus, the concern for conse-
quences at the physical level puts CPS security apart from standard IT security.

Timing is particularly relevant in CPS security because the physical state of
a system changes continuously over time and, as the system evolves in time, some
states might be more vulnerable to attacks than others. For example, an attack
launched when the target state variable reaches a local maximum (or minimum)
may have a great impact on the whole system behaviour [17]. Also the duration
of the attack is an important parameter to be taken into consideration in order
to achieve a successful attack. For example, it may take minutes for a chemical
reactor to rupture, hours to heat a tank of water or burn out a motor, and days
to destroy centrifuges.

The estimation of the impact of cyber-physical attacks on physical com-
ponents of the target system is a crucial task when protecting CPSs [10]. For
instance, in industrial CPSs, before taking any countermeasure against an attack,
engineers first try to estimate the impact of the attack on the system functioning
(e.g., performance and security) and weight it against the cost of stopping the
plant. If this cost is higher than the damage caused by the attack (as is some-
times the case), then engineers might actually decide to let the system continue
its activities even under attack. Thus, once an attack is detected, impact metrics
are necessary to quantify the perturbation introduced in the physical behaviour
of the system under attack.

The goal of this paper is to lay theoretical foundations to provide formal
instruments to precisely define the notion of impact of cyber-physical attack
targeting physical devices, such as sensor devices of IoT systems. For that we
rely on a timed generalisation of weak bisimulation metrics [5] to compare the
behaviour of two systems up to a given tolerance, for time-bounded executions.

Weak bisimulation metric allows us to compare two systems M and N , writ-
ing M �p N , if the weak bisimilarity holds with a distance or tolerance p ∈ [0, 1],
i.e., if M and N exhibit a different behaviour with probability p, and the same
behaviour with probability 1 − p. A useful generalisation is the n-bisimulation
metric [3] that takes into account bounded computations. Intuitively, the dis-
tance p is ensured only for the first n computational steps, for some n ∈ N.
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However, in timed systems it is desirable to focus on the passage of time rather
than the number of computational steps. This would allow us to deal with situ-
ations where it is not necessary (or it simply does not make sense) to compare
two systems “ad infinitum” but only for a limited amount of time.

Contribution. In this paper, we first introduce a general notion of timed bisim-
ulation metric for concurrent probabilistic systems equipped with a discrete
notion of time. Intuitively, this kind of metric allows us to derive a timed weak
bisimulation with tolerance, denoted with ≈k

p, for k ∈ N
+∪{∞} and p ∈ [0, 1], to

express that the tolerance p between two timed systems is ensured only for the
first k time instants (tick-actions). Then, we use our timed bisimulation metric
to set up a formal compositional theory to study and measure the impact of
cyber-physical attacks on IoT systems specified in a simple probabilistic timed
process calculus which extends Hennessy and Regan’s Timed Process Language
(TPL) [12]. IoT systems in our calculus are modelled by specifying: (i) a physi-
cal environment , containing informations on the physical state variables and the
sensor measurements, and (ii) a logics that governs both accesses to sensors and
channel-based communications with other cyber components.

We focus on attacks on sensors that may eavesdrop and possibly modify the
sensor measurements provided to the controllers of sensors, affecting both the
integrity and the availability of the system under attack.

In order to make security assessments of our IoT systems, we adapt a well-
know approach called Generalized Non Deducibility on Composition (GNDC) [7]
to compare the behaviour of an IoT system M with the behaviour of the same
system under attack, written M ‖ A, for some arbitrary cyber-physical attack A.
This comparison makes use of our timed bisimulation metric to evaluate not only
the tolerance and the vulnerability of a system M with respect to a certain attack
A, but also the impact of a successful attack in terms of the deviation introduced
in the behaviour of the target system. In particular, we say that a system M
tolerates an attack A if M ‖ A ≈∞

0 M , i.e., the presence of A does not affect the
behaviour of M ; whereas M is said to be vulnerable to A in the time interval
m..n with impact p if m..n is the smallest interval such that M ‖ A ≈m−1

0 M and
M ‖ A ≈k

p M , for any k ≥ n, i.e., if the perturbation introduced by the attack A
becomes observable in the m-th time slot and yields the maximum impact p in
the n-th time slot. In the concluding discussion we will show that the temporal
vulnerability window m..n provides several informations about the corresponding
attack, such as stealthiness capability, duration of the physical effects of the
attack, and consequent room for possible run-time countermeasures.

As a case study, we use our timed bisimulation metric to measure the impact
of two different attacks injecting false positives and false negative, respectively,
into a simple surveillance system expressed in our process calculus.

Outline. Section 2 formalises our timed bisimulation metrics in a general set-
ting. Section 3 provides a simple calculus of IoT systems. Section 4 defines cyber-
physical attacks together with the notions of tolerance and vulnerability w.r.t.
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an attack. In Sect. 5 we use our metrics to evaluate the impact of two attacks on
a simple surveillance system. Section 6 draws conclusions and discusses related
and future work. In this extended abstract proofs are omitted, full details of the
proofs can be found in the technical report [23].

2 Timed Bisimulation Metrics

In this section, we introduce timed bisimulation metrics as a general instrument
to derive a notion of timed and approximate weak bisimulation between prob-
abilistic systems equipped with a discrete notion of time. In Sect. 2.1, we recall
the semantic model of nondeterministic probabilistic labelled transition systems;
in Sect. 2.2, we present our metric semantics.

2.1 Nondeterministic Probabilistic Labelled Transition Systems

Nondeterministic probabilistic labelled transition systems (pLTS) [30] combine
classic LTSs [16] and discrete-time Markov chains [34] to model, at the same
time, reactive behaviour, nondeterminism and probability. We first provide the
mathematical machinery required to define a pLTS.

The state space in a pLTS is given by a set T , whose elements are called
processes, or terms. We use t, t′, .. to range over T . A (discrete) probability sub-
distribution over T is a mapping Δ : T → [0, 1], with

∑
t∈T Δ(t) ∈ (0, 1]. We

denote
∑

t∈T Δ(t) by |Δ |, and we say that Δ is a probability distribution if
|Δ|= 1. The support of Δ is given by 
Δ� = {t ∈ T : Δ(t) > 0}. The set of all
sub-distributions (resp. distributions) over T with finite support will be denoted
with Dsub(T ) (resp. D(T )). We use Δ, Θ, Φ to range over Dsub(T ) and D(T ).

Definition 1 (pLTS [30]). A pLTS is a triple (T ,A,−→), where: (i) T is a
countable set of terms, (ii) A is a countable set of actions, and (iii) −→ ⊆
T × A × D(T ) is a transition relation.

In Definition 1, we assume the presence of a special deadlocked term Dead ∈
T . Furthermore, we assume that the set of actions A contains at least two
actions: τ and tick. The former to model internal computations that cannot be
externally observed, while the latter denotes the passage of one time unit in a
setting with a discrete notion of time [12]. In particular, tick is the only timed
action in A.

We write t
α−→ Δ for (t, α,Δ)∈−→, t

α−→ if there is a distribution Δ ∈ D(T )
with t

α−→ Δ, and t
α−→ otherwise. Let der(t, α) = {Δ ∈ D(T ) | t

α−→ Δ} denote
the set of the derivatives (i.e. distributions) reachable from term t through action
α. We say that a pLTS is image-finite if der(t, α) is finite for all t ∈ T and α ∈ A.
In this paper, we will always work with image-finite pLTSs.

Weak Transitions. As we are interested in developing a weak bisimulation metric,
we need a definition of weak transition which abstracts away from τ -actions. In
a probabilistic setting, the definition of weak transition is somewhat complicated
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by the fact that (strong) transitions take terms to distributions; consequently if
we are to use weak transitions then we need to generalise transitions, so that
they take (sub-)distributions to (sub-)distributions.

To this end, we need some extra notation on distributions. For a term t ∈ T ,
the point (Dirac) distribution at t, denoted t, is defined by t(t) = 1 and t(t′) = 0
for all t′ = t. Then, the convex combination

∑
i∈I pi · Δi of a family {Δi}i∈I of

(sub-)distributions, with I a finite set of indexes, pi ∈ (0, 1] and
∑

i∈I pi ≤ 1,

is the (sub-)distribution defined by (
∑

i∈I pi · Δi)(t)
def
=

∑
i∈I pi · Δi(t) for all

t ∈ T . We write
∑

i∈I pi · Δi as p1 · Δ1 + . . . + pn · Δn when I = {1, . . . , n}.

Thus, we write t
τ̂−→ Δ, for some term t and some distribution Δ, if either

t
τ−→ Δ or Δ = t. Then, for α = τ , we write t

α̂−→ Δ if t
α−→ Δ. Relation α̂−→ is

extended to model transitions from sub-distributions to sub-distributions. For a
sub-distribution Δ =

∑
i∈I pi · ti, we write Δ

α̂−→ Θ if there is a non-empty set

of indexes J ⊆ I such that: (i) tj
α̂−→ Θj for all j ∈ J , (ii) ti

α̂−→ , for all i ∈ I \J ,
and (iii) Θ =

∑
j∈J pj · Θj . Note that if α = τ then this definition admits that

only some terms in the support of Δ make the α̂−→ transition. Then, we define
the weak transition relation τ̂=⇒ as the transitive and reflexive closure of τ̂−→, i.e.,
τ̂=⇒ = ( τ̂−→)∗, while for α = τ we let α̂=⇒ denote τ̂=⇒ α̂−→ τ̂=⇒.

2.2 Timed Weak Bisimulation with Tolerance

In this section, we define a family of relations ≈k
p over T , with p ∈ [0, 1] and k ∈

N
+ ∪ {∞}, where, intuitively, t ≈k

p t′ means that t and t′ can weakly bisimulate
each other with a tolerance p accumulated in k timed steps. This is done by
introducing a family of pseudometrics mk : T × T → [0, 1] and defining t ≈k

p t′

iff mk(t, t′) = p. The pseudometrics mk will have the following properties for any
t, t′ ∈ T : (i) mk1(t, t′) ≤ mk2(t, t′) whenever k1 < k2 (tolerance monotonicity);
(ii) m∞(t, t′) = p iff p is the distance between t and t′ as given by the weak
bisimilarity metric in [5] in an untimed setting; (iiii) m∞(t, t′) = 0 iff t and t′

are related by the standard weak probabilistic bisimilarity [27].
Let us recall the standard definition of pseudometric.

Definition 2 (Pseudometric). A function d : T × T → [0, 1] is a 1-bounded
pseudometric over T if

– d(t, t) = 0 for all t ∈ T ,
– d(t, t′) = d(t′, t) for all t, t′ ∈ T (symmetry),
– d(t, t′) ≤ d(t, t′′) + d(t′′, t′) for all t, t′, t′′ ∈ T (triangle inequality).

In order to define the family of functions mk, we define an auxiliary family
of functions mk,h : T × T → [0, 1], with k, h ∈ N, quantifying the tolerance
of the weak bisimulation after a sequence of computation steps such that: (i)
the sequence contains exactly k tick-actions, (ii) the sequence terminates with
a tick-action, (iii) any term performs exactly h untimed actions before the first
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tick-action, (iv) between any i-th and (i+1)-th tick-action, with 1 ≤ i < k, there
are an arbitrary number of untimed actions.

The definition of mk,h relies on a timed and quantitative version of the classic
bisimulation game: The tolerance between t and t′ as given by mk,h(t, t′) can be
below a threshold ε ∈ [0, 1] only if each transition t

α−→ Δ is mimicked by a weak
transition t′

α̂=⇒ Θ such that the bisimulation tolerance between Δ and Θ is, in
turn, below ε. This requires to lift pseudometrics over T to pseudometrics over
(sub-)distributions in Dsub(T ). To this end, we adopt the notions of matching [37]
(also called coupling) and Kantorovich lifting [4].

Definition 3 (Matching). A matching for a pair of distributions (Δ,Θ) ∈
D(T ) × D(T ) is a distribution ω in the state product space D(T × T ) such that:

–
∑

t′∈T ω(t, t′) = Δ(t), for all t ∈ T , and
–

∑
t∈T ω(t, t′) = Θ(t′), for all t′ ∈ T .

We write Ω(Δ,Θ) to denote the set of all matchings for (Δ,Θ).

A matching for (Δ,Θ) may be understood as a transportation schedule for the
shipment of probability mass from Δ to Θ [37].

Definition 4 (Kantorovich lifting). Assume a pseudometric d : T × T →
[0, 1]. The Kantorovich lifting of d is the function K(d) : D(T ) × D(T ) → [0, 1]
defined for distributions Δ and Θ as:

K(d)(Δ,Θ)
def
= minω∈Ω(Δ,Θ)

∑
s,t∈T ω(s, t) · d(s, t).

Note that since we are considering only distributions with finite support, the
minimum over the set of matchings Ω(Δ,Θ) used in Definition 4 is well defined.

Pseudometrics mk,h are inductively defined on k and h by means of suitable
functionals over the complete lattice ([0, 1]T ×T ,�) of functions of type T ×T →
[0, 1], ordered by d1 � d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T . Notice that in this
lattice, for each set D ⊆ [0, 1]T ×T , the supremum and infimum are defined as
sup(D)(t, t′) = supd∈D d(t, t′) and inf(D)(t, t′) = infd∈D d(t, t′), for all t, t′ ∈ T .
The infimum of the lattice is the constant function zero, denoted by 0, and the
supremum is the constant function one, denoted by 1.

Definition 5 (Functionals for mk,h). The functionals B,Btick : [0, 1]T ×T →
[0, 1]T ×T are defined for any function d ∈ [0, 1]T ×T and terms t, t′ ∈ T as:

B(d)(t, t′) = max{ d(t, t′),
sup

α∈A\{tick}
max

t
α−→Δ

inf
t′ α̂=⇒Θ

K(d)
(
Δ,Θ + (1− |Θ|)Dead

)
,

sup
α∈A\{tick}

max
t′ α−→Θ

inf
t

α̂=⇒Δ

K(d)
(
Δ + (1− |Δ|)Dead, Θ

)
}

Btick(d)(t, t′) = max{ d(t, t′),
max

t
tick−−→Δ

inf
t′

̂tick==⇒Θ

K(d)
(
Δ,Θ + (1− |Θ|)Dead

)
,

max
t′ tick−−→Θ

inf
t

̂tick==⇒Δ

K(d)
(
Δ + (1− |Δ|)Dead, Θ

)
}

where inf ∅ = 1 and max ∅ = 0.
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Notice that all max in Definition 5 are well defined since the pLTS is image-
finite. Notice also that any strong transitions from t to a distribution Δ is mim-
icked by a weak transition from t′, which, in general, takes to a sub-distribution
Θ. Thus, process t′ may not simulate t with probability 1− |Θ|.

Definition 6 (Timed weak bisimilarity metrics). The family of the timed
weak bisimilarity metrics mk : (T × T ) → [0, 1] is defined for all k ∈ N by

mk =

{
0 if k = 0
suph∈N mk,h if k > 0

while the functions mk,h : (T × T ) → [0, 1]

are defined for all k ∈ N
+ and h ∈ N by

mk,h =

{
Btick(mk−1) if h = 0
B(mk,h−1) if h > 0.

Then, we define m∞ : (T × T ) → [0, 1] as

m∞ = supk∈N mk.

Note that any mk,h is obtained from mk−1 by one application of the functional
Btick, in order to take into account the distance between terms introduced by the
k-th tick-action, and h applications of the functional B, in order to lift such a
distance to terms that take h untimed actions to be able to perform a tick-action.
By taking suph∈N mk,h we consider an arbitrary number of untimed steps.

The pseudometric property of mk is necessary to conclude that the tolerance
between terms as given by mk is a reasonable notion of behavioural distance.

Theorem 1. For any k ≥ 1, mk is a 1-bounded pseudometric.

Finally, everything is in place to define our timed weak bisimilarity ≈k
p with

tolerance p ∈ [0, 1] accumulated after k time units, for k ∈ N ∪ {∞}.

Definition 7 (Timed weak bisimilarity with tolerance). Let t, t′ ∈ T ,
k ∈ N and p ∈ [0, 1]. We say that t and t′ are weakly bisimilar with a toler-
ance p, which accumulates in k timed actions, written t ≈k

p t′, if and only if
mk(t, t′) = p. Then, we write t ≈∞

p t′ if and only if m∞(t, t′) = p.

Since the Kantorovich lifting K is monotone [26], it follows that both func-
tionals B and Btick are monotone. This implies that, for any k ≥ 1, (mk,h)h≥0 is
a non-decreasing chain and, analogously, also (mk)k≥0 is a non-decreasing chain,
thus giving the following expected result saying that the distance between terms
grows when we consider a higher number of tick computation steps.

Proposition 1 (Tolerance monotonicity). For all terms t, t′ ∈ T and
k1, k2 ∈ N

+ with k1 < k2, t ≈k1
p1

t′ and t ≈k2
p2

t′ entail p1 ≤ p2.

We conclude this section by comparing our behavioural distance with the
behavioural relations known in the literature.

We recall that in [5] a family of relations �p for untimed process calculi
are defined such that t �p t′ if and only if t and t′ weakly bisimulate each
other with tolerance p. Of course, one can apply these relations also to timed
process calculi, the effect being that timed actions are treated in exactly the
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same manner as untimed actions. The following result compares the behavioural
metrics proposed in the present paper with those of [5], and with the classical
notions of probabilistic weak bisimilarity [27] denoted ≈.

Proposition 2. Let t, t′ ∈ T and p ∈ [0, 1]. Then,

– t ≈∞
p t′ iff t �p t′

– t ≈∞
0 t′ iff t ≈ t′.

3 A Simple Probabilistic Timed Calculus for IoT Systems

In this section, we propose a simple extension of Hennessy and Regan’s timed
process algebra TPL [12] to express IoT systems and cyber-physical attacks. The
goal is to show that timed weak bisimilarity with tolerance is a suitable notion
to estimate the impact of cyber-physical attacks on IoT systems.

Let us start with some preliminary notations.

Notation 1. We use x, xk for state variables, c, ck, for communication chan-
nels, z,zk for communication variables, s, sk for sensors devices, while o ranges
over both channels and sensors. Values, ranged over by v, v′, belong to a finite
set of admissible values V. We use u, uk for both values and communication vari-
ables. Given a generic set of names N , we write VN to denote the set of functions
N → V assigning a value to each name in N . For m ∈ N and n ∈ N ∪ {∞}, we
write m..n to denote an integer interval. As we will adopt a discrete notion of
time, we will use integer intervals to denote time intervals.

State variables are associated to physical properties like temperature, pres-
sure, etc. Sensor names are metavariables for sensor devices, such as thermome-
ters and barometers. Please, notice that in cyber-physical systems, state variables
cannot be directly accessed but they can only be tested via one or more sensors.

Definition 8 (IoT system). Let X be a set of state variables and S be a set of
sensors. Let range : X → 2V be a total function returning the range of admissible
values for any state variable x ∈ X . An IoT system consists of two components:

– a physical environment ξ = 〈ξx, ξm〉 where:
• ξx ∈ VX is the physical state of the system that associates a value to each

state variable in X , such that ξx(x) ∈ range(x) for any x ∈ X ,
• ξm : VX → S → D(V) is the measurement map that given a physical state

returns a function that associates to any sensor in S a discrete probability
distribution over the set of possible sensed values;

– a logical (or cyber) component P that interacts with the sensors defined in ξ,
and can communicate, via channels, with other cyber components.

We write ξ �� P to denote the resulting IoT system, and use M and N to range
over IoT systems.
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Let us now formalise the cyber component of an IoT system. Basically, we
adapt Hennessy and Regan’s timed process algebra TPL [12].

Definition 9 (Logics). Logical components of IoT systems are defined by the
following grammar:

P,Q :: = nil
∣
∣ tick.P

∣
∣ P ‖ Q

∣
∣ �pfx .P �Q

∣
∣ H〈ũ〉

∣
∣ if (b) {P} else {Q}

∣
∣ P\c

pfx :: = o!v
∣
∣ o?(z)

The process tick.P sleeps for one time unit and then continues as P . We write
P ‖ Q to denote the parallel composition of concurrent processes P and Q. The
process �pfx .P �Q denotes prefixing with timeout. We recall that o ranges over
both channel and sensor names. Thus, for instance, �c!v.P �Q sends the value
v on channel c and, after that, it continues as P ; otherwise, if no communica-
tion partner is available within one time unit, it evolves into Q. The process
�c?(z).P �Q is the obvious counterpart for channel reception. On the other hand,
the process �s?(z).P �Q reads the sensor s, according to the measurement map
of the systems, and, after that, it continues as P . The process �s!v.P �Q writes
to the sensor s and, after that, it continues as P ; here, we wish to point out
that this a malicious activity, as controllers may only access sensors for read-
ing sensed data. Thus, the construct �s!v.P �Q serves to implement an integrity
attack that attempts at synchronising with the controller of sensor s to provide
a fake value v. In the following, we say that a process is honest if it never writes
on sensors. The definition of honesty naturally lifts to IoT systems. In processes
of the form tick.Q and �pfx .P �Q, the occurrence of Q is said to be time-guarded.
Recursive processes H〈ũ〉 are defined via equations H(z1, . . . , zk) = P , where
(i) the tuple z1, . . . , zk contains all the variables that appear free in P , and (ii)
P contains only time-guarded occurrences of the process identifiers, such as H
itself (to avoid zeno behaviours). The two remaining constructs are standard;
they model conditionals and channel restriction, respectively.

Finally, we define how to compose IoT systems. For simplicity, we compose
two systems only if they have the same physical environment.

Definition 10 (System composition). Let M1 = ξ �� P1 and M2 = ξ �� P2 be
two IoT systems, and Q be a process whose sensors are defined in the physical
environment ξ. We write:

– M1 ‖ M2 to denote ξ �� (P1 ‖ P2);
– M1 ‖ Q to denote ξ �� (P1 ‖ Q);
– M1\c as an abbreviation for ξ �� (P1\c).

We conclude this section with the following abbreviations that will be used
in the rest of the paper.

Notation 2. We write P\{c1, c2, . . . , cn}, or P\c̃, to mean P\c1\c2 · · · \cn. For
simplicity, we sometimes abbreviate both H(i) and H〈i〉 with Hi. We write pfx .P
as an abbreviation for the process defined via the equation H = �pfx .P �H , where
the process name H does not occur in P . We write tickk.P as a shorthand for
tick.tick. . . . tick.P , where the prefix tick appears k ≥ 0 consecutive times. We
write Dead to denote a deadlocked IoT system that cannot perform any action.
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Table 1. Labelled transition system2 for processes

3.1 Probabilistic Labelled Transition Semantics

As said before, sensors serve to observe the evolution of the physical state of an
IoT system. However, sensors are usually affected by an error/noise that we rep-
resent in our measurement maps by means of discrete probability distributions.
For this reason, we equip our calculus with a probabilistic labelled transition
system. In the following, the symbol ε ranges over distributions on physical envi-
ronments, whereas π ranges over distributions on (logical) processes. Thus, ε �� π
denotes the distribution over IoT systems defined by (ε �� π)(ξ �� P ) = ε(ξ)·π(P ).
The symbol γ ranges over distributions on IoT systems.

In Table 1, we give a standard labelled transition system for logical compo-
nents (timed processes), whereas in Table 2 we rely on the LTS of Table 1 to
define a simple pLTS for IoT systems by lifting transition rules from processes
to systems.

In Table 1, the meta-variable λ ranges over labels in the set {τ, tick, o!v,
o?(z)}. Rule (Sync) serve to model synchronisation and value passing, on some
name (for channel or sensor) o: if o is a channel then we have standard point-to-
point communication, whereas if o is a sensor then this rule models an integrity
attack on sensor s, as the controller is provided with a fake value v. The remain-
ing rules are standard. The symmetric counterparts of rules (Sync) and (Par) are
omitted.

According to Table 2, IoT systems may fire four possible actions ranged over
by α. These actions represent: internal activities (τ), the passage of time (tick),
channel transmission (c!v) and channel reception (c?v).

Rules (Snd) and (Rcv) model transmission and reception on a channel c
with an external system, respectively. Rule (SensRead) models the reading of



306 R. Lanotte et al.

Table 2. Probabilistic LTS for a IoT system ξ �� P with ξ = 〈ξx, ξm〉

the value detected at a sensor s according to the current physical environment
ξ = 〈ξx, ξm〉. In particular, this rule says that if a process P in a system ξ �� P
reads a sensor s defined in ξ then it will get a value that may vary according to
the probability distribution resulting by providing the state function ξx and the
sensor s to the measurement map ξm.

Rule (Tau) lifts internal actions from processes to systems. This includes com-
munications on channels and malicious accesses to sensors’ controllers. Accord-
ing to Definition 10, rule (Tau) models also channel communication between two
parallel IoT systems sharing the same physical environment.

A second lifting occurs in rule (Time) for timed actions tick. Here, ξ′

denotes an admissible physical environment for the next time slot, nondeter-
ministically chosen from the finite set next(〈ξx, ξm〉). This set is defined as
{〈ξ′

x, ξm〉 : ξ′
x(x) ∈ range(x) for any x ∈ X}.1 As a consequence, the rules in

Table 2 define an image-finite pLTS.
For simplicity, we abstract from the physical process behind our IoT systems.

4 Cyber-Physical Attacks on Sensor Devices

In this section, we consider attacks tampering with sensors by eavesdropping
and possibly modifying the sensor measurements provided to the corresponding
controllers. These attacks may affect both the integrity and the availability of
the system under attack. We do not represent (well-known) attacks on communi-
cation channels as our focus is on attacks to physical devices and the consequent
impact on the physical state. However, our technique can be easily generalised
to deal with attacks on channels as well.

Definition 11 (Cyber-physical attack). A (pure) cyber-physical attack A is
a process derivable from the grammar of Definition 9 such that:

– A writes on at least one sensor;
– A never uses communication channels.

1 The finiteness follows from the finiteness of V, and hence of range(x), for any x ∈ X .
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In order to make security assessments on our IoT systems, we adapt
a well-known approach called Generalized Non Deducibility on Composition
(GNDC) [7]. Intuitively, an attack A affects an honest IoT system M if the
execution of the composed system M ‖ A differs from that of the original sys-
tem M in an observable manner. Basically, a cyber-physical attack can influence
the system under attack in at least two different ways:

– The system M ‖ A might have non-genuine execution traces containing
observables that cannot be reproduced by M ; here the attack affects the
integrity of the system behaviour (integrity attack).

– The system M might have execution traces containing observables that can-
not be reproduced by the system under attack M ‖ A (because they are
prevented by the attack); this is an attack against the availability of the
system (DoS attack).

Now, everything is in place to provide a formal definition of system tolerance
and system vulnerability with respect to a given attack. Intuitively, a system M
tolerates an attack A if the presence of the attack does not affect the behaviour
of M ; on the other hand M is vulnerable to A in a certain time interval if the
attack has an impact on the behaviour of M in that time interval.

Definition 12 (Attack tolerance). Let M be a honest IoT system. We say
that M tolerates an attack A if M ‖ A ≈∞

0 M .

Definition 13 (Attack vulnerability and impact). Let M be a honest IoT
system. We say that M is vulnerable to an attack A in the time interval m..n
with impact p ∈ [0, 1], for m ∈ N

+ and n ∈ N
+∪{∞}, if m..n is the smallest time

interval such that: (i) M ‖ A ≈m−1
0 M , (ii) M ‖ A ≈n

p M , (iii) M ‖ A ≈∞
p M .2

Basically, the definition above says that if a system is vulnerable to an attack in
the time interval m..n then the perturbation introduced by the attack starts in
the m-th time slot and reaches the maximum impact in the n-th time slot.

The following result says that both notions of tolerance and vulnerability
are suitable for compositional reasonings. More precisely, we prove that they are
both preserved by parallel composition and channel restriction. Actually, channel
restriction may obviously make a system less vulnerable by hiding channels.

Theorem 2 (Compositionality). Let M1 = ξ �� P1 and M2 = ξ �� P2 be two
honest IoT systems with the same physical environment ξ, A an arbitrary attack,
and c̃ a set of channels.

– If both M1 and M2 tolerate A then (M1 ‖ M2)\c̃ tolerates A.
– If M1 is vulnerable to A in the time interval m1..n1 with impact p1, and M2

is vulnerable to A in the time interval m2..n2 with impact p2, then M1 ‖ M2

is vulnerable to A in a the time interval min(m1,m2)..max(n1, n2) with an
impact p′ ≤ (p1 + p2 − p1p2).

2 By Proposition 1, at all time instants greater than n the impact remains p.
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– If M1 is vulnerable to A in the interval m1..n1 with impact p1 then M1\c̃ is
vulnerable to A in a time interval m′..n′ ⊆ m1..n1 with an impact p′ ≤ p1.

Note that if an attack A is tolerated by a system M and can interact with
a honest process P then the compound system M ‖ P may be vulnerable to
A. However, if A does not write on the sensors of P then it is tolerated by
M ‖ P as well. The bound p′ ≤ (p1 + p2 − p1p2) can be explained as follows.
The likelihood that the attack does not impact on Mi is (1 − pi), for i ∈ {1, 2}.
Thus, the likelihood that the attack impacts neither on M1 nor on M2 is at least
(1−p1)(1−p2). Summarising, the likelihood that the attack impacts on at least
one of the two systems M1 and M2 is at most 1−(1−p1)(1−p2) = p1+p2−p1p2.

An easy corollary of Theorem 2 allows us to lift the notions of tolerance and
vulnerability from a honest system M to the compound systems M ‖ P , for a
honest process P .

Corollary 1. Let M be a honest system, A an attack, c̃ a set of channels, and
P a honest process that reads sensors defined in M but not those written by A.

– If M tolerates A then (M ‖ P )\c̃ tolerates A.
– If M is vulnerable to A in the interval m..n with impact p, then (M ‖ P )\c̃

is vulnerable to A in a time interval m′..n′ ⊆ m..n, with an impact p′ ≤ p.

5 Attacking a Smart Surveillance System: A Case Study

Consider an alarmed ambient consisting of three rooms, ri for i ∈ {1, 2, 3}, each
of which equipped with a sensor si to detect unauthorised accesses. The alarm
goes off if at least one of the three sensors detects an intrusion.

The logics of the system can be easily specified in our language as follows:

Sys = (Mng ‖ Ctrl1 ‖ Ctrl2 ‖ Ctrl3 ) \{c1, c2, c3}
Mng = c1?(z1).c2?(z2).c3?(z3).if (

∨3
i=1 zi=on) {alarm!on.tick.Checkk} else {tick.Mng}

Check0 = Mng

Checkj = alarm!on.c1?(z1).c2?(z2).c3?(z3).if (
∨3

i=1 zi = on) {tick.Checkk}
else {tick.Checkj−1} for j > 0

Ctrli = si?(zi).if (zi=presence) {ci!on.tick.Ctrli} else {ci!off.tick.Ctrli} for i∈{1, 2, 3}.

Intuitively, the process Sys is composed by three controllers, Ctrli , one for
each sensor si, and a manager Mng that interacts with the controllers via private
channels ci. The process Mng fires an alarm if at least one of the controllers
signals an intrusion. As usual in this kind of surveillance systems, the alarm will
keep going off for k instants of time after the last detected intrusion.

As regards the physical environment, the physical state ξx : {r1, r2, r3} →
{presence, absence} is set to ξx(ri) = absence, for any i ∈ {1, 2, 3}. Further-
more, let p+i and p−

i be the probabilities of having false positives (erroneously
detected intrusion) and false negatives (erroneously missed intrusion) at sen-
sor si

3, respectively, for i ∈ {1, 2, 3}, the measurement function ξm is defined
3 These probabilities are usually very small; we assume them smaller than 1

2
.



Towards a Formal Notion of Impact Metric for Cyber-Physical Attacks 309

as follows: ξm(ξx)(si) = (1−p−
i ) presence + p−

i absence, if ξx(ri) = presence;
ξm(ξx)(si) = (1−p+i ) absence + p+i presence, otherwise.

Thus, the whole IoT system has the form ξ �� Sys, with ξ = 〈ξx, ξm〉.
We start our analysis studying the impact of a simple cyber-physical attack

that provides fake false positives to the controller of one of the sensors si. This
attack affects the integrity of the system behaviour as the system under attack
will fire alarms without any physical intrusion.

Example 1 (Introducing false positives). In this example, we provide an attack
that tries to increase the number of false positives detected by the controller of
some sensor si during a specific time interval m..n, with m,n ∈ N, n ≥ m > 0.
Intuitively, the attack waits for m − 1 time slots, then, during the time interval
m..n, it provides the controller of sensor si with a fake intrusion signal. Formally,

Afp(i,m, n) = tickm−1.B〈i, n − m + 1〉
B(i, j) = if (j = 0) {nil} else {�si!presence.tick.B〈i, j − 1〉�B〈i, j − 1〉}.

In the following proposition, we use our metric to measure the perturbation
introduced by the attack to the controller of a sensor si by varying the time of
observation of the system under attack.

Proposition 3. Let ξ be an arbitrary physical state for the systems Mi =
ξ �� Ctrl i, for i ∈ {1, 2, 3}. Then,

– Mi ‖ Afp〈i,m, n〉 ≈j
0 Mi, for j ∈ 1..m−1;

– Mi ‖ Afp〈i,m, n〉 ≈j
h Mi, with h = 1 − (p+i )j−m+1, for j ∈ m..n;

– Mi ‖ Afp〈i,m, n〉 ≈j
r Mi, with r = 1 − (p+i )n−m+1, for j > n or j = ∞.

By an application of Definition 13 we can measure the impact of the attack Afp

to the (sub)systems ξ �� Ctrli .

Corollary 2. The IoT systems ξ �� Ctrli are vulnerable to the attack Afp〈i,m, n〉
in the time interval m..n with impact 1 − (p+i )n−m+1.

Note that the vulnerability window m..n coincides with the activity period of
the attack Afp. This means that the system under attack recovers its normal
behaviour immediately after the termination of the attack. However, in general,
an attack may impact the behaviour of the target system long after its termina-
tion.

Note also that the attack Afp〈i,m, n〉 has an impact not only on the controller
Ctrl i but also on the whole system ξ �� Sys. This because the process Mng will
surely fire the alarm as it will receive at least one intrusion detection from Ctrl i.
However, by an application of Corollary 1 we can prove that the impact on the
whole system will not get amplified.

Proposition 4 (Impact of the attack Afp). The system ξ �� Sys is vulnerable
to the attack Afp〈i,m, n〉 in a time interval m′..n′ ⊆ m..n with impact p′ ≤
1 − (p+i )n−m+1.
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Now, the reader may wonder what happens if we consider a complementary
attack that provides fake false negatives to the controller of one of the sensors
si. In this case, the attack affects the availability of the system behaviour as the
system will no fire the alarm in the presence of a real intrusion. This because a
real intrusion will be somehow “hidden” by the attack.

Example 2 (Introducing false negatives). The goal of the following attack is to
increase the number of false negatives during the time interval m..n, with n ≥
m > 0. Formally, the attack is defined as follows:

Afn(i,m, n) = tickm−1.C〈i, n − m + 1〉
C(i, j) = if (j = 0) {nil} else {�si!absence.tick.C〈i, j − 1〉�C〈i, j − 1〉}.

In the following proposition, we use our metric to measure the deviation intro-
duced by the attack Afn to the controller of a sensor si. With no surprise we get
a result that is the symmetric version of Proposition 3.

Proposition 5. Let ξ be an arbitrary physical state for the system Mi =
ξ �� Ctrl i, for i ∈ {1, 2, 3}. Then,

– Mi ‖ Afn〈i,m, n〉 ≈j
0 Mi, for j ∈ 1..m−1;

– Mi ‖ Afn〈i,m, n〉 ≈j
h Mi, with h = 1 − (p−

i )j−m+1, for j ∈ m..n;
– Mi ‖ Afn〈i,m, n〉 ≈j

r Mi, with r = 1 − (p−
i )n−m+1, for j > n or j = ∞.

Again, by an application of Definition 13 we can measure the impact of the
attack Afn to the (sub)systems ξ �� Ctrli .

Corollary 3. The IoT systems ξ �� Ctrli are vulnerable to the attack Afn〈i,m, n〉
in the time interval m..n with impact 1 − (p−

i )n−m+1.

As our timed metric is compositional, by an application of Corollary 1 we
can estimate the impact of the attack Afn to the whole system ξ �� Sys.

Proposition 6 (Impact of the attack Afn). The system ξ �� Sys is vulnerable
to the attack Afn〈i,m, n〉 in a time interval m′..n′ ⊆ m..n with impact p′ ≤
1 − (p−

i )n−m+1.

6 Conclusions, Related and Future Work

We have proposed a timed generalisation of the n-bisimulation metric [3], called
timed bisimulation metric, obtained by defining two functionals over the com-
plete lattice of the functions assigning a distance in [0,1] to each pair of systems:
the former deals with the distance accumulated when executing untimed steps,
the latter with the distance introduced by timed actions.

We have used our timed bisimulation metrics to provide a formal and com-
positional notion of impact metric for cyber-physical attacks on IoT systems
specified in a simple timed process calculus. In particular, we have focussed on
cyber-physical attacks targeting sensor devices (attack on sensors are by far the
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most studied cyber-physical attacks [38]). We have used our timed weak bisim-
ulation with tolerance to formalise the notions of attack tolerance and attack
vulnerability with a given impact p. In particular, a system M is said to be vul-
nerable to an attack A in the time interval m..n with impact p if the perturbation
introduced by A becomes observable in the m-th time slot and yields the maxi-
mum impact p in the n-th time slot. Here, we wish to stress that the vulnerability
window m..n is quite informative. In practise, this interval says when an attack
will produce observable effects on the system under attack. Thus, if n is finite
we have an attack with temporary effects, otherwise we have an attack with per-
manent effects. Furthermore, if the attack is quick enough, and terminates well
before the time instant m, then we have a stealthy attack that affects the system
late enough to allow attack camouflages [11]. On the other hand, if at time m
the attack is far from termination, then the IoT system under attack has good
chances of undertaking countermeasures to stop the attack.

As a case study, we have estimated the impact of two cyber-physical attacks
on sensors that introduce false positives and false negatives, respectively, into
a simple surveillance system, affecting the integrity and the availability of the
IoT system. Although our attacks are quite simple, the specification language
and the corresponding metric semantics presented in the paper allow us to deal
with smarter attacks, such as periodic attacks with constant or variable period of
attack. Moreover, we can easily extend our threat model to recover (well-known)
attacks on communication channels.

Related Work. A number of papers have recently proposed different method-
ologies for assessing the direct and indirect impact of attacks on CPSs.

Bilis et al. [1] proposed a systematic approach that uses five metrics derived
from complex network theory to assess the impacts of cyber attacks on elec-
tric power systems. The metrics were used to rank nodes in a graph-based
representation of an electric grid. Sgouras et al. [31] evaluated the impact of
cyber attacks on a simulated smart metering infrastructure; the denial-of-service
attacks against smart meters and utility servers caused severe communications
interruptions. Sridhar and Govindarasu [33] evaluated the impacts of attacks
on wide-area frequency control applications in power systems; their research
showed that cyber attacks can significantly impact system stability by causing
severe drops in system frequency. Genge et al. [10] introduced a methodology,
inspired by research in system dynamics and sensitivity analysis, to compute
the covariances of the observed variables before and after the execution of a
specific intervention involving the control variables. Metrics are proposed for
quantifying the significance of control variables and measuring the impact prop-
agation of cyber attacks. Orojloo and Azgomi [25] investigated how an attack
against system parameters can affect the values of other parameters. The system
parameters are divided into two classes of cause and effect parameters, which
can be same as or different from each other. They proposed metrics to prioritise
the sensor readings and control signals based on their sensitivity to conducted
attacks. Urbina et al. [35] defined an evaluation metric for attack-detection algo-
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rithms that quantifies the negative impact of stealthy attacks and the inherent
trade-off with false alarms. The authors showed that the impact of such attacks
can be mitigated in several cases by the proper combination and configuration
of detection schemes. Huang et al. [13] proposed a risk assessment method that
uses a Bayesian network to model the attack propagation process and infers the
probabilities of sensors and actuators to be compromised. These probabilities
are fed into a stochastic hybrid system (SHS) model to predict the evolution
of the physical process being controlled. Then, the security risk is quantified by
evaluating the system availability with the SHS model.

Notice that only this last paper adopts formal methodologies. More generally,
we are aware of a number of works using formal methods for CPS security,
although they apply methods, and most of the time have goals, that are quite
different from ours.

Vigo et al. [36] proposed an untimed calculus of broadcasting processes
equipped with notions of failed and unwanted communication. They focus on
DoS attacks without taking into consideration timing aspects or attack impact.
Bodei et al. [2] proposed a different untimed process calculus, IoT-LySa, sup-
porting a control flow analysis that safely approximates the abstract behaviour
of IoT systems. Essentially, they track how data spread from sensors to the logics
of the network, and how physical data are manipulated. Rocchetto and Tippen-
haur [29] introduced a taxonomy of the diverse attacker models proposed for
CPS security and outline requirements for generalised attacker models; in [28],
the same authors proposed an extended Dolev-Yao attacker model suitable for
CPSs. Nigam et al. [24] worked around the notion of timed Dolev-Yao intruder
models for cyber-physical security protocols by bounding the number of intruders
required for the automated verification of such protocols. Following a tradition in
security protocol analysis, they provided an answer to the question: How many
intruders are enough for verification and where should they be placed? Lanotte
et al. [19] did a static security analysis, based on model-checking, for a non-trivial
engineering case study to statically detect a variety of attacks targeting sensors
and/or actuators of the system under investigation. Finally, Lanotte et al. [20]
defined a hybrid process calculus to model both CPSs and cyber-physical attacks;
they defined a threat model for cyber-physical attacks to physical devices and
provided a proof methods to assess attack tolerance/vulnerability with respect
to a timed trace semantics (no tolerance allowed). They also advocated a timed
formalisation of the impact of an attack in terms of the deviation introduced in
the runtime behaviour of the system under attack.

Future Work. Recent works [8,9,18,21,22] have shown that bisimulation met-
rics are suitable for compositional reasoning, as the distance between two com-
plex systems can be often derived in terms of the distance between their com-
ponents. In this respect, Theorem2 and Corollary 1 allows us compositional rea-
sonings when computing the impact of attacks on a target system, in terms of
the impact on its sub-systems. We believe that this result can be generalised to
estimate the impact of parallel attacks of the form A = A1 ‖ . . . ‖ Ak in terms
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of the impacts of each malicious module Ai. As future work, we also intend to
adopt our impact metric in more involved languages for cyber-physical systems
and attacks, such as the language developed in [20], with an explicit representa-
tion of physical processes via differential equations or their discrete counterpart,
difference equations.

Acknowledgements. We thank the anonymous reviewers for valuable comments.
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Abstract. Task planning is a well-studied problem for which interest-
ing applications exist in production logistics. Planning for such domains
requires to take into account not only feasible plans, but also optimal-
ity targets, e.g., minimize time, costs or energy consumption. Although
there exist several algorithms to compute optimal solutions with for-
mal guarantees, heuristic approaches are typically preferred in practical
applications, trading certified solutions for a reduced computational cost.
Reverting this trend represents a standing challenge within the domain
of task planning at large. In this paper we discuss our experience using
Optimization Modulo Theories to synthesize optimal plans for multi-
robot teams handling production processes within the RoboCup Logis-
tics League. Besides presenting our results, we discuss challenges and
possible directions for future development of OMT planning.

1 Introduction

Task planning is the problem of finding a sequence of abstract actions, described
at the symbolic level as causal (temporal, spatial) relations in a state transition
system, allowing to reach a desired goal state—see, e.g., [11] for a recent account
on the subject. In the era of smart factories, i.e., responsive, adaptive, connec-
tive manufacturing1, the achievements of task planning research undergo severe
challenges when practical applications are in order. Consider a plant that can
produce different items on demand. Once a new product request arrives, a robot
would probably take the order, assemble it, pack it and prepare it for delivery.
With an increasing number of orders, large teams of robots would be needed to
keep the business running. Each robot in the team would have to come up with
an efficient plan to deliver its order, all while considering what other robots do
so as to avoid interferences. Optimality targets like minimizing overall energy
consumption or time to delivery, must be taken into account as well.

Task planning in domains as the one just described is an intricate prob-
lem that requires reasoning about temporal and ordering constraints efficiently.

1 https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-
connected-manufacturing.html.
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Although the nature of the constraints involved may vary considerably, the prob-
lem remains challenging even in the simplest settings [12]. In order to enable
practical application of planning algorithms, relatively fast planners have been
developed which rely on heuristics to speed up computations. However, heuris-
tics typically lack performance guarantees, which can be critical to maintain
efficiency [3].

In order to study possible solutions to the above problems at a manage-
able scale, the RoboCup Logistics League (RCLL) [26] has been proposed as a
simplified, yet realistic, testbed. Efficient heuristic approaches exist to solve the
RCLL [14,25]. However, these methods cannot provide guarantees on the qual-
ity of the solutions they produce. To account for this problem, we propose to
cast the task planning problem in the framework of Optimization Modulo Theo-
ries (OMT): combining symbolic reachability techniques and optimization, OMT
solvers [5,32] can be leveraged to generate plans with formal performance guar-
antees by reasoning on expressive models that combine temporal and ordering
constraints on tasks and robots.

In the following we discuss our experience using OMT decision procedures to
synthesize optimal plans within the RoboCup Logistics League. Besides present-
ing our results, we discuss challenges and possible directions for future develop-
ment of OMT planning.

2 Satisfiability Modulo Theories and Optimization

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability
of a first-order formula with respect to some decidable theory T . In particular,
SMT generalizes Boolean satisfiability (SAT) by adding background theories
such as the theory of real numbers, integers, and the theories of data structures.

To decide the satisfiability of an input formula ϕ in CNF, SMT solvers such
as [9,10,23] typically proceed as follows. First a Boolean abstraction abs(ϕ) of
ϕ is built by replacing each constraint by a fresh Boolean proposition. A SAT
solver searches for a satisfying assignment S for abs(ϕ). If no such assignment
exists then the input formula ϕ is unsatisfiable. Otherwise, the consistency of
the assignment in the underlying theory is checked by a theory solver. If the
constraints are consistent then a satisfying solution (model) is found for ϕ. Oth-
erwise, the theory solver returns a theory lemma ϕE giving an explanation for the
conflict, e.g., the negated conjunction of some inconsistent input constraints. The
explanation is used to refine the Boolean abstraction abs(ϕ) to abs(ϕ)∧abs(ϕE).
These steps are iteratively executed until either a theory-consistent Boolean
assignment is found, or no more Boolean satisfying assignments exist.

Standard decision procedures for SMT have been extended with optimization
capabilities, leading to Optimization Modulo Theories (OMT). OMT extends
SMT solving with optimization procedures to find a variable assignment that
defines an optimal value for an objective function f (or a combination of multiple
objective functions) under all models of a formula ϕ. As noted in [31], OMT
solvers such as [5,32] typically implement a linear search scheme, which can
be summarized as follows. Let ϕS be the conjunction of all theory constraints
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Fig. 1. Simulated RCLL factory environment [24].

that are true under S and the negation of those that are false under S. A local
optimum μ for f is computed2 under the side condition ϕS and ϕ is updated as

ϕ := ϕ ∧ (f �� μ) ∧ ¬
∧

ϕS , ��∈ {<,>}

Repeating this procedure until the formula becomes unsatisfiable will lead to an
assignment minimizing f under all models of ϕ.

3 Planning for Autonomous Robots in Smart Factories

In this section we report our experience using OMT to solve planning problems
optimally in the RCLL domain. After introducing the domain, we highlight some
of the main challenges it presents. In doing so, we wish to distinguish between
(i) challenges that appear in the RCLL irrespective of the approach used for
planning and (ii) challenges that planning for the RCLL poses to OMT solvers.
Finally, we briefly discuss the solution we proposed for OMT planning.

3.1 The RoboCup Logistics League

The RoboCup Logistics League provides a simplified smart factory scenario
where two teams of three autonomous robots each compete to handle the logis-
tics of materials to accommodate orders known only at run-time. Competitions
take place yearly using a real robotic setup. However, for our experiments we
made use of the simulated environment (Fig. 1) developed for the Planning and
Execution Competition for Logistics Robots in Simulation3 [24].

2 For instance, if f and ϕS are expressed in QF LRA, this can be done with Simplex.
3 http://www.robocup-logistics.org/sim-comp.

http://www.robocup-logistics.org/sim-comp
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BS RS 1 RS 2 RS 2 CS 2

Fig. 2. Example of order configuration for the competition [26,30]. (Color figure online)

Products to be assembled have different complexities and usually require a
base, mounting 0 to 3 rings, and a cap as a finishing touch. Bases are available in
three different colors, four colors are admissible for rings and two for caps, leading
to about 250 different possible combinations. Each order defines which colors are
to be used, together with an ordering. An example of a possible configuration is
shown in Fig. 2.

Several machines are scattered around the factory shop floor (random place-
ment in each game, positions are announced to the robots). Each of them com-
pletes a particular production step such as providing bases, mounting colored
rings or caps. There are four types of machines:

– Base Station (BS): acts as dispenser of base elements (one per team).
– Cap Station (CS): mounts a cap as the final step in production on an inter-

mediate product. The CS stores at most one cap at a time (empty initially).
To prefill the CS, a base element with a cap must be taken from a shelf in
the arena and fed to the machine; the cap is then unmounted and buffered.
The cap can then be mounted on the next intermediate product taken to the
machine (two CS per team).

– Ring Station (RS): mounts one colored ring (of specific color) onto an inter-
mediate product. Some ring colors require additional tokens: robots will have
to feed a RS with a specified number of bases before the required color can
be mounted (two RS per team).

– Delivery Station (DS): accepts finished products (one per team).

The objective for autonomous robots is then to transport intermediate prod-
ucts between processing machines and optimize a multistage production cycle of
different product variants until delivery of final products.

Orders that denote the products which must be assembled are posted at
run-time by an automated referee box and come with a delivery time window,
introducing a temporal component that requires quick planning and scheduling.

3.2 RCLL Challenges for Task Planning

Task Planning with Time Windows. Production processes in the RCLL
require reasoning over tasks that are subject to temporal constraints often
expressed as time windows, e.g., delivery must happen between minutes 2 and 3.
Time windows increase the complexity of the planning and scheduling problem
as they require to reason on both temporal and spatial relations between robots
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(and tasks). Furthermore, one might even want to specify additional optimiza-
tion requirements, such as, perform delivery taking the least time possible. The
nature of these constraints introduces three strictly related subproblems [28],
i.e., (i) find an assignment of tasks to robots that optimizes the given objec-
tive function, (ii) compute a feasible ordering of tasks that results in optimal
assignments, and (iii) assign times to tasks in a way that optimizes the objective.

Domain Representation. The domain presented by the RCLL is a fairly com-
plex one and efficient reasoning on it can be hard for model-based approaches.
To get a feeling of this, consider the variety of product configurations that
are allowed in the competition: about 250 configurations are possible! This can
clearly represent a problem for state-based approaches, since models explicitly
encoding all product variants can quickly become intractable.

Online Execution. Automated production processes like the one proposed by
the RCLL are, by their own nature, highly dynamic and subject to unforeseeable
changes. The latter are often due to, e.g., temporary robot/machine failures,
changes in task definitions or online arrival of new tasks. As all these aspects
are modeled in the RCLL, one can easily realize that the execution of plans
represents an interesting challenge too. To cater for these aspects, the dynamics
that occur during execution must be considered, making integrated approaches
essential to maintain efficiency.

3.3 Specific Challenges for OMT Solvers

Combinatorial Optimization. Computing optimal task plans with OMT
requires the solver to (i) search over a finite set of actions so as to (ii) optimize
an objective function over the arithmetic domain. This means that, although
the problem seems to require optimization in the arithmetic domain, it mostly
requires efficient combinatorial optimization capabilities. However, solvers do
not recognize this and invoke arithmetic optimization resulting in prohibiting
runtimes.

Scalability. As the complexity of products required during a game in the RCLL
increases, formula encodings can grow rapidly. If large encodings can already
become inefficient to solve in SMT, this becomes even more critical in OMT.
Abstractions are therefore needed to tame solving complexity, however, cur-
rently there are no procedures that can handle iterative abstraction refinement
internally to the solver. Cimatti et al. started to address the problem in the
context of SMT [7,8], however no similar work exists for OMT.

3.4 Our Solution

In a recent series of papers [4,19–22,27] we proposed OMT as an approach to
deliver task plans that can meet production requirements (optimally) and with-
stand deployment in the RCLL. While the approach described in those papers is
specifically tailored for the RCLL, we expect that our solution can carry over to
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domains with similar structure and features, thus providing the basis for general,
yet efficient, synthesis of optimal task plans based on OMT.

To generate optimal plans, we extended standard Planning as Satisfiabil-
ity [16] to enable optimization over reward structures expressed in first-order
arithmetic theories in OMT – see [19] for a brief overview of our approach. This
idea was applied to solve multi-robot planning problems arising in the RCLL,
such as factory shop-floor exploration [21] and planning for production [22].

To cater for the dynamics that occur when plans are executed on concrete
systems, we also presented a system that integrates our planning approach into
an online execution agent based on CLIPS [25], currently used by the RCLL
world champion. A prototypical implementation of this system was presented
in [27] and later extended in [22].

4 Further Challenges

Modern solvers achieve impressive performances in several domains and offer
a powerful support for planning. Nevertheless, there are several challenges still
to be addressed in order to ease the applicability of OMT in planning. In this
section we discuss some of these challenges.

Parallelization. Practical efficiency is probably one of the main limitations of
current OMT algorithms and tools. Beyond theoretical worst-case complexity
results, research on SAT and SMT has shown that problem instances arising
from application domains can be tackled successfully in many cases of inter-
est. The research on OMT is currently less mature than its SMT counterpart,
therefore improving on this aspect is still an open challenge. We believe that par-
allelization may offer an interesting path towards attaining practical efficiency
in OMT. While parallel SAT solving has been the subject of research in the
past [13], the development of parallel SMT solvers is still in its infancy [15], and,
to the best of our knowledge, paradigms for parallel OMT have not been consid-
ered yet. Carrying over the results obtained in SAT to SMT/OMT is nontrivial,
because the role of SAT solver inside SMT/OMT procedure is to enumerate
assignments and not just to search a satisfying one. However, once enumera-
tion of assignments can be successfully parallelized, at least to some extent, also
checking their theory consistency and, possibly, finding optimal solutions, can be
distributed on several processors. Besides modern multi-core architectures, par-
allelization could also take advantage of hybrid CPU-GPU architectures, where
the GPU part can substantially speed up numerical computations as it happens
in other AI fields like training of deep neural networks—see, e.g., [17].

Develop New Encodings. Our experiments with different encodings of planning
problems into OMT indicate that considerable progress can be made by consid-
ering novel kinds of encodings and relaxations. Beyond computational concerns,
new relaxations can be of great interest from a representational standpoint. One
key challenge relates to finding encodings which generalize well to several prob-
lem domains. While the improvements that we obtained working on the RCLL
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domain are mostly specific and tailored to a specific scenario, some choices, e.g.,
state-based vs. action-based encoding, should be weighted across several domains
to understand their effectiveness at large. Currently, to the extent of our knowl-
edge, the proposal of OMT-based planning has been tried and tested successfully
in our work only, whereas general-purpose SMT-based planners have been pro-
posed already—see, e.g., [6]. In both cases, the main issue is to deal effectively
with the combinatorial aspects of the domain which could force the SAT engine
underlying the SMT/OMT solver to perform “brute-force search” in the space
of possible assignments without a clue. In order to reduce this phenomenon,
some domain knowledge must be incorporated in the encoding so as to allow
the SAT solver to learn suitable propositional constrains by interacting with the
theory solver. In addition to this, specialized SAT heuristics could be devised to
minimize the chance of exploring parts of the propositional search space which
are trivially unfruitful once the underlying theory is taken into account.

Accounting for Uncertainty. Planning for dynamic environments such as smart
factories often requires to include some degree of uncertainty in the models
used. While practically efficient techniques to reason about uncertain models
have been proposed in task planning—see, e.g., Part V of [11]—and formal
verification—see, e.g., [2]—the question remains how to encode uncertainty effi-
ciently in SMT/OMT, or to extend existing decision procedures to incorporate
uncertainty. The issue is nontrivial because many of the above mentioned prob-
abilistic techniques and tools rely on state-based representations which quickly
become intractable in realistic production logistics domains. A symbolic app-
roach, wherein the specification of states and transitions is left implicit like in
probabilistic programs, would be suitable for realistically-sized domains as well.
SMT solvers have been successfully used both in planning and formal verifica-
tion as engines in symbolic planners and model checkers, but this is not the
case of OMT solvers and, to the best of our knowledge, there is no provision for
optimization in current state-of-the-art tools.

Integrated Task and Motion Planning. Task planning tries to answer the question
of what can be done to achieve a given objective. In the RCLL, this would
correspond to, e.g., what actions do robots need to perform to deliver the requested
product? However, as highlighted in Sect. 3, planning for robotics requires more
than just saying what needs to be done. In such domains, planning needs to
be integrated with other deliberation functions such as how to perform actions
(and monitor their progress). In our previous work, we decoupled this problem by
relying on an execution and monitoring agent external to the planning process.
This however may lead to plan failures if, e.g., a robot tries to move toward a
target location to perform a task but its kinematics does not allow such motion.
A tighter integration between task constraints and motion constraints is needed
in most relevant robotics applications where any planning is needed, and such
need has been recognized for a long time—see, e.g., [29]. However, it was not until
recent times that research in motion planning achieved efficient algorithms and
tools—see, e.g., [18]—that can be combined over a wide spectrum of methods and
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implementations in task planning. Harvesting motion planning techniques and
incorporating them into SMT/OMT based approaches requires matching, mostly
discrete, specifications of task planning domains with the, mostly continuous,
specification of motion planning constraints. A suitable semantic “bridge” must
be found between the two sides, one that is akin to hybdrid systems models
where discrete control modes are endowed with continuous dynamics.

Explainable Planning. The problem of generating explanations for decisions
taken by autonomous systems is very pressing, with many initiative being
launched to foster research in this field [1]. The need for explanations is even
amplified when AI technologies are employed in safety-critical scenarios involv-
ing, e.g., the interplay of human and robotic workers. In [22] we started looking
into this problem, as we believe OMT-based synthesis builds on techniques that
have the potential to ease explaining, e.g., by generating unsat cores. However,
presenting solver outputs in a human-readable way that could facilitate under-
standing of the underlying decision process remains an open challenge.

5 Conclusion

In this paper we briefly reported on our experiences using Optimization Modulo
Theories to solve task planning problems in logistics. Given the broad nature
of the topic, we focused our effort on problems stemming from the RoboCup
Logistics League, a well-known benchmark in planning and robotics. Despite
highly encouraging results, efforts are still needed to increase applicability and
scalability of OMT technologies in planning. With this work we hope to increase
the visibility of OMT techniques and tools in planning so as to intensify the
developments in this relevant research area.
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Abstract. Pushdown Systems (PDSs) are a natural model for sequen-
tial programs with (recursive) procedure calls. In this work, we define
the Branching temporal logic of CAlls and RETurns (BCARET) that
allows to write branching temporal formulas while taking into account
the matching between calls and returns. We consider the model-checking
problem of PDSs against BCARET formulas with “standard” valuations
(where an atomic proposition holds at a configuration c or not depends
only on the control state of c, not on its stack) as well as regular valu-
ations (where the set of configurations in which an atomic proposition
holds is regular). We show that these problems can be effectively solved
by a reduction to the emptiness problem of Alternating Büchi Pushdown
Systems. We show that our results can be applied for malware detection.

1 Introduction

Pushdown Systems (PDSs) are a natural model for sequential programs with
(recursive) procedure calls. Thus, it is very important to have model-checking
algorithms for PDSs. A lot of work focuses on proposing verification algorithms
for PDSs, e.g, for both linear temporal logic (LTL and its extensions) [6,9–12,17]
and branching temporal logic (CTL and its extensions) [6–8,15,18]. However,
LTL and CTL are not always adequate to specify properties. Indeed, some prop-
erties need to talk about matching between calls and returns. Thus, CARET
(a temporal logic of calls and returns) was introduced by Alur et al. [5]. This
logic allows to write linear temporal logic formulas while taking into account
matching of calls and returns. Later, VP-μ (also named NT-μ in other works
of the same authors) [2–4], a branching-time temporal logic that allows to talk
about matching between calls and returns, was introduced. VP-μ can be seen
as an extension of the modal μ-calculus which allows to talk about matching of
calls and returns.

In [2], the authors proposed an algorithm to model-check VP-μ formulas for
Recursive State Machines (RSMs) [1]. RSMs can be seen as a natural model to
represent sequential programs with (recursive) procedure calls. Each procedure
is modelled as a module. The invocation to a procedure is modelled as a call
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node; the return from a module corresponds to a ret node; and the remaining
statements are considered as internal nodes in the RSMs. Thus, RSMs are a
good formalism to model sequential programs written in structured program-
ming languages like C or Java. However, they become non suitable for modelling
binary or assembly programs; since, in these programs, explicit push and pop
instructions can occur. This makes impossible the use of RSMs to model assem-
bly programs and binary codes directly (whereas Pushdown Systems can model
binary codes in a natural way [16]). Model checking binary and assembly pro-
grams is very important. Indeed, sometimes, only the binary code is available.
Moreover, malicious programs are often executables, i.e., binary codes. Thus,
it is very important to be able to model check binary and assembly programs
against branching-time formulas with matchings between calls and returns. One
can argue that from a binary/assembly program, one can compute a PDS as
described in [16] and then apply the translation in [1] to obtain a RSM and then
apply the VP-μ model-checking algorithm of [2] on this RSM. However, by doing
so, we loose the explicit manipulation of the program’s stack. Explicit push and
pop instructions are not represented in a natural way anymore, and the stack of
the RSM does not correspond to the stack of the assembly program anymore.
Thus, it is not possible to state intuitive formulas that correspond to properties
of the program’s behaviors on the obtained RSM. Especially, when these formu-
las talk about the content of the program’s stack. Thus, it is very important to
have a direct algorithm for model-checking a branching-time temporal logic with
matching of calls and returns for PDSs.

However, VP-μ is a heavy formalism that can’t be used by novice users.
Indeed, VP-μ can be seen as an extension of the modal μ calculus with several
modalities 〈loc〉, [loc], 〈call〉, [call], 〈ret〉, [ret] that allow to distinguish between
calls, returns, and other statements (neither calls nor returns). Writing a simple
specification in VP-μ is complicated. For example, the following simple property
stating that “the configuration e can be reached in the same procedural context
as the current configuration” can be described (as shown in [2]) by the complex
VP-μ formula ϕ′

2 = μX(e ∨ 〈loc〉X ∨ 〈call〉ϕ′
3{X}) where ϕ′

3 = μY (〈ret〉R1 ∨
〈loc〉Y ∨ 〈call〉Y {Y }). Thus, we need to define a more intuitive branching-time
temporal logic (in the style of CTL) that allow to talk naturally and intuitively
about matching calls and returns.

Therefore, we define in this work the Branching temporal logic of CAlls
and RETurns BCARET. BCARET can be seen as an extension of CTL with
operators that allow to talk about matchings between calls and returns. Using
BCARET, the above reachability property can be described in a simple way by
the formula EF ae where EF a is a BCARET operator that means “there exists
a run on which eventually in the future in the same procedural context”. We
consider the model-checking problem of PDSs against BCARET formulas with
“standard” valuations (where an atomic proposition holds at a configuration c
or not depends only on the control state of c, not on its stack) as well as regular
valuations (where the set of configurations in which an atomic proposition holds
is a regular set of configurations). We show that these problems can be effectively
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solved by a reduction to the emptiness problem of Alternating Büchi Pushdown
Systems (ABPDSs). The latter problem can be solved effectively in [15]. Note
that the regular valuation case cannot be solved by translating the PDSs to RSMs
since as said previously, by doing the translation of PDSs to obtain RSMs, we
loose the structure of the program’s stack.

The rest of the paper is organized as follows. In Sect. 2, we define Labelled
Pushdown Systems. In Sect. 3, we define the logic BCARET. Section 4 presents
applications of BCARET in specifying malicious behaviours. Our algorithm to
reduce BCARET model-checking to the membership problem of ABPDSs is
presented in Sect. 5. Section 6 discusses the model-checking problem for PDSs
against BCARET formulas with regular valuations. Finally, we conclude in
Sect. 7.

2 Pushdown Systems: A Model for Sequential Programs

Pushdown systems is a natural model that was extensively used to model sequen-
tial programs. Translations from sequential programs to PDSs can be found e.g.
in [14]. As will be discussed in the next section, to precisely describe malicious
behaviors as well as context-related properties, we need to keep track of the call
and return actions in each path. Thus, as done in [13], we adapt the PDS model
in order to record whether a rule of a PDS corresponds to a call, a return, or
another instruction. We call this model a Labelled Pushdown System. We also
extend the notion of run in order to take into account matching returns of calls.

Definition 1. A Labelled Pushdown System (PDS) P is a tuple (P, Γ,Δ, �),
where P is a finite set of control locations, Γ is a finite set of stack alphabet,
� /∈ Γ is a bottom stack symbol and Δ is a finite subset of ((P × Γ ) × (P ×
Γ ∗)×{call, ret, int}). If ((p, γ), (q, ω), t) ∈ Δ (t ∈ {call, ret, int}), we also write
〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ. Rules of Δ are of the following form, where p ∈ P, q ∈
P, γ, γ1, γ2 ∈ Γ , and ω ∈ Γ ∗:

– (r1): 〈p, γ〉 call−−→ 〈q, γ1γ2〉
– (r2): 〈p, γ〉 ret−−→ 〈q, ε〉
– (r3): 〈p, γ〉 int−−→ 〈q, ω〉

Intuitively, a rule of the form 〈p, γ〉 call−−→ 〈q, γ1γ2〉 corresponds to a call statement.

Such a rule usually models a statement of the form γ
call proc−−−−−−→ γ2. In this rule,

γ is the control point of the program where the function call is made, γ1 is the
entry point of the called procedure, and γ2 is the return point of the call. A
rule r2 models a return, whereas a rule r3 corresponds to a simple statement
(neither a call nor a return). A configuration of P is a pair 〈p, ω〉, where p is
a control location and ω ∈ Γ ∗ is the stack content. For technical reasons, we
suppose w.l.o.g. that the bottom stack symbol � is never popped from the stack,
i.e., there is no rule in the form 〈p, �〉 t−→〈q, ω〉 ∈ Δ (t ∈ {call, ret, int}). P defines
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a transition relation =⇒P (t ∈ {call, ret, int})as follows: If 〈p, γ〉 t−→ 〈q, ω〉, then
for every ω′ ∈ Γ ∗, 〈p, γω′〉 =⇒P 〈q, ωω′〉. In other words, 〈q, ωω′〉 is an immediate
successor of 〈p, γω′〉. Let ∗=⇒P be the reflexive and transitive closure of =⇒P .

A run of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where
〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉. Given a con-
figuration 〈p, ω〉, let Traces(〈p, ω〉) be the set of all possible runs starting from
〈p, ω〉.

2.1 Global and Abstract Successors

Let π = 〈p0, ω0〉〈p1, ω1〉... be a run starting from 〈p0, ω0〉. Over π, two kinds of
successors are defined for every position 〈pi, ωi〉:

– global-successor : The global-successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉 where
〈pi+1, ωi+1〉 is an immediate successor of 〈pi, ωi〉.

– abstract-successor : The abstract-successor of 〈pi, ωi〉 is determined as follows:
• If 〈pi, ωi〉=⇒P〈pi+1, ωi+1〉 corresponds to a call statement, there are two

cases: (1) if 〈pi, ωi〉 has 〈pk, ωk〉 as a corresponding return-point in π,
then, the abstract successor of 〈pi, ωi〉 is 〈pk, ωk〉; (2) if 〈pi, ωi〉 does not
have any corresponding return-point in π, then, the abstract successor of
〈pi, ωi〉 is ⊥.

• If 〈pi, ωi〉=⇒P〈pi+1, ωi+1〉 corresponds to a simple statement, the abstract
successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉.

• If 〈pi, ωi〉=⇒P〈pi+1, ωi+1〉 corresponds to a return statement, the abstract
successor of 〈pi, ωi〉 is defined as ⊥.

〈p0, ω0〉 〈p1, ω1〉
〈p2, ω2〉

〈p3, ω3〉 〈p4, ω4〉
〈p5, ω5〉

〈p6, ω6〉
〈p7, ω7〉

〈p8, ω8〉

〈p9, ω9〉
〈p10, ω10〉

〈pk, ωk〉int

call

call retglobal-successor

abstract-successor

Fig. 1. Two kinds of successors on a run

For example, in Fig. 1:

– The global-successors of 〈p1, ω1〉 and 〈p2, ω2〉 are 〈p2, ω2〉 and 〈p3, ω3〉 respec-
tively.

– The abstract-successors of 〈p2, ω2〉 and 〈p5, ω5〉 are 〈pk, ωk〉 and 〈p9, ω9〉
respectively.
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Let 〈p, ω〉 be a configuration of a PDS P. A configuration 〈p′, ω′〉 is defined as
a global-successor of 〈p, ω〉 iff 〈p′, ω′〉 is a global-successor of 〈p, ω〉 over a run
π ∈ Traces(〈p, ω〉). Similarly, a configuration 〈p′, ω′〉 is defined as an abstract-
successor of 〈p, ω〉 iff 〈p′, ω′〉 is an abstract-successor of 〈p, ω〉 over a run π ∈
Traces(〈p, ω〉).
A global-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where
〈pi, ωi〉 ∈ P ×Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is a global-successor of 〈pi, ωi〉.
Similarly, an abstract-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... where 〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is an
abstract-successor of 〈pi, ωi〉. For instance, in Fig. 1, 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉
〈p3, ω3〉〈p4, ω4〉〈p5, ω5〉... is a global-path, while 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈pk, ωk〉...
is an abstract-path.

2.2 Multi Automata

Definition 2. [6] Let P = (P, Γ,Δ, �) be a PDS. A P-Multi-Automaton (MA
for short) is a tuple A = (Q,Γ, δ, I,Qf ), where Q is a finite set of states, δ ⊆
Q × Γ × Q is a finite set of transition rules, I = P ⊆ Q is a set of initial states,
Qf ⊆ Q is a set of final states.

The transition relation −→δ ⊆ Q × Γ ∗ × Q is defined as follows:

– q
ε−→δq for every q ∈ Q

– q
γ−→δq

′ if (q, γ, q′) ∈ δ

– if q
ω−→δq

′ and q′ γ−→δq
′′, then, q

ωγ−−→δq
′′

A recognizes a configuration 〈p, ω〉 where p ∈ P , ω ∈ Γ ∗ iff p
ω−→δq for some

q ∈ Qf . The language of A, L(A), is the set of all configurations which are
recognized by A. A set of configurations is regular if it is recognized by some
Multi-Automaton.

3 Branching Temporal Logic of Calls and Returns -
BCARET

In this section, we define the Branching temporal logic of CAlls and RETurns
BCARET. For technical reasons, we assume w.l.o.g. that BCARET formulas
are given in positive normal form, i.e. negations are applied only to atomic
propositions. To do that, we use the release operator R as a dual of the until
operator U .

Definition 3. Syntax of BCARET
Let AP be a finite set of atomic propositions, a BCARET formula ϕ is defined
as follows, where b ∈ {g, a}, e ∈ AP :

ϕ:: =true | false | e | ¬e | ϕ ∨ ϕ | ϕ ∧ ϕ | EXbϕ | AXbϕ | E[ϕU bϕ] | A[ϕU bϕ] |
E[ϕRbϕ] | A[ϕRbϕ]
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Let P = (P, Γ,Δ, �) be a PDS, λ : AP → 2P×Γ ∗
be a labelling function

that assigns to each atomic proposition e ∈ AP a set of configurations of P.
The satisfiability relation of a BCARET formula ϕ at a configuration 〈p0, ω0〉
w.r.t. the labelling function λ, denoted by 〈p0, ω0〉 �λ ϕ, is defined inductively
as follows:

– 〈p0, ω0〉 �λ true for every 〈p0, ω0〉
– 〈p0, ω0〉 �λ false for every 〈p0, ω0〉
– 〈p0, ω0〉 �λ e (e ∈ AP ) iff 〈p0, ω0〉 ∈ λ(e)
– 〈p0, ω0〉 �λ ¬e (e ∈ AP ) iff 〈p0, ω0〉 /∈ λ(e)
– 〈p0, ω0〉 �λ ϕ1 ∨ ϕ2 iff (〈p0, ω0〉 �λ ϕ1 or 〈p0, ω0〉 �λ ϕ2)
– 〈p0, ω0〉 �λ ϕ1 ∧ ϕ2 iff (〈p0, ω0〉 �λ ϕ1 and 〈p0, ω0〉 �λ ϕ2)
– 〈p0, ω0〉 �λ EXgϕ iff there exists a global-successor 〈p′, ω′〉 of 〈p0, ω0〉 such

that 〈p′, ω′〉 �λ ϕ
– 〈p0, ω0〉 �λ AXgϕ iff 〈p′, ω′〉 �λ ϕ for every global-successor 〈p′, ω′〉 of 〈p0, ω0〉
– 〈p0, ω0〉 �λ E[ϕ1U

gϕ2] iff there exists a global-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every
0 ≤ j < i, 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1U
gϕ2] iff for every global-path π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉, ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i,
〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ E[ϕ1R
gϕ2] iff there exists a global-path π = 〈p0, ω0〉〈p1, ω1〉

〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0, if 〈pi, ωi〉 �λ ϕ2

then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1R
gϕ2] iff for every global-path π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...

of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 �λ ϕ2 then there exists
0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ EXaϕ iff there exists an abstract-successor 〈p′, ω′〉 of 〈p0, ω0〉 such
that 〈p′, ω′〉 �λ ϕ

– 〈p0, ω0〉 �λ AXaϕ iff 〈p′, ω′〉 �λ ϕ for every abstract-successor 〈p′, ω′〉 of
〈p0, ω0〉

– 〈p0, ω0〉 �λ E[ϕ1U
aϕ2] iff there exists an abstract-path π =

〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2

and for every 0 ≤ j < i, 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1U
aϕ2] iff for every abstract-path π =

〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P, ∃i ≥ 0, 〈pi, ωi〉 �λ ϕ2 and for every 0 ≤ j < i,
〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ E[ϕ1R
aϕ2] iff there exists an abstract-path π =

〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0,
if 〈pi, ωi〉 �λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

– 〈p0, ω0〉 �λ A[ϕ1R
aϕ2] iff for every abstract-path

π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉, for every i ≥ 0,
if 〈pi, ωi〉 �λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �λ ϕ1

Other BCARET operators can be expressed by the above operators: EF gϕ =
E[true Ugϕ], EF aϕ = E[true Uaϕ], AF gϕ = A[true Ugϕ], AF aϕ =
A[trueUaϕ],...
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Closure. Given a BCARET formula ϕ, the closure Cl(ϕ) is the set of all sub-
formulae of ϕ, including ϕ.

Regular Valuations. We talk about regular valuations when for every e ∈ AP ,
λ(e) is a regular language.

Remark 1. CTL can be seen as the subclass of BCARET where the operators
EXaϕ,AXaϕ,E[ϕUaϕ], A[ϕUaϕ], E[ϕRaϕ], A[ϕRaϕ] are not considered.

4 Application

In this section, we show how BCARET can be used to describe branching-time
malicious behaviors.

Spyware Behavior. The typical behaviour of a spyware is hunting for personal
information (emails, bank account information,...) on local drives by searching
files matching certain conditions. To do that, it has to search directories of the
host to look for interesting files whose names match a specific condition. When
a file is found, the spyware will invoke a payload to steal the information, then
continue looking for the remaining matching files. When a folder is found, it will
enter the folder path and continue scanning that folder recursively. To achieve
this behavior, the spyware first calls the API function FindFirstF ileA to search
for the first matching file in a given folder path. After that, it has to check
whether the call to the API function FindFirstF ileA succeeds or not. If the
function call fails, the spyware will call the function GetLastError. Otherwise,
if the function call is successful, FindFirstF ileA will return a search handle
h. There are two possibilities in this case. If the returned result is a folder, it
will call the API function FindFirstF ileA again to search for matching results
in the found folder. If the returned result is a file, it will call the API function
FindNextF ileA using h as first parameter to look for the remaining matching
files. This behavior cannot be expressed by LTL or CTL because it requires to
express that the return value of the function FindFirstF ileA should be used as
input to the API function FindNextF ileA. It cannot be described by CARET
neither (because this is a branching-time property). Using BCARET, the above
behavior can be expressed by the following formula:

ϕsb =
∨

d∈D

EF g

(
call(FindFirstF ileA) ∧ EXa(eax = d) ∧ AF a

(
call(GetLastError) ∨ call(FindFirstF ileA)

∨
(
call(FindNextF ileA) ∧ dΓ ∗

)))

where the
∨

is taken over all possible memory addresses d which contain the
values of search handles h in the program, EXa is a BCARET operator that
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means “next in some run, in the same procedural context”; EF g is the standard
CTL EF operator (eventually in some run), while AF a is a BCARET operator
that means “eventually in all runs, in the same procedural context”.

In binary codes and assembly programs, the return value of an API func-
tion is put in the register eax. Thus, the return value of FindFirstF ileA
is the value of eax at its corresponding return-point. Then, the subformula
(call(FindFirstFileA) ∧ EXa(eax = d)) states that there is a call to the API
FindFirstF ileA and the return value of this function is d (the abstract succes-
sor of a call is its corresponding return-point). When FindNextFileA is invoked,
it requires a search handle as parameter and this search handle must be put
on top of the program stack (since parameters are passed through the stack in
assembly). The requirement that d is on top of the program stack is expressed by
the regular expression dΓ ∗. Thus, the subformula [call(FindNextFileA) ∧ dΓ ∗]
expresses that FindNextFileA is called with d as parameter (d stores the infor-
mation of the search handle). Therefore, ϕsb expresses then that there is a call
to the API FindFirstF ileA with the return value d (the search handle), then,
in all runs starting from that call, there will be either a call to the API function
GetLastError or a call to the function FindFirstF ileA or a call to the function
FindNextF ileA in which d is used as a parameter.

To detect spyware, [13] used the following CARET formula:

ϕ′
sb =

∨
d∈D F g(call(FindFirstFileA) ∧ Xa(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ ∗))

It can be seen that this CARET formula ϕ′
sb is not as precise as the BCARET

formula ϕsb, as it does not deal with the case when the returned result of
FindFirstF ileA is a folder or an error. Thus, this CARET formula ϕ′

sb may lead
to false alarms that can be avoided using our BCARET formula ϕsb. BCARET
can deal with it because BCARET is a branching-time temporal logic. For exam-
ple, AF a allows us to take into account all possible abstract-paths from a certain
state in the computation tree. By using AF a, ϕsb can deal with different returned
values of FindFirstF ileA as presented above.

5 BCARET Model-Checking for Pushdown Systems

In this section, we consider “standard” BCARET model-checking for pushdown
systems where an atomic proposition holds at a configuration c or not depends
only on the control state of c, not on its stack.

5.1 Alternating Büchi Pushdown Systems (ABPDSs)

Definition 4. An Alternating Büchi Pushdown System (ABPDS) is a tuple
BP = (P, Γ,Δ, F ), where P is a set of control locations, Γ is the stack alphabet,
F ⊆ P is a set of accepting control locations and Δ is a transition function that
maps each element of P × Γ with a positive boolean formula over P × Γ ∗.
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A configuration of BP is a pair 〈p, ω〉, where p ∈ P is the current control
location and ω ∈ Γ ∗ is the current stack content. Without loss of generality,
we suppose that the boolean formulas of ABPDSs are in disjunctive normal
form

∨n
j=1

∧mj

i=1〈pj
i , ω

j
i 〉. Then, we can see Δ as a subset of (P × Γ ) × 2P×Γ ∗

by rewriting the rules of Δ in the form 〈p, γ〉 → ∨n
j=1

∧mj

i=1〈pj
i , ω

j
i 〉 as n

rules of the form 〈p, γ〉 → {〈pj
1, ω

j
1〉, ..., 〈pj

mj
, ωj

mj
〉}, where 1 ≤ j ≤ n. Let

〈p, γ〉 → {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of Δ, then, for every ω ∈ Γ ∗, the
configuration 〈p, γω〉(resp. {〈p1, ω1ω〉, ..., 〈pn, ωnω〉}) is an immediate predeces-
sor (resp. successor) of {〈p1, ω1ω〉, ..., 〈pn, ωnω〉} (resp. 〈p, γω〉).

A run ρ of BP starting form an initial configuration 〈p0, ω0〉 is a tree whose
root is labelled by 〈p0, ω0〉, and whose other nodes are labelled by elements in
P × Γ ∗. If a node of ρ is labelled by a configuration 〈p, ω〉 and has n children
labelled by 〈p1, ω1〉, ..., 〈pn, ωn〉 respectively, then, 〈p, ω〉 must be a predecessor
of {〈p1, ω1〉, ..., 〈pn, ωn〉} in BP. A path of a run ρ is an infinite sequence of
configurations c0c1c2... s.t. c0 is the root of ρ and ci+1 is one of the children of ci

for every i ≥ 0. A path is accepting iff it visits infinitely often configurations with
control locations in F . A run ρ is accepting iff every path of ρ is accepting. The
language of BP, L(BP), is the set of configurations c s.t. BP has an accepting
run starting from c.

BP defines the reachability relation =⇒BPϕ
as follows: (1) c =⇒BP {c} for

every c ∈ P × Γ ∗, (2) c =⇒BP C if C is an immediate successor of c; (3) if
c =⇒BP {c1, c2, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n, then c =⇒BP

⋃n
i=1 Ci.

Given c0 =⇒BP C ′, then, BP has an accepting run from c0 iff BP has an accepting
run from c′ for every c′ ∈ C ′.

Theorem 1. [15] Given an ABPDS BP = (P, Γ,Δ, F ), for every configura-
tion 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 ∈ L(BP) can be decided in time
O(|P |2.|Γ |.(|Δ|25|P | + 2|P ||ω|)).

5.2 From BCARET Model Checking of PDSs to the Membership
Problem in ABPDSs

Let P = (P, Γ,Δ, �) be a pushdown system with an initial configuration c0.
Given a set of atomic propositions AP , let ϕ be a BCARET formula. Let f :
AP → 2P be a function that associates each atomic proposition with a set
of control states, and λf : AP → 2P×Γ ∗

be a labelling function s.t. for every
e ∈ AP , λf (e) = {〈p, ω〉 | p ∈ f(e), ω ∈ Γ ∗}. In this section, we propose an
algorithm to check whether c0 �λf

ϕ. Intuitively, we construct an Alternating
Büchi Pushdown System BPϕ which recognizes a configuration c iff c �λf

ϕ.
Then to check whether c0 �λf

ϕ, we will check if c0 ∈ L(BPϕ). The membership
problem of an ABPDS can be solved effectively by Theorem 1.

Let BPϕ = (P ′, Γ ′,Δ′, F ) be the ABPDS defined as follows:

– P ′ = P ∪ (P × Cl(ϕ)) ∪ {p⊥}
– Γ ′ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ⊥}
– F = F1 ∪ F2 ∪ F3 where
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• F1 = {�p, e� | e ∈ Cl(ϕ), e ∈ AP and p ∈ f(e)}
• F2 = {�p,¬e� | ¬e ∈ Cl(ϕ), e ∈ AP and p /∈ f(e)}
• F3 = {P × ClR(ϕ)} where ClR(ϕ) is the set of formulas of Cl(ϕ) in the

form E[ϕ1R
bϕ2] or A[ϕ1R

bϕ2] (b ∈ {g, a})

The transition relation Δ′ is the smallest set of transition rules defined as
follows: Δ ⊆ Δ′ and for every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ , b ∈ {g, a} and
t ∈ {call, ret, int}:

(α1) If φ = e, e ∈ AP and p ∈ f(e), then, 〈�p, φ�, γ〉 → 〈�p, φ�, γ〉 ∈ Δ′

(α2) If φ = ¬e, e ∈ AP and p /∈ f(e), then, 〈�p, φ�, γ〉 → 〈�p, φ�, γ〉 ∈ Δ′

(α3) If φ = φ1 ∧ φ2, then, 〈�p, φ�, γ〉 → 〈�p, φ1�, γ〉 ∧ 〈�p, φ2�, γ〉 ∈ Δ′

(α4) If φ = φ1 ∨ φ2, then, 〈�p, φ�, γ〉 → 〈�p, φ1�, γ〉 ∨ 〈�p, φ2�, γ〉 ∈ Δ′

(α5) If φ = EXgφ1, then �p, φ�, γ〉 → ∨
〈p,γ〉 t−→〈q,ω〉∈Δ

〈�q, φ1�, ω〉 ∈ Δ′ where

t ∈ {call, int, ret}
(α6)If φ = AXgφ1, then, 〈�p, φ�, γ〉 → ∧

〈p,γ〉 t−→〈q,ω〉∈Δ
〈�q, φ1�, ω〉 ∈ Δ′

(α7) If φ = EXaφ1, then, 〈�p, φ�, γ〉 → h1 ∨ h2∨h3 ∈ Δ′, where

– h1 =
∨

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈q, γ1�γ2, φ1�〉

– h2 =
∨

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�q, φ1�, ω〉

– h3 =
∨

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α8) If φ = AXaφ1, then, 〈�p, φ�, γ〉 → h1 ∧ h2∧h3 ∈ Δ′, where

– h1 =
∧

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈q, γ1�γ2, φ1�〉

– h2 =
∧

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�q, φ1�, ω〉

– h3 =
∧

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α9) If φ = E[φ1U
gφ2], then, 〈�p, φ�, γ〉 → 〈�p, φ2�, γ〉 ∨ ∨

〈p,γ〉 t−→〈q,ω〉∈Δ

(〈�p, φ1�, γ〉 ∧ 〈�q, φ�, ω〉) ∈ Δ′

(α10) If φ = E[φ1U
aφ2], then, 〈�p, φ�, γ〉 → 〈�p, φ2�, γ〉∨h1 ∨h2∨h3 ∈ Δ′, where

– h1 =
∨

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈�p, φ1�, γ〉 ∧ 〈q, γ1�γ2, φ�〉

– h2 =
∨

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�p, φ1�, γ〉 ∧ 〈�q, φ�, ω〉

– h3 =
∨

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α11) If φ = A[φ1U
gφ2], then, 〈�p, φ�, γ〉 → 〈�p, φ2�, γ〉 ∨ ∧

〈p,γ〉 t−→〈q,ω〉∈Δ

(〈�p, φ1�, γ〉 ∧ 〈�q, φ�, ω〉) ∈ Δ′

(α12) If φ = A[φ1U
aφ2], then, 〈�p, φ�, γ〉 → 〈�p, φ2�, γ〉 ∨ (h1 ∧ h2 ∧ h3) ∈ Δ′,

where

– h1 =
∧

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈�p, φ1�, γ〉 ∧ 〈q, γ1�γ2, φ�〉

– h2 =
∧

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�p, φ1�, γ〉 ∧ 〈�q, φ�, ω〉
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– h3 =
∧

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α13) If φ = E[φ1R
gφ2], then, we add to Δ′ the rule: 〈�p, φ�, γ〉 → (〈�p, φ2�, γ〉∧

〈�p, φ1�, γ〉) ∨ (
∨

〈p,γ〉 t−→〈q,ω〉∈Δ
(〈�p, φ2�, γ〉 ∧ 〈�q, φ�, ω〉)

(α14) If φ = A[φ1R
gφ2], then, we add to Δ′ the rule: 〈�p, φ�, γ〉 → (〈�p, φ2�, γ〉 ∧

〈�p, φ1�, γ〉) ∨ (
∧

〈p,γ〉 t−→〈q,ω〉∈Δ
(〈�p, φ2�, γ〉 ∧ 〈�q, φ�, ω〉)

(α15) If φ = E[φ1R
aφ2]: 〈�p, φ�, γ〉 → (〈�p, φ2�, γ〉∧〈�p, φ1�, γ〉)∨h1∨h2∨h3 ∈ Δ′,

where

– h1 =
∨

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈�p, φ2�, γ〉 ∧ 〈q, γ1�γ2, φ�〉

– h2 =
∨

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�p, φ2�, γ〉 ∧ 〈�q, φ�, ω〉

– h3 =
∨

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α16) If φ = A[φ1R
aφ2], 〈�p, φ�, γ〉 → (〈�p, φ2�, γ〉∧〈�p, φ1�, γ〉)∨(h1 ∧ h2 ∧ h3) ∈

Δ′, where

– h1 =
∧

〈p,γ〉 call−−→〈q,γ1γ2〉∈Δ
〈�p, φ2�, γ〉 ∧ 〈q, γ1�γ2, φ�〉

– h2 =
∧

〈p,γ〉 int−−→〈q,ω〉∈Δ
〈�p, φ2�, γ〉 ∧ 〈�q, φ�, ω〉

– h3 =
∧

〈p,γ〉 ret−−→〈q,ε〉∈Δ
〈p⊥, γ⊥〉

(α17) for every 〈p, γ〉 ret−−→ 〈q, ε〉 ∈ Δ:

– 〈q, �γ′′, φ1�〉 → 〈�q, φ1�, γ
′′〉 ∈ Δ′ for every γ′′ ∈ Γ , φ1 ∈ Cl(ϕ)

(α18) 〈p⊥, γ⊥〉 → 〈p⊥, γ⊥〉 ∈ Δ′

Roughly speaking, the ABPDS BPϕ is a kind of product between P and
the BCARET formula ϕ which ensures that BPϕ has an accepting run from
〈�p, ϕ�, ω〉 iff the configuration 〈p, ω〉 satisfies ϕ. The form of the control loca-
tions of BPϕ is �p, φ� where φ ∈ Cl(ϕ). Let us explain the intuition behind our
construction:

– If φ = e ∈ AP , then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff p ∈ f(e). In other

words, BPϕ should have an accepting run from 〈�p, e�, ω〉 iff p ∈ f(e). This is
ensured by the transition rules in (α1) which add a loop at 〈�p, e�, ω〉 where
p ∈ f(e) and the fact that �p, e� ∈ F .

– If φ = ¬e (e ∈ AP ), then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff p /∈ f(e). In other

words, BPϕ should have an accepting run from 〈�p,¬e�, ω〉 iff p /∈ f(e). This
is ensured by the transition rules intransition rules in (α2) which add a loop
at 〈�p,¬e�, ω〉 where p /∈ f(e) and the fact that �p,¬e� ∈ F .

– If φ = φ1 ∧ φ2, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff (〈p, ω〉 �λf

φ1 and
〈p, ω〉 �λf

φ2). This is ensured by the transition rules in (α3) stating that
BPϕ has an accepting run from 〈�p, φ1 ∧φ2�, ω〉 iff BPϕ has an accepting run
from both 〈�p, φ1�, ω〉 and 〈�p, φ2�, ω〉. (α4) is similar to (α3).
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Fig. 2. 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement

– If φ = E[φ1U
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff 〈p, ω〉 �λf
φ2 or

(〈p, ω〉 �λf
φ1 and there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t.

〈p′, ω′〉 �λf
φ). This is ensured by the transition rules in (α9) stating that

BPϕ has an accepting run from 〈�p,E[φ1U
gφ2]�, ω〉 iff BPϕ has an accepting

run from 〈�p, φ2�, ω〉 or (BPϕ has an accepting run from both 〈�p, φ1�, ω〉 and
〈�p′, φ�, ω′〉 where 〈p′, ω′〉 is an immediate successor of 〈p, ω〉). (α11) is similar
to (α9).

– If φ = E[φ1R
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff (〈p, ω〉 �λf
φ2

and 〈p, ω〉 �λf
φ1) or (〈p, ω〉 �λf

φ2 and there exists an immediate successor
〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �λf

φ). This is ensured by the transition rules
in (α13) stating that BPϕ has an accepting run from 〈�p,E[φ1R

gφ2]�, ω〉 iff
BPϕ has an accepting run from both 〈�p, φ2�, ω〉 and 〈�p, φ1�, ω〉; or BPϕ

has an accepting run from both 〈�p, φ2�, ω〉 and �p′, φ�, ω′〉 where 〈p′, ω′〉 is an
immediate successor of 〈p, ω〉. In addition, for Rg formulas, the stop condition
is not required, i.e, for a formula φ1R

gφ2 that is applied to a specific run, we
don’t require that φ1 must eventually hold. To ensure that the runs on which
φ2 always holds are accepted, we add �p, φ� to the Büchi accepting condition
F (via the subset F3 of F ). (α14) is similar to (α13).

– If φ = EXgφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf
φ iff there exists an

immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �λf
φ1. This is ensured by

the transition rules in (α5) stating that BPϕ has an accepting run from
〈�p,EXgφ1�, ω〉 iff there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t.
BPϕ has an accepting run from 〈�p′, φ1�, ω

′〉. (α6) is similar to (α5).
– If φ = EXaφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff there exists an abstract-
successor 〈pk, ωk〉 of 〈p, ω〉 s.t. 〈pk, ωk〉 �λf

φ1 (A1). Let π ∈ Traces(〈p, ω〉) be
a run starting from 〈p, ω〉 on which 〈pk, ωk〉 is the abstract-successor of 〈p, ω〉.
Over π, let 〈p′, ω′〉 be the immediate successor of 〈p, ω〉. In what follows, we
explain how we can ensure (A1).

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of 〈p, ω〉,
〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈�pk, φ1�, ωk〉. There are two possibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. Let us consider Fig. 2
to explain this case. 〈�p, φ�, ω〉 =⇒BPϕ 〈�pk, φ1�, ωk〉 is ensured by rules corre-
sponding to h1 in (α7), the rules in Δ ⊆ Δ′ and the rules in (α17) as follows:
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rules corresponding to h1 in (α7) allow to record φ1 in the return point of the
call, rules in Δ ⊆ Δ′ allow to mimic the run of the PDS P and rules in (α17)
allow to extract and put back φ1 when the return-point is reached. In what
follows, we show in more details how this works: Let 〈p, γ〉 call−−→ 〈p′, γ′γ′′〉
be the rule associated with the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then we have
ω = γω′′ and ω′ = γ′γ′′ω′′. Let 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 be the tran-
sition that corresponds to the ret statement of this call on π. Let then
〈pk−1, β〉 ret−−→ 〈pk, ε〉 ∈ Δ be the corresponding return rule. Then, we
have necessarily ωk−1 = βγ′′ω′′, since as explained in Sect. 2, γ′′ is the
return address of the call. After applying this rule, ωk = γ′′ω′′. In other
words, γ′′ will be the topmost stack symbol at the corresponding return
point of the call. So, in order to ensure that 〈�p, φ�, ω〉 =⇒BPϕ 〈�pk, φ1�, ωk〉,
we proceed as follows: At the call 〈p, γ〉 call−−→ 〈p′, γ′γ′′〉, we encode the
formula φ1 into γ′′ by the rule corresponding to h1 in (α7) stating that
〈�p,EXaφ1�, γ〉 −→ 〈p′, γ′�γ′′, φ1�〉 ∈ Δ′. This allows to record φ1 in the cor-
responding return point of the stack. After that, the rules in Δ ⊆ Δ′ allow
BPϕ to mimic the run π of P from 〈p′, ω′〉 till the corresponding return-point
of this call, where �γ′′, φ1� is the topmost stack symbol. More specifically,
the following sequence of P : 〈p′, γ′γ′′ω′′〉 ∗=⇒P 〈pk−1, βγ′′ω′′〉 ∗=⇒P 〈pk, γ′′ω′′〉
will be mimicked by the following sequence of BPϕ : 〈�p′, γ′�γ′′, φ1�ω

′′〉 =⇒BPϕ

〈pk−1, β�γ′′, φ1�ω
′′〉 =⇒BPϕ 〈pk, �γ′′, φ1�ω

′′〉 using the rules of Δ. At the return-
point, we extract φ1 from the stack and encode it into pk by adding the tran-
sition rules in (α17) 〈pk, �γ′′, φ1�〉 → 〈�pk, φ1�, γ

′′〉. Therefore, we obtain that
〈�p, φ�, ω〉 =⇒BPϕ

〈�pk, φ1�, ωk〉. The property holds for this case.
• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the

abstract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we
get that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules corresponding to
h2 in (α7), we get that 〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈�p′, φ1�, ω
′〉. Therefore,

〈�p,EXaφ1�, ω〉 =⇒BPϕ 〈�pk, φ1�, ωk〉. The property holds for this case.

2. Now, let us consider the case where 〈pk, ωk〉, the abstract successor of 〈p, ω〉,
is ⊥. This case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return state-
ment. Then, one abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy
any formula, i.e., ⊥ does not satisfy φ1. Therefore, from 〈�p,EXaφ1�, ω〉, we
need to ensure that the path of BPϕ reflecting the possibility in (A1) that
〈pk, ωk〉 �λf

φ1 is not accepted. To do this, we exploit additional trap config-
urations. We use p⊥ and γ⊥ as trap control location and trap stack symbol to
obtain these trap configurations. To be more specific, let 〈p, γ〉 ret−−→ 〈p′, ε〉 be the
rule associated with the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then we have ω = γω′′

and ω′ = ω′′. We add the transition rule corresponding to h3 in (α7) to allow
〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω′′〉. Since a run of BPϕ includes only infinite
paths, we equip these trap configurations with self-loops by the transition rules
in (α18), i.e., 〈p⊥, γ⊥ω′′〉 =⇒BPϕ

〈p⊥, γ⊥ω′′〉. As a result, we obtain a correspond-
ing path in BPϕ : 〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω′′〉 =⇒BPϕ
〈p⊥, γ⊥ω′′〉. Note

that this path is not accepted by BPϕ because p⊥ /∈ F .
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In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,
then, 〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈�pk, φ1�, ωk〉; otherwise 〈�p,EXaφ1�, ω〉 =⇒BPϕ

〈p⊥, γ⊥ω′′〉 =⇒BPϕ
〈p⊥, γ⊥ω′′〉 which is not accepted by BPϕ. Therefore, (A1) is

ensured by the transition rules in (α7) stating that BPϕ has an accepting run
from 〈�p,EXaφ1�, ω〉 iff there exists an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t.
BPϕ has an accepting run from 〈�pk, φ1�, ωk〉.

– If φ = AXaφ1: this case is ensured by the transition rules in (α8) together
with (α17) and Δ ⊆ Δ′. The intuition of (α8) is similar to that of (α7).

– If φ = E[φ1U
aφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �λf

φ iff 〈p, ω〉 �λf
φ2 or

(〈p, ω〉 �λf
φ1 and there exists an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t.

〈pk, ωk〉 �λf
φ) (A2). Let π ∈ Traces(〈p, ω〉) be a run starting from 〈p, ω〉 on

which 〈pk, ωk〉 is the abstract-successor of 〈p, ω〉. Over π, let 〈p′, ω′〉 be the
immediate successor of 〈p, ω〉.

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of
〈p, ω〉, 〈�p, φ�, ω〉 =⇒BPϕ {〈�p, φ1�, ω〉, 〈�pk, φ�, ωk〉}. There are two possibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. From the rules corre-
sponding to h1 in (α10), we get that 〈�p, φ�, ω〉 =⇒BPϕ

{〈�p, φ1�, ω〉, 〈p′, ω′〉}
where 〈p′, ω′〉 is the immediate successor of 〈p, ω〉. Thus, to ensure that
〈�p, φ�, ω〉 =⇒BPϕ

{〈�p, φ1�, ω〉, 〈�pk, φ�, ωk〉}, we only need to ensure that
〈p′, ω′〉 =⇒BPϕ

〈�pk, φ�, ωk〉. As for the case φ = EXaφ1, 〈p′, ω′〉 =⇒BPϕ

〈�pk, φ�, ωk〉 is ensured by the rules in Δ ⊆ Δ′ and the rules in (α17): rules
in Δ ⊆ Δ′ allow to mimic the run of the PDS P before the return and rules
in (α17) allow to extract and put back φ1 when the return-point is reached.

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the abstract
successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we get that
〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules corresponding to h2 in (α10),
we get that 〈�p,E[φ1U

aφ2]�, ω〉 =⇒BPϕ
{〈�p, φ1�, ω〉, 〈�p′, φ�, ω′〉}. Therefore,

〈�p,E[φ1U
aφ2]�, ω〉 =⇒BPϕ

{〈�p, φ1�, ω〉, 〈�pk, φ�, ωk〉}. In other words, BPϕ

has an accepting run from both 〈�p, φ1�, ω〉 and 〈�pk, φ�, ωk〉 where 〈pk, ωk〉 is
an abstract successor of 〈p, ω〉. The property holds for this case.

2. Now, let us consider the case where 〈pk, ωk〉 = ⊥. As explained previously, this
case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return statement. Then, the
abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy any formula, i.e.,
⊥ does not satisfy φ. Therefore, from 〈�p,E[φ1U

aφ2]�, ω〉, we need to ensure that
the path reflecting the possibility in (A2) that (〈p, ω〉 �λf

φ1 and 〈pk, ωk〉 �λf
φ)

is not accepted by BPϕ. This is ensured as for the case φ = EXaφ1 by the
transition rules corresponding to h3 in (α10).

In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,
then, 〈�p,E[φ1U

aφ2]�, ω〉 =⇒BPϕ
{〈�p, φ1�, ω〉, 〈�pk, E[φ1U

aφ2]�, ωk〉}; otherwise
〈�p,E[φ1U

aφ2]�, ω〉 =⇒BPϕ 〈p⊥, γ⊥ω′′〉 =⇒BPϕ 〈p⊥, γ⊥ω′′〉 which is not accepted
by BPϕ. Therefore, (A2) is ensured by the transition rules in (α10) stating that
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BPϕ has an accepting run from 〈�p,E[φ1U
aφ2]�, ω〉 iff BPϕ has an accepting

run from 〈�p, φ2�, ω〉; or BPϕ has an accepting run from both 〈�p, φ1�, ω〉 and
〈�pk, E[φ1U

aφ2]�, ωk〉 where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉.
– The intuition behind the rules corresponding to the cases φ = A[φ1U

aφ2],
φ = E[φ1R

aφ2], φ = A[φ1R
aφ2] are similar to the previous cases.

The Büchi Accepting Condition. The elements of the Büchi accepting con-
dition set F of BPϕ ensure the liveness requirements of until-formulas on infinite
global paths, infinite abstract paths as well as on finite abstract paths.

– With regards to infinite global paths, the fact that the liveness require-
ment φ2 in E[φ1U

gφ2] is eventually satisfied in P is ensured by the fact
that �p,E[φ1U

gφ2]� doesn’t belong to F . Note that 〈p, ω〉 �λf
E[φ1U

gφ2] iff
〈p, ω〉 �λf

φ2 or there exists a global-successor 〈p′, ω′〉 s.t. (〈p, ω〉 �λf
φ1 and

〈p′, ω′〉 �λf
E[φ1U

gφ2]). Because φ2 should hold eventually, to avoid the case
where a run of BPϕ always carries E[φ1U

gφ2] and never reaches φ2, we don’t
set �p,E[φ1U

gφ2]� as an element of the Büchi accepting condition set. This
guarantees that the accepting run of BPϕ must visit some control locations in
�p, φ2� which ensures that φ2 will eventually hold. The liveness requirements
of A[φ1U

gφ2] are ensured as for the case of E[φ1U
gφ2].

– With regards to infinite abstract paths, the fact that the liveness require-
ment φ2 in E[φ1U

aφ2] is eventually satisfied in P is ensured by the fact that
�p,E[φ1U

aφ2]� doesn’t belong to F . The intuition behind this case is similar
to the intuition of E[φ1U

gφ2]. The liveness requirements of A[φ1U
aφ2] are

ensured as for the case of E[φ1U
aφ2].

Fig. 3. 〈pi, ωi〉 finally reach its corresponding return-point

Fig. 4. 〈pi, ωi〉 never reach its corresponding return-point
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– With regards to finite abstract paths 〈p0, ω0〉〈p1, ω1〉...〈pm, ωm〉 where
〈pm, ωm〉 =⇒P 〈pm+1, ωm+1〉 corresponds to a return statement, the fact
that the liveness requirement φ2 in E[φ1U

aφ2] is eventually satisfied in P
is ensured by the fact that p⊥ doesn’t belong to F . Look at Fig. 3 for an
illustration. In this figure, for every i+1 ≤ u ≤ k−1, the abstract path start-
ing from 〈pu, ωu〉 is finite because the abstract successor of 〈pk−1, ωk−1〉 is
⊥ since 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 corresponds to a return statement. Sup-
pose that we want to check whether 〈pk−1, ωk−1〉 �λf

E[φ1U
aφ2], then,

we get that 〈pk−1, ωk−1〉 �λf
E[φ1U

aφ2] iff 〈pk−1, ωk−1〉 �λf
φ2 or there

exists an abstract-successor 〈p′, ω′〉 s.t. (〈pk−1, ωk−1〉 �λf
φ1 and 〈p′, ω′〉 �λf

E[φ1U
aφ2]). Since φ2 should eventually hold, φ2 should hold at 〈pk−1, ωk−1〉

because the abstract-successor of 〈pk−1, ωk−1〉 on this abstract-path is ⊥.
To ensure this, we move 〈pk−1, ωk−1〉 to the trap configuration 〈p⊥, γ⊥〉
and add a loop here by the transition rule (α18). In addition, we don’t set
p⊥ as an element of the Büchi accepting condition set, which means that
〈pk−1, ωk−1〉 �λf

E[φ1U
aφ2] iff 〈pk−1, ωk−1〉 �λf

φ2 by the transition rules in
(α10). This ensures the liveness requirement φ2 in E[φ1U

aφ2] is eventually
satisfied.

– With regards to finite abstract paths 〈p0, ω0〉〈p1, ω1〉...〈pm, ωm〉 where
〈pm, ωm〉 =⇒P 〈pm+1, ωm+1〉 corresponds to a call statement but this call never
reaches its corresponding return-point, the fact that the liveness requirement
φ2 in E[φ1U

aφ2] is eventually satisfied in P is ensured by the fact that p /∈ F .
Look at Fig. 4 where the procedure proc never terminates. In this figure, for
every 0 ≤ u ≤ i, the abstract path starting from 〈pu, ωu〉 is finite. Suppose
that we want to check whether 〈pi, ωi〉 �λf

E[φ1U
aφ2], then, we get that

〈pi, ωi〉 �λf
E[φ1U

aφ2] iff 〈pi, ωi〉 �λf
φ2 or there exists an abstract-successor

〈p′, ω′〉 s.t. (〈pi, ωi〉 �λf
φ1 and 〈p′, ω′〉 �λf

E[φ1U
aφ2]). Since φ2 should even-

tually hold, φ2 should hold at 〈pi, ωi〉 because the abstract-successor of 〈pi, ωi〉
on this abstract-path is ⊥. As explained above, at 〈pi, ωi〉, we will encode the
formula E[φ1U

aφ2] into the stack and mimic the run of P on BPϕ until it
reaches the corresponding return-point of the call. In other words, if the call
is never reached, the run of BPϕ will infinitely visit the control locations of
P. To ensure this path unaccepted, we don’t set p ∈ P as an element of
the Büchi accepting condition set, which means that 〈pi, ωi〉 �λf

E[φ1U
aφ2]

iff 〈pi, ωi〉 �λf
φ2 by the transition rules in (α10). This ensures the liveness

requirement φ2 in E[φ1U
aφ2] is eventually satisfied.

Thus, we can show that:

Theorem 2. Given a PDS P = (P, Γ,Δ, �), a set of atomic propositions AP , a
labelling function f : AP → 2P and a BCARET formula ϕ, we can compute an
ABPDS BPϕ such that for every configuration 〈p, ω〉, 〈p, ω〉�λf

ϕ iff BPϕ has
an accepting run from the configuration 〈�p, ϕ�, ω〉.
The number of control locations of BPϕ is at most O(|P ||ϕ|), the number of
stack symbols is at most O(|Γ ||ϕ|) and the number of transitions is at most
O(|P ||Γ ||Δ||ϕ|). Therefore, we get from Theorems 1 and 2:
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Theorem 3. Given a PDS P = (P, Γ,Δ, �), a set of atomic propositions AP ,
a labelling function f : AP → 2P and a BCARET formula ϕ, for every config-
uration 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 satisfies ϕ can be solved in time
O(|P |2|ϕ|3.|Γ |(|P ||Γ ||Δ|.|ϕ|.25|P ||ϕ| + 2|P ||ϕ|.|ω|)) .

6 BCARET Model-Checking for PDSs with Regular
Valuations

Up to now, we have considered the standard model-checking problem for
BCARET, where the validity of an atomic proposition depends only on the con-
trol state, not on the stack. In this section, we go further and consider model-
checking with regular valuations where the set of configurations in which an
atomic proposition holds is a regular set of configurations (see Sect. 3 for a for-
mal definition of regular valuations).

6.1 From BCARET Model Checking of PDSs with Regular
Valuations to the Membership Problem in ABPDSs

Given a pushdown system P = (P, Γ,Δ, �), and a set of atomic propositions AP ,
let ϕ be a BCARET formula over AP , λ : AP → 2P×Γ ∗

be a labelling function
s.t. for every e ∈ AP , λ(e) is a regular set of configurations. Given a configuration
c0, we propose in this section an algorithm to check whether c0 �λ ϕ. Intuitively,
we compute an ABPDS BP ′

ϕ s.t. BP ′
ϕ recognizes a configuration c of P iff c �λ ϕ.

Then, to check if c0 satisfies ϕ, we will check whether BP ′
ϕ recognizes c0.

For every e ∈ AP , since λ(e) is a regular set of configurations, let
Me = (Qe, Γ, δe, Ie, Fe) be a multi-automaton s.t. L(Me) = λ(e), M¬e =
(Q¬e, Γ, δ¬e, I¬e, F¬e) be a multi-automaton s.t. L(M¬e) = P ×Γ ∗ \λ(e), which
means M¬e will recognize the complement of λ(e) that is the set of configura-
tions in which e doesn’t hold. Note that for every e ∈ AP , the initial states
of Me and M¬e are the control locations p ∈ P. Thus, to distinguish between
the initial states of these two automata, we will denote the initial state cor-
responding to the control location p in Me (resp. M¬e) by pe (resp. p¬e). Let
AP+(ϕ) = {e ∈ AP | e ∈ Cl(ϕ)} and AP−(ϕ) = {e ∈ AP | ¬e ∈ Cl(ϕ)}.

Let BP ′
ϕ = (P ′′, Γ ′′,Δ′′, F ′) be the ABPDS defined as follows:

– P ′′ = P ∪ P × Cl(ϕ)∪{p⊥} ∪ ⋃
e∈AP+(ϕ) Qe ∪ ⋃

e∈AP −(ϕ) Q¬e

– Γ ′′ = Γ ∪ (Γ × Cl(ϕ))∪{γ⊥}
– F ′ = F1 ∪ F2 ∪ F3 where

• F1 =
⋃

e∈AP+(ϕ) Fe

• F2 =
⋃

e∈AP −(ϕ) F¬e

• F3 = {P × ClR(ϕ)} where ClR(ϕ) is the set of formulas of Cl(ϕ) in the
form E[ϕ1R

bϕ2] or A[ϕ1R
bϕ2] (b ∈ {g, a})

The transition relation Δ′′ is the smallest set of transition rules defined as
follows: Δ ⊆ Δ′′, Δ′

0 ⊆ Δ′′ where Δ′
0 is the transitions of Δ′ that are created by

the rules from (α3) to (α18) and such that:
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(β1) for every p ∈ P , e ∈ AP+(ϕ), γ ∈ Γ : 〈�p, e�, γ〉 → 〈pe, γ〉 ∈ Δ′′

(β2) for every p ∈ P , e ∈ AP−(ϕ), γ ∈ Γ : 〈�p,¬e�, γ〉 → 〈p¬e, γ〉 ∈ Δ′′

(β3) for very (q1, γ, q2) ∈(
⋃

e∈AP+(ϕ) δe) ∪ (
⋃

e∈AP −(ϕ) δ¬e): 〈q1, γ〉 → 〈q2, ε〉 ∈
Δ′′

(β4) for very q ∈ (
⋃

e∈AP+(ϕ) Fe) ∪ (
⋃

e∈AP −(ϕ) F¬e): 〈q, �〉 → 〈q, �〉 ∈ Δ′′

Intuitively, we compute the ABPDS BP ′
ϕ such that BP ′

ϕ has an accepting
run from 〈�p, φ�, ω〉 iff the configuration 〈p, ω〉 satisfies φ according to the regular
labellings Me for every e ∈ AP . The only difference with the previous case
of standard valuations, where an atomic proposition holds at a configuration
depends only on the control location of that configuration, not on its stack, comes
from the interpretation of the atomic proposition e. This is why Δ′′ contains
Δ and Δ′

0 (which are the transitions of BPϕ that don’t consider the atomic
propositions). Here the rules (β1) − (β4) deal with the cases e, ¬e (e ∈ AP ).
Given p ∈ P , φ = e ∈ AP , ω ∈ Γ ∗, we get that the ABPDS BP ′

ϕ should accept
〈�p, e�, ω〉 iff 〈p, ω〉 ∈ L(Me). To check whether 〈p, ω〉 ∈ L(Me), we let BP ′

ϕ go
to state pe, the initial state corresponding to p in Me by adding rules in (β1);
and then, from this state, we will check whether ω is accepted by Me. This is
ensured by the transition rules in (β3) and (β4). (β3) lets BP ′

ϕ mimic a run
of Me on ω, i.e., if BP ′

ϕ is in a state q1 with γ on the top of the stack, and
if (q1, γ, q2) is a transition rule in Me, then, BP ′

ϕ will move to state q2 and
pop γ from its stack. Note that popping γ allows us to check the rest of the
word. In Me, a configuration is accepted if the run with the word ω reaches the
final state in Fe; i.e., if BP ′

ϕ reaches a state q ∈ Fe with an empty stack, i.e.,
with a stack containing the bottom stack symbol �. Thus, we add Fe as a set
of accepting control locations in BP ′

ϕ. Since BP ′
ϕ only recognizes infinite paths,

(β4) adds a loop on every configuration 〈q, �〉 where q ∈ Fe. The intuition behind
the transition rules in (β2) is similar to that of (β1). They correspond to the
case where φ = ¬e.

Theorem 4. Given a PDS P = (P, Γ,Δ, �), a set of atomic propositions AP , a
regular labelling function λ : AP → 2P×Γ ∗

and a BCARET formula ϕ, we can
compute an ABPDS BP ′

ϕ such that for every configuration 〈p, ω〉, 〈p, ω〉 �λ ϕ

iff BP ′
ϕ has an accepting run from the configuration 〈�p, ϕ�, ω〉

The number of control locations of BP ′
ϕ is at most O(|P ||ϕ| + k) where k =∑

e∈AP+(ϕ) |Qe| +
∑

e∈AP −(ϕ) |Q¬e|, the number of stack symbols is at most
O(|Γ ||ϕ|) and the number of transitions is at most O(|P ||Γ ||Δ||ϕ| + d) where
d =

∑
e∈AP+(ϕ) |δe|+

∑
e∈AP −(ϕ) |δ¬e|. Therefore, we get from Theorems 1 and 4.

Theorem 5. Given a PDS P = (P, Γ,Δ, �), a set of atomic propositions AP , a
regular labelling function λ : AP → 2P×Γ ∗

and a BCARET formula ϕ, for every
configuration 〈p, ω〉 ∈ P × Γ ∗, whether or not 〈p, ω〉 satisfies ϕ can be solved in
time O((|P ||ϕ| + k)2.|Γ ||ϕ|((|P ||Γ ||Δ||ϕ| + d).25(|P ||ϕ|+k) + 2|P ||ϕ|+k.|ω|)).
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7 Conclusion

In this paper, we introduce the Branching temporal logic of CAlls and RETurns
BCARET and show how it can be used to describe malicious behaviors that
CARET and other specification formalisms cannot. We present an algorithm for
“standard” BCARET model checking for PDSs where whether a configuration
of a PDS satisfies an atomic proposition or not depends only on the control loca-
tion of that configuration. Moreover, we consider BCARET model-checking for
PDSs with regular valuations where the set of configurations on which an atomic
proposition holds is a regular language. Our approach is based on reducing these
problems to the emptiness problem of Alternating Büchi Pushdown Systems.
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Abstract. Writing a formal model is a complicated and time-consuming
task. Usually, one successively refines a model with the help of proof,
animation and model checking. In case an error such as an invariant
violation is found, the model has to be adapted. However, finding the
appropriate set of changes is often non-trivial.

We propose to partially automate the process by combining synthesis
with explicit model checking and implement it in the context of the
B method: Guided by examples of positive and negative behavior, we
strengthen preconditions of operations or relax invariants of the model
appropriately. Moreover, by collecting initial examples from the user, we
synthesize new operations from scratch or adapt existing ones. All this is
done using user feedback, yielding an interactive assistant. In this paper,
we present the foundations of this technique, its implementation using
constraint solving for B, and illustrate the technique by synthesizing the
formal model of a process scheduler.

1 Introduction

Writing and adapting formal models is a non-trivial task, difficult for beginners
and time-consuming even for trained developers. Often, one iterates between
changing a model and proof or model checking. Once an error has been detected,
the model has to be adapted.

The premise of this paper is that, to some extent, this correction phase can be
automated, using negative and positive examples provided by a model checker or
by the user. For example, we can synthesize corrected preconditions or invariants
in order to repair invariant violations. If deciding to allow an invariant violating
state, we know that we need to synthesize relaxed invariants using the given
I/O examples. Otherwise, the precondition of the affected operation needs to be
strengthened to exclude the state from the model. Moreover, deadlocks can be
repaired either by generating a new operation or strengthening the precondition
of an existing operation.

When model checking has been exhaustive without finding any invariant
violation or deadlock state, we are able to extend the model by synthesizing new

c© Springer Nature Switzerland AG 2018
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transitions based on state pairs for input and output. In case the machine already
contains an operation providing the desired behavior, we relax its precondition or
the invariants if necessary. Otherwise, a completely new operation is synthesized.

The tool mainly aims at providing better access to formal methods for begin-
ners. By allowing to define behavior by means of I/O examples the user might
be able to learn from the synthesized code. Moreover, if finding an invariant
violation or a deadlock state, an automated repair eases the workflow for any
user.

In this paper, we present this technique in the context of the B formal method
based on our previous publication [32]. In particular, the extensions include:

– extended interactive workflow for the repair of deadlocks and the adaption of
existing operations or machine invariants (Sect. 3)

– thorough presentation of the technique, along with support for if-statements
and operation parameters (Sect. 4)

– performance improvements due to dynamic expansion of the search space,
parallelization, randomized search and symmetry reduction (Sect. 5)

– graphical user interface (Sect. 6)
– performance evaluation (Sect. 8).

2 A Primer on the B-Method

The formal specification language B [1] follows the correct-by-construction app-
roach and is based on first-order-logic and set theory. A formal model in B
consists of a collection of machines starting from an abstract specification and
successively refining the behavior. The development in B is thus incremental,
which increases the maintainability and eases the specification of complex mod-
els. In this paper, we always refer to B formal models. The synthesis workflow
is applied to a single B machine. A machine consists of variable and type defini-
tions as well as possible initial states. A state is defined by the current evaluation
of the machine variables. By defining machine operations, one is able to specify
transitions between states. A machine operation has a unique name and consists
of B substitutions (aka statements) defining the machine state after its execu-
tion, i.e., the values of a set of machine variables are assigned. An operation
can have a precondition, allowing or prohibiting execution based on the current
state. For instance, a valid machine operation o is defined by o = PRE x>0 THEN
x:=x+1 END using the single assignment substitution of B. Several variables can
be assigned either in parallel or in sequence. A state s is called a deadlock if it has
no successors, i.e., no operation is enabled. To ensure certain behavior, the user
can define machine invariants, i.e., safety properties that have to hold in every
reachable state. Hence, the correctness of a formal model refers to the specified
properties. In addition to the types explicitly provided by the B language like
INTEGER or BOOL, one can provide user-defined sets. These sets can be defined
by a finite enumeration of distinct elements (the set is then referred to as an
enumerated set) or left open (called deferred sets). For instance, by defining a
set S = {s1} the element s1 is of type S and can be accessed by name within
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Fig. 1. Interactive workflow to repair and generate formal models using synthesis

the machine. Deferred sets are assumed to be non-empty during proof and also
finite for animation.

Using Atelier B [12] or ProB [24–26] one can verify a B model and analyze
its state space. In particular, ProB allows the user to animate formal models,
providing a model checker and constraint solver. ProB’s kernel [24] is imple-
mented in SICStus Prolog [7] using the CLP(FD) finite domain library [8]. Alter-
natively, a constraint solver based on Kodkod [33] is available [31]. Furthermore,
an integration with the SMT solver Z3 [28] can be used to solve constraints [22].

Below, we will focus on classical B [1] for software development, but our
approach also works for Event-B and could be extended to other languages
supported by ProB such as TLA+ [23].

3 Interactive Workflow

The process as outlined in Fig. 1 is guided and enforced by ProB. The workflow
itself is quite mature and has been fully implemented within the system. Repair is
performed successively, that means, we loop until no error can be found anymore
and the user is satisfied with the model. Each step starts with explicit model
checking performed by ProB. To that effect, the user at least needs to provide
a B machine defining variables and an initial state. The dotted nodes mark
the parts of the workflow where synthesis is applied. There are three possible
outcomes.

First, an invariant violation might be found. We then identify the machine
variables that violate the invariants and reduce the examples obtained by the
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model checker if possible. The user then can decide to disable the last transition,
leading from a state satisfying the invariants to one violating it, by synthesizing a
stronger precondition. Alternatively, the system can generate weaker invariants,
allowing the violating state.

As a second outcome, the model checker may have uncovered a deadlock
state s. The user can then decide between two options:

– Remove s by strengthening the precondition of the involved operation
– Keep s by synthesizing a new operation or adapting an existing one enabling

to transition from s to another state s’.

Third, the model has been checked and no error was found, that means,
model checking was exhaustive or a timeout occurred. We then query the user if
state transitions are missing. In case any operation is able to reach the missing
states but its precondition is too restrictive, we synthesize a relaxed precondition
covering the new state transitions. Otherwise, we synthesize a completely new
operation. In general, we need to verify generated programs using the model
checker by restarting the workflow. There is no fixed order that determines if an
invariant violation or a deadlock state is found first. This depends on the state
space and the order of its traversal.

Besides generating an operation from scratch, the user is able to modify an
existing operation. The tool initially provides some sample transitions cover-
ing the behavior of an operation. This results in providing positive transitions
describing the behavior of the operation’s substitution. In case the operation
provides a precondition, negative transitions are presented describing the behav-
ior of the precondition. The user is then able to provide new transitions either
strengthening or relaxing the precondition. Additionally, positive transitions can
be provided to modify the substitution of the operation. The machine invariants
can be modified in the same manner.

4 Synthesis Technique

The task of (semi-)automatically generating executable programs from a given
specification is called program synthesis. There are different approaches in spec-
ifying the behavior of a program, for instance, in the form of pre- and postcondi-
tions or partial implementations. Jha et al. [19] presented a synthesis technique
that uses explicit I/O examples of positive and negative behavior to synthesize
loop-free programs that are correct for a set of examples.

In order to restrict the search space, the approach resorts to a library of
program components D, each defined in a single static assignment represented
by a formula output = f(inputs). For example, for an addition instruction, a
constraint would ensure that o1 = i1 + i2 holds. Each component is unique
and located in a single line of the program. Each line is characterized by its own
output variable. The program inputs are also represented as program lines, char-
acterized by their own variable and located in the first lines of the program. The
program outputs are located in the last lines of the program overlapping with
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Fig. 2. An example for a possible location mapping between components

components, i.e., the program outputs are defined by compositions of compo-
nents. In a synthesized program each component is assigned to a unique program
line. Given N program inputs, the generated program thus has M = |D| + N
lines of code. Each component is used in the generated program but does not
necessarily has to participate in the output, i.e., we might generate dead code
which is ignored when translating the synthesized program.

Input and output variables are connected using location variables referring
to other components. An output location lok , k ∈ N, describes the program line
a component is defined in, while an input location lik can be interpreted as the
line of the program defining its value. Given a set of I/O examples E, synthesis
searches for a mapping of locations L between inputs and outputs of components.
Afterwards, the locations participating in the output of the synthesized program
can be collected and translated to a corresponding abstract syntax tree.

For instance, we search for a program with one input and one output, consid-
ering three components describing addition, subtraction, and an integer constant.
The set of I/O examples E consists of several examples describing an incremen-
tation of an integer by one. A possible solution is illustrated in Fig. 2, where the
solver enumerated the constant c to the value of 1. The single line arrows rep-
resent the mapping of the location variables (a solution for L) that participate
in the output of the program. Since line one of the program does not partic-
ipate in the output, the subtraction component is dead code which is ignored
when translating the program. In case a program has several outputs, we collect
the partial programs from the last lines of the synthesized solution representing
the program outputs. Afterwards, the partial programs are combined using the
parallel execution substitution of B.

We adapted this technique to synthesize B expressions and predicates using
ProB [25,26] as a constraint solver [21]. In order to synthesize B expressions, we
use explicit state transitions transforming input to output values and preserving
their types. In case of predicates, we replace output states by the evaluation of
the desired predicate using the corresponding input states. In this context, an
I/O example thus assigns an input state to output either true or false.

Initially, we are given a set of I/O examples by the user describing the com-
plete desired behavior as well as a list of library components D to be considered
during synthesis, which is either prepared automatically or provided by the user.
In B, the I/O examples are states of the current machine, i.e., values of machine
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variables. The authors refer to P and R as the set of input and output variables
of the used library components. Let Ii ⊆ P be the set of input variables of a
specific component with the output Oi ∈ R, 1 ≤ i ≤ N . We assume that we
derive the formula of the i-th library component using Φi(Ii, Oi). The library is
then encoded by the following constraint:

Φlib(P,R) :=
N∧

i=1

Φi(Ii, Oi)

For instance, having two components addition and subtraction the library is
encoded by (o1 = i1 + i2) ∧ (o2 = i3 − i4).

Let EI be the set of input values and EO the set of output values of a specific
I/O example. Let L be the set of integer valued location variables of inputs
and outputs of components d ∈ D. Moreover, L contains locations referring to
program parameters, that means, inputs of the overall program. A constraint
Ψwfp(L,P,R,EI , EO) defines the control flow of the program to be synthesized
and ensures well-formedness. This constraint consists of several parts.

For consistency, output locations are made unique by asserting inequalities
between each two locations in R, which is encoded by a constraint Ψcons(L,R).
Component input parameters have to be defined before they are used to prevent
cyclic references, which is encoded by

Ψacyc(L,P,R) :=
N∧

i=1

∧

Ii⊆P,x∈Ii,y∈R,y≡Oi

(lx < ly). (1)

Otherwise, a cyclic expression like 1 + (1 + (. . . )) would be part of the search
space where the location of the right input parameter maps to the addition
component itself.

The approach defines program input parameters to be located in the first
lines and component outputs in the ensuing lines of a program. To that effect,
all components are able to access the program input parameters with respect to
the acyclic constraint defined in Eq. (1). Program output parameters are defined
in the last lines of the program in order to be able to access all components
if necessary. To reduce the overhead, we additionally set each program output
parameter to a fixed position by enumerating their positions to one of the last
lines, which is achieved by a constraint ΦO(EO). The complete well-definedness
constraint is then encoded by

Ψwfp(L,P,R,EI , EO) :=
∧

x∈EI

(0 ≤ lx < |EI |) ∧
∧

x∈P

(0 ≤ lx < M)

∧
∧

x∈R

(|EI | ≤ lx < M) ∧ Ψcons(L,R) ∧ Ψacyc(L,P,R) ∧ ΦO(EO).

We furthermore extend the well-definedness constraint Ψwfp to ensure well-
defined programs according to B. For example, sequences have to be indexed
from 1 to n where n is the cardinality of the sequence.
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Component inputs can either refer to a program input parameter or another
component’s output. By setting up constraints for each location, the authors
define valid connections between program parameters and components as well as
in between components. This includes ensuring type compatibility, that means,
only defining connections between locations referring to the same type. We
explicitly add constraints preventing connections between differently typed loca-
tions to support the ProB constraint solver in finding a solution for the mapping
of location variables L. Let L = L1, .., Ln, n > 0, be a partition of the set of
location variables divided by the types they refer to. We then assert:

Ψconn(L) := ∀L1∈L(
∧

lx,ly∈L1

lx = ly ⇒ x = y) ∧ ∀L1,L2∈L∧L1 �=L2
(

∧

lx∈L1,ly∈L2

lx �= ly)

By combining these constraints, the behavior for a single example with a set
of inputs EI and outputs EO is encoded by

Φfunc(L,EI , EO) := ∃P,R : Ψwfp(L,P,R,EI , EO) ∧ Φlib(P,R) ∧ Ψconn(L).

The overall behavior for a set of examples E containing tuples of input and
output is then defined by asserting Φfunc(L,EI , EO) for each single example,
which is referred to as the behavioral constraint:

Behave(E)L :=
∧

(EI ,EO)∈E

Φfunc(L,EI , EO) (2)

When solving the behavioral constraint, we derive an explicit solution for the
integer valued location variables in L describing a candidate program satisfying
the provided behavior. Afterwards, another semantically different solution L̂ is
searched by excluding the solution for the location variables L from the behav-
ioral constraint defined in Eq. (2). Of course, we could also use the first solution
as is without a further search. However, the user may forget edge cases when
providing the set of I/O examples resulting in an ambiguous behavior. We thus
want to guide the user to the desired solution as much as possible.

When finding another solution L̂, the user chooses among the solutions based
on a distinguishing example. That is, a program input where the output of both
programs differs, which can be described by

∃EI , EO, ĒO : Behave(E)L ∧ Behave(E)L̂ ∧ Φfunc(L,EI , EO)

∧Φfunc(L̂, EI , ĒO) ∧ EO �= ĒO.
(3)

If no distinguishing example can be found, we assume both programs to be equiv-
alent and choose the smaller one. The system iterates through further solutions
in the same fashion. Continuous search for distinguishing inputs provides addi-
tional I/O examples, eventually leading to a semantically unique solution. Once
found, the synthesized program is returned. It should be noted that searching
for another solution possibly results in a solver timeout. In practice, the unique-
ness of a synthesized program is therefore only as far as we can decide using the
currently selected solver timeout.
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During the synthesis of an operation, the user is able to change the output
state of a distinguishing example. That means, we do not include an explicit
discovered state transition in the set of examples and maybe find it again after-
wards. To guarantee unique distinguishing transitions we memorize all results
to exclude them from the distinguishing constraint defined in Eq. (3).

When synthesizing explicit if-statement, i.e. using an expression, we have to
mix the generation of expressions and predicates leading to a larger search space
and a worse performance. To that effect, we also provide an implicit representa-
tion of if-statements and implement them as follows: We successively synthesize
new operations for each example of a given set of state transitions if neces-
sary, yielding the desired behavior split into several operations. Each operation
presents a conditioned block of the statement which is semantically equivalent to
explicitly providing if-statements. We start with the first example (EI , EO) ∈ E
and synthesize an operation probably with an appropriate precondition. That
is, we solve the functional constraint Φfunc(L,EI , EO). Afterwards, we decide
according to the next example and the so far synthesized operations:

– A previously synthesized operation’s substitution fits the current example but
the precondition is too restrictive. Hence, we relax the precondition.

– The example can be executed by a synthesized operation. We skip this exam-
ple since there is nothing to do.

– No operation executes the transition. We generate a new operation only using
this example for initialization.

In B, custom types are often accessed via operation parameters. In order to
support parameters when synthesizing an operation we add additional compo-
nents for each custom type. These components are implemented as constants
which values are set locally for each example, that means, for each functional
constraint of the behavioral constraint defined in Eq. (2). When synthesizing a
precondition for an operation that uses parameters, we extend the I/O examples
by adding each operation parameter. That means, we view each parameter as a
machine variable. The behavioral constraint then considers all necessary infor-
mation when generating an appropriate precondition. For instance, assuming
a machine violates an invariant caused by an operation that uses one param-
eter and we want to synthesize a strengthened precondition. Furthermore, the
machine defines one machine variable. We then extend the states obtained by
the model checker by computing the operation parameter for each example and
use these extended examples for synthesis.

The synthesis technique by Jha et al. [19] relies on two oracles. The I/O oracle
is used to define the desired output of the program to be synthesized based on a
given input. We replace it by the user. The validation oracle is used to check if a
synthesized program is correct. To provide it, we apply the synthesized changes
to the model and use the ProB model checker for verification.

Moreover, the technique is specialized on synthesis of loop-free programs.
However, loops are a special case of the B formal method that are not necessary
to be used. A finite loop can be unfolded to several operations providing the
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same semantics. In B, one can mistakenly define an infinite loop which, however,
is detected by ProB and prevented from execution.

5 Performance Considerations

5.1 Concerned Machine Variables

As we have to consider different combinations of program components, the search
space grows exponentially with the number of involved variables. When repairing
an invariant violation, we automatically reduce the examples from the model
checker to those taking part in the violating state. For instance, assuming we
have two machine variables m1,m2. Only the variable m1 is involved in the
violated invariant, while m2 is not. On the one hand, the user can decide to allow
the violating state by synthesizing a relaxed invariant. We then only consider
the variable m1 when modifying the machine and do not change any code that
involves m2. However, the synthesized changes may indirectly affect the behavior
of the variable m2. On the other hand, the user can decide to remove the violating
state from the model by strengthening the precondition of the operation leading
to the violating state. We then additionally consider the machine variables the
operation refers to. For instance, if the current precondition of the operation
refers to m2, we consider both variables during synthesis. If synthesis fails, we
can consider all machine variables as a last resort. As described in Sect. 4 the
validation oracle, i.e. the ProB model checker, verifies the modified machine.
In B, each operation may access all machine variables. In case of generating an
operation from scratch or repairing a deadlock, we cannot draw any conclusions
regarding the variables in use. To counter this, we allow the user to mark machine
variables that are known not to take part for being skipped.

5.2 Component Library Configuration

Given that B is strictly typed, we are able to reduce the component library to a
subset of B. The performance when solving the synthesis constraint itself highly
depends on the library configuration. For example, if we do not need arithmetic
but only logical operators, the unnecessary operators expand the search space
exponentially. To that effect, we consider the types of the variables that are
involved in the given examples and only use corresponding operators. Addition-
ally, we statically provide several library configurations for each type. By default,
we start with a restricted library configuration to search for simple programs at
first, i.e., programs using as few components as possible. In case we do not find a
solution, we successively expand the library and restart synthesis. For example,
for integers we can start with operators like addition and subtraction, while not
considering constants at first. If this configuration is not sufficient we succes-
sively increase the amount of used constants and consider additional operators.
When all library configurations failed and no solution can be found using the
current timeout, synthesis fails. At this stage, the user may choose to increase
the timeout or provide more concise I/O examples.
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Of course, in order to synthesize a complex program we probably need to
expand the library several times. Therefore, we parallelize synthesis for different
library configurations to overcome the loss of performance. In detail, we run
C = |CPU | instances of ProB at the same time, where |CPU | is the amount of
logical cores that are available to the JVM. All instances have loaded the same
model and are always in the same state. When running synthesis, we call the
backend C times using distinct library configurations. We listen to the instances
and decide as follows for each single instance:

– Success: we return the program and cancel synthesis for the other instances
– Failure: we try another library configuration or do not restart this instance

in case there is no library configuration left
– Distinguishing example found: synthesis on this instance is suspended, we

present the example to the user and restart the suspended instance after the
example has been validated.

To prevent enumerating constants to be synthesized without an upper or
lower bound we restrict each constant domain according to the initial examples,
which is automatically encoded in the behavioral constraint defined in Eq. (2).
As a last resort, we widen such domains if no solution can be found.

5.3 Avoiding Redundancy

To reduce the search space, we implement symmetry reduction for adequate
operators. This is done in a preliminary step and directly encoded within the
synthesis constraint. Let D be the set of library components and D̄ ⊆ D the
subset of symmetric components. Assuming n is the amount of input variables
of a specific component d ∈ D, we refer to d(i), i = 1, . . . , n, as the i-th input
of d. L(d(i)) is referred to as the location variable an input d(i) is mapped to
whilst L(d) refers to the output location variable of the component. We encode
symmetry reduction on the level of operands by the following constraint:

∀d ∈ D̄ :
n−1∧

i=1

L(d(i)) < L(d(i + 1))

When considering an addition having two inputs i1 and i2 this results in L(i1) <
L(i2). That is, we consider only o1 = i1 + i2 and avoid o1 = i2 + i1.

Furthermore, we implement symmetry reduction on the level of the same
operators to prevent changing the location of components without changing the
semantics of the program. This is encoded by the following constraint:

∀d, d̄ ∈ D, d ≡ d̄ : L(d) < L(d̄)

For example, using two components +1,+2, each representing an addition, this
results in L(+1) < L(+2), i.e., only x +1 y +2 z can be part of the synthesized
program while x +2 y +1 z can not.
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Besides that, the search of a semantically different program for a synthesized
solution is another performance bottleneck. There can be numerous equivalent
programs to discover, before we are able to determine the uniqueness of a solution
using the current timeout or find a program yielding a different semantics. By
design, a specific component can only have one output within a synthesized
program, and, thus, has to be duplicated if necessary. For instance, a synthesized
program uses an union encoded by o1 = i1∪1 i2. With respect to this component,
synthesis may find a solution mapping a program input parameter p1 and an
enumerated constant to the component inputs, like p1 ∪1 {1, 2, 3}. However, we
may need another union with a different output, for instance, to union p1 with
a program input parameter p2. We then need to use another distinct component
∪2. Given that, the ongoing search possibly results in swapping the inputs of
∪1 and ∪2, i.e., generating p1 ∪2 {1, 2, 3}, but providing the same semantics.
Let Lout(d(i)) be the output location variable that is mapped to the i-th input
location of the component d. Given a solution for L, we prevent swapping the
inputs of the same operators by asserting the following constraint to hold for the
new solution L̂:

∀d, d̄ ∈ D, d ≡ d̄ :
n∧

i=1

Lout(d(i)) �= L̂(d̄(i))

Unfortunately, the preliminary symmetry reduction is not strong enough to
exclude symmetric changes when searching for further solutions. Given the exam-
ple from above, we assert li1 < li2 to hold. This does not prevent the components
p1 and {1, 2, 3} to swap locations when searching for another semantically differ-
ent program, resulting in {1, 2, 3} ∪1 p1 with li1 < li2 being satisfied. Moreover,
we need to prevent symmetric changes between equivalent components. That
means, {1, 2, 3} ∪2 p1 should not be part of the solution. Therefore, we addi-
tionally implement a stronger symmetry reduction when searching for further
solutions. Let D̄sol(L) be the set of symmetric components that have been used
in the solution for L. We assert the following constraints to hold:

∀d ∈ D̄ :
n∧

i=1

(
n∧

j=1

Lout(d(i)) �= L̂(d(j)))

∀d, d̄ ∈ D̄sol(L), d ≡ d̄ :
n∧

i=1

(
n∧

j=1

Lout(d(i)) �= L̂(d̄(j)))

Given a solution for L, the first constraint ensures that no component output
that is mapped to an input of a symmetric component is mapped to any other
input of this component. The second constraint ensures the same behavior but in
between the same symmetric components, which is only necessary if a symmetric
component is included in the component library several times like +1,+2.

Another factor that has proven to speed up search is to increase variance
in synthesized programs and distinguishing examples. To do so, we randomize
enumeration order when solving constraints. Using a linear order often causes
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Fig. 3. Abstract visualization of an invariant violation in the user interface

only small syntactical changes among synthesized solutions resulting in more
equivalent programs to be generated. Moreover, finding dissimilar distinguishing
examples it is less likely to get stuck in some part of the search space where
there is no solution [14].

6 User Interface

The graphical user interface is implemented in Java using the JavaFX framework.
We use the ProB Java API [4]1 providing an interface to the ProB Prolog
kernel to animate and verify formal models and utilize the synthesis backend.
The application can be found on Github2.

When starting the application, the user is able to load a classical B machine.
The UI presents a main view split in two areas defining valid and invalid states
or transitions. States and transitions are represented as nodes that can be resized
and are connected respectively. The workflow starts with explicit model check-
ing as described in Sect. 3. The environment has two different states depending
on the result from the model checker: If the model is erroneous, we display the
invariant violating trace. Initially, we use a shortened version of the trace con-
taining valid and invalid states. Upon user request, we show further successor
and predecessor states. Manually added states are tentative by default and can
be validated using ProB. States from the model checker are immutable but
can be deleted. The final distribution of the nodes determines the type of the
synthesized program as abstracted in Fig. 3. Here, the model checker found an
invariant violation in the state i = 0 which is presented to the user. The states
violating an invariant are assumed to be invalid and thus set to be a negative
example by default. In the presented setting, the precondition of the operation
β will be strengthened to exclude the invariant violating state from the model. If
deciding to allow the state by moving it on the side of valid states, the machine
invariants will be relaxed. Graphically, a node which state violates an invariant
on the side of the pane presenting valid states or vice-versa leads to modify-
ing the invariants. Otherwise, the precondition of the affected operation will be
strengthened. If repairing an invariant violation by strengthening a precondition,
the considered operation is the one leading to the first state of the trace provided
by the model checker that is set to be invalid. During synthesis, distinguishing
states may be presented to the user who is asked to place them according to the
desired behavior.
1 The documentation is available online http://www.prob2.de.
2 https://github.com/joshua27/bsynthesis.

http://www.prob2.de
https://github.com/joshua27/bsynthesis
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Fig. 4. A partial scheduler used as a starting point

In case model checking was exhaustive, the user is able to synthesize a new
operation. An operation is specified by creating transition nodes and placing
them according to the desired behavior. Transition nodes consist of explicit input
and output states referring to the variables that should be considered during
synthesis. Furthermore, it is possible to modify an existing operation or the
machine invariants as described in Sect. 3.

If synthesis succeeds, the generated program is presented to the user who
can approve or discard the changes. On approval, the changes are applied to the
model followed by a complete run of the ProB model checker. The user interface
also presents a list of all B operators that are currently supported by the tool.

7 Example

As an example, we synthesize a B machine managing the states of several pro-
cesses, which we refer to as a scheduler. Since there are no similar approaches
to the semi-automated repair and generation of B formal models we are not
able to compare the results. Instead, this example should illustrate the workflow
described in Sect. 3.

Initially, we have started from the model shown in Fig. 4 defining only the
enumerated set PID containing processes, the three machine variables for the
different states of a process and their types as well as the initialization state. We
have already synthesized four invariants and two machine operations to create a
new process and to delete an existing one from the set of waiting processes. There
is no required order and we could have started by generating other operations.

The workflow starts with explicit model checking. Since no errorneous state
is found, we proceed to synthesize a new machine operation to activate a waiting
task. As a user, we provide six examples which we set to be valid. The machine
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Fig. 5. Operations that have been synthesized each at a time

invariant inv3 specifies that there can only be one activated process at a time.
To that effect, we additionally provide invalid examples for that the operation
should block execution, that is, states where either no process is in the set of
waiting tasks or there already is an activated task. Synthesis of the substitution
using the valid examples succeeds without any further interaction. In contrast
to that, the invalid examples do not describe unique behavior. The generation
of the precondition thus provides three distinguishing examples that we validate
according to the desired behavior. Afterwards, the operation set active shown
in Fig. 5 is returned. The operation set ready has been synthesized in the same
manner.

When running model checking, a violation of the invariant inv1 caused by
the operation new is found, and the user interface presents the trace leading
to the violating state. Moreover, the tool automatically decided that only the
machine variables waiting and ready are involved in this invariant violation.
We are presented four states that are set to be valid since they do not violate
any invariant and one invalid state. We do not change or add any states and
run synthesis. This results to synthesizing a strengthened precondition for the
operation new to remove the invariant violating state from the model. Without
any further interaction synthesis terminates and the predicate p PID /: ready
is added to the precondition of the operation new. Another run of the model
checker is exhaustive. We furthermore synthesized two operations to swap a task
from being active to either waiting or ready as shown in Fig. 5.

8 Performance Evaluation

In the following we will evaluate the synthesis backend regarding its runtime for
several examples. For each program, we provided a complete set of I/O examples
describing unique semantics. Consequently, synthesis terminates without any
interaction with the user. The synthesized programs evali can be found in the
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Table 1. An evaluation of the runtime of the synthesis backend

Program Exact
library (in
seconds)

Used
timeout

Default
library (in
seconds)

Used
timeout

Amount of
examples

no sym. sym. no sym. sym.

eval1 11.180 2.569 2.5 ⊥ 18.370 5.0 4

eval2 6.090 0.830 2.5 ⊥ 57.260 30.0 4

eval3 ⊥ 9.506 2.5 ⊥ ⊥ max 5

eval4 ⊥ 10.670 8.0 ⊥ 11.320 8.0 6

eval5 ⊥ 463.860 240.0 ⊥ ⊥ max 6

inv1 0.750 0.070 0.5 10.445 9.893 0.5 6

inv2 ⊥ 1.630 1.0 433.245 229.340 30.0 8

inv3 0.054 0.050 0.5 1.775 1.560 0.5 5

inv4 0.690 0.170 0.5 4.162 2.460 1.0 7

del 0.236 0.230 0.5 1.254 0.929 0.5 6

new 0.943 0.180 0.5 1.925 1.850 0.5 8

new pre ⊥ 0.046 0.5 ⊥ 2.609 1.0 8

set active 1.485 0.880 0.5 6.173 4.950 1.0 8

set ready 3.433 1.010 0.5 9.928 8.540 1.0 9

active to waiting 2.964 0.590 0.5 7.135 6.910 1.0 11

ready to active 2.792 1.730 1.0 11.459 9.210 1.0 10

Github repository mentioned in Sect. 6. The programs invi refer to the invariants
of the machine defined in Fig. 4. We will use the average time of ten independent
runs using the exact library that needs to be used to synthesize a program and
the default library configuration without parallelization as described in Sect. 5.2.
We used a maximum solver timeout of 10 min indicated by max. ⊥ indicates a
timeout considering the used timeout of a specific benchmark. The used solver
timeout and the amount of examples needed to synthesize a certain program are
listed in Table 1. Furthermore, we investigate the impact of symmetry reduction
suggested in Sect. 5.3. We use the same timeout when synthesizing a program
with and without symmetry reduction. All presented times are measured in
seconds. The benchmarks were run on a system with an Intel Core I7-7700HQ
CPU (2.8 GHz) and 32 GB of RAM.

Amongst other things, the complexity of the synthesis constraint depends on
the amount of considered machine variables. However, this also depends on their
types which directly affect the components to be considered during synthesis.
For instance, if we consider five variables that are all of the same type, it is more
complex to find a unique mapping of location variables since the components
overlap and can be used at several positions. In case of considering the same
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amount of variables but all referring to different types, the possible locations a
component can be mapped to are more restricted leading to better performance.

Besides the amount of considered machine variables, the runtime of the syn-
thesis tool also depends on the selected solver timeout. If a solution is found,
we search for another semantically different program by excluding the previous
solution from the synthesis constraint. On the one hand, this might lead to find-
ing a contradiction. On the other hand, we might need to exhaust the full solver
timeout to conclude that we cannot find another solution with the current set-
tings. We then definitely have a runtime higher than the selected timeout. For
instance, solving the synthesis constraint for the program eval1 using the exact
library that is necessary with symmetry reduction provides a solution after a
few milliseconds. Afterwards, we exhaust the solver timeout when searching for
another semantically different solution leading to the presented runtime.

When evaluating the impact of symmetry reduction as suggested in Sect. 5.3,
one can see that symmetry reduction gains performance for each benchmark.
For instance, synthesizing the program inv1 is around ten times faster using
symmetry reduction. Of course, the impact of symmetry reduction also depends
on the current settings like the library configuration or the solver timeout.

The program eval5 uses two explicit if-statements so that it is necessary to
mix the generation of expressions and predicates. By default, B does not feature
if-statements. However, the extended version of B understood by ProB provides
an if-then-else expression. When synthesizing a program, we use program con-
structs like expressions backwards. That means, given an output, we search for
matching inputs. Of course, ProB is not optimized in doing so for all opera-
tors, especially for extensions like if-statements. However, the native B operators
are handled efficiently by the ProB constraint solver, which can be seen at the
runtimes using the exact library components that are necessary.

When synthesizing the program eval2 or inv2, we have a large difference
between using the exact library and the default library configuration. Of course,
this highly depends on the configured library expansions. In this case, the tool
at first uses several library configurations that are not sufficient, which is either
indicated by finding a contradiction or by exhausting the full solver timeout.
Eventually, a sufficient library configuration is found. However, this configuration
uses several unnecessary components so that a larger timeout needs to be used
leading to the presented runtime. In practice, we parallelize synthesis for different
library configurations as described in Sect. 5 leading to better results.

Finally, the performance mostly depends on the amount of program lines
which is influenced by the amount of considered library components and program
inputs as described in Sect. 4. This can be seen when comparing the runtimes
using the exact library with the default library configuration.

9 Related Work

There are many other approaches to program synthesis which could in theory
be used to synthesize formal models as well. For instance, techniques to create
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divide and conquer algorithms using proof rather than constraint solving [30].
Inductive logic programming [29] is related in the sense that it also starts from
positive and negative examples, but is normally not user-guided and is less based
on constraint solving but on measures such as information gain. Compared to
approaches like [3,9] we synthesize entirely new programs based on input and
output values instead of transforming an existing model.

Beyer et al. [6] present a constraint-based algorithm for the synthesis of
inductive invariants expressed in the combined theory of linear arithmetic and
uninterpreted function symbols. As an input for synthesis, the user specifies a
parameterized form of an invariant. In theory, this approach can also be used
to synthesize B machine invariants. However, in order to partially automate the
development process our workflow is based on explicit model checking providing
traces of machine states. Moreover, we do not demand invariants to be inductive
and also want to synthesize preconditions and complete operations.

Gvero et al. [15] present a tool to synthesize Java code based on a statisti-
cal model derived from existing code repositories. The suggested approach uses
natural language processing techniques to accept free-form text queries from the
user and infer intentioned behavior from partial or defective Java expressions.
The tool learns a probabilistic context-free grammar which is used to generate
code. Finally, the user is offered a set of possible solutions ranked by the most
frequent uses in the training data. In contrast, we intend to find a unique solution
covering exactly the described behavior derived from explicit I/O examples.

In CEGAR [11], spurious counterexamples are used to refine abstractions.
Our synthesis tool is guided by real counterexamples and provides an interactive
debugging aid for model repair. Moreover, we not only rely on the model checker
to find counterexamples but also use ProB as a constraint solver. This leads to
more flexibility in model repair and generation, i.e., we can avoid or allow specific
states and even extend a machine in case model checking has been exhaustive.

Synthesis can also be applied to functional programming. For instance, Feser
et al. [13] present a tool synthesizing functional recursive programs in a λ-
calculus. The suggested synthesis approach resorts to a set of higher-order func-
tions as well as language primitives and constants. The tool specializes on synthe-
sizing data structure transformations from explicit I/O examples. The authors
define a cost model assigning a positive value to program constructs to find
programs with minimal costs using deductive reasoning and a best-first search.

In addition to synthesizing formal models, one can use model checkers and
model finders for program synthesis. For instance, Mota et al. [27] use the model
finder Alloy [18] to synthesize imperative programs. Programs are described in
terms of pre- and post-conditions together with an abstract program sketch
defined in Alloy*. To that effect, this approach for specifying programs is more
concise than using explicit I/O examples resulting in a smaller search space.
While this provides better performance, the user needs more knowledge about
the language specification and the program to be synthesized.
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10 Future Work

While the example performed in Sect. 7 shows that our approach is feasible in
practice, we still have to overcome performance limitations. The B-Method is
quite high-level, featuring constructs like sequences, functions or lambda expres-
sions. Powerset construction and arbitrary nesting is allowed as well, affecting
the performance of the synthesis tool.

We proposed a default library configuration starting with a small library for
each used type and successively considering more components if no solution can
be found. In practice, we are not able to efficiently decide for which type the
library needs to be expanded. Balog et al. [2] have shown that deep learning tech-
niques can be used to predict the components that are necessary to synthesize
a program for a given set of I/O examples, which we also intend to implement
for our tool.

One long-term vision would be to combine our approach to model repair
with generated models. Clark et al. [10] presented an extension to the internal
domain specific language of the ProB Java API which can be used to define
classical imperative algorithms. The tool generates an Event-B model describing
the algorithm, which can then be processed by ProB and the synthesis tool. If
finding an error, we can use our synthesis tool to repair the machine interactively
without the need for the end user to know formal methods.

Of course, one could extend our approach to other formal languages such
as TLA+ [23]. As there is an automatic translation of TLA+ in B [16] and
vice-versa [17], we could directly use our implementation inside ProB.

11 Discussion and Conclusion

When enforcing the interactive workflow, model checking is the bottleneck for
performance. In order to validate a synthesized program, we need a complete run
of the model checker. The performance in discovering a violating state depends
on the chosen search strategy as well as the current state of the machine. In
order to increase performance in validating synthesized programs it is possible
to use distributed model checking [5,20] for models with finite state spaces.

One concern about the suggested approach is that the repeated reparation of
a model using generated code affects its comprehensibility and maintainability.
Of course, the generated code will be biased to the used library configuration.
To counter this, we can use a B simplifier or pretty printer. Moreover, the user
could provide short comments for synthesized changes that are added to the
code. Besides affecting the code, an automated repair of formal models using
synthesis might be considered sceptical since such changes should be made wisely.
Using the suggested approach, a synthesized program always fulfils the provided
behavior without false positives. As described in Sect. 4, we want to guide the
user towards a unique solution as much as possible. However, in practice, we
might miss further solutions with a different semantics when searching for a
distinguishing example due to a solver timeout. Nevertheless, the user will either
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derive a program exactly supporting the described behavior or no solution at all
in case synthesis fails. In general, the user should provide an elaborated set of
I/O examples each describing different semantics of the desired program, and, in
the best case, covering all corner cases that overlap with semantically different
programs. Since B is based on states, the representation of system behavior
using explicit I/O examples seems to be justified. Nevertheless, the evolution of
complex models using synthesis needs to be evaluated in a more detailed way.

Independent from the actually used synthesis technique, we believe that an
interactive modelling assistant like the one we outlined above will have its merits
both for teaching and for professional use.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
learning to write programs. In: 5th International Conference on Learning Repre-
sentations (ICLR 2017) (2017)

3. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

4. Bendisposto, J., et al.: ProB 2.0 Tutorial. In: Butler, M., Hallerstede, S., Waldén,
M. (eds.) Proceedings of the 4th Rodin User and Developer Workshop. TUCS
Lecture Notes, vol. 18. TUCS (2013)

5. Bendisposto, J.M.: Directed and distributed model checking of B-Specifications.
Ph.D. thesis. Universitäts- und Landesbibliothek der Heinrich-Heine-Universität
Düsseldorf (2015)

6. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol.
4349, pp. 378–394. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69738-1 27

7. Carlsson, M., Mildner, P.: Sicstus prolog-the first 25 years. Theory Pract. Log.
Program. 12(1–2), 35–66 (2012)

8. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

9. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp.
341–355. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-
3 32

10. Clark, J., Bendisposto, J., Hallerstede, S., Hansen, D., Leuschel, M.: Generating
Event-B specifications from algorithm descriptions. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 183–197. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 11

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-540-69738-1_27
https://doi.org/10.1007/978-3-540-69738-1_27
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/978-3-642-28891-3_32
https://doi.org/10.1007/978-3-642-28891-3_32
https://doi.org/10.1007/978-3-319-33600-8_11
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15


Repair and Generation of Formal Models Using Synthesis 365

12. ClearSy: Atelier B, User and Reference Manuals. Aix-en-Provence, France (2014).
http://www.atelierb.eu/

13. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2015, pp.
229–239. ACM, New York, USA (2015)

14. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: Proceedings of AAAI/IAAI, pp. 431–437. American Association
for Artificial Intelligence (1998)

15. Gvero, T., Kuncak, V.: Interactive synthesis using free-form queries. In: Proceed-
ings of ICSE, pp. 689–692 (2015)

16. Hansen, D., Leuschel, M.: Translating TLA to B for Validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-
4 3

17. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-
4 3

18. Jackson, D.: Software Abstractions: Logic Language and Analysis. MIT Press,
Cambridge (2006)

19. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: Proceedings ICSE, pp. 215–224 (2010)

20. Körner, P., Bendisposto, J.: Distributed model checking using ProB. In: Dutle,
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Abstract. During the development of PLC software, standards usu-
ally require testing to consider certain coverage criteria. Since a man-
ual generation of coverage tests is tedious and error-prone, automatic
approaches as concolic testing are highly desirable. Approaches target-
ing non-reactive software usually cannot address their peculiarities, e. g.
the cyclic execution combined with state-machine behaviour. Hence, we
present a novel concolic testing technique to fill this gap. In particular,
our technique utilises operation modes that typically describe the state
machine semantics of single units in PLC programs, also called func-
tion blocks. This allows for guiding symbolic execution along paths that
conform with the state-machine semantics and are likely to uncover new
program behaviour. We show that our technique efficiently generates cov-
erage tests for a variety of programs, outperforming existing approaches
tailored to PLC software.

Keywords: Software testing · Integration of formal methods
Programmable Logic Controllers

1 Introduction

Programmable Logic Controllers (PLC) are the predominant control hardware
in safety-critical automation applications. As PLCs typically have to interact
with their environment with sensors feeding data to inputs and actuators being
driven by outputs, logic control software usually resembles a state-machine rep-
resenting different operation modes. In the area of safety applications, standards
as [10] require tests to fulfil certain coverage criteria. Manual generation of test
cases, however, quickly becomes costly and error-prone when dealing with larger
programs, since engineers usually have to keep track of long sequences of inputs
that lead to desired program locations.

Automatic test case generation can significantly lower this burden by deduc-
ing coverage tests from the program semantics. One family of techniques to
achieve this is Concolic testing, also known as dynamic symbolic execution.
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Contribution. In this work we introduce a novel approach to perform con-
colic testing on PLC software. By introducing awareness for the current opera-
tion mode, we present a promising heuristic for guiding the execution through
uncovered parts of the program. As a result, we avoid major limitations of related
approaches that either limit the application to smaller programs or yield unre-
liable results due to effectively relying on randomness.

Related Work. Utilising symbolic execution as a tool for test case generation
has been an active field of research for decades [6]. Concolic testing, an exten-
sion to pure symbolic execution, has been implemented in a variety of tools,
e. g. KLEE [5], CREST [4] or LCT [12], most of them focusing on popular
programming languages as C or Java. While concolic testing is now productively
applied, e. g. to x86 binaries via the tool SAGE [9], the application to logic
control software is rare, even in research.

The work of [3] introduces an adaptation of concolic testing to the cyclic exe-
cution behaviour of PLCs. Further work [15,16] offers variants of the technique,
which are, in contrast to this work, tailored to domain-specific programming
languages defined in [11]. The key aspect we will consider in this work is the
adherence of PLC software to so called operation modes. This domain-specific
feature has already been successfully applied in the context of program verifi-
cation [2], rendering model checking more efficient. A notion of mode-awareness
can also be found in [15], which binds execution paths to mode-representing
constructs of the targeted language Sequential Function Chart. However, this
notion was not yet used to guide the execution, which will be addressed in this
work.

Outline. Sect. 2 will cover the program representation used throughout the
paper as well as an introduction to concolic testing. We provide a motivating
example in Sect. 3, showing several problems of existing problems and outlining
the advantages of mode-awareness. Section 4 presents the main formalism and
algorithm, which we evaluated and compared to other approaches in Sect. 5. We
finally summarize and conclude our work in Sect. 6.

2 Preliminaries

This section will briefly cover the used program representation, concolic execu-
tion and two general concepts for concolic testing of PLC software.

Program Representation. As PLC programs typically comprise several func-
tion block instances, which represent stateful functions, we will decompose pro-
grams and capture each of these function block instances as a Control Flow
Automaton (CFA). A CFA A = (X,Xin , V, E, ve, vx) holds a set of variables X
with Xin being inputs. The set V represents program locations that are con-
nected by edges e ∈ E. Edges further represent instructions, describing the
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function blocks behaviour. Finally, frontiers of each function block are captured
by an entry- (ve) and an exit-location (vx). A program P = (M,A) is defined
as a set A of CFAs with M being the main function’s CFA. Note that only M ’s
input variables define the program inputs. As for the instructions, we translate
programs into a representation consisting only of assigns, assumes and calls.

Concolic Execution. Concolic execution has the objective to drive the execu-
tion of a program along certain paths of interest that are defined by a coverage
criterion, e. g. branch coverage. The term concolic means concrete and symbolic
execution and a wide variety of techniques utilise this concept. The following
section aims at giving a general view on the concept.

As we execute programs, we are interested in execution paths, which can be
described by a concolic state c = (σ, ρ,Π). The concrete state is denoted by σ
and represents a mapping of variables to concrete values. The symbolic state ρ
on the other hand maps variables to logical formulae, describing a set of possible
values. The path constraint Π comprises all assumptions made along the path
stored as a conjunction of logical formulae, i. e. it stores each branching decision.
We implicitly assume that each concolic state is also mapped to a program
location, but skip the notation to keep the definitions concise.

Along the execution, a state is modified by instructions. An assignment x := e
will have the following impact on the state:

σ ← σ[x �→ valσ(e)]
ρ ← ρ[x �→ valρ(e)]

The valuation function valσ/ρ evaluates expression e in the context of σ/ρ.
Assume statements of the form assume e are handled in the following way:

Π ←
{

Π ∧ valρ(e), Π ∧ valρ(e) satisfiable
false, else

Note that due to the concrete part of the state, an execution path will always
fulfil one of the assumes that resemble a branch in the program. An execution
is carried out in this fashion until a desired or maximum depth is reached. It
then remains to collect all the branching points on the path and decide, where
execution should be driven to next. To this end, an SMT-solver can be used to
check whether an alternative path starting at some branching point b is possible
or not.

The cyclic behaviour of PLC programs has two major implications for the
concolic execution. First, at reaching location ve of CFA M in cycle i, the pro-
gram inputs hold new non-deterministic values. Consequently, the symbolic state
ρj has to be changed to ρj+1 = {x �→ xi|x ∈ M.Xin}, assigning each input of M
to a fresh symbolic variable. For the concrete state, each program input will be
mapped to a random value of the suitable domain. Second, we have to impose
a limit on the amount of cycles executed, since PLC programs are designed to
run ad infinitum. Alternatively, one could iteratively execute paths one cycle
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at a time. Instead of choosing a start point for further execution in terms of a
branching point on the current path, one would have to choose from a set of
concolic states, deciding which path to execute further. An advantage of this
approach is that no cycle limit has to be determined a priori. In the following
chapter we will exemplify, what challenges we will face with these approaches.

3 Motivating Example

To pinpoint the problems that concolic testing faces and to motivate our tech-
nique, let us take a look at the example in Fig. 1. The graphics captures a
snapshot of a program execution in the i-th cycle, part of the program being
abstracted and represented by a grey triangle. We assume this part of the pro-
gram to be complex and contain numerous branching behaviour. The variable
m defines the program’s state when seen as a state-machine. Let the green edge
shown within the triangle, labelled with the condition m = 1, be the only uncov-
ered branch left.

Fig. 1. Snapshot of the execution of a PLC program. The triangle denotes an abstracted
part of the program, containing most of the complexity and branching behaviour.

First, assume the cycle-limited approach with the red line being the current
execution path. A strategy to find the remaining branch would include choosing
one of the many branches within the triangle that is most promising and try to
find an execution, leading from the selected to the uncovered branch. Without
further guidance, branches in any cycle would represent a good candidate. How-
ever, only branches with a concrete state evaluating m to 1, or the chance to
set m := 1 along the way are suitable candidates to actually cover the missing
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(a) (b)

Fig. 2. (a) Example program with mode variable m (b) Corresponding modegraph

branch. As a result, selecting the right branch boils down to chance. Even with a
sophisticated guidance as, e. g., the CFG-distance based technique from [4] that
promotes branches that are close to yet uncovered ones, the problem remains
that there are falsely assumed good candidates in each cycle.

Second, assume an iterative approach that has no fixed cycle limit, but exe-
cutes one cycle at a time, collecting alternative branches as candidates on the
way. Again it is hard to decide whether we should either execute an alternative
path through a cycle we already stepped through, pick a state that reached a
new cycle and execute it for another one, or, if we just have the latter option (we
executed all paths up to a current depth), which of these exponentially many
states to pick. If we knew that some of these states’ concrete state evaluated m
to 1, then those were promising candidates.

Investigating those two scenarios, it would be desirable to keep track of the
evaluation of m in order to decide where the execution should proceed. This idea
will be the foundation of our technique that will keep track of so called mode-
variables and decide in which direction to execute next based on the evaluation
of these variables.

4 Mode Aware Concolic Testing

Our technique is based on the iterative execution variant, i. e. we execute for one
cycle at a time. During each cycle, we collect each possible path and store the
corresponding states in a priority queue. The key feature to render this feasible
is the ordering of the queue, which is done via a distance function utilising mode-
variables. Before discussing the algorithm, we will first introduce the necessary
formalism for this ordering.

Modespace. Due to the observation that mode-variables implement state-
machine behaviour and, thus, typically have a limited set of possible values,
we can easily deduce the exact behaviour of these variables. Mode Abstraction
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as a technique to compute a modespace has already been proposed by [2]. We
will, nevertheless, discuss the most important features of this procedure in the
following. Note that we do not provide a method to automatically identify mode-
variables, but assume them to be known in advance.

Given a program p = (M,A), we first apply a standard value set analysis
(VSA) on M . Note that in order to capture the cyclic behaviour, we add a loop-
edge from vx to ve in M . The VSA will determine the set of values YA that each
mode-variable for each function block can be assigned to.

In a second step we want to collect knowledge about the transition of modes,
i. e. which modes are reachable from each mode within a cycle. To this end
we utilise conditioned slicing [7] on each CFA. The idea of conditioned slicing
is to reduce a CFA to the reachable locations given certain constraints on the
variables. Consequently, given a CFA A, for each y ∈ YA we perform slicing with
the condition mA = y, mA being A’s mode-variable. Performing another VSA
on the sliced CFA without loop-edge yields the set Yy→, containing all values the
mode variable can be assigned to in one cycle. As an additional result, slicing
this way yields a map YA �→ E for each CFA A. This map holds the information
which edges, and thus, which instruction occur in each mode.

Definition 1 (Modegraph). A modegraph GA = (mA, YA, T, C) consists of a
mode-variable mA, a value set YA, a transition map T : YA �→ 2YA and an edge
containment map C : YA �→ 2E.

The procedure above yields a modegraph for each CFA in the program. An
example program and its corresponding modegraph are given in Fig. 2a and b,
respectively. We call the set S = {GA|A ∈ A} the modespace of program P .

Note that over-approximation during the VSA can lead to imprecise mode-
graphs, resulting in a less effective guidance.

Mode-Distance. Given a concolic state c = (σ, ρ,Π) and the modespace S of
program P , we can now approximate how well suited c is for further execution,
utilising the knowledge about its mode. To this end, the modegraph distance of
a concolic state is defined as follows:

sp(y, y′, GA) =

{
0, y = y′

1 + min {sp(y′′, y′, GA)|y′′ ∈ T (y)}, else

ι(y, U) =

{
∞, C(y) ∩ U = ∅
0, otherwise

mgd(c,GA, U) = min {max {sp(valσ(mA), y,GA), ι(y, U)}|y ∈ YA}
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Fig. 3. Pseudocode of our mode-aware concolic testing algorithm.

In words, sp(y, y′, GA) calculates shortest path in the modegraph GA from
mode y to mode y′. With U denoting the set of uncovered branches in P , the
function ι(y, U) returns 0 if there are still uncovered branches in mode y, and
∞ otherwise. Hence, the modegraph distance mgd(c,GA, U) simply takes the
current concrete evaluation valσ(mA) of the mode-variable and computes the
shortest path in the modegraph to a mode that still has uncovered branches.
Lifting this to modespaces, the modespace distance of a concolic state c simply
becomes the minimum value of its modegraph distances. Note that this lift could
be done differently and in a more sophisticated way. Our goal, however, is to
show the potential of this approach even at a simple level.

Testing Procedure. By utilising the modespace distance we now have a mode-
aware heuristic that we can use to order the priority queue of concolic states we
are dealing with. Our overall testing procedure is shown in Fig. 3. We start by
creating an initial concolic state c0 = (σ0, ρ0, true), storing random or default
values in σ0 and mapping each program input to a fresh symbolic variable in ρ0.
After creating the modeSpace, the main loop is executed until full coverage is
achieved or the time budget is exhausted. In each loop iteration we take the first
state in the priority queue Q and execute it for one cycle. During that cycle on
encountering a branch, we try to drive the execution along both paths. While
one of those paths is automatically taken due to the evaluation of the concrete
state, satisfiability of the other path has to be checked via a call to the SMT
solver. Each concolic state generated this way is executed until the end of the
cycle and finally sorted into Q. Whenever new branches get covered during this
procedure, modespace distances of all states in Q have to be updated, since
C(y) ∩ U = ∅ could now be true for some mode y in one of the modegraphs.
Finally, Q is re-ordered if distances changed. Note that when two states have the
same distance, new states are always sorted behind states already in the queue.
To avoid exponential usage of memory, we apply an upper limit to the length of
Q, keeping only states with highest score.
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5 Experiments/Case Study

Our approach was implemented on top of the Arcade.PLC [1] simulation
engine, utilising the Z3 SMT Solver [8] for satisfiability checking. Our results
were compared to the PLC-tailored concolic testing approach [3] already imple-
mented in Arcade.PLC and the CFG-directed search (CFG-DS) from [4], which
we implemented on top of the tool as well. This way, all approaches run in the
same framework, allowing for comparison of the techniques without bias caused
by differences in e. g. programming language. All experiments were run on an
intel-i5 dual-core machine at 2,67 Ghz using 4 logical processors, having 4GB of
Ram. The timeout for test case generation was set to 10 min.

We evaluated our approach on a set of function blocks specified by the
PLCopen in [13,14], all of them implementing state-machine behaviour with ded-
icated mode-variables. In addition to this, each of those function blocks makes
use of PLC timers and/or edge detection functionality. Each of the time and cov-
erage entries represents the average over 10 runs, since CFG-DS heavily relies
on randomly generated paths. All results are listed in Table 1. Note that the
time for modespace creation was omitted, since it took approx. 70 ms on average
for the small blocks, and 1–2 s for the larger programs, thus, having negligible
impact. Further, all calculated modegraphs were precise.

While the merging based technique runs efficiently on the smaller blocks, it
already requires from approx. 8 to 13 s for the small but more complex blocks
Modeselector and SafelyLimitSpeed. On the bigger programs, the approach sim-
ply times out with an achieved coverage of only 65.5%. This exemplifies a big
downside of the merging based technique. Since the states of all paths are always
merged at the end of one cycle, the symbolic formulae of the merged state grow
exponentially, rendering execution of each further cycle a more difficult task. On
the DiagnosisConcept program, the algorithm effectively stagnates, spending
more and more time on expensive solver calls with each cycle.

The CFG-directed search achieves a better coverage on the larger blocks,
while timing out on some of the simpler blocks. Since the CFG-based guidance
actually misguides the search in a lot of cases, the algorithm heavily depends on
the random number generator choosing a sequence of right input values. This
effect especially manifests itself in the test generation for the Modeselector block
which makes heavy use of Timers and edge detection.

The mode-aware concolic testing on the other hand performs well on each of
the smaller blocks, requiring only 2.75 s for the Modeselector block. Even for the
DiagnosisConcept, composed of 4 individual blocks, the algorithm achieves full
coverage in under two minutes. Interestingly, on the SafeMotion block, albeit
achieving high coverage, the technique shows limitations which arise from the
simple lifting from modegraph- to modespace distance. Since the behaviour of
single blocks in this program is heavily intertwined, the distance function would
have to not only minimize over isolated modegraph distances, but rather make
these distances dependent on all modes in the program.



Mode-Aware Concolic Testing for PLC Software 375

Table 1. Case study comparing our approach (MAT) with CFG directed search (CFG-
DS) and the merging based technique (MB)implemented in Arcade.PLC.

Function block LOC # branches Measurements

MB CFG-DS MAT

time[s] cov. [%] time[s] cov. [%] time[s] cov. [%]

Antivalent 110 66 1.52 100 1.97 100 0.89 100

Equivalent 108 66 1.48 100 7.02 100 0.46 100

EmergencyStop 121 70 0.88 100 2.04 100 0.36 100

EnableSwitch 136 76 1.78 100 547.66 94.74 0.51 100

ESPE 120 70 0.78 100 3.00 100 0.33 100

GuardLocking 142 82 1.74 100 8.62 100 0.48 100

GuardMonitoring 137 88 2.42 100 90.63 98.86 0.82 100

ModeSelector 196 74 7.78 100 TO 82.43 2.75 100

SafelyLimitSpeed 142 94 12.94 100 491.82 95.74 1.16 100

SafetyRequest 157 92 2.35 100 136.75 98.91 0.73 100

Safestop1 162 80 6.91 100 34.50 100 0.73 100

TwoHandControlTypeII 132 86 1.40 100 5.55 100 0.35 100

TwoHandControlTypeIII 163 112 2.69 100 47.77 100 0.77 100

DiagnosisConcept 565 238 TO 65.5 TO 88.4 116.64 100

SafeMotionIO 961 449 TO 52.27 TO 87.24 TO 81.50

6 Conclusion

In this work we have presented a novel approach to concolic testing of PLC
software utilising operation mode behaviour. By calculating modespaces, it is
possible to obtain a distance measurement for concolic states in order to decide
whether or not they yield a good starting point for further program explo-
ration. We were able to show that the proposed technique outperforms related
approaches tailored to PLC software as well as other non mode-aware heuristics.
As we demonstrated the potential of mode-awareness for this kind of software,
it would be desirable for future work to further investigate the lifting from mod-
egraph distance to modespace distance. Since heavily intertwined blocks still
pose a problem for the simple approach in this work, a more involved distance
measurement for concolic states could be fruitful.
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Abstract. The use of formal methods for verification and validation
of critical and complex systems is important, but can be extremely
tedious without modularisation mechanisms. SysML/KAOS is a require-
ments engineering method. It includes a goal modeling language to
model requirements from stakeholder’s needs. It also contains a domain
modeling language for the representation of system application domain
using ontologies. Translation rules have been defined to automatically
map SysML/KAOS models into B System specifications. Moreover, since
the systems we are interested in naturally break down into subsystems
(enabling the distribution of work between several agents: hardware,
software and human), SysML/KAOS goal models allow the capture of
assignments of requirements to agents responsible of their achievement.
Each agent is associated with a subsystem. The contribution of this paper
is an approach to ensure that a requirement assigned to a subsystem
is well achieved by the subsystem. A particular emphasis is placed on
ensuring that system invariants persist in subsystems specifications.
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1 Introduction

The research work presented in this paper is part of the FORMOSE project [5]
and focuses on the formal requirements modeling of systems in critical areas such
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as railway or aeronautics. System requirements are modeled using the SysM-
L/KAOS goal modeling language [19]. Translation rules from goal models to B
System specifications are defined in [24]. They allow the automatic generation of
the skeleton of the formal specification of the system [24]. In addition, a language
has been defined to express the domain model associated to the goal model, using
ontologies [34,36]. Its translation gives the structural part of the B System speci-
fication [14,37]. Finally, it remains to specify the body of events1. Once done, the
B System specification can be verified, animated and validated using the whole
range of tools that support the B method [1], largely and positively assessed on
industrial projects for more than 25 years [21].

To ensure the distribution of work between several agents and a better main-
tenability, reusability and scalability of the system, SysML/KAOS allows its par-
titionning into subsystems: a goal diagram models the main system and further
goal diagrams are built for subsystems. Actually, each subsystem is associated
with an agent that is responsible for achieving its requirements. The contribution
of this paper is an approach to ensure that a requirement assigned to a subsystem
is well achieved. The approach uses formal decomposition mechanisms [3] to con-
struct, from the formal specification of a high-level system, the interface of each
of its subsystems. The interface of a subsystem describes the requirements that
the high-level system expects from the subsystem. Proof obligations are defined
to ensure that the invariants of each subsystem is consistent with that of the
high-level system. The approach thus ensures that each subsystem achieves its
expected goals with respect to constraints set by the high-level system. The pro-
posed approach is illustrated on the steam-boiler control specification problem,
proposed by Bauer in [6].

The remainder of this paper is structured as follows: Sect. 2 briefly describes
the SysML/KAOS requirements engineering method and its goal and domain
modeling languages, the B System formal method, and the translation of SysM-
L/KAOS models. Section 3 presents existing techniques interested in the achieve-
ment of system requirements by subsystems, and existing formal decomposition
approaches. Finally, Sect. 4 presents our approach illustrated on the steam-boiler
control specification problem and Sect. 5 reports our conclusions and discusses
future work.

2 Context

2.1 SysML/KAOS Goal Modeling

Presentation. SysML/KAOS [19,22] is a requirements engineering method
based on SysML [16] and KAOS [20]. SysML allows for the capturing of require-
ments and the maintaining of traceability links between those requirements and
design deliverables, but it does not define a precise syntax for requirements
specification. KAOS is a requirements engineering method which allows the rep-
resentation of requirements to be satisfied by a system and of expectations with
1 See [13,37] for assessment case studies.
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regards to the environment through a hierarchy of goals. Despite of its goal
expressiveness, KAOS offers no mechanism to maintain a traceability between
requirements and design deliverables, making it difficult to validate them against
the needs formulated. In addition, the expression of domain properties and con-
straints is limited by the expressiveness of UML class diagrams, which is consid-
ered insufficient by our industrial partners [5], regarding the complexity and the
criticality of the systems of interest. Therefore, for goal modeling, SysML/KAOS
combines the traceability features provided by SysML with goal expressiveness
provided by KAOS. In addition, SysML/KAOS includes a domain modeling
language which combines the expressiveness of OWL [28] and the constraints of
PLIB [27].

Fig. 1. The SysML/KAOS functional goal metamodel [23]

Presentation: Figure 1 represents the metamodel associated with the modeling
of SysML/KAOS functional goals [23]. A goal model consists of goals in rela-
tion through operators of which the main ones are: AND and OR. An AND
operator decomposes a goal into subgoals, and all of them must be achieved to
realise the parent goal. An OR operator decomposes a goal into subgoals such
that the achievement of only one of them is sufficient for the accomplishment of
the parent goal. An abstract goal is a functional goal which must be refined. A
requisite is a functional goal sufficiently refined to be assigned to an operational
agent. Environment agents are responsible of expectations and software agents
are responsible of requirements.

Illustration. The challenge of the steam-boiler control specification problem [6]
is to specify a system controlling the level of water in a steam-boiler. The system
deals with a steam-boiler (SB), a water unit to measure the quantity of water
in SB, a pump to provide SB with water, a pump controller and a steam unit
to measure the quantity of steam flowing out of SB. In order to be concise, we
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limit the system operating modes to the three main ones: normal, degraded and
rescue. We also consider two different minimum and maximum water quantities:
(Min1 and Max1 ) for the normal mode and (Min2 and Max2 ), satisfactory
levels for the abnormal modes (degraded and rescue). Figure 3 is a state diagram
representing the steam boiler controller operating modes:

• In the normal mode, the controller tries to maintain the quantity of water
within Min1 and Max1, with all the units behaving correctly. When a failure
occurs on the water unit, the mode is set to rescue. In case of any other
failure, the mode is set to degraded.

• In the degraded mode, the controller tries to maintain the quantity of water
within Min2 and Max2, despite of a possible failure other than a failure of
the water unit. If a failure occurs on the water unit, the mode is set to rescue.
When all failures are repaired, the mode is set to normal.

• In the rescue mode, the controller tries to maintain the quantity of water
within Min2 and Max2, despite of a possible failure of the water unit. It
estimates the water quantity, using the measurement of the pump controller
and that of the steam unit. When all failures are repaired, the mode is set to
normal. If the water unit is repaired and there is another failure, the mode is
set to degraded.

Fig. 2. Excerpt from the steam-boiler control system goal diagram

Figure 2 is an excerpt from the SysML/KAOS goal diagram representing
the functional goals of the steam-boiler control system. The main purpose of
the system is to control the level of water in the boiler (abstract goal Con-
trolWaterLevel). To achieve it, the system must read inputs from the sensors
(abstract goal ReadInputs), compute the next operating mode using available
data (requisite ComputeNextSystemMode) and send an action command
to the pump (abstract goal SendActionCommand). The action may be the
opening (requisite OpenPump) or the closing (requisite ClosePump) of the
water pump. To ensure the achievement of goal ReadInputs, the system must
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be able to obtain water unit measurements, in case the water unit is behav-
ing correctly (requisite ReadWaterUnit). However, since the water unit may
become defective, the system must also be able to obtain measurements from the
steam unit and pump controller, in order to estimate the quantity of water in the
boiler (requisite ReadInputsInRescueMode). Four agents are defined for the
achievement of requisites: WaterUnitSensor responsible of ReadWaterUnit,
RescueSensors responsible of ReadInputsInRescueMode, ModeController
responsible of ComputeNextSystemMode and PumpActuator responsible of
OpenPump and ClosePump.

Fig. 3. State diagram of the steam
boiler controller operating modes

Fig. 4. Excerpt from the goal diagram
of the subsystem associated with agent
RescueSensors

Figure 4 is an excerpt from the SysML/KAOS goal diagram representing
the functional goals of the subsystem associated with agent RescueSensors.
Its main purpose is an abstract goal ReadInputsInRescueMode represent-
ing the requisite ReadInputsInRescueMode of the main system goal dia-
gram (Fig. 2). To achieve it, the system must read values from the steam unit
(ReadSteamUnit) and pump controller (ReadPumpController), in order to
estimate the quantity of water in the boiler, in case of a failure of the water unit.

2.2 SysML/KAOS Domain Modeling

Presentation. The SysML/KAOS domain modeling language [34,36] uses
ontologies to represent domain models. It is based on OWL [28] and PLIB [27],
two well-known ontology modeling languages. Each domain model corresponds
to a refinement level in the SysML/KAOS goal model. The parent associa-
tion represents the hierarchy of domain models. A domain model can define
multiple elements. For our purposes, a domain model can define concepts and
their individuals, relations, attributes, datasets and predicates [34,36]. A con-
cept represents a collection of individuals with common properties. It can be
declared variable (isV ariable = TRUE) when the set of its individuals can be
dynamically updated by adding or deleting individuals. Otherwise, it is constant
(isV ariable = FALSE). A data set represents a collection of data values. A
relation captures links between concepts, and an attribute, links between con-
cepts and data sets. They can be variable or constant. Cardinalities are defined
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Fig. 5. steam_boiler_controller_domain_model: ontology associated with the root
level of the goal diagram of Fig. 2

to represent restrictions on relations. A predicate expresses constraints between
domain model elements, using the first order logic.

Illustration. Figure 5 represents the SysML/KAOS domain model associated
with the root level of the goal diagram of Fig. 2. The steam-boiler entity is
modeled as a concept named SteamBoiler. As in the case study, adding or
deleting a steam-boiler is not considered, property isVariable of SteamBoiler
is set to false. Concept SteamBoiler has one individual named SB, repre-
senting the steam-boiler under the supervision of the system. The attribute
waterLevel defined in SteamBoiler represents the water level in the boiler.
It is variable, since it is possible to dynamically change the level of water
in the boiler. Refinements of domain model steam_boiler_controller_-
domain_model define the operating mode of the controller using a variable
attribute named operatingMode, having SteamBoiler as domain, and as
range, an instance of EnumeratedDataSet containing three data values (normal,
degraded and rescue), representing the possible operating modes. For indi-
vidual SB, operatingMode is initialised to normal, since we consider that the
system starts in the normal mode. The associations between a steam-boiler
and its sensors and actuators are modeled as relations: a relation named
SteamBoilerSensors which links the steam-boiler to its sensors and a relation
named SteamBoilerActuators which links the steam-boiler to its actuators. We
have defined three sensors (a steam unit named SU, a pump controller named PC
and a water unit named WU) and one actuator (a pump named P).

The specification below expresses, using predicates, some domain constraints
that have been captured. It should be noted that the variables represent internal
states of the controller [26].
p2 . 1 : s en so rS ta t e (WU)= " d e f e c t i v e " => operatingMode (SB) =" re s cue "
p2 . 2 : ( s en so rS ta t e (WU)=" nonde f e c t i v e " & senso rS ta t e (SU)=
" d e f e c t i v e " )=> operatingMode (SB) ="degraded"

p2 . 3 : ( s en so rS ta t e (WU)=" nonde f e c t i v e " & senso rS ta t e (PC)=
" d e f e c t i v e " )=> operatingMode (SB) ="degraded"

p2 . 4 : ( s en so rS ta t e (WU)=" nonde f e c t i v e " & actuato rSta te (P)=
" d e f e c t i v e " )=> operatingMode (SB) ="degraded"

Predicate p2.1 asserts that the operating mode must be rescue if the water
unit is known to be defective and predicates p2.2..p2.4 assert that the operating
mode must be degraded if a device is known to be defective, except for the water
unit.
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2.3 B System

Event-B is an industrial-strength formal method for system modeling [2]. It is
used to incrementally construct a system specification, using refinement, and
to prove properties. An Event-B model includes a static part called context
and a dynamic part called machine. Constants, abstract and enumerated sets,
and their properties, constitute the static part. The dynamic part includes the
representation of the system state using variables constrained through invariants
and updated through events. Each event has a guard and an action . The
guard is a condition that must be satisfied for the event to be triggered and
the action describes the update of state variables. A machine can refine another
machine, a context can extend other contexts and a machine can see contexts.
Proof obligations are defined to prove invariant preservation by events (invariant
has to be true at any system state), event feasibility, convergence and machine
refinement [2]. B System is an Event-B syntactic variant proposed by ClearSy,
an industrial partner in the FORMOSE project [5], and supported by Atelier
B [11]. A B System specification consists of components. Each component can
be either a system or a refinement and it may define static or dynamic elements.
Although it is advisable to always isolate the static and dynamic parts of the
B System formal model, it is possible to define the two parts within the same
component. In the following sections, our B System models will be presented
using this facility.

2.4 Translation of SysML/KAOS Models

Presentation. The formalisation of SysML/KAOS goal models is detailed
in [24]. The proposed rules allow the generation of a formal model whose struc-
ture reflects the hierarchy of the SysML/KAOS goal diagram: one component
is associated with each level of the goal hierarchy; this component defines one
event for each goal. As the semantics of the refinement between goals is different
from that of the refinement between B System components, new proof obliga-
tions for goal refinement are defined in [24]. They complete the classic proof
obligations for invariant preservation and for event feasibility. Nevertheless, the
generated B System specification does not contain the system structure, that are
variables, constrained by an invariant, and constants, constrained by properties.
This structure is provided by the translation of SysML/KAOS domain models.
The corresponding rules are fully described in [35] and their formal verification
is described in [14]. In short, domain models identify formal components. A
concept without a parent gives a B System abstract set. Each concept C, with
parent PC, gives a formal constant, subset of the correspondent of PC. Relations
and attributes give formal relations. The rules also allow the extraction of the
initialisation of state variables.

Illustration. Each refinement level, of the B System specification of the steam-
boiler control system, is the result of the translation of goal and domain models,
except the body of events that are provided manually. The full specification,
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Fig. 6. Root level of the B System specification of the steam-boiler control system

verified using the Rodin tool [9], can be found in [37]. Its consistency is ensured
with the discharge of 60 proof obligations, 20% manually and the rest auto-
matically. Interactive proofs were mostly required because of enumerated set
definitions that involve partitions: several proof rules require partition rewrites.
The generated specification includes three refinement levels.

Figure 6 represents the root level of the B System specification of the steam-
boiler control system. Concept SteamBoiler gives a set and its individual SB
gives a constant typed with axm as an element of set SteamBoiler. Attribute
waterLevel gives a total function from SteamBoiler to N initialised with the
action act of event INITIALISATION. At this level, event ControlWaterLevel
takes a parameter wlv ∈ N and defines it as the level of water in SB.

The first refinement level defines a component containing 6 variables, 7 invari-
ants and 4 events (including the INITIALISATION event). The second refine-
ment level (steam_boiler_controller3) defines a component containing the
same set of variables (waterLevel, operatingMode, sensorState, sensorInput, actu-
atorState, and actuatorOutput), 4 invariants (p2.1..p2.4) and 6 events: INI-
TIALISATION, ReadWaterUnit, ReadInputsInRescueMode, ComputeNextSys-
temMode, OpenPump and ClosePump.

The translation rules make it possible to obtain a B System specification
which becomes complete after the definition of the body of events. The main
system is associated with a B System model, and each subsystem is associated
with another one. However, there are no mechanisms to ensure that subsystem
goals are consistent with goals assigned to the high-level system. In the rest of
this paper, we are interested in an approach which provides these mechanisms.

3 Existing Work

Section 3.1 presents relevant work related to the assignment of system goals
to subsystems, with regard to mechanisms to ensure that subsystem goals are
consistent with goals assigned to the high-level system; and Sect. 3.2 presents
relevant formal model decomposition approaches.

3.1 Related Work on Goal Assignments

In [10,32,33], approaches are proposed to model a system made of several sub-
systems. Each subsystem has its own goals (local goals) that are under the
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responsibility of an agent (local agent). Each local agent has a degree of freedom
in taking local actions to satisfy its local goals. Furthermore, it can negotiate
with other agents in attempting to satisfy their local goals. However, to ensure
the consistency between subsystem goals and system requirements, a specific
subsystem is introduced, under the supervision of a global agent. The global
agent focus on the satisfaction of global goals [10]: it can suspend, reschedule or
require the execution of an action by a local agent in order to ensure a satisfac-
torily achievement of system requirements. Although local agents are unaware
of objectives of the overall system, they act, under the supervision of the global
agent, to ensure the achievement of these overall goals. This approach guarantees
a certain degree of freedom in updating the overall goals. However, it requires to
implement replanning primitives within local agents and replanning strategies
within the global agent.

In [4,15,17], strategies are presented, for a system made of subsystems under
the responsibility of agents, to ensure that system requirements are achieved.
Each agent evaluates its state and behaviours of other agents, and takes actions
that enforce the achievement of system requirements. The decision tree that
drives the evaluations made by agents can be internally encoded in each agent,
or externally via shared data structures. Algebras are proposed for the represen-
tation of desired states. However, relevant changes in the internal structure of
an agent require a complete review of established strategies. Furthermore, either
the agents must have access to the full behavioral history of other agents, or the
strategies must include what agents currently know and what they learn from
their actions.

In [12], Wayne only considers subsystems. Each subsystem has its own inter-
nal goals and can assign goals to other subsystems. A subsystem can accept or
refuse to achieve a goal. Whenever a goal is accepted by a subsystem, the sub-
system is responsible to provide feedbacks related to its achievement. The main
system can be viewed as a subsystem which does not accept goals while a process
can be viewed as a subsystem which does not assign goals. As in [10,33], feed-
backs allow one subsystem to monitor the achievement of the goal assigned to
another subsystem and to ensure that it is satisfactorily achieved. However, this
approach does not take into account the constraints common to goals assigned
to different subsystems.

In our approach, formal subcomponents, called interfaces, are extracted from
the specification of the high-level system to constrain the specification of sub-
system goals. Interface definitions are automatically extracted using a formal
model decomposition technique.

3.2 Formal Model Decomposition

Definition. Model decomposition here consists in obtaining, from an initial
model, a certain number of less complex models, which can be refined inde-
pendently and such that the recomposition of subsequent refinement levels pro-
duces a model which conforms to the definition of the initial model [3]. We are
focussed in the distribution of the elements of the dynamic part of the high-level
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system formal specification because the fundamental difference, between two
SysML/KAOS agents of the same goal diagram, lies in their behaviors. Recall
that a system behaviour is formally represented with a set of events and by
all the variables that can be updated by these events and their invariants. The
decomposition with respect to the INITIALISATION event is trivial and will
not be considered. Indeed, whatever the chosen decomposition strategy, a vari-
able xx assigned to a subcomponent will be initialised within the subcomponent
with the same action of the parent component, that initialises xx, since initiali-
sation actions are independent. Similarly, if all events involve only disjoint sets
of variables and each invariant involves only the variables appearing in events
corresponding to goals of the same agent, the decomposition is trivial: each agent
may be assigned a subcomponent defining the events corresponding to the goals
assigned to the agent, as well as the associated variables and invariants. The
difficulty lies in taking into account variables appearing in events corresponding
to goals assigned to different agents (shared variables) and invariants involving
variables that are assigned to different subcomponents (shared invariants).

Existing Approaches for the Decomposition of Formal Models. Abrial
et al. [3] are interested in mechanisms allowing the decomposition of Event-
B models, and specifically of Event-B machines. Indeed, at some point of the
refinement process, an Event-B machine may have so many events and so many
state variables that a further refinement may become difficult or even impossible
to manage. Abrial et al. consider the decomposition as the distribution of the
events of the machine to be split, between several sub-machines. An approach is
proposed to handle the variables shared between several events, using external
variables and events. Events assigned to a sub-machine are its internal events.
A variable that is only involved in internal events of a sub-machine is an inter-
nal variable of the sub-machine. If a variable is involved in internal events of
different sub-machines, then it is defined in each of them as an external vari-
able. In a sub-machine, an external variable can be seen as the input and output
channel, allowing the sub-machine to synchronise its activities with other sub-
machines defining the same variable. An external variable cannot be data-refined.
In a sub-machine A, an external event is an event introduced to simulate the
way an external variable is handled, in another sub-machine B, by an internal
event of B. External events simulate how external variables are handled in other
sub-machines. They do so by abstracting the behaviour of events of the initial
machine that involve the external variables. They cannot be refined. Iliasov et al.
describe in [18] another method for decomposition in Event-B. The approach is a
special case of the one proposed by Abrial et al. restricted to sequential systems
for which functionalities can be distributed among several modules.

A decomposition approach, using shared events, is proposed in [7]. It enables
the variables of the initial machine to be distributed between sub-machines.
When the variables of a global event are distributed between separate sub-
machines, each sub-machine defines an event which is a partial version of the
global event, and which simulates the action of the global event on the considered
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variables. The partial version of an event, defined within a sub-machine, consists
in a copy of the original event, restricted to the considered variables (variables of
the global event that are allocated to the sub-machine): only parameters, guards
and actions referring to the specified variables are preserved from the global
event [31].

Silva et al. in [31] have identified two methods for decomposition in Event-B :
the first one considering shared variables and the second one considering shared
events. The shared variable decomposition is the decomposition approach intro-
duced in [3] and the shared event decomposition is the one introduced in [7]. A
tool is proposed to support the decomposition approaches. For Butler et al. [8],
the shared event approach is suitable for developing message-passing distributed
systems while the shared variable approach is suitable for designing parallel
computing programs. Furthermore, it is easier to implement the shared variable
approach compared to the shared event approach. Indeed, regarding the shared
variable approach, once the events are assigned, the distribution of variables can
be done automatically. The decomposition approach is implemented as a plug-in
for the Rodin platform. The real difficulty lies in the determination of the refine-
ment level from which to introduce the decomposition. Regarding the shared
event approach, it may be difficult, once the distribution of variables has been
done, to separate the guards and actions of events in order to construct the par-
tial events (a variable cannot appear in two different sub-machines). Regarding
invariants, actually, [30,31] let the user select which invariant predicate should
be assigned to which subcomponent.

In [29], an approach is proposed for the construction of the specification
of an Event-B machine from the combination of specifications of several other
machines (basic machines). It assumes the partitioning of variables of basic
machines, however events can be shared. The machine thus constructed is a
composition of basic machines. Proof obligations are proposed in order to ver-
ify the composition of machines. The invariant of the composition of machines
M1 to Mn with variables x1 to xn respectively is defined as the conjunc-
tion of the individual invariants and the composition invariant ICM (x1, ..., xn):
I(M1||...||Mn) =̂ I1(x1) ∧ ... ∧ In(xn) ∧ ICM (x1, ..., xn). We reuse this definition
for the determination of proof obligations associated with the verification of the
decomposition of the system specification (Sect. 4.1): the system is seen as a
composition of its subsystems.

4 Mechanisms to Ensure the Consistency Between
Subsystems and System Requirements

With translation rules, each SysML/KAOS model, whether for the main system
or for a subsystem, gives a B System specification. To ensure that subsystem
goals conform to system requirements, we propose the definition of B System
components called interfaces that will bridge the gap between system and sub-
system specifications. An interface of a subsystem defines events that corre-
spond to goals that the system assigns to the subsystem. It also defines variables
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involved in these events as well as their constraints. The most abstract level of
the formal specification of a subsystem is defined as a refinement of the sub-
system interface; this ensures that the subsystem specification conforms to the
interface specification. We propose the use of a formal decomposition strategy,
applied at the most concrete level of the B System specification of the high-level
system (parent component), to build subsystem interfaces.

Fig. 7. Illustration of our approach

Figure 7 represents an illustration of our approach for a main system S and
two subsystems S1 and S2 . The specification of S defines three components:
M which corresponds to the root level and M_ref1 and M_ref2 which corre-
spond to the first and second refinement levels. The component M_ref2 defines
variables x1, x2 and x3, invariant I(x1, x2, x3) and events E1(x1, x3) and E2(x2,
x3). Variable x3 is shared between the two events. We omitted the corresponding
SysML/KAOS goal diagrams; however, the responsibility of E1 is assigned to S1
and the responsibility of E2 is assigned to S2 . Thus, the decomposition strategy
is used to define interfaces M1_i for S1 and M2_i for S2 . The component
representing the most abstract level of the specification of each subsystem (M1
for S1 and M2 for S2 ) is then defined as a refinement of the corresponding
interface.
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4.1 Construction of Interfaces

Interfaces, Variables and Events. In the SysML/KAOS methodology, goals
are assigned to agents. A decomposition of the parent component, based on these
assignments, may therefore use the shared variable decomposition approach: each
agent gives a formal subcomponent, representing the subsystem interface, and
for which the internal events are the correspondences of goals assigned to the
agent. For an interface Mi corresponding to agent ai, internal events of Mi are
correspondences of goals assigned to ai. The variables of Mi are the ones involved
in internal events of Mi. If a variable of Mi appears in another interface, then
it is an external variable; otherwise, it is an internal variable. Finally, external
events are defined in Mi, to emulate how external variables of Mi are handled
in other interfaces. Each external event of Mi is an abstraction of an internal
event defined in another interface.

Regarding the illustration of Fig. 7, each interface contains the event assigned
to the corresponding subsystem (we omitted external events for a sake of clarity).
For instance, event E1(x1, x3) appears in M1_i . Variables x1 and x3 also
appears in M1_i because they are involved in E1(x1, x3). Variable x3 is defined
as an external variable in M1_i and M2_i .

Invariants. It remains necessary to decompose the invariants involving vari-
ables assigned to different interfaces. Let a component M , containing the vari-
ables x1 and x2 and the invariant I(x1, x2), that is decomposed into subcom-
ponents M1 containing x1 without x2, and M2 containing x2 without x1. Based
on the composed invariant defined in [29] (See Sect. 3.2), we advocate that the
following conditions are necessary and sufficient, regarding shared invariants (we
disregard here properties defined in contexts), in addition to classical require-
ments of the Event-B method [2], to verify the decomposition of M into M1 and
M2:

• Subcomponent invariants do not contradict I(x1, x2): If I1(x1) is the
invariant introduced in M1 and I2(x2) is the invariant introduced in M2, then
we must prove that: ∃(x1, x2).(I(x1, x2)∧I1(x1)∧I2(x2)). Thus, if we consider
that x1 is initialised to x01 in M1 and that x2 is initialised to x02 in M2

(classical Event-B proof obligations ensure that predicate I1(x01) ∧ I2(x02)
evaluates to TRUE ), we must prove that I(x01, x02) evaluates to TRUE.
This, in addition, ensures that initialisations in subcomponents preserve the
composed invariant.

• Any subsystem event, that can update the value of a variable x introduced
in the high-level system, must access x within a mutual exclusion context
whenever it is triggered, so that no other event accessing the value of x can be
triggered until its termination. Otherwise, it will not be possible to guarantee
the accuracy of the value of a variable when an event is triggered within a
component. Indeed, within the same Event-B component, events are triggered
sequentially (to avoid possible inaccuracies in the state of the system), while
subcomponents may have parallel behaviors. The constraint thus ensures the
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preservation of the sequentiality in the triggering of events coming from the
high-level component, with regard to shared variables (the constraint is not
necessary for events involving internal variables).

• Subcomponent events simultaneously preserve global and local
invariants: If an event E1, introduced in M1, updates x1, then we must
prove that: (I(x1, x2) ∧ I1(x1) ∧ I2(x2) ∧ E1_Guard(x1) ∧ BAE1(x1, x

′
1)) ⇒

(I(x′
1, x2)∧ I1(x′

1)∧ I2(x2)). E1_Guard(x1) is a predicate denoting that the
guard of E1 is true for the current value of the state variable x1. BAE1 is the
before-after predicate corresponding to E1

2. For an event E2, introduced in
M2, which updates x2, the proof obligation is: (I(x1, x2) ∧ I1(x1) ∧ I2(x2) ∧
E2_Guard(x2) ∧ BAE2(x2, x

′
2)) ⇒ (I(x1, x

′
2) ∧ I1(x1) ∧ I2(x′

2)).

Thus, shared invariants (see Sect. 3.2) can remain in the parent component.
It is just necessary to maintain the link between the parent component and
the interfaces, through the introduction of a new clause within each interface
allowing the referencing of the parent component or through the definition of
an external record, and to include the above mentioned proof obligations. The
most abstract level of the formal specification of a subsystem is then defined
as a refinement of the subsystem interface. It is even possible to add variables,
invariants or events in an interface to further constrain the specification of the
subsystem or to assign specific goals.

It is also possible to define each variable of an interface as a constant within
the others interfaces, where the variable do not appear, and to define shared
invariants in each interface. However, this approach carries several difficulties:
the update of a shared invariant will have to be done not only within the system
specification but also within the specification of each subsystem; and it will be
difficult to animate/model-check the formal model, since some variables will be
seen as constants. In addition, it will be difficult to ensure that subsystem invari-
ants are always simultaneously preserved, when considering shared variables.

Regarding the illustration of Fig. 7, each interface contains the definition of
an invariant. Invariant I(x1, x2, x3) remains in M_ref2 and the generated
proof obligations are: (1) The invariants defined in M1_i and M2_i do not
contradict the one defined in M_ref2 : ∃(x1, x2, x3).(I(x1, x2, x3)∧I1(x1, x3)∧
I2(x2, x3)) (to be satisfied by the initialisation of variables); (2) actions of events
E1(x1, x3) and E2(x2, x3) simultaneously preserve invariants defined in M1_i ,
M2_i and the global invariant defined in M_ref2 :
(2a) (I(x1, x2, x3) ∧ I1(x1, x3) ∧ I2(x2, x3) ∧ E1_Guard(x1, x3)
∧BAE1(x1, x3, x1′, x3′)) ⇒ (I(x1′, x2, x3′) ∧ I1(x1′, x3′) ∧ I2(x2, x3′));
(2b) (I(x1, x2, x3) ∧ I1(x1, x3) ∧ I2(x2, x3) ∧ E2_Guard(x2, x3)
∧BAE2(x2, x3, x2′, x3′)) ⇒ (I(x1, x2′, x3′) ∧ I1(x1, x3′) ∧ I2(x2′, x3′)).

2 The before-after predicate of E1 denotes the relationship holding between the state
variable of machine M1 just before (denoted by x1) and after (denoted by x′

1) the
triggering of E1 [2].
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Example:
Let M be a component defining invariant {x1, x2, x3} ⊂ N∧x1+x2 = x3 and

events E1 =̂ then x1 := x1+1||x3 := x3+1 and E2 =̂ then x2 := x2+1||x3 :=
x3 + 1. If we consider the decomposition of M into subcomponents M1 and M2
with M1 defining E1 and invariant x1 > 100 and M2 defining E2 and invariant
x2 > 100, the proof obligations are:

(1) ∃(x1, x2, x3).({x1, x2, x3} ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100);
(2a) ({x1, x2, x3} ⊂ N∧x1+x2 = x3∧x1 > 100∧x2 > 100∧x1′ = x1+1∧x3′ =

x3 + 1) ⇒ ({x1′, x2, x3′} ⊂ N ∧ x1′ + x2 = x3′ ∧ x1′ > 100 ∧ x2 > 100);
(2b) ({x1, x2, x3} ⊂ N∧x1+x2 = x3∧x1 > 100∧x2 > 100∧x2′ = x2+1∧x3′ =

x3 + 1) ⇒ ({x1, x2′, x3′} ⊂ N ∧ x1 + x2′ = x3′ ∧ x1 > 100 ∧ x2′ > 100).

They are dischargeable and guarantee that each action of a subsystem preserves
not only its invariants, but also invariants of other subsystems and especially the
invariant of the high-level system (the subsystems share a variable). They extend
the classic proof obligation of invariant preservation [2], which just ensures that
each subsystem preserves its own invariants, in the case of several subsystems
operating simultaneously to achieve high-level goals and sharing data.

External Events. External events are introduced in interfaces to simulate, in a
subsystem, how its external variables are handled in other subsystems. They are
proposed by Abrial et al. in [3], because no link is maintained between a high-level
formal component and its subcomponents after a shared variable decomposition
operation. By defining a link between subsystem interfaces and the most concrete
component of the high-level system specification, as proposed in Sect. 4.1, it
becomes redundant to define external events within interfaces. Through the link
between an interface and the parent component, for an external variable x, it
would suffice to evaluate the events of the parent component involving x and
which are not defined within the interface, to “observe” how x is handled in
other subsystems. This approach avoids the difficulties lying in the definition of
external events: (1) redundance of the same behavior, associated with an external
variable, in each interface where the external variable appears; (2) partitioning
of guards and actions of an event to consider only the variables of the interface
where the external event must be defined.

4.2 Illustration on the Steam-Boiler Case Study

For the steam-boiler control system, the decomposition must be introduced in
the second refinement level (steam_boiler_controller3), because it is the most
concrete level of the B System specification of the main system. Table 1 presents
the sharing of state variables between invariants and events of steam_boiler_-
controller3: variable waterLevel is shared between all agents, when consider-
ing events where it is involved; variable sensorState is shared between agents
WaterUnitSensor, RescueSensors and ModeController; and variable actua-
torOutput is owned by agent PumpActuator.
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Table 1. Repartition of variables between events and invariants in
steam_boiler_controller3

Variables Invariants Events

waterLevel INITIALISATION, ReadWaterUnit,
ReadInputsInRescueMode, ComputeNextSystemMode,
OpenPump, ClosePump

operatingMode p2.1..p2.4 INITIALISATION, ReadWaterUnit,
ComputeNextSystemMode, OpenPump, ClosePump

sensorState p2.1..p2.4 INITIALISATION, ReadWaterUnit,
ReadInputsInRescueMode, ComputeNextSystemMode

sensorInput INITIALISATION, ReadWaterUnit,
ReadInputsInRescueMode

actuatorState p2.4 INITIALISATION, ComputeNextSystemMode,
OpenPump, ClosePump

actuatorOutput INITIALISATION, OpenPump, ClosePump

Table 2. Overview of interfaces obtained from the decomposition of
steam_boiler_controller3

Interfaces Events Variables

WaterUnitSensor_i ReadWaterUnit ,
ReadInputsInRescueMode,
ComputeNextSystemMode,
OpenPump, ClosePump

waterLevel, operatingMode,
sensorState, sensorInput

RescueSensors_i ReadInputsInRescueMode ,
ReadWaterUnit,
ComputeNextSystemMode,
OpenPump, ClosePump

waterLevel, sensorState,
sensorInput

ModeController_i ComputeNextSystemMode ,
ReadWaterUnit,
ReadInputsInRescueMode,
OpenPump, ClosePump

waterLevel, operatingMode,
sensorState, actuatorState

PumpActuator_i OpenPump, ClosePump,
ReadWaterUnit,
ReadInputsInRescueMode,
ComputeNextSystemMode

waterLevel, operatingMode,
actuatorState,
actuatorOutput

We have defined interfaces of the subsystems: each SysML/KAOS agent gives
an interface.

Table 2 presents an overview of interfaces obtained from the decomposition of
steam_boiler_controller3, along with their variables and events. For an inter-
face I, elements in bold are those that are internal to I and the other elements
are those that are external (shared). For instance, event ReadWaterUnit is an
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Fig. 8. Overview of the root level of the B System specification of the subsystem
RescueSensors

internal event in interface WaterUnitSensor_i, while event ReadInputsInRescue-
Mode is an external event that simulates, in WaterUnitSensor_i, the behaviour
of internal event ReadInputsInRescueMode , defined in interface RescueSen-
sors_i ; variable actuatorOutput is an internal variable in interface PumpActu-
ator_i, while variable waterLevel is an external variable. Variable waterLevel is
defined as an external variable in all interfaces because it is involved in internal
events of the four interfaces. In addition, since variable waterLevel is involved in
all events, each interface defines an external event that simulates the behaviour
of each event not internal to the interface. Once it will be possible to define a
link between each interface and its parent component, we believe that it will no
longer be necessary to define these external events. Invariants p2.1..p2.4 remain
in steam_boiler_controller3; however, if needed, invariants p2.1..p2.3 can
be defined in interfaces WaterUnitSensor_i, ModeController_i and PumpActu-
ator_i, and invariant p2.4 can be defined in ModeController_i.

Figure 8 is an overview of the root level of the B System specification of
the subsystem associated to agent RescueSensors. It is a refinement of inter-
face RescueSensors_i. We provide the specification of the event correspond-
ing to goal ReadSteamUnit of the goal diagram of Fig. 4: when water unit
WU is defective and steam unit SU and pump controller PC are non-defective
(grd1), then a natural integer val1 is set as the input obtained from sensor
SU (act2). Controller variable measures is used to take into account the non-
simultaneity and the non scheduling of the measurement of values of sensors
SU and PC, introduced in the goal diagram with the use of the AND opera-
tor between the root and first refinement levels. Within event ReadSteam-
Unit, variable measures allows the controller to consider the following cases:
(1) when the measurement of values of SU and PC has not yet been achieved
(SU /∈ dom(measures) ∧ PC /∈ dom(measures)), the value of SU is measured
(grd4) and saved into variables sensorInput (act2) and measures (act3); (2) when
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the value of PC has already been measured, the value of SU is measured and used,
together with the value of PC, to estimate the water level (grd4 and act1). Action
act3 allows, regarding the last case, to reset the content of variable measures for
further measurements. The behavior of event ReadPumpController is iden-
tical to that of ReadSteamUnit, except that it performs the measurement of
the value of PC.

Interface RescueSensors_i provides variables waterLevel, sensorState and
sensorInput and event ReadInputsInRescueMode to component RescueSen-
sors. Theorems t1..t3 are defined to express SysML/KAOS proof obligations
related to the use of the AND operator3 (Fig. 4) [24].

4.3 Discussion

The proposed approach uses the shared variable decomposition strategy and
proof obligations to ensure that subsystems specifications conform to system
requirements. The approach fits into the following process which is applicable
for any system S made of subsystems S1 ..Sn, assuming that SysML/KAOS
models of S, S1 ..Sn are already defined:

(1) Translate SysML/KAOS models of S into a B System specification made of
components C_S0, C_S1, ..., C_Sp, where C_Sr is a refinement of C_Sr−1

(Sect. 2.4 and [14,24,35]).
(2) Complete the specification obtained from (1) by specifying the body of events

(Sect. 2.4 and [13]).
(3) Use the formal decomposition strategy to construct, from C_Sp, the formal

subcomponents S1_i..Sn_i, where Sk_i denotes the interface of subsystem
Sk, containing the specification of goals that S assigns to Sk with their
associated variables and constraints (Sect. 4.1).

(4) For each subsystem Sk :
(i) IF Sk is made of subsystems

THEN restart the whole process with Sk as the high level system
ELSE apply steps (1) and (2) on Sk

(ii) Set component C_Sk0 as a refinement of Sk_i.

The approach makes it possible to independently define, check and evolve the
specifications of subsystems. It also allows centralised updates of constraints and
goals assigned to subsystems: global update of the high-level system specification,
which can be automatically propagated into interfaces, and/or local update of
an interface, which is available for the whole subsystem specification.

5 Conclusion and Future Work

This paper focusses on an approach to ensure that a requirement assigned to a
subsystem is well achieved by the subsystem. The approach uses a formal model
3 For an event G, G_Guard represents the guard of G and G_Post represents the post

condition of its actions [24].
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decomposition strategy and proof obligations to guarantee that subsystem goals
are consistent and meet system requirements expressed in SysML/KAOS models
that are translated to B System specifications. The approach is appraised on
the steam-boiler control specification problem [6], using Rodin [9], an industrial-
strength tool supporting the Event-B method. Its advantages are discussed, with
regard to some relevant related work.

Work in progress is aimed at studying the back propagation of updates on a
B System specification within the associated SysML/KAOS model. We are also
working on integrating the approach within the open-source platform Openflexo
[25] which federates the various contributions of FORMOSE project partners [5].
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Abstract. We develop and implement a translation from the process
Algebra for Wireless Networks (AWN) into the milli Common Repre-
sentation Language (mCRL2). As a consequence of the translation, the
sophisticated toolset of mCRL2 is now available for AWN-specifications.
We show that the translation respects strong bisimilarity; hence all
safety properties can be automatically checked using the toolset. To show
usability of our translation we report on a case study.

1 Introduction

The Algebra for Wireless Networks (AWN) [11] is a variant of classical process
algebras that has been particularly tailored to model and analyse protocols for
Mobile Ad hoc Networks (MANETs) and Wireless Mesh Networks (WMNs).
Among others it has been successfully used to model and analyse the Ad hoc
On-Demand Distance Vector (AODV) routing protocol [30], one of the most
popular protocols widely used in WMNs. [12,16]

AWN provides the right level of abstraction to model key features of pro-
tocols for (wireless) networks such as unicast and broadcast for message send-
ing, while abstracting from implementation-related details. It is equipped with a
(completely unambiguous) formal semantics, which is given in form of structural
operational semantics rules. These rules generate a transition system that can
be used to describe the behaviour of a protocol.

The algebra has been integrated in the interactive proof assistant
Isabelle/HOL [6]. This enabled, amongst others, the machine-checked verifica-
tion of key correctness properties of AODV. However, apart from that there is
only little tool-support for AWN. To provide automatic analysis for protocols
written in AWN, the algebra has been used in combination with the model
checker Uppaal. [10] The input model for Uppaal [1,2]—a network of timed
automata—was created manually and the correctness of this model needed to
be established manually as well.

In sum, AWN falls short when it comes to automated analysis of speci-
fications. The development of special-purpose tools for AWN is cumbersome,
c© Springer Nature Switzerland AG 2018
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error-prone and time consuming. Hence we follow the general approach to make
use of highly sophisticated off-the-shelf tools that offer high-performance analy-
sis. In this paper we present and implement an automatic translation from AWN
into the milli Common Representation Language (mCRL2) [18].

mCRL2 is a formal specification language with an associated collection of
tools offering support for model checking, simulation, state-space generation, as
well as for the optimisation and analysis of specifications. [8] The toolset has been
used in countless case studies, including the analysis software for the CERN’s
Large Hadron Collider [21], and the IEEE 1394 link layer [25].

We do not only develop an automatic translation from AWN to mCRL2,
which allows us to use the mCRL2 toolset for any protocol specification writ-
ten in AWN, we also show that the transition system induced by an AWN-
specification and the transition system in mCRL2 that stems from our trans-
lation are strongly bisimilar. As a consequence, any safety property that has
been (dis)proven in the mCRL2 setting also holds/does not hold for the original
specification, written in AWN. To illustrate the usefulness of our translation, we
report on a case study that analyses the Ad hoc On-Demand Distance Vector
(AODV) routing protocol [30], which we formalised in AWN before [12,16].

2 The Algebra for Wireless Networks

The Algebra for Wireless Networks (AWN) [10,12] is a variant of standard
process algebras (e.g. [3,5,20,26]) particularly tailored for (wireless) protocols:
it defines the protocol in a pseudo-code that is easily readable, and provides the
right level of abstraction to model key protocol features.

The algebra offers a local broadcast mechanism and a conditional unicast
operator—allowing error handling in response to failed communications while
abstracting from link layer implementations of the communication handling—
and incorporates data structures with assignments. As a consequence it allows
to describe the interaction between nodes in a network with a dynamic or static
network topology, and hence is ideal to describe all kinds of protocols.

AWN comprises five layers: sequential processes for encoding the protocol as
a recursive specification; parallel composition of sequential processes for running
multiple processes simultaneously on a single (network) node; node expressions
for running (parallel) processes on a node while tracking the node’s address and
all nodes within transmission range; partial network expressions for describing
networks as parallel compositions of nodes and allowing changes in the network
topology, and complete network expressions for closing partial networks to fur-
ther interactions with the environment.

Due to lack of space we cannot present the full syntax and semantics of AWN,
which can be found in [11]. Table 1 summarises the syntax. In AWN a network
is modelled as an encapsulated parallel composition of network nodes (Lines
14 and 15 in Table 1). An individual node has the form i : P : R, where i is the
unique identifier of the node, P characterises the process running on the node,
and the set R contains all identifiers of nodes currently in transmission range of
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Table 1. Process expressions

X(exp1, . . . , expn) Process name with arguments

P + Q Choice between processes P and Q

[ϕ]P Conditional process

[[v := exp]]P Assignment followed by process P

broadcast(ms).P Broadcast ms followed by P

groupcast(dests,ms).P Iterative unicast or multicast to all destinations dests

unicast(dest,ms).P � Q Unicast ms to dest; if successful proceed with P ; otherwise Q

send(ms).P Synchronously transmit ms to parallel process on same node

deliver(data).P Deliver data to client (application layer)

receive(m).P Receive a message

ξ, P Process with valuation

P 〈〈 Q Parallel processes on the same node

i :P :R Node i running P with range R

N‖M Parallel composition of nodes

[N ] Encapsulation

i—the nodes that can receive messages sent by i. On each node several processes
may be running in parallel (Line 12 in Table 1). A sequential process is given by
a sequential process expression P , together with a valuation ξ associating values
ξ(v) to variables v maintained by this process (Line 11).

AWN uses an underlying data structure with several types, variables ranging
over these types, operators and predicates. Predicate logic yields terms (or data
expressions) and formulas to denote data values and statements about them. The
choice of this data structure is tailored to any particular application of AWN.
It must contain the types DATA, MSG, IP and P(IP) of application layer data,
messages, IP addresses—or other node identifiers—and sets of IP addresses.

In addition, AWN employs a collection of process names, each carrying
parameters of various types. Every process name X comes with a defining equa-
tion X(v1 ,. . .,vn)

def
= P , in which each vi is a variable of the appropriate type

and P a sequential process expression.
Lines 1 to 10 describe sequential process expressions. X(exp1, . . . , expn) is

a call to the process defined by the process name X, with expressions of the
appropriate types substituted for the parameters. P +Q may act either as P or
as Q, depending on which of the two processes is able to act. If both are able to
act, a non-deterministic choice is made. Given a valuation of the data variables by
concrete data values, the sequential process [ϕ]P acts as P if ϕ evaluates to true,
and deadlocks otherwise. In case ϕ contains free variables, values are assigned to
these variables in any way that satisfies ϕ, if possible. The process [[v := exp]]P
acts as P , but under an updated valuation of the data variable v. The process
broadcast(ms) broadcasts ms to the other network nodes within transmission
range, and subsequently acts as P ; unicast(dest,ms).P � Q is a process that
tries to unicast the message ms to the destination dest; if successful it continues
to act as P and otherwise as Q. It models an abstraction of an acknowledgment-
of-receipt mechanism. The process groupcast(dests,ms).P tries to transmit ms
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to all destinations dests, and proceeds as P regardless of whether any of the
transmissions is successful. The action send(ms) (synchronously) transmits a
message to another process running on the same node. The sequential process
receive(m).P receives any message m (a data value of type MSG) either from
another node, from another sequential process running on the same node or
from the client hooked up to the local node. It then proceeds as P , but with the
data variable m bound to the value m. The submission of data from a client is
modelled by the receipt of a message newpkt(d,dip), where the function newpkt
generates a message containing the data d and the intended destination dip.
Data is delivered to the client by deliver(data).

The layers of sequential and parallel processes usually define the behaviour
of a protocol up to a point where it can be implemented; the other layers are
used for reasoning, and include primitives for modelling dynamic topologies.

Processes 1 and 2, for example, describe a simple leader election proto-
col: each node in the network, which is assumed to be fully connected, holds
a unique node identifier ip and a natural number n. Each node is initialised by
(ξ,Voting(lip,lno,voted,ip,no)), with ξ(lip)= ξ(ip)= ip, ξ(lno)= ξ(no)= n,
and ξ(voted)= false. The local variables lip and lno hold the identifier and the
number of the current leader; the Boolean flag voted indicates whether the pro-
cess partook in the election.

Process 1 allows the node to receive a ballot (message) B from another node
(Lines 1 and 6, resp.). The message contains the sender’s address ip, as well as its
number no; these are stored in the local variables sip and sn. In case a message is
received, the evaluation process Eval is called (Line 2). Once during the protocol
(Line 3) each node can partake in the election and send its ballot, containing
the node’s own information (Line 4). After the message is sent, the flag voted
is set to true (Line 5), and the node acts as if it had received this message.

Process 2 evaluates the information received. If the received number sn is
greater than or equal to the number of the current leader lno, the current leader
is set to sip and the current leader’s number to sn, and the process returns to the
main process; otherwise the information of the received message is disregarded.

When the protocol terminates—all nodes voted and all messages have been
handled— all nodes have agreed on a leader, one holding the highest number no.

Once a model has been described in AWN, its behaviour is governed by the
transitions allowed by the algebra’s semantics. The formal semantics of AWN is
given as structural operational semantics (sos) in the style of Plotkin [31] and
describes how states evolve into another by performing actions. [11,12]
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Table 2. Structural operational semantics (AWN) for broadcast

Table 2 presents four sos-rules of AWN (out of 44), all describing behaviour
w.r.t. broadcast. The first rule describes the behaviour of the sequential process
broadcast(ms).P , which performs the action broadcast(ξ(ms)) without syn-
chronisation. Here ξ(ms) is the data value denoted by the expression ms when
the variables occurring in ms are evaluated according to ξ. The second rule
describes the broadcast-action on the node level: as the nodes in transmission
range of node ip are known (stored in set R), this set is part of the new label
and is used for synchronisation on the network layer. The third rule illustrates
this partly. The action R :*cast(m) casts a message m that can be received by
the set R of network nodes. AWN does not distinguish whether this message
stems from a broadcast-, a groupcast- or a unicast action—the differences
show up merely in the value of R. The action H¬K :arrive(m) models that m
simultaneously arrives at all addresses ip∈H, and fails to arrive at all addresses
ip∈ K. The third rule of Table 2 synchronises a R :*cast(m)-action of one node
with an arrive(m) of all other nodes. To finalise this synchronisation AWN
features another two sos-rules: a symmetric form of the third rule, and a rule
synchronising two H¬K :arrive(m)-actions. The side conditions ensure arrival
of message m at all the nodes in the transmission range R of the *cast(m),
and non-arrival at the other nodes. The fourth rule of Table 2 closes the net-
work by the encapsulation operator [ ], and transforms the R :*cast(m)-action
into an internal action τ . The encapsulation guarantees that no messages will
be received that have never been sent.

3 The Algebra mCRL2 and Its Associated Toolset

The milli Common Representation Language (mCRL2) [18] is a formal speci-
fication language with an associated toolset [8]. Similar to AWN, mCRL2 is a
variant of standard process algebras with a formal semantics given as structural
operational semantics in the style of Plotkin.

For our translation from AWN to mCRL2 we use only a fragment of mCRL2.
In this section we briefly explain the syntax and semantics of those constructs
of mCRL2 needed for our translation. As before, we can only show parts of the
semantics, and refer to [18] for details.

Similar to AWN, mCRL2 comes with defining equations, called process equa-
tions in [18], having the form X(d1 : D1, . . . , dn : Dn) def= p, where di are variables
of sorts Di and p a process expression defined by the following grammar.
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p :: = α | p·p | p + p | c→ p | ∑
d:D

p | p‖p | X(u1, . . . , un) | ΓC(p) | ∇V(p) | ρR(p) | τI(p)

α :: = τ | a(u1, . . . , un) | α|α

Here α denotes a multi-action, c a Boolean, and the ui are data expressions.
Actions form the basic building blocks of mCRL2. They consists of a name

(taken from a given set) and some parameters, which are expressions denoting
data values. Multi-actions are collections of actions that occur at the same time.
A multi-action can be empty, denoted by τ ; it is used as internal, non-observable
action. a(�u) denotes an action with name a and data parameters ui. Last, the
multi-action α|β consists of the actions from both multi-actions α and β.

The process p·q behaves like p until p terminates, and then continues to
behave as q. The process p+q may act either as p or as q, depending on which of
the processes can perform an action. If both are able to act, a non-deterministic
choice is made. For a Boolean expression c, the process c→ p acts like p if
c evaluates to true, and deadlocks otherwise. The process

∑
d:D p allows for a

choice of p for any value d from D substituted for the variable d—of course d
can occur in p. The process p‖q is a parallel composition of p and q. X is a
process name, and ui are data expressions of type Di, as declared in the defining
equation; X(u1, . . . , un) denotes a process call.

The communication operator ΓC(p) takes some actions out of a multi-action
and replaces them with a single action, provided their data parts are equal. The
set C describes the replacement by rules of the form a1| · · · |a1 → c. To enforce
communication the allow operator ∇V (p) only allows multi-actions listed in the
set V to occur. The renaming operator ρR(p) renames action names within p,
where the set R lists rename rules of the form a→ b. Finally, the hiding operator
τI(p) conceals all action names listed in I from the process p, replacing them by
the internal action τ .

Process 3 models the same behaviour as Process 1, but written in mCRL2.
In fact the presented specification has been translated by our tool (see Sect. 7);
we have only changed minor issues such as variable names and line breaks to
ease readability. An interesting issue when looking at the translation is that
Process 3 features multiple sum-operators, where the AWN-specification shows
none. While it may be understandable why the receive-actions (Lines 1 and 5)
need to sum over all possible messages that could be received, the argument for
sending messages (Line 4) is not straightforward. The reason is that we have to
encode all possible transmission ranges D; we elaborate on this in more detail in
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Table 3. Structural operational semantics (mCRL2)

Sect. 5. Moreover, the AWN guard [m = B(sip, sn)] assigns values to sip and sn
such that m = B(sip, sn); in mCRL2 this involves summing over all values sip
and sn can take, in combination with the equality check m ≈ MSG(B, sip, sn).

Table 3 shows some rules of the structural operational semantics of mCRL2.
Here � indicates successful termination, and � � is an interpretation func-
tion, sending syntactic expressions to semantic values. We have �τ� = τ ,
�a(u1, . . . , un)� = a(�u1� . . . , �un�), and �α|β� = �α�|�β�, where at the right-hand
(semantic) side τ denotes the empty multiset, �α�|�β� the union of multisets
�α� and �β�, and a(e1, . . . , en) (the singleton multiset containing) the action a,
whose parameters are now data values rather than data expressions. The first
four rules are standard process algebra and (partly) characterise execution of
an action, sequential composition (under successful termination), left choice and
synchronisation, respectively. The first rule in the second line describes the sum
operator. Here MD is the set of data values of type D and t is a function—assumed
to exist in mCRL2—that for each data value e returns a closed term te denot-
ing e, i.e., �te� = e. The second rule models a guard c; only if it evaluates to
true, the process can proceed. The last rule of Table 3 defines recursion, where
we assume a process X(d1:D1 . . . , dn:Dn) def= q. mCRL2 also provides rules for the
communication, the allow, and the restriction operator:

p ω−→ p′

ΓC(p) γC(ω)−−−→ ΓC(p′)

p ω−→ p′

ρR(p) R•ω−−→ ρR(p′)

p ω−→ p′

∇V (p) ω−→ ∇V (p′)
ω ∈ V ∪ {τ}

Here the functions γC , and R• are the counterparts of ΓC and ρR, resp., working
on actions rather than processes. For example, γ{a|b→c}(a|a|b|c) = a|c|c. The
stripped multi-action ω is the result of removing all data from the multi-action ω.

Although mCRL2 works on top of an underlying data structure, it does not
provide any syntactic construct for assignment.

mCRL2 comes with an associated toolset, consisting of about 50 different
tools (see www.mcrl2.org). The toolset includes a user interface, which provides
an easy way to read and analyse any mCRL2-process. Other tools help in manip-
ulating and visualising state spaces, or provide support for automatic analysis.
This includes classical model checking as well as checking properties by parame-
terised Boolean equation systems. The toolset also includes an interface allowing
system analysis by the LTL/CTL/μ-calculus model checker LTSmin [23].

www.mcrl2.org
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Fig. 1. Generalisations of simulations

4 Comparing Transition Systems

One goal of this paper is to translate a given specification written in AWN into
an mCRL2-specification. Of course the generated specification should be related
to the original one, so that we know which properties that should hold for the
original specification can be checked in the translated specification.

The process algebras AWN and mCRL2 generate each a labelled transition
system (S,A,→), where S is the set of all closed process algebra expressions,
A is the set of possible actions, and → ⊆ S ×A× S is the labelled transition
relation where the transitions P α−→ Q are derived from the sos rules.

A standard technique to compare two transitions systems is (bi)simulation
(e.g. [26]). A binary relation R ⊆ S1 × S2 is a (strong) simulation1 [29] between
transition systems L1 = (S1, A,→1) and L2 = (S2, A,→2) if it satisfies, for a∈A,

if p R q and p a−→1 p′ then ∃q′. q a−→2 q′ and p′ R q′ .

Here p a−→1 p′ is a short-hand for (p, a, p′) ∈ →1. A bisimulation is a symmetric
simulation. If a bisimulation R with p R q exists then p and q are bisimilar.

Figure 1(a) illustrates the situation. Our definition slightly differs from the
literature as it builds on two transition systems; the common definition presup-
poses L1 =L2. The definition requires an exact match of action labels. AWN
and mCRL2 do not feature the same labels. For example, R :*cast(m), which
is an action label of AWN, does not follow the syntax of mCRL2-actions.

We relax the definition of simulation and say that R ⊆ S1 × S2 is a simula-
tion modulo renaming between L1 = (S1, A1,→1) and L2 = (S2, A2,→2) for a
bijective renaming function f : A1 → A2 if it satisfies, for a ∈ A1,

if p R q and p a−→1 p′ then ∃q′. q f(a)−−→2 q′ and p′ R q′ ;

see Fig. 1(b). A bisimulation modulo renaming is a symmetric simulation modulo
renaming, using f and f−1, respectively. Processes p ∈ S1, q ∈ S2 are bisimilar
modulo renaming if a bisimulation modulo renaming R with p R q exists.

1 This paper does not treat weak simulations, etc.; therefore we omit the word ‘strong’.
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It is well known that all safety properties are preserved under bisimilarity;
and therefore also under bisimilarity modulo renaming, when the renaming func-
tion is applied to the safety property as well.2

Two mCRL2 processes p and q are data congruent, notation p ≡ q, if q can
be obtained by replacing data expressions t occurring in p by expressions t′ with
�t� = �t′�, i.e. evaluating to the same data value. For example a(1+2) ≡ a(4−1).
On AWN, we take ≡ to be the identity. A (bi)simulation (modulo renaming)
up to ≡ is defined as above, but with p′ ≡R≡ q′ (using relational composition,
denoted by juxtaposition) instead of p′ R q′. Using that ≡ is a bisimulation [17],
it follows from [26] that constructing a bisimulation R (modulo renaming) up to
≡ with p R q suffices to show that p and q are bisimilar (modulo renaming).

In Sect. 5 we develop a translation between AWN and mCRL2, and we
show that the translation is a bisimulation modulo renaming up to ≡. However,
this result only holds for encapsulated networks. When considering the other
layers of AWN, a bisimulation cannot be established, not even modulo renaming.
The reason is the layered design of AWN. While the set R of recipients of a
broadcast is added only on the layer of node expressions, we need to introduce
this set straightaway in mCRL2. On the process layer we do not have knowledge
about nodes in transmission range. To include all possibilities, we require an
entire collection of mCRL2-actions. We elaborate on this in the next section.

We call a relation R ⊆ S1 × S2 an A-warped simulation up to ≡ between
transition systems L1 and L2 for a relation A ⊆ P(A1)× P(A2) if it satisfies

if p R q and p a−→1 p′′ then ∃a1,a2, p
′, q′.

(a ∈ a1, p′′ ≡ p′, a1 Aa2, p a1−→1≡ p′, q a2−→2≡ q′ and p′ R q′),

where p a−→1≡ p′ ⇔df ∀a ∈ a.∃p′′. p a−→1 p′′ ∧ p′′ ≡ p′. The definition requires
a state q′ such that all actions a ∈ a2 yield a transition to q′, as illustrated
in Figure 1(c).

An A-warped bisimulation up to ≡ is a symmetric A-warped simulation up to
≡, using A and Ă =df {(x, y) | (y, x) ∈ A}, respectively.

Each (bi)simulation (up to ≡) is also a (bi)simulation modulo renaming (up to
≡)—using the identity as renaming; and each (bi)simulation modulo renaming
up to ≡ is an A-warped (bi)simulation up to ≡—with A={({a}, {f(a)})|a∈A1}.

5 From AWN to mCRL2

This section presents the formal translation from AWN-to mCRL2-processes.
Both process algebras are parameterised by the choice of an underlying data

structure/abstract data type, and neither puts many restrictions on it; only the
toolset associated to mCRL2 makes it more specific by predefining the most
common concepts, such as integers, sets, lists, structs, etc. To ease readability,
our presented translation assumes the same data structure underlying both pro-
cess algebras. In particular, the translation maintains sorts—integers are mapped

2 See [13] for a formal definition of safety property for labelled transition systems.
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to integers etc. We also assume that variable names are the same. In the full
version of this paper [17] we use translation functions that follow the detailed
restrictions imposed on the respective data structures.

Tables 4–6 define the full translation, in recursive fashion.

Table 4. Translation function T (sequential processes)

Table 4 lists the translation rules for sequential processes. On this level, our
translation function operates on sequential process expressions P and addition-
ally carries two parameters: the set V of data variables maintained by P , and a
valuation ζ of some of these variables. So dom(ζ) ⊆ V . ζ evaluates all variables
that in the translation to mCRL2 are turned into constants, or other closed data
expressions; the variables in V \dom(ζ) remain variables upon translation. expζ

denotes the mCRL2-expression exp with tζ(x) substituted for each x ∈ dom(ζ).
The set V is always the domain of the valuation ξ of a sequential process (ξ, P );
hence the ζ used as a parameter in the translation is only a part of ξ.

The first two equations translate broadcast and groupcast-actions in a
similar fashion. Since mCRL2 does not allow to alter the number nor the type
of arguments of an action, we have to add all parameters from the beginning.
As a consequence the action cast carries three arguments: the intended destina-
tions of a message (a set of addresses), the actual destinations, and the message
itself. For broadcast the set of intended addresses is the set of all IP addresses;
for groupcast this set is determined by the AWN-primitive. The second argu-
ment hinges on the set of reachable destinations (destinations in transmission
range), which is only specified on the level of node expressions—see e.g. Rule 2
of Table 2. To allow arbitrary sets of destinations these rules use the sum oper-
ator of mCRL2 (

∑
)—the correct set of destinations is chosen later, by using

the parallel operator ‖. For the translation we have to assume that D and D′ are
fresh variables; in [17] we list all required side conditions, which we skip here to
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Table 5. Translation function T (defining equation and parallel processes)

ease readability. After the broadcast-action has been translated, the remaining
process P is handled by the same translation function. The unicast primitive
uses a similar translation in case of successful transmission, but also allows the
possibility of failure, which is handled by the action ¬uni.

The translation of the send-primitive is straightforward; the only subtlety
is that the translation has to have as many arguments as the cast-action, since
both synchronise with receive—we use the empty set ∅ as dummy parameter.
The deliver-action delivers data to the client; as this can happen at any network
node, we sum over all possible recipients ip. The translation of receive follows
the style of broadcast and groupcast, and synchronises with the cast-action
later on. Hence it needs the same number of arguments as that action; as all
parameters are unknown, we sum over all of them. After the receive-action, the
variable m is added to the set V of variables maintained by the AWN-process
P . However, since in the mCRL2 translation it occurs under the scope of a sum
operator, it is not instantiated with a concrete message in the translation of P ,
and hence is removed from the domain of ζ—notation ζ\m.

Since mCRL2 does not provide a primitive for assignment, the translation
of [[v := exp]]P is non-trivial. The idea behind our translation is to sum over all
possible values of v, and use a guard to pick the right value. A first rendering
of the translation rule would be

∑
v:sort(v)(v= expζ)→ X, where X is a process

to be determined. This sum-guard combination works for many cases; it fails
when the expression contains the variable itself. An example is the increment
of a variable: [[x = x+1]]. To resolve this problem we use a standard technique
of programming and introduce a fresh variable y. We then split the assignment
and calculate [[y = x+1]][[x = y]]. Both assignments are transformed into sum-
guard form. Since we aim at strong bisimilarity and the assignment rule of AWN
produces a silent action τ , we do something similar for mCRL2. For technical
reasons3 we cannot use a τ -action, and use an action named t instead.

Both AWN and mCRL2 feature process calls and an operator for (binary)
choice with the same semantics; their obvious translation is given by the next two
lines of Table 4. The guard of AWN translates to a guard in mCRL2. However,
AWN assigns variables that occur free in ϕ and that are not maintained by the
current process in a non-deterministic manner such that ϕ evaluates to true.

3 Using that τ |τ = τ , the fourth rule of Table 3 allows any two parallel τ -transitions
in mCRL2 to synchronise, which is not possible in AWN. For this reason, τ -actions
in AWN are translated in an action t of mCRL2, which is turned into a τ only at
the outermost layer, where no further parallel compositions are encountered.
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Table 6. Translation function T (network nodes and networks)

We model the same behaviour by a sum over those variables that can be chosen
freely; here the set Fv(ϕ) contains all free variables of the Boolean formula ϕ.
This is the only place in the translation where the parameter V is used at all.
The mCRL2-expression of this rule simplifies to ϕζ → t·TV (ζ, P ) in case all
free variables of ϕ occur in V.

Table 5 first presents the translation of defining equations, which is straight-
forward. The set V of variables maintained by P consists of the parameters vi

of the process name X. The table also lists the translation rules for parallel pro-
cesses. The rule for (ξ, P ) merely needs to initialise the set V as dom(ξ). The
last rule handles the (asymmetric) parallel operator of parallel processes. This
operator allows and enforces synchronisation of a send-action on the right with
a receive-action on the left only. For example, in the expression (P 〈〈Q) 〈〈R the
send and receive-actions of Q can communicate only with P and R, respec-
tively, but the receive-actions of R, as well as the send-actions of P , remain
available for communication with the environment. Since mCRL2 only offers
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Table 7. Action relation A

a standard, symmetric parallel operator, we model the behaviour by combin-
ing renaming, communication and allow operators. By renaming receive to r
in the left process and send to s in the right process we guarantee synchroni-
sation of the corresponding actions; the communication operator renames the
synchronised action into t, which later becomes an internal action τ . To enforce
synchronisation, we apply the allow-operator ∇, and restrict the set of actions
to those possible. Among others this disallows all proper multi-actions.

Table 6 shows the translation rules for network nodes, networks and encap-
sulated networks. All rules use combinations of the mCRL2-operators ∇ and Γ ,
similar to the last rule of Table 5. The process G is used to select the correct set
of nodes receiving a message—remember that we sum over all possible sets on
the level of sequential processes (see Table 4). It also introduces the primitives
for changing network topologies, such as connecting and disconnecting two
nodes. The rule for ‖ features two Γ -operators, as mCRL2 forbids a single one
to have overlapping redexes. The encapsulation allows only actions with name
newpkt, deliver, connect, disconnect, as well as the ‘to-be’ silent action t.
The process H handles the injection of a new data packet, where all parame-
ters (point of injection ip, the destination dest as well the content data of the
message) are unknown; we sum over these values.

This concludes the formal definition and explanation of the translation from
the process algebra AWN into the process algebra mCRL2.

6 Correctness of the Translation

This section describes the relationship between AWN-specifications and their
counterparts in mCRL2. We establish that our translation forms a warped bisim-
ulation up to ≡ on all layers of AWN; and a bisimulation modulo renaming up to
≡ for encapsulated networks.
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Theorem 6.1. The relation {(P,T(P )) | P is an AWN-process} is an A-
warped simulation up to ≡, where A is the action relation of Table 7.

Proof Sketch. We need to show that

if P a−→ P ′ then ∃a1,a2. (P a1−→ P ′, T(P ) a2−→≡ T(P ′), a1 Aa2 and a ∈ a1),

for all AWN action labels a. We prove this implication by structural induction
on the derivation of P a−→ P ′ from the inference rules of AWN.

The base cases consider all sos-rules of AWN without premises, such as the
first rule of Table 2. Out of the 14 bases cases we only present the proof for this
rule, and prove that there are sets a1 and a2 satisfying the above properties.

Since broadcast(ξ(ms)) ∈ a1, Table 7 implies a1=broadcast(ξ(ms)) and
a2={cast(�ξ(dests)�, �D̂�, �ξ(ms)�) | D̂:Set(IP)}. It suffices to find a derivation
in mCRL2 such that T(ξ,broadcast(ms).p) a−→ T(ξ, p), for all a ∈ a2. For
arbitrary D̂ we have

cast(IP, D̂, ξ(ms)) �cast(IP,D̂,ξ(ms))�−−−−−−−−−−−→ �

cast(IP, D̂, ξ(ms))·Tdom(ξ)(ξ, P ) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P )
(
cast(IP, D, ξ(ms))·Tdom(ξ)(ξ, P )

)
[D := D̂] cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P )

∑
D:Set(IP) cast(IP, D, ξ(ms))·Tdom(ξ)(ξ, P ) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P )

Tdom(ξ)(ξ,broadcast(ms).P ) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P )

T(ξ,broadcast(ms).P ) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ T(ξ, P )

The validity of the first transition follows from the first rule of Table 3. The
second one follows from the second rule, and a distributivity property of the
interpretation function � � (see Sect. 3). To use the sos-rule for sum of Table 3
in Step 4, we rewrite the process on the left-hand side using substitution. The
remaining two steps use the presented translation function (Line 1 of Table 4
and Line 2 of Table 5).

The induction step covers all rules that have at least one premise. Out of the
30 cases we present only the proof of

P broadcast(m)−−−−−−−−−→ P ′

ip : P : R R : *cast(m)−−−−−−−−→ ip : P ′ : R

Table 7 allows a1 = {R : *cast(m)} and a2 = {starcast(IP,R,m)}, choosing
D = IP. The induction step is proven by providing a derivation in mCRL2 for
T(ip : P :R) a−→ T(ip : P ′ :R), for all a ∈ A2. First, we analyse the process G.
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cast(IP,R, tm) �cast(IP,R,tm )�−−−−−−−−−−→ �

cast(IP,R, tm)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

(R ∩ IP = R) → cast(IP,R, tm)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

(c′ → cast(D, D′, m)·G(ip,R))[D:=IP, D′:=R, m:=tm ] cast(IP,R,m)−−−−−−−−→ G(ip,R)
∑

D,D′:Set(IP)
m:MSG

c′ → cast(D, D′, m)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

∑
D,D′:Set(IP)
m:MSG

c′ → cast(D, D′, m)·G(ip,R) + S′ cast(IP,R,m)−−−−−−−−→ G(ip,R)

(
∑

D,D′:Set(IP)
m:MSG

c → cast(D, D′, m)·G(ip, R) + S)[ip:=ip, R:=R] cast(IP,R,m)−−−−−−−−→ G(ip,R)

G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

where S is an expression equal to all summands of G except the first one, and
S′ = S[ip:=ip, R:=R]. Moreover, c = (R ∩ D = D′) and c′ = (R ∩ D = D′). We use
‘R’ and ‘IP’ as data values as well as expressions denoting these, so �R� = R
and �IP� = IP.

As for the previous derivation the first two steps follow from the first two
rules of Table 3, using �tm� = m. The following step applies the rule for guard
(sixth rule in Table 3), using �R ∩ IP = R� = true as side condition. As before
we use substitution such that we can apply the sum operator. We then use the
rule of binary choice (third one in Table 3) and substitution again. The final step
applies the recursion rule of mCRL2 (last one in the table).

Since there is only one pair (b1,b2)∈ A with broadcast(m)∈b1 (see
Table 7), T(P ) cast(IP,R,m)−−−−−−−−→ T(P ′), using the induction hypothesis. We combine
this fact with the conclusion of the derivation above.

Induction
hypothesis

T(P ) cast(IP,R,m)−−−−−−−−→ T(P ′) G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

T(P )‖G(ip,R) cast(IP,R,m)|cast(IP,R,m)−−−−−−−−−−−−−−−−−→ T(P ′)‖G(ip,R)

ΓC(T(P )‖G(ip,R)) γC(cast(IP,R,m)|cast(IP,R,m))−−−−−−−−−−−−−−−−−−−−→ ΓC(T(P ′)‖G(ip,R))

ΓC(T(P )‖G(ip,R)) starcast(IP,R,m)−−−−−−−−−−−→ ΓC(T(P ′)‖G(ip,R))

∇V ΓC(T(P )‖G(ip,R)) starcast(IP,R,m)−−−−−−−−−−−→ ∇V ΓC(T(P ′)‖G(ip,R))

T(ip :P :R) starcast(IP,R,m)−−−−−−−−−−−→ T(ip :P ′ :R)

The derivation is straightforward, using the synchronisation rule of Table 3 and
the rules for mCRL2-operators listed on Page 7. This finishes the induction step
for the broadcast-rule. ��
A full and detailed proof can be found in [17].

We have shown that translated processes simulate original processes. We now
turn to the opposite direction.

Theorem 6.2. The relation {(T(P ), P ) | P is an AWN-process} is an Ă -
warped simulation up to ≡, where Ă is the converse action relation of Table 7.
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Similar to Theorem 6.1, the proof is by structural induction. In contrast to the
above proof, the proof of Theorem 6.2 is more complicated. The reason is that the
relation A is a function, whereas Ă is not. As a consequence the individual cases
(base cases and induction steps) contain several case distinctions. For example,
an action labelled cast(�D�, �D′�, �m�) could stem from a broadcast, a groupcast
or a unicast-action in AWN. The action labelled t is even worse: it can stem
from an internal action τ , the action starcast, from a synchronisation uni|¬uni,
etc. Again, the full proof can be found in [17].

Corollary 6.3. The relation {(P,T(P )) | P is an AWN-process} is an Ă -
warped bisimulation up to ≡.

Using this result we are now ready to prove the main theorem.

Theorem 6.4. The relation {(P,T(P )) | P is an encapsulated network expres-
sion in AWN}4 is a bisimulation modulo renaming up to ≡ w.r.t. to the bijective
renaming function f, defined as

f(a) =df

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ if a = τ

deliver(ip, d) if a = ip :deliver(d)
connect(ip′, ip′′) if a = connect(ip′, ip′′)
disconnect(ip′, ip′′) if a = disconnect(ip′, ip′′)
newpkt({ip}, {ip}, newpkt(d , dip)) if a = ip :newpkt(d , dip) .

Given Corollary 6.3, the proof is fairly straightforward. As we have established a
bisimulation between specifications written in AWN and their translated coun-
terparts in mCRL2 we can now use the mCRL2 toolset to analyse safety prop-
erties, because such properties are preserved under bisimulation.

7 Implementation

We have implemented our translation as an Eclipse-plugin, available at http://
hoefner-online.de/ifm18/ with a description in [36]. The project, written in Java,
is based on the principles of Model-Driven Engineering (MDE) [24,33].

MDE efficiently combines domain-specific languages with transformation
engines and generators. The MDE approach aims to increase productivity by
maximising compatibility between systems, via reuse of standardised models;
its basic design principle is sketched in Fig. 2(a). Based on the idea of “every-
thing is a model”, the overall goal is to transform a model A into another model
B. The syntax of a model is usually a domain-specific language (DSL), or in
terms of MDE a metamodel. All metamodels have to conform to the syntax
of a metametamodel—the syntax of a metametamodel can be expressed by the
metametamodel itself. Using a commonly available metametamodel, such as the

4 P is an encapsulated network expression when it has the form [M ].

http://hoefner-online.de/ifm18/
http://hoefner-online.de/ifm18/
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(a) MDE Basics (b) Eclipse Plugin

Fig. 2. Implementing AWN to mCRL2

one introduced by the Object Management Group [34], makes metamodels com-
patible. Abstract transformation rules defined between metamodels are used to
transform models.

In our setting Model A is an AWN-specification, and Model B its translated
counterpart in mCRL2. The metamodels A and B correspond to the syntax of
the two process algebras.

To ensure usability and compatibility, our implementation builds on exist-
ing MDE frameworks and techniques. We use the Eclipse Modeling Framework
(EMF) [35], which includes a metametamodel (Ecore) for describing metamodels.
The open-source framework Xtext [4] provides infrastructure to create parsers,
linkers, and typecheckers. By using Eclipse and Xtext, we are able to provide
a user-friendly GUI; see Fig. 2(b). To define our model transformation we use
QVT (Query/View/Transformation) [27,28]; in particular the imperative model
transformation language QVTo.

For development purposes and as a sanity check we implement and translate
the leader election protocol, presented in Sects. 2 and 3. Both the input and
output are small enough to be manually inspected and analysed.

We use the mCRL2 toolset—in particular the provided model checker—to
determine whether the nodes of a 5-node network eventually agree on a leader.
In terms of CTL [9], we want to check

A� (ϕlips) and A� A� (ϕlips),
where ϕlips is a propositional (state) formula checking the equality of the val-
ues assigned to the nodes’ variables lip. The former equation states that at
some point in time all nodes agree on a common leader; the latter strength-
ens the statement and requires that the nodes agree on a leader permanently.
The mCRL2 toolset only checks formulas written in the modal μ-calculus [32],
or (generalised) Hennessy-Milner logic [19]; so we have to translate the above
formula. Moreover, because state variables are hidden from direct analysis by
mCRL2, we modify the protocol by including an extra, otherwise inert, action
trace(ip, lip). It reveals the current choice of leader of a particular node, when
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added as a ‘self-loop’ to Process 1. The property can then be specified by requir-
ing that all traces that exclude trace-actions eventually can only do exactly one
trace action for each ip with matching values for the lip argument. As this is
the case, the protocol is correct.

We now analyse a variant of the leader election protocol in which the operator
≥ in Process 2 (Line 1) is replaced by >, and < by ≤. Interestingly, the property
under consideration does not hold. We leave it to the reader to find the reason.

8 Case Study: The AODV Routing Protocol

To further test our framework, we translate the Ad hoc On-Demand Distance
Vector (AODV) routing protocol [30], which two of the authors together with
colleagues formalised in AWN before [12,16].

AODV is a reactive protocol, i.e., routes are established on demand, only
when needed. It is a widely-used routing protocol designed for Mobile Ad-hoc
Networks (MANETs) and Wireless Mesh Networks (WMNs). The protocol is
one of the four protocols standardised by the IETF MANET working group,
and forms the basis of new WMN protocols, including the Hybrid Wireless Mesh
Protocol (HWMP) in the IEEE 802.11s wireless mesh network standard [22].

The AODV routing protocol is specified in the form of an RFC [30], which
is the de facto standard. However, it has been shown that the standard contains
several ambiguities, contradictions, and cases of underspecification [12].

To overcome these deficiencies, two of the authors, together with other col-
leagues, obtained the first rigorous formalisation of the AODV routing proto-
col [12,16], using the process algebra AWN. The specification consists of about
150 lines of AWN-code, split over seven processes, and around 35 functions
working on a customised data structure, including routing tables.

The specification, which is available online, is translated into mCRL2, using
our framework. It is not the purpose of this paper to perform a proper analysis of
this protocol; we merely illustrate the potential of our framework, namely that
it can be used to analysis protocols used in modern networks.

Using the translated specification, we analyse a very weak form of the
packet delivery property [12], which, in generalised Hennessy-Milner logic, is
described as

[true∗·trace(newpkt(dip, data))] [¬(deliver(dip, data)∗] 〈true∗〉
〈deliver(dip, data)〉 true .

The property states that whenever a new packet intended for dip is injected to
the system, modelled by the action labelled trace(newpkt(dip, data)), then, as
long as it has not been delivered yet, it remains possible that this very packet will
be delivered in the future. AODV uses a series of control messages to establish
a route between source and destination before actually sending the data-packet.
Similar to the leader election protocol, the AODV specification is modified by
inserting a trace-action that makes the detection of a newpkt-submission to the
AODV process visible to mCRL2.
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We model a static linear network of three nodes and manually insert two
new packets. The mCRL2 toolset checks the packet-delivery property against
the given network, and detects a counter example showing that AODV con-
trol messages can interfere. Thus, the packet-delivery property does not hold,
confirming an analysis done by pen-and-paper [12].

9 Conclusion

In this paper we have developed and implemented a translation from the process
algebra AWN into the process algebra mCRL2. The translation allows an auto-
matic analysis of AWN-specifications, using the sophisticated toolset of mCRL2.
In contrast to many approaches that transform one formalism into another, we
have proven that the translation respects strong bisimilarity (modulo renam-
ing). Therefore we guarantee that all safety properties can be checked on the
translated specification and that the (positive/negative) outcome carries over to
the AWN-specification. Besides, establishing the relationship in a formal way
helped us in finding problems in our translation that we otherwise would have
missed. For example, in an early version of the translation function we missed
the introduction of a fresh variable y when translating an assignment (Line 7 of
Table 4).

We have used our framework, which is available online, to analyse a simple
leader election protocol, as well as the packet-delivery property of the AODV
routing protocol.

Directions for future work are manifold. (a) Having tools for automated anal-
ysis available, we can now analyse further protocols, such as a fragmentation
and reassembly protocol running on top of a CAN-bus [15]. (b) T-AWN is
an extension of AWN by timing constructs. [7] Since mCRL2 supports time
as well, it would be interesting to extend our translation of Sect. 5. Since the
timing constructs of T-AWN are fairly complex, this may be a challenging
task; in particular if the result on strong bisimulation should be maintained.
(c) We want to make use of more highly sophisticated off-the-shelf tools, such as
Isabelle/HOL and Uppaal. As our framework follows the methodology of Model-
Driven Engineering, implementing translations into other formalisms should be
straightforward—proving a bisimulation result is a different story, though. (d) It
has been shown that bisimulations do not preserve all liveness properties. [14]
We want to come up with a concept that preserves both safety and liveness
properties, followed by an adaptation of our translation.
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15. van Glabbeek, R.J., Höfner, P.: Split, send, reassemble: a formal specification of
a CAN bus protocol stack. In: Hermanns, H., Höfner, P. (eds.) Models for for-
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