
Attack Tree Construction and Its
Application to the Connected Vehicle

Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M. Abdelaziz Elaabid

Abstract Remote connectivity of today’s and future cars increases their capabilities
of autonomy and safety, but also their attack surface, as reported by several research
papers. In the automotive domain, the security has a direct impact on the user’s
safety. Thus, the management of risk is becoming the main concern of automotive
manufacturers, especially for the future fully connected and autonomous cars.
A possible way to quantify the overall risk of a system is the systematic construction
of attack graphs and attack trees. These formalisms are presented as one of the
possible solutions in the new Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems (SAE-J3061). In this chapter we propose to use graph transformation to
formally model the car architecture and its state evolution in order to study cyber-
physical attacks against it. The resulting attacks are converted into attack trees which
are used to estimate the overall risk of the system. Consequently, it becomes possible
to study improvements while building a more secure architecture. The proposed
method is designed to support the conceptual phase of the vehicle’s cyber-physical
system. We illustrate the method on a small pedagogical example to show how it is
possible to prove its efficiency.

K. Karray (�)
Télécom ParisTech, Paris, France
e-mail: khaled.karray@telecom-paristech.fr

J.-L. Danger
Télécom ParisTech, Paris, France

Secure-IC S.A.S., Cesson-Sévigné, France
e-mail: jean-luc.danger@telecom-paristech.fr

S. Guilley
Télécom ParisTech, Paris, France

Secure-IC, Paris, France

École normale supérieure, Paris, France
e-mail: sylvain.guilley@telecom-paristech.fr; sylvain.guilley@secure-ic.com

M. Abdelaziz Elaabid
PSA-GROUPE, Paris, France
e-mail: abdelaziz.elaabid@mpsa.com

© Springer Nature Switzerland AG 2018
Ç. K. Koç (ed.), Cyber-Physical Systems Security,
https://doi.org/10.1007/978-3-319-98935-8_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98935-8_9&domain=pdf
mailto:khaled.karray@telecom-paristech.fr
mailto:jean-luc.danger@telecom-paristech.fr
mailto:sylvain.guilley@telecom-paristech.fr
mailto:sylvain.guilley@secure-ic.com
mailto:abdelaziz.elaabid@mpsa.com
https://doi.org/10.1007/978-3-319-98935-8_9


176 K. Karray et al.

1 Introduction

During the last 15 years, the automotive domain has been subject to many develop-
ments that allow car manufacturers to enhance most of features by digital processing
assistance. These changes helped to build more robust, safer, more comfortable, and
user-friendly cars. Later developments introduced the car to remote connectivity
technologies that allowed even more advanced functionality to be integrated in the
car. Wi-Fi and Bluetooth connectivity to smartphone and cellular connectivity offer
a plethora of possibilities for the user. Unfortunately these technologies exposed the
car to the outside world, and like every connected device, the car became one of
the targets for hackers [6, 15]. Motivation of such hackers could go from a simple
privacy violation where the goal is to steal private information from the car owner
or the car manufacturer to a more dangerous scenario that could threaten user safety.

Since the car used to be a closed system, hypothesis about some trusted domains
that used to be true in a not connected car is no longer valid, especially when it
comes to the internal communication buses. An attacker may leverage these trust
relations along with some code vulnerabilities to retrieve, compromise, and steal
private information or, even worse, take control over the entire vehicle or some of
its functionalities [4, 6, 15].

In fact, in the last years, some researchers began to report multiple important
issues related to the design and implementation of the car architecture. In [8] an
early work of Hoppe et al. pointed out the threats on in-vehicle bus networks based
on characterizations carried out on a simulated bench. These conclusions have been
further confirmed later in [12] and [4] that performed CAN frame injections on a
real vehicle but with direct physical access to the communication bus of the car.
In a more advanced attack, Miller et al. reported in [15] that the physical access
to the vehicle is not necessary if an attacker can find some code vulnerability that
allows him to reach these communication buses using another wireless attack vector.
In general, the recent works performed in this area have shown that combinations
of exploits and mis-configurations are the typical means by which an attacker
breaks into a car communication bus. Facing this increasingly growing threat, car
manufacturers have to guarantee a certain security level of the equipment embedded
in the automobile. The obvious approach to this problem is to conduct a security
assessment study. The goal of the security assessment is to identify the assets and
the associated attack scenarios regarding availability, integrity, and confidentiality.
There are available methods like EBIOS and TVRA that could be adapted to
conduct such a study in the automotive domain. Ultimately the study will help the
manufacturer decide where to best spend the security budget. To do so, the risk is
evaluated relatively to each attack scenario based on its impact and its likelihood.

Risk =
∑

i

Impact (sci)× Pocc(sci) where



Attack Tree Construction and Its Application to the Connected Vehicle 177

• {sci} is the set of identified attack scenarios.
• Impact is a function that evaluates the impact of a given scenario.
• Pocc is the likelihood or the probability of occurrence of the given scenario.

While the impact of the attack scenario has to be defined by the security experts,
determining what attack scenarios are likely to occur is a little more complex and
strongly depends on the given architecture. Eventually security experts have to
imagine every possible way the attacker can exploit the system in order to reach
her objective. A fairly good way to model these attacks and to document them is to
use attack trees or the attack graphs.

Attack trees have been introduced in [21] as a useful way to document and
understand attacks on a given system and most importantly is a way of making
decisions about how to improve the security of the target system. The root node in
an attack tree represents the attack goal (or attack scenario), and leaf nodes represent
basic attacks. Each node in the tree is either an [AND] node or an [OR] node. An
[AND] node has child nodes that represent different steps of achieving the goal,
and an [OR] node has child nodes that represent different ways of achieving the
goal. Attack graphs are also a good way to document attacks. They are composed
of vertices (that represent the system states) and edges (that represent attacks
performed on the system).

Attack trees are well designed to support risk assessment studies [13]. Never-
theless, the elaboration of attack trees can be a tedious task and error prone for
large systems. This is why automated techniques to generate such representations
of attacks have been proposed.

1.1 Attack Trees in the Automotive Domain

In the automotive domain, little work has been conducted in such direction. To
the best of our knowledge, the work of Salfer et al. [19, 20] is the only one
that proposes such approach. In [20], Salfer et al. present automated attack tree
generation as a reachability problem of assets inside the cyber-physical architecture
of the vehicle. Nevertheless, the proposed model focuses on scalability issue using
heuristic techniques and does not address the exhaustivity of the attack paths.

Lugou et al. [14] and Apvrille et al. [3] use SysML-Sec modeling language to
model safety and security aspects of the car architecture and formally prove safety
(with Uppaal) and security (with ProVerif) properties. In [2] Apvrille et al. explain
how to use an input attack graph modeled with SysML-Sec for the verification of a
system. The issue of how to create such an attack graph is not addressed; in other
words the attack scenarios are not automatically generated and need to be manually
fed to the tool.



178 K. Karray et al.

1.2 Attack Tree Generation

In contrast automated generation of attack trees has been addressed in other
domains, especially in network security and enterprise security [1, 9, 11, 17].

In [17] Phillips et al. build an attack graph based on topology and vulnerability
information; they also use the attack graph to identify attack paths with high
probability or low cost. In [18] Ritchey et al. used a model checker to provide
single attack scenarios to depict vulnerabilities due to the configuration of various
hosts in a network. The pieces of information about the network are fed to a model
checker and then assert that an attacker cannot acquire a given privilege on a given
host. The model checker provides a counterexample (the attack steps) in case the
assertion is false. As an extension of this work, in [22] Sheyner et al. present
an automated method to analyze a network of hosts with known vulnerabilities
and produce an attack graph that depicts all possible ways for the attacker to
reach his goal. Later works focused on reducing the complexity of the approaches.
In [1] Ammann et al. propose a scalable attack graph generation based on the
monotonicity assumption (an exploit never invalidates another exploit). In [16] Ou
et al. introduced a logic-based approach for network security analysis. The method
relies on inference rules implemented on a modified version of the XSB inference
engine to depict all attack paths combining vulnerabilities in a network. In [9] Ingols
et al. use network configuration data to automatically compute network reachability,
classify vulnerabilities, and build an attack graph used to recommend actions
to improve network security. In [11] Jajodia et al. use topological information
to analyze vulnerability dependencies and assess the impact of individual and
combined vulnerabilities on overall security, then identify key vulnerabilities, and
provide strategies for protection.

The problem has also been investigated for enterprise security domain [5, 10].
The goal is to implement enterprise security policy against possible “insider attack”
or attacks that leverage certain “trust” relations and social interactions between
actors (employees). Thus efforts focused on modeling trust relations and asset
mobility. In [10] Ivanova et al. present a general framework of a model for enterprise
security and how to transform this model to an attack tree that exploits possible trust
relations between actors. In [5] only the modeling aspect of the problem is discussed
and focuses also on trust relations and asset mobility.

Those generation techniques rely on models that are not suited for the automotive
domain. However the general approach could be adapted. This approach is more or
less the same for all of the presented works : first the real system is abstracted in
a model that captures only the important aspects. Second the modeled system is
expressed using the language of an inference engine (model checker, Horn clauses,
etc.). It is then processed by the inference engine whose output is a set of possible
attacks to be analyzed.



Attack Tree Construction and Its Application to the Connected Vehicle 179

1.3 Contributions

In this chapter we first propose a method to model elements of the cyber-physical
architecture of the vehicle using graphs. The model captures the security policy
implemented as well as vulnerability information and access rights. Besides we
consider an attacker model as a set of attacks originating from all the attack vectors
(short range, long range, and indirect physical access). The system and attacker are
modeled with behavioral rules using graph transformation system.

Second, we use the model to generate possible attack paths (combinations of
actions) that can be used by the attacker to drag the system into a vulnerable state.
Thus the generated attacks are more detailed and we can capture more information
about the possible attacker actions. The simulation of this behavioral model will
allow us to find all vulnerable states and to retrace attacker actions that allowed him
to reach it. Using this information we generate an attack tree that summarizes all
possible steps that allow the attacker to reach his goal.

Based on such model, we can try to answer questions like:

• Is a vulnerable configuration/state reachable from an initial state? In other words
is an attack scenario achievable on the proposed architecture?

• Which sequence of basic attacks the attacker has to perform in order to reach
such vulnerable state?

In what follows, Sect. 2 gives some preliminary notions and definitions in the
automotive domain and introduces the formal modeling language used. In Sect. 3
we explain how to generate attack scenarios. Section 4 shows how to deduce the
attack tree necessary risk assessment. The small example introduced in Sect. 2.2
helps the reader understand the methodology throughout the chapter. And finally
Sect. 6 concludes the paper.

2 Background and Definitions

In this section we introduce to the reader some notions relative to the automotive
domain that will be used in the reminder of the article, we introduce the modeling
language that we used to build the model, and finally we present a small example
that we will use in the following sections to illustrate the different steps.

2.1 Automotive Architecture

The cyber-physical architecture of the car is composed of multiple components that
could be categorized in four main categories:

• Sensors: these are components whose role is to report information about the
state of the vehicle (speed, closed/open doors, break/acceleration,etc.) and its



180 K. Karray et al.

surroundings (vision radars, . . . ). The data that produced by the sensors are sent
to Electronic Control Units (ECUs) to be processed.

• Actuators: these are the components that transform commands coming from
different ECUs into actions (engine, wheel orientation, . . . )

• ECUs: short for Electronic Control Units that are the most important part of the
architecture. In general they are composed of hardware electronic components
(memories, microcontrollers, etc.) that have a processing capacity and that
embed algorithms (software) needed to ensure the control of every single
functionality inside the vehicle from breaking to air-conditioning and more
advanced functionality that ensure the user’s comfort (e.g., Internet connectivity,
smart applications, etc.. . . )

• Communication buses: they are an important part of the architecture as they
represent the main medium of communication between the ECUs. Multiple
technologies of buses could be found in today’s cars, e.g., CAN, FlexRay,
Ethernet, and others. Each technology has some characteristics that justify
its presence between certain ECUs: robustness, throughput, etc. For historical
reasons and up until lately, these technologies (CAN protocol being on top of
the list) did not implement security mechanisms as these communications were
assumed to be “trusted.”

Some of the ECUs inside this architecture implement advanced services that open
the whole architecture to the outside world. Examples of these services are internet
connection, Bluetooth, Wi-Fi for smartphones, etc. Given the fact that automotive
architecture used to be a closed system and that internal communication buses still
used were not designed with security in mind, the new attack vectors expose the
architecture to sophisticated attacks that leverage these “trusted” relations.

2.2 Architectural Graph

In this section we identify key elements of the automotive architecture introduced in
Sect. 2.1 and the relations between them. Using these elements, we model the cyber-
physical system of the car using graphs: the main idea is to model communication
buses, hardware components of the ECUs (including the sensors and actuators), and
the software components as graph nodes. Arcs in the graph model relations between
the nodes. Figure 1 represents an example of an architectural graph.

• Service node:
Automotive services are built around the notion of function blocks, which

emphasizes the connection of inputs and outputs to core software modules. Those
software modules are then mapped to different ECUs. Automotive software
frameworks such as AUTOSAR are particularly designed to support such
architecture. We base the model around this concept. A service is modeled as
a node in the graph. To communicate data, services use read and write access
to shared memory or to/from network hardware, sensors and actuators. These



Attack Tree Construction and Its Application to the Connected Vehicle 181

ECU1

HW
CAN

HW
CPU

HW
Sensor

S1

R

W

ECU2

HW
CAN

HW
CPU

HW
Screen

S2

W

R

ECU3

HW
CAN

HW
CPU

HW
Cellular

S3
{vul}

RWRW

AttackerHW
OBD

Comm
CAN

Comm

Speed

Fig. 1 Small example

access rights are modeled with arcs directed to the corresponding hardware
elements. Besides access rights, we also capture the vulnerability information
of the modeled service.

• Hardware node:
A hardware node is a special node that abstracts a hardware component: it

is used to represent sensors, actuators, memory components, communication
controllers, etc. Software nodes have access rights over the hardware nodes.

• Communication node:
A communication node models communication mechanisms between hard-

ware nodes that are used to exchange data. It is designed to model a bus
communication between multiple hardware nodes as well as a point-to-point
communication between only two hardware nodes.

• Data node:
A data node models a data asset that can be located on a service node, a

hardware node, or a communication node.

Running Example

To clarify the model, let us consider the example of Fig. 1. In this example we
propose an architecture composed of three ECUs connected to the same CAN bus.
The CAN bus is connected to the OBD port: ECU-1 contains a CAN transceiver that
allows it to communicate over the CAN bus, a processing unit and a speed sensor.



182 K. Karray et al.

On the CPU runs a service whose job is to make the speed acquisition and send it
over the CAN bus. This service has a read access to the sensor and a write access to
the CAN transceiver. On ECU-2 we have also a CAN transceiver, a processing unit,
and a screen. On this processing unit runs a service whose job is to read the speed
information from the CAN bus and to pass it to the screen to be displayed. Thus
it has a read access over the CAN transceiver and a write access over the screen
hardware. ECU-3 is connected to both the CAN bus and the cellular network. We
suppose that on the CPU of this ECU runs a vulnerable service that has a read/write
access to the cellular hardware and a read/write access to the CAN transceiver. ECU-
1 is supposed to sense the speed and send it over the CAN bus to be displayed by
ECU-2 over the screen.

2.3 Graph Transformation

In this section we briefly introduce graph transformation system (GTS) as a rule-
based modeling approach that allows to capture the structural as well as behavioral
aspects of a system. We use it as the underlying formal modeling language
supporting the methodology.

A graph transformation system is a formal approach for structural modifications
of graphs via the application of transformation rules. A graph transformation system
is thus a tuple (G,R) where G is a graph and R is a set of transformation rules.
A typed GTS is a GTS where each element of the graph is assigned a type.
Transformation rules are then type preserving. We consider typed graphs. A graph
transformation rule consists of a left-hand side graph L, a right-hand side graph
R, a Negative Application Condition (NAC), and a mechanism specifying how to
transform L into R when the NAC is satisfied.

In general we model three types of transformation rules:

• Transformation rules to describe the behavior of services (one or multiple rules
for each service). This rule is conditioned by the availability of the input data.
We assume that as soon as the input data are all available, the transformation
rule can be triggered. The effect of this transformation rules will be to delete
the input data (consumed by the service) and to create the output data with the
correct output type and made available for other services. Some transformation
rules may add an attribute to the input data node when there is no need to delete
and create another data “type.”

• Transformation rules to describe the normal behavior of the hardware com-
ponents. For each type of hardware node, we define a behavioral model. For
instance, a memory node used to store data accepts a data node only from a
service that has a write (w) access right on it and also can transfer data only to a
service that have a read (r) access right on it.

• Transformation rules to describe the attacker actions: the behavior of the attacker
is modeled with transformation rules that represent basic attacks or actions that
the attacker can perform on the system to interact with it.



Attack Tree Construction and Its Application to the Connected Vehicle 183

Example

As an example let us introduce transformation rules that we model for the
architectural graph (Fig. 1) of the example introduced above.

1. To describe the behavior of the speed-acquisition service (S1), we implement the
transformation rule of Fig. 2. This rule means that if the speed data is available,
the speed-acquisition service (S1) will read a speed data from the speed sensor.

The transformation rule of Fig. 3 means that is the speed data is available on
the speed-acquisition service (S1) and that service has the write access right to
the CAN hardware; then the service can send the data the CAN hardware.

2. To describe the behavior of the CAN hardware, we implement the transformation
rule of Fig. 4. Note that at this stage, it does not matter if the data is a speed data
or not. This is mainly because this behavioral rule is designed to send any data

Fig. 2 Speed-acquisition rule
(R1)

LHS - RHS

HW
CPU

HW
Sensor

S1

R

Speed

=⇒

HW
CPU

HW
Sensor

S1

R

Speed

Fig. 3 Speed send to CAN
rule (R2)

LHS - RHS

HW
CAN

HW
CPU

S1

W

Speed

– =

HW
CAN

HW
CPU

S1

W

Speed

–

Fig. 4 CAN send rule (R3) LHS - RHS

HW
CAN Data

Comm
CAN

=

HW
CAN

Comm
CAN

Data



184 K. Karray et al.

LHS - RHS

Attacker HW
CAN

Data

Connected-to

=⇒
Attacker HW

CAN

Data Data

Connected-to

Fig. 5 Example of attacker rule

on the CAN bus. The rule is also common to all CAN hardware as opposed to
some rules that are sometimes specific to one in particular.

3. To describe the behavior of the attacker, we model transformation rules that gives
her the ability to connect to any communication link and to read and write data
on that link. She is also able to exploit vulnerabilities and modify the collected
data and replay it. The transformation rule (Fig. 5) could be read as follows: if
the attacker (Att) is connected to the CAN network, and if there is a data packet
transiting on the CAN network, then the attacker can copy the data.

3 Attack Graph Generation

Given a start graph, and a set of transformation rules, the recursive application of the
transformation rules on the start graph will generate a state space which represents
all possible states that could be generated from the set of transformation rules. In the
state space, each state represents a graph, and a transition between two states (source
and destination) represents a rule application that allowed the transformation of the
graph from the source state to match that of the destination state. For instance, the
application of the transformation rules of Figs. 2 and 3 for the modeled example of
Fig. 1 will produce the state space of Fig. 6.

The modeled rules are a combination of attacker actions (or basic attacks)
and rules that describe the behavior of the modeled elements. The produced state
space contains transitions that model both attacker steps and element behavior. By
definition of the attack graph, the state space contains the attack graph.

Given a particular attack scenario (attacker objective), we have to make a query to
find states in the state space where the scenario is realized (the attacker has reached
its objective). Thus queries allow to detect a vulnerable state. They are expressed
also in the form of graph. Figure 7 gives an example of a query that allows us to
detect if there is a state of the system where the screen displays a modified speed.
In practice we model the architectural graph and transformation rules using a tool
named GROOVE [7]. This tool allows the transformation of the input model and
produces the associated state space.

In the next section, we will process this state space to capture only attacker
actions in the form of an attack tree.



Attack Tree Construction and Its Application to the Connected Vehicle 185

State 1

State 2

State 3

R1

RR2

. . .

Ri

. . .

Rj

. . .

Rk

. . .

Rl

. . .

Rm

Fig. 6 Application of transformation rules (state space)

HW
CPU

HW
Screen

Speed
modified

Fig. 7 Query: false speed

4 Attack Tree Generation

The generated state space is quite complex and large (for the introduced small
example, we have 768 states and 2860 transitions). Besides it includes transitions
that describe the behavior of the system as well as transitions that describe basic



186 K. Karray et al.

attacks performed by the attacker. A convenient way to reduce the information is
to transform this state space into an attack tree that only combines attacker actions.
The attack tree procedure will allow us to discard all the transitions that are not basic
attacks and to output, in the form of a tree, a compact representation of complex
attacks. Based on the attack graph (state space) generated in the previous section, we
follow a simple way to transform this attack graph into an attack tree. Let (G,R) be
an attack graph with a start state S0. Let Sv be a vulnerable state of the system (i.e.,
a state where a security breach has been detected). The security breach detected by
that state is placed on the root of the attack tree. The goal is to collect all sequences
of transformations (attacker actions only) that led to that state. We explore the attack
graph from the target state (Sv) backward to the start state: each time we encounter
a state with more than one incoming edges, we place an [Or] node in the attack
tree (meaning that there is more than one way to reach that state), and each time we
encounter a state with only one incoming edge, we place an [And] node in the attack
tree. And finally each time we encounter a state with more than one outgoing edges,
we place a sub-tree and check if we already computed that sub-tree. Sub-trees are
attack trees that are present more than once inside a single attack tree (Fig. 8).

Using the example introduced in Fig. 1, we make a query (Fig. 7) to detect
vulnerable states where the attacker can force the system into a state where the

Attack Graph Attack Tree

s0

s1

s2

sv

r1

r2 r3

r4

Or

And And

r1 r4 r3r2

p1 = r1 ∧ r4
p2 = r2 ∧ r3 Ob j = p1 ∨ p2

s0

s1

s2

s3

sv

Query=True

r1

r2 r3

r4

r5

And

r5 Or

And And

r1 r4 r3r2

p1 = r1 ∧ r4 ∧ r5
p2 = r2 r3 r5 Ob j = p1 p2 = r5 ((r1 r4) (r2 r3))

Fig. 8 Example of attack graph to attack tree transformation



Attack Tree Construction and Its Application to the Connected Vehicle 187

Objectif : False − Speed Or And

And

And

Connect − OBD

Eavsdrop − OBD

Connect − cellular

Exploit − Service − S3

Replay − speed − cellular

Exploit − read − S3 − cellular

Exploit − write − S3 − CAN

}Attack-1

Connect − OBD

Eavsdrop − OBD

Replay − data − OBD
}Attack-2

Connect − cellular

Exploit − Service − S3

Exploit − read − S3 − CAN

Exploit − write − S3 − cellular

Replay − speed − cellular

Exploit − read − S3 − cellular

Exploit − write − S3 − CAN

Attack-3

.

Fig. 9 Attack tree automatically produced from input model Fig. 1

screen displays a modified speed. The results produced by the methodology are
shown in Fig. 9.

The attack tree shows that the analysis of the modeled architecture identified
three attacks.

• Attack-1: where the attacker connects to the OBD port, eavesdrops on the CAN
bus to dump the speed frame, then connects to the vehicle from the cellular
network, exploits an exposed vulnerable service (S3) that has a write access on
the CAN controller, and then replays the data

• Attack-2: where the attacker connects to the OBD port, eavesdrops on the CAN
bus to dump the speed frame, and then replays it from the OBD port on the same
CAN bus.

• Attack-3: where the attacker only operates from the cellular, connects to the
cellular, exploits the exposed service, and then uses that service to eavesdrop
on the CAN hardware to dump and then replay the speed frame

5 Countermeasure

We are interested in attack-3 where the attacker only operated from the cellular
network attack vector. This attack seems important as it does not require a physical
access to the vehicle. Analyzing the steps of the attack, if we can prevent at least



188 K. Karray et al.

Objectif : False − Speed Or And

And Connect − OBD

Eavsdrop − OBD

Replay − data − OBD

Attack-2

Connect − OBD

Eavsdrop − OBD

Connect − cellular

Exploit − Service − S3

Replay − speed − cellular

Exploit − read − S3 − cellular

Exploit − write − S3 − CAN

Attack-1

Fig. 10 Attack tree automatically produced from Architecture-1

one of the basic attacks from happening, we can prevent the whole attack from
happening as it is an [And] node. It seems possible to either deploy a patch for
the vulnerable service or to revoke the read access right of the service to the CAN
controller. As a short-term solution, we opt for the second choice. Rerunning the
simulation with the modified architecture produces the attack graph presented in
Fig. 10.

We can see that now there are only two attack options for the attacker, since the
service does not have a read access right to the CAN controller; the third attack
scenario is no longer valid and hence not reported in the attack tree. The overall
impact of the objective is affected because through the changes we made, we were
able to block the attack path.

6 Conclusion

The chapter presents a modeling methodology using graph transformation to
construct attack trees in order to analyze attacks to a connected vehicle. The attack
tree synthesizes all possible attack paths with respect to the model and, thus, serves
as the basis for further analysis. Impact quantification and sensitivity analysis can
be conducted given such attack tree whose goal is to improve the overall security
of an automotive architecture during design phase. The described methodology has
nevertheless certain limitations due to required input data, which are:

• A structural and behavioral model of the service nodes
• A structural and behavioral model for hardware components
• An attacker model

From the car manufacturer point of view, the fact that the modeling methodology
requires architectural information of service nodes can be considered as a limitation
as some software architecture and implementation tasks are outsourced to other
companies.



Attack Tree Construction and Its Application to the Connected Vehicle 189

References

1. P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based network vulnerability analysis,
in Proceedings of the 9th ACM Conference on Computer and Communications Security (ACM,
New York, 2002), pp. 217–224

2. L. Apvrille, Y. Roudier, Sysml-sec attack graphs: compact representations for complex
attacks, in International Workshop on Graphical Models for Security (Springer, Berlin, 2015),
pp. 35–49

3. L. Apvrille, L. Li, Y. Roudier, Model-driven engineering for designing safe and secure embed-
ded systems, in Architecture-Centric Virtual Integration (ACVI), 2016 (IEEE, Piscataway,
2016), pp. 4–7

4. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A.
Czeskis, F. Roesner, T. Kohno, et al., Comprehensive experimental analyses of automotive
attack surfaces, in USENIX Security Symposium, San Francisco (2011)

5. T. Dimkov, W. Pieters, P. Hartel, Portunes: representing attack scenarios spanning through the
physical, digital and social domain, in Joint Workshop on Automated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security (Springer, Berlin, 2010), pp. 112–129

6. I.D. Foster, A. Prudhomme, K. Koscher, S. Savage, Fast and vulnerable: a story of telematic
failures, in WOOT’15 Proceedings of the 9th USENIX Conference on Offensive Technologies
(2015)

7. Groove: graphs for object-oriented verification. http://groove.cs.utwente.nl/
8. T. Hoppe, S. Kiltz, J. Dittmann, Security threats to automotive can networks–practical

examples and selected short-term countermeasures, in International Conference on Computer
Safety, Reliability, and Security (Springer, Berlin, 2008), pp. 235–248

9. K. Ingols, R. Lippmann, K. Piwowarski, Practical attack graph generation for network
defense, in 22nd Annual Computer Security Applications Conference, 2006. ACSAC’06 (IEEE,
Piscataway, 2006), pp. 121–130

10. M.G. Ivanova, C.W. Probst, R.R. Hansen, F. Kammüller, Transforming graphical system
models to graphical attack models, in International Workshop on Graphical Models for
Security (Springer, Berlin, 2015), pp. 82–96

11. S. Jajodia, S. Noel, Topological vulnerability analysis, in Cyber Situational Awareness
(Springer, Berlin, 2010), pp. 139–154

12. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, et al., Experimental security analysis of a modern automobile, in
2010 IEEE Symposium on Security and Privacy (SP) (IEEE, Piscataway, 2010), pp. 447–462

13. R. Kumar, E. Ruijters, M. Stoelinga, Quantitative attack tree analysis via priced timed
automata, in International Conference on Formal Modeling and Analysis of Timed Systems
(Springer, Berlin, 2015), pp. 156–171

14. F. Lugou, L.W. Li, L. Apvrille, R. Ameur-Boulifa, Sysml models and model transformation
for security, in Conferénce on Model-Driven Engineering and Software Development (Model-
sward’2016) (2016)

15. C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle. Black Hat USA
(2015)

16. X. Ou, S. Govindavajhala, A.W. Appel, Mulval: a logic-based network security analyzer, in
USENIX Security (2005)

17. C. Phillips, L.P. Swiler, A graph-based system for network-vulnerability analysis, in Proceed-
ings of the 1998 Workshop on New Security Paradigms (ACM, New York, 1998), pp. 71–79

18. R.W. Ritchey, P. Ammann, Using model checking to analyze network vulnerabilities, in SP’00
Proceedings of the 2000 IEEE Symposium on Security and Privacy (IEEE, Piscataway, 2000),
pp. 156–165

19. M. Salfer, C. Eckert, Attack surface and vulnerability assessment of automotive electronic con-
trol units, in 2015 12th International Joint Conference on e-Business and Telecommunications
(ICETE), vol. 4 (IEEE, Piscataway, 2015), pp. 317–326

http://groove.cs.utwente.nl/


190 K. Karray et al.

20. M. Salfer, H. Schweppe, C. Eckert, Efficient attack forest construction for automotive on-board
networks, in International Conference on Information Security (Springer, Berlin, 2014), pp.
442–453

21. B. Schneier, Attack trees. Dr. Dobbâs J. 24(12), 21–29 (1999)
22. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.M. Wing, Automated generation and analysis

of attack graphs, in 2002 Proceedings IEEE Symposium on Security and Privacy (IEEE,
Piscataway, 2002), pp. 273–284


	Attack Tree Construction and Its Application to the ConnectedVehicle
	1 Introduction
	1.1 Attack Trees in the Automotive Domain
	1.2 Attack Tree Generation
	1.3 Contributions

	2 Background and Definitions
	2.1 Automotive Architecture
	2.2 Architectural Graph
	Running Example

	2.3 Graph Transformation
	Example


	3 Attack Graph Generation
	4 Attack Tree Generation
	5 Countermeasure
	6 Conclusion
	References


