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Abstract Modern cyber-physical systems rely on dependable communication
channels to accomplish cooperative tasks, such as forming and maintaining a
coordinated platooning configuration in groups of interconnected vehicles. We
define and study a class of adversary attacks that tamper with the temporal
characteristics of the communication channels, thus leading to delays in the signals
received by certain network nodes. We show how such attacks may affect the
stability of the overall interconnection, even when the number of compromised
channels is limited. Our algorithms allow us to identify the links that are inherently
less robust to this class of attacks and to study the resilience of different network
topologies when the attacker goal is to minimize the number of compromised
communication channels. Based on our numerical results, we reveal a relation
between the robustness of a certain network topology and the degree distribution of
its nodes.

1 Introduction

Networks of cyber and physical agents are broadly employed across diverse engi-
neering applications to model critical infrastructures such as transportation systems
and power grids [1, 2]. The increased coupling between physical components and
cyber layers oftentimes comes at the expense of vulnerabilities and security weak-
nesses. Several real-world incidents and recent research papers have highlighted
the vulnerabilities of these infrastructures on both their physical and cyber layers
[3–6]. The available literature on cyber-physical system security has mainly focused
on two categories of attacks: deception and denial of service. Deception attacks
compromise the integrity of the data exchanged across the network and are cast by
altering the behavior of sensors, actuators, and communication channels. On the
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other hand, denial-of-service attacks compromise the availability of resources by,
for instance, jamming the communication channels.

Yet, an aspect that critically affects the operation of several classes of cyber-
physical systems is the indirect effect of non-ideal communication channels that
can introduce timing aberrations in the signals exchanged among their nodes.
Timing aberrations can be the indirect result of hardware faults or can be the
effect of intentional attacks. For instance, an adversary may temporarily jam
communication channels with the goal of delaying the transmitted signal streams
while maintaining unaltered the information enclosed in the packets. Although this
action does not prevent information from being delivered correctly, it can disrupt the
system operation and performance by impeding the correct synchronization among
different system components. In this work, we focus on attacks that target the agents
communication by delaying the stream of exchanged signals. We consider attacks
that are sparse in the set of attacked channels and employ a security metric that
captures the stability of the underlying system.

The importance of timing and the effect of time delays in networks of dynamical
systems is a well-studied concept (e.g., see [7–10]). Classical methods to study
stability of delayed linear systems can be divided into LMI conditions, which arise
from a Lyapunov-Krasovskii quadratic function analysis [11, 12], and techniques
based on matrix pencils [13, 14]. However, timing-based security is an inherently
different issue from standard communication delay approaches, as an attacker can
deliberately select the targeted channels and the specific pattern of time delays. The
relation between timing and security in cyber-physical systems has been highlighted
in some recent work. In particular, while [15] devises a robust output-feedback
controller which is resilient to an attack that changes the order at which packets
are delivered, the authors in [16] follow a probabilistic approach and model packet
drops through Bernoulli processes representing intentional attacker intrusions. The
effect of malicious packet drops has also motivated the study and development of
resilient controllers in the context of networked control systems [17].

Differently from this line of previous work, securing cyber-physical systems
from timing attacks requires the study and design of a specific, well-designed
set of delayed channels. This work distinguishes from the above line of research
by (i) considering opportunely-defined attacks that do not follow any specific
probabilistic model, and by (ii) relating network resilience to topological properties
and centrality measures such as the degree distribution. We characterize and study
the class of delay attacks from a control perspective and provide a numerical
algorithm to identify the set of communication channels that are less robust to timing
attacks. Our results suggest that improved robustness can be achieved by network
topologies where nodes exhibit significantly large degrees.
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2 Problem Setup

This section describes the models we adopt for the analysis of time delays in
dynamical systems. The description first introduces the ideal modeling framework
in the absence of external attacks and then illustrates the attack scenario.

2.1 Network Model

Consider a network modeled by a directed graph G = (V ,E ), where V =
{1, . . . , n} and E ⊆ V ×V are the vertices and edges sets, respectively. Let aij ∈ R

denote the weight associated with the edge (i, j) ∈ E , and let aij = 0 whenever
(i, j) /∈ E . We associate a real value xi (node state) with each node i ∈ {1, . . . , n}
of the graph and model the state dynamics as

ẋi(t) =
∑

j∈Ni

aij xj (t),

whereNi ⊆ V ,Ni = {j : ∃(i, j) ∈ E } denotes the set of in-neighbors of node i.

Example 1 (Vehicle Platooning) Consider a group of N vehicles moving along a
single lane as in Fig. 1. In a platooning scenario [1], vehicles follow one another
and share their state information (e.g., position, velocity, acceleration) with other
vehicles by communicating through a V2V communication protocol. The behavior
of the i-th vehicle in the platoon, i ∈ {1, . . . , N}, can be described by the two
differential equations representing an inertial agent:

ṙi (t) = vi(t), v̇i (t) = 1

mi

ui(t),

Follower 3 Follower 2 Follower 1 Leader

Fig. 1 Vehicle platooning and associated topology. A group of vehicles is traveling along a
single lane while maintaining a desired inter-vehicle spacing and a certain steady-state speed. To
accomplish this task, each vehicle exchanges information with the platoon leader and the vehicle
immediately ahead
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where ri : R≥0 → R, vi : R≥0 → R, and mi ∈ R>0 denote the i-th vehicle
position, velocity, and mass, respectively.

The goal of maintaining a desired inter-vehicle spacing can be formulated as
the problem of controlling the position and velocities of each vehicle toward the
following desired steady-state values:

ri (t) → 1

N

N∑

j=1

(
rj (t) + dij

)
, vi(t) → v̄,

where v̄ denotes the desired steady-state platoon velocity and dij is the desired
spacing distance between agent i and j . The desired steady-state spacing and
velocity can be achieved through a double-integrator consensus protocol [18], of
the form

ui(t) =
N∑

j=1

αij (ri (t) − rj (t) − dij ) + γij (vi(t) − vj (t)),

where
∑N

j=1 αij = ∑N
j=1 γij = 1 for all i ∈ {1, . . . , N}. Therefore, the goal of

attaining a platooning configuration can be achieved by modeling each vehicle as a
two-node subsystem with states ri and vi , respectively, and dynamics

ṙi (t) = vi(t),

v̇i (t) = 1

mi

N∑

j=1

αij (ri (t) − rj (t) − dij ) + γij (vi(t) − vj (t)),

Thus, the above scenario belongs to the more general class of models considered in
this work. ��

In order to implement the described cooperation protocol, each node is required
to transmit the state over a (potentially lossy) communication channel to all its
neighbors. For ideal communication channels, the signal transmitted by agent j and
received by agent i coincides; therefore, network dynamics can be modeled by a
continuous LTI system as

ẋ(t) = Ax(t), (1)

where x : R≥0 → R
n contains the node states and A ∈ R

n×n is the adjacency
matrix of the network. We will make the assumption that the adjacencymatrix in (1)
is (marginally) Hurwitz, that is, for all z ∈ {z ∈ C : det(zI − A) = 0}, 	(z) ≤ 0.
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2.2 Attack Model

Common transmission protocols often reframe signals into streams of data packets
before transmission. We assume that this underlying process is intangible, and we
will equivalently refer to signal streams or to streams of packets in the remainder.
We consider attacks that target communication channels and delay the stream
of information in the path between transmitter and receiver (Fig. 2). In order to
implement the cooperative protocol (1), we assume that every node j ∈ {1, . . . , N}
shares the current value of the state xj (t) with the set of available neighbors and
denote by r(i, j, t) : V ×V ×R≥0 → R the corresponding continuous-time signal
received at node i, i ∈ {1, . . . , n}. In general, the relation

r(i, j, t) = xj (t),

may not be satisfied due to the lossy nature of the communication channels. Notably,
these have the effect of altering the content of transmitted data packets and/or
of introducing time delays in the signal streams. We consider scenarios where
attackers can maliciously exploit these features in order to compromise the correct
functionality of the system. We make the following assumptions:

1. The attacker does not alter the information contained in transmitted signals.
2. There exists an upper bound τmax to the largest packet delay.
3. Data is used as soon as it becomes available at the receiver.

While scenarios where attackers alter the content of the transmitted signals have
been extensively studied in previous works (see, e.g., [19]), we argue that malicious
attacks targeting the communication timing can lead to similar disruptive behaviors.

Remark 1 (Compensation Mechanisms) In the presence of communication delays,
two compensation mechanisms are often adopted. Either data that is classified as
obsolete (for instance, by time stamping the transmitted packets) is discarded at the
receiver or data is used as soon as it is available at the receiver [20]. We consider
scenarios where the latter protocol is used. ��

We model received signals in the presence of attacks as

r(i, j, t) = xj (t − τij ),

where τij ∈ R≥0, 0 ≤ τij ≤ τmax, for all i, j ∈ {1, . . . , n}, represent (deterministic)
time delays introduced by the attacker. Then, the dynamics of agent i in the presence

Fig. 2 Time-delay attacks
can occur in the
communication channel
between every pair of nodes j i

xj(t) r(i, j, t)
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of attacks can be written as

ẋi(t) =
∑

j∈Ni

aij r(i, j, t) =
∑

j∈Ni

aij xj (t − τij ).

We denote by A ⊆ E the set edges under attack, that is,

A = {(i, j) : τij > 0}.

Then, the time evolution of the network state can be written as

ẋ(t) = Āx(t) +
∑

(i,j)∈A
Ãij x(t − τij ), (2)

where Ãij ∈ R
n×n,

Ãij (p, q) =
{

aij if p = i, q = j , and τij > 0,

0 otherwise,

for all p, q ∈ {1, . . . , n}, and Ā = A − ∑
(i,j)∈A Ãij .

Example 2 (Transmitter Delay and Receiver Delay Attacks) Scenarios where an
attacker compromises the behavior of a certain network node and deliberately
transmits (receives) delayed messages can be modeled as in (2). For instance,
consider the circumstance where a compromised node intentionally (i) transmits
obsolete information to all its neighbors or (ii) updates its state with obsolete
neighboring data. These two classes of vulnerabilities are referred to as transmitter
delay attacks and receiver delay attacks, respectively, and are discussed next.

Transmitter delay attacks, illustrated in Fig. 3(a), model scenarios where a certain
time shift is intentionally introduced in all the packets transmitted from an agent to
its neighbors. Let i ∈ {1, . . . , n} denote the (single) agent under attack; then

r(j, i, t) = xi(t − τ )

j

(a)

j

(b)

Fig. 3 Illustration of (a) transmitter delay attack and (b) receiver delay attack. Red patterns
represent attacker intrusions
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for all j such that i ∈ Nj . Moreover, the network model under transmission delay
attack can be written as

ẋ(t) = Āx(t) + Ãx(t − τ ),

where Ã has only n nonzero entries corresponding to its i-th column, that is,

Ã(p, q) =
{

apq if q = i

0 otherwise,

for all p, q ∈ {1, . . . , n}, and Ā = A − Ã.
Receiver delay attacks, illustrated in Fig. 3(b), model scenarios where the

attacker prevents a timely state update of a certain node. This, for instance, can be
the result of overloading the local processing units of the node. Let i ∈ {1, . . . , n}
denote the (single) node under attack; then

r(i, j, t) = xj (t − τ ),

for all j ∈ Ni . Moreover, the network model under resources overload attack can
be written as

ẋ(t) = Āx(t) + Ãx(t − τ ),

where Ã ∈ R
n×n has only n nonzero entries corresponding to its i-th row,

Ã(p, q) =
{

apq if p = i,

0 otherwise,

and Ā = A − Ã.

2.3 Problem Formulation

In this work, we focus on attacks that aim at compromising the stability properties
of (2). Next, we recall a standard definition of convergence.

Definition 1 (Convergence Criteria) The time evolution of system state in (2) is
convergent to a limit vector x̄ ∈ R

n if, for every ε > 0, there exist t̄ ∈ R≥0 such
that

‖x(t) − x̄‖ ≤ ε, for all t ≥ t̄ .
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We recall that the convergence of (2), in general, depends on the nominal adjacency
matrix A, the attack set A , and the time delays τij . We then restrict our analysis to
the uniform delay case, that is, on the model:

ẋ(t) = Āx(t) + Ãx(t − τ ), (3)

and focus on the following problem.

Problem 1 Find the minimal cardinality attack set A ∗ that makes dynamics (3)
non-convergent.

3 Minimum Cardinality Attack Sets

In this section we propose a numerical technique to solve Problem 1. Recall that the
trajectories of (3) are convergent if and only if all the characteristic roots, which are
the zeros of1

det(sIn − Ā − Ãe−sτ ) = 0, s ∈ C,

where In ∈ R
n×n denotes the identity matrix, are in the open left half plane (see,

e.g., [7]). We then report a well-known result for time-delay dynamical systems that
will be needed in the subsequent analysis.

Theorem 1 ([21, Theorem 4.1]) Consider the delayed dynamical system (3), and
define the dual characteristic equation

det(sIn − Ā − Ãe−jθ ) = 0, (4)

where s ∈ C and θ ∈ [0, 2π]. The time evolution of (3) is convergent if and only if
any solution s to (4) satisfies

s ∈ {s = σ + jω : σ ∈ R, ω ∈ R, σ < 0} ∪ {0},

for all θ ∈ [0, 2π].
The following comments are in order. First, Theorem 1 allows us to simplify the
nonlinear dependency of the primal characteristic equation from variable s by
introducing the independent variable θ . Second, since θ only affects the coefficients
of the polynomial (4), the corresponding roots are continuous functions of θ .
Therefore, the roots of (4) form closed curves in the complex plane as θ is varied
over the interval [0, 2π]. It follows that the convergence of linear dynamical systems

1This will be referred to as primal characteristic equation.
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in the presence of delayed communication edges can be assessed through the study
of the real part of the eigenvalues of the pencil Ā + Ãe−jθ as the scalar parameter
θ is varied over [0, 2π]. Third, by comparing the primal and dual characteristic
equations, it immediately follows that if s = jω is a root of (4) for a fixed value
of θ , then the choice τ = θ/ω will satisfy the primal equation. In the remainder,
we will use the compact notation (s, θ) to denote a root s of (4) associated with a
fixed θ .

The following result provides a characterization of the roots of (4).

Lemma 1 (Hermitian Property) Let the pair (s, θ) denote a solution to (4),
where s = σ + jω, σ ∈ R, ω ∈ R. Then, (s̄,−θ) is also a solution to (4), with
s̄ = σ − jω.

Proof Recall that det
(
sIn − Ā − Ãe−jθ

)
= 0 if and only if

(Ā + Ãe−jθ )v = (σ + jω)v,

for some v ∈ C
n. By taking the complex conjugate of the above equation, we obtain

(Ā + Ãejθ )v̄ = (σ − jω)v̄,

where v̄ denotes the complex conjugate of v that proves the claimed statement. ��
The conjugate property illustrated in the above lemma, combined with the periodic
relation e−jθ = ej (2π−θ), implies that the curves describing the roots of (4) for θ ∈
[0, π] are the complex conjugate of the curves describing the corresponding roots
for θ ∈ (π, 2π). An illustration of the behavior of the roots of the dual characteristic
equation (4) as a function of θ is presented in Fig. 4.
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Fig. 4 Numerical study of the roots of (4) for two realizations of a full adjacency matrix A with
uniform entries in the interval [0, 1]. As highlighted in the comparison, the roots (a) may cross the
imaginary axis, or (b) may not cross the imaginary axis. The symbols ∗ represents the roots for
θ = 0
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We now employ the above characterization of time-delay linear systems for the
solution of Problem 1. Let Ψ = [ψij ] ∈ R

n, with ψij ∈ {0, 1}, and decompose the
network adjacency matrix as

A = (1n×n − Ψ ) ◦ A︸ ︷︷ ︸
ĀΨ

+ Ψ ◦ A,︸ ︷︷ ︸
ÃΨ

where 1n×n ∈ R
n×n denotes a n by n matrix of ones and ◦ denotes the Hadamard

operator. The notation ĀΨ and ÃΨ is employed to emphasize the dependency on
Ψ . We then formalize Problem 1 as the following minimization problem: given the
network adjacencymatrixA and an upper bound to the largest communication delay
τmax, determine the delayed adjacency matrix Ψ ◦ A satisfying

Ψ ∗ = arg min
Ψ,θ,v,ω

‖Ψ ‖�1

subject to A = (1n×n − Ψ ) ◦ A︸ ︷︷ ︸
ĀΨ

+ Ψ ◦ A︸ ︷︷ ︸
ÃΨ

, (5a)

(ĀΨ + ÃΨ e−jθ )v = jωv, (5b)

ψij ∈ {0, 1}, (5c)

θ ≤ ωτmax, (5d)

where i, j ∈ {1, . . . , n}. It should be observed that (5) is of the form of a mixed-
integer optimization problem, where the Boolean variables ψij , the real variables
θ , ω, and the complex variable v are the optimization parameters. Two major
complexities arise in solving (5). First, the optimization variables ψij are integers.
Second, the variables ÃΨ , θ , v, and ω are related by the nonlinear constraint (5b).
It is also worth noting that the feasibility of the constraint set depends on the largest
allowed time delay τmax, and it is independent on the nominal adjacency matrix
A. To see this, we observe that for any A with eigenvalues λ1, . . . , λn, by letting
θ = π/2 and Ψ = 1n×n, then Ā + Ãe−jθ = Ae−jθ has eigenvalues jλ1, . . . , jλn.
It follows that, the feasible set of (5) is always nonempty.

3.1 Optimal Delay Attacks

We now reformulate minimization problem (5) to facilitate its solution. We perform
two simplifying steps to rewrite the Hadamard product (5a) and the eigenvalue
constraint (5b).
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Let vec (M) = [m11, . . . ,mm1,m12, . . . ,mmn] denote the vectorization of
matrix M = [mij ] ∈ R

m×n, and let diag (v) ∈ R
n×n denote a diagonal matrix

with diagonal entries given by the elements of vector v ∈ R
n. Then, the Hadamard

products in (5a) are linear functions of the entries of Ψ , as formalized in the
following result.

Lemma 2 (Linearity of Hadamard Product) Let ĀΨ = (1n×n − Ψ ) ◦ A and
ÃΨ = Ψ ◦ A. Then

vec
(
ĀΨ

) = diag (vec (A))
(
1n2 − vec (Ψ )

)
,

vec
(
ÃΨ

)
= diag (vec (A)) vec (Ψ ) ,

where 1n2 ∈ R
n2 denotes the vector of all ones.

Proof The claimed statement can be verified by inspection. ��
Next, we drop the dependency of constraint (5b) on the complex variable v.

Lemma 3 (Rank Constraint) Let ĀΨ + ÃΨ = A. There exists a solution v =
v	 + jv�, ω ∈ R≥0 and θ ∈ [0, 2π] to (5b) if and only if

Rank (ΛΨ ) < 2n,

where

ΛΨ =
[ −ÃΨ sin θ − ωIn A + ÃΨ (cos θ − 1)
−A − ÃΨ (cos θ − 1) −ÃΨ sin θ − ωIn

]
. (6)

Proof By substituting ĀΨ = A − ÃΨ , e−jθ = cos θ − j sin θ , and v = v	 + jv�
into (5b) and by expanding the products, we obtain

(
A + ÃΨ (cos θ − 1) − jÃΨ sin θ

)
(v	 + jv�) = jω(v	 + jv�),

or equivalently, by separating real and imaginary parts,

(A + ÃΨ (cos θ − 1))v	 + ÃΨ sin θv� = −ωv�,
(
A + ÃΨ (cos θ − 1)

)
v� − ÃΨ sin θv	 = ωv	.

The two equations above can be collected together and rewritten in matrix form as

[ −ÃΨ sin θ A + ÃΨ (cos θ − 1)
−A + ÃΨ (cos θ − 1) −ÃΨ sin θ

]

︸ ︷︷ ︸
�Ψ

[
v	
v�

]
= ω

[
v	
v�

]
,

from which the claimed statement follows. ��
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These simplifications lead to the following result.

Lemma 4 (Equivalent Minimization Problem) Let ΛΨ be defined as in (6) and
let ĀΨ + ÃΨ = A, where ÃΨ satisfies

vec
(
ÃΨ

)
= diag (vec (A))

(
1n2 − vec (Ψ )

)
.

The following minimization problem is equivalent to (5)

Ψ ∗ = arg min
Ψ,θ,ω

‖Ψ ‖�1

subject to Rank(ΛΨ ) < 2n,

ψij ∈ {0, 1},
θ ≤ ωτmax. (7)

It should be noticed that the two simplifying steps performed allow us to (i) write the
entries of �Ψ as linear functions of the optimizing variablesψij , and (ii) discard the
dependency of the optimization problem from the complex variable v. In the next
section, we further simplify the optimization problem (7) and propose a numerical
method to find an approximate solution.

3.2 Numerical Methods for Finding Optimal Attacks

We observe that the optimization problem (7) is not convex because of (i) the
presence of integer optimization variables Ψ , (ii) the nonlinear relation between
�Ψ and θ in (6), and (iii) the rank constraint that is nonlinear in the entries of
�Ψ . We now develop a numerical method to find a delayed set of edges that can
be used to gain information about the solution to (7). First, we relax the original
integer variables by lettingψij vary on the interval [0, 1]. Second, we emphasize that
rank constraints produce challenging nonconvex feasible sets, for which all known
finite-time algorithms have exponential running times [22]. We will therefore focus
on proposing a heuristic that solves a relaxed version of the problem (7). A good
heuristic is a tractable method that in practice will solve the considered optimization
problem, although there is no guarantee on its optimality.

Recent works (see, e.g., [22]) propose to relax rank constraints to constraints on
the nuclear norm of the considered matrix. Formally, for a (nonnecessarily square)
matrix M ∈ R

m×n, the nuclear norm is defined as

‖M‖∗ =
min{m,n}∑

i=1

σi(M),

where σi denotes the i-th singular value ofM . The nuclear norm is a convex function
that can be optimized efficiently and is a good convex approximation of the rank
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function [23]. Loosely speaking, ‖M‖∗ represents the �1-norm of the vector of the
singular values of M; therefore, constraining the nuclear norm will promote sparsity
in such vector [22]. Thus, we consider the relaxed version of the rank constraint (7),
that is,

‖�Ψ ‖∗ < 2n. (8)

Nuclear norm regularization constraints can be reformulated in the form of SDP
constraints [23], as formalized in the following result.

Lemma 5 (SDP Constraint) There exists ΛΨ that satisfies (8) if and only if there
exist symmetric matrices M ∈ S

n×n and N ∈ S
n×n that satisfy

[
M ΛΨ

ΛT
Ψ N

]
� 0, and Trace (M + N) = n − 1

2
.

Proof The proof follows immediately from [23, Lemma 1]. ��
These simplifications lead to the following relaxed version of (7):

Ψ̂ ∗ = arg min
Ψ,θ,ω,M,N

‖Ψ ‖�1

subject to

[
M �Ψ

�T
Ψ N

]
� 0,

Trace (M + N) = n − 1

2
,

ψij ∈ [0, 1],
θ ≤ ωτmax, (9)

where M ∈ S
n×n, N ∈ S

n×n, and �Ψ are defined in (6). We observe that the
feasible set in (9) is a convex set in the optimization variables Ψ , ω, M , and N ,
as all its constraints are linear functions of these variables. In the next section, we
numerically solve (9) for fixed θ and present how the resulting solutions provide
an insight on the relation between the smallest cardinality attack sets and network
topology.

4 Optimal Attack Sets and Relation with Topology

This section discusses numerical simulations in support of the approximate solution
method proposed in Sect. 3, and includes numerical investigations that provide
useful insights regarding the resilience of different network topologies under attack.
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We first focus on numerically evaluating the optimality gap between the opti-
mization problem (5) and its relaxation (9). Recall that Ψ ∗ denotes the true
combinatorial optimal solution to (5) and Ψ̂ ∗ denotes the solution of the convex
relaxation (9). We observe that, in general, the inequality ‖Ψ̂ ∗‖�1 ≤ ‖Ψ ∗‖�1 holds
as the feasible set of the combinatorial problem is a subset of the feasible set of (9).
We employ a rounding algorithm that uses the solution of the convex relaxation with
objective value Ψ̂ ∗ to produce a feasible integer solution with (possibly suboptimal)
value Ψ̂ ∗

FEAS. The relation between Ψ ∗, Ψ̂ ∗, and Ψ̂ ∗
FEAS is depicted in Fig. 5.

To evaluate the optimality gap, that is, the gap between ‖Ψ ∗‖�1 and ‖Ψ̂ ∗
FEAS‖�1 ,

we consider graphs constructed by interconnecting nodes randomly [24], where
each edge is included in the graphwith probabilityp = 1/2, independent from every
other edge. Edge weights are chosen randomly in the interval [0, 1], and θ is chosen
equal to π/2. A Monte Carlo simulation obtained by sampling from the above set of
graphs is illustrated in Fig. 6, where a feasible optimal solution is compared with the
combinatorial solution Ψ ∗ for increasing network sizes. The comparison shows that
feasible solutions originated from the relaxed problem (9) represent, in this scenario,
accurate approximations of the combinatorial optimal solution.

Next, we employ the proposed optimization technique to compare the robustness
of different network topologies against timing attacks. We consider (i) the class of
random graphs with edge probability p = 1/2, (ii) the line topology (Fig. 7a), and
(iii) the platooning formation (Fig. 7b). Figure 8 shows a comparison between the
norms ‖Ψ̂ ∗‖�1 and ‖Ψ̂ ∗

FEAS‖�1 for increasing network sizes. It is worth noting that,

‖Ψ̂∗‖�1 ‖Ψ∗‖�1 ‖Ψ̂∗
FEAS‖�1

Fig. 5 Relation ‖Ψ ∗‖�1 ≤ ‖Ψ̂ ∗‖�1 ≤ ‖Ψ̂ ∗
FEAS‖�1 and optimality gap for the considered problem

4

3

2

1

0
2 3 4 5 6

n
7 8 9 10

‖Ψ∗‖�1

‖Ψ̂∗
FEAS‖�1

Fig. 6 Monte Carlo simulation illustrating the optimality gap for random graphs where edges
between each pairs of nodes have probability p = 1/2. Solid lines represent the mean value over
the sample and colored bands illustrate standard deviation. Sample size is chosen equal to 10
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Fig. 7 Considered topologies for variable n, (a) line, (b) platoon
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Fig. 8 Norm of optimal attacks for different network topologies. (a) Line topology, (b) platooning
formation, (c) random graphs with p = 1/2. Solid lines represent the mean value over the sample
and colored bands illustrate standard deviation. Sample size is chosen equal to 10

while solving the combinatorial problem (5) is prohibitive for significantly large n,
‖Ψ̂ ∗‖�1 and ‖Ψ̂ ∗

FEAS‖�1 provide a lower bound and an upper bound to this quantity,
respectively (Fig. 5).

The comparison shows that the resilience of line and platoon topology degrades
for increasing network sizes n, as opposed to the class of random graphs. We
interpret this result by observing that the average degree2 of the nodes in the
random graphs scales with the network size, as opposed to the constant degree of

2|Ni | represents the degree of node i, i ∈ {1, . . . , n}.
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Fig. 9 Mean value of Monte Carlo simulations for optimal attacks to graphs with fixed degree for
all nodes. Edge weights are uniform in the interval [0, 1], and sample size is chosen equal to 10

the nodes in the two topologies in Fig. 7. This consideration suggests a relation
between attack resilience and the degree distribution of the nodes in the network.
To validate this interpretation, we consider random graphs where all nodes have
fixed identical degree and compare optimal attacks as a function of this parameter.
The comparison shown in Fig. 9 numerically validates this claim and suggests
that improved robustness can be achieved by designing networks with large node
degrees.

5 Conclusions

This work defines and studies a class of attacks that tamper with the temporal
characteristic of the communication channels, leading to time delays in the signals
exchanged between adjacent nodes. Differently from considering conventional
channel communication delays, the problem of securing network systems from
intentional and specific timing aberrations sets out new security challenges and
design goals. In addition to providing a framework to characterize and study
timing attacks from a control perspective, this work proposes numerical ways
and algorithms to identify links that are inherently less robust to tampering. Our
methods suggest that improved robustness can be achieved by designing network
topologies in which all nodes have large degree distributions. The numerical
nature of the proposed study motivates more rigorous formalization in future
works.
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