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Abstract While the number of embedded systems is continuously increasing,
securing software against physical attacks is costly and error-prone. Several works
proposed solutions that automatically insert protections against these attacks in
order to reduce this cost and this risk of error. In this chapter, we present a
survey of existing approaches and classify them by the level at which they apply
the countermeasure. We consider three different levels: the source code level, the
compilation level, and the assembly/binary level. We explain the advantages and
disadvantages of each level considering different criteria. Finally, we encourage
future works to take compilation into account when designing tools, to consider
the problem of combining countermeasures, as well as the interactions between
countermeasures and compiler optimisations. Going one step further, we encourage
future works to imagine how compilation could be modified or redesigned to
optimise both performance and security.

1 Introduction

Nowadays, embedded systems have become integral part of our daily life and are of
the largest consumer electronics market segment. The number of embedded systems
a person manipulates every day is expected to rise massively due to the Internet of
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Things. Back in 2008, this number was already huge as a person used about 230
embedded chips every day [73].

These embedded systems often manipulate sensitive data. For instance, privacy-
critical data are handled every day by payment cards, transport cards, smartphones,
GPS, etc. Therefore, the security of these systems reveals itself as a major concern
for both industrials and state organisations.

Secure devices rely on cryptography to protect sensitive data. While they use
cryptographic algorithms that are robust against cryptanalysis, attackers can exploit
a physical access to a device either to extract sensitive data such as a cryptographic
key, or to bypass authentication, or in certain cases to reverse engineer intellectual
properties. These attacks, known as physical attacks, are of two categories. (1) Side
channel attacks, introduced in 1996 by Kocher et al. [48], exploit the correlation
between the data being processed inside the device and a set of physical quantities
that can be measured from outside the device. These physical quantities can be
the power consumption of the device [23, 49, 54, 63, 78], the electromagnetic
radiation [6, 42], the acoustic emissions [43], the execution time [36, 48], etc.
(2) Fault injection attacks, introduced in 1997 by Boneh et al. [21], exploit the
effect of a deliberate perturbation of a system during its operation. Fault injection
attacks can be carried out by means of laser/light beam [39, 75], electromagnetic
injection [35, 62, 65], variation of the supply voltage [12, 24], clock glitch [5],
temperature [46, 74], etc.

Several protections to thwart physical attacks have been proposed at software and
hardware levels. There are also some mixed hardware-software approaches [9, 18,
31]. In practice, secure elements rely both on hardware and software countermea-
sures. Moreover, hardware-based solutions are considered as too expensive for IoT
devices that face strong cost requirements. The current software hardening process
is most often manual and so costly as well as error-prone and tedious. Automating
the deployment of software countermeasures is becoming paramount in order to
reduce the overall cost and also to offer code hardening solutions for IoT devices.

In this survey, we present how automatic application of software countermea-
sures has been carried out in the literature by categorising approaches by the level
where the countermeasure is applied, either on source code, or on assembly, or
within the compilation process. We begin by a brief background (Sect.2) about
side-channel attacks, fault injection attacks, their countermeasures, and the issues
related to the compilation of secured code as well as usual ways to circumvent
them. Then, we present the approaches that propose an automated application of
a countermeasure (Sect. 3) at source code level, compilation level, and assembly
level, and we point out their pros and cons. Then we take a step back to compare the
different levels (Sect.4.1). Finally we discuss the important remaining challenges
(Sect. 4.2) before concluding (Sect. 5).
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2 Background

2.1 Side-Channel Attacks

Instructions and data manipulated by a processor during a program execution affect
the processor’s power consumption, electromagnetic emissions, and execution time.
Side-channel attacks exploit this correlation. Many side-channel attacks proposed in
the literature [23, 49, 54, 63, 78] exploit the power consumption of a chip, [36, 48]
the execution time of the implementation, and [6, 42] the electromagnetic radiation
of a chip.

During an attack, the attacker makes measurements of a physical quantity, while
the processor executes the targeted program. She then retrieves the data manipulated
by the processor from these measurements, by statistically comparing the measure-
ments with a behavioural model. In this survey, we focus on side-channel attacks
that exploit the power consumption or the electromagnetic emissions.

In the case of a correlation power analysis (CPA), the attacker chooses the data
she provides as an input to the program, or reads the output of the program (e.g. the
encrypted texts). To find the encryption key of an AES, she proceeds byte by byte.
Each byte is found as follows: the attacker places an electromagnetic probe on the
processor or directly measures its electrical consumption with an oscilloscope. She
carries out electrical consumption measurements during several AES executions.
For each new run, she gives a random clear text to the program. She calculates
theoretical consumptions for each value of the key byte that she is attacking using
a consumption model (e. g. the Hamming weight of the value returned by the
SBox of the first round). She compares the measurements obtained on several
executions with the theoretical consumptions using a statistical operator, here the
Pearson correlation. The byte hypothesis that gives the strongest correlation between
theoretical and measured consumptions corresponds to the true value of the key byte
if enough measurements have been taken.

2.2 Fault Injection Attacks

Processors are designed to work under certain conditions. By using a processor
outside these conditions, for example, at a high temperature, faults appear in
the calculations [46, 74]. Fault injection attacks exploit this principle. They can
use various physical means to provoke faults: light [39, 75], electromagnetic
injection [35, 62, 65], temperature [46, 74], etc.

The effects of faults are manifold:

» Bit flips in a register or a memory cell [14, 20, 22, 38, 60, 61]

* Random modification of a value in a register

* Random modification of a value while it is transferred between the CPU and
dynamic or non-volatile memory [37, 56]

* Instruction replacement when the instruction fetch gets corrupted [56]
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Fault injection attacks can then be used to hijack the execution flow of a program
(e.g. to bypass a password verification of a VerifyPIN) or to retrieve information
about data manipulated by the program (e.g. finding a cryptographic key). To
retrieve a secret data, the attacker analyses the erroneous output that results from
these faults, or even the absence of an error on the output, and compares this
information using a fault attack model that makes the link between the expected
output and the possible outputs in the presence of faults.

2.3 Combined Attacks

Combined attacks are physical attacks that combine side-channel analysis and fault
injection.

Currently, all fault attacks are combined with a side-channel observation in
practice, in order to monitor the injection of the fault, i.e. to (1) find a suitable
moment for the fault injection and (2) precisely control the moment when the fault
is injected [77].

Second, some attacks use side-channel analysis and fault injection attack as
steps of a wider attack [10]. Several approaches showed that these attacks can
break implementations that were protected against both side-channel attacks and
fault injection attacks, for example, on an AES implementation [32, 71] or an ECC
implementation [41].

2.4 Countermeasures

This section presents the main categories of countermeasures against side-channel
attacks and fault injection attacks.

For side-channel attacks, we focus on side channels related to power consump-
tion or electromagnetic emissions and on approaches that were evaluated on these
side channels.

Software countermeasures against side-channel attacks can be of two different
natures: hiding and masking.

A hiding countermeasure is designed to make attacker’s measurements too
noisy to be exploitable [26]. For example, one can use dummy rounds or random
delays, so that the measurements gathered in two different executions are no more
aligned. The link between the measurements and the targeted information is not
removed, but the exploitation of the measurements becomes more complicated.
There are several types of hiding countermeasures: dummy rounds, random delays,
static multiversionning, polymorphism, dual rail, etc. [8, 26-28]. Static multiver-
sionning consists in generating statically several different equivalent execution
paths and choosing between them randomly at runtime. Polymorphism consists
in dynamically changing the binary code in memory, so that the code is renewed
regularly. It was introduced by Amarilli et al. who indicated that it was possible



Automatic Application of Software Countermeasures Against Physical Attacks 139

to automatically implement such countermeasure [8]. Both static multiversionning
and runtime polymorphism can use random delay insertion or instruction shuffling,
for example, to make the code vary. As complementary approaches, the dual-
rail and random precharging countermeasures are sometimes used. Dual rail with
precharge logic consists in changing the value encoding so that the Hamming weight
of the manipulated values becomes a constant value, and precharging destination
registers with the value O so that the Hamming distance becomes constant too.
Random precharging consists in putting a random value in a register before loading a
sensitive value into it in order to prevent transition-based leakages. Note that hiding
has been also used outside the scope of power consumption and electromagnetic
emission side channels [30, 45, 66].

A masking countermeasure is designed to remove the direct link between the
measurements and sensitive data manipulated by the processor [44]. For this
purpose, the algorithm of the target program is modified so that all intermediate
results that depend on the secret data are separated into several shares, where all
the shares are needed to reconstruct the results. For example, first-order Boolean
masking consists in performing an “exclusive or” between the secret data and a
random number and then carrying out all calculations with this masked data. The
masked data and the random number are the two shares here. The random number
is changed at each execution, so that the values of the shares change randomly from
one execution to another. In practice, hiding and masking countermeasures need to
be combined [70]. Indeed, masking needs a certain amount of noise to be effective
[47], and hiding can increase the noise.

Software countermeasures against fault attacks can be of three different types:
fault tolerance, fault detection, or infective.

A fault tolerance countermeasure aims to ensure that a fault does not alter the
output of a program. For example, an instruction duplication countermeasure can
be used to tolerate a fault of the type “replacement of an instruction by a nop” [57].
A fault detection countermeasure is intended to detect an attack and then allows to
adapt the response to produce (e.g. destroying the system). Control flow integrity
countermeasures are fault detection countermeasures that detect a change in control
flow [33]. One can also duplicate instructions in order to compare the results to
detect a fault. An infective countermeasure aims to make the result of a fault more
difficult for an attacker to exploit [67]. The goal is that the attacker does not derive
information from the program result when a fault occurred. It can be used as a
reaction to a fault detection.

2.5 Compilation of Secured Code

In this section, we give a brief background about compilation and the problem that
can arise when compiling secured applications.

Compilation is the process of translating a source code into a binary program for
a target architecture [11, 59, 76]. Compilers are usually divided into three parts.
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e The front end is in charge of parsing the source code and generating an
intermediate representation (IR).

e The middle end is responsible for target-independent optimisations. It is com-
posed of a sequence of analysis and transformation passes that optimise the IR
code.

e The back end is responsible for target-dependant optimisations, as well as
instruction selection and register allocation, and finally emits the binary program.

Several works have shown that the compiler can alter countermeasures against
both side-channel and fault injection attacks when these countermeasures are
applied on the source code [13, 15, 72].

Countermeasures can be threatened by various passes. In the case of masking, the
passes that simplify arithmetic operations, the instruction scheduling and register
allocation passes may alter the countermeasure. For example, the compiler could
invert the order of two xors, revealing a secret data. In the case of addition of noise
instructions or of instruction redundancy, all the passes that suppress dead code
may threaten the countermeasure. In the case of instruction shuffling, the instruction
scheduling pass may also alter the countermeasure. Please note that this list is not an
exhaustive list of passes that could threaten the countermeasures. Such a list depends
on the compiler, its version, the target architecture, etc.

In order to circumvent this problem, one can use various ways:

* One can compile code using the -O0 optimisation flag so that few optimisations
remain enabled. Yet, the compilation process remains risky: the code still goes
through instruction selection, register allocation, and instruction scheduling, for
example, each of these passes being able to alter some countermeasures. In
addition, it increases the code surface available for an attack, and there are a
lot of register spilling and filling, which increase the information available via
side channel.

* One canuse the volatile keyword in C/C++ source code to force the compiler
to not perform memory-access optimisations on some selected variable.

* One can disable some specific passes by using the compiler command line
options.

* One can inline assembly code in its source code. However, this solution leads
to complex implementations, as developers have to make the link between the
C/C++ variables and physical registers. Moreover, the source code is no more
portable and becomes harder to maintain.

* One can apply directly the countermeasure on assembly, so that the compilation
problem is bypassed. We will see later however that this solution has drawbacks
t0o.
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3 Automatic Application of Software Countermeasures

This section presents several state-of-the-art approaches proposed for automatic
application of software protections. Table 1 shows an overview of the approaches
presented in this section. We present the different approaches, both in this section
and in Table 1, gathered according to the code level on which the automatic
application is carried out.

The different levels of application for automated approaches will be mainly
compared on both their ease of use and the complexity of their implementation.
The pros and cons of each level of application will also be presented.

We consider as a usage constraint either the replacement of programming
language or the replacement of tools in the developer’s usual production chain,
such as the compiler. Indeed, changing the programming language can prevent from
reusing reference implementations. Also, replacing one of the tools in a production
toolchain may not be possible: as an example, closed source software components
do not offer the ability to modify the source code or some components may have
been certified and any modification would require a new certification process.

While comparing the security level achieved for a specific approach as well
as the impact of a protection on performance and code size would be of high
interest, it is quite impossible to achieve. Evaluations carried out in the literature
vary with the target platform, the considered benchmarks, and the attacks or tests
performed. To fairly compare all the approaches, it would then require to dispose
of all approaches, to choose a common target of evaluation, and to mount realistic
security evaluation scenarios. Hence, we only report fair performance comparison
of approaches available in the literature (between approaches [57] and [16]).

3.1 At Source Code Level

Several approaches are proposed to automatically apply countermeasures at source
code level.

3.1.1 Side-Channel Attack Countermeasures

Luo et al. proposed an automated hiding countermeasure where independent C
operations are shuffled [51]. The associated tool takes C code as input. It gathers
statements by group of independent statements, and shuffling is performed at
runtime inside each group. It adds dummy statements when too few independent
statements have been found for a group in order to increase shuffling effect. It
assumes that the code does not contain any loop or branch.

Couroussé et al. proposed an approach to deploy a hiding countermeasure based
on runtime polymorphic code generation [29]. Their approach requires to use a
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Table 1 Overview of existing automated approaches for side-channel attacks or fault injection
attacks gathered by the code level at which they are deployed

Approach

Countermeasure principle

Side-channel attacks

Fault injection attacks

Requirements or constraints

Source level

[51] Static multiversioning None Straight-line code
(hiding)

[29] Polymorphism with None Domain-specific language
runtime code generation
(hiding)

[40] Masking None No input-dependent control

flow
[50] None Control flow integrity -
[7] None Control flow integrity -

Compiler level

[53] Static multiversioning None -
(hiding)
[1] Polymorphism with None -
runtime code
modification (hiding)
[4] Static multiversionning None -
(hiding) and partial
masking
[3] Other None -
[58] Masking None Domain-specific language
[2] Masking None -
[19] Random precharging and | None Measurements (optional)
masking
[52] Threshold None -
implementation
(masking)
[16] None Instruction duplication | —
(fault tolerance)
[69] None Instruction duplication | —
(fault detection) and
control flow integrity
[64] None Instruction duplication | —
on loop exits (fault
detection)
[25] None Instruction and data Availability of SIMD
redundancy (fault instructions

detection)

(continued)
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Table 1 (continued)

Countermeasure principle

Approach | Side-channel attacks Fault injection attacks Requirements or constraints
Assembly level
[17] Random precharging None Measurements to set up the
protection
[68] Dual rail with precharge | None Bitsliced input code
logic
[57] None Instruction duplication | —
(fault tolerance)
[34] None Various fault detection | —
and fault tolerance
countermeasures

Few approaches consider several different countermeasures, and none of them considers counter-
measures for both families of attacks simultaneously

domain-specific language (DSL). The written code is translated by a tool that
produces the C code of a specialised polymorphic code generator. The generator
regularly produces new versions of the machine code at runtime using semantic
variants at machine instruction level, instructions and registers shuffling, and
insertion of noise instructions.

Eldib et al. proposed an approach to automatically find and apply a masking
countermeasure, with the help of a SMT solver [40]. They assume that the program
has an input-independent control flow. The program is parsed and transformed into
LLVM’s intermediate representation (LLVM IR) by clang. The code in LLVM IR
format is then transformed into a Boolean program. Then, each operation of the
program is masked, directly if it is a linear operation, by finding a sequence of
equivalent masked instructions found out by a SMT solver. Then, the secured code is
emitted as C++ code and compiled in -OO0 (this information comes from a discussion
with authors).

3.1.2 Fault Injection Countermeasures

Lalande et al. proposed to apply a control flow integrity countermeasure based on
counters and additional variables at the source code level [50]. The countermeasure
is applied in two phases; first, all vulnerabilities of the original code are searched
for by simulating control flow hijacking faults at the source code level; then the
countermeasure is applied to vulnerable points. Jump attacks larger than two C
statements are systematically detected. However, smaller faults, for example that
only affect one assembly instruction, are not always detected.

Akkar et al. also presented an automated application of a control flow integrity
countermeasure [7]. The developer must annotate his code beforehand using
pragmas to indicate the areas to secure. The application is done by a tool that comes
in the form of a preprocessor.
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3.1.3 Pros and Cons of Source Code Level

The source code level has the advantage of being compatible with the use of
proprietary compilers and even of allowing the use of several different toolchains
without any compatibility concerns.

In addition, a substantial amount of information is available at this level, such as
variable typing information.

This level of application also enables to be independent of the target architecture.
Thus, the development of a tool may be easier at this level if a lot of architectures
have to be supported.

However, the countermeasures may be altered by compilation. This is not always
the case, for example, in the COGITO approach [29], the countermeasure is applied
at runtime by a dedicated generator, and therefore there is no risk that it will be
altered by the compilation. Approaches [50] and [40] suggest to compile the secure
parts without compiler optimisations to circumvent this problem, which does not
remove completely the risk as discussed in Sect. 2.5. Thus, developers will have to
check for each hardened application at source code level that the countermeasures
are still present and correct after compilation. This typically involves reviewing the
assembly code produced by the compiler, which is a tedious and error-prone task.

3.2 During Compilation

Several approaches are proposed to apply countermeasures during compilation.
Table 2 summarises the level of application inside the compiler and the passes that
have been modified for each approach.

3.2.1 Side-Channel Attack Countermeasures

Malagén et al. proposed to deploy a hiding countermeasure based on static
generation of several variants of a function [53]. This countermeasure consists in
randomly choosing between different versions of the same code at runtime. The
source code must be annotated using pragmas by developers to indicate functions
where sensitive data are being manipulated. The compiler then generates several
different versions of the function code by changing optimisation configuration
parameters, for example, using the loop unwinding pass. It also inserts the code that
is in charge of randomly selecting at runtime the version of the code to be executed.

Agosta et al. proposed another hiding countermeasure based on dynamic mod-
ification of code [1]. The code is modified at runtime using semantic equivalence
at instruction level, randomisation of table accesses, and mixed instructions. The
countermeasure is automatically applied by a compiler: some transformation passes
have been added in LLVM in order to statically prepare the transformations made at
runtime.



Automatic Application of Software Countermeasures Against Physical Attacks 145

Table 2 Level of application and modified passes within the compiler for compiler-level
approaches

Approach Level of application Modified passes

Malagén et al. [53] | Middle end Loop unwinding pass

Agosta et al. [1] Unknown -

Agosta et al. [4] Middle end and back end | Several (unknown) passes in middle end and
back end

Agosta et al. [3] Middle end and back end | Instruction selection

Moss et al. [58] Middle end -

Agosta et al. [2] Middle end -
Bayrak et al. [19] Middle end and back end | —

Eldib et al. [40] Middle end -

Barry et al. [16] Back end Instruction selection and register allocation
Reis et al. [69] Unknown -

Proy et al. [64] Middle end and back end | Branch folding and register allocation
Chen et al. [25] Middle end -

Luo et al. [52] Middle end -

Agosta et al. also proposed a hiding countermeasure based on static generation of
several variants [4]. The authors propose to generate automatically a code containing
multiple execution paths, with choice between the different paths at runtime, which
is also a hiding countermeasure. This approach also incorporates some masking
elements, since the SBox accesses are masked. In addition, the process of saving
registers on the stack is modified: one register is dedicated to hold a random value
used to mask any register value stored in the stack. When the content of the register
is restored, it is also unmasked so that it can be used again. All these transformations
are handled by new transformation passes in LLVM. Some existing passes have also
been modified. Among other things, modifications to existing passes are intended to
ensure that an instruction that was in an area to be protected cannot leave this area
because of optimisations. The developer must provide a C file annotated so as to
specify the code regions to protect and the SBox. In addition to the source file, the
compiler takes an input file that specifies the equivalent instructions to be used.

Agosta et al. also proposed a new countermeasure against side-channel attacks
that aims to bring out several key hypotheses instead of one during an attack so that
the attacker cannot know which one is the right hypothesis [3]. This countermeasure
is entirely applied during compilation, in several steps. Several passes have been
added in the middle end and back end; also the instruction selection pass has been
changed. The compiler takes an input file annotated by the developer that specifies
the parts of the code to be protected.

Moss et al. proposed to automatically apply a Boolean masking countermeasure
during compilation [58]. The developer must write his program in a domain-specific
language (DSL). This DSL allows to express with predefined types the level of
confidentiality of variables, for example, to indicate that a variable is secret. The
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compiler then uses this information to determine which intermediate values are to
be masked and thus masks these values.

Agosta et al. also proposed an approach for the application of a masking
countermeasure. Their approach allows to generate higher-order masked code [2].
The compiler calculates for each key-dependent value the number of key bits on
which the value depends. This analysis enables to apply the countermeasure only
to intermediate values that depend on a small number of key bits. For example,
intermediate values dependent on all bits of the key are not masked. This principle
reduces the overhead of the countermeasure.

Bayrak et al. also proposed a compilation approach to apply Boolean masking
to a program [19]. An important difference with the other approaches is that they
use the compiler to decompile a binary program to a higher-level representation
and then recompile the program while applying the protection. To find out where
to apply the countermeasure, they suggest to start by identifying instructions that
may reveal sensitive data through a side channel. This analysis is either done
using measurements provided by the user or statically. The countermeasure is
then applied to all instructions that were found to be critical compared to a
predefined threshold. This enables to partially apply the countermeasure and to
reduce the performance overheads. In addition, the compiler can also apply a
random precharging countermeasure.

Luo et al. proposed a similar approach to generate a threshold implementation
automatically on LLVM IR [52]. Threshold implementation is a countermeasure
close to the masking countermeasure, as the secret is split into shares. Yet, in
threshold implementation, every function is independent from at least one of the
shares, which is not the case for masking. They use a SAT solver along with a
transformation step in order to find suitable solution. Every function is split into a
succession of smaller functions so that the SAT solver can find solutions effectively.

3.2.2 Fault Injection Countermeasures

Barry et al. used the compiler to automatically apply a fault tolerance coun-
termeasure [16]. They duplicate assembly instructions to tolerate the skip of
one instruction. The use of the compiler is twofold compared to a lower-level
approach: it favours the selection of instructions compliant with the duplication
scheme, increasing the number of idempotent instructions, and takes advantage of
optimisations to gain performance. To this end, several passes have been added
to LLVM, and the instruction selection and register allocation passes have been
modified. The overheads obtained are lower than those obtained by applying this
countermeasure at the assembly level.

Reis et al. proposed to deploy a fault detection countermeasure during compila-
tion [69]. Instructions are duplicated so that their results are compared in order to
detect faults. In addition, additional checks are added to ensure that the control flow
is not hijacked. The authors indicate that the approach could be easily extended to
include fault tolerance.
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Proy et al. proposed to use the compiler to apply a countermeasure to secure loops
against fault injection attacks [64]. The instructions involved in the computation
of conditions for exiting the loop are duplicated to add checking blocks in charge
of detecting an early exit or an extra iteration. This transformation is applied at
IR level. They explain that some compiler passes had to be modified to keep the
countermeasure correctly applied until the code is emitted.

Finally, Chen et al. proposed to achieve operation redundancy by using SIMD
instructions [25]. Their compiler vectorises some instructions in order to have
instruction redundancy and adds error-checking codes. All the code transformations
are performed at the IR level, and the approach is architecture-independent. It only
requires the target architecture to have support for SIMD instructions. The use of
SIMD instructions allows to obtain a smaller performance overhead compared to
classic instruction duplication approaches.

3.2.3 Pros and Cons of Compiler Level

The compiler level is interesting if several source languages need to be supported,
as the front end usually supports various languages.

Moreover, the back end must most often be modified and therefore the approach
depends on the architecture. However, some elements applied in the middle end are
common for all architectures, so adding support for an architecture is done without
starting from scratch.

What is more, the application of countermeasures during the compilation process
makes it possible to finely control the transformations carried out in the compiler
and to choose when to apply the countermeasure to avoid the risk that it will be
altered by the compilation. The compiler allows to have both high-level information
such as the types of variables and low-level information that depends on the
target architecture. Thus, countermeasure can be applied in several transformation
passes, strategically placed in the compilation process. As an example, Reis et
al. [69] and Barry et al. [16] exploit the scheduling instruction pass to reduce the
countermeasure overhead by creating parallelism at the instruction level (depending
on the latency of the instructions). In addition, several approaches modify compiler
transformation passes such as instruction selection or register allocation to prepare
the countermeasure application in order to produce a more efficient code.

Moreover, if developers manage to propagate the necessary information through-
out the compilation process, developers can add a check pass before issuing
instructions to confirm that the countermeasure has been correctly applied and that
it has not been altered by possible downstream optimisations.

The engineering effort deployed to implement such approaches is important;
nevertheless, the control offered by this level of application makes it possible to
obtain an important confidence in the produced code. In case a checking pass is
added before code emission, it is not necessary to manually check the presence and
the effectiveness of the countermeasures in the produced assembly code for each
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hardened application. In that case, the developer does not need to be an expert in
security to be able to effectively secure his applications.

This level of application requires to have access to the compiler source code.
If the developer uses a closed-source compiler, using a compiler approach would
imply to use an open-source one to disassemble a file, reconstruct an intermediate
representation, apply the countermeasure to the code, and recompile it, which is a
tough process.

3.3 At Link Time/At Assembly Level

This section presents approaches that apply countermeasures directly on an assem-
bly file, during or before the linking phase.

3.3.1 Side-Channel Attack Countermeasures

Bayrak et al. proposed to automatically apply a random precharging countermeasure
at assembly level [17]. The application of this countermeasure is quite natural at this
level, as register allocation has already been performed. Empirical measurements
made on unsecure code are used to determine the instructions to be secured.

Rauzy et al. also implemented a side-channel countermeasure at assembly level:
dual rail with precharge logic [68]. Their approach requires that the code has
previously been bitsliced. Their approach also makes it possible to prove that the
transformation is correct and that the program obtained after transformation remains
semantically correct.

3.3.2 Fault Attack Countermeasures

Moro et al. proposed a countermeasure based on instruction duplication to achieve
fault tolerance [55]. This countermeasure is intended to tolerate the jump of one
instruction. For this purpose, each instruction is replaced by a sequence of instruc-
tions, this sequence being semantically equivalent to the original instruction and
being tolerant to one instruction skip. As this countermeasure requires additional
registers, it is sometimes necessary to spill some registers. In addition, some
instructions (e.g. volatile loads) cannot be replaced by a fault-tolerant sequence.
This is the same countermeasure as the one automated by Barry et al. [16] afterwards
at compilation level.

De Keulenaer et al. showed how to automatically deploy various countermea-
sures against fault attacks at binary level using link-time rewriting [34]. Their tool
combines both fault tolerance countermeasures and fault detection countermeasures:
duplication of conditional jumps, call graph integrity, verification of memory
entries, and duplication of loop counters.
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3.3.3 Pros and Cons of Assembly Level

This level is mostly used to apply countermeasures that are quite low level,
as applying higher-level countermeasures at this level is complicated since it is
then necessary to reconstruct a certain amount of information that has been lost.
For example, variable typing information is no longer present. In addition, the
application of countermeasures often requires the use of additional registers, which
requires either register spilling or a complete reallocation of registers.

Thus, during the development of an automatic approach at this level, a major
engineering effort is necessary to obtain information that was available at compila-
tion or to redo treatments that had been done by the compiler in a way that was not
optimal with respect to the countermeasure to be applied.

However, applying countermeasures at this level avoids having to check manu-
ally if the countermeasure is still present in the final code, since the compilation
process takes place entirely before the countermeasure application. This allows
the use of such a tool by a non-security expert developer. Moreover, this level of
application allows to be independent of source code language, which is interesting
if several source languages need to be supported. In addition, it allows to secure
code after link-time optimisation and to potentially secure binary libraries.

4 Discussion

4.1 Confrontation of Pros and Cons of the Different Levels

This section discusses the advantages and disadvantages of the aforementioned
levels of automatic application of countermeasures.

The first aspect to consider is the time taken for developing an automated tool.
This aspect depends on the countermeasure that has to be applied. A masking
countermeasure is easier to apply at source code level than at assembly level because
it requires a modification of the algorithm. The compiler is a place where various
countermeasures can be applied, as during compilation the compiler manipulates
both quite high-level representations (e.g. with typed variables) and low-level
representations (e.g. with assembly instructions).

Developing an automated tool implies parsing and emitting code in the targetted
formats. Compilers already have the necessary code for that, and usually the
developer only has to add a pragma support to delimit the code zones to be
secured. For source code and assembly-level approaches, the developers often have
to implement or reuse a parser and/or an emitter for the targetted codes.

The engineering cost taken at using the tools must be considered too. As these
tools are automatic, the cost of producing secured code is close to zero, yet
the development of the tools requires a lot of work. When the tool applies the
countermeasure at source code level, code review is facilitated, but the user has
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to check that the countermeasure is still valid at the assembly level. This time-
consuming task is one of the main drawbacks of the source code-level approach. The
assembly approach does not suffer from this drawback: applying a countermeasure
at the assembly level prevents from alteration during compilation. Applying a
countermeasure during compilation allows to check that the countermeasure is
still valid just before assembly/binary code emission if the developer manages
to propagate the necessary information throughout the compiler. If checking the
countermeasure before code emission is not possible, a step of assembly code review
is still needed.

Considering performance in terms of code size and of execution time, the
compiler level allows fine-tuning. When a countermeasure is applied within the
compiler, it can benefit from optimisations, whereas if it is applied outside the
compilation process, it requires to redevelop some optimisations afterwards. Several
approaches that use compilers modify some passes of the compiler to reduce the cost
of the countermeasures. The passes that apply the countermeasure can be carefully
interleaved with compiler passes to take advantage of these passes without risking
the countermeasure to get altered by optimisations [16]. At other levels, tuning
transformations for performance may be harder. For example, at assembly level, the
need for additional registers either requires to do register spilling or to perform again
the register allocation. As a comparison, Moro et al. and Barry et al. implemented
the same countermeasure at assembly level and compiler level, respectively. Barry
et al. obtained execution time overheads and size overheads lower than Moro et al.

4.2 Future Works

All of these approaches target either side-channel attacks or fault injection attacks,
and few of them consider the application of several different countermeasures.
Yet, programs have to be secured against both families of attacks and within
each family of attack and have to be secured against a large number of variants.
Thus, countermeasures have to be combined so that the programs meet the security
requirements.

The problem of automatic application of combined countermeasure has not been
investigated yet to the best of our knowledge. It raises important questions in order to
be able to guarantee that every countermeasure is correctly applied on the produced
code.

Similarly to the conflicts that can appear between countermeasures and some
optimisation passes of a compiler, conflicts can appear between different coun-
termeasures. The order of application of the countermeasures should be well
thought: which countermeasure must be applied first? Must the countermeasures be
applied in a combined way? Several compiler approaches are proposed to apply a
countermeasure in several steps, interleaved with compiler passes. How should one
interleave all the different steps to apply two very different countermeasures? This
issue is present whatever the level at which countermeasures are applied and refrains
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the simple approach that would consist in simply combining several different tools
one after the other as they would not be aware of the countermeasures that are
applied by the others.

In addition, when the compiler level is chosen to apply the countermeasures,
strategies for the modification of compiler passes have to be made with all
countermeasures in mind. For example, register allocation should be compliant
with several countermeasures that may have different objectives: one may want to
constrain register spilling to prevent distance-based leakage in the presence of a
masking countermeasure while needing new registers to implement a fault detection
countermeasure.

We encourage future works to consider the problem of compilation for security,
to study the interaction between the different countermeasures and performance
optimisations, and to rethink the compilation process so that it can optimise at the
same time the performance and security goals.

5 Conclusion

The automatic application of countermeasures against physical attacks is a crucial
research problem as a lot of platforms are concerned by these threats while securing
them manually is costly. We presented the different approaches to automatically
deploy software countermeasures against these attacks. Some of them directly
modify the source code, others modify the assembly code, and others propose to
modify the compiler so that the countermeasure is applied during the compilation
process. While developing solutions at the compilation level is not always possible,
we encourage this practice as it allows to tune performance while providing
confidence that the countermeasure remains correctly applied in the assembly file.
We also encourage future research to consider the problem of automatic application
of combined countermeasures that has not yet been addressed, their interaction with
compiler optimisations, and to try to create compilers that optimise both security
and performance. These are interesting and challenging issues to solve to be able to
offer security automatically.
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