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Abstract The demand for high speed and low power in nanoscale integrated
circuits (ICs) for many applications, such as image and multimedia data processing,
artificial intelligence, and machine learning, where results of the highest accuracy
may not be needed, has motivated the development of approximate computing.
Approximate circuits, in particular approximate arithmetic units, have been studied
extensively and made significant impact on the power performance of such systems.
The first goal of this chapter is to review both the existing approximate arithmetic
circuitries, which include adders, multipliers, and dividers, and popular approximate
algorithms. The second goal of this chapter is to explore broader applications of
approximate computing. As an example, we review two case studies, one on a
lightweight device authentication scheme based on erroneous adders and the other
one on information hiding behind a newly proposed approximate data format.
This approach of applying approximate computing in security is interesting and
promising in the Internet of things (IoT) domain where the devices are extremely
resource constrained and cannot afford conventional cryptographic solutions to
provide data security and user privacy. We also discuss the potential of approximate
computing in building hardware security primitives for cyber physical system (CPS)
and IoT devices.
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1 Introduction

The performance of various computing systems, from sensors, smartphones, and
other mobile devices to servers, supercomputers, and cloud computing data centers,
has been increasing dramatically in the past several decades in line with the advances
in IC design according to the famous Moore’s Law. However, as Moore’s Law
is approaching its limit [34], the conventional techniques are unable to further
improve the computing performance of systems with limited power budget, i.e.,
the power consumption restricts the performance of computing systems. It becomes
challenging to continue improving system performance by conventional CMOS
technologies. One of the major concerns is the increasing on-chip power density
and the power consumption requirements by the application. Chip designs at the
nanoscale urgently require new approaches and paradigms to reduce low-power and
high-performance computing systems.

Dynamically adjusting the supply voltage and clock frequency is one of the
most effective low-power design methods [32]. However, as we push the supply
voltage closer and closer to the threshold voltage, the circuit delay increases and
may malfunction [19]. This coupled with the high integration density makes it
very challenging to test and verify the design. Indeed, due to the lower-power
supply voltage and the higher integration density at the nanoscale of a circuit
design, ensuring fully correct computation results from ICs will result in a dramatic
increase in cost. The International TechnologyRoadmap for Semiconductors (ITRS)
states that the cost of manufacturing verification and testing can be greatly reduced
by tolerating errors for devices [39]. Therefore, without affecting the usage and
perception, acceptable reduction of the computing accuracy can effectively reduce
both the power consumption and test/verification cost.

Due to the error-resilient and fault-tolerant ability of the human brain, visual and
auditory systems, certain level of processing errors will not affect the quality of
human perception and recognition of the processed data [14, 59]. Examples have
been reported in artificial intelligence (AI), machine learning, data mining, multi-
media signal processing [14, 35, 36, 59] etc. In these applications, the data includes
noisy or redundant information, and therefore it makes little sense to compute the
precise result based on erroneous data or perform redundant computation.

Motivated by the above challenges, approximate computing (also known as
inexact computing) has attracted significant attention from both academia and
industry in recent years [25, 41, 80]. Approximate computing can reduce power
consumption and improve system performance by introducing acceptable errors.
Therefore, we can introduce computation accuracy as a third design metrics
in addition to delay and power consumption as shown in Fig. 1. It depicts a
three-dimension (3D) design space by taking into account the computational
accuracy, performance, and power consumption of approximate computing circuits.

Not surprisingly, some of the early research results have also made their
impact on industry. Google’s deep learning (DL) chip, the tensor processing unit
(TPU), achieves a significant improvement in processing performance by using
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Fig. 1 A 3D design
relationship of performance,
power, and accuracy for
approximate computing

approximate computing techniques [42]. The performance of TPU outperforms over
traditional GPU and CPU processors by 15–30 times. It is a crucial component
in AlphaGo which has defeated human Go champion. As another example, with
the support of the Defense Advanced Research Projects Agency (DARPA), Bates
developed an approximate computing chip based on an approximate arithmetic unit
and founded a company known as Singular Computing [72]. This chip is used
in DARPA’s UPSIDE project to enable real-time video target tracking on drones.
Compared to traditional processors, it can increase the speed of video processing by
100 times and consumes less than 2% of a traditional processor power by using
a Singular Computing chip. Finally, we mention that both IBM [8] and ARM
[65] have investigated heavily on approximate computing. This evidence shows
that approximate computing is already making significant impact on the design
of today’s application-specific processors, and it will have higher potential in the
design for future systems.

Speaking of future systems, the emerging IoT are perhaps the one that will have
the most influence on our lives. The IoT era has already arrived with billions of
electronics devices surrounding us, and it is predicted that there will be more than
50 billion connected IoT devices by 2020 [62]. They will have a large impact on
a wide range of markets, from wearable health-care devices to embedded systems
in smart cars, many of which will be underpinned by devices which are limited
with regard to computation and power consumption. This has led to a high demand
for cryptographic devices that can provide authentication to protect user privacy
and data security. Conventional cryptographic approaches, which involve complex
cryptographic algorithms, are unsuitable to be implemented on IoT devices as they
incur significant timing, energy, and area overhead [66]. This opens the opportunity
for developing low-cost lightweight security primitives based on approximate
computing. For example, information could be hidden into the process and results
of the approximate computing to protect design intellectual protection (IP) as
watermark, fingerprint, or lightweight encryption [19].

Approximate computing has also been used to implement deep neural network
(DNN) algorithms which have found applications in solving hardware security
problems such as side-channel analysis (SCA)-based attacks [20], attacks on
physical unclonable function (PUF) [38], Hardware Trojan (HT) detection [28],
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etc. Hence, an approximate DNN design could benefit and revolutionize hardware
security-related applications.

Previously, there are several excellent surveys on approximate computing. Jiang
et al. [41] reviewed and classified current designs of approximate arithmetic circuits.
A complete survey of existing approximate computing work is presented in [80].
Unlike this work, we focus our discussion on the implementation of approximate
arithmetic circuits and their applications in cybersecurity. Specifically, this chapter
contributes in the following ways:

• A detailed classification and review of current approximate circuits, in particular
approximate arithmetic circuits, including adders, multipliers, and dividers are
introduced.

• Current approximate error-tolerant algorithms are briefly reviewed, and their
applications are discussed.

• Two case studies demonstrating lightweight authentication and security primi-
tives using approximate computing are presented.

• Future works on applying approximate computing into different cyber-security
scenarios, including SCA techniques, PUFs, and logic obfuscation techniques,
are also discussed.

2 Approximate Circuit

Arithmetic units including adders, multipliers, and dividers play important roles in
processors, which significantly influence the performance and the power consump-
tion of the whole computing system. It is expected to achieve higher speed and
power efficiency as well as error tolerance for cognitive applications, e.g., recog-
nition, data analysis, and computer vision. These motivated the fast development
of approximate arithmetic designs. The design of approximate computing circuits
mainly uses voltage-based probability CMOS techniques and logic reduction and
pruning methods. Probability CMOS technique reduces energy consumption by
allocating higher supply voltages to important areas to ensure the accuracy of
most significant bits (MSBs) while appropriately reducing the supply voltage of
least significant bits (LSBs) that have a less effect on the result. Cheemalavagu
et al. [9] proposed a probabilistic adder that uses a conventional precision adder
structure by providing various supply voltages for different bits depending on the
degree of importance. However, this technique requires a higher implementation
cost and generates uncontrollable errors, which restrict its subsequent applications.
Therefore, most of the approximate computing circuits are based on the logic
reduction and pruning methods. In cognitive computing applications, e.g., image
recognition, machine learning, and pattern recognition, the key arithmetic units
mainly include adders and multipliers. Therefore, high-performance and low-power
adders and multipliers have been extensively studied.
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Table 1 An overview of approximate adder circuits

Type Previous works

Speculative adders Non-segmented SSA [54], ACA [78], SHCA [18]

Segmented Non-MUX ESA [60], ETAII [88], ACAA [43], GeArA [71]

MUX SCSA [17], ACSA [44], GDA [83], CCBA [6]

Transistor-based approximate full adders LOA [57], AMAs [24], AXAs [81], InXAs [2]

2.1 Approximate Adders

An overview and classification of current approximate adders are listed in Table 1.
The concept of an approximate adder was first proposed for asynchronous adders
[63], while the first synchronous speculative adder was proposed by Intel [54]. It
has been found that full adders have a shorter carry propagation length for random
operands than the length of a full carry chain. Hence, it gets faster and more
energy-efficient adders by designing shorter carry chains using some specific bits.
Similar as this idea, the researchers designed a family of speculative approximate
adders, including non-segmented speculative approximate adders and segmented
speculative approximate adders.

The non-segmented speculative approximate adder includes synchronous specu-
lative adder (SSA) [54], almost correct adder (ACA) [78], speculative Han-Carlson
adder (SHCA) [18], etc. The segmented approximate adder is a type of speculative
approximate adder. The main difference is that the segmented adder divides the
adder into several sub-adders and the carry propagation is computed in parallel
in each sub-adder. Based on whether they have a multiplexer (MUX) or not,
the segmented approximate adder can be divided into two categories, MUX-
based segmented approximate adder and non-MUX-based segmented adder. The
non-MUX-based segmented approximate adder includes equal segmentation adder
(ESA) [60], error tolerant adder type II (ETAII) [88], accuracy configurable approxi-
mate adder (ACAA) [43], and generalized accuracy configurable approximate adder
(GeArA) [71]. The MUX-based segmented approximate adder is mainly based on
a carry skip or carry-select adder, including speculative carry select adder (SCSA)
[17], approximate carry skip adder (ACSA) [44], gracefully-degrading adder (GDA)
[83], and carry cut-back adder (CCBA) [6].

The speculative approximate adder is primarily targeted at increasing the speed
and performance,while the transistor-based approximate full adder can significantly
reduce power consumption. By reducing the number of transistors and basic
gates from the exact full adder, an energy-efficient approximate full adder can be
achieved. The first approximate full adder is a bio-inspired LOA [57], in which the
MSB is implemented by approximate full adders and the LSB uses OR gates. An
AND gate is used for carry propagation and the critical path delay is determined by
the MSBs, which consumes very little power due to its simple structure. Gupta et
al. [24] proposed five approximate mirror adders (AMAs) based on the traditional
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Fig. 2 The revised LOA
adder structure

mirror adder. The approximate full adder also includes approximate XOR-/NXOR-
based full adders (AXAs) [81] and Inexact Adder cells (InXAs) [2].

The research in [41] shows that SCSA and ACA adders present better accuracy,
while ESA has the lowest accuracy and LOA exhibits medium accuracy. In
terms of hardware performance, SCSA has higher power consumption. The speed
of speculative approximate adder is faster; however it consumes more power.
Although the speed of approximate full adder is slower, it demonstrates low power
consumption and consumes less hardware resources.

The LOA design is chosen in this chapter as an example to illustrate the
approximate adder. For an approximate floating-point adder, a revised LOA adder
is used, as it significantly reduces the critical path by ignoring the lower carry bits
[51]. A k-bit LOA consists of two parts as shown in Fig. 2, an m-bit exact adder
and an n-bit inexact adder. The m-bit adder is used for the m MSBs of the sum,
while the n-bit adder consists of OR gates to compute the addition of n LSBs, i.e.,
the lower n-bit adder is an array of n 2-input OR gates. In the original LOA design,
an additional AND gate is used for generating the most significant carry bit of the
n-bit adder; all carry bits in the n-bit inexact adder are ignored to further reduce the
critical path.

2.2 Approximate Multipliers

The approximate multipliers shown in Table 2 can be classified based on the
approximate design of different components. The idea of approximating operands,
known as logarithmic multiplier (LM), has been proposed by Mitchell in the 1960s
[58]. The LM transforms multiplication operation into additions in the logarithm
domain to achieve low power consumption. However, its accuracy is low. An
approximate logarithmic multiplier (ALM) and an iterative approximation logarith-
mic multiplier (IALM) have been proposed in [53]. Compared to the traditional
LM, ALM achieves higher accuracy and lower power consumption by introducing
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Table 2 An overview of approximate multiplier circuits

Type of approximate multipliers Previous works

Approximate operand Logarithmic LM [58], ALM [53], IALM
[53]

Non-logarithmic ETM [48], DRUM [29]

Approximate partial product generation Non-booth encoding UDM [46]

Booth encoding R4ABMs [52], R8ABMs [40]

Approximate partial product tree Truncated BAM [57]

Untruncated PPPM [86], R4ABMs [52]

Approximate counters or compressors Normal binary ANBCs [61]

Redundant binary ARBCs [7]

an approximate mantissa adder. IALM significantly improves the performance of
the LM by introducing an iterative mechanism; however, its power consumption
is relatively higher. Recently, the design of approximate multipliers based on the
dynamic scaling of operands has been proposed, including fault tolerant multipliers
(ETM) [48] and dynamic range multipliers (DRUM) [29]. They have very low
power consumption; however, their accuracy is also lower than others [53].

The state-of-the-art high-performance multipliers normally include three parts:
partial product generation, partial product accumulation, and final addition. Much
research has been conducted on the approximate design of each part. Kulkarni et
al. [46] proposed an approximate 2 × 2 multiplier, which can be used to construct
larger sized underdesigned multipliers (UDMs). Approximate Booth multipliers, a
radix-4 approximate Booth multiplier (R4ABM) and a radix-8 approximate Booth
multiplier (R8ABM), based on approximate radix-4 modified Booth encoding
(MBE) algorithms and a regular partial product array that employs an approximate
Wallace tree, have been proposed in [52] and [40]. The R4ABM multiplier with
an approximate factor of 14 is the most efficient design when considering both
power-delay product and the error metric. Traditional Booth multipliers, e.g.,
broken-array multiplier (BAM) [57], truncate partial product compression trees;
however, this design has a lower accuracy. Zervakis et al. [86] proposed a partial
product perforation (PPP) technique that reduces the number of partial products.

The approximate radix-4 Booth multiplier is further illustrated as an example
in this chapter to show the design of approximate multipliers. A Booth multiplier
consists of three parts: partial product generation using a Booth encoder, partial
product accumulation using compressors, and final product generation using a fast
adder.

The Booth encoder plays an important role in the Booth multiplier, which reduces
the number of partial product rows by half. Consider the multiplication of two N-
bit integers, i.e., a multiplicandA and a multiplier B in two’s complement, which is
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given as follows:

A = −aN−12N−1 +
N−2∑

i=0

ai2i (1)

B = −bN−12N−1 +
N−2∑

i=0

bi2i (2)

In a Booth encoder, each group is decoded by selecting the partial products as
−2A, −A, 0, A, or 2A. The negation operation is performed by inverting each bit
of A and adding a “1” (defined as Neg) to the LSB [45, 84].

The circuit diagrams of the radix-4 Booth encoder and decoder are provided in
[84]. The output, i.e., the partial product ppij , of the Booth encoder is given as
follows:

ppij = (b2i
⊕

b2i−1)(b2i
⊕

aj ) + (b2i
⊕

b2i−1)(b2i+1

⊕
b2i )(b2i+1

⊕
aj−1)

(3)

The first R4ABM, which uses radix-4 approximate Booth encoding-2 (R4ABE2)
and the regular approximate partial product array, has been proposed in [52]. The
truth table of the R4ABE2 method is shown in Fig. 3, where ① denotes a “0” entry
that has been replaced by a “1”; eight entries in the K-map are modified to simplify
the logic of the Booth encoding. The strategy for R4ABE2 is that in addition to
having a symmetric truth table with a small error, the number of prime implicants
(identified by rectangle) should be as small as possible.

The gate-level circuit of R4ABE2 is shown in Fig. 4. R4ABE2 only requires one
XOR-2 gate by using transmission gates, so the transistor count of R4ABE2 is 4.

Fig. 3 K-map of R4ABE2

Fig. 4 The gate-level circuit of R4ABE2
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Stage 1

Stage 2

Stage 3

Stage 4

Critical path

(a)

Stage 1

Stage 2

Stage 3

Critical path

(b)

Fig. 5 The 8 × 8 Booth multiplier: (a) Exact irregular partial product array, (b) Approximate
regular partial product array by ignoring the Neg term in the fifth partial product row. The exact
partial product term is represented by filled circle, while the approximate partial product term is
represented by filled square. Open circle and circle within circle represent the sign extension bit
and the Neg term

R4ABE2 reduces the complexity of the Booth encoder by over 88% and improves
the delay by 60% compared with MBE.

For a more regular partial product array (requiring a smaller reduction stage), the
Neg term in the (N/2 + 1)th row of the approximate design of a Booth multiplier
can be ignored (shown as � in Fig. 5a). For an N-bit radix-4 Booth multiplier when
N is a power of 2, removing the extra Neg term significantly reduces the critical
path, area, and power when the 4-2 compressor is used for the partial product
accumulation. In the approximate partial product array (Fig. 5b), one reduction stage
is saved; this significantly reduces the complexity and critical path delay. The error
rate of the approximate partial product array with the ignored Neg bit is 37.5%, and
its logic function is given as follows:

NegN
2 −1 = (b2N+1b2N + b2N+1)b2N−1 = b2N+1b2Nb2N−1 (4)

2.3 Approximate Dividers

As mentioned above, both approximate adders and approximate multipliers have
been studied quite extensively. However, the design of approximate arithmetic
division has not been fully analyzed. The computation of division is different from
multiplication; division is mostly a sequential process, while multiplication can be
executed as a multi-operand parallel addition. Thus, when considering approximate
computing for division, an approach targeting the sequential nature of division
must be developed; for example, when calculating the quotient, the error introduced
previously will affect the next iteration. Therefore, a proper approximate design has
to mitigate error propagation.
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Fig. 6 Examples of restoring and non-restoring divider cells: (a) Non-restoring divider cells,
AXDnr [64], (b) Restoring divider cells, AXDr [12]

Chen et al. [11] have proposed the design of an AXDnr, shown in Fig. 6a;
different AXDnr designs have been proposed by replacing the logic primitives with
approximate subtractors. Chen et al. [13] have proposed designs of an approximate
high-radix divider, in which an approximate signed-digit adder cell is utilized to
replace the exact signed-digit adder cell. A type of dynamic approximate divider
has been investigated in [30], in which, for different lengths of input operands,
leading-one detectors and a barrel shifter are utilized to reduce the inaccuracy.
Chen et al. [11] have proposed a few inexact subtractor cells inexact subtractor cells
(AXSCs) at transistor level for the design of an AXDnr. As different types of divider,
restoring and non-restoring dividers have been analyzed for approximate comput-
ing; [12] has shown that an AXDr has better performance than AXDnr with respect
to power consumption while also introducing a small degradation in accuracy.

The AXDr is shown in Fig. 6b. A non-restoring divider needs a remainder
correction circuit for adjusting the sign of the remainder to be consistent with the
dividend, thus incurring additional circuit complexity and power consumption. This
can be improved by utilizing a restoring array divider [64]. As shown in Fig. 7, four

Fig. 7 Four division
replacement schemes used in
approximate array dividers
[12]: (a) vertical replacement,
(b) horizontal replacement,
(c) square replacement, and
(d) triangle replacement

a b

c d
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types of replacement schemes, including vertical, horizontal, square, and triangle
replacements, are used for the division operation.

3 Approximate Software/Algorithm

The main techniques used in the design of approximate algorithms include precision
scaling [85], loop perforation [74], task skipping [70], and task dropping [21].
Accuracy scaling techniques reduce computational and storage requirements by
varying the precision or length of the operation. Yeh et al. [85] proposed an
architecture with a hierarchical floating-point unit that leverages dynamic precision
reduction to enable efficient float-point unit sharing among multiple cores. This
technique can gradually reduce the accuracy of the run time until the minimum
accuracy of the value is reached. Tian et al. [74] proposed a precision-scaled off-
chip data access technique for clustering problems to reduce energy consumption.
The loop perforation technique reduces computations by skipping some iterations of
the loop. An example of code without the loop perforation technique that involves
skipping iterations is shown in Fig. 8 (Table 3).

The application of approximate computing, e.g., using the precision scaling
technique, in DNN algorithms has already been widely studied. Since the training
is more sensitive to accuracy, to reduce the cost of storage and the computational
requirements, the precision scaling technique mainly focuses on the precise reduc-
tion of operands and operations, e.g., dynamic fixed-point technique [55], weight

1 / / O r i g i n a l code w i t h ou t l oop p e r f o r a t i o n
2 f o r ( i n t i = 0 ; i < N; i ++ ) {
3 / / . . .
4 }
5
6 / / Modi f i ed code wi th s k i p p i n g n i t e r a t i o n s each t ime
7 f o r ( i n t i = 0 ; i < N; i ++ ) {
8 / / . . .
9 i = i + s k i p p i n g f a c t o r ;

10 }

Fig. 8 An example of loop perforation technique

Table 3 An overview of
approximate algorithms

Approximate algorithms Previous works

Precision scaling [85]

Loop perforation [74]

Task skipping/dropping [21, 70]

Low-precision DNN [10, 15, 16, 55, 87]

Sparsity and pruning [1, 26]
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Fig. 9 The application of
approximate computing to
neural networks

weight

neuron Σ

Precise hardware model

weight

neuron Σ 

Approximate hardware model

Approximate
Mul�plier

Precise
Mul�plier

reduction [15], activation reduction function [16], nonlinear quantization [87], and
weight sharing [10]. In addition, DNNs also utilize other techniques, including the
sparsity of activation functions [1] and network pruning techniques [26], to reduce
computations and the size of network models.

Venkataramani et al. [77] comprehensively studies various applications for
approximate computing, including image searching, recognition and detection,
image segmentation, as well as data classification. Yazdanbakhsh et al. [82]
presented a set of approximate computing benchmarks for different platforms.
Figure 9 shows an example of the application of approximate computing to energy-
efficient machine learning implementation. Since the approximate circuit could
reduce the cost of storage and the computational requirements, an approximate
circuit is utilized to replace the precise circuit. Then, to accelerate the computing,
machine learning algorithms are involved by setting neuron and weight as parame-
ters.

4 Approximate Computing for Hardware Security

4.1 Security Primitives Based on Approximate Computing

To minimize the power cost of IoT devices while still providing a practical security
solution, Gao et al. proposed a security primitive in [19], based on basic arithmetic
operations carried out by approximate function units, to embed information for
authentication and other security-related applications.

4.1.1 Floating-Point Format with Embedding Security

In the work [19], it has been shown that floating-point-based approximate arithmetic
computing can be employed for embedding security as shown in Fig. 10. The IEEE
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(a)
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exponent 
(8 bits)
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(23 bits)
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p-1 0

031

Security
(p bits)

(b)

Fig. 10 The application of approximate computing to extract security: (a) IEEE 754 single-
precision floating-point format for 32-bit data and (b) approximate format with security extraction.
The last p LSB bits can be used as security bits to embed information

754 standard [37] specifies a binary floating-point format as having 1 sign bit, 8
exponent bits, and 23 fraction bits as shown in Fig. 10a. The sign bit determines the
sign of the number, and it represents 1 or −1 if the leading bit is 0 or 1, respectively.
The exponent is either an 8-bit signed integer from−128 to 127 or an 8-bit unsigned
integer from 0 to 255. The significand includes 23 fraction bits to the right of the
binary point.

The value of IEEE 754-formatted data is computed using Eq. (5) by a given 32-
bit binary data with a given biased sign, exponent e (the 8-bit unsigned integer),
and a 23-bit fraction. For the example of Fig. 10a, the value is equal to 3.14159 in
decimal format using Eq. (5):

value = (−1)b31 ×
(
1 +

23∑

i=1

b23−i2
−i

)
× 2e−127 (5)

Since the LSB p bits in the fraction have little impact on the value, they can be
directly used as security bits, as shown in Fig. 10b, to embed information without
impacting the other 32−p bits. In this example, the approximate value is 3.1413574
by setting the last 10 bits (p = 9) to 0. The error introduced to the precision value
is 0.0074%, which means the last p bits introduce less than 2p−24 error compared
to the precision format.

4.1.2 Approximate Computing with Embedded Security Information

Figure 11 shows the process and an example of applying approximate computing to
information hiding. Two real numbers A and B can be written as A = A′ ⊕ KA and
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A B

KA A´ + KBB´ +x

O´AB

+
KS

Kr+ Ko

+output

(a)

A = 

B = 

KA

KB

= A´ 

B´ = 

A´ B´ x = KO

Kr = 

Output = O´AB + KS = O´AB + KO + KA + KB + Kr

O´AB

= A´ B´ x + KA + KB + Kr

= 0,10000100,00110101010111110001001

(b)

Fig. 11 An example of the application of approximate computing to information embedding: (a)
Flowchart of approximate computing with information embedding proposed by Gao et al. [19] and
(b) an example of approximate computing with information hiding

B = B ′ ⊕KB using the approximate format introduced in Sect. 4.1.1, where A′ and
B ′ are the numbers A and B in approximate format that the last p bits are replaced
by 0s; KA and KB are the last p bits of A and B. ⊕ is an XOR operation.

The process of executing information-embedded approximate computing pro-
posed in [19] mainly includes the following steps. A multiplication operation of A

and B, A × B, is demonstrated in this example:

• Represent A and B in the approximate format: A = A′ ⊕KA and B = B ′ ⊕KB ,
respectively.

• Calculate and representA′×B ′ in the approximate format:A′×B ′ = O ′
AB⊕KO .

• Generate KS = KA ⊕ KB ⊕ KO ⊕ Kr , where Kr is a random key.
• Calculate the result O ′

AB ⊕ KS as the result of A × B.

An example of the process of hiding information into approximate computing
is shown in Fig. 11a. The numbers A and B are 3.14159 and 12.31, respectively.
A × B = 3.14159× 12.31 = 38.6729729 is obtained for the precise computation;
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O ′
AB = A′ × B ′ = 3.1413574 × 12.30957 = 38.6687588 is calculated for the

approximate computation with p = 10. The final result with security information
embedded is computed asO ′

AB⊕KS = 38.6729729,with only a 0.00448 percentage
accuracy loss over the accurate result. Hence, compared to the straight approximate
computing, this approach achieves approximate computing and information hiding
at the same time, which can significantly reduce power and hardware resource
consumption.Moreover,KS can be used as a function ofKA,KB,KO , and Kr , e.g.,
F(KA,KB,KO,Kr), for the application of IP watermarking, digital fingerprinting,
and lightweight encryption. For example, the IP owner’s digital signature can be
used as the key Kr to enable information embedding for the application of IP
watermarking. Similarly, for digital fingerprinting, a unique fingerprint of each
device can be utilized and embedded in the p LSBs. For the same operands of
approximate computing, different key Kr values can be embedded and used to
differentiate individual devices.

4.2 A Low-Voltage Approximate Computing Adder for
Authentication

Due to the ubiquitous nature of IoT devices, lightweight authentication of an entity
is one of the most fundamental problems in providing IoT security. A novel voltage
over-scaling (VOS)-based lightweight authentication approach is presented in [3]
to address this challenge. By utilizing the VOS technique, commonly employed in
approximate computing to reduce the power, to exacerbate the effects of process
variation and extract information related to its variation, it can be used for security
purpose. Digital circuits and systems are normally operated under the nominal
voltage to guarantee correct outputs. Properly reducing the operating voltage under
the prescribed margin can considerably save power consumption. However, over
scaling voltage can generate timing errors and thus sacrifice the output quality.
The errors are related to the process variation and could be tolerated by certain
applications such as image processing. Hence, a two-factor authentication scheme
that uses passwords and hardware properties is proposed to achieve lightweight
authentication for IoT.

The authentication protocol, shown in Fig. 12, utilizes a VOS computation unit
that can generate process variation-dependent errors. The authentication protocol is
divided into two stages, enrollment and authentication. For the enrollment, device i

has a password K, composed of two keys K = (k1, k2), and enrolled in a server’s
database. Moreover, the error pattern of an adder unit in device i is derived and
stored in the server. For the authentication, a random string R is generated by the
server and sent to device i. Device i calculates L according to the equation L =
R + k1 using the adder unit and then computes Y, where Y = L ⊕ k2. Y is sent
back to the server. The server calculates L and L’, where L′ = M(R, k1). If the
hamming distance of L and L’ is smaller than τ , the threshold of error tolerance, the
authentication succeeds. Otherwise, the authentication event aborts.
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Device i Server
Enrollment (1×)

K= (k1,k2) ←→ K= (k1,k2)
error pattern M(· · ·)

Authentication (d×)
R←−−−−

L= R+ k1
Y = L⊕ k2= (R+ k1)⊕ k2 −→

L= Y⊕ k2
L′ =M(R,k1)
Abort if HD(L,L′)>

Fig. 12 The lightweight authentication protocol based on approximate computation unit [3]

5 Future Research Directions

Accelerating machine learning using approximate computing can be generally
applied to side-channel attacks (SCAs), physical unclonable function (PUF) mod-
eling attacks, and the detection of Hardware Trojans, which will be discussed in
details as follows.

5.1 PUFs and SCAs

A PUF is a security primitive which utilizes the inherent process variations present
duringmanufacturing in order to generate a unique digital fingerprint that is intrinsic
to the device itself. As this natural variation between the silicon dies is out of the
manufacturer’s control, they are inherently difficult to clone, as well as providing
additional tamper-evident properties [22]. PUFs also offer improved security as they
can produce unique keys on the fly without the need for storage in non-volatile
memory (NVM) on the device which reduces the risk of physical attack and saves
hardware resources. These properties have a number of advantages over current
state-of-the-art alternatives, opening up interesting opportunities for higher-level
security protocols such as key storage and device authentication for both application
specific integrated circuit (ASIC) and field programmable gate array (FPGA)-based
devices.

PUF architectures can be broadly classified into Weak PUF and Strong PUF
(SPUF) types as discussed in [23]. Weak PUFs have a limited challenge response
pair (CRP) space and, in the extreme case, only have a single response. Therefore,
they are more suited to applications such as key storage or for seeding a pseudo
random number generator (PRNG), where the response never leaves the chip and
is only accessed as required. In contrast, SPUFs have a large number of possible
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Fig. 13 An example of the application of machine learning to PUFs. The approximate computing
is presented to accelerate/improve the efficiency of machine learning attacks

CRPs, whereby a large number of random challenges will return a random response
unique to each challenge, as well as the physical device. By design, this implies that
the requirement for a much larger entropy pool such that related challenges should
not lead to related responses on the same device. Hence, SPUFs have been proposed
for applications such as lightweight mutual authentication.

However, most SPUF architectures based on linear and additive functions have
been shown to be vulnerable to machine learning (ML) attacks. To date, linear
regression (LR), support vector machine (SVM), and evolutionary strategies (ES)-
based ML methods have been widely utilized to attack PUFs [4, 5, 68, 69, 75].

In order to prevent modeling attacks, SPUF designs have been enhanced by
increasing their complexity to raise the bar of attacking efforts of the adversaries.
Figure 13 shows an example of the application of machine learning to SPUFs. Since
approximate computing can be used to improve significantly the effectiveness of
machine learning attacks, applying approximate computing-based modeling attacks
to break SPUF designs could dramatically increase the attack success rate and how
to mitigate this will be a more interesting and challenging problem.

5.2 SCAs

Machine learning techniques have also been used for improving SCAs attacks.
A relatively new approach to profiling attacks involves the application of machine
learning techniques to improve their efficiency and success. It has been shown that
these attacks can be even more powerful than template attacks in practice, as less
assumptions are required on the distribution of the underlying trace data [49, 56].
Much of the research to date has centered on the use of SVMs [31, 33] and random
forests [50]. Research by Lerman et al. [49] showed how such approaches can be
used to uncover the key of a protected (masked) advanced encryption standard
(AES) implementation. A general process illustration of this idea is shown in
Fig. 14. Gilmore et al. in [20] improved upon this research by investigating the novel
application of a neuron network (NN)-based attack against a masked AES design.
This two-stage attack first uses a NN model to recover the mask, with a second NN
model built to recover the masked secret data. Combining the knowledge recovered
from both attacks allows subsequent key recovery with only a single trace. Parallel
work has shown how to recover the secret key with only a single model and no
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AES
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Learning

Attacker

Approximate 
Computing
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SCA
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Fig. 14 An example of the application of machine learning to SCAs. The approximate computing
is presented to accelerate/improve the efficiency of machine learning attacks

mask knowledge requirements at a cost of additional traces in the attack stage [56].
As shown in Fig. 14, approximate computing can be also applied for accelerating
the machine learning algorithms for side channel attacks.

5.3 Hardware Trojans (HTs)

Resulting from the globalization of the semiconductor supply chain, the design
and fabrication of ICs are now distributed worldwide. It brings great benefit to IC
companies, which means a lower design cost and a shorter time-to-market window
[47]. However, it also raises serious concern about IC trustworthiness triggered by
the use of third-party vendors. As a result, it is becoming very difficult to ensure the
integrity and authenticity of devices. A hardware trojan (HT) can be inserted into IC
products at any untrusted phase of the IC production chain by third-party vendors
or adversaries with an ulterior motive [79].

DL is a data-driven approach, where the goal is to ensure the learning algorithm
is agnostic to the problem at hand; only the data changes [73]. This type of approach
is often based on NN-type architectures with multiple hidden layers. With advances
in training algorithms and computational power, it is now possible to train vast
amounts of data leading to today’s rapid advancements and adoption.

Hasegawa et al. [27] proposed a Trojan classification method for gate-level
netlists using SVMs. By analyzing the netlists from the Trust-HUB benchmark suite
[76], they identify several features strongly related to HTs. Trained by these features,
their SVM approach results in high true positive rates, but relatively poor true
negative rates when applied to the benchmark suite. Very recently, it was proposed
to use DL in HT detection on gate-level netlists [27].
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Fig. 15 The application of approximate computing to accelerate the detection of HTs

Figure 15 shows an approach using approximate computing to accelerate DL
algorithms for HT detection. According to the effectiveness of the approximate
circuit and algorithm development, the efficiency of the HT detection will be
significantly improved.

5.4 Approximate Arithmetic Circuit for Logic Obfuscation

Logic obfuscation involves hiding important information, e.g., functionality and
implementation, related to a circuit design by inserting additional logic compo-
nents into the original design so that reverse engineering will not work without
authorization. In order to execute its valid functionality to generate correct outputs,
a secret key is implemented to the logic obfuscated circuit. If a wrong key is
applied, the functionality will be incorrect and wrong outputs are generated by the
obfuscated circuit. Logic obfuscation techniques have been utilized to protect IP
and evaluate the trust of hardware [3]. However, an attacker can decipher the key
by sensitizing the key values to the output or isolating the key-related gates since
the logic obfuscation circuit, additionally added, can be removed from the original
circuit [67].

To counter this, Fig. 16 shows a potential application of approximate arithmetic
circuits in logic obfuscation. If the underlying design to be obfuscated is an
approximate arithmetic circuit, logic obfuscation can be applied to the MSB or LSB

MSB LSB

Approximate 
Arithmetic Circuit

Logic Obfuscation

Key

Input

Output

MSB LSB

Fig. 16 A potential application of approximate arithmetic circuit to logic obfuscation
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of an approximate arithmetic circuit that can only be used correctly by applying the
key of the logic obfuscation circuit. Otherwise, the computation results will be too
erroneous to use.

6 Conclusion

In this chapter, current approximate hardware approaches, in particular approx-
imate arithmetic circuits, including adders, multipliers, and dividers as well as
approximate software/algorithms are briefly reviewed. Two case studies, a security
primitive based on approximate arithmetic circuits and a low-voltage approximate
computing adder for authentication, are presented. Possible research directions for
the application of approximate computing in hardware security scenarios, including
SCAs, PUFs, and logic obfuscation techniques, are introduced and discussed.
The goal of this chapter is to inspire future research on applying approximate
computing techniques to hardware security applications.
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