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Abstract We discuss the impact of physical computing techniques to classifying
network security issues for ultra-low power networked IoT devices. Energy-
constrained IoT systems, such as wearable devices, are already sensor rich and
processing/computation constrained. The digital energy efficiency wall constrains
the amount of signal processing possible at energy-constrained nodes. One rarely
has any computational resources left to consider network security, leaving devices
exposed. Fortunately many of these devices have infrequent wireless communi-
cation with very constrained command structures, but they still exhibit a system
vulnerability, particularly when monitoring or controlling physical infrastructure.
Physical computing approaches enable at least a factor of 1000 improvement in
computational energy efficiency empowering a new generation of local computa-
tional structures for embedded IoT devices. These techniques offer computational
capability to address network security concerns.

1 Sensor Nodes Empowered by SoC FPAA Devices

Analog Computing has grown up, fueled through the emergence of large-scale
Field-ProgrammableAnalog Array (FPAA) devices (e.g., SoC FPAA [11]), the gen-
eralization of FPGAs. Physical computing [12], which includes analog computing,
enables both improved computational efficiency (speed and/or larger complexity) of
×1000 or more compared to digital solutions (as predicted by [27]) and potential
improvements in area efficiency of x100. Physical computing is now programmable
and configurable (e.g., [11]). The rise of programmable and configurable analog
techniques (e.g., [11]), integrated with digital processing, enables a wide use of
physical computing techniques, not limiting to a few analog IC design specialists
[11, 12].
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Fig. 1 Embedded configurable physical computation. (a) Physical computation in an embedded
platform enabling a sea of analog and digital interacting and computation enable significant
computing resources moving from sensors to decisions to be communicated. (b) Overview picture
of the recently published SoC FPAA device [11]. (c) A wireless sensor node using this FPAA
device, heavily utilizing context-aware techniques. The data from these experimentally measured
structures will guide further scaling efforts (size, energy consumed). One application for this
sensor network would be for ground-level monitoring of people, cars, trucks, machineries, or other
elements through acoustic or MEMS vibration/accelerometer sensors. A second application for
this sensor network would be for a body-level sensing network, monitoring the behavior of knees,
heart, and other internal organs through a combination of vibrational and acoustic sensors

Figure 1 illustrates discussions on a wireless sensor node utilizing FPAA. FPAA
devices allow the user to investigate many physical computing designs within a few
weeks of time. The alternative for one design would require years of IC design by
potentially multiple individuals. The sensor node could classify (e.g., [11]) and learn
(e.g., [15]) from original sensor signals, performing all of the computation required
for the computation and operating the entire system in its real-world application
environment. Embedded learning approaches, implemented in a single FPAA
device, illustrate the small area and ultra-low power capabilities of configurable
physical computing. Section 2 discusses the context-aware opportunities in FPAA
architectures.

Although the low-power physical computing could have huge impacts for net-
work of autonomous sensor nodes, these FPAA-enabled nodes often require secure
operation. Although FPAAs are a recent technology, widespread adoption of these
devices eventually requires some level of security measures against malicious users.
This discussion overviews low-power context-aware FPAA architectures (Sect. 2)
and then addresses FPAAs as physical computing devices for low-power embedded
applications (Sect. 3). The conversation moves to secure FPAA devices (Sect. 4),
showing positive FPAA security attributes (Sect. 4.1) and addressing FPAA security
issues (Sect. 4.2). FPAA devices can be used to investigate security of analog/mixed-
signal capabilities (Sect. 5), as well as be part of the resulting secure computation,
such as implementing unique functions (Sect. 5.3). The final section summarizes
the discussions as well as addresses remaining issues for secure ultra-low power
embedded FPAA devices.
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2 Low-Power Context-Aware FPAA Architectures

Many portable and wearable devices are constrained by their energy efficiency.
Figure 2 illustrates the energy impact for cloud computation, on-device digital
computation, and FPAA-assisted computation. The digital communication typically
dominates the overall energy consumption [14].

Cloud-based computing removes issues of real-time embedded (e.g., fixed-point
arithmetic) to be done on some far away (and supposedly free) server using
MATLAB-style coding. Computation done off-device is not seen and considered
effectively endless; eventually that resulting energy and resulting infrastructure
required still have significant impacts. The host system still must constantly transmit
and receive data through its wireless communication system to perform these
computations. The network connectivity must have a minimum quality at all times;
otherwise performance noticeably drops. One often assumes the cloud is nearly
free for a small number of users; as the product scales to the consumer market,
these assumptions can break down. Although the local digital device computation
(for a good wireless network) requires similar energy for cloud and on-device
computation (at a 100MMAC(/s) level), physical computation, such as FPAA-
empowered devices, enables factors of 1000x improvement in the overall power
requirements.

Fig. 2 Comparison of cloud computation, on-device computation, and FPAA computation. For
cloud computation and for on-device computation, we only consider the energy required for
communication. All devices might have an RF radio; we consider just the part required for this
core computation. For FPAA computation we include the entire device. If cloud computation were
considered free, then cloud and on-device computation would appear of similar complexity. FPAA
computation dramatically decreases the resulting on-device computation
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These approaches enable ultra-low power physical computing that enables
small devices capable of computational-intensive (>10MMAC(/s)) context-aware
processing. This approach requires low-power components, continuously operating
or operating frequently, that can decide when to wake up the expensive hardware
components. A node requiring 100µW average power could operate for several
months on a single battery. These computing components are enabled by the
x1000 energy improvement (and×100 area improvement) from FPAA classification
algorithms. The always-on computation in stage one requires being physical
computation, both because of its computational power and its close proximity to
sensor inputs.

The need for low-average power consumption requires that higher-power
devices, like wireless transceivers and even embedded μP, must be shut down
most of the time. These devices should be active only in those rare cases where they
are needed, such as when messages need to be passed between nodes. Similarly
high-power sensors and actuators (e.g., acoustic speaker) need to be shut down
except when it is being used. Without using physical computation, the sensor
node would be a simple, low-speed data acquisition node and likely cannot stay
under 1mW given the power constraints of the embedded processor and wireless
transceiver. The rest of the processing probably still needs to take place on some
other digital system.

Physical computing in context-aware architectures enables potential energy-
harvesting opportunities. Most energy-harvesting devices supply ≈10µW of power
per cm2 except in unusual environments. Figure 3b shows the device lifetime (due
to average power consumption) for a single coin cell battery (0.1–0.5Ah). A 10 cm2

energy-harvesting device could supply 100µW of average power, a manageable
area for an embedded sensor node.

3 FPAAs as Physical Computation Devices

FPAA devices are our vehicle for discussing ultra-low energy computing. FPAA
devices allow the user to investigate many physical computing designs within a few
weeks of time. The alternative for one design would require years of IC design by
potentially multiple individuals. These FPAAs compare favorably against custom
designs, and unlike FPGA designs, FPAA architectures are open to the academic
community.

Floating-gate (FG) devices empower FPAA by providing a ubiquitous, small,
dense, nonvolatile memory element [19] (Fig. 4). A single device can store a
weight value, compute signal(s) with that weight value, and program or adapt
that weight value, all in a single device available in standard CMOS [17, 18].
The circuit components involve FG-programmed transconductance amplifiers and
transistors (and similar components) with current sources programmable over six
orders of magnitude in current (and therefore time constant) [24]. Devices not used
are programmed to require virtually zero power. FG devices enable programming
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Fig. 3 Small sensor nodes require energy-efficient computation, computation enabled through
physical computing approaches. Device lifetime available for wireless sensor nodes. The graph
shows the opportunity for energy-harvesting systems at the size of 1 and 10 cm2 form factors; most
energy-harvesting systems output 10µW of power per cm2, with the exception of solar cells in
direct sunlight in a desert

Vd,pulse

Vg1

Vdd

Vtun

Vg2

Vd

Vs
Q

Fig. 4 Circuit diagram for basic FG device. The device can store a nonvolatile charge (Q), enables
feedforward computation of functions involving Q, can program, and can adapt Q, all in a compact
device structure. Multiple transistors sometimes ease the programming infrastructure for generic
programming architectures

around device mismatch characteristics, enabling each device in a batch of ICs to
perform similarly.

The SoC FPAA [11] ecosystem represents a device to system user-configurable
system. An SoC FPAA implemented a command-word acoustic classifier utilizing
hand-tuned weights demonstrating command-word recognition in less than 23µW
power utilizing standard digital interfaces (Fig. 5) [11]. Multiple analog signal
processing functions are a factor of 1000× more efficient than digital processing,
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Fig. 5 High-level picture of low-power classification using an acoustic classifier for command-
word classification. This approach enables computation from sensor to classified output in a single
structure, handling all of the initial sensor processing and early-stage signal processing. The SoC
FPAA device classified the word, such as dark from the TIMIT database phrases. This analog
computation (<23µW) is radically different than the class of expected analog operations

such as Vector-Matrix Multiplication (VMM), frequency decomposition, adaptive
filtering, and classification (e.g., [11] and references within). Embedded classifiers
have found initial success using this SoC FPAA device toward acoustic classification
and learning (e.g., [11, 15] ) in 10–30µW average power consumption. The circuits
compute from sensor to classified output in a single structure, handling all of
the initial sensor processing and early-stage signal processing. This ecosystem
will scale with newer ICs built to this standard, as expected by all future FPAA
devices [20].

This new capability creates opportunities, but also creates design stress to address
the resulting large co-design problem. The designer must choose the sensors as
well as where to implement algorithms between the analog front end, analog
signal processing blocks, classification (mixed-signal computation) which includes
symbolic (e.g., digital) representations, digital computation blocks, and resulting
μP computation. Moving heavy processing to analog computation tends to have
less impact on signal line and substrate coupling to neighboring elements compared
to digital systems, an issue often affecting the integration of analog components
with mostly digital computing systems. Often the line between digital and analog
computation is blurred, for example, for data converters or their more general
concepts, analog classifier blocks that typically have digital outputs. The digital
processor will be invaluable for bookkeeping functions, including interfacing,
memory buffering, and related computations, as well as serial computations that
are just better understood at the time of a particular design. Some heuristic concepts
have been used previously, but far more research is required in building applications
and the framework of these applications to enable co-design procedures in this
space.
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Fig. 6 SoC FPAA approach consists of key innovations in FPAA hardware, innovations and
developments in FPAA tool structure, as well as innovations in the bridges between them. One
typically focuses on what circuit and system applications can be built on the FPAA platform, but
every solution is built up for a large number of components ideally abstracted away from the user

Analog computation [12] becomes relevant with the advent of FPAA devices,
particularly the SoC FPAA devices [11]. Figure 6 shows a high-level view of the
demonstrated infrastructure and tools for the SoC FPAA, from FG programming,
device scaling, and PC board infrastructure through system-enabling technologies
as calibration and built-in self-test methodologies and through high-level tools for
design as well as education (e.g., [21]). This framework is essential for application-
based system design using physical systems particularly given modern comfort
with structured and automated digital design from code to working application.
This framework utilizes abstractions in a mixed analog–digital framework [13],
as well as development of high-level tools to enable non-device/analog circuit
designers to effectively use these approaches [9] (Fig. 6). High-level design tools are
implemented in Scilab/Xcos that enable automated compilation to working FPAA
hardware [9]. These tools give the user the ability to create, model, and simulate
analog and digital designs. Physical algorithms may show improvements beyond
just energy efficiency for digital computing machines [12].

4 Embedded FPAA Security Concerns

The FPAA opportunities presented in the last section, particularly the ultra-low
energy and small size characteristics, require consideration to make these embedded
nodes secure. This section discusses multiple opportunities toward secure FPAA
devices. Sections 4.1 and 4.1 discuss the positive characteristics and security issues,



292 J. Hasler

in turn, for the FPAA device family. Sections 5.1 and 5.2 discuss the aspects of using
FPAA devices to develop training and procedures for deconstructing custom ICs,
giving a sense of the security of a compromised FPAA device. Section 5.3 discusses
using the FPAA infrastructure to build a unique function for security, potentially in
securing the given FPAA device.

4.1 Positive FPAA Security Attributes

The FPAA structure has a number of good security aspects. The FPAA uses
FG devices to store the device state without any SRAM loading vulnerability,
particularly from an external IC. Once the FG values on the chip are programmed
and loaded, the FPAA code is secure, unless one can scan out the states of the FG
elements. FG programming an IC will have minimal changes over the lifetime (e.g.,
10-year rating) of the part. The programming code is not the IC μP SRAM, but only
used for programming, and then purged after programming. Analog values can be
hard to measure without disturbing the values significantly, and digital computation
can be encoded with analog computation and storage. Further, very low-power
circuits are challenging to externally measure due to the low-circuit currents (e.g.,
pA and nA). These transistors do not have enough current or field to generate light
to measure transistor behavior and become very hard to measure the external fields.

On the other hand, the FPAA structure is a platform for creating secure
applications. The SoC FPAA structure is a generic structure, openly published, and
built from general components. None of the particular components are unknown
or confidential. IC layout says almost nothing about the programmed IC functions.
The motivation to steal the knowledge of on-chip FPAA circuits is minimal. The
infrastructure can measure the analog behavior at any given node in the FPAA.
FPAAs allow for scanning every hardware node internally to the circuit (e.g.,
[11, 33]). If the core FG programming on the IC is verified, effectively part of
the calibration procedure and measurement [25], then the entire IC can be verified.
Secure analog and digital code can be programmed in a secure space.

The IC could have intelligence, using internal signals and voltages, to choose to
erase its contents. If tampering is suspected, the operating device could pull up on
the tunneling voltage line(s) in an attempt to erase the previous operating code. The
device parallel erase occurs from a combination of electron tunneling and reverse
tunneling. The result leaves little chance of recovering any previous code even with
a short erase cycle. One is more likely to pick up device mismatch patterns rather
than anything of the previous code.
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4.2 Addressing FPAA Security Issues

FPAA devices are far from safe from a potential malicious agent, even with
a number of good starting properties. For example, the current FPAA devices
do not have encryption and related security on the input control of the device.
If an actor could connect to the particular control connections, even if the IC
pins are disconnected or disabled, they could get direct control of the device
and programming infrastructure. Future FPAA devices will have encryption on
the control structure, particularly as they move to a wider user community. The
encrypted access can make use of a PUF from the particular FPAA, such as the
approach shown in Sect. 5.3. Encryption is a straightforward solution used on secure
FPGA devices. This section will consider the resulting issues for these devices.

Figure 7 illustrates possible security issues and types of attacks for an embedded
system built with SoC FPAA device. The FPAA attacks could happen by physical
tampering with an existing device, as well as electronic attacks through the com-
munication port, such as a transceiver port. In a physical FPAA attack, the device
is obtained while avoiding self-destruct sequence to be explicitly deconstructed.
If the internal code can be obtained, likely at considerable expense, one could
potentially reconstruct the FPAA function. Mismatch encoded functions would
require additional computational and measurement structures. An alternate physical
FPAA attack could use a compiled digital serial port to gain access to the digital
control and resulting programming interface. When digital interfaces (e.g., SPI) are
controlled by the processor, getting control of the processor is unlikely. A more
likely situation is finding a way to stall the computation resulting from a physical
attack on the clock structure. Many systems are far less secure due to physical
tampering if the device has been obtained, and any self-destruct/erase mechanism
was somehow avoided. A more likely situation is a nonphysical attack through the
transceiver interface into the IC. These can include attacks to gain control of the
FPAA device to reprogram the device or constantly attacking a device to drain the
node battery power.

SoC 
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Sensors
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FPAA attack 
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Transceiver 
Port Attack 

Physical 
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Fig. 7 Possible security issues for an embedded system built with SoC FPAA device. Some attacks
could occur through the known communication path, such as through the wireless transceiver port,
and other attaches could occur through direct physical access to the device
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Table 1 Summary classification of IoT systems

Category RAM ROM

Class 2 (C2) 50 kB 250 kB

Class 1 (C1) 10 kB 100 kB

Class 0 (C0) <10 kB <100 kB

Low-energy computation opens application opportunities at 10mW, 1mW, and
lower-average power consumption, and yet the low power consumption constrains
the system security capabilities. Embedded FPAA applications have limited digital
memory because of the system cost. Network security is characterized in terms of
classes of networked devices, summarized in Table 1 [6, 22, 26, 29, 31]. SoC FPAA
is a C0 device having only 32 kB total digital memory. Digital memory is expensive
in terms of relative on-chip area, complexity, and energy dissipation. Many systems
going forward might have less total digital memory, as well as many systems that
will not rise to the C1 memory level. FPAAs enable a whole opportunity of C0
devices, devices many assume are impossible to secure over a network. Running a
minimal OS and security code may exceed the rest of system energy budget.

So how dowe have an ultra-low power secure IoT system? Part of the opportunity
is coding systems outside of a minimal OS, consistent with the rest of the event-
based FPAA μP code, as well as enabling tight secure stack and security aspects
in MSP 430 assembly language. Digital FPAA event code is coded in assembly
language and encapsulated in graphical code for easy user reuse.

5 FPAAs for Investigating IC Validation

When a user has a programmed FPAA device, it looks like any other custom IC that
performs one or a set of functions. Further, the IC layout says nothing about the
actual device performance. If the user knows it is an FPAA device and has sufficient
knowledge of its programming functions, they might have additional information to
figure out the function; otherwise, all they have is the device to characterize.

FPAA devices become good test platforms to investigate how individuals might
deconstruct a particular IC. FPAA devices allow for many reprogrammed circuits,
so the approach can be repeated many times. In the following subsections, we will
discuss two such cases. First we will overview the inspiration of this study, the Black
Box (BB) exam at Caltech (CNS 182). Second, we will discuss how this approach
was modified, in an academic setting enabled by FPAA devices, to Training IC
Deconstruction.
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5.1 Black Box (BB) Exam: CNS 182

Academic groups are not usually interested in deconstructing known ICs, and when
they are, the details are rarely discussed. One particular exception I personally
experienced, both as a student (1993) and a teacher (1994–1996), was the Black
Box (BB) exam at Caltech (CNS 182). This particular exercise was the final exam
for the second quarter (Winter quarter) for CNS 182, Analog VLSI, and Neural
Systems, between 1989 and 1996.

The exam consisted of a 2-h lab session followed by several days (4–5) to write
up the results discovered during the lab session. The students in the class spent
every week for two quarters measuring custom-built ICs, starting with transistors
through small systems, using typical computer-controlled bench equipment. When
the students arrived in the lab for the BB exam, a particular circuit consisting of
3–5 pins (besides power (Vdd) and ground (GND)) was operating correctly in one
possible mode. Typically the circuit was a single transconductance amplifier (TA)
or 2 TA circuit with a couple of transistors and known to be somewhat related to
course topics over the first two quarters. This circuit was part of a 40-pin chip custom
fabricated for the course; the students did not have access to any layout information.
At least one element was a bias, set by a potentiometer. No FG devices were used.
In the end, roughly half of the students would correctly guess the correct circuit with
various levels of experimental justification.

5.2 Training IC Deconstruction Using FPAA BB Approach

The BB experience was recreated between 2011 and 2012 using currently available
FPAA devices. The FPAA enables investigating deconstructing circuits, by provid-
ing a structured platform to instantiate a large number of circuits and systems. Each
case would look from the IC pins to be some custom IC device and could be tested
accordingly. The deconstruction capabilities can be quantified for different amounts
of IC knowledge, such as routing information or netlists. These techniques could be
used to verify a desired circuit implementation, as well as search for any additional
component that was placed in the circuit. The FPAAs used for these experiments
were designed between 2007 and 2010 (e.g., [4, 33]); the results should directly
extend to using the SoC FPAA devices.

A group of graduate student IC designers were trained through a set of six BB
events (Table 2) over a 9-month timeframe to eventually deconstruct a custom-
fabricated IC. This BB approach arose from the constant interaction between
courses and research. One person designed, compiled, and experimentally character-
ized the design completely without the knowledge of others. The groups had no idea
of the functionality of the circuits before they arrived in the lab. Each person on the
student team was previously familiar with measuring the FPAA devices. Between
events students developed additional tools to assist in deconstructing the IC design.
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Table 2 Summary of FPAA black box experiments

Components to find Group info Analysis techniques Teams Time

BB1 Analog Amps/muxes Only IC DC I/V, scopes 3 (2 people ) >8 h

BB2 Am Demod + hidden Switch Switch list analysis 2 (3 people) ≈ 4 h

list + DC I/V, scopes

BB3 DAC: 5ibt R-22R + Netlist Low-level netlists 2 (3 people) 7–8 h

3-bit V-mode = 8 bits ≈100 + DC I/V, scopes

BB4 Low-frequency Netlist Netlists, clustering, 2( 4 people) 6–8 h

transciever circuit (spice) + DC I/V, scopes

BB5 VCO controlled Netlist Netlists, clustering, 2 (3 people) 5–6 h

by 7-bit DAC (spice) + DC I/V, scopes

BB6 Multiplexed 1 8bit DAC Netlist Netlists, clustering, 2 (3 people) 4–5 h

two in, two out (spice) + DC I/V, scopes

Different events had different level of information (Table 2). The first case
paralleled the Caltech experience to get a baseline performance, but with roughly
double the number of chip pins and number of components, as well as the students
involved did not prepare before this starting exercise. The groups did a number of I–
V measurements at the chip pins to identify the resulting circuit. In the second case,
the groups had a switch list (Fig. 8b), similar in format to the SoC FPAA approach
[24]. The group made extensive use of the routing visualization tool, Routing
Activity Tool (RAT), to uncover the resulting circuits. Whiteboard pictures prove
this solution approach. Figure 8b shows the expected demodulation circuit which
all groups found; the groups also found an unexpected extra oscillator that was
explicitly added. In later cases the groups were given a form of netlist, compatible
with the existing tools, for their analysis. All of the groups developed clustering
algorithms to assist with grouping and identifying the resulting circuits. At each
level, the speed to fully recognize and experimentally verify a particular circuit
increased with the increasing circuit complexity.

The final goal was to extract and verify an entire custom IC developed by another
group. A group of four Ph.D. students is involved in the BB experiences, and
Dr. Hasler would spend three isolated days together to analyze this IC. Although
the promised information varied throughout, in the end, the group was given
(approximate) delayered information extracted from the IC, not including n-type or
p-type selections. After 3 days and 2 additional days to write the report, the group
found all four interleaved DACs, although only one was populated fully. The group
discovered an error on the VCO due to a misplaced GND line.

This process showed FPAAs could be used to train individuals to deconstruct the
circuitry on a particular device, as well as important insights to secure a particular
FPAA device. Nonvolatile analog FG storage makes discovering the internal code
of a programmed device extremely difficult without huge expenses. The approach
showed some unique aspects of using physical computation related to security; the
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Fig. 8 Illustration of the Black Box exam setup. (a) A student would arrive into the lab with a
working device demonstrating some characteristic of the circuit. The question is to find the entire
circuit, a circuit inside an integrated circuit with a few, e.g., I/O pins, in a finite amount of time
(e.g., 2 h). This experience has parallels to security issues when deconstructing an unknown analog
or mixed-mode circuit. (b) A low-frequency signal demodulator is an example system (BB2) to
deconstruct from the available data. Each of these components was built using available CAB
components and routed into the FPAA infrastructure. Typical electrical engineers might predict
such an architecture when faced with multiple components. If an additional component is sitting in
this circuit, it might create confusion or might just be overlooked. (c) In BB2, the groups had the
switch list programmed into the FPAA device. The switch list communicates the physical routing
on the FPAA IC. The first two columns are position in x and y direction on chip. The third column
is log-encoded value for current level; 1.8 is a value to program as a switch

wider opportunities in physical computing [12] show these items are just scratching
the surface of what is possible.

5.3 FPAAs for Unique Functions

Unique functions in FPAA IC devices are rich platforms to construct unique
functions, particularly for security. The FPAA device allows for the selection of
many devices, devices that have mismatch specific to a particular IC and mismatch
that can be selected and compiled into a particular circuit. The mismatch between
pFETs for a FG device enables almost 1M mismatched components.

Unique functions and PUFs have been implemented in FPGAs (digital) [28, 37]
and analog circuits [8, 32]. For example, [37] uses delay variability in the FPGA
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Fig. 9 Example of generating unique functions for secure codes implemented in an SoC FPAA.
Threshold voltage (�VT 0) mismatch at a chosen location in nearly one million FG devices gives
the resulting code

to create a specific code directly affected by the component variability. All of
these functions are based on the mismatch of the resulting device, whether custom
fabricated or compiled in the structure [36]. This FPAA approach is similar to the
FPGA approach for making unique functions and PUF, in that a function is compiled
on the device and utilized to create a unique output code for a particular input
stimulus code.

Figure 9 shows an example of FPAA circuit for generating a unique function [16].
This approach utilizes the mismatch available in the FPAA circuit, mismatch we
typically remove from the device. The structure yields a code for encryption of data,
enabled by programming the desired code by the user. One use for the input code
(stimulation) is the address of the FG elements to measure. The resulting outputs,
scanned through shift registers available throughout the IC, would be thresholded to
yield a digital code (Fig. 10). The FG elements would be programmed to bias the
resulting code as desired, modulating the mismatch pattern. Typically one would
program all elements to the same current to bring out the mismatch pattern (e.g.,
[11]). The programmed values would be retained for the operation of the FPAA IC,
showing μV shift over a typical 10-year lifetime. The function could be compiled
right into the rest of the circuitry, where implementation and routing of other circuits
would obfuscate the resulting devices. This technique allows for an evolution of the
codes through secure FG updates. If a code was suspected to be discovered, one
could easily just move the sensing circuitry to an open circuit area. This unique
function circuit may not have to be on the chip, but can be compiled onto a particular
IC when needed [16]. If the IC is erased, knowledge of the PUF is erased except in
the secure space originally used.
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Fig. 10 Effective circuit
diagram for the PVT analysis
of the unique function circuit.
The volatile switch line set to
Vdd for this circuit
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6 Summary and Next Directions

Physical computing opens great opportunities in energy-constrained IoT environ-
ments while creating significant security challenges for these IoT devices. FPAA
devices enable the large-scale deployment of physical computation, and yet, these
FPAA-enabled nodes often require secure operation against malicious users. Low-
power context-aware FPAA architectures enable a number of autonomous sensor
nodes. FPAA devices have a number of positive security attributes and security
issues. FPAA devices can be used to investigate security and be part of the resulting
secure computation.

We want to summarize current issues for building and deploying secure ultra-low
power embedded FPAA devices. These directions include:

• Encrypt the control (and therefore programming) data stream, likely using a PUF
circuit for the encryption code as part of the FPAA IC.

• Develop ultra-small security framework in dedicated assembly code + mixed-
signal classification that integrates with event-based μP operation.

Network traffic attacks on FPAA-based systems are likely to be a point of vul-
nerability, requiring building tables and metrics of proper and improper network
activity and classifying the resulting responses [1–3, 5, 7, 10, 23, 30, 34, 35].
These functions must be done in as low computational energy as possible. The
functions require a minimal digital energy in parsing and creating these tables.
Classification energy would be minimized using learning classifiers compiled on
the FPAA infrastructure [15].

Security for ultra-low power embedded computing platforms based on FPAA
devices is possible and is a space rich in potential research opportunities. The need
for secure ultra-low power embedded computing platforms will likely only grow in
the near future.
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