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Abstract We describe a lightweight algorithm performing whole-network authen-
tication in a distributed way. This protocol is more efficient than one-to-one node
authentication: it results in less communication, less computation and overall lower
energy consumption. The proposed algorithm is provably secure and achieves zero-
knowledge authentication of a network in a time logarithmic in the number of nodes.

1 Introduction

A growing market focuses on lightweight devices, whose low cost and easy
production allow for creative and pervasive uses. The Internet of Things (IoT)
consists in spatially distributed nodes that form a network, able to control or monitor
physical or environmental conditions (such as temperature, pressure, image and
sound), perform computations or store data. IoT nodes are typically low-cost devices
with limited computational resources and limited battery. They transmit the data
they acquire through the network to a gateway, also called the transceiver, which
collects information and sends it to a processing unit. Nodes are usually deployed in
hostile environments and are therefore susceptible to physical attacks, harsh weather
conditions and communication interferences.
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Due to the open and distributed nature of the IoT, security is key to the entire
network’s proper operation [14]. However, the lightweight nature of sensor nodes
heavily restricts the type of cryptographic operations that they can perform, and the
constrained power resources make any communication costly.

This chapter describes an authentication protocol that establishes network
integrity and leverages the distributed nature of computing nodes to alleviate
individual computational effort. This enables the base station to identify which
nodes need replacement or attention.

This is most useful in the context of wireless sensor networks and the IoT, but
applies equally well to mesh network authentication and similar situations.

1.1 Related Work

Zero-knowledge (ZK) protocols have been considered for authentication of wireless
sensor networks. For instance, Anshul and Roy [1] describe a modified version
of the Guillou–Quisquater identification scheme [8], combined with the μTesla
protocol [11] for authentication broadcast in constrained environments. We stress
that the purpose of the scheme of [1], and similar ones, is to authenticate the base
station.

Aggregate signature schemes such as [2, 15] may be used to achieve the goal
pursued here—however they are intrinsically noninteractive—and the most efficient
aggregate constructions use elliptic curve pairings, which require powerful devices.

Closer to our concerns, [13] describes a ZK network authentication protocol, but
it only authenticates two nodes at a time, and the base station acts like a trusted
third party. As such it takes a very large number of interactions to authenticate the
network as a whole.

What we propose instead is a collective perspective on authentication and not an
isolated one.

1.2 Structure of This Chapter

Section 2 recalls the Fiat–Shamir authentication scheme and presents a distributed
algorithm for topology-aware networks. We describe the core idea of our chapter, a
distributed Fiat–Shamir protocol for IoT authentication, in Sect. 3. We analyse the
security of the proposed protocol in Sect. 4. Section 5 provides several improve-
ments and explores trade-offs between security, transmission and storage.
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2 Preliminaries

2.1 Fiat–Shamir Authentication

The Fiat–Shamir authentication protocol [5] enables a prover P to convince a
verifier V thatP possesses a secret key without ever revealing the secret key [4, 7].

The algorithm first runs a one-time setup, whereby a trusted authority publishes
an RSAmodulus n = pq but keeps the factorsp and q private. The proverP selects
a secret s < n such that gcd(n, s) = 1 computes v = s2 mod n and publishes v as
its public key.

When a verifier V wishes to identify P , he uses the protocol of Protocol 1. V
may run this protocol several times until V is convinced that P indeed knows the
square root s of v modulo n.

Protocol 1: Fiat–Shamir authentication

Prover Verifier

r
$←− [1, n − 1]

x ← r2 mod n
x−−−−−−→

{e1, . . . , ek} $←− {0, 1}k
e1,...,ek←−−−−−−

y ← r

k∏

i=1

s
ei

i mod n

y−−−−−−→

Check y2 = x

k∏

i=1

v
ei

i mod n

Protocol 1 describes the original Fiat–Shamir authentication protocol [5], which
is honest verifier zero knowledge1 and whose security is proven assuming the
hardness of computing arbitrary square roots modulo a composite n, which is
equivalent to factoring n.

As pointed out by [5], instead of sending x, P can hash it and send the first bits
of H(x) to V , for instance, the first 128 bits. With that variant, the last step of the
protocol is replaced by the computation of H(y2 ∏k

i=1 v
ai

i mod n), truncated to the
first 128 bits and compared to the value sent byP . Using this “short commitment”
version reduces somewhat the number of communicated bits. However, it comes at
the expense of a reduced security level. A refined analysis of this technique is given
in [6].

1This can be fixed by requiring V to commit on the ai before P has sent anything, but this
modification will not be necessary for our purpose.
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2.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communication
system, the overall network topology is subject to change. Since sensors send data
through the network, a sudden disruption of the usual route may result in the whole
network shutting down.

2.2.1 Topology-Aware Networks

A topology-aware network detects changes in the connectivity of neighbours, so
that each node has an accurate description of its position within the network.
This information is used to determine a good route for sending sensor data to the
base station. This could be implemented in many ways, for instance, by sending
discovery messages (to detect additions) and detecting unacknowledged packets
(for deletions). Note that the precise implementation strategy does not impact the
algorithm.

Given any graph G = (V ,E) with a distinguished vertex B (the base station),
the optimal route for any vertex v is the shortest path from v to B on the minimum
degree spanning tree S = (V ,E′) of G. Unfortunately, the problem of finding such
a spanning tree is NP-hard [12], even though there exist optimal approximation
algorithms [9, 12]. Any spanning tree would work for the proposed algorithm;
however the performance of the algorithm gets better as the spanning tree degree
gets smaller.

2.2.2 Mooij–Goga–Wesselink’s Algorithm

The network’s topology is described by a spanning tree W constructed in a
distributed fashion by the Mooij–Goga–Wesselink algorithm [10]. We assume that
nodes can locally detect whether a neighbour has appeared or disappeared, i.e. graph
edge deletion and additions.

W is constructed by aggregating smaller subtrees together. Each node in W is
attributed a “parent” node, which already belongs to a subtree. The complete tree
structure of W is characterized by the parenthood relationship, which the Mooij–
Goga–Wesselink algorithm computes. Finally, by topological reordering, the base
station T can be put as the root of W .

Each node in W has three local variables {parent, root,dist} that are initially
set to a null value ⊥. Nodes construct distributively a spanning tree by exchanging
“M-messages” containing a root information, distance information and a type. The
algorithm has two parts:

• Basic: maintains a spanning tree as long as no edge is removed (it is a variant of
the union-find algorithm [3]). When a new neighbour w is detected, a discovery
M-message (root,dist) is sent to it. If no topology change is detected for w, and
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an M-message is received from it, it is processed by Algorithm 1. Note that a
node only becomes active upon an event such as the arriving of an M-message
or a topology change.

• Removal: intervenes after the edge deletion so that the basic algorithm can be run
again and give correct results.

Algorithm 1: Mooij–Goga–Wesselink algorithm (Basic part)

Receive: An M-message (r, d) coming from a neighbour w.

1. (parent, root,dist) ← (⊥,⊥,⊥)

2. if (r, d + 1) < (root,dist)
3. parent ← w

4. root ← r

5. dist ← d + 1
6. send the M-message (root,dist) to all neighbours except w

Algorithm 1 has converged once all topology change events have been processed.
At that point we have a spanning tree [10].

For our purposes, we may assume that the network was set up and that
Algorithm 1 is running on it, so that at all times the nodes of the network have
access to their parent node. Note that this incurs very little overhead as long as
topology changes are rare.

3 Distributed Fiat–Shamir Authentication

3.1 The Approach

Given a k-node network N1, . . . ,Nk , we may consider the nodes Ni as users and
the base station as a trusted centre T . In this context, each node will be given only
an2 si . To achieve collective authentication, we propose the following Fiat–Shamir-
based algorithm:

• Step 0: Wait until the network topology has converged and a spanning tree W is
constructedwith Algorithm 1 presented in Sect. 2.2.When that happens,T sends
an authentication request message (AR-message) to all theNi directly connected
to it. The AR-message may contain a commitment to e (cf. Step 2) to guarantee
the protocol’s zero-knowledge property even against dishonest verifiers.

2This is for clarity. It is straightforward to give each node several private keys and adapt the
algorithm accordingly.
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xc = x4 mod n

4 x4 = r24x1x2x3

2

x2 = r22

3

x3 = r23

1

x1 = r21

yc = y4 mod n

4 y4 = r4s
e4
4 y1y2y3

2

y2 = r2s
e2
2

3

y3 = r3s
e3
3

1

y1 = r1s
e1
1

(a) (b)

Fig. 1 The proposed algorithm running on a network: computation of xc (left) and of yc (right).
Each parent node aggregates the values computed by its children and adds its own information
before transmitting the result upwards to the base station

• Step 1: Upon receiving an AR-message, each Ni generates a private ri and
computes xi ← r2i mod n. Ni then sends an A-message to all its children, if
any. When they respond, Ni multiplies all the xj sent by its children together,
and with its own xi , and sends the result up to its own parent. This recursive
construction enables the network to compute the product of all the xis and send
the result xc to the top of the tree in d steps (where d = deg W ). This is illustrated
for a simple network including four nodes and a base station in Fig. 1.

• Step 2: T sends a random e as an authentication challenge (AC-message) to the
Ni directly connected to it.

• Step 3: Upon receiving an AC-message e, each Ni computes yi ← ris
ei

i . Ni

then sends the AC-message to all its children, if any. When they respond, Ni

multiplies the yj values received from all its children together, and with its
own yi , and sends the result to its own parent. The network therefore computes
collectively the product of all the yi’s and transmits the result yc to T . This is
illustrated in Fig. 1.

• Step 4: Upon receiving yc, T checks that y2
c = xc

∏
v

ei

i , where v1, . . . , vk are
the public keys corresponding to s1, . . . , sk , respectively.

Note that the protocol may be interrupted at any step. In the version of the
algorithm that we have just described, this results in a failed authentication.

3.2 Backup Authentication

Network authentication may fail for many reasons described and analysed in detail
in Sect. 4.3.3. As a consequence of the algorithm’s distributed nature that we have
just described, a single defective node suffices for authentication to fail.
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This is the intended behaviour; however there are contexts in which such a brutal
answer is not enough, and more information is needed. For instance, one could wish
to know which node is responsible for the authentication failure.

A simple backup strategy consists in performing usual Fiat–Shamir authentica-
tion with all the nodes that still respond, to try and identify where the problem lies.
Note that, as long as the network is healthy, using our distributed algorithm instead
is more efficient and consumes less bandwidth and less energy.

Since all nodes already embark the hardware and software required for Fiat–
Shamir computations, and can use the same keys, there is no real additional burden
in implementing this solution.

4 Security Proofs

In this section we wish to discuss the security properties relevant to our construction.
The first and foremost fact is that algorithm given in Sect. 3 is correct: a legitimate
network will always succeed in proving its authenticity, provided that packets are
correctly transmitted to the base station T (possibly hopping from node to node)
and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such
hypotheses do not hold.

4.1 Soundness

Lemma 1 (Soundness) If the authentication protocol succeeds, then with over-
whelming probability the network nodes are genuine.

Proof Assume that an adversaryA simulates the whole network, but does not know
the si , and cannot compute in polynomial time the square roots of the public keys
vi . Then, as for the original Fiat–Shamir protocol [5], the base station will accept
A ’s identification with probability bounded by 2k where k is the number of nodes.

4.2 Zero Knowledge

Lemma 2 (Zero Knowledge) The distributed authentication protocol of Sect. 3.1
achieves statistical zero knowledge.

Proof Let P be a prover and A be a (possibly cheating) verifier, who can use any
adaptive strategy and bias the choice of the challenges to try and obtain information
about the secret keys.
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Consider the following simulatorS :

Step 1. Choose e
$←− {0, 1}k and y

$←− [0, n − 1] using any random tape ω′.
Step 2. Compute x ← y2 ∏

v
ei

i and output (x, e, y).

The simulatorS runs in polynomial time and outputs triples that are indistinguish-
able from the output of a prover that knows the corresponding private key.

If we assume the protocol is run N times, and that A has learnt information
which we denote η, then A chooses adaptively a challenge using all information
available to it e(x, η, ω) (where ω is a random tape). The proof still holds if we
modifyS in the following way:

Step 1. Choose e
$←− {0, 1}k and y

$←− [0, n − 1] using any random tape ω′.
Step 2. Compute x ← y2 ∏

v
ei

i .
Step 3. If e(x, η, ω) = e, then go to Step 1; else output (x, e, y).

Note that the protocol is also “locally” ZK, in the sense that an adversary simulating
� out of k nodes of the network still has to face the original Fiat–Shamir protocol.

4.3 Security Analysis

4.3.1 Choice of Parameters

Let λ be a security parameter. To ensure this security level, the following constraints
should be enforced on parameters:

• The identification protocol should be run t ≥ �λ/k� times (according to
Lemma 1), which is reasonably close to one as soon as the network is large
enough.

• The modulus n should take more than 2λt operations to factor.
• Private and public keys are of size comparable to n.

4.3.2 Algorithmic Complexity

The number of operations required to authenticate the network depends on the exact
topology at hand, but can safely be bounded above:

• Number of modular squarings: 2kt

• Number of modular multiplications ≤ 3kt

In average, each Ni performs only a constant (a small) number of operations.
Finally, only O(d) messages are sent, where d is the degree of the minimum
spanning tree of the network. Pathological cases aside, d = O(log k), so that only a
logarithmic number of messages are sent during authentication.
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All in all, for λ = 256, k = 1024 nodes and t = 1, we have n ≥ 21024 and up to
5 modular operations per node.

4.3.3 Root Causes of Authentication Failure

Authentication may fail for several reasons. This may be caused by network
disruption, so that no response is received from the network—at which point not
much can be done.

However, more interestingly, T may have received an invalid value of yc. The
possible causes are easy to spot:

1. A topology change occurred during the protocol:

• If all the nodes are still active and responding, the topology will eventually
converge and the algorithm will get back to Step 0.

• If, however, the topology change is due to nodes being added or removed, the
network’s integrity has been altered.

2. A message was not transmitted: this is equivalent to a change in topology.
3. A node sent a wrong result. This may stem from low battery failure or when

errors appear within the algorithm the node has to perform (fault injection,
malfunctioning, etc). In that case authentication is expected to fail.

4.3.4 Effect of Network Noise

Individual nodes may occasionally receive incorrect (ill-formed, or well-formed
but containing wrong information) messages, be it during topology reconstruction
(M-messages) or distributed authentication (A-messages). Upon receiving incorrect
A- or M-messages, nodes may dismiss them or try and acknowledge them, which
may result in a temporary failure to authenticate. An important parameter which
has to be taken into account in such an authentication context is the number of
children of a node. When a node with many children starts failing, all its children are
disconnected from the network and cannot be contacted or authenticated anymore.
While a dysfunction at the leaf level might be benign, the failure of a fertile node is
catastrophic.

4.3.5 Man-in-the-Middle Attacks

An adversary could instal itself between nodes, or between nodes and the base
station, and try to intercept or modify communications. Lemma 2 proves that a
passive adversary cannot learn anything valuable, and Lemma 1 shows that an active
adversary cannot fool authentication.
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It is still possible that the adversary relays information, but any attempt to
intercept or send messages over the network would be detected.

5 Variants and Implementation Trade-Offs

The protocol may be adapted to better fit operational constraints: in the context of
IoT, for instance, communication is a very costly operation. We describe variants
that aim at reducing the amount of information sent by individual nodes while
maintaining security.

5.1 Shorter Challenge Variant

In the protocol, the long (say, 128-bit) challenge e is sent throughout the network
to all individual nodes. One way to reduce the length of e without compromising
security is the following:

• A short (say, 80-bit) value e is sent to the nodes.
• Each node i computes ei ← H(e‖i) and uses ei as a challenge.
• The base station also computes ei the same way and uses this challenge to check

authentication.

This variant does not impact security, assuming an ideal hash functionH , and it can
be used in conjunction with the other improvements described below.

5.2 Multiple-Secret Variant

Instead of keeping one secret value si , each node could have multiple-secret values
si,1, . . . , si,�. Note that these additional secrets need not be stored: they can be
derived from a secret seed.

The multiple-secret variant is described here for a single node, for the sake of
clarity. Upon receiving a challenge ei (assuming, for instance, that ei was generated
by the above procedure), each node computes a response:

yi ← ris
ei,1
i,1 s

ei,2
i,2 · · · sei,�

i,� mod n.

This can be checked by the verifier by checking whether:

y2
i

?= xiv
ei,1
i,1 v

ei,2
i,2 · · · vei,�

i,� mod n.
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To do swarm authentication, it suffices to perform aggregation as described in the
protocol of Sect. 3 at intermediate nodes.

Using this approach, one can adjust the memory-communication trade-off, as
the security level is λ = t� (single-node compromission). Therefore, if � = 80,
for instance, it suffices to authenticate once to get the same security as t = 80
authentications with � = 1 (which is the protocol of Sect. 3). This drastically cuts
bandwidth usage, a scarce resource for IoT devices.

Furthermore, computational effort can be reduced by using batch exponentiation
techniques to compute yi .

5.3 Precomputed Alphabet Variant

A way to further reduce computational cost is the following: each node chooses an
alphabet of m words w0, . . . , wm−1 (a word is a 32-bit value) and computes once
and for all the table of all pairwise products pi,j = mimj . Note that each pi,j entry
is 64 bits long.

The values si are generated by randomly sampling from this alphabet. Put
differently, si is built by concatenating uwords (bit patterns) taken from the alphabet
only. We thus see that the si , which aremu-bit integers, can take mu possible values.

Example 1 For instance, if m = u = 32, then si is a 1024-bit number chosen
amongst 3232 = 2160 possible values. Thanks to the lookup table, most multiplica-
tions need not be performed, which provides a substantial speed-up over the naive
approach.

The size of the lookup table is moderate, for the example given; all we need to
store is 32×31/2+32 = 528 values. This can be further reduced by noting that the
first lines in the table can be removed: 32 values are zeros, 31 values are the results
of multiplications by 1, 30 values are left shifts by 1 of the previous line, 29 values
are the sum of the previous 2 and 28 values are left shifts by 2. Hence all in all the
table can be compressed into 528− 32− 31− 29− 28 = 408 entries. Because each
entry is a word, this boils down to 1632 bytes only.

5.4 Precomputed Combination Variant

The idea is that computational cost can be cut down if we precompute and store
some products, only to assemble them online during Fiat–Shamir authentication:
the values of si,1,2 ← si,1si,2, si,2,3 ← si,2si,3, . . . are stored in a lookup table.
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The use of combined values si,a,b in the evaluation of y results in three possible
scenarios for each:

1. sasb appears in y—the probability of this occurring is 1/4—in which case one
additional multiplication must be performed.

2. sasb does not appear in y—the probability of this occurring is 1/4—in which case
no action is performed.

3. sa or sb appears, but not both—this happens with probability 1/2—in which case
one single multiplication is required.

As a result the expected number of multiplications is reduced by 25%, to wit 3
4 ×

2m−1, where m is the size of e.
The method can be extended to work in a window of size κ ≥ 2; for instance,

with κ = 3, we would precompute:

si,3n,3n+1 ← si,3nsi,3n+1

si,3n+1,3n+2 ← si,3n+1si,3n+2

si,3n,3n+2 ← si,3nsi,3n+2

si,3n,3n+1,3n+2 ← si,3nsi,3n+1si,3n+2

Following the same analysis as above, the expected number of multiplications
during the challenge-response phase is 7

8 × 2m

3 . The price to pay is that larger values
of κ claim more precomputing and memory. More precisely, we have the following
trade-offs, writing μ = 2m mod κ :

Multiplications(expected) = 2m
(
2κ−1
2κ

(⌊
2m

κ
− 1

⌋)
− 2μ−1

2μ

)

Premultiplications = � − 1 +
(
(2κ − κ − 1)

⌊
2m

κ

⌋)
+ (2μ − μ − 1)

Storedvalues = (2κ − 1)
⌊
2m

κ

⌋
+ (2μ − 1)

where � is the number of components of si .

6 Conclusion

In this work we describe a distributed Fiat–Shamir authentication protocol that
enables network authentication using very few communication rounds, thereby
alleviating the burden of resource-limited devices such as wireless sensors and other
IoT nodes. Instead of performing one-on-one authentication to check the network’s
integrity, our protocol gives a proof of integrity for the whole network at once.
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