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Abstract The Cyber-Physical Architecture of vehicles is composed of sensors,
actuators, and electronic control units all communicating over shared commu-
nication buses. For historical reasons the internal communication buses, as the
Controller Area Network (CAN), do not implement security mechanisms; the
communications are assumed to be “trusted.” Recently these trusted relations have
been challenged and leveraged to launch cyber-physical attacks against modern
vehicles. As a result, it becomes urgent to enhance the security features of vehicles
and notably the robustness of the CAN bus which represents an important channel
of attacks.

In this work we develop identifier randomization procedures whose aim is to
protect the CAN protocol from reverse-engineering, replay, and injection attacks.
The idea behind this proposition is to constantly change the message identifiers in a
random fashion in a way that both sender and receiver can recover the original mes-
sage identifier but not the adversary. We present the main challenges of the CAN-ID
randomization solution, we highlight the weaknesses of state-of-the-art solutions
presented in other scientific papers, and we propose and study candidate solutions
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to overcome these weaknesses. To compare our solutions to state-of-the-art solution,
we propose to use the entropy and the conditional entropy as a metrics of security.
Results show that the randomization functions that we propose outperform the state-
of-the-art solution in terms of both entropy and conditional entropy.

1 Introduction

Two important requirements of today’s cars are a high level of safety and connectiv-
ity with the outside world. This involves the use of advanced technologies based on
a computing infrastructure composed of numerous electronic components—named
electronic control units (ECUs)—embedded inside the vehicle. These ECUs are in
charge of processing sensed data through embedded sensors and transforming it
into commands for the actuators. Communication buses in the automotive domain
were introduced as soon as the ECUs embedded in the vehicle have reached a
certain level of complexity. This made a point-to-point communication approach
no longer viable and impossible to implement and maintain. At that point, the
car is a system on its own, as isolated from its external world. The choice of
communication buses was not motivated by information security, but rather by
safety and robustness issues. The Controller Area Network (CAN) imposed itself
as the de facto communication bus for the automotive applications. It implements
an approach known as multiplexing, which consists in connecting to the same wires
(a bus) a large number of computers. The communication is orchestrated by the
protocol. Almost all automotive manufacturers are implementing the CAN bus in
their cars. The CAN protocol is used for periodic and event-based messages that
allows the ECUs to monitor the vehicle state. It is also used to control and supervise
the state of sensors and actuators.

Recently, the CAN protocol has become the center of multiple cyber-security
issues [1, 4]. Miller and Valasek [16] showed how the CAN protocol can be an
important attack vector that enables remote control of a vehicle. In this context,
Hoppe et al. [8] were the first to point out the weaknesses of the CAN bus.
These findings were further investigated and confirmed by Koscher et al. [13] and
Checkoway et al. [1] that performed frame replay and frame injection attacks on a
real vehicle. In these attacks, the attacker physically connects to the CAN network
and replays or injects messages on the CAN bus. Given the fact that arbitrary read
and write accesses are possible on the CAN network, the attacker who sends the
right message with the right identifier and payload cannot be detected. Thus, the
attacker message will be processed by all receiving ECUs giving her the ability to
anonymously influence and control the behavior of these ECUs. This can greatly
impact the safety of passengers.

Even though the CAN standard is used by almost all car manufacturers, each one
implements its own messages depending on its own needs and the underlying Cyber-
Physical Architecture. Each car manufacturer customizes the set of used message
identifiers, payload information, and their periodicity. Hence the attacks, as the
injection and replay attacks, are generally specific to a car manufacturer and not
always reproducible to another car designed by another company.
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The CAN frame does not contain a source and destination, but rather a frame
identifier that indicates the “content of the data” conveyed by the frame. The same
information is always sent over the same message identifier. For instance, the vehicle
speed information coming from the speed sensor is always sent over the same
message identifier in order for the receiving ECUs to recognize the message. This
makes that some equipment have multi-architectures and are backwards compatible
within the same car manufacturer. To overcome this issue, reverse engineering the
protocol of a specific manufacturer is an important attack, which gives rise to other
attacks against the target architecture. Precisely, the reverse-engineering attack is
to identify the message identifiers, their periodicity, and the payload information
before injecting messages. Miller et al. [15] show the difficulty to engage in such
task. As this step seems particularly tedious given the number of messages used,
there are some automatic and statistical tools, as penetration testing tools, that have
emerged [19, 21]. These tools can lower the complexity of the reverse-engineering
step and make it rather straightforward. Due to these weaknesses, the CAN bus
has to be hardened in order to protect the connected car from potentially harmful
attacks. Researchers have already proposed possible security countermeasures to
protect the CAN bus from some of these attacks. Nevertheless these solutions are
not fully satisfactory, as they have flaws which are presented in the next section.

In this chapter we make the following contributions:

• First, we identify state-of-the-art protection mechanisms for the CAN bus and
highlight their respective flaws.

• Second, we develop identifier randomization procedures to protect the CAN
network from reverse-engineering, replay, and injection attacks, both at software
and hardware levels.

• Third, we propose information theory-based metrics to evaluate the proposed
methods and to compare them with state-of-the-art solutions.

In what follows, Sect. 2 introduces the main state-of-the-art solutions dedicated to
the CAN bus and their flaws. In Sect. 3, we focus on a particular solution, namely,
the identifier randomization, and we propose novel randomization strategies both at
software and hardware levels, to enhance the security of the CAN protocol. These
protections are evaluated with information theoretic metrics. In Sect. 4 we compare
the aforementioned randomization strategies with the state-of-the-art solutions.
Finally Sect. 5 concludes the chapter.

2 State-of-the-Art CAN Protections

In this section, we identify the current solutions that are proposed to secure the
CAN network from different security breaches. We start by explaining the CAN
protocol stack; then we expose the principles of protection mechanisms that are
payload protection, intrusion detection and prevention, and identifier protection. For
each mechanism we identify the flaws and limitations.
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2.1 Controller Area Network Overview

The CAN bus is an asynchronous, serial field bus system. It was introduced in 1983
by Bosch company for the networking of control devices in automobiles. The aim
of this communication bus was the reduction of cable length and weight. Since
1991, CAN is internationally standardized as ISO 11898 and defines the Layer 2
(data link layer) [10] and Layer 1 (physical layer) [11, 12] of the OSI reference
model presented in Fig. 1. The physical layer can be realized in two versions:
high-speed CAN (ISO 11898-2) and low-speed CAN (ISO 11898-3). Usually these
layers are implemented, respectively, in a CAN transceiver and a CAN controller. A
CAN frame (Fig. 2) is composed of multiple fields. It starts with a Start-Of-Frame
(SOF) bit, then arbitration field which is the frame identifier (ID), control field that
indicates the length of data, data field, followed by a Cyclic Redundancy Check
(CRC) field for integrity check and an acknowledgment field, and finally the End-
Of-Frame (EOF) field. Each ECU that communicates on the CAN bus is equipped
with a CAN controller and a CAN transceiver (Fig. 3). On the application level,
whenever the ECU software wants to send a message on the CAN bus, it specifies
the ID and the payload to the CAN controller (Layer 2). Then the CAN controller
constructs the appropriate CAN frame by adding the remaining fields and sends it
to the CAN transceiver (Layer 1) whose role is to physically send the frame on the
communication bus.

The CAN bus is event-triggered protocol. Whenever a node needs to send a
frame on the bus, it needs to check whether the bus is free; then it starts sending.
Sometimes collision between two nodes trying to send information at the same
time happens. The CAN protocol gives the priority to one of them according to the
arbitration rule. The arbitration in the CAN protocol is decided during the sending
of the frame identifier (or arbitration field) and is governed by the following rule.

Data Link (Layer 2) ISO 11898-1

Physical (Layer 1)
ISO 11898-2

[CAN High speed]

ISO 11898-3

[CAN Low speed]

Fig. 1 CAN layer model

S
O
F

1

Identifier

11 bits

R
T
R

1

I
D
E

1

r

1

DLC

4 bits

Data

0-8 bytes

CRC

16 bits

ACK

2

EOF

7 bits

Control-FieldArbitration

Field

Data-Field Check-Field

Fig. 2 CAN frame



Identifier Randomization: An Efficient Protection Against CAN-Bus Attacks 223

ID Data

CAN-Controller

——– Controller Interface ——–

Transmit Buffer

ID3 Data

ID2 Data

ID1 Data

Receive Buffer

ID′
3 Data

ID′
2 Data

ID′
1 Data

Acceptance Filter

——– CAN Protocol Engine ——–

SOF ID Control Data CRC ACK EOF

CAN-Bus Transceiver

Fig. 3 CAN controller

If one node transmits a dominant bit (“0”) and another node transmits a recessive
bit (“1”), then there is a collision and the dominant bit “wins.” Notice that the ID
is sent bit by bit starting from the Most Significant Bit (MSB). Whenever there is a
conflict between two ECUs trying to send different messages with different IDs, the
smaller ID wins the arbitration and will be sent; the other will have to wait for the
next frame. To send a frame to other nodes over the CAN bus, the ECU software
needs to specify the ID and payload of the frame to the CAN controller (Layer 2).
This information is temporarily stored in a buffer waiting to be sent on the bus. The
CAN controller constructs the appropriate frame by adding the remaining fields and
sends it to the CAN transceiver (Layer 1). To physically send the frame on the bus,
the CAN transceiver needs to check if the bus is free (no information is being sent).
Sometimes collision between two nodes trying to send frames at the same times
happens. The CAN protocol gives the priority to the frame with lower ID.

Usually, for safety reasons, safety-critical signals are assigned to priority mes-
sage identifiers. The more the signal is safety relevant, the higher the priority is
assigned to its identifier.
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2.2 Payload Protection

Historically, one of the first and obvious family of solutions that were proposed
to secure the CAN bus is the payload protection solutions. In fact, if we consider
the problem as an authenticity violation, the first step toward overcoming this
weakness is to protect the payload with cryptographic mechanisms. Nilsson et al.
[18] proposed to send message authentication codes over consecutive CAN frames
to authenticate the messages. Hartkopp et al. [7] proposed to use Cipher-Based
Message Authentication Code (CMAC) as a symmetric authentication measure
between the sender and the receiver.

Flaws

The main limitation of this type of protections is that the produced data is larger than
the original data which causes a bandwidth overhead on the communication link.
For instance, if we want to use an encryption function to protect the confidentiality
of the data, state-of-the-art encryption solutions suggest to use no less than 128-bit
encryption key with a block cipher of minimum 64 bits (128 bytes for AES-128).
This involves a significant increase of data size, as the data size is of 8 bytes or 16
bytes, even if the required payload is a few bytes. Similarly, if we want to protect the
authenticity of the sent data, we have to send a data authentication code along with
the original data. While the impact of this transformation could be negligible for
only one message, the generalization of the use of such solutions to all the messages
will cause a significant network overhead. This will have practical side effects such
as increasing the delay of messages and increasing errors on the CAN network.

Furthermore, the payload protection mechanism does protect the confidentiality
and integrity of the data, but does not protect against reverse-engineering and frame
injection attacks. Since the identifiers are kept unchanged, the attacker can still
reverse the messages and their periods. Also the attacker can perform exhaustion
attack on the ECUs, by sending messages with correct identifier but wrong payload,
thus forcing dummy and useless processing.

2.3 Intrusion Detection and Prevention Systems

Another family of protection solutions is known as CAN network Intrusion Detec-
tion and Prevention Systems (CAN-IDPS). The role of these systems is to monitor
the CAN network for suspicious behavior like frame injection and replay attacks
and either physically kill suspicious frame by causing a frame error or by filtering
out the suspicious frames. In general, state-of-the-art detection mechanisms can be
categorized into two main classes: rule-based detection mechanisms and statistical
detection mechanisms.
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Rule-based intrusion detection mechanisms tend to define specific rules of how
the network traffic should be. Any message that does not comply with these
predefined rules are reported as intrusions. Miller et al. [15] propose to define
detection rules of diagnostics messages based on the state of the vehicle and
detection rules of periodic messages based on their respective periods. In fact, since
the goal of the CAN-IDPS is to protect against injecting extra packets onto the
network, and given the fact that most normal frames have predefined frequencies,
then if the particular message does not respect its frequency, it should be reported
as an intrusion. Taylor et al. [20] propose a detection algorithm based on the
comparison of previous and current frame timings to implement this principle.
Another example of rule-based detection mechanism is proposed by Marchetti et
al. [14] who use the CAN identifier sequence to detect possible injected frames.

Regarding statistical detection mechanisms, they define statistical measurements
computed over a window of time and used to classify normal and suspicious
behavior. In this context, an early work of Müter et al. [17] proposes to use
the entropy of the CAN bus as a measurement to classify normal and abnormal
behaviors observed on the CAN bus. Dario et al. [2] propose an intrusion detection
algorithm that identifies anomalies by computing the Hamming distance between
consecutive payloads. This Hamming distance is compared with minimum and
maximum thresholds defined during set-up phase.

Flaws

On the one hand, statistical detection measurements do not allow to know the
precise CAN frames which have been attacked. They report misbehavior detected
on a relatively large time window, which means that the attacker can always inject
and replay frames. On the other hand, rule-based detection mechanisms are more
effective as they allow only for compliant packets to be accepted. In practice these
rules have to be more flexible due to communication imperfections, and the attacker
can use this flexibility for her own benefit. If we take the example of frequency-
based detection, with a message identifier ID and with a periodicity p, we define
a rule that accepts only one packet of identifier ID within a time window p. All
the other messages with the same identifier will have to be filtered out or killed. It
follows that once the algorithm is synchronized with a legitimate first frame at t0,
the next frames that arrive at t0 + n × p will be accepted; all the others will be
blocked. In practice the periodicity is not fixed and is subject to a certain variability
of approximately 10%. If the attacker injects a frame close to the legitimate frame,
the detection algorithm cannot know which one is the legitimate frame. Besides
these flaws, neither statistical nor rule-based IDPS, do not protect against reverse
engineering of the protocol.
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2.4 Identifier Protection

The identifier protection family is efficient to protect the CAN bus from reverse-
engineering, injection, and replay attacks. The idea behind this security principle
is to make the identifiers not fixed, but instead constantly changing. In fact, if the
identifier is not fixed across vehicles, a large-scale attack that could affect all the cars
is no longer possible as the identifiers of messages will change from one vehicle to
another. Moreover, if the identifiers are not fixed within the same vehicle, a frame
replay attack will not succeed because the identifier is constantly changing, and thus
no ECU will catch the replayed frame. A frame injection attack neither will work,
because the attacker will have to “predict” what will be the next identifier to be
injected in order for the attack to be successful.

Humayed et al. [9] proposed a solution called ID-Hopping to counter DOS
(Denial-Of-Service) attacks directed against a specific message. Their method
works closely with an intrusion detection mechanism which is needed to identify the
existence of an attack against a specific message. Once the attack is detected, the ID-
Hopping mechanism is activated. Its role is to assign a new but previously defined
identifier as a substitute identifier for the attacked message. Another interesting
solution to protect the CAN protocol is to constantly randomize the identifier. The
constraint is that both the sender and receiver share the same identifier. Han et al.
[5, 6] proposed a candidate randomization function. To the best of our knowledge,
this solution is the only one that has been proposed for this purpose in the state of
the art.

Flaws

While it effectively protects against replay and injection attacks, this randomization
principle is not efficient enough to protect against reverse engineering. In the next
section, we expose and analyze in details this solution and propose an enhanced
protection.

3 Solutions Based on Randomization and Their Evaluation

In this section we focus on the identifier protection family, precisely those based on
randomization functions which present the best security features. We first identify
the main characteristics and constraints of the randomization function that have to be
used for protection. Then we analyze the state-of-the-art solutions and propose new
functions that offer better protection from the security point of view. The evaluation
of these different solutions is done by defining formal security metrics coming from
the information theory.
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3.1 Principle and Formalism

The way the CAN protocol is used today by car manufacturers is the following: each
information that needs to be communicated between two ECUs is sent in a CAN
frame. Figure 4 illustrated the CAN protocol and the histogram of the identifiers.
Each frame has a fixed identifier which is known by the sender and the receiver.
It can also be known to the attacker as it is communicated in clear on the CAN
bus. The identifiers are fixed during the design phase of the vehicle and respond to
priority criteria for safety reasons. The priority level defines the criticality of the
information and allows the CAN protocol arbitrates between concurrent messages.
It is directly linked to the ID value: the lower the ID, the greater the priority of the
associated message.

As explained in Sect. 1, the fact that the same information is always sent over
the same frame identifier enables the attacker to reverse the protocol and forge
frames that can be accepted by the vehicle ECUs. The attacker first starts with a
reverse-engineering step during which she identifies the message identifiers and
their frequencies. Then she builds an attack by injecting, or replaying, one or
multiple CAN frames.

In order to protect the CAN network from such attacks, we want to change the
message identifiers every time the ECU needs to send information. This should be
done in a way that the receiving ECUs can recover the original identifier and do not
allow the attacker to reverse the protocol or inject messages that can be accepted
by other ECUs. To do so, an identifier randomization function F is added in such a
way that it takes the original identifier ID and substitutes it with another identifier
IDr that changes at every occurrence m of a new frame on the CAN bus. The index
m is the value of a message counter which has to be embedded in every ECU for
consistency reasons, as m is not communicated on the CAN bus:

IDr = F(ID,m) (1)

At the receiver side, the ID is recovered by using the inverse function of F and F−1s
and the value m of the internal counter of the ECU:

ID = F−1(IDr ,m) (2)

ID Payload

CAN-Controller
CAN-Bus Transceiver

(Sender)

CAN-Controller
CAN-Bus Transceiver

(Receiver)CAN-Bus

Identifiers histogram ID Payload

Fig. 4 Controller Area Network with original identifier distribution
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CAN-Controller
CAN-Bus Transceiver
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CAN-Bus

Identifiers histogram IDr Payload

De-randomization

ID Payload

PRNG

Fig. 5 CAN-ID randomization principle

The randomization function F has to satisfy certain conditions in order to be
effective:

• First, F has to be injective and efficiently computable in order for the receiver to
recover rapidly the original identifier. Figure 5 shows how this function could be
integrated. We can see in this figure that the histogram of randomized identifier
IDr is more spread compared to the one in Fig. 4.

• Second, and for safety reasons, the function F has to be priority-preserving. This
means that the priority of message identifiers ID1 and ID2 has to be the same as
F(ID1) and F(ID2), respectively. This boils down to the following condition:

ID1 < ID2 ⇒ F(ID1,m) < F(ID2,m) (3)

• Third, the priority condition has to be preserved over time. Indeed, the message
can go through a transmission buffer before being physically sent to the bus.
Consequently, the state of every ECU counter m can be different from the real
number of transaction counter on the physical layer. In order to be consistent, the
randomization function has to guarantee that the identifiers keep their priority
even if the transaction counter m is different. This is expressed by:

ID1 < ID2, m1 < m2 ⇒ F(ID1,m1) < F(ID2,m2), F (ID1,m2)

< F(ID2,m1) (4)

• Fourth, the output of the randomization function F has to be unpredictable. An
attacker that has some information about previous outputs or identifiers should
not be able to predict with high probability the randomized identifier. We achieve
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this goal by choosing a randomization function based on a cryptographically
secure pseudorandom number generator (PRNG).

3.2 Evaluation Metrics

Many functions with randomization can meet the previous constraints. In order to
compare these functions between them, we need to define security metrics that
measure the ability of these functions to protect against reverse-engineering and
replay/injection attacks. These metrics are based on information theory, which
links them to optimal attacks, that is, attacks which maximize the likelihood of
success [3].

3.2.1 Reverse-Engineering Attack

In the presence of a randomization scheme, the attacker knows that each original
identifier has multiple substitute identifiers. The reverse-engineering challenge is
to be able to determine for each original identifier the set of substitute identifiers
that it could be randomized into. A randomization scheme is perfect if the resulting
randomized identifiers are identically distributed over the set of identifiers. From
an information theory point of view, the capacity of the attacker to perform this
task is related to the entropy of the resulting randomized identifiers. The more the
identifiers look random, the harder it is for the attacker to reverse the protocol.
Thus we use the entropy as a security metrics to evaluate the protection level of
the randomization function against reverse engineering:

H(idr) =
∑

x∈[0,2n−1]
P(idr = x) × log2

(
1

P(idr = x)

)
. (5)

3.2.2 Replay and Injection Attacks

In order for the attacker to successfully inject a message on the CAN bus with the
presence of a randomization function, she needs to “predict” the next randomized
identifier to be sent. If the attacker successfully conducts a reverse-engineering
attacks, she should be able to predict the next original identifier to be sent. Knowing
the original identifier, the attacker has to predict its randomized version. Since we
suggested to combine the randomization function with a cryptographically secure
pseudorandom number generator that has a uniform distribution, we suppose that
the prediction capability of the attacker is not better than a simple “guess.” Thus, the
conditional entropy of the randomized identifier knowing the original identifier can
be used as a metrics to evaluate the protection level of the randomization function
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against replay and injection attacks:

H(idr |ido) =
∑

x∈[0,2n−1]
P(idr = x|ido) × log2

(
1

P(idr = x|ido)

)
. (6)

3.3 The IA-CAN Approach

In [5, 6] Han et al. gave a method for identifier randomization of the CAN protocol
called Identity-Anonymized CAN (IA-CAN). Their approach is to mix a part of the
identifier (LSB part) and a part of the payload with a random variable generated at
sender and receiver sides. Here we want to focus only on the randomization of the
CAN identifier. This is motivated by the fact that if the attacker successfully injects
an identifier that gets passed through the CAN filter, even if the rest of the payload
is not correct, it will nevertheless exhaust the receiver ECU.

If we disregard the payload part of the anonymization in the IA-CAN approach,
we can conclude that the randomization function being used is as follows: (We refer
the reader to the original paper [5, 6] for further details.)

fr : [0, 2a − 1] × [2a, 2n − 1] → [0, 2n − 1]
r id → idMSB(n−a) + idLSB(a) ⊕ r

(7)

where

• n is the number of bits of the identifier (n = 11 for standard CAN, n = 29 for
extended CAN).

• a is the number of bits that will be used for randomization (a < n).
• r is a random variable in [0, 2a − 1] generated at both sender and receiver sides.
• id is the original identifier of the message.
• idMSB(α) is the identifier α Most Significant Bit.
• idLSB(α) is the identifier α Least Significant Bit.

We assume that the random number r is uniformly distributed over the randomiza-
tion interval [0, 2a − 1]. Figure 6 shows the principle of the transformation applied
to the identifiers.

Obviously the choice of the variable a is bounded by the total number of original
used identifiers N and the minimum of interspace between all identifiers:

1 ≤ a ≤ ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(8)

In order to maximize the randomness of the identifiers, we have to choose the
maximum possible a : this means that for better security performance, we have
to choose:

a = ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(9)
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0 2nid1 id2 id3

P (id1)

P (id2)

P (id3)

0 2n

d1d1d1 d2d2d2 d3d3d3

2a 2a2a

Fig. 6 IA-CAN identifier transformation

3.3.1 Particular Case

A particular case arises when the identifier interspace is constant between all
original identifiers. The constant is then 2n

N
. The upper bound of a is then expressed

as the following:

⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋ = n − ⌈
log2(N)

⌉
(10)

To measure the efficiency of this randomization function, we compute the entropy
of the randomized identifiers:

HIA − CAN(idr) = H(ido) + a (11)

And to quantify the attacker capacity to inject new frames, we compute the
conditional entropy of the randomized identifiers knowing the original identifiers:

HIA − CAN(idr |ido) = a = ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(12)

In case the identifier interspace is constant:

HIA − CAN(idr |ido) = a = n − ⌈
log2(N)

⌉
(13)
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Fig. 7 IA-CAN transformation: Original (left) and randomized (right)

Proof of Eqs. (11) and (12) is presented in the Appendix.

3.3.2 Testing

To test this approach, we made a real acquisition on a vehicle CAN bus, which we
used with this randomization procedure to assess its efficiency. Figure 7 shows the
identifier histograms before and after randomization. On this particular example,
the randomization was done over a = 4 bits which means that for each identifier,
we allocated 2a = 24 = 16 substitute identifiers. The computed entropy of the
original distribution is H(ido) = 3.05. After randomization, the computed entropy
of the randomized identifiers is HIA − CAN(idr) = 7.05. The computed conditional
entropy is HIA − CAN(idr |ido) = 4. We can observe from the randomized identifier
distribution of Fig. 7 that the attacker can still distinguish frequencies of the
messages. It is also clear from Eq. (11) that the entropy of randomized identifiers
depends on the entropy of the original identifiers. Using this information the attacker
can deduce the next original identifier to be sent and try to inject a frame within the
observed randomization interval.

3.4 Equal Intervals

The first observation that we can make concerning the IA-CAN approach is that
there is still room for amelioration in terms of entropy and conditional entropy. In
fact, the randomization of IA-CAN is done only on the a least significant bits of the
identifier, which makes the added entropy bounded by a which is also bounded by
log2(Mini,j∈[1,N]|idi − idj |)

A first possible improvement is to create a mapping function that assigns
to each original identifier a substitute identifier. The set of substitute identifiers
should satisfy the equidistance condition, mentioned in the previous section, that
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maximizes random space. A second improvement is to change the randomization
function from an XOR function to an arithmetic addition in order to increase the
randomness and thus the entropy.

If we have N identifiers id1 < id2 < · · · < idN , we have to partition the
identifier space [0, 2n − 1] over N intervals Ii = [infi, supi ] such that

• inf1 = 0, supN = 2n − 1
• For each i ∈ [1, N − 1] : infi+1 = supi + 1
• For each i ∈ [1, N − 1] : supi − infi = const = 2n

N

Thus the identifier mapping function Map:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(14)

The Map function is designed to redefine the distribution of the identifier (by
assigning a substitute identifier to the original one) in such a way that the new
identifiers maximize the identifier interspace.

Given this new distribution, in the interval Ii = [infi, supi ], we have only one
identifier idi ; we can exploit all the interval to randomize that identifier.

Thus the randomization function:

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi) + r[0,supi−infi ]

(15)

Figure 8 shows the transformation applied to the identifiers. To compare this
proposed solution to the previous one, we compute the proposed security metrics:

Entropy:

HEI (idr) = H(ido) + n − log2(N) (16)

Fig. 8 Equal interval
identifier transformation

0 2nid1 id2 id3

P (id1)

P (id2)
P (id3)

0 2n

0 2n

Map

fr
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Fig. 9 Equal interval transformation: Original (left) and randomized (right)

Conditional entropy:

HEI (idr |ido) = n − log2(N) (17)

Proof of Eqs. (16) and (17) is presented in the Appendix.
In Sect. 4 we show that based on theoretical analysis of the proposed metrics, this

randomization function is more secure than the state-of-the-art solution.

3.4.1 Testing

The randomization function is applied to the same identifier distribution used in
the previous section. Figure 9 shows the identifier histograms before and after
randomization.

We can see that compared to the IA-CAN approach, the equal interval ran-
domization function (15) exploits all the available identifier space. The computed
entropy of this particular example is HEI (idr) = 10, 72. Compared to the IA-CAN
randomization function (HIA − CAN = 7.05), the equal interval randomization func-
tion generates more entropy. The conditional entropy of the randomized identifier
knowing the original identifier is HEI (idr |ido) = 7.67. We can also observe that
compared to IA-CAN (HIA − CAN(idr |ido) = 4), it has better conditional entropy.
In Sect. 4, we formally prove that it is always the case. Nevertheless the attacker can
still identify clusters of randomized identifiers that can guide him in the reverse-
engineering process even if the probability of a successful injection is slightly
smaller than the previous solution.

3.5 Frequency Intervals

The previous methods are not secure enough against reversing the original iden-
tifiers and periods. Indeed, given the histogram, the attacker can identify clusters
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of identifiers and thus can identify the original identifier and its frequency. In
this section we design a new randomization function whose aim is to overcome
this limitation. The goal of this function is to make the randomized identifier
distribution [histogram] as uniform as possible to improve the entropy of the
randomized identifier by still preserving the priority order. In order to do that, a
flattening of the peaks has to be done. We choose the randomization interval of each
identifier to be proportional to its frequency of appearance on the CAN bus. Thus
an identifier that has a high frequency (small period) will appear more frequently
on the CAN bus; this identifier will be assigned a large interval of randomization.
Similarly, an identifier that has a small frequency (large period) of appearance on
the CAN bus will appear less frequently and thus will be assigned a small interval
of randomization. In order for this strategy to be possible, we also need a mapping
function that assigns substitute identifiers to the original identifier. Then we apply
the randomization to the substitute identifier.

Suppose there are N identifiers id1 < id2 < · · · < idN , respectively, with
a sending frequency of f1, f2, . . . , fN . We have to partition the identifier space
[0, 2n − 1] over N intervals Ii = [infi, supi ] such that:

• inf1 = 0, supk = 2n − 1
• For each i ∈ [1, N − 1] : infi+1 = supi + 1
• For each i ∈ [1, N − 1] : supi − infi = 2n×fi∑N

j=1 fj

= P(idi) × 2n

where P(idi) is the probability of the identifier idi to appear on the CAN bus.
We define an identifier mapping function Map that assigns substitute identifiers

to the original ones such that the identifier interspace is proportional to the frequency
of the smaller identifier:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(18)

The randomization function then assigns a randomized identifier to the substitute
identifier. Each identifier is randomized in an interval proportional to its frequency:

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi) + r[0,supi−infi ]

(19)

Figure 10 shows the transformation applied to the identifiers.
To compare this proposed solution to the previous one, the proposed security

metrics is computed:
Entropy:

HFI (idr) = n (20)



236 K. Karray et al.

0 2nid1 id2 id3

P (id1)

P (id2)
P (id3)

0 2n

0 2n

Map

fr

Fig. 10 Frequency interval identifier transformation

Fig. 11 Frequency interval transformation: Original (left) and randomized (right)

Conditional entropy:

HFI (idr |ido) = n − H(id) (21)

A first observation is that in terms of theoretical entropy, this solution reaches
the maximum entropy which is n. Another interesting result is that it gives an
enhancement of the conditional entropy as it is shown in Sect. 4. From a theoretical
analysis, it is shown in Appendix section “Fixed Mapping Optimality Proof” that
the maximum conditional entropy is optimal if the mapping is constant. We will see
in the next section that a dynamic mapping will increase the conditional entropy.

3.5.1 Testing

To test this randomization strategy, we apply it to the identifier distribution used
for the previous functions. Figure 11 shows the identifier histograms before and
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after randomization. The computed entropy for this example is HFI (idr) = 10.99.
The computed conditional entropy is HFI (idr |ido) = 7.94. It is clear from the
histogram and the computed entropy that the randomized identifier distribution is
more uniform than the previous solutions. A uniform distribution of identifiers is
a perfect protection against reverse engineering as it is harder for the attacker to
distinguish clusters of identifiers. We can also observe that there is an enhancement
in terms of conditional entropy compared to the previous solutions. That is to say,
this solution has better security performance against injection attacks.

3.6 Dynamic Intervals

We can now raise the question to increase the conditional entropy obtained with the
Frequency Intervals, by using a dynamic mapping. A practical observation of the
CAN bus behavior shows that there is a strong dependency between consecutive
identifiers: the majority of identifiers will have zero probability to appear right
after idi . This observation involves that using a fixed identifier mapping, after that
identifier idi has been sent, an important part of the allocated space for identifiers
will not be used. Hence, if the mapping is changed dynamically after every sending
of idi , and according to the dependency between identifiers, we can increase the
conditional entropy.

To construct such randomization function, the Markov matrix can be built to give
the probabilities pi,j = P(idt+1

j /idt
i ) of receiving an identifier idj at iteration t +1

knowing that we received the identifier idi at iteration t :

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. idt+1
1 idt+1

2 . . . idt+1
j . . . idt+1

n

idt
1 p(idt+1

1 /idt
1) p(idt+1

2 /idt
1) . . p(idt+1

n /idt
1)

idt
2 p(idt+1

1 /idt
2) p(idt+1

2 /idt
2) . . p(idt+1

n /idt
2)

idt
3 . . . . .

... . . . . .

idi . . . p(idt+1
j /idt

i ) .

... . . . . .

idt
n . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

Each time we receive an identifier idi , immediately after, we have p(idt+1
j /idt

i )

probability to receive idj .With this in mind, we opt for the Frequency Interval
strategy to randomize the upcoming identifiers since it is the optimal strategy that
guarantees the maximal entropy. We keep updating the interval partition according
to Frequency Interval strategy and to the probabilities in the matrix.
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We define the identifier mapping function as the following:

Mapt+1 : [0, 2n − 1] → [0, 2n − 1]
idi+1 → idi + 2n × pk,i

(23)

The Map function has to be updated every received identifier according to the
Frequency Interval strategy. At an instant t + 1, knowing that the previous sent
identifier is idk, identifier idi has an assigned randomization interval of Ii of width
W(Ii) = 2n × pk,i The resulting randomization function is the following:

f t+1
r : [0, 2n − 1] → [0, 2n − 1]

idi → Mapt+1(idi) + r[0,2n×pk,i ]
(24)

3.6.1 Illustrative Example

As an example, consider the following sequence of identifiers appearing on the CAN
bus: [id2, id3, id1, id2, id3, id1, id2, id3, id2, id1, id2, id3, id2, id1, id2].

After analyzing the sequence, the following transition matrix can be established:

M =

⎛

⎜⎜⎝

. idt+1
1 idt+1

2 idt+1
3

idt
1 0 1 0

idt
2

1
3 0 2

3
idt

3
1
2

1
2 0

⎞

⎟⎟⎠ (25)

This transition matrix is used to define new mapping upon reception of a new
identifier. Figure 12 shows the transformation applied to the identifiers after
reception of id2 and then id3.

The security metrics obtained with the Dynamic Interval strategy is the follow-
ing:

Entropy:

HDI(idr) = n (26)

Conditional entropy:

HDI (id
t+1
r |idt+1

o ) =
∑

x∈[0,2n]

∑

idt+1
j

∑

idt
i

1

W(Ii,j )
P (idi) log2

⎛

⎝ 1
∑

idt
k

1
W(Ik,j )

P (idk)

⎞

⎠

(27)

3.6.2 Testing

To test this randomization strategy, we apply it to the identifier distribution used for
the previous functions. The computed entropy for this example is HDI (idr) = 11.
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At instant t, upon reception of id2,
we can receive either id1 with prob-
ability 1

3 or id3 with probability 2
3 .

0 2nid1 id3

P (id1/id2)
P (id3/id2)

0 2n

0 2n

Mapt+1

ft+1
r

At instant t+ 1, upon reception of id3,
we can receive either id1 with probabil-
ity 1

2 or id2 with probability 1
2 .

0 2nid1 id2

P (id1/id3) P (id2/id3)

0 2n

0 2n

Mapt+2

ft+2
r

Fig. 12 Dynamic interval identifier transformation at t + 1 (left) and t + 2 (right)

Fig. 13 Dynamic interval transformation: Original (left) and randomized (right)

The computed conditional entropy is HDI(idr |ido) = 10.24. It is clear from the
histogram and the computed entropy that the randomized identifier distribution is
uniform as for the frequency interval randomization strategy. Moreover, this method
provides a significant enhancement in terms of conditional entropy, compared to the
previous solutions (Fig. 13).

3.7 Arithmetic Masking

All of the above-proposed solutions can be applied at software level (Layer 3).
This subsection considers a hardware solution which can involve some change in
the CAN controllers. The payoff of this choice is to eliminate the third constraint
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imposed on Sect. 3.1 that states that the randomization function has to preserve
priority over time. Here we consider that the new hardware at physical layer does
not have any frame buffer. Hence there is a possibility that all the CAN controllers
share the same random variable in a consistent manner. The internal changes of
this random variable could be done by a pseudorandom number generator (PRNG)
which is initialized identically in every CAN controller at start-up.

The hardware randomization proposal is based on Arithmetic Masking, meaning
that the random variable is added arithmetically to the base identifier. The operations
are the following:

• First a mapping function is defined. It assigns new substitute identifiers to the
original identifiers.

• Then the randomization is performed by adding the random variable to the
substitute identifier.

• The random variable is such that it is shared with all CAN controllers and the
randomized identifier does not exceed 211. This allows to preserve the priority
between identifiers.

Suppose there are N identifiers id1 < id2 < · · · < idN , with a sending
frequencies of f1, f2, . . . , fN . A substitute and random identifier is assigned for
each original identifier. The identifier mapping function is defined as the following:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → i − 1

(28)

The mapping function substitutes the original identifiers with the N first lowest
identifiers. The rest of interval [N, 2n] is used for randomization:

fr : [0, 2n − N] × [0, 2n−1 − 1] → [0, 2n]
r idi → Map(idi) + r

(29)

Figure 14 shows the transformation applied to the identifiers.

Fig. 14 Arithmetic masking
identifier transformation

0 2nid1 id2 id3

P (id1)

P (id2)
P (id3)

0 2n

0 2n
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The security metrics applied to the Arithmetic Masking solution give the
following results:

Entropy:

HAM(idr) = log2(2
n − N + 1) + 1

2n − N + 1

∑

x∈[0,N−2]

x∑

i=0

P(idi)

× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi) × log2

(
1

∑N−1
i=x+1 P(idi)

)

Conditional entropy:

HAM(idr |ido) = log2(2
n − N + 1) (30)

3.7.1 Testing

To test this randomization strategy, we apply it to the identifier distribution used
for the previous functions. The computed entropy for this example is HAM(idr) =
10.99. The computed conditional entropy is HAM(idr |ido) = 10.99. The histogram
and the computed entropy show that the randomized identifier distribution is
approximately uniform. Moreover, we observe a significant enhancement in terms
of conditional entropy compared to the previous solutions (Fig. 15).

Fig. 15 Arithmetic masking transformation: Original (left) and randomized (right)
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4 Comparison

In the previous section, we introduced the state-of-the-art solution for CAN
identifier randomization, and we proposed solutions both at software and hardware
layers. These solutions were tested on a real identifier trace captured from a real
vehicle. In this section a comparison of the proposed solutions is applied to more
identifier distributions by using the proposed security metrics.

Four reference identifier distributions are considered. Table 1 summarizes the
obtained results. The visual inspection of the histograms indicates that frequency
interval and dynamic interval randomization strategies have more uniform distribu-
tion than equal intervals and IA-CAN. Hence, these solutions should offer better
protection against reverse-engineering attack, at first glance. This observation can
be theoretically proven. By comparing the closed-form expressions of the respective
entropies, we can establish the following:

HIA − CAN(idr) ≤ HEI (idr) ≤ HFI (idr) = HDI(idr) (31)

Proof

H(ido) ≤ log2(N)

And we can establish from Eqs. (8) and (10) that:

a ≤ n − ⌈
log2(N)

⌉ ≤ n − log2(N)

⇒ H(ido) + a ≤ H(ido) + n − log2(N)

⇒ HIA − CAN(idr) ≤ HEI (idr)

Since

HDI (idr) = HFI (idr) = n

Then:

HIA − CAN(idr) ≤ HEI (idr) ≤ HFI (idr) = HDI(idr)

It is clear that compared to Arithmetic Masking, Dynamic Intervals and Frequency
Intervals have better performance in terms of entropy, involving a high robustness
against reverse engineering. Comparing the Arithmetic Masking to IA-CAN and
Equal Intervals is not trivial. This is mainly because established entropy expressions
depend on the entropy of the original identifier distribution. If we consider that
the original identifiers have equal probabilities (example of the first distribution),
the Equal Interval solution has better entropy (HEI (idr) = 10.9997, HAM(idr) =
10.9948). Theoretically, the entropy of Equal Intervals for this example is maximal.
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Fig. 16 Conditional entropy H(idr |ido) = f (N)

On the other side, concerning the second distribution, we can observe that the
Arithmetic Masking performs better.

To compare the protection level against replay and injection attacks, the condi-
tional entropy metrics is used. Based on the closed-form expressions established in
the previous sections, we draw the curve showing the evolution of the conditional
entropy as a function of the total number of identifiers. Figure 16 shows the results.
From this graph we can conclude that all the proposed solutions outperform the
IA-CAN strategy. Second, it appears that the hardware-based solution, namely,
Arithmetic Masking, is the best against replay and injection attacks. However, as
discussed previously, the Arithmetic Masking needs to be implemented in the CAN
controller between the physical and data link layer, which makes it not easy to
deploy. At software level, the Frequency Interval strategy performs the best, both
against replay and injection attacks and against reverse engineering.

5 Conclusion

This chapter first presents the state-of-the-art solutions to protect the CAN bus from
possible malicious attacks, namely, reverse-engineering, frame injection, and frame
replay attacks. It appears that one of the most efficient classes of protection is based
on the randomization of the CAN identifiers. Starting from the existing Identity-
Anonymized CAN (IA-CAN), three major enhancements based on randomization
have been proposed: with Equal Intervals, Frequency Intervals, and Dynamic
Intervals. In case it is possible to change the CAN hardware, a randomization
based on Arithmetic Masking has also been introduced. The security assessment
has been carried out by using security metrics coming from the information theory:
entropy (for the reverse-engineering attack) and conditional entropy (for the replay
and injection attacks). It has been shown that the enhanced protections provide a
significant gain compared to the IA-CAN approach. The entropy obtained from the
new randomization solutions is very near the optimum (11 bits), thus presenting
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a high robustness against reverse-engineering attacks. The conditional entropy is
better achieved with the Arithmetic Masking and the Dynamic Intervals. This last
solution has the interest not to modify the hardware of the CAN interface. Overall,
the proposed solutions are much better than the existing IA-CAN, as proven by the
resulting security gain formally expressed by means of information theory metrics.

Appendix

Let ido be a random variable representing original identifiers whose outcome is
id1, id2, . . . , idN with probabilities P(id1), P (id2), . . . , P (idN). We consider a
second random variable idr representing randomized identifiers whose outcome is
in [0, 2n − 1].

Entropy of Fixed Mapping

The entropy of the fixed mapping solutions (IA-CAN, equal intervals, fre-
quency intervals) is the following:

• IA-CAN: HIA − CAN(idr) = H(ido) + a

• Equal Intervals: HEI (idr) = H(ido) + n − log2(N)

• Frequency Intervals: HFI (idr) = n

Proof According to the fixed mapping randomization functions (IA-CAN, equal
intervals, frequency intervals), each identifier idi is randomized over a fixed interval
Ii of width W(Ii). We begin by computing the probability that the random variable
idr takes the value x ∈ [0, 2n]:

P(idr = x) =
N∑

i=1

P(idr = x|idi) × P(idi)

The conditional probability of idr knowing the original identifier ido = idi:

P(idr = x|idi) = 1Ii (x)

W(Ii )

H(idr) =
∑

x∈[0,2n−1]
P(idr = x) × log2

(
1

P(idr = x)

)
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=
∑

x∈[0,2n−1]

[
N∑

i=1

P(idi)
1Ii (x)

W(Ii)

]
× log2

⎛
⎜⎜⎝

1[∑N
j=1 P(idj )

1Ij
(x)

W(Ij )

]

⎞
⎟⎟⎠

=
N∑

i=1

∑

x∈[0,2n−1]
P(idi)

1Ii (x)

W(Ii )
× log2

⎛
⎜⎜⎝

1[∑N
j=1 P(idj )

1Ij
(x)

W(Ij )

]

⎞
⎟⎟⎠

H(idr) =
N∑

i=1

∑

x∈Ii

P (idi)
1Ii (x)

W(Ii)
× log2

⎛

⎜⎜⎝
1[∑N

j=1 P(idj )
1Ij

(x)

W(Ij )

]

⎞

⎟⎟⎠

Since the intervals Ii are nonoverlapping: ∀x ∈ Ii ,∀j �= i → 1Ij (x) = 0

We can thus simplify the expression: ∀x ∈ Ii ,∀j �= i → ∑N
j=1 P(idj )

1Ij
(x)

W(Ij )
=

P(idi)
1Ii

(x)

W(Ii)

H (idr) =
N∑

i=1

∑

x∈Ii

P (idi)
1Ii (x)

W(Ii)
× log2

⎛

⎝ 1

P(idi)
1Ii

(x)

W(Ii)

⎞

⎠

=
N∑

i=1

∑

x∈Ii

P (idi)
1

W(Ii)
× log2

(
1

P(idi)
1

W(Ii)

)

• IA-CAN entropy: ∀i ∈ [1, N], W(Ii ) = 2a

H(idr) =
N∑

i=1

∑

x∈Ii

P (idi)
1

2a
× log2

(
1

P(idi)
1
2a

)
= H(ido) + a

• Equal interval entropy: ∀i ∈ [1, N], W(Ii) = 2n

N

H(idr) =
N∑

i=1

∑

x∈Ii

P (idi)
1
2n

N

× log2

⎛

⎝ 1

P(idi)
1
2n

N

⎞

⎠ = H(ido) + n − log2(N)
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• Frequency interval entropy: ∀i ∈ [1, N], W(Ii ) = 2n × P(idi)

H(idr) =
N∑

i=1

∑

x∈Ii

P (idi)
1

2n × P(idi)
× log2

(
1

P(idi)
1

2n×P(idi)

)
= n

	


Conditional Entropy of Fixed Mapping

The conditional entropy of randomized identifiers knowing the original
identifiers of the fixed mapping solutions (IA-CAN, equal intervals, frequency
intervals) is the following:

• IA-CAN: HIA − CAN(idr |ido) = a

• Equal Intervals: HEI (idr |ido) = n − log2(N)

• Frequency Intervals: HFI (idr |ido) = n − H(ido)

Proof

H(idr |ido) = H(idr, ido) − H(ido)

H(idr, ido) =
∑

x∈[0,2n−1]

N∑

i=0

P(idr = x, ido = idi) log2

(
1

P(idr = x, ido = idi)

)

P(idr = x, ido = idi) =
{

P(idi) × 1
w(Ii )

, x ∈ Ii

0 , elsewhere

H(idr, ido) =
N∑

i=0

∑

x∈Ii

P (idi)

w(Ii)
log2

(
1

P(idi)
1

w(Ii)

)

H(idr, ido) = H(idr)

H(idr |ido) = H(idr) − H(ido)

- IA-CAN conditional entropy : H(idr |ido) = a

- Equal interval conditional entropy : H(idr |ido) = n − log2(N)

- Frequency interval conditional entropy : H(idr |ido) = n − H(ido)
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Entropy of Dynamic Intervals

Let idt
o be a Markov chain over the space of original identifiers

(id1, id2, . . . idN). And the matrix M presented in Eq. (25) be its transi-
tion matrix. Let idr be the random variable over [0, 2n − 1], generated
using the dynamic interval randomization strategy applied to idt

o. We have
HDI (idr) = n

Proof

H(idr) =
∑

x∈[0,2n−1]
P(idr = x) × log2

(
1

P(idr = x)

)

P(idr = x) =
N∑

i

P (idr = x|idt
o = idi) × P(idt

o = idi)

P (idr = x) =
N∑

i

N∑

j

P (idr = x|idt
i , id

t+1
j ) × P(idt+1

j |idt
i ) × P(idt

i )

P (idr = x|idt
i , id

t+1
j ) = 1Ii,j (x)

W(Ii,j )

where W(Ii,j ) = P(idt+1
j |idt

i ) × 2nis the width of the interval Ii,j

P (idr = x) =
N∑

i

N∑

j

1Ii,j (x)

W(Ii,j )
× P(idt+1

j |idt
i ) × P(idt

i )

=
N∑

i

N∑

j

1Ii,j (x)

P (idt+1
j |idt

i ) × 2n
× P(idt+1

j |idt
i ) × P(idt

i )

=
N∑

i

N∑

j

1Ii,j (x)

2n
× P(idt

i )

∀x ∈ [0, 2n − 1],∑N
j 1Ii,j (x) = 1

P(idr = x) =
N∑

i

1

2n
× P(idt

i ) = 1

2n
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H(idr) =
∑

x∈[0,2n−1]

1

2n
× log2

(
1

2n

)

H(idr) = n

	


Entropy of Arithmetic Masking

Proof

H(idr) =
∑

x∈[0,2n−1]
P(idr = x) log2

(
1

P(idr = x)

)

P(idr = x) =

⎧
⎪⎨

⎪⎩

∑x
i=0

P(idi )
2n−N+1 , x ∈ [0, N − 2]

1
2n−N+1 , x ∈ [N − 1, 2n − N]∑N−1

i=x−2n+N
P(idi)

2n−N+1 , x ∈ [2n − N + 1, 2n − 1]

H(idr) =
∑

x∈[N−1,2n−N]

1

2n − N + 1
× log2(2

n − N + 1)

+
∑

x∈[0,N−2]

[
x∑

i=0

P(idi)

2n − N + 1

]
× log2

(
1

∑x
i=0

P(idi)
2n−N+1

)

+
∑

x∈[2n−N+1,2n−1]

[
N−1∑

i=x−2n+N

P(idi)

2n − N + 1

]

× log2

(
1

∑N−1
i=x−2n+N

P(idi)
2n−N+1

)

H(idr) =2n − 2(N − 1)

2n − N + 1
log2(2

n − N + 1) +
∑

x∈[0,N−2]

[
x∑

i=0

P(idi)

2n − N + 1

]

× log2

(
1

∑x
i=0

P(idi)
2n−N+1

)

+
[

N−1∑

i=x+1

P(idi)

2n − N + 1

]
× log2

(
1

∑N−1
i=x+1

P(idi )
2n−N+1

)
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H(idr) =2n − 2(N − 1)

2n − N + 1
log2(2

n − N + 1)

+
∑

x∈[0,N−2]

1

2n − N + 1
log2(2

n − N + 1)

+
∑

x∈[0,N−2]

x∑

i=0

P(idi)

2n − N + 1
× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi)

2n − N + 1
× log2

(
1

∑N−1
i=x+1 P(idi)

)

H(idr) =2n − 2(N − 1)

2n − N + 1
log2(2

n − N + 1) + N − 1

2n − N + 1
log2(2

n − N + 1)

+ 1

2n − N + 1

∑

x∈[0,N−2]

x∑

i=0

P(idi) × log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi) × log2

(
1

∑N−1
i=x+1 P(idi)

)

H(idr) =2n − N + 1

2n − N + 1
log2(2

n − N + 1)

+ 1

2n − N + 1

∑

x∈[0,N−2]

x∑

i=0

P(idi) × log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi) × log2

(
1

∑N−1
i=x+1 P(idi)

)

H(idr) = log2(2
n − N + 1) + 1

2n − N + 1

∑

x∈[0,N−2]

x∑

i=0

P(idi)

× log2

(
1∑x

i=0 P(idi)

)
+

N−1∑

i=x+1

P(idi)

× log2

(
1

∑N−1
i=x+1 P(idi)

)
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Conditional Entropy of Arithmetic

The arithmetic masking conditional entropy is:

HAM(idr |ido) = log2(2
n − N + 1)

Proof

P(idr = x|ido = idi) = 1[i−1,2n−N+i−1]
2n − N + 1

HAM(idr |ido) =
N∑

i=0

P(idi)H(idr |ido = idi)

HAM(idr |ido) =
N∑

i=0

P(idi)
∑

x∈[i−1,2n−N+i−1]
P(idr = x|ido = idi)

× log2

(
1

P(idr = x|ido = idi)

)

HAM(idr |ido) =
N∑

i=0

P(idi)
∑

x∈[i−1,2n−N+i−1]

1

2n − N + 1
log2

(
1
1

2n−N+1

)

HAM(idr |ido) =
N∑

i=0

P(idi) log2(2
n − N + 1)

HAM(idr |ido) = log2(2
n − N + 1)

	


Fixed Mapping Optimality Proof

If we adopt a fixed mapping randomization strategy, the optimal solution in
terms of conditional entropy is the frequency interval solutions.
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Proof In the context of fixed mapping, we want to find the best decomposition of
intervals that maximizes the conditional entropy. We previously showed that the
conditional entropy of all fixed mapping solutions can be expressed as H(idr |ido) =∑

i∈[1,N] P(idi) × log2(Wi), where Ii is the randomization interval of idi of width
W(Ii). For the fixed mapping solutions, the intervals are nonoverlapping. Besides
the width of each interval Ii is positive (W(Ii) ≥ 0) and their sum equals 2n. Thus
we define the following problem:

Argmax
{Ii },i∈[1,N]

H(idr |ido) =
∑

i

P (idi) × log2(Wi)

Subject to the following constraints:

h0 : ∑
i∈[1,N] Wi − 2n = 0

hi : ∀i ∈ [1, N],−Wi ≤ 0

To find the solution to this problem, we use the Lagrangian multiplier:

L (W1, . . . ,WN, λ1, . . . λN , λ0) = H(idr |ido) +
N∑

j=0

λjhj

and solve the equation system: ∂L
∂Wi

= 0, ∀i ∈ [1, N]

∂L

∂Wi

(W1, . . . ,WN , λ1, . . . λN , λ0) = ∂H

∂Wi

+
N∑

j=0

λj

∂hj

∂Wi

∀i ∈ [0, N] : λi × hi = 0

h0 : ∑
i∈[1,N] Wi − 2n = 0

hi : ∀i ∈ [1, N],−Wi ≤ 0

We have: ∂H
∂Wi

= P(idi) × 1
Wi

and ∂h0
∂Wi

= 1 and ∂hj

∂Wi
= −1 if (i = j), 0 otherwise

∀i ∈ [1, N] : P(idi) × 1

Wi

+ λ0 − λi = 0

∀i ∈ [1, N] : λi × hi = 0
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Resolving this system of equations gives:

λi = 0, ∀i ∈ [1, N]

λ0 = −1

2n

Hence:

⇒ ∀i ∈ [1, N] : Wi = P(idi) × 2n
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