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Preface

Cyber-physical systems involve interactions between computer-controlled and actu-
ator-enabled components, whose dynamics have thus far been modeled, designed,
and analyzed separately, but now need to be investigated and taught jointly. They
control much of the world’s critical infrastructure: power generation, telecommuni-
cations, water supply, and industrial control systems. Because of their critical nature,
known, predictable, and secure behavior of cyber-physical systems is necessary to
ensure the safety of the people whom these systems serve. Yet most cyber-physical
systems provide limited operational guarantee outside of nominal conditions.

Understanding how diverse physical and digital systems can be safely and
securely combined is not a simple task. Solving the safety and security deficiencies
in next generation cyber-physical systems will require contributions from every
branch of engineering, from mechanical and power engineering to computer science
and mathematics. Partners from university research labs, governments, and industry
must come together. It is necessary that we establish an engaged, multidisciplinary
cyber-physical security community committed to developing unified foundations,
principles, and technologies.

Cyber-physical as a term explains much of the underlying theory and practice;
it is the interplay of physics and computation. Our understanding of the physical
world through the models of classical and quantum physics, together with our
models of computation from analog to digital, helps us build a better understanding
of the cyber-physical world. Insights from physics, methods of complex systems
theory, and formal methods borrowed from various facets of mathematical and
computational sciences will help us to build reliable, safe, and secure systems.

The advantages of digital computation are relatively low power requirements and
flexibility; their carefully built discrete combinational states offer abstractions of
Boolean logic. However such abstractions are limited, and we need to discover the
conditions under which a digital abstraction of a system or subsystem can be valid.
Physical properties appear continuous and constrain how cyber-physical systems
models can be constructed and analyzed using formal logic. The study of the cyber-
physical system also necessitates the study of the topologies of complex systems
in addition to the computational and physical properties of their components.
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A cyber-physical system is a complex set of systems and subsystems requiring
communication channels among the cooperative entities and tasks, for example, a
coordinated platoon of interconnected vehicles or a countrywide power system of
different generating and consuming plants. Overall stability of the system will be
affected by adversary attacks that tamper with the temporal characteristics, causing
the delays of signals from nodes to nodes. Understanding which channels are less
robust and furthermore what kind of network topologies have more resilience will
help us minimize the number and the overall effect of compromised channels.

We created the Cyber-Physical Security Workshop and brought together
researchers, engineers, and teachers into a common forum of exchange in order
to achieve several goals, the primary one being to expose researchers, educators,
and students to the world of CPS research. Invited speakers from academia and
government labs offered glimpses of their work on modeling, analyzing, and
understanding cyber-physical systems.

Sandro Bartolini, University of Siena
Alexandre Chapoutot, ENSTA ParisTech
Hervé Debar, Télécom SudParis
Georgios Fainekos, Arizona State University
Jennifer Hasler, Georgia Institute of Technology
Israel Koren, University of Massachusetts
Jackson Mayo, Sandia National Laboratories
Fabio Pasqualetti, University of California Riverside
Elaine Raybourn, Sandia National Laboratories
John D. Siirola, Sandia National Laboratories
Sam Green, University of California, Santa Barbara

The Workshop was initiated and organized by the steering committee, com-
posed of Çetin Kaya Koç (İstinye University, Nanjing University of Aeronautics
and Astronautics, and UC Santa Barbara), Patrick Duvaut (Télécom ParisTech),
David Naccache (École normale supérieure), and Jennifer Troup (Sandia National
Laboratories).

The primary sponsor of the Workshop was the National Science Foundation with
the award number 1638470 and the title “Cyber Physical Systems Security Educa-
tion Workshop” with the Principal Investigator as Çetin Kaya Koç. The sponsors
included Almerys, École normale supérieure, and Sandia National Laboratories.

The Cyber-Physical Security Workshop was held on July 17–19, 2017, on the
campus of Télécom ParisTech, located in central Paris, in the heart of a rich urban
and cultural environment. My thanks are also due to the faculty and students at
Télécom ParisTech for running the Workshop.
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Robust Digital Computation
in the Physical World

Jackson R. Mayo, Robert C. Armstrong, Geoffrey C. Hulette, Maher Salloum,
and Andrew M. Smith

Abstract Modern digital hardware and software designs are increasingly com-
plex but are themselves only idealizations of a real system that is instantiated
in, and interacts with, an analog physical environment. Insights from physics,
formal methods, and complex systems theory can aid in extending reliability and
security measures from pure digital computation (itself a challenging problem)
to the broader cyber-physical and out-of-nominal arena. Example applications to
design and analysis of high-consequence controllers and extreme-scale scientific
computing illustrate the interplay of physics and computation. In particular, we
discuss the limitations of digital models in an analog world, the modeling and
verification of out-of-nominal logic, and the resilience of computational physics
simulation. A common theme is that robustness to failures and attacks is fostered
by cyber-physical system designs that are constrained to possess inherent stability
or smoothness. This chapter contains excerpts from previous publications by the
authors.

1 Introduction

Digital systems are ubiquitous due to the power and flexibility they offer in
processing information. A digital system is ultimately a physical system (software
must run on some kind of hardware); typically but not necessarily, this takes
the form of silicon-based microelectronics. The power of such systems arises
because they are carefully designed to have discrete combinatorial states that
permit the abstraction of Boolean logic. The Boolean states are attractors for the
underlying continuous physics (e.g., high- and low-voltage states). Under typical
conditions, transitions between these states enable complex computation that is
deterministic and lossless, a remarkable engineering achievement. Digital systems

J. R. Mayo (�) · R. C. Armstrong · G. C. Hulette · M. Salloum · A. M. Smith
Sandia National Laboratories, Livermore, CA, USA
e-mail: jmayo@sandia.gov
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can store and process substantial amounts of information because a large number
of elements can change independently, creating vast combinations: N bits give 2N

states.
In the modern world, digital hardware and software are increasingly coupled

with safety- and security-critical physical systems (industrial, military, medical,
etc.) to form high-consequence cyber-physical systems. Engineers may use digital
logic to control a physical system directly (embedded computing) and/or to perform
simulation as a design aid (scientific computing). Two fundamental problems arise
that pose a challenge to relying on digital systems in this way:

1. Turing’s halting problem and Rice’s theorem [27] indicate that no algorithm
exists to predict a priori the behavior of a generic information processing system;
i.e., such a system is undecidable even if deterministic. In particular, testing
a digital system cannot establish bounds on all its possible behaviors, whereas
quantifying safety and security requires such bounds. The undecidability result
is based on idealizations, but even for finite digital systems, such questions are
NP-hard [10]; there is no general practical technique to assure safety and security
when the state space is exponentially large and exhaustive testing is infeasible.

2. Because digital systems are also physical, the assumed Boolean abstraction
applies only under suitable or “nominal” environmental conditions. Rare physical
events, which may become more common in extreme environments, can take
the system behavior outside this intended space—e.g., causing bit flips. If
the potential consequences of out-of-nominal behavior are of concern, and its
likelihood is non-negligible due to either extreme environments (embedded
computing) or extreme scale (scientific computing), then additional analysis is
needed.

Solutions to enable assurance of digital and cyber-physical systems must con-
strain system designs to be analyzable in ways that generic systems are not.
Ideally, analyzability and robustness are consciously designed-in along with func-
tionality. One approach with wide adoption in industry is formal methods [35],
which takes advantage of reduced complexity to enable rigorous automated rea-
soning about all possible behaviors within a model (effectively allowing special
instances of undecidable or NP-hard problems to be solved tractably). Another,
commonly used for naturally occurring (e.g., biological and social) systems but only
beginning to impact cyber-physical engineering, is complex systems theory [19],
which takes advantage of structured complexity to understand system robust-
ness probabilistically. These approaches can overlap and provide complementary
insights.

In the remainder of this chapter, we present several theoretical perspectives
and simple examples illustrating techniques to mitigate unexpected behavior in
cyber-physical systems. While the discreteness of digital logic is in some ways
a radical departure from the smoothness of physics, the latter provides impor-
tant understanding to help make digital computation more intrinsically robust as
well.
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2 Limitations of Digital Models in an Analog World

A fundamental question is under what conditions a digital abstraction of a system
or subsystem can be valid, given that the system is governed by continuous
physics. The successful operation of electronic computers indicates that such digital
modeling abstractions are empirically meaningful. However, inherent properties
of physics place constraints on how cyber-physical—or hybrid—models can be
constructed and analyzed with formal logic.

In the case study presented here, causality and continuity properties of physics
require what can appear as complications in reasoning, but in the end contribute to
formally assuring a physically meaningful safety property for a digital thermostat.
Physical continuity leads to the possibility of “indecision” in digital controllers,
meaning that a response intended to be chosen from two discrete options may
instead lie in between [21]. The thermostat example illustrates how indecision
can be tolerated provided that, when both options (“heat on” and “heat off”) are
acceptable, an intermediate outcome is also acceptable.

The remainder of Sect. 2 is excerpted from [15], © 2015 Sandia Corporation.

2.1 Introduction

Much research and development work has targeted enabling formal verification
of hybrid systems, typically in the form of model checking for so-called hybrid
automata [2, 13]. We argue that this existing work is in different ways too
broad and too narrow: Modeling approaches that freely combine discrete and
continuous dynamics can readily introduce ill-posed and unphysical behavior
due to the delicate interaction between the two types of dynamics [11]. And
reasoning about hybrid systems via model checking is limited to properties that
can be verified conservatively by enumeration of discrete regions within the
continuous state space; even approaches using theorem proving have implemented
model-checking strategies [34] or have relied on restrictive logics to formally
model hybrid systems [25]. Work exists on formally analyzing continuous dif-
ferential equations via theorem proving, but without modeling a coupling to
digital logic [30]. We propose an approach that can leverage the full power
of higher-order logic in the Coq theorem prover [4] to reason about physically
consistent hybrid digital-physical models. Unlike model-checking approaches,
our goal is not to completely automate the verification, but rather to provide
maximum power and scalability for reasoning rigorously about properties of
interest, leveraging understanding of system design for both the digital and physical
elements.
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2.2 Physics of Hybrid Modeling

Causality means that the value of a physical variable depends only on its beginning
state and what happens to it subsequently, i.e., an event in the future, cannot affect
any variable in the present or past, and any system failing to satisfy this constraint
is considered unphysical. Computationally, causality manifests as a requirement
that for recursively defined programs describing causal systems, the recursion must
always be well-founded, i.e., must eventually terminate for any input.

In a formal analysis, it is in effect necessary to show that the time evolution
computation terminates or has a solution. This is physically ensured by the causality
property. That is, the time evolution operator actually depends only on events that
occur between the initial time and the final time. In Sect. 2.5, we will show how this
is reflected in a proof of termination within the Coq theorem prover—as opposed
to the self-referential inconsistency of a non-causal time evolution operator that
depends on events occurring in the future.

Formal verification is often undertaken in order to identify rare but poten-
tially catastrophic corner-case behaviors. Buridan’s Principle [3, 21] describes an
often-overlooked issue in cyber-physical modeling, where discrete decisions about
continuous variables are often required, in spite of the fact that such decisions cannot
be guaranteed to complete in bounded time. Buridan’s Principle manifests in the
system as the decision potentially taking an arbitrarily long time to complete or,
equivalently, remaining incomplete (with an intermediate, non-digital result) if it is
examined after a fixed time. Many cyber-physical analyses digitize the physics prior
to analysis, an approach that is convenient but fails to preserve the fundamental
continuity properties that can lead to unexpected indecision in the real system—
exactly the sort of corner-case behavior that formal verification seeks to uncover.

It is important to note that Buridan’s Principle does not conflict with the physical
propagation of discrete states by actual computers. Given a discontinuous set of
initial states (e.g., voltages representing 0 or 1), an appropriate continuous nonlinear
electrical circuit can implement logic perfectly by computing resulting discrete
states at subsequent clock cycles [21]. Thus purely digital models, and traditional
formal analyses thereof, are valid and valuable for a computational component
that is set up in this way, but are not sufficient for understanding cyber-physical
system behavior comprehensively including continuous inputs and outputs. The
latter consideration calls for understanding, e.g., potential non-digital behaviors
from indecision in a nominally digital device—either pragmatically bounding them
in probability or, as here, incorporating them as far as possible in a consistent model
for exhaustive formal analysis.

2.3 Definition of the Thermostat Model

In physical terms, this model describes an idealized, thermally homogeneous object
that gains heat from time to time via a rapid heat pulse (idealized as instantaneous)
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from a transducer and loses heat to the environment via a linear cooling law. The
transducer is designed to maintain the object’s temperature T in a desired range
above the ambient temperature by, at uniform time intervals, measuring T and
applying a heat pulse if T is below a threshold.

For convenience, we take the unit of time to be the interval between sensor
measurements and take the zero point of the temperature scale to be the ambient
temperature. Our model has four positive real parameters: the cooling coefficient α,
the temperature rise H due to a heat pulse, the nominal threshold temperature T∗,
and the temperature margin ε for indecision. The constraint T∗ > ε is imposed.
An additional parameter is an “arbiter” function θ̃ : R → R that approximates
the unit step function but allows for indecision rather than requiring an unrealistic
discontinuity. For all � ∈ R, the arbiter must satisfy

θ̃ (�) ∈ [0, 1], (1)

� > ε =⇒ θ̃ (�) = 1, (2)

� < −ε =⇒ θ̃ (�) = 0. (3)

The behavior of the physical system is described by the temperature as a function
of time, T : R≥0 → R, assuming that the system starts running at time t = 0. Instead
of the traditional differential-equation formulation, we use an integral equation
that corresponds to the time evolution operator U. Moreover, following standard
techniques in physics, we exploit the linearity of the thermal dynamics to express U
via superposition in terms of “micro” propagators. The latter propagators represent
individual, linearly combining contributions to the solution, and in general include
a kernel that propagates initial or boundary conditions and a Green’s function that
propagates external forcing events.

In our thermal case, the kernel and the Green’s function reduce to the same
propagator:

G(t, t ′) = e−α(t−t ′) θ(t − t ′). (4)

The (exact) unit step function θ here is not an arbiter but a means for continuous-
time dynamics to enforce causality—that an effect at time t cannot precede its cause
at time t ′.

The time evolution operator for our thermal system, then, advances the state from
tj to ti by linearly superposing the effects of the initial condition T (tj ) and the
subsequent heating events:

T (ti ) = T (tj ) G(ti, tj )+
∫ ∞

tj

dt ′ q(t ′) G(ti, t
′)

= T (tj ) e−α(ti−tj ) +
∫ ti

tj

dt ′ q(t ′) e−α(ti−t ′) for ti > tj ≥ 0.

(5)
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Here, the part of the integral for t ′ > ti vanishes due to the causality-enforcing step
function in G; and the function q is the thermal forcing term, which in our case is a
sum over heat pulses.

We now introduce the feedback from the transducer, which makes the fully
coupled cyber-physical system nonlinear. Namely,

q(t) =
∞∑
l=0

H θ̃
(
T∗ − T (l)

)
δ(t − l). (6)

The control logic design seeks to provide a heat pulse of magnitude H if and only
if the current temperature is below T∗. Buridan’s Principle requires the use here
of a continuous arbiter function θ̃ rather than the exact step function θ , since the
transducer cannot be guaranteed to provide a discrete response in bounded time.

2.4 Informal Analysis of the Thermostat Model

A key characterization of the performance of this cyber-physical system is its ability
to maintain the temperature in a desired range above the (zero) ambient temperature.
Thus, we wish to prove the following as a theorem for some particular bounds 0 <

A < B <∞:

If T (0) ∈ [A,B], then T (t) ∈ [A,B] forall t ∈ R≥0. (7)

The theorem (7) can be derived straightforwardly from the following lemma:

For all n∈N, if T (n) ∈ [A,B], then T (t)∈[A,B] for all t ∈ (n, n + 1]. (8)

The derivation is as follows: By first specializing t = n + 1 in the lemma, and
recalling the hypothesis that T (0) ∈ [A,B], we obtain by induction that T (n) ∈
[A,B] for all n ∈ N. Now, whereas for t = 0, the theorem (7) is trivially valid, for
t > 0 we specialize n = 	t
 − 1 in the lemma and obtain the required result. This
establishes the temperature bounds for all t ∈ R≥0.

We now argue that the lemma (8) holds for any A and B that satisfy

0 < A ≤ min

(
H

eα − 1
, (T∗ − ε)e−α

)
and B ≥ T∗ + ε +H. (9)

Under the constraints of our model, this means that suitable bounds can be found
with 0 < A < B < ∞.

As a starting point, from the governing equations (5) and (6), if we assume t ∈
(n, n+ 1] and substitute {ti , tj } = {t, n}, we compute

T (t) =
(
T (n)+H θ̃

(
T∗ − T (n)

))
e−α(t−n). (10)
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We are given that T (n) ∈ [A,B]. We note that t − n ≤ 1 and thus e−α(t−n) ≥ e−α .
The proof of the lemma (8) is now by case analysis.

2.5 Formal Implementation

We have formalized our analysis within the Coq interactive theorem prover [4],
which allows us to precisely define the various terms of our model and then state
and prove theorems about those terms. To model continuous variables, we use the
Reals module provided as part of Coq’s standard library [33].

For our analysis, the arbiter function θ̃ need not be defined explicitly but must
have essential properties asserted corresponding to Eqs. (1)–(3):

Parameter eps : R.
Hypothesis eps_pos : 0 < eps.

Parameter theta_tilde : R→ R.
Hypothesis theta_tilde_bound : ∀ d, 0 ≤ theta_tilde d ≤ 1.
Hypothesis theta_tilde_1 : ∀ d, d > eps→ theta_tilde d = 1.
Hypothesis theta_tilde_0 : ∀ d, d < -eps→ theta_tilde d = 0.

In accordance with Buridan’s Principle, this formulation avoids the need to compare
exact real numbers, sidestepping the associated undecidability problem while
retaining enough structure to support our analysis.

As part of the construction, an assertion that an event at a future time cannot
contribute to the computation of the temperature at the current time must be made.
To the theorem prover, this requirement manifests itself as a termination condition
and reflects the fact that a non-causal function that depends on both the future and
the past is self-referential and inconsistent in the general case. Computationally, this
is understood as an obligation to demonstrate that the recursively defined function
is well-founded.

We have not yet completed the proof that this computational definition corre-
sponds to the original integrated temperature equation (5). The proof is straightfor-
ward in principle but depends upon an extension to Coq’s Reals standard library
of theorems, which is the subject of ongoing work [5].

Formalizing the proof of lemma (8) in Sect. 2.4 is straightforward. Here we
present the interesting parts of the development, eliding the more tedious details.
First, we define Eq. (10) as T, using theta_tilde from above, along with the other
relevant parameters:

Definition T Tn tau (tau_bnd : 0 < tau ≤ 1) :=
(Tn + H × theta_tilde (Tstar - Tn))× exp (-a×tau).

The definition takes three parameters. The first, Tn, is the temperature at time n

where n ∈ N. The parameter tau represents the time increment relative to n at
which we want to evaluate the temperature. The final parameter, tau_bnd, is a proof
that tau lies in the interval (0, 1]. The definition above corresponds to Eq. (10), with
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t = n+tau. Using this definition, the statement and proof of lemma (8) are expressed
as follows:

Theorem T_in_interval (Tn tau : R) (tau_bnd : 0 < tau ≤ 1) :
A ≤ Tn ≤ B→ A ≤ T Tn tau tau_bnd ≤ B.

Proof.
intros HAB. decompose record HAB. split.

destruct (Rlt_le_dec Tn (Tstar - eps)).
apply Tn_heat_keeps_above; auto.
apply Tn_no_heat_keeps_above;auto.

destruct (Rle_lt_dec Tn (Tstar + eps)).
apply Tn_heat_keeps_below; auto.
apply Tn_no_heat_keeps_below;auto.

Qed.

3 Modeling and Verification of Out-of-Nominal Logic

Apart from intended interactions with physical surroundings, digital devices may
also be subject to extreme environments that violate their nominal operating
parameters and result in computational behavior outside the designed logic. In
microelectronics, out-of-nominal insults such as heating or radiation can alter
electrical properties and lead to unexpected states (upsets). More generally, untested,
out-of-range, or malicious inputs may cause digital systems to respond in unin-
tended ways.

Ongoing work seeks to understand the physical origins of out-of-nominal
behavior (see Fig. 1) as well as the principles underlying the susceptibility or
robustness of digital systems to cascading failure from such upsets. By including
digital upset effects in a model, the consequences for the rest of the digital state
space can be quantified and mitigated—e.g., to verify whether a digital safety
property still holds even in an accident scenario. We have argued that both formal
methods and complex systems theory offer ways to design more intrinsically robust
digital systems [22]. Design using formal methods imposes constraints that promote
stability similar to that seen in adapted complex systems.

The remainder of Sect. 3 is excerpted from [23], © 2016 Springer.

3.1 Introduction

A widely used technique to improve the tractability of formal verification is to work
with abstractions (or overapproximations), which can be simpler to analyze and
are conservative in the sense that their verified safety properties are guaranteed
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Fig. 1 Conceptual diagram showing the translation of simulated analog electrical behavior
(bottom) into a digital upset model (top). The analog model represents a transistor-based AND
gate that may be subject to an insult changing its output. The digital representation enlarges on
a nominal Boolean AND gate with an additional nondeterministic input UAND that induces the
corresponding upset state

to hold also in the actual implementation. This guarantee applies because a valid
abstraction permits all behaviors that occur in the implementation and possibly
additional behaviors. In current formal methods, the abstraction is a means to
an end: either generating a proof of an existing design or generating a provable
design.

Here we present a different perspective on abstraction—useful when, under
some conditions, a system is physically capable of additional behaviors beyond
its “nominal” operation. Critical safety properties may need to be guaranteed
under a less restrictive model that permits particular “out-of-nominal” behaviors,
if such behaviors may physically occur often enough to be of concern for the
risk of catastrophic failure. Our observation is that the abstraction concept, already
commonly used in formal methods as a mathematical technique, can be reinterpreted
as defining a space of possible “real-world” out-of-nominal behaviors for which
the abstraction-verified safety properties are still guaranteed to hold. Thus, by
leveraging suitable abstractions, we can gain out-of-nominal safety verification for
free.

A primary example of out-of-nominal behavior is the response of digital
hardware to electrical or other physical stimuli that produce states not accounted for
in the logic design—with the abnormal physical dynamics generating a nominally
disallowed digital state transition such as a bit flip. A variety of formal techniques
have been investigated for modeling and verifying such behavior [12, 17, 18]; rec-
ognizing that out-of-nominal behavior may overlap with other formal abstractions
can increase the applicability of these techniques, particularly in earlier stages of
the design process.
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Fig. 2 Refinement/abstraction conceptual diagram for treating out-of-nominal and nominal mod-
els in a unified way. The arrows point in the direction of abstraction. Figure from [23], © 2016
Springer

3.2 Modeling Out-of-Nominal Safety Properties

The safety properties of a given model are required to hold at all times over
all possible behavioral paths. Such properties, when imposed on an abstraction,
require that every path in the abstraction conforms to the properties, and thus every
refinement will as well. The use of abstraction in verifying safety requirements is
well established.

Here we distinguish “critical” safety requirements that must hold even in out-of-
nominal environments (Fig. 2). These out-of-nominal fail-safe requirements are less
strict (allow more behaviors) than the requirements for nominal operation and thus
constitute an abstraction of the nominal requirements. Safety-critical devices where
failure modes can be anticipated are likely candidates for this technique. Nominal
requirements can be relaxed to admit acceptable modes of failure.

The safety requirements must ultimately be verified on formal models that reflect
the actual nominal and out-of-nominal behavior of the system being designed. Such
models are typically tied to the requirements via one or more abstraction/refinement
steps ultimately leading to a model of a practical implementation. In our approach,
upon refinement, the out-of-nominal model remains an abstraction of the nominal
one (Fig. 2). By stipulating that the out-of-nominal refinement has a superset of the
behaviors of the nominal refinement, we ensure that the safety properties verified
for out-of-nominal operation also hold for nominal operation.

Not all foreseeable failure modes may manifest an abstraction or overapproxi-
mation of the system’s nominal behavior. A particular failure mode may render the
system incapable of performing some nominal behaviors. The removal of possible
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behavioral paths, by itself, does not invalidate any of the nominal safety properties,
but can affect functional requirements that are outside the scope of the formal
refinement methodology applied in this work. Out-of-nominal scenarios of concern
for safety would involve adding at least some new behaviors.

Viewing behaviors of anticipated malfunctions as an abstraction of the nominal
behavior has some advantages. For complex safety-critical systems that are prone
to failure, it is important to “design-in” anticipated failures with their own fail-safe
requirements. Recasting such requirements into the familiar abstraction/refinement
design practice means that the same tools can be brought to bear on these designed-
in benign failure requirements as part of the normal design process. Another
advantage is that anticipated failure modes are incorporated into the design process
up front rather than as an afterthought.

3.3 Example Turnstile Model

For an illustration, we use the familiar turnstile model [16] in a simplified form.
A turnstile requires a coin to permit the patron admission by pushing on the bar. In a
simplified description, we can identify three Boolean state variables for the device:
C, P , and L, indicating whether a coin is present, whether the bar is being pushed,
and whether the bar is locked. If the coin is present and the bar is locked, the bar
should become unlocked and remain so until the patron pushes through, after which
it should become locked again. If the coin is absent, the bar should remain locked.
We can synthesize the desired nominal properties into a TLA+ [20] formula:

S1 � (¬C ∧ L⇒ L′) . . . . . . . . critical safety property
S2 � (C ∧ L⇒ ¬L′)
S3 � (¬P ∧ ¬L ⇒ ¬L′)
S4 � (P ∧ ¬L⇒ L′)
Safety � �[S1 ∧ S2 ∧ S3 ∧ S4]〈C,P,L〉.

(11)

Here, each Sn defines a safety property in terms of a TLA action, which relates
the variables C, P , and L in the “current” instant to L′, representing the value of L

in the “next” instant.
While all of the implications in (11) can be thought of as safety properties,

the “critical safety property” S1 is one that we wish to preserve in a design for
anticipated out-of-nominal conditions. We can interpret S1 as “the turnstile will
remain locked unless a coin is present” (¬C ∧ L ⇒ L′).

The nominal requirements in (11) can be used as an abstraction suitable for
refinement. If the refinement is valid, all of S1 through S4 will be true of the
implementation. One initial refinement of the requirements is described by the
action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L). (12)
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3.4 Design and Out-of-Nominal Verification Via Abstraction

3.4.1 Refinement (High Level)

We now consider a method by which abstraction and refinement can be used
in a formal design process in order to account for out-of-nominal conditions.
The process starts, as any design process should, with the requirements. These
are gathered in the usual ways and must be formalized. These are the nominal
requirements.

Next, certain of these requirements are designated as “critical”—these are the
out-of-nominal requirements, i.e., those that must hold even under some (predicted)
mode of system failure or inconsistency.

Next, we refine the nominal requirements. The refined model is closer to an
implementation, although it may still be quite abstract. Refinement of the nominal
model is done in the usual way [1, 20], ensuring that the level above simulates the
level below.

Finally, we must construct the out-of-nominal refinement such that it both refines
the out-of-nominal requirements and abstracts the nominal refinement, completing
the commuting square diagram (shown for the turnstile example in Fig. 3). In this
case, our out-of-nominal requirement is only that ¬C ∧ L ⇒ L′. In the nominal
refinement, L evolves based on the action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L).

Since the first disjunct alone already satisfies the out-of-nominal requirement that
¬C ∧ L ⇒ L′, we can consider the second disjunct to behave “randomly” and, at
any step, draw its value from either the nominal behavior P ∧ ¬L or its negation

Fig. 3 Refinement/abstraction diagram for the turnstile example. The arrows point in the direction
of abstraction. Existing formal abstractions can be reinterpreted in this framework; a technique like
CEGAR [9] might already prove that the nominal design (lower right) satisfies a safety property
(upper left) by finding an abstraction (lower left) that satisfies the safety property. Figure from [23],
© 2016 Springer
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¬(P ∧ ¬L). In the model, we denote by X a value from this set, and the out-of-
nominal refinement is derived by replacing the action above with

L′ = (¬C ∧ L) ∨X.

By contrast, if we had used the logically equivalent nominal refinement

L′ = (¬C ∨ ¬L) ∧ (P ∨ L),

it would not have been straightforward to obtain an out-of-nominal abstraction
preserving the critical safety requirement S1. That is, while the disjunctive and
conjunctive normal forms are of course equivalent in their nominal behavior, in
this example one particular choice of design offers the ability to tolerate a faulty
out-of-nominal operation. This interpretation gives abstraction an even more central
role in driving the design process.

3.4.2 Implementation (Low Level)

We now discuss how the refined logic design for the turnstile (on both the out-of-
nominal and nominal sides) can be related to a notional implementation in hardware
gates. The out-of-nominal logic L′ = (¬C ∧ L) ∨ X implies that the P ∧ ¬L

term can be computed by an unreliable gate, but the remaining gates must remain
reliable even under out-of-nominal conditions. We discuss an intrinsically robust
implementation using Boolean networks (BNs) informed by principles of digital
error damping.

We draw on previous work [22] in which example BNs were constructed
to compute a half-adder function and their robustness was analyzed with the
NuSMV [8] model checker. We ignore the “sum” output and use only the “carry”
output, which corresponds directly to an AND operation. Conventionally, a BN
is interpreted as a sequential logic circuit. To implement combinational logic, we
replicate the gates in “tiers,” with each tier providing its results as input to the next
and with the final output being read at the end of a specified number of tiers (here,
20).

Two BNs were constructed, differing in the design parameter k, the average
number of inputs per node [22]. In accordance with complex systems analysis [19],
the BN with k = 1.5 shows “quiescent” behavior (perturbations are damped),
and the BN with k = 2.5 shows “chaotic” behavior (perturbations are amplified).
Typical real-world digital implementations are found empirically to be chaotic [24];
such implementations are cheaper to create because they impose fewer restrictions
on programmability. Quiescent implementations that damp bit-flip errors are more
constrained and generally more difficult to create. Our strategy here is to use the
cheaper chaotic implementation for parts of the design that do not impact the critical
safety property and to use the more expensive quiescent implementation for parts
that need robustness to preserve the critical safety property.
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Each of the two AND operations in L′ = (¬C ∧ L) ∨ (P ∧ ¬L) can be
implemented with either of the BNs as far as nominal behavior is concerned. This
is verified by exhaustive testing as well as model checking with NuSMV [22] and is
as expected because the BNs were chosen to compute their function correctly when
operating with their nominal logic.

For out-of-nominal behavior, as before [22], we consider the possibility of
any single bit flip (incorrect gate output) within some range of tiers in the BN,
again using a nondeterministic formal model of the kind used in other work on
soft errors [31]. We have adapted the NuSMV analysis in this case to check the
correctness of the carry bit specifically. In these BNs, because bit flips occurring at
or shortly before the output stage may not have a chance to self-correct, the bit flip
is restricted to the first nmax tiers, where we consider 1 ≤ nmax ≤ 20. The NuSMV
analysis finds that for no such value of nmax does the chaotic BN reliably implement
the AND operation, while the quiescent BN does so for any nmax ≤ 15. Thus, if we
can arrange that the effect of the out-of-nominal environment is not felt in the last 5
tiers, then the quiescent BN can be used to implement the “critical” term ¬C ∧ L.
Meanwhile, either BN (or for that matter, any nominally correct implementation)
can be used for P ∧ ¬L because the out-of-nominal side imposes no constraint on
this term.

4 Resilience of Computational Physics Simulation

Large-scale high-performance computing (HPC) is a powerful tool commonly used
for digital simulation of physical systems, known as scientific computing. The
challenge of representing the continuous equations of physics in discrete logic is
addressed by the field of numerical analysis, with much effort devoted to ensuring
that results are stable in the face of inevitable roundoff and truncation errors. This
stability is closely tied to that of the physics being simulated; the goal is to ensure
that the discretization does not introduce gratuitous instability.

At the same time, the HPC platform is itself a physical entity and is subject
to out-of-nominal failures from temperature, cosmic rays, etc. that may halt or
corrupt computations—known as the resilience problem. The sheer scale of HPC
(hundreds of thousands of processors) increases the rate of hardware errors even
when running a correct program in a well-controlled physical environment. Thus,
HPC is subject to out-of-nominal behavior analogous to that of embedded devices
that are smaller but exposed to harsher conditions. Both scientific computing and
embedded computing are often power-constrained, driving hardware designs to the
“edge” of reliability. Here we discuss how the stability of HPC algorithms can be
extended, taking advantage of the structure and smoothness of the physics being
simulated, to help achieve robustness to physical anomalies in the computer itself.

The remainder of Sect. 4 is excerpted from [29], © 2016 ACM.
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4.1 Introduction

The increasing scale of HPC will eventually cause previously negligible hardware
errors to become important. Some of these errors will likely arise from unanticipated
sources and modes, including silent (undetected) errors [7]. Attempting to hide such
faults through enhanced hardware error correction may make computing platforms
slower and/or more expensive. Thus, future hardware may regularly expose silent
errors that can corrupt application results.

A primary concern is silent data corruption (SDC), which leads to wrong
numerical values in a computation that otherwise appears normal.

Algorithm-based fault tolerance [6] (ABFT) is a promising strategy that seeks to
efficiently mitigate the effects of hardware errors, including SDC, at the software
level for particular kinds of applications. The effectiveness of ABFT is dependent
on the characteristics of the application (such as numerical stability properties) and
on the assumed hardware error model.

We specifically target physics simulation applications that solve partial differ-
ential equations (PDEs). We also initially assume an SDC model consisting of
dynamic random-access memory (DRAM) bit flips. This chapter builds on previous
“robust stencils” for explicit finite-difference solvers [26, 32] and describes the more
general use of robust versions of vector and sparse-matrix operations representing
discretized physical space, which are typical ingredients of PDE solvers.

Our approach seeks algorithm-level stability to isolated occurrences of SDC,
via detection and recovery that ideally occur in cache as a low-cost add-on to
the numerical computation. Here we describe preliminary implementations and
evaluations of this in situ approach, demonstrating its feasibility and showing the
potential for extension to physics solvers of increasing scale and realism.

4.2 Methodology

4.2.1 Operations in PDE Solvers

Physical systems are often modeled by partial differential equations (PDEs) which,
when discretized, result in a system of equations with a large yet finite number of
unknowns [28]. Algorithms to solve for these variables can typically be expressed
in terms of linear systems of equations Au = b with a large sparse matrix A.

Our team developed SDC-tolerant algorithms for the explicit finite-difference
solution of linear and nonlinear advection equations [26]. The algorithm developed
for the parallel solution of a 1D advection problem can be viewed as computing
a relevant sparse product Au using a matrix-free scheme. On this basis, we have
generalized the robust stencil technique to a broader class of PDE solvers via robust
linear algebra operations, which we now describe.
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4.2.2 Error Model and Mitigation Approach

The hardware SDC model we have considered to date consists of independent
bit flips in DRAM occurring uniformly in space and time (Poisson process),
parameterized by the error probability (rate) per bit with respect to wall time.

We seek to develop a technique to correct this type of SDC when performing
linear algebra operations in PDE solvers. The correction method is based on
numerical interpolation to replace suspected corrupt points with values computed
from neighboring points.

A key advantage of this approach is that, since isolated errors are mitigated
throughout the algorithm, a catastrophic breakdown in accuracy should occur only
when two or more errors occur in close proximity, such that one contaminates the
correction of the other. This resilience property is analogous to that of (expensive)
triple modular redundancy.

Consider a data vector f (x) that is a smooth field in the physical domain where it
is defined. An operation on f such as daxpy involves a loop on points xi . During the
loop, if any value f (xi) is detected as outlier, it is interpolated based on values
at spatially neighboring points as illustrated in Fig. 4. A value f (xi) is deemed
an outlier if it is NaN or Inf or if its deviation from a set of neighboring points
exceeds a threshold (chosen empirically and measured relative to the variation in
the neighboring points).

4.3 Application to the Conjugate Gradient Solver

The building blocks of robust linear algebra operations we develop are applicable to
a wide variety of iterative solvers. Here we report the performance of the building
blocks on a conjugate gradient (CG) algorithm for a linear system of equations, used
in solving an elliptic PDE.

Fig. 4 Schematic of a data
vector f (x) with a corrupted
entry (red point). If this
corruption is detected as an
outlier, it is interpolated
based on neighboring values.
This is performed as the
linear algebra computation is
sweeping the vector. Figure
from [29], © 2016 ACM
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4.3.1 The Basic Conjugate Gradient Solver

The basic CG solver is given in Algorithm 1 [28]. It is used when A is symmetric
and positive definite, which is the case in elliptic PDE problems. At each iteration,
CG involves one spmv call, three daxpy calls, and two ddot calls.

Algorithm 1 Conjugate gradient method for a linear system of equations Au = b

u0 = 0 {Initial guess of the solution}
r0 = b − Au0, p0 = r0 {Initial residual and direction vectors}
(R0)

2 = rT
0 r0

for k = 0 until convergence do
qk = Apk

α = (Rk)
2/
(
pT

k qk

)
uk+1 = uk + αpk

rk+1 = rk − αqk

(Rk+1)
2 = rT

k+1rk+1

β = (Rk+1)
2/(Rk)

2

pk+1 = rk+1 + βpk

end for
Return uk+1

When run in parallel, CG requires communication between the compute nodes
during the ddot and spmv steps. The CG method is more communication-intensive
than an explicit scheme, especially at large scale, due to the presence of collective
operations.

Our target solver is the HPCCG 1.0 mini-app [14], which uses the CG method to
solve an elliptic PDE in a 3D domain of size Nx×Ny×PNz, where P is the number
of processes. This entails solving a linear system of equations Au = b, where A is
a sparse heptadiagonal matrix of size

(
PNxNyNz

)2 equally distributed among the
P processes. We run weak-scaling computations such that each process’s portion of
the vector u is of fixed size NxNyNz. The full solution vector is formed by stacking
the domains of each process in the z-direction.

4.3.2 Controlling Convergence of the CG Algorithm

The CG algorithm relies on two scalars α and β that govern the solution steps toward
convergence. With these coefficients, the method achieves a rapid convergence rate
on a reliable machine, but we find that it can become unstable when using our
interpolation-based robust linear algebra operations to mitigate SDC throughout the
computation. We propose a method to control the CG step size: Define a “tuning
parameter” θ ≤ 1 as a scaling factor on α. If θ < 1, the step size is decreased
and the CG convergence rate is decreased. Since α and β are related, we apply a
corresponding scaling to drive β toward 1 as α is reduced. We therefore propose
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in Algorithm 1, after computing α and β, the additional steps α ← θα and
β ← 1− θ(1− β).

We compute θ as a linear interpolation between a smaller value θ2 at the large
initial residual R0 and a larger value θ1 when the residual reaches a small value Rc.
The CG algorithm with an automatically tuned parameter θ converges two to three
times faster than with a constant tuning parameter.

4.3.3 Evaluation Using In Situ Interpolation

In contrast to rollback techniques, the roll-forward error mitigation that we describe
in this chapter helps reduce the cost of false positives. This mitigation technique
has been implemented for the HPCCG 1.0 mini-app. We inject bit flips in all
u, p, q , and r vectors involved in the CG method (see Algorithm 1). We report
weak-scaling computations performed with the robust operations and the variable
tuning parameter technique described in Sect. 4.3.2. We compare to the standard
HPCCG implementation without use of robust linear algebra operations or the
tuning parameter.

The HPCCG elliptic PDE is solved with 64 × 64 × 4 degrees of freedom per
core, and the solver is required to reach an assumed acceptable accuracy (residual
of 5 × 10−2). A linear interpolation scheme is used to mitigate the corrupted
data points. The weak-scaling results are plotted in Fig. 5. The correction strategy

Fig. 5 Maximum tolerated error probability for the CG solver with and without interpolation.
Figure from [29], © 2016 ACM
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enables increased tolerance of silent errors depending on the number of cores
P , i.e., problem size. As shown in Fig. 5, the maximum tolerated error rate is
modestly higher than that of the standard solver for smaller problems with P ≤ 16.
However, the correction approach enables tolerating an error rate up to two
orders of magnitude higher than a standard solver for larger problems. The robust
solver converges in approximately the same number of iterations as the standard
solver. The wall time shows decreasing overhead at larger scale from the robust
solver operations—down to ∼5% at 2048 cores—because the wall time becomes
dominated by the communication cost of each iteration.

5 Conclusion

Analysis of traditional physical systems relies heavily on continuity and stability
properties, which allow behaviors not yet observed to be predicted: A small
change in input produces a small change in output. Though digital systems are
ultimately physical, they are designed to operate on combinatorial spaces that are
effectively discontinuous. As a result, for digital systems that are created arbitrarily,
the response to untested inputs or perturbations cannot be usefully predicted or
bounded. Even when the digital system operates as an idealized logical machine,
there is much room for design flaws and vulnerabilities to hide in its complexity.

From a broader systems engineering view, where digital logic is constructed
from physics and is used to control or simulate other physics, we encounter the
additional complications of cyber-physical systems and out-of-nominal behavior.
This represents both a challenge and an opportunity to leverage understanding
of the physics to confer analogous stability on the digital logic and the cyber-
physical system as a whole. Both formal methods and complex systems theory
offer techniques for creating hardware and software with designed-in robustness
and analyzability. These insights can help improve the safety and security of high-
consequence cyber-physical systems by making them more predictable and resilient.
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Constraint-Based Framework
for Reasoning with Differential Equations

Julien Alexandre dit Sandretto, Alexandre Chapoutot, and Olivier Mullier

Abstract An extension of constraint satisfaction problems with differential equa-
tions is proposed. Reasoning with differential equations is mandatory to analyze
or verify dynamical systems, such as cyber-physical ones. A constraint-based
framework is presented to model a wider class of problems based on logical
combination of high-level properties. In addition, the complete correctness is
verified using a set-membership approach in this framework. Finally, examples are
given to demonstrate the benefits of the presented framework.

1 Introduction

In various domains, such as robotic, control theory, or biology, mathematical models
based on differential equations are used to represent the temporal behavior of a
particular system. Among the many classes of differential equations, this chapter
is interested in ordinary differential equations (ODEs) and differential algebraic
equations (DAEs) which are widely used in these domains. These models are
then used for different purposes such as parameter identification, control synthesis,
or safety verification. For example, interesting problems involving differential
equations are:

• Control synthesis problem: A motion planning algorithm for a mobile robot R

aims at finding a trajectory of R going from point a to a point b of the state
space while avoiding an obstacle o. Note that as the movement of R depends
on actuators (e.g., engine speed), finding a trajectory is translated into finding
control inputs such that R can reach b.

• Parameters identification problem: Mathematical models are an approximation
of the real word. To make them more faithful, usually an identification step is
necessary. Starting from a list of n measures mi∈{1,...,n} of the behavior of the real
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system S and a parametric mathematical model M(p) of the temporal behaviors
of S, the goal of the identification step is to find values p̂ of p such that M(p̂) fits
the list of measures mi∈{1,...,n}.

• Design problems: It is closed to the parametric identification problem. The
input data are a parametric model M(p) of a system S and a list of n design
specifications Pi∈{1,...,n}, for example, a car shall reach a speed of 100km/h from
0km/h in less than 6 s on flat dry road. The goal of the design problem is to find
values p̂ of p such that M(p̂) respects all the specifications Pi∈{1,...,n}.

Defining automatic methods to solve such kind of problems is challenging. In
this context, many attempts have been started based on constraint verification of
differential systems [6, 13, 18, 22]. Indeed, the framework of constraint satisfaction
problems is an appealing one to express such kinds of problems associated with
efficient solving methods producing rigorous results.

We mainly focus on critical problems, coming from aeronautics, robotics, or
medical fields. Handling problems in these fields implies to consider the uncer-
tainties in presence using validated methods like interval analysis [24, 28]. We also
impose that constraints to solve have to be properly verified. In this context, we
use inner approximation to ensure the constraint satisfaction because an enclosure
(outer approximation) approach would result in some points that are not solution
[24, 28]. The classical approach for these requirements is the use of a Branch-and-
Prune algorithm which is a dedicated solver for constraint satisfaction problems
(CSP) and the most used in the case of numerical or continuous CSP [31, 32].

To handle differential equations, abstraction based on validated simulation or
reachability is a common approach [10, 28–30]. This abstraction needs to be deeply
studied to preserve the correctness of a constraint-based problem-solving.

In this chapter, we expand a framework for Constraint Satisfaction Differential
Problems (CSDP) with the requirement of preserving the guarantee of the result
while dealing with differential constraints. The main contributions are:

• A clearer definition of a CSP framework based on set-membership operations
including differential equations ODEs or DAEs compared to previous work
[6, 13, 18], namely, SCSDP for Set-Based Constraint Satisfaction Differential
Problems. In particular, a better handling of quantified constraints is presented,
and a better separation between mathematical model and solving algorithm is
defined.

• A sound solving algorithm of SCSDP based on interval analysis and guaranteed
integration methods is presented as well as a complete study of the impact of the
representation of sets by boxes on the guarantee of the solution of SCSDP.

• A set of contractor operators on the solution of differential equations is defined
to make Branch-and-Contract solver more efficient for SCSDP.

The chapter is organized as follows. In Sect. 2, the basics of numerical constraint
satisfaction problem are provided. The mathematical formulation of CSCP is
defined in Sect. 3, while solving algorithm is presented in Sect. 4. Some examples
are given in Sect. 5 before concluding in Sect. 6.
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Notations
Small italic letters x represent real variables, while real vectors x are in bold. The
set of real numbers is denoted by R. Intervals [x] and interval vectors (boxes) [x] are
represented between brackets. We denote by IR the set of closed intervals over R.
Sets S are in uppercase calligraphic. The powerset of a set X is denoted by ℘(X ).
The derivative of a function x with respect to time t is denoted by ẋ. Uppercase
typewriter letters stand for algorithmic data structures such as a stack S or a queue Q.

2 Preliminary Notions

A brief presentation of the constraint satisfaction problem framework is given in
Sect. 2.1 to better understand how it is then extended in the rest of the chapter.
A generic solving method based on Branch-and-Prune algorithm is presented in
Sect. 2.2

2.1 Numerical Constraint Satisfaction Problems

In this section, we recall the numerical constraint satisfaction problem (NCSP)
formalism, following the description given in [32], and present some basics on con-
straint programming. The approach of NSCP is both powerful to address complex
problems (NP-hard problem with numerical issues, even in critical applications) and
simple in the definition of a solving framework [1, 26].

A NCSP (V ,D,C ) is defined as follows:

• V := {v1, . . . , vn} is a finite set of variables which can also be represented by
the vector v.

• D := {[v1], . . . , [vn]} is a set of intervals such that [vi ] contains all possible
values of vi . It can be represented by a box [v] gathering all [vi ].

• C := {c1, . . . , cm} is a set of constraints of the form ci(v) ≡ gi (v) = 0 or
ci(v) ≡ gi (v) � 0, with nonlinear gi : Rn → R for 1 � i � m. Constraints C
are interpreted as a conjunction of equalities and inequalities, i.e., C ≡ c1 ∧ c2
∧ · · · ∧ cm.

The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C .

2.2 Branch-and-Contract Solving Method

The classical algorithm to solve a NCSP, as previously defined, is the Branch-and-
Prune method which needs only an interval evaluation of the constraints and an
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initial domain for variables. More precisely, an interval [x, x] = {x ∈ R : x � x �
x} ∈ IR is defined by its lower and upper bounds x and x as a compact set of R.
An interval vector (or box) [x] of dimension n is a Cartesian product of intervals
[x0, x0] × · · · × [xn, xn]. An inclusion function [f ] : IRn → IR for f : Rn → R

satisfies

∀[x] ∈ IR{f (x)|x ∈ [x]} ⊆ [f ]([x]). (1)

A natural inclusion function [f ] is obtained by substituting all variables and
operations involved in f by their interval counterpart. The evaluation of the range
of functions over intervals using inclusion function leads in general to some
overapproximation; see [24] for more details.

A more elaborated solving method named Branch-and-Contract is usually
applied to accelerate the solving process of an NCSP. A generic version, using
interval analysis, of this algorithm is given in Algorithm 1.

Algorithm 1 A generic Branch-and-Contract
Require: v, [v], Cacc, Crej
Ensure: Sacc, Srej, Sunc
1: S = {[v]}
2: Sacc = ∅, Srej = ∅, Sunc = ∅
3: while S �= ∅ do
4: Pop a [v]current from S
5: [v]current = Contract (Cacc, ([v]current)) �May be omitted to get branch-and-prune method
6: if Check(v,[v]current ,Cacc) then � Satisfiability check
7: Push [v]current in Sacc
8: else if Check(v,[v]current ,Crej) then � Unsatisfiability check
9: Push [v]current in Srej

10: else if Width([v]current) > ε then
11: ([v]left, [v]right) = Bisect([v]current) � Spliting method
12: Push [v]left in S
13: Push [v]right in S
14: else
15: Push [v]current in Sunc
16: end if
17: end while

The key feature of Algorithm 1 is the function Check(),

Check() : V ×D × C → B

with B = {True, False}. Check() is then a decision procedure which is able to verify
if constraints C are satisfied by all the values of the domain D . Note that due to
pessimism of interval analysis approach, it may be not possible to decide if C is
satisfied or not. In this case, False has to be interpreted to “undecidable.”
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Two kinds of constraints are considered in Algorithm 1, one with constraints
Cacc and one with constraints Crej. The first set of constraints is used to accept
the solutions, while the second is used to reject the nonsolutions, i.e., the points
guaranteed to be outside the solution domain. It is optional but useful to speed up
the algorithm by quickly eliminating unfeasible domain. Crej is in a certain point of
view the negation of Cacc, but in general, Cacc �= ¬Crej, due to the abstraction of
continuous domains (and the issue of disjunction). Note that this approach follows
classical method in SIVIA (Set Inversion Via Interval Analysis) method [23].

The second key feature in Branch-and-Contract algorithm is the Contract()
procedure which simultaneously reduces the domain studied ([v]current in the
algorithm) by the help of contractors [3]. A contractor associated to a constraint
c ≡ g(x) � 0 with � ∈ {=,�} is a function Cc taking a box [x] as parameter and
returns a box such that

Cc([x]) ⊆ [x] (Reduction) (2a)

g([x]) ∩ [z] = g(Cc([x])) ∩ [z] (Correction) (2b)

where [z] = [0, 0] if � ≡= and [z] = [−∞, 0] if � ≡�. The main strength of
contractors is that they can reduce the domain [x] while preserving solution without
using bisection, and so they can reduce, in practice, the algorithmic complexity of
Algorithm 1. For more details on contractors, see [3].

The result of Algorithm 1, also known as a paving, is made of three lists of boxes
Sacc, Srej, and Sunc such that

• There is no solution of the NCSP in Srej.
• All the solutions of the NCSP, included in the initial domain, are in Sacc ∪ Sunc.
• All the values in Sacc are solution of the NCSP.

Example 1 The result of a Branch-and-Contract method on the constraints 1 �
x2 + y2 � 2 with (x, y) ∈ [−2, 2] × [−2, 2] is given in Fig. 1. In this figure, blue
boxes are elements of Sacc, red boxes are in Srej, and white boxes (between red and
blue boxes) are in Sunc. �

2.3 Some Limitations on NCSP

2.3.1 Equality Constraints

One of the main difficulties in NCSP approach is the handling of equality constraint,
i.e., g(v) = 0. Indeed, a classical solving approach for NCSP is based on interval
analysis which considers computations over boxes instead of points. So proving
equality constraints usually involves some relaxation techniques such as proving a
simpler constraint of the form g(v) ∈ [−ε, ε] for a small positive value ε. Moreover
specific algorithms have to be used to prove the existence and uniqueness of the
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Fig. 1 Paving of a circle

solution of g(v) = 0 such as the interval Newton operator [24]. In consequence,
solving equality constraints is often dependent on the solving algorithm as the
relaxation is generally done internally in the solver. The aim of our work is to avoid
this implementation trick and push out the relaxation choice to the designer by only
allowing set-based constraints as inclusion constraint; see Sect. 3.

2.3.2 Differential Constraints

The framework of NCSP lacks expressiveness when dealing with differential
equation. In [6], a first approach was given by introducing Constraint Satisfaction
Differential Problems (CSDP). Basically, new variables are added to the set of
variables of NCSP to represent time derivative, and a new type of constraints is
added too to represent the dynamic of the differential system. The time variable
being handled separately from the other variables, temporal properties, cannot be
encoded with CSDP. For example, if a trajectory described by a differential system
has to avoid an obstacle in a given time interval, modeling this using CSDP cannot
be done in an obvious manner.

Another work in [18] also dealt with this problem. The dynamical system is
abstracted with a solution operator φ representing the solution of the system.
Differential equations are then naturally embedded in the NCSP framework. Its
limitation is also this abstraction because constraints on the dynamical system
cannot be easily expressed.

In these previous works, another drawback is the lack of quantification on
variables. Bringing a solution to this is one of the motivations of this work.
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3 Set-Based Constraint Satisfaction Differential Problems

The proposed extension of NSCP is based on set-based constraints and the
embedding of differential constraints. These extensions allow to increase the class
of problems which can be modeled and solved.

3.1 Dynamical Systems

In the rest of this article, a general class of differential equations is considered
which can represent ordinary differential equations (ODEs), differential algebraic
equations (DAEs) of index 1, and a mix of these equations with additional
constraints, e.g., to model energy preservation. More precisely, differential systems
of the form

⎧⎪⎪⎨
⎪⎪⎩

ẏ(t) = f(t, y(t), x(t),p),

0 = g(t, y(t), x(t))

0 = h(y(t), x(t))

. (3)

with nonlinear functions f : R× R
n × R

m × R
p → R

n, g : R× R
n × R

m → R
m,

h : Rn × R
m → R, t ∈ [0, tend], y(0) ∈ Y0, and p ∈ P are considered. More

precisely, initial value problems (IVP) for parametrized differential equations are
considered over a finite time horizon [0, tend]. Note that a bounded set of initial
values and a bounded set of parameters are considered in this framework. This
implies to deal with set of trajectories solution of Eq. (3). We assume classical
hypothesis on f, q, and h to ensure the existence and uniqueness of the solution of
Eq. (3).

In the rest of this section, we denote by Y (T ,Y0,P) the set

Y (T ,Y0,P) = {y(t; y0,p) : t ∈ T , y0 ∈ Y0,p ∈P} . (4)

Intuitively, Y (T ,Y0,P) gathers all the points reached by the solution y(t; y0,p)

of Eq. (3) starting from all scalar initial values y0 and all scalar parameters
p. Note that Y (T ,Y0,P) is hardly computable in general, and the imple-
mentation issue is addressed in Sect. 4. Note also that the difference of the
proposed approach comparing to [18] is that we consider a set-based solution
operator which offers a convenient way to deal with quantification over vari-
ables.

The purpose of the proposed framework is to check if Y (T ,Y0,P) fulfills
some specification defined in terms of set-based constraints.
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3.2 Set-Based Constraints

To avoid problematic issue due to equality constraints (see Sect. 2.3), set-based
constraints are considered. More precisely, inclusion and disjunction operators are
considered. The proposed framework will consider constraints of the form

g(A ) ⊆ B (5a)

g(A ) ⊇ B (5b)

g(A ) ∩B = ∅ (5c)

g(A ) ∩B �= ∅ (5d)

where A and B are real compact sets and g is a nonlinear function. The lifting of g
over sets is defined as usual by g(X ) = {g(x) : x ∈ X }.

Note that these constraints can be seen as Boolean functions, but while, from a
mathematical formulation, the truth value can always be obtained, it may not be the
case when they have to be solved on a computer. The safe computer resolution of
these kinds of constraints is one of the main contributions of this article, detailed in
Sect. 4.

3.3 Set-Based Differential Constraint Satisfaction Problems

The handling of differential constraints here follows the approach given in [18] in
the exception of the solution operator of Eq. (3), which is here represented as a set
of solution Y (T ,Y0,P) in order to unify the objects manipulated into constraints
which are also sets.

Set-Based Constraint Satisfaction Differential Problems (SCSDP) based on a set-
membership constraints and embedding differential constraints can now be defined.

Definition 1 (SCSDP) A SCSDP is a NCSP made of

• A finite set S of differential systems Si as defined in Eq. (3)
• A finite set of variables V including the parameters of the differential systems

Si , i.e., (y0,p), a time variable t and some other algebraic variables q
• A domain D made of the domain of parameters p : Dp , of initial values y0 : Dy0 ,

of the time horizon t : Dt , and the domains of algebraic variables Dq

• A set of constraints C which may be defined by inclusion or disjunction con-
straints (see Sect. 3.2) over variables of V and special variables Yi (Dt ,Dy0,Dp)

representing the set of the solution of Si in S
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Example 2 A cruise control system based on PI controller for a nonlinear dynamic
of a car is considered [12]. The dynamic of the car is defined by

S ≡

⎧⎪⎨
⎪⎩

v̇ = kp(vset − v) + kis − 50.0v − 0.4v2

m

ṡ = vset − v

. (6)

with v the speed of the vehicle and s the integral part of the PI controller, kp and
ki the parameters of the PI controller, m ∈ [990, 1010] the mass of the vehicle, and
vset = 10 the target speed of the car from initial conditions v(0) = 0 and s(0) = 0.
The term kp(vset − v)+ kis is the PI controller,−50.0v is the resisting force due to
the road, and −0.4v2 is the aerodynamic friction.

The specification of the PI controller is such that it should stabilize in 10 s with a
tolerance of 2%, and its overshoot should not be more than 5% of the target speed.
These are translated into constraints such that

v(10) ⊆ [9.8, 10.2] (At t=10, vset ± 2%)

v̇(10) ⊆ [−ε, ε] (At t =10, acceleration is around zero, with a small ε > 0)

v([0, 10]) ⊆ [0, 10.5] (For t ∈ [0, 10], v should not be above vset + 5%)

Note that in Eq. (6), the mass m is uncertain, so the solution of S is a thick function
so the use of inclusion constraints. In summary, a SCSDP is defined by

• S = {S defined in Eq. (6)}
• V = {kp, ki}
• D = {[1, 4000], [1, 120]}
• C = {v(10) ⊆ [9.8, 10.2], v̇(10) ⊆ [−ε, ε], v([0, 10]) ⊆ [0, 10.5]}

�
Note that following NCSP and its solving algorithm, variables in V are quantified

existentially, and other variables (not in V ) are quantified universally, e.g., the
mass m in Eq. (6). Hence, there is no need to introduce quantifier in constraints.
The proposed SCSDP framework is hence simpler than previous work [6, 13, 18]
in embedding quantification constraints while taking into account differential
equations. Nevertheless, one important challenge is to solve SCSDP in a guaranteed
way, and for this purpose a computable representation of sets has to be defined. As
interval analysis [28] brings very efficient techniques over boxes, it is a natural mean
to solve SCSDP on computers.
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4 Solving SCSDP

To solve a SCSDP as defined in Sect. 3.3, a proper representation of sets has to be
defined. Interval analysis provides a simple representation of compact sets by the
mean of interval values or boxes. This representation is simple enough to represent
complex sets while being associated with fast computational methods. To solve
SCSDP on a computer, set-based constraints defined in Sect. 3.2 have to be properly
translated into boxes, and dynamical systems as defined in Sect. 3.1 have to be
solved.

4.1 Interval-Based Constraints

In order to solve set-based constraints appearing in SCSDP, as defined in Sect. 3.2,
an interval-based abstraction is given in this section. As shown in Sect. 2.1, complex
compact sets can be represented by paving and so can be represented either by inner
approximation (boxes in Sacc) or outer approximation (boxes in Sacc ∪ Sunc). In
consequence, translating constraints defined in Eq. (5) to interval-based constraints,
a proper representation of sets has to be defined. In particular, the validity of the
translation is important to guarantee the result of solving a SCSDP on a computer.

In the sequel, IntX will stand for the interior of the compact set X , while
HullX will stand for the outer approximation of X . In each case, the inner
approximation or the outer approximation can be defined by a box or a list of boxes.
Note that the outer approximation of a nonlinear function g in interval arithmetic
is given by inclusion function as defined in Eq. (1), and more information can
be found in [24], while inner approximation of g requires special treatments as
defined in [16, 17, 19, 21]. Note also that excepting a complete computation of
inner approximation or outer approximation, there is no meaning to consider outer
approximation of g with inner approximation of its parameter and reciprocally.

Table 1 Set-based constraint
evaluation in interval analysis
framework

A

IntA HullA

g(X )

Hull g(HullX )

⊆ true ?

⊇ false ?

∩=∅ ? true

∩�=∅ ? false

Int g(IntX )

⊆ ? false

⊇ ? true

∩=∅ false ?

∩�=∅ true ?
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In Table 1, a summary of the translation of constraints defined in Eq. (5) into
an interval counterpart is given. For each case, inner approximation or outer
approximation, the truth value of the constraints is inspected. When a value is true,
that is, the constraint can be proved to be true, and when a value is false, then
the constraint can be proved to be false. Otherwise, no conclusion can be made on
the constraint and it is denoted by “?.” For example, a proof of a constraint of the
form g(X ) ⊆ A can be obtained only by considering an outer approximation of
g and its parameter X and an inner approximation of A . As a second example, a
proof of unsatisfiability of the constraints g(X ) ⊆ A can be obtained considering
an inner approximation of g and its parameter X and an outer approximation
of A .

As it is clear from Table 1, an interval counterpart of constraints defined in Eq. (5)
is not so obvious in order to guarantee the result of a SCSDP.

4.2 Interval-Based Differential Constraints

As for the interval representation of compact sets which can be from an inner
approximation or an outer approximation, dynamical systems can be solved to
produce interval-based representation containing all the trajectories or a subset of
the set of trajectories. In other terms, Y (T ,Y0,P) can be inner-approximated or
outer-approximated. A short review of these methods is given in the rest of this
section as Y (T ,Y0,P) can appear in constraints of SCSDP.

4.2.1 Outer Approximation of Differential Constraints

The computation of Y (T ,Y0,P) solution of a system S described in Eq. (4) has
been studied for a long time with interval analysis methods. A complete approach
named guaranteed numerical integration has been defined from the seminal work of
Moore [28]. More precisely, initial value problems of ordinary differential equations
have been solved with interval analysis mainly based on Taylor series [4, 27–29] and
more recently with Runge–Kutta-based methods [2, 10, 15]. Initial value problems
for algebraic differential equations have been studied in [11, 30]. All the works aim
at producing an outer approximation of the solution of the dynamical systems using
interval analysis tools.

The goal of a guaranteed numerical integration method to solve Eq. (3) is to
compute a sequence of time instants 0 = t0 < t1 < · · · < tn = tend and a sequence
of boxes [y0], . . . , [yn] such that ∀j ∈ [0, n], [yj+1] ⊇ y(tj ; [yj ], [p]). In this
article, we focus on single-step methods that only use [yj ] and approximations of
ẏ(t) to compute [yj+1].

The main approach in a guaranteed numerical integration method, as presented
in [29], is that each step of a validated integration scheme consists of two phases
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Phase 1 One computes an a priori enclosure [ỹj ] of the solution such that

• y(t; [yj ]) is guaranteed to exist for all t ∈ [tj , tj+1], i.e. along the current step,
and for all yj ∈ [yj ].

• y(t; [yj ]) ⊆ [ỹj ] for all t ∈ [tj , tj+1].
• the step-size hj = tj+1 − tj > 0 is as large as possible in terms of accuracy

and existence proof for the IVP solution.

Phase 2 One computes a tighter enclosure of [yj+1] at time tj+1 such that
y(tj+1, [yj ]) ⊆ [yj+1].
A guaranteed numerical integration for a system S, as defined in Eq. (3), starts

with an outer approximation of initial condition HullY0 = [y0], the parameters
HullP = [p], and an integration step size h (or a finite horizon). It applies the two-
step approach until the end of the simulation time is reached. This process builds
two lists of boxes:

• The list of discretization time steps: {[y0], . . . , [yend]}
• The list of a priori enclosures: {[̃y0], . . . , [̃yend]}
Based on these lists, two functions depending on time can be defined

R :
{
R �→ IR

n

t → [y] (7)

with {y(t; y0) : ∀y0 ⊆ [y0]} ⊆ [y] and

R̃ :
{

IR �→ IR
n[

t , t
]→ [̃y] (8)

with {y(t; y0) : ∀y0 ∈ [y0] ∧ ∀t ∈ [t, t]} ⊆ [̃y].
Function R, defined in (7), is obtained by new applications of validated inte-

gration method starting from [yk] at tk and finishing at t with tk < t < tk+1.
Function R̃, defined in (8), is obtained with the union of [̃yk] with k = a, . . . , b

and ta < t < t < tb. These functions are then strictly conservative.
More abstractly, the functions R and R̃ define two interval enclosures of the

solution function of differential equations defined in Eq. (3).

4.2.2 Inner Approximation of Differential Constraints

More recent work deals with the inner approximation of the reachable sets of
ordinary differential equations such as [5, 20]. But a lot of work remains to be done
to elevate this technique to a maturity level of guaranteed numerical integration as
defined in Sect. 4.2.1. A short review of [20] is made in this section as it closely
follows the two-step approach of guaranteed numerical integration.
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In [20] a new approach for computing inner approximations of reachable sets of
dynamical systems defined by nonlinear, uncertain, ordinary differential equations
is defined. It extends [19, 21] which focused on discrete-time dynamical systems.
It consists in using generalized affine forms combining modal interval analysis [25]
(an extension of interval arithmetic dealing with quantifiers) with affine arithmetic
[8] (an extension of interval arithmetic which can take into account some correlation
between variables) to produce both inner and outer approximations of the flow of an
uncertain ODE with a Taylor series approach.

The given algorithm consists of three steps: (1) computing rough enclosures over
a time interval [ti , ti+1] of the solution and its Jacobian over the initial conditions
(which is the solution of the variational equation), (2) building the Taylor models
of the solution and its Jacobian, and (3) computing the inner approximations of the
flow pipe using generalized affine forms.

4.3 Revisiting Branch-and-Contract Solving Method

After defining a correct interval representation of compact sets in Sect. 4, a focus
on the application of Branch-and-Contract algorithm to solve SCSDP is given.
More precisely, as differential constraints imply set of trajectories, an extension of
contractors to deal with this new object has to be defined.

In our approach based on interval analysis and contractor programming [3],
an application of constraints at some given instants in the set of trajectories and
a propagation can be performed on the interval representation of the trajectories.
In the rest of this section, only outer approximation of dynamical systems is
considered. This section defines the two methods, contraction and propagation, on
set of trajectories.

4.3.1 Contraction

The considered approach allows one to contract a specific value [y∗] = R(t∗), an
outer approximation of the solution of the IVP at time t∗ such that y(t∗) ∈ [y∗] with
respect to a constraint g.

The simplest example is as follows: considering a system defined by ẏ = f (y)

and y(0) = y0, if a set of measures {y∗1, . . . , y∗m} are taken at some specific
instants t∗1 , . . . , t∗m, then a contraction can be applied following the rule [y(t∗i )] =
[y(t∗i )] ∩ [y∗i ],∀i = 1, . . . ,m. In a more complex example, if the states of the
system are constrained by the help of a function g, then a contractor such as HC4-
Revise or interval Newton [24] can be used. For example, a constraint such as
y(t∗)2 − 3 cos(y(t∗)) ⊂ [−∞, 0] can be also considered.
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Remark 1 If t∗ is not in the already computed time steps, then the con-
traction procedure adds a kth integration step to the time discretization:
{[y0], . . . , [yi], [yk], [yi+1], . . . , [yN ]} such that tk = t∗.

Remark 2 The contraction at a time t∗ can be easily generalized to a contraction
along an interval of instants [t∗, t∗], by the help of the R̃ function and a priori
enclosures [y∗].

4.3.2 Propagation

If a contraction has been obtained, then a Picard contractor [11] on [ỹi] and a
validated Runge–Kutta contractor [11] on [yi] can be applied on each integration
step i, in order to propagate this information on the whole simulation, i.e., on all the
boxes in the lists:

• Forward for t > t∗ with the considered differential equation
• Backward for t < t∗ with the inverse of the considered differential equation

A fixed-point algorithm (a loop calling alternatively the forward and the back-
ward steps till not enough improvement is obtained with respect to a given threshold)
can be also used.

Example 3 Van der Pol system is considered and it is defined by

ẋ = y

ẏ = 2.0(1.0− x2)y − x

with the initial conditions x(0) ∈ [2.0, 2.2] and y(0) ∈ [0.0, 0.1], simulated from
t = 0 to t = 2.0 (see Fig. 2). A measure is obtained at t = 1.0, such that y(1.0) ∈
[1.58, 1.62] and x(1.0) ∈ [−0.74,−0.69]. A contraction and a forward propagation
are applied; then a backward and finally a fixed point are applied (see Fig. 2). �

5 Numerical Example

DynIBEX library [9] implements the outer-approximation version of the proposed
CSDP framework. This library allows to solve complex constraint satisfaction
problems mixing bounded uncertainties, variable quantification, and differential
constraints.

Kinetic parameter estimation of an enzymatic reaction example has already been
considered in [18]. It aims at illustrating the SCSDP framework described in this
chapter. The goal is to obtain the kinetic parameters of an enzymatic reaction as
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Fig. 2 Van Der Pol problem: initial (up, left), after contraction and forward propagation (up,
right), after backward propagation (down, left), and after fixed-point mixing forward and backward
propagation (down, right)

described in [14]. The differential equation is as follows:

(S )

{
ṡ(t) = −Vmaxs(t)

ks+s(t)

ṗ(t) = Vmaxs(t)
ks+s(t)

(9)

with p(t) and s(t) the two concentrations and Vmax and ks the two parameters
to infer from a series of measures on the concentration p during time. These
measurements are shown in Table 2.

The corresponding SCSDP is as follows:

• S from Eq. (9)
• V = {p0, s0, Vmax, ks , t}
• D = {[25], [0], [90, 110], [0, 10], [0, 1.0]}

Table 2 Measurements for the enzymatic reaction (±0.1)

ti 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pi 8.01 15.32 21.01 23.92 24.74 24.96 24.97 25.02 24.95 24.91
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• C =
{

Projp(Y (ti , p0, s0, Vmax, ks)) ⊂ pi (Measurements)

Y (t, p0, s0, Vmax, ks) ⊂ [0,+∞]2 (Nonnegative concentrations)

with the operator Projx(Y ) the projection over component x of the set Y . This
problem can be treated in two ways, whether we choose to consider contractors or
not as depicted in Algorithm 1 with the addition of line 5 or not. A first resolution
scheme is to directly apply a Branch-and-Prune algorithm on the parameters p. The
function Check() used to verify constraints C is as defined in Algorithm 2.

Algorithm 2 Check for the kinetic parameter estimation
Require: (ti , pi )i=1,...,10, p0, s0, [Vmax], [ks ])

bool IsUndecidable = false
for all j = 1 to 10 do
[p]current ← Projp(Y (tj , p0, s0, [Vmax], [ks ]))
[y]i ← Y ([ti−1, ti ], p0, s0, Vmax, ks)

if [p]current ∩ pj = ∅ or [y]i ⊆ [0,+∞] = ∅ then
return false

end if
if [p]current � pj or [y]i � [0,+∞] then

IsUndecidable = true
end if

end for
if IsUndecidable then

return “undecidable”
else

return true
end if

Another way is to consider the contractor described in Sect. 4.3.1. We recall
that these contractors only apply to the state space of the solution of (S ), so the
parameters have to be embedded into the state space. This is done in a classical way
as follows:

(S ′)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṡ(t) = −Vmaxs(t)
ks+s(t)

ṗ(t) = Vmaxs(t)
ks+s(t)

V̇max = 0

k̇s(t) = 0

(10)

A contractor can then be defined for the resolution of our problem by contracting and
propagating each measurement. The solution of this example is depicted in Fig. 3.
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Fig. 3 Solution for the parameter estimation problem for enzymatic reaction

6 Conclusion

A constraint satisfaction problem framework has been extended to deal with
differential constraints and quantification on variables. It extends other approaches
[7, 18] by dealing more naturally with uncertainties and variable quantification. A
discussion on the correctness of the interval representation of compact sets has been
given. It emphasizes the problem of preserving the correctness of the approach when
computing with tools coming from interval analysis.

A future work and extension of DynIBEX with inner approximation will be
useful to address a more important class of problems. From a theoretical point
of view, an extension of SCSDP with techniques coming from SMT approaches
could be beneficial to increase the expressiveness of the framework, as for example,
dealing with disjunctive constraints.
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Approximate Computing and Its
Application to Hardware Security

Weiqiang Liu, Chongyan Gu, Gang Qu, and Máire O’Neill

Abstract The demand for high speed and low power in nanoscale integrated
circuits (ICs) for many applications, such as image and multimedia data processing,
artificial intelligence, and machine learning, where results of the highest accuracy
may not be needed, has motivated the development of approximate computing.
Approximate circuits, in particular approximate arithmetic units, have been studied
extensively and made significant impact on the power performance of such systems.
The first goal of this chapter is to review both the existing approximate arithmetic
circuitries, which include adders, multipliers, and dividers, and popular approximate
algorithms. The second goal of this chapter is to explore broader applications of
approximate computing. As an example, we review two case studies, one on a
lightweight device authentication scheme based on erroneous adders and the other
one on information hiding behind a newly proposed approximate data format.
This approach of applying approximate computing in security is interesting and
promising in the Internet of things (IoT) domain where the devices are extremely
resource constrained and cannot afford conventional cryptographic solutions to
provide data security and user privacy. We also discuss the potential of approximate
computing in building hardware security primitives for cyber physical system (CPS)
and IoT devices.
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1 Introduction

The performance of various computing systems, from sensors, smartphones, and
other mobile devices to servers, supercomputers, and cloud computing data centers,
has been increasing dramatically in the past several decades in line with the advances
in IC design according to the famous Moore’s Law. However, as Moore’s Law
is approaching its limit [34], the conventional techniques are unable to further
improve the computing performance of systems with limited power budget, i.e.,
the power consumption restricts the performance of computing systems. It becomes
challenging to continue improving system performance by conventional CMOS
technologies. One of the major concerns is the increasing on-chip power density
and the power consumption requirements by the application. Chip designs at the
nanoscale urgently require new approaches and paradigms to reduce low-power and
high-performance computing systems.

Dynamically adjusting the supply voltage and clock frequency is one of the
most effective low-power design methods [32]. However, as we push the supply
voltage closer and closer to the threshold voltage, the circuit delay increases and
may malfunction [19]. This coupled with the high integration density makes it
very challenging to test and verify the design. Indeed, due to the lower-power
supply voltage and the higher integration density at the nanoscale of a circuit
design, ensuring fully correct computation results from ICs will result in a dramatic
increase in cost. The International Technology Roadmap for Semiconductors (ITRS)
states that the cost of manufacturing verification and testing can be greatly reduced
by tolerating errors for devices [39]. Therefore, without affecting the usage and
perception, acceptable reduction of the computing accuracy can effectively reduce
both the power consumption and test/verification cost.

Due to the error-resilient and fault-tolerant ability of the human brain, visual and
auditory systems, certain level of processing errors will not affect the quality of
human perception and recognition of the processed data [14, 59]. Examples have
been reported in artificial intelligence (AI), machine learning, data mining, multi-
media signal processing [14, 35, 36, 59] etc. In these applications, the data includes
noisy or redundant information, and therefore it makes little sense to compute the
precise result based on erroneous data or perform redundant computation.

Motivated by the above challenges, approximate computing (also known as
inexact computing) has attracted significant attention from both academia and
industry in recent years [25, 41, 80]. Approximate computing can reduce power
consumption and improve system performance by introducing acceptable errors.
Therefore, we can introduce computation accuracy as a third design metrics
in addition to delay and power consumption as shown in Fig. 1. It depicts a
three-dimension (3D) design space by taking into account the computational
accuracy, performance, and power consumption of approximate computing circuits.

Not surprisingly, some of the early research results have also made their
impact on industry. Google’s deep learning (DL) chip, the tensor processing unit
(TPU), achieves a significant improvement in processing performance by using
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Fig. 1 A 3D design
relationship of performance,
power, and accuracy for
approximate computing

approximate computing techniques [42]. The performance of TPU outperforms over
traditional GPU and CPU processors by 15–30 times. It is a crucial component
in AlphaGo which has defeated human Go champion. As another example, with
the support of the Defense Advanced Research Projects Agency (DARPA), Bates
developed an approximate computing chip based on an approximate arithmetic unit
and founded a company known as Singular Computing [72]. This chip is used
in DARPA’s UPSIDE project to enable real-time video target tracking on drones.
Compared to traditional processors, it can increase the speed of video processing by
100 times and consumes less than 2% of a traditional processor power by using
a Singular Computing chip. Finally, we mention that both IBM [8] and ARM
[65] have investigated heavily on approximate computing. This evidence shows
that approximate computing is already making significant impact on the design
of today’s application-specific processors, and it will have higher potential in the
design for future systems.

Speaking of future systems, the emerging IoT are perhaps the one that will have
the most influence on our lives. The IoT era has already arrived with billions of
electronics devices surrounding us, and it is predicted that there will be more than
50 billion connected IoT devices by 2020 [62]. They will have a large impact on
a wide range of markets, from wearable health-care devices to embedded systems
in smart cars, many of which will be underpinned by devices which are limited
with regard to computation and power consumption. This has led to a high demand
for cryptographic devices that can provide authentication to protect user privacy
and data security. Conventional cryptographic approaches, which involve complex
cryptographic algorithms, are unsuitable to be implemented on IoT devices as they
incur significant timing, energy, and area overhead [66]. This opens the opportunity
for developing low-cost lightweight security primitives based on approximate
computing. For example, information could be hidden into the process and results
of the approximate computing to protect design intellectual protection (IP) as
watermark, fingerprint, or lightweight encryption [19].

Approximate computing has also been used to implement deep neural network
(DNN) algorithms which have found applications in solving hardware security
problems such as side-channel analysis (SCA)-based attacks [20], attacks on
physical unclonable function (PUF) [38], Hardware Trojan (HT) detection [28],
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etc. Hence, an approximate DNN design could benefit and revolutionize hardware
security-related applications.

Previously, there are several excellent surveys on approximate computing. Jiang
et al. [41] reviewed and classified current designs of approximate arithmetic circuits.
A complete survey of existing approximate computing work is presented in [80].
Unlike this work, we focus our discussion on the implementation of approximate
arithmetic circuits and their applications in cybersecurity. Specifically, this chapter
contributes in the following ways:

• A detailed classification and review of current approximate circuits, in particular
approximate arithmetic circuits, including adders, multipliers, and dividers are
introduced.

• Current approximate error-tolerant algorithms are briefly reviewed, and their
applications are discussed.

• Two case studies demonstrating lightweight authentication and security primi-
tives using approximate computing are presented.

• Future works on applying approximate computing into different cyber-security
scenarios, including SCA techniques, PUFs, and logic obfuscation techniques,
are also discussed.

2 Approximate Circuit

Arithmetic units including adders, multipliers, and dividers play important roles in
processors, which significantly influence the performance and the power consump-
tion of the whole computing system. It is expected to achieve higher speed and
power efficiency as well as error tolerance for cognitive applications, e.g., recog-
nition, data analysis, and computer vision. These motivated the fast development
of approximate arithmetic designs. The design of approximate computing circuits
mainly uses voltage-based probability CMOS techniques and logic reduction and
pruning methods. Probability CMOS technique reduces energy consumption by
allocating higher supply voltages to important areas to ensure the accuracy of
most significant bits (MSBs) while appropriately reducing the supply voltage of
least significant bits (LSBs) that have a less effect on the result. Cheemalavagu
et al. [9] proposed a probabilistic adder that uses a conventional precision adder
structure by providing various supply voltages for different bits depending on the
degree of importance. However, this technique requires a higher implementation
cost and generates uncontrollable errors, which restrict its subsequent applications.
Therefore, most of the approximate computing circuits are based on the logic
reduction and pruning methods. In cognitive computing applications, e.g., image
recognition, machine learning, and pattern recognition, the key arithmetic units
mainly include adders and multipliers. Therefore, high-performance and low-power
adders and multipliers have been extensively studied.
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Table 1 An overview of approximate adder circuits

Type Previous works

Speculative adders Non-segmented SSA [54], ACA [78], SHCA [18]

Segmented Non-MUX ESA [60], ETAII [88], ACAA [43], GeArA [71]

MUX SCSA [17], ACSA [44], GDA [83], CCBA [6]

Transistor-based approximate full adders LOA [57], AMAs [24], AXAs [81], InXAs [2]

2.1 Approximate Adders

An overview and classification of current approximate adders are listed in Table 1.
The concept of an approximate adder was first proposed for asynchronous adders
[63], while the first synchronous speculative adder was proposed by Intel [54]. It
has been found that full adders have a shorter carry propagation length for random
operands than the length of a full carry chain. Hence, it gets faster and more
energy-efficient adders by designing shorter carry chains using some specific bits.
Similar as this idea, the researchers designed a family of speculative approximate
adders, including non-segmented speculative approximate adders and segmented
speculative approximate adders.

The non-segmented speculative approximate adder includes synchronous specu-
lative adder (SSA) [54], almost correct adder (ACA) [78], speculative Han-Carlson
adder (SHCA) [18], etc. The segmented approximate adder is a type of speculative
approximate adder. The main difference is that the segmented adder divides the
adder into several sub-adders and the carry propagation is computed in parallel
in each sub-adder. Based on whether they have a multiplexer (MUX) or not,
the segmented approximate adder can be divided into two categories, MUX-
based segmented approximate adder and non-MUX-based segmented adder. The
non-MUX-based segmented approximate adder includes equal segmentation adder
(ESA) [60], error tolerant adder type II (ETAII) [88], accuracy configurable approxi-
mate adder (ACAA) [43], and generalized accuracy configurable approximate adder
(GeArA) [71]. The MUX-based segmented approximate adder is mainly based on
a carry skip or carry-select adder, including speculative carry select adder (SCSA)
[17], approximate carry skip adder (ACSA) [44], gracefully-degrading adder (GDA)
[83], and carry cut-back adder (CCBA) [6].

The speculative approximate adder is primarily targeted at increasing the speed
and performance, while the transistor-based approximate full adder can significantly
reduce power consumption. By reducing the number of transistors and basic
gates from the exact full adder, an energy-efficient approximate full adder can be
achieved. The first approximate full adder is a bio-inspired LOA [57], in which the
MSB is implemented by approximate full adders and the LSB uses OR gates. An
AND gate is used for carry propagation and the critical path delay is determined by
the MSBs, which consumes very little power due to its simple structure. Gupta et
al. [24] proposed five approximate mirror adders (AMAs) based on the traditional
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Fig. 2 The revised LOA
adder structure

mirror adder. The approximate full adder also includes approximate XOR-/NXOR-
based full adders (AXAs) [81] and Inexact Adder cells (InXAs) [2].

The research in [41] shows that SCSA and ACA adders present better accuracy,
while ESA has the lowest accuracy and LOA exhibits medium accuracy. In
terms of hardware performance, SCSA has higher power consumption. The speed
of speculative approximate adder is faster; however it consumes more power.
Although the speed of approximate full adder is slower, it demonstrates low power
consumption and consumes less hardware resources.

The LOA design is chosen in this chapter as an example to illustrate the
approximate adder. For an approximate floating-point adder, a revised LOA adder
is used, as it significantly reduces the critical path by ignoring the lower carry bits
[51]. A k-bit LOA consists of two parts as shown in Fig. 2, an m-bit exact adder
and an n-bit inexact adder. The m-bit adder is used for the m MSBs of the sum,
while the n-bit adder consists of OR gates to compute the addition of n LSBs, i.e.,
the lower n-bit adder is an array of n 2-input OR gates. In the original LOA design,
an additional AND gate is used for generating the most significant carry bit of the
n-bit adder; all carry bits in the n-bit inexact adder are ignored to further reduce the
critical path.

2.2 Approximate Multipliers

The approximate multipliers shown in Table 2 can be classified based on the
approximate design of different components. The idea of approximating operands,
known as logarithmic multiplier (LM), has been proposed by Mitchell in the 1960s
[58]. The LM transforms multiplication operation into additions in the logarithm
domain to achieve low power consumption. However, its accuracy is low. An
approximate logarithmic multiplier (ALM) and an iterative approximation logarith-
mic multiplier (IALM) have been proposed in [53]. Compared to the traditional
LM, ALM achieves higher accuracy and lower power consumption by introducing
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Table 2 An overview of approximate multiplier circuits

Type of approximate multipliers Previous works

Approximate operand Logarithmic LM [58], ALM [53], IALM
[53]

Non-logarithmic ETM [48], DRUM [29]

Approximate partial product generation Non-booth encoding UDM [46]

Booth encoding R4ABMs [52], R8ABMs [40]

Approximate partial product tree Truncated BAM [57]

Untruncated PPPM [86], R4ABMs [52]

Approximate counters or compressors Normal binary ANBCs [61]

Redundant binary ARBCs [7]

an approximate mantissa adder. IALM significantly improves the performance of
the LM by introducing an iterative mechanism; however, its power consumption
is relatively higher. Recently, the design of approximate multipliers based on the
dynamic scaling of operands has been proposed, including fault tolerant multipliers
(ETM) [48] and dynamic range multipliers (DRUM) [29]. They have very low
power consumption; however, their accuracy is also lower than others [53].

The state-of-the-art high-performance multipliers normally include three parts:
partial product generation, partial product accumulation, and final addition. Much
research has been conducted on the approximate design of each part. Kulkarni et
al. [46] proposed an approximate 2 × 2 multiplier, which can be used to construct
larger sized underdesigned multipliers (UDMs). Approximate Booth multipliers, a
radix-4 approximate Booth multiplier (R4ABM) and a radix-8 approximate Booth
multiplier (R8ABM), based on approximate radix-4 modified Booth encoding
(MBE) algorithms and a regular partial product array that employs an approximate
Wallace tree, have been proposed in [52] and [40]. The R4ABM multiplier with
an approximate factor of 14 is the most efficient design when considering both
power-delay product and the error metric. Traditional Booth multipliers, e.g.,
broken-array multiplier (BAM) [57], truncate partial product compression trees;
however, this design has a lower accuracy. Zervakis et al. [86] proposed a partial
product perforation (PPP) technique that reduces the number of partial products.

The approximate radix-4 Booth multiplier is further illustrated as an example
in this chapter to show the design of approximate multipliers. A Booth multiplier
consists of three parts: partial product generation using a Booth encoder, partial
product accumulation using compressors, and final product generation using a fast
adder.

The Booth encoder plays an important role in the Booth multiplier, which reduces
the number of partial product rows by half. Consider the multiplication of two N-
bit integers, i.e., a multiplicand A and a multiplier B in two’s complement, which is
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given as follows:

A = −aN−12N−1 +
N−2∑
i=0

ai2i (1)

B = −bN−12N−1 +
N−2∑
i=0

bi2i (2)

In a Booth encoder, each group is decoded by selecting the partial products as
−2A, −A, 0, A, or 2A. The negation operation is performed by inverting each bit
of A and adding a “1” (defined as Neg) to the LSB [45, 84].

The circuit diagrams of the radix-4 Booth encoder and decoder are provided in
[84]. The output, i.e., the partial product ppij , of the Booth encoder is given as
follows:

ppij = (b2i

⊕
b2i−1)(b2i

⊕
aj )+ (b2i

⊕
b2i−1)(b2i+1

⊕
b2i )(b2i+1

⊕
aj−1)

(3)

The first R4ABM, which uses radix-4 approximate Booth encoding-2 (R4ABE2)
and the regular approximate partial product array, has been proposed in [52]. The
truth table of the R4ABE2 method is shown in Fig. 3, where ① denotes a “0” entry
that has been replaced by a “1”; eight entries in the K-map are modified to simplify
the logic of the Booth encoding. The strategy for R4ABE2 is that in addition to
having a symmetric truth table with a small error, the number of prime implicants
(identified by rectangle) should be as small as possible.

The gate-level circuit of R4ABE2 is shown in Fig. 4. R4ABE2 only requires one
XOR-2 gate by using transmission gates, so the transistor count of R4ABE2 is 4.

Fig. 3 K-map of R4ABE2

Fig. 4 The gate-level circuit of R4ABE2
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Stage 1
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Stage 3

Stage 4

Critical path

(a)

Stage 1

Stage 2

Stage 3

Critical path
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Fig. 5 The 8 × 8 Booth multiplier: (a) Exact irregular partial product array, (b) Approximate
regular partial product array by ignoring the Neg term in the fifth partial product row. The exact
partial product term is represented by filled circle, while the approximate partial product term is
represented by filled square. Open circle and circle within circle represent the sign extension bit
and the Neg term

R4ABE2 reduces the complexity of the Booth encoder by over 88% and improves
the delay by 60% compared with MBE.

For a more regular partial product array (requiring a smaller reduction stage), the
Neg term in the (N/2 + 1)th row of the approximate design of a Booth multiplier
can be ignored (shown as ! in Fig. 5a). For an N-bit radix-4 Booth multiplier when
N is a power of 2, removing the extra Neg term significantly reduces the critical
path, area, and power when the 4-2 compressor is used for the partial product
accumulation. In the approximate partial product array (Fig. 5b), one reduction stage
is saved; this significantly reduces the complexity and critical path delay. The error
rate of the approximate partial product array with the ignored Neg bit is 37.5%, and
its logic function is given as follows:

Neg N
2 −1 = (b2N+1b2N + b2N+1)b2N−1 = b2N+1b2Nb2N−1 (4)

2.3 Approximate Dividers

As mentioned above, both approximate adders and approximate multipliers have
been studied quite extensively. However, the design of approximate arithmetic
division has not been fully analyzed. The computation of division is different from
multiplication; division is mostly a sequential process, while multiplication can be
executed as a multi-operand parallel addition. Thus, when considering approximate
computing for division, an approach targeting the sequential nature of division
must be developed; for example, when calculating the quotient, the error introduced
previously will affect the next iteration. Therefore, a proper approximate design has
to mitigate error propagation.
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Fig. 6 Examples of restoring and non-restoring divider cells: (a) Non-restoring divider cells,
AXDnr [64], (b) Restoring divider cells, AXDr [12]

Chen et al. [11] have proposed the design of an AXDnr, shown in Fig. 6a;
different AXDnr designs have been proposed by replacing the logic primitives with
approximate subtractors. Chen et al. [13] have proposed designs of an approximate
high-radix divider, in which an approximate signed-digit adder cell is utilized to
replace the exact signed-digit adder cell. A type of dynamic approximate divider
has been investigated in [30], in which, for different lengths of input operands,
leading-one detectors and a barrel shifter are utilized to reduce the inaccuracy.
Chen et al. [11] have proposed a few inexact subtractor cells inexact subtractor cells
(AXSCs) at transistor level for the design of an AXDnr. As different types of divider,
restoring and non-restoring dividers have been analyzed for approximate comput-
ing; [12] has shown that an AXDr has better performance than AXDnr with respect
to power consumption while also introducing a small degradation in accuracy.

The AXDr is shown in Fig. 6b. A non-restoring divider needs a remainder
correction circuit for adjusting the sign of the remainder to be consistent with the
dividend, thus incurring additional circuit complexity and power consumption. This
can be improved by utilizing a restoring array divider [64]. As shown in Fig. 7, four

Fig. 7 Four division
replacement schemes used in
approximate array dividers
[12]: (a) vertical replacement,
(b) horizontal replacement,
(c) square replacement, and
(d) triangle replacement

a b

c d
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types of replacement schemes, including vertical, horizontal, square, and triangle
replacements, are used for the division operation.

3 Approximate Software/Algorithm

The main techniques used in the design of approximate algorithms include precision
scaling [85], loop perforation [74], task skipping [70], and task dropping [21].
Accuracy scaling techniques reduce computational and storage requirements by
varying the precision or length of the operation. Yeh et al. [85] proposed an
architecture with a hierarchical floating-point unit that leverages dynamic precision
reduction to enable efficient float-point unit sharing among multiple cores. This
technique can gradually reduce the accuracy of the run time until the minimum
accuracy of the value is reached. Tian et al. [74] proposed a precision-scaled off-
chip data access technique for clustering problems to reduce energy consumption.
The loop perforation technique reduces computations by skipping some iterations of
the loop. An example of code without the loop perforation technique that involves
skipping iterations is shown in Fig. 8 (Table 3).

The application of approximate computing, e.g., using the precision scaling
technique, in DNN algorithms has already been widely studied. Since the training
is more sensitive to accuracy, to reduce the cost of storage and the computational
requirements, the precision scaling technique mainly focuses on the precise reduc-
tion of operands and operations, e.g., dynamic fixed-point technique [55], weight

1 / / O r i g i n a l code w i t h o u t l oop p e r f o r a t i o n
2 f o r ( i n t i = 0 ; i < N; i ++ ) {
3 / / . . .
4 }
5
6 / / Modi f i ed code wi th s k i p p i n g n i t e r a t i o n s each t ime
7 f o r ( i n t i = 0 ; i < N; i ++ ) {
8 / / . . .
9 i = i + s k i p p i n g f a c t o r ;

10 }

Fig. 8 An example of loop perforation technique

Table 3 An overview of
approximate algorithms

Approximate algorithms Previous works

Precision scaling [85]

Loop perforation [74]

Task skipping/dropping [21, 70]

Low-precision DNN [10, 15, 16, 55, 87]

Sparsity and pruning [1, 26]
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Fig. 9 The application of
approximate computing to
neural networks

weight

neuron Σ

Precise hardware model

weight

neuron Σ 

Approximate hardware model

Approximate
Mul�plier

Precise
Mul�plier

reduction [15], activation reduction function [16], nonlinear quantization [87], and
weight sharing [10]. In addition, DNNs also utilize other techniques, including the
sparsity of activation functions [1] and network pruning techniques [26], to reduce
computations and the size of network models.

Venkataramani et al. [77] comprehensively studies various applications for
approximate computing, including image searching, recognition and detection,
image segmentation, as well as data classification. Yazdanbakhsh et al. [82]
presented a set of approximate computing benchmarks for different platforms.
Figure 9 shows an example of the application of approximate computing to energy-
efficient machine learning implementation. Since the approximate circuit could
reduce the cost of storage and the computational requirements, an approximate
circuit is utilized to replace the precise circuit. Then, to accelerate the computing,
machine learning algorithms are involved by setting neuron and weight as parame-
ters.

4 Approximate Computing for Hardware Security

4.1 Security Primitives Based on Approximate Computing

To minimize the power cost of IoT devices while still providing a practical security
solution, Gao et al. proposed a security primitive in [19], based on basic arithmetic
operations carried out by approximate function units, to embed information for
authentication and other security-related applications.

4.1.1 Floating-Point Format with Embedding Security

In the work [19], it has been shown that floating-point-based approximate arithmetic
computing can be employed for embedding security as shown in Fig. 10. The IEEE
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Fig. 10 The application of approximate computing to extract security: (a) IEEE 754 single-
precision floating-point format for 32-bit data and (b) approximate format with security extraction.
The last p LSB bits can be used as security bits to embed information

754 standard [37] specifies a binary floating-point format as having 1 sign bit, 8
exponent bits, and 23 fraction bits as shown in Fig. 10a. The sign bit determines the
sign of the number, and it represents 1 or−1 if the leading bit is 0 or 1, respectively.
The exponent is either an 8-bit signed integer from−128 to 127 or an 8-bit unsigned
integer from 0 to 255. The significand includes 23 fraction bits to the right of the
binary point.

The value of IEEE 754-formatted data is computed using Eq. (5) by a given 32-
bit binary data with a given biased sign, exponent e (the 8-bit unsigned integer),
and a 23-bit fraction. For the example of Fig. 10a, the value is equal to 3.14159 in
decimal format using Eq. (5):

value = (−1)b31 ×
(

1+
23∑
i=1

b23−i2
−i

)
× 2e−127 (5)

Since the LSB p bits in the fraction have little impact on the value, they can be
directly used as security bits, as shown in Fig. 10b, to embed information without
impacting the other 32−p bits. In this example, the approximate value is 3.1413574
by setting the last 10 bits (p = 9) to 0. The error introduced to the precision value
is 0.0074%, which means the last p bits introduce less than 2p−24 error compared
to the precision format.

4.1.2 Approximate Computing with Embedded Security Information

Figure 11 shows the process and an example of applying approximate computing to
information hiding. Two real numbers A and B can be written as A = A′ ⊕KA and
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Output = O´AB + KS = O´AB + KO + KA + KB + Kr

O´AB

= A´ B´ x + KA + KB + Kr

= 0,10000100,00110101010111110001001

(b)

Fig. 11 An example of the application of approximate computing to information embedding: (a)
Flowchart of approximate computing with information embedding proposed by Gao et al. [19] and
(b) an example of approximate computing with information hiding

B = B ′ ⊕KB using the approximate format introduced in Sect. 4.1.1, where A′ and
B ′ are the numbers A and B in approximate format that the last p bits are replaced
by 0s; KA and KB are the last p bits of A and B. ⊕ is an XOR operation.

The process of executing information-embedded approximate computing pro-
posed in [19] mainly includes the following steps. A multiplication operation of A

and B, A× B, is demonstrated in this example:

• Represent A and B in the approximate format: A = A′ ⊕KA and B = B ′ ⊕KB ,
respectively.

• Calculate and represent A′×B ′ in the approximate format: A′×B ′ = O ′
AB⊕KO .

• Generate KS = KA ⊕KB ⊕KO ⊕Kr , where Kr is a random key.
• Calculate the result O ′

AB ⊕KS as the result of A× B.

An example of the process of hiding information into approximate computing
is shown in Fig. 11a. The numbers A and B are 3.14159 and 12.31, respectively.
A× B = 3.14159× 12.31 = 38.6729729 is obtained for the precise computation;
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O ′
AB = A′ × B ′ = 3.1413574 × 12.30957 = 38.6687588 is calculated for the

approximate computation with p = 10. The final result with security information
embedded is computed as O ′

AB⊕KS = 38.6729729, with only a 0.00448 percentage
accuracy loss over the accurate result. Hence, compared to the straight approximate
computing, this approach achieves approximate computing and information hiding
at the same time, which can significantly reduce power and hardware resource
consumption. Moreover, KS can be used as a function of KA,KB,KO , and Kr , e.g.,
F(KA,KB,KO,Kr), for the application of IP watermarking, digital fingerprinting,
and lightweight encryption. For example, the IP owner’s digital signature can be
used as the key Kr to enable information embedding for the application of IP
watermarking. Similarly, for digital fingerprinting, a unique fingerprint of each
device can be utilized and embedded in the p LSBs. For the same operands of
approximate computing, different key Kr values can be embedded and used to
differentiate individual devices.

4.2 A Low-Voltage Approximate Computing Adder for
Authentication

Due to the ubiquitous nature of IoT devices, lightweight authentication of an entity
is one of the most fundamental problems in providing IoT security. A novel voltage
over-scaling (VOS)-based lightweight authentication approach is presented in [3]
to address this challenge. By utilizing the VOS technique, commonly employed in
approximate computing to reduce the power, to exacerbate the effects of process
variation and extract information related to its variation, it can be used for security
purpose. Digital circuits and systems are normally operated under the nominal
voltage to guarantee correct outputs. Properly reducing the operating voltage under
the prescribed margin can considerably save power consumption. However, over
scaling voltage can generate timing errors and thus sacrifice the output quality.
The errors are related to the process variation and could be tolerated by certain
applications such as image processing. Hence, a two-factor authentication scheme
that uses passwords and hardware properties is proposed to achieve lightweight
authentication for IoT.

The authentication protocol, shown in Fig. 12, utilizes a VOS computation unit
that can generate process variation-dependent errors. The authentication protocol is
divided into two stages, enrollment and authentication. For the enrollment, device i

has a password K, composed of two keys K = (k1, k2), and enrolled in a server’s
database. Moreover, the error pattern of an adder unit in device i is derived and
stored in the server. For the authentication, a random string R is generated by the
server and sent to device i. Device i calculates L according to the equation L =
R + k1 using the adder unit and then computes Y, where Y = L ⊕ k2. Y is sent
back to the server. The server calculates L and L’, where L′ = M(R, k1). If the
hamming distance of L and L’ is smaller than τ , the threshold of error tolerance, the
authentication succeeds. Otherwise, the authentication event aborts.
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Device i Server
Enrollment (1×)

K= (k1,k2) ←→ K= (k1,k2)
error pattern M(· · ·)

Authentication (d×)
R←−−−−

L= R+ k1
Y = L⊕ k2 = (R+ k1)⊕ k2 −→

L= Y⊕ k2
L′ =M(R,k1)
Abort if HD(L,L′)>

Fig. 12 The lightweight authentication protocol based on approximate computation unit [3]

5 Future Research Directions

Accelerating machine learning using approximate computing can be generally
applied to side-channel attacks (SCAs), physical unclonable function (PUF) mod-
eling attacks, and the detection of Hardware Trojans, which will be discussed in
details as follows.

5.1 PUFs and SCAs

A PUF is a security primitive which utilizes the inherent process variations present
during manufacturing in order to generate a unique digital fingerprint that is intrinsic
to the device itself. As this natural variation between the silicon dies is out of the
manufacturer’s control, they are inherently difficult to clone, as well as providing
additional tamper-evident properties [22]. PUFs also offer improved security as they
can produce unique keys on the fly without the need for storage in non-volatile
memory (NVM) on the device which reduces the risk of physical attack and saves
hardware resources. These properties have a number of advantages over current
state-of-the-art alternatives, opening up interesting opportunities for higher-level
security protocols such as key storage and device authentication for both application
specific integrated circuit (ASIC) and field programmable gate array (FPGA)-based
devices.

PUF architectures can be broadly classified into Weak PUF and Strong PUF
(SPUF) types as discussed in [23]. Weak PUFs have a limited challenge response
pair (CRP) space and, in the extreme case, only have a single response. Therefore,
they are more suited to applications such as key storage or for seeding a pseudo
random number generator (PRNG), where the response never leaves the chip and
is only accessed as required. In contrast, SPUFs have a large number of possible
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Fig. 13 An example of the application of machine learning to PUFs. The approximate computing
is presented to accelerate/improve the efficiency of machine learning attacks

CRPs, whereby a large number of random challenges will return a random response
unique to each challenge, as well as the physical device. By design, this implies that
the requirement for a much larger entropy pool such that related challenges should
not lead to related responses on the same device. Hence, SPUFs have been proposed
for applications such as lightweight mutual authentication.

However, most SPUF architectures based on linear and additive functions have
been shown to be vulnerable to machine learning (ML) attacks. To date, linear
regression (LR), support vector machine (SVM), and evolutionary strategies (ES)-
based ML methods have been widely utilized to attack PUFs [4, 5, 68, 69, 75].

In order to prevent modeling attacks, SPUF designs have been enhanced by
increasing their complexity to raise the bar of attacking efforts of the adversaries.
Figure 13 shows an example of the application of machine learning to SPUFs. Since
approximate computing can be used to improve significantly the effectiveness of
machine learning attacks, applying approximate computing-based modeling attacks
to break SPUF designs could dramatically increase the attack success rate and how
to mitigate this will be a more interesting and challenging problem.

5.2 SCAs

Machine learning techniques have also been used for improving SCAs attacks.
A relatively new approach to profiling attacks involves the application of machine
learning techniques to improve their efficiency and success. It has been shown that
these attacks can be even more powerful than template attacks in practice, as less
assumptions are required on the distribution of the underlying trace data [49, 56].
Much of the research to date has centered on the use of SVMs [31, 33] and random
forests [50]. Research by Lerman et al. [49] showed how such approaches can be
used to uncover the key of a protected (masked) advanced encryption standard
(AES) implementation. A general process illustration of this idea is shown in
Fig. 14. Gilmore et al. in [20] improved upon this research by investigating the novel
application of a neuron network (NN)-based attack against a masked AES design.
This two-stage attack first uses a NN model to recover the mask, with a second NN
model built to recover the masked secret data. Combining the knowledge recovered
from both attacks allows subsequent key recovery with only a single trace. Parallel
work has shown how to recover the secret key with only a single model and no
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Fig. 14 An example of the application of machine learning to SCAs. The approximate computing
is presented to accelerate/improve the efficiency of machine learning attacks

mask knowledge requirements at a cost of additional traces in the attack stage [56].
As shown in Fig. 14, approximate computing can be also applied for accelerating
the machine learning algorithms for side channel attacks.

5.3 Hardware Trojans (HTs)

Resulting from the globalization of the semiconductor supply chain, the design
and fabrication of ICs are now distributed worldwide. It brings great benefit to IC
companies, which means a lower design cost and a shorter time-to-market window
[47]. However, it also raises serious concern about IC trustworthiness triggered by
the use of third-party vendors. As a result, it is becoming very difficult to ensure the
integrity and authenticity of devices. A hardware trojan (HT) can be inserted into IC
products at any untrusted phase of the IC production chain by third-party vendors
or adversaries with an ulterior motive [79].

DL is a data-driven approach, where the goal is to ensure the learning algorithm
is agnostic to the problem at hand; only the data changes [73]. This type of approach
is often based on NN-type architectures with multiple hidden layers. With advances
in training algorithms and computational power, it is now possible to train vast
amounts of data leading to today’s rapid advancements and adoption.

Hasegawa et al. [27] proposed a Trojan classification method for gate-level
netlists using SVMs. By analyzing the netlists from the Trust-HUB benchmark suite
[76], they identify several features strongly related to HTs. Trained by these features,
their SVM approach results in high true positive rates, but relatively poor true
negative rates when applied to the benchmark suite. Very recently, it was proposed
to use DL in HT detection on gate-level netlists [27].
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Fig. 15 The application of approximate computing to accelerate the detection of HTs

Figure 15 shows an approach using approximate computing to accelerate DL
algorithms for HT detection. According to the effectiveness of the approximate
circuit and algorithm development, the efficiency of the HT detection will be
significantly improved.

5.4 Approximate Arithmetic Circuit for Logic Obfuscation

Logic obfuscation involves hiding important information, e.g., functionality and
implementation, related to a circuit design by inserting additional logic compo-
nents into the original design so that reverse engineering will not work without
authorization. In order to execute its valid functionality to generate correct outputs,
a secret key is implemented to the logic obfuscated circuit. If a wrong key is
applied, the functionality will be incorrect and wrong outputs are generated by the
obfuscated circuit. Logic obfuscation techniques have been utilized to protect IP
and evaluate the trust of hardware [3]. However, an attacker can decipher the key
by sensitizing the key values to the output or isolating the key-related gates since
the logic obfuscation circuit, additionally added, can be removed from the original
circuit [67].

To counter this, Fig. 16 shows a potential application of approximate arithmetic
circuits in logic obfuscation. If the underlying design to be obfuscated is an
approximate arithmetic circuit, logic obfuscation can be applied to the MSB or LSB

MSB LSB

Approximate 
Arithmetic Circuit

Logic Obfuscation

Key

Input

Output

MSB LSB

Fig. 16 A potential application of approximate arithmetic circuit to logic obfuscation
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of an approximate arithmetic circuit that can only be used correctly by applying the
key of the logic obfuscation circuit. Otherwise, the computation results will be too
erroneous to use.

6 Conclusion

In this chapter, current approximate hardware approaches, in particular approx-
imate arithmetic circuits, including adders, multipliers, and dividers as well as
approximate software/algorithms are briefly reviewed. Two case studies, a security
primitive based on approximate arithmetic circuits and a low-voltage approximate
computing adder for authentication, are presented. Possible research directions for
the application of approximate computing in hardware security scenarios, including
SCAs, PUFs, and logic obfuscation techniques, are introduced and discussed.
The goal of this chapter is to inspire future research on applying approximate
computing techniques to hardware security applications.
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Mathematical Optimizations for Deep
Learning

Sam Green, Craig M. Vineyard, and Çetin Kaya Koç

Abstract Deep neural networks are often computationally expensive, during both
the training stage and inference stage. Training is always expensive, because
back-propagation requires high-precision floating-point multiplication and addition.
However, various mathematical optimizations may be employed to reduce the
computational cost of inference. Optimized inference is important for reduc-
ing power consumption and latency and for increasing throughput. This chapter
introduces the central approaches for optimizing deep neural network inference:
pruning “unnecessary” weights, quantizing weights and inputs, sharing weights
between layer units, compressing weights before transferring from main memory,
distilling large high-performance models into smaller models, and decomposing
convolutional filters to reduce multiply and accumulate operations. In this chapter,
using a unified notation, we provide a mathematical and algorithmic description of
the aforementioned deep neural network inference optimization methods.

1 Introduction

Deep neural networks (DNNs) are increasingly being incorporated into safety-
critical cyber-physical systems. For example, Advanced Driver Assistance Systems
use DNNs for autonomous avoidance of road hazards. Modern DNN architectures
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require billions of floating-point multiplications and additions (MACs) for inference
of a single input. Without careful design, this results in high power consumption.
Fossil fuel-powered vehicles, for example, can support high energy demands, but
efficient, battery-powered systems cannot. Additionally, modern large DNNs have
high latency, but low latency is required for real-time cyber-physical applications.
This chapter provides a unified view of the leading methods for mathematically opti-
mized deep learning inference. The intended audience of this chapter are hardware
and software researchers, as well as developers interested in efficient DNN infer-
ence. Depending on the context, “efficiency” may imply low-power or low-latency.

To motivate the need for optimizations, it is helpful to consider first-order power
and silicon area requirements for DNN inference. Table 1 provides a list of energy
and die area required for various operator and operand sizes. Observe that a single
32-bit floating-point multiplication (denoted “32b FP Mult”) requires 20× more
power and 12× more area than 8-bit integer multiplication (“8b Mult”). Also
observe that the power cost of a 32-bit DRAM read is more than 100× the cost of
floating-point multiplication. For this reason, efficient DNN implementations should
prioritize the minimization of off-chip DRAM access first, followed by reducing
operand and operator sizes. Naturally these two priorities complement one another.

DNN optimizations are useful only during the inference operation. Training a
DNN requires labeled datasets and uses the back-propagation algorithm. The back-
propagation algorithm uses gradient descent to make many small adjustments to the
neural network weights, and these small values must be calculated and stored using
full-precision accumulation. Therefore the optimizations discussed in this chapter
are not primarily aimed at making training more efficient, but they are intended to
make inference more efficient.

To further emphasize the need for inference efficiency, consider the number
of operations required to evaluate various modern DNNs, given in Table 2. This
table provides a first-order estimate for MAC and memory costs for popular

Table 1 Energy and die area
costs for various
operations [1]

Operation Energy (pJ) Area (μm)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1 137

16b FP Add 0.4 1360

32 FP Add 0.9 4184

8b Mult 0.2 282

32b Mult 3.1 3495

16b FP Mult 1.1 1640

32b FP Mult 3.7 7700

32b SRAM Read (8KB) 5 N/A

32b DRAM Read 640 N/A

Quantized operators and operands are preferred for
low-power and low-resource applications. FP stands
for floating point
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Table 2 Number and cost of weights and MACs for popular deep neural network architectures

Metrics LeNet 5 AlexNet Overfeat fast VGG 16 GoogLeNet v1 ResNet 50

Weights 60k 61M 146M 138M 7M 25.5M

Read cost (8b) 10µJ 10 mJ 23 mJ 22 mJ 1 mJ 4 mJ

Read cost (32b) 38µJ 39 mJ 93 mJ 88 mJ 4 mJ 16 mJ

MACs 341k 724M 2.8G 15.5G 1.43G 3.9G

MAC cost (8b) 0.1µJ 167µJ 644µJ 3565µJ 329µJ 897µJ

MAC cost (32b) 2µJ 3 mJ 13 mJ 71 mJ 7 mJ 18 mJ

Cost estimates are based on Table 1 and from architecture statistics provided in [1]. Note that
memory costs are typically higher than MAC costs

DNN architectures. Power estimates assume 32-bit floating-point arithmetic and are
derived from Table 1. MAC costs capture the power requirement for each network
to perform the necessary operations for providing a single inference. The memory
cost is best case and assumes weights are read from DRAM only once per inference;
actual memory costs will be higher if intermediate results must be transferred back
to DRAM during inference of the network. In Table 2 note that even though the
number of MACs is much greater than the number of weights, the high DRAM read
cost results in the power consumed between the two to be roughly equivalent.

The process of DNN training may be thought of as an exploration over a
parameter space to find values which will solve an inference task. As will be
expanded on, the weights found using standard training methods result in DNNs
which are over-parameterized, which means they have redundancy. When the
DNN performs satisfactorily during cross validation, back-propagation is no longer
needed, and optimizations may be applied to decrease parameter redundancy. The
goal of mathematical optimizations for deep learning is to find the most compact
network which performs satisfactorily at its assigned real-world inference tasks.

DNN architectures are composed of various layer types: convolutional, fully
connected, dropout, pooling, and others. Each layer type was developed to solve
a particular weakness, and each classification problem is best solved by a different
architecture, or combination of layers. Convolutional and fully connected layers
represent the greatest computational expense in DNN inference, and optimizing
these layer types is the focus of this chapter. Both convolutional and fully connected
layers require repeated multiplication and addition, but they typically use different
algorithmic steps. Adapting notation of [2], we represent an L-layer DNN as
〈I, W, O〉, where:

• Il ∈ R
cin×x×y and Wl ∈ R

cin×w×h×cout are layer l’s input tensors and weight
tensors, respectively. cin represents the number of input channels and cout

represents the number of output channels.1 x and y are the width and height
of each input channel, and w and h are the width and height of each filter.

1Also called input filter maps (ifmaps) and output filter maps (ofmaps) in literature.
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}

}

}

} }

Fig. 1 Convolutional layers convolve a weight filter with an input. Filters are usually 5×5, 3×3, or
1×1. Each step of the convolution involves multiplying and accumulating elements of the weight
filter with a receptive field of the input. The top illustration represents the basic convolution
operation (∗). The lower illustration represents cout , cin-channel filters which are convolved with
a cin-channel input tensor, which results in an cout -channel output tensor

• Ol ∈ {∗, ·, other} specifies whether the layer’s operation type is convolution (∗),
fully connected (·), or some other less computationally expensive type.

Convolutional layers convolve a R
cin×w×h×cout weight filter tensor with a

R
cin×x×y input tensor, where (w,x) and (h,y) represent the widths and heights of

the two respective tensors and may be different sizes and cin and cout represent the
number of input and output channels. In particular the (w, h) for weight filters are
often smaller than the (x, y) for inputs. c is the number of channels in the given
layer; this value is equal for both the weight filter tensor and input tensor. As illus-
trated in Fig. 1 (top), each step in the convolution requires a sum of products between
elements of the weight filter and elements of the receptive field of the input filter.

Note that what is shown in Fig. 1 (top) only depicts convolution of a single
channel. If there are multiple channels, then the summation is also over all channels.
Figure 1 (bottom) shows a higher-level view, where each cin-channel weight filter is
convolved with the cin-channel input tensor. When multiple channels are included
in the convolution, each output of the convolution becomes the triple sum across the
channels. The number of weight filters in a layer equals the number of channels in
the output tensor: if there are cout weight filters, there will be cout channels in the
output tensor.

Computation for fully connected layers requires a single matrix-vector product.
The input tensor Il ∈ R

cin×x×y is flattened to a vector ∈ R
cin·x·y . The weight tensor

is denoted W ∈ R
w×h, where w = cin · x · y (from the input tensor dimensions) and

h is equal to the number of desired output units from the fully connected layer. An
illustration of a fully connected layer is given in Fig. 2.

After a weight filter W is convolved with an input I in a convolutional layer, or
the matrix-vector product between weights and layer inputs is produced for a fully
connected layer, the resulting matrix of vector entries is typically passed through a
nonlinearity function σ : R → R. A commonly used nonlinearity is the rectified
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Fig. 2 Fully connected layers flatten the input tensor into a vector and multiply by a weight matrix
with the same number of columns as the vector and as many rows as desired

linear unit (ReLU), which is defined as:

σReLU(x) =
{

x if x ≥ 0,

0 else.
(1)

But more extreme nonlinearities exist, such as the binarized activation function
which outputs only two values, −1 and 1:

σb(x) =
{

1 if x ≥ 0,

−1 else.
(2)

The choice of nonlinearity function influences the performance and computa-
tional cost of inference. Specifically, using the binarized activation function can
lead to the elimination of floating-point and fixed-point arithmetic during inference,
as detailed in Sect. 3.2.

Both convolutional and fully connected layers require many memory access
and MAC operations, but a variety of numerical optimizations may be applied
to DNN inference. Some optimizations reduce power and some optimizations
reduce both power and latency. Furthermore, it is possible to optimize a DNN and
maintain classification accuracy, but there also exist extreme optimization methods
which result in unavoidable accuracy loss. Depending on the application, decreased
accuracy may be worth the reduction in power and latency.

The remainder of this chapter provides an introduction to the common
approaches of DNN mathematical optimization. The approaches are grouped by
five primary strategies:

• Pruning: reduces the number of weights, which, in turn, reduces the total
number of MAC operations, amount of traffic required to transfer weights, and
storage requirements. This method applies to fully connected and convolutional
layers.

• Quantization: lowers the number of bits of precision representing neural
network inputs, weights, or activations, which lowers both memory requirements
and silicon required for processing elements. This method applies to fully
connected and convolutional layers.
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Fig. 3 Histogram of weights of the first fully connected layer in VGG-16. The name “clas-
sifier.1.weight” corresponds to the VGG-16 implementation found in torchvision [4]. The two
vertical lines correspond to thresholds of values smaller than the 50th-percentile. These values may
be pruned (permanently set to zero) and the remaining values fine-tuned with no loss in accuracy
[3]. The same procedure may be applied to all other layers in the network

• Weight Sharing and Compression: forces weights to share values, thus decreas-
ing memory storage and traffic. This method applies to fully connected and
convolutional layers.

• Model Distillation: the training of a smaller network to mimic the behavior
of larger network, reducing the number of weights and lowering latency. This
method applies to fully connected and convolutional layers.

• Filter Decomposition: modifies convolutional filter designs such that the number
of weights and latency is reduced. This method only applies to convolutional
layers.

2 Pruning

Pruning applies to fully connected and convolutional layers and eliminates each
layer’s smallest weights, which has the consequence of reducing the number of
MAC operations, the amount of traffic required to transfer weights, and storage
requirements. The typical procedure is to train the network until the desired accuracy
is reached and then to prune the smallest pth-percentile of weights by setting them
to zero. Pruning is followed by fine-tuning the remaining weights, which can be
accomplished using the same dataset as used during initial training.
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In [3], the authors report 9× and 13× reduction in weights for AlexNet and
VGG-16 with no impact on test accuracy. A histogram of the normalized frequency
of weights is given in Fig. 3, where the smallest 50th-percentile is delineated with
two vertical lines. In practice, one would pick the percentile threshold for each layer
heuristically, that is, the percentile threshold would be a hyperparameter for each
layer. This process is represented in Algorithm 1.

Algorithm 1 Pruning
Require: L-layer DNN 〈I, W, O, P〉, where Il and Wl are layer l’s input tensors and parameter

tensors respectively, and Ol specifies whether the layer’s type is convolutional, fully-connected
(or some other type), and P is the pruning percentile for each layer.

Ensure: Pruned and fine-tuned network weights W.
1. Initial training:
Perform standard training of DNN until satisfactory performance is achieved.
2. Pruning:
For each layer l in 〈I, W, O, P〉, eliminate weights in Wl which are less than layer l’s pth

percentile, where p = Pl .
3. Fine-tuning:
Perform standard (re)training of remaining weights W, until maximum performance is achieved.

After pruning, the resulting DNN will be sparse, with many weights set to zero.
Standard architectures, like GPUs, are currently not designed to take advantage of
sparsity and will perform multiplication regardless if one of the operands is zero. In
order to benefit from pruning, the architecture must be designed in such a way as
to take advantage of sparsity. This will add edge cases to standard logic design. For
example, consider a product summation tree, which can parallelize MAC operations.
Even if the tree is designed to ignore products with a zero operand, it must still
take into account that the zero product must be passed to the next tree level at the
appropriate time. Recently, architectures for handling sparse dataflows have been
developed. One such architecture reduces the amount of “wasted” logic required for
ignoring zero products by only passing non-zero products to processing elements
downstream [5].

3 Quantization

Before 2015, most DNNs were trained using 32-bit floating-point arithmetic. In
this section we summarize approaches for using reduced precision, or quantized
arithmetic, for DNN inference. Quantization reduces the amount of weight data
that must be transferred from DRAM to processing elements. Additionally,
quantized arithmetic is less expensive in terms of power and silicon area than full-
precision arithmetic. Quantization may be applied to weights, activations, or both
weights and activations. We emphasize that quantization techniques using <16 bits
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currently only provide efficiency benefits during inference, because back-
propagation requires accumulation of small values, and therefore≥16 bits.

It appears that 8-bit or 16-bit quantization is adequate for most DNN inference
tasks. For example, Google’s DNN accelerator, the Tensor Processing Unit (TPU),
exclusively uses 8-bit or 16-bit integer arithmetic [6]. The TPU (and the successor
TPUv2) is becoming a critical component of Google’s computing ecosystem.
Additionally, NVIDIA’s Pascal architecture was designed to support 16-bit floating-
point and 8-bit integer arithmetic.

In this section we focus on extreme quantization methods which binarize weights
and activations. Binarization usually has a large negative impact on performance, but
we present techniques in Sects. 3.1 and 3.2 which reduce the impact.

Note that in this section, we will sometimes use a unified notation which applies
to both convolutional and fully connected layers. In a convolutional layer, a c-
channel weight filter W ∈ R

c×w×h is convolved with an input I ∈ R
c×w×h.

Convolution is performed by W ∗ I. At a specific receptive field, the core operation
may be interpreted as the inner products between vectors. In this section, we
sometimes use the notation W#I to denote the convolution of a filter with a specific
receptive field. Simultaneously, the W#I notation captures the partial calculation of
a fully connected layer.

3.1 Binary Weights

In 2015, BinaryConnect [7] was an early DNN quantization method and exemplifies
the field’s approach to quantization. During inference, BinaryConnect quantizes
full-precision DNN weights W to {−1, 1}, using the sign function:

w(b) =
{
+1 if w ≥ 0,

−1 else.
(3)

Equation (3) discards real-valued information, but, in doing so, it also eliminates
the need for floating-point multiplication during inference. Instead, signed floating-
point addition may be used for unit activation input calculations. During back-
propagation, the error caused by quantization is used to update the real-valued
Ws. After training is complete, full-precision weights and arithmetic are no longer
required and may thereafter be discarded. From a hardware perspective, memory
overhead is 32× less when using BinaryConnect-derived weights. However, this
technique has an accuracy cost. When using the AlexNet DNN architecture,
BinaryConnect achieves 61% top-5 accuracy on ImageNet, compared to 80.2%
accuracy when using AlexNet with 32-bit full-precision accuracy [2].

In Algorithm 2 we outline the steps of BinaryConnect. Note here that we
separate the bias terms from W, where normally it is included in that tensor for
notation convenience. The reason here is that the bias is always added, even with



Mathematical Optimizations for Deep Learning 77

full-precision arithmetic, so there is no benefit to quantize it. Also note the clip
function in Algorithm 2 limits the full-precision weights to between [−1, 1].

Algorithm 2 BinaryConnect [7]
Require: Inputs I, targets y, previous full-precision weights W, biases b, learning rate η, and

objective function J .
Ensure: Updated {−1, 1}-valued weights W(b) and real-valued bias b.
1. Forward propagation:
A0 = I
for l = 1 to L

for kth filter in lth layer
W(b)

lk ← binarize(Wlk) using Eq. (3)

Alk ← W(b)
l ∗ A(l−1)k + blk

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J
∂A(l−1)k

knowing ∂J
∂Alk

and W(b)
lk

3. Update weights:
Compute ∂J

∂W(b)
lk

and ∂J
∂blk

, knowing ∂J
∂Alk

and A(l−1)k

W ← clip(W − η ∂J
∂W )

b ← b − η ∂J
∂b

Not made explicit in Algorithm 2 is how the gradient signal passes through the
binarization function given in Eq. (3). This is required for calculation of ∂J/∂W(b)

lk .
We cannot merely take the derivative of the binarization function, because it is 0
everywhere except at W = 0, where the function is discontinuous. To handle this,
the authors used a variant of the Straight-Through Estimator (STE) during back-
propagation [8]. The modified STE is defined as:

STE(pre-binarized value) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < −1,

1 if −1 ≥ pre-binarized value ≤ 1,

0 if x > 1.

(4)

During back-propagation, instead of flowing through the binarization function,
the incoming gradient signal is multiplied by the value of STE, which is evaluated
at the pre-binarized weight value (or pre-activation value, when using XNOR-Net,
discussed below). Clipping caused by multiplying by the STE has the effect of
canceling the gradient when the pre-binarized value is too large.

To summarize BinaryConnect, we take the sign of the real-valued weights during
inference. During back-propagation, the errors caused by binarization may be very
small (with significant changes accumulating over many inputs), and we track those
small changes in full-precision versions of the weights. After training is complete,
the full-precision weights may be discarded, only keeping their sign information.
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XNOR-Net [2] introduced a method which is almost identical to BinaryConnect,
but it performs binarization in way which achieves higher accuracy. As with
BinaryConnect, weights are binarized during inference, but then they are also scaled
by a factor which attempts to compensate for the binarization. Specifically, XNOR-
Net introduced the following approximation for the inner product2:

W#I ≈ αW(b)#I, (5)

where W(b) is the binarized version of W using Eq. (3). This notation is slightly
different than that used in Algorithm 2, where we are able to binarize the entire W
tensor at once. But with XNOR-Net, each filter in each convolutional layer requires
a separate α. To keep the notation simple, separate filters are not denoted.

To find the optimal scaling factor α, we solve the following optimization
problem:

J (α) =
∥∥∥W− αW(b)

∥∥∥2
,

α∗ = arg min
α

J (α).
(6)

That is, we are seeking an α which minimizes the distance between W and αW(b).
For intuition, consider a scalar w and its binarized version w(b); in this case α =
w/w(b) perfectly minimizes the distance between w and w(b). Expanding the norm
in Eq. (6) gives:

J (α) = α2W(b)#W(b) − 2αW#W(b) +W#W. (7)

We now take the derivative of J (α) with respect to α, set it to zero, and solve for α:

dJ (α)

dα
= 2αW(b)#W(b) − 2W#W(b). (8)

Let n = W(b)#W(b), which is also equal to the number of weights in the binarized
filter. Substituting n into Eq. (8) and solving for α gives α∗:

α∗ = W(b)#W(b)

n
= W(b)#sign(W)

n
=
∑|W|

n
. (9)

New α∗s must be calculated every time W changes, i.e., each time back-
propagation is used to update the weights, but, after the training is completed, α∗
may be saved for use during inference.

2Note that we consider W and I to be flattened.
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Table 3 The XNOR
operation captures the
behavior of signed
multiplication

Signed multiplication

Inputs Output

Ii Wi Ii ×Wi

−1 −1 1

−1 1 −1

1 −1 −1

1 1 1

XNOR “multiplication”

Inputs Output

Ii Wi Ii ⊕Wi

0 0 1

0 1 0

1 0 0

1 1 1

Using the weight binarization methods above, we may eliminate most multipli-
cations from inference,3 and instead we only need signed addition. If we assume
32-bit multiplication and addition, this results in 32× power reduction for weight
transfer from DRAM and ∼3× power reduction for arithmetic. When using the
AlexNet DNN architecture, XNOR-Net (binary weights, full-precision activations)
achieves 79.4% top-5 accuracy on ImageNet, compared to 80.2% accuracy when
using AlexNet with 32-bit full-precision accuracy [2]. We next consider operator
optimizations which become available when both weights and inputs are binarized.

3.2 Binary Weights and Activations

If weights and activations are binarized, then we are able to eliminate almost all
floating-point (and fixed-point) calculations, resulting in extreme energy savings.
Specifically, when weights and inputs are binarized, the XNOR operation4 may be
used to calculate inner products during inference [9]. The XNOR logic truth table is
given on the right in Table 3. The left-hand side provides the truth table for signed
multiplication between scalar values Ii ∈ I and Wi ∈ W. Note that by mapping −1
to 0, the two tables give identical output.

XNOR logic is simple and efficient to implement in hardware and may be used
as the multiplication operator for the calculation of inner products during inference.
To use the XNOR “product” between I and W for the input into a unit’s nonlinearity
function, we first map all −1s to 0s and then calculate the XNOR values for both
vectors. The Hamming weight5 (HW) of the XNOR vector result is then compared
to #bits/2, where #bits is the size of W and I. If the Hamming weight is greater
than or equal to #bits/2, then output 1, otherwise output 0. Note that after the initial
mapping of −1 to 0, we no longer need to map back to −1 during the remainder of
the inference procedure.

BinaryNet [9] operates similarly to BinaryConnect, with the addition that activa-
tions are also binarized. When using BinaryNet, the activation inputs are summed, as

3Multiplication by α is still necessary when using the weight binarization technique in XNOR-Net.
4Not to be confused with XNOR-Net [2]. Here we are referring to the exclusive-NOR operation.
5Hamming weight is defined as the number of 1s in a vector.
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with BinaryConnect, and then the resulting sum is converted to [−1, 1] using the sign
function. This optimization eliminates all full-precision calculations and replaces
them with signed integer calculations. As with BinaryConnect, BinaryNet requires
full-precision gradient updates during training, and during back-propagation the
STE function (Eq. (4)) is used for both the activation and weights. BinaryNet
achieves 50.42% top-5 accuracy on AlexNet, compared to 80.2% accuracy when
using the same DNN topology and 32-bit full-precision accuracy [2].

XNOR-Net also has a version which binarizes both weights and activations.
Similar to XNOR-Net’s weight-only binarization presented above, there is a scaling
factor α which may (optionally) be used to reduce the error between full-precision
and binarized dot products:

J (α) =
∥∥∥I#W− αI(b)#W(b)

∥∥∥2
,

α∗ = arg min
α

J (α).
(10)

This is solved in the same manner as Eq. (6), giving:

α∗ =
∑|I(b)#W(b)|

n
=
∑|I||W|

n
. (11)

Note that a separate scaling factor α∗ must be solved for each receptive field and
weight filter combination both during training and when using the neural network
after training. This high computational overhead limits the use of vanilla XNOR-
Net. Fortunately, in practice, the authors of BinaryNet found that the scaling factor
for binarized weights was much more important than the scaling factor for binarized
inputs and may therefore be ignored. We summarize the weight-scaled version of
XNOR-Net with the following algorithm:

Similar to the calculation of ∂J/∂W(b)
lk in Algorithm 2, both partial derivatives

∂J/∂W(b)
lk and ∂J/∂A(b)

lk in Algorithm 3 are multiplied by the STE function
in Eq. (4), where the inputs to STE are the real-valued weight and activation,
respectively.

XNOR-Net using binarized inputs and weights achieves 69.2% accuracy on
AlexNet, compared to BinaryNet’s 50.42%, and full-precision accuracy of 80.2%.
The XNOR-Net and BinaryNet papers introduce other training tips for improved
performance. The aggregate contributions of the performance techniques introduced
in XNOR-Net likely account for its significant gain over BinaryNet.

4 Weight Sharing and Compression

Top-performing neural networks use millions of weights which are typically
transferred from DRAM to processing elements for inference (see Table 2). When
these weights are transferred, DRAM energy cost can surpass arithmetic cost for
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Algorithm 3 (Weight-scaled) XNOR-Net [9]
Require: Inputs I, targets y, previous full-precision weights W, biases b, learning rate η, and

objective function J .
Ensure: Updated {−1, 1}-valued weights W(b), weight scaling factors α, and real-valued bias b.
1. Forward propagation:
A0 = binarize(I0)

for l = 1 to L

for kth filter in lth layer
αlk = 1

n
||Wlk ||�1

W(b)
lk ← binarize(Wlk) using Eq. (3)

A(b)
lk ← binarize

(
(αlkW(b)

lk ) ∗A(b)
(l−1)k

+ blk

)
using Eq. (3)

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J

∂A
(b)
(l−1)k

knowing ∂J

∂A
(b)
lk

and Wlk

3. Update weights:
Compute ∂J

∂W(b)
lk

and ∂J
∂blk

, knowing ∂J

∂A
(b)
lk

and A(l−1)k

W ← clip(W − η ∂J

∂W(b) )

b ← b − η ∂J
∂b

performing a single inference. Weight sharing clusters weights into shared values
and is applied after the network has reached peak performance. Once weights have
been clustered, compression may be used to transmit cluster indices instead of full-
precision values. Weight sharing coupled with compression is a method to retain the
high performance typically provided by large full-precision neural networks while
simultaneously reducing the amount of data sent over DRAM [3].

4.1 Weight Sharing

To apply weight sharing, first, the DNN is trained to maximum performance using
standard training methods. After training, each layer’s weights are grouped into
clusters, where the number of weights in a layer is much greater than the number of
clusters. After assigning weights to clusters, the network goes through a retraining
phase.

For example, consider Fig. 4 which illustrates a 4× 4 channel from some weight
filter in W. Assume that the filter is part of a trained network. To apply weight
sharing, we use k-means clustering [3], which assigns the weights w ∈ W to m

cluster assignments C� = {c1, c2, . . . , cm}, such that the within-cluster sum of
squares is minimized:

C� = arg min
C

m∑
i=1

∑
w∈ci

|w − ci |2. (12)
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Fig. 4 After training, 16 weights have been clustered into 4 centroids. From that point on,
clustered weights are equal to their centroid. Partial derivatives are calculated with respect to the
weight values, as usual, but the gradients are accumulated and subtracted from the centroids [3]

After assignment to clusters, we calculate the centroids w̃i of each cluster ci by
taking the average value of each cluster:

w̃i = 1

|ci |
∑
w∈ci

w. (13)

In Fig. 4, m = 4, and the top portion of the plot illustrates 16 weights and their
associated clusters and centroids.

After clustering, weights in the original filter are replaced by their centroid value
(this is represented by the shading in Fig. 4). Next, the clustered weights are fine-
tuned by reusing the original training data. The key difference between standard
training and the fine-tuning phase is how the weights are updated during gradient
descent (GD). In GD each weight is moved a small amount in the direction which
will improve an objective function, e.g.:

Wl,w = Wl,w − η
∂J (W)

∂Wl,w

. (14)

However, after clustering, we apply GD to the centroid value of each weight cluster.
For example, suppose the centroid w̃i of weight cluster ci is to be updated using
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GD. To update centroid w̃i , we use the sum of partial derivatives with respect to
weights assigned to that cluster:

w̃i = w̃i − η
∑
w∈ci

∂J (W)

∂w
. (15)

The lower portion and the subtraction in Fig. 4 illustrate the gradient descent step of
back-propagation when using clustering. After the fine-tuned centroids have been
calculated, they will replace the previous weight values in each cluster. The update
given in Eq. (15) is repeated until maximum performance is attained.

Algorithm 4 Weight sharing
Require: Inputs I, previously trained full-precision weights W, number of clusters m, learning

rate η, objective function J .
Ensure: Clustered and fine-tuned weights W
1. Cluster assignment:
for l = 1 to L

for kth filter in lth layer
Assign weights in filter k to m clusters using Eq. (12):
C� ← knn(Wlk, m)
Replace weights in each cluster with centroid value using Eq. (13):
Wlk ← centroid(Wlk, C

�)
2. Inference:
Perform standard inference using centroid-mapped weights.
3. Fine-tuning:
Calculate standard partial derivatives with respect to weights ∂J (W)

∂w
.

Update centroid values by summing partial derivatives in each cluster and using gradient decent:
w̃i = w̃i − η

∑
w∈ci

∂J (W)
∂w

Replace weights in each cluster with updated centroid values.
4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

The steps for weight sharing are provided in Algorithm 4. The algorithm is
written from the perspective of CNNs, but adapting it for other DNN designs only
requires clustering the appropriate values. For example, the values in fully connected
layer could be clustered.

After weight values have been clustered and fine-tuned, there is an opportunity
to decrease the storage and traffic requirements for loading the DNN weights from
memory to an accelerator. This process is detailed in the following subsection.

4.2 Compression

Weight sharing reduces the amount of data transmitted over DRAM by intentionally
creating redundancy in the form of a cluster index. For example, in Fig. 4 we see
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that 16 original values are represented by four cluster values. Redundancy created
by weight sharing is exploitable with compression methods [3].

If a network uses b bits of precision, then a full-precision network with n weights
requires nb bits of transmission. After weight sharing, only a single full-precision
value (the centroid) must be transmitted for each cluster; this results in mb bits.
The indices for m clusters are represented with log2(m) bits; therefore transmitting
n indices requires nlog2(m) bits. In general, n weights clustered into m clusters
compress the weights by a factor of:

nb

nlog2(m)+mb
. (16)

For example, referring to Fig. 4, and assuming 32-bit floating-point weights, we see
that nb = 16 · 32 and nlog2(m)+mb = 16 · 2+ 4 · 32. Therefore, by using weight
sharing and compression, we reduce the traffic by a factor of 352.

5 Model Distillation

Large neural networks have a tendency to generalize better than smaller networks.
Similarly, ensemble methods combine the predictions of multiple algorithms,
e.g., DNNs, random forests, SVMs, logistic regression, etc., and almost always
outperform the predictions from an individual algorithm. Both large networks
and ensemble methods are attractive from an accuracy perspective, but many
applications cannot support the time or energy it takes to perform inference using
such approaches. Model distillation is the training of a smaller, more efficient,
DNN to predict with the performance close to a larger DNN or ensemble [10,
11].

When training a multiclass network, first, the softmax of network logits ai is used
to calculate class probabilities:

ŷi = eai/T

∑|C|
j=1 eaj /T

, (17)

where C is the set of classes which the network can identify and T is the temperature
and is usually set to 1. Class probabilities are then used in the cross-entropy error
function:

J (y, ŷ) = −
|C|∑
i=1

yi log ŷi , (18)

where y is the correct training label for a given input and ŷ is the vector of class
prediction probability output from the network. Using standard supervised training,
y is a one-hot encoded vector, with 1 in the position of the correct label, and 0
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everywhere else. Therefore, when the correct class is i = k, Eq. (18) simplifies to:

J (ŷ, k) = −log ŷk. (19)

Equation (19) contains the objective function typically differentiated during the
training of a large neural network.

The output probabilities of a previously trained large network capture rich
information not available in the original training set, which only contain input
examples and the correct label for each input. For example, assume a classification
dataset which includes cars, trucks, and other non-vehicle classes. During training,
when learning instances of car classes, only a single correct label (y, which is one-
hot encoded) will be used. Once trained, if presented with a previously unseen photo
of a car, the car and truck class probabilities will most likely both contain significant
information regarding the correct class, whereas the potato class probability would
not contain as much information. Model distillation uses all of this information.

There are various techniques to implement distillation. Initially, assume a large
network has been trained to high performance, and a smaller network is to be trained
with distillation. Additionally, assume we do not have access to the correct training
labels. In this case, we may input random images into the large network and use all
of its prediction probabilities ŷ as a soft target for the distilled network’s output ỹ:

J (ỹ, ŷ) = −
|C|∑
i=1

ŷi log ỹi . (20)

This is similar to Eq. (18), except y = ŷ, and we have class probabilities for each
entry in ŷ, so it does not simplify to Eq. (19).

If training labels are also available, the objective function can be improved by
summing Eqs. (18) and (20), giving:

J (y, ỹ, ŷ) = −
|C|∑
i=1

αŷi log ỹi + βyi log ỹi , (21)

where α is a hyperparameter which sets the relative importance for matching soft
targets and β sets the relative performance for selecting the correct class. In practice
[11] found that α should be higher than β.

In addition to hyperparameters α and β, [11] also found that the temperature in
Eq. (17) impacts distillation performance. Higher temperatures make “softer” prob-
ability distributions. To understand why this may be important, consider the logits
[1, 2, 10], which have a softmax with T = 1 of [1×10−4, 3×10−4, 9.995×10−1].
The small probabilities slow down learning during back-propagation. However,
when T = 10, the softmax becomes [0.22, 0.24, 0.54], which has ranges that will
cause learning to occur more quickly with back-propagation. It can therefore be
useful to use high T values for the softmax of both the large network and distilled
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Fig. 5 An ensemble of models was trained for eight classification tasks. Distillation was then used
to train a neural network to behave like each ensemble. The plot to the right compares average
performance between the ensemble of classifiers, the best individual classifier in each ensemble,
and the distilled classifiers. Once the distilled classifier has enough capacity, its average approaches
the ensemble average [10]

network during the distillation phase.6 After distillation is finished, T may be reset
to 1.

Distillation is effective for transferring information from trained large networks
to untrained smaller networks. In [11], a large DNN was trained to classify MNIST,
resulting in 67 test errors. A smaller network, trained and tested with the same sets
as the larger network, resulted in 146 errors. However, when the smaller network
was trained with distillation, it only made 74 test errors.

Thus far we have discussed how to distill a DNN into a smaller network. Similar
methods may be used to distill an ensemble of classifiers. In [10], eight binary
classification problems were solved by an ensemble of methods, and then a neural
network was trained by distillation to capture the behavior of the ensemble. The
average performance of the small distilled model is given in Fig. 5. It can be seen
that the average performance of the distilled model was similar to a giant ensemble
prediction derived from SVMs, bagged trees, boosted trees, boosted stumps, simple
decision trees, random forests, neural nets, logistic regression, k-nearest neighbor,
and naive Bayes.

A smaller distilled model is obviously guaranteed to be more efficient than a
large DNN or ensemble of models, and the distillation approaches presented in

6The softmax layer is at the output and has no trainable weights. It can therefore be replaced in the
larger network with a separate temperature, with no need for retraining.
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this section are a promising avenue to achieving adequate performance, given hard
resource constraints. The steps for distillation are summarized in Algorithm 5.

Algorithm 5 Distillation
Require: Inputs I, optional targets y, previously trained high performance network 〈W, O〉large,

untrained distilled network 〈W, O〉dist

Ensure: Trained distilled network 〈W, O〉dist

1. Inference:
ŷ ← output probabilities of 〈I, W, O〉large

ỹ ← output probabilities of 〈I, W, O〉dist

2. Calculate loss:
if targets y are available

J (y, ỹ, ŷ) = −∑|C|
i=1 ŷi log ỹi + yi log ỹi

else
J (ỹ, ŷ) = −∑|C|

i=1 ŷi log ỹi

3. Update distilled model weights:
Wdist ←Wdist − η∇Wdist

J

4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

6 Filter Decomposition

AlexNet introduced the first popular high-performance convolutional neural net-
work (CNN) architecture, which has since been widely adopted and modified [12].
The AlexNet architecture won fame by winning the 2012 ImageNet Challenge,
which required classification across 1000 categories. AlexNet uses five convolu-
tional layers, three fully connected layers, and other less computationally expensive
layers. Modern CNNs use even more convolutional layers, for example, Google’s
GoogLeNet-v1 CNN architecture uses 57 convolutional layers, but only one fully
connected layer.

Fully connected layers are expensive from a bandwidth perspective, because
they perform only one multiply-accumulate operation (MAC) per byte transferred
over memory. Convolutional layers, however, are efficient from a bandwidth
perspective, but they are expensive computationally. For example, AlexNet’s three
fully connected layers require 58.6M MAC operations and 58.6M weights, whereas
AlexNet’s six convolutional layers require 666M MAC operations and only 2.3M
weights. The total cost of a fully connected layer or convolutional layer is the
total number of MACs plus the total number of bytes required for the layer.7 The
choice of filter sizes in convolutional layers has a large impact on the bandwidth
and computational costs of a CNN. In this section we analyze the bandwidth and
computational impacts of different convolutional filter designs.

7First-order estimates of power costs can be calculated using Table 1.
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convolution

Fig. 6 Example calculation of MAC cost of the fifth convolution in AlexNet. For intuition in
understanding MAC cost, consider that each point in I6 is the result of applying a 384×3×3 filter
tensor to I5. Therefore the total number of MACs needed to calculate I6 is 256×13×13×384×3×3.
This is a different perspective on the calculation than given in the main text

We loosely base our discussion on AlexNet, because it is well understood and the
foundation of modern CNN designs. AlexNet convolutional layers use three filter
shapes, 11×11, 5×5, or 3×3, and four channel depths, 96, 256, or 384. The shape
of convolution filters has a significant impact on computational cost. To calculate the
MAC cost for layer l’s convolution operations, we first recall the notation introduced
in Sect. 1, where layer l’s filter tensor is denoted Wl ∈ R

cin×w×h×cout and layer
l’s input tensor is denoted Il ∈ R

cin×x×y . The number of MAC operations in a
convolutional layer is found by8:

MAC cost = cardinality(Il)× cardinality(Wl )

cin from cardinality(Wl )
, (22)

where cardinality() returns the number of elements in the input tensor.
The bandwidth required for a filter, assuming 32-bit floating-point weights, is
calculated as:

Byte cost = cin × w × h× cout × 4 bytes. (23)

The goal of efficient CNN design is to obtain the highest classification performance,
using the fewest number of MACs and weights. Therefore from an efficiency
perspective, the cost of CNN inference is:

COST() = c1MAC cost+ c2Byte cost+ c3CNN errors, (24)

where the coefficients c depend on the priorities and budget of the CNN’s designer.
To better understand Eq. (22), consider the calculation of the number of MACs

in the fifth convolutional layer of AlexNet, illustrated in Fig. 6. In this case
cardinality(I5) = 384×13×13 and cardinality(W5) = 384×3×3×256.
So the total number of MAC operations for I5∗W5 is 384×13×13×3×3×256=
150M. Additionally, the size of W5 is 384× 3× 3× 256 = 885k weights.

8Our calculations assume there is no pooling layer after convolution, which is now commonly the
case.
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Decompose

TwoTT Apply sequentially

Fig. 7 A “large” convolutional filter may be separated into two smaller filters, which retain the
feature detection capabilities of the larger filter. The outputs of the smaller filters are summed.
This approach is used to reduce the number of bytes required to represent filters and to reduce the
number of MAC operations

As another example, assume that instead of 3×3 filters, 5×5 filters were used in
AlexNet’s fifth convolutional layer. 5×5 filters cause the number of MAC operations
to increase to 415M and byte cost to increase to 2.5 MB. A larger filter can capture
more detail, and suppose that switching to a 5 × 5 filter increased classification
accuracy, but caused the total cost to exceed the time and energy budget allotted to
the CNN. Perhaps surprisingly, there are techniques to extract the benefit of 5 × 5
filters without using 5× 5 filters.

The concept of filter decomposition was introduced in [13], where two smaller
filters Wl,1 and Wl,2 were applied to the input tensor Il and then added (prior to the
nonlinearity), giving Il+1 = Il ∗ Wl,1 + Il ∗ Wl,2. As shown in Fig. 7, instead of
using a single 5× 5 filter tensor in the previous case, two 3× 3 tensors can be used.
Specifically, instead of performing 256 × 13 × 13 × 5 × 5 × 384 = 415M MAC
operations (requiring 2.5M weights), 256×13×13×3×3×384×2= 300M MACs
are performed (requiring 1.8M weights). Similarly, a 5× 1 and 1× 5 filter may be
used, requiring 256× 13× 13× 5× 2× 384 = 166M MAC operations (requiring
1M weights), which is close to the original 150M MACs and 885k weights required
when using a single 3× 3 filter tensor.

Going even further, [14] introduced 1× 1 convolutions, which are used to create
bottleneck layers, because they can shrink an input tensor. 1 × 1 filters detect
correlation between corresponding weights in each channel, which may be seen
when considering their full notation: cin×1×1×cout . For example, suppose we are
given input Il ∈ R

cin×x×y , then a filter Wl ∈ R
cin×1×1×cout may be chosen such that

cout & cin. Convolving Wl with Il gives Il+1 ∈ R
cout×x×y . The information from

Il is not lost, even though Il+1 now has fewer channels than Il . 1 × 1 convolutions
capture channel correlations, compared to larger filters which capture channel and
spatial correlations.

Various filter schemes can be combined. For example, a 1 × 1 convolution
may be followed by a 3 × 3 or 5 × 5 convolution. The goal here is to extract
channel correlations using the 1×1 convolution and to extract spatial (and channel)
correlations using the 3 × 3 or 5 × 5 filter. Going back to our original AlexNet
example, we calculated the number of MACs used for the convolution of I5 and W5
as 256× 13× 13× 3× 3× 384 = 150M MACs and 885k weights. We can reduce
this by picking a smaller cout size for W′

5, e.g., 64, giving 256 × 13 × 13 × 1 ×
1 × 64 = 2.8M MACs and 16k weights. We may then add another convolution
layer, using a 384 × 3 × 3 filter W′

6, and return to the original shape of I6 using
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Fig. 8 Diagram of an Inception module. Layer inputs are passed through separate 1×1 bottleneck
layers and then through standard convolutional layers. This technique allows for the use of different
filter sizes, without paying the computational or bandwidth cost of normal convolutional layer
implementations [15]

384×13×13×3×3×64 = 37M MACs and 221k weights. We now have extracted
both channel and spatial correlations, using 1×1 and 3×3 filters and a total of 39.8M
MACs and 237k weights, much fewer than the original example which used 150M
MACs and 885k weights. Bottleneck layers followed by convolution have proven to
be an effective way to increase efficiency without sacrificing accuracy.

Filter decomposition represents a fundamentally different way to improve DNN
inference efficiency, compared to earlier sections. Specifically, by making careful
architectural choices, high performance can be maintained and fewer weights and
MAC operations can be used. The methods introduced here may also be combined.
For example, Inception is a modern CNN architecture, which combines bottleneck
layers and various filter shapes to capture the benefits of every possible combination.
Figure 8 illustrates an Inception module, which combines many convolutional
layers and outputs each combination as stacks of sub-channels. Without the 1 × 1
bottleneck layers, such an architecture would be much more expensive.

7 Conclusion

Deep neural networks are increasingly being integrated into cyber-physical systems,
which have power, silicon area, latency, and accuracy budgets. This chapter
introduced various mathematical and algorithmic methods for optimized DNN
inference:
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1 2

3 4

5

redundancy precision

accuracy

Fig. 9 The notional trade-off between accuracy, redundancy, and precision. In general, one may
prioritize any two at the expense of the third [16]. There is currently no formal proof for this plot,
but most of the optimization papers referenced in this chapter report metrics across the different
axes and seem to generally follow the trend of this plot

• Eliminating “small” weights via pruning, which reduces the required number of
multiply-accumulate operations

• Quantization, or reducing the precision, of layer inputs and/or weights to reduce
computation and data transfer costs

• Sharing weights between layer units and therefore enabling data transmission
compression

• Training small models to mimic larger models by distilling the information from
the larger models into the smaller models

• Separating larger convolutional filters into smaller filters while retaining the
performance of the larger filters

These optimization methods may be used individually or may be combined for
greater optimization. Note that the methods are not equivalent and should be
expected to affect performance metrics in different ways.

Unfortunately most of the optimizations introduced here will result in an accu-
racy loss when compared to a high-performance model which was designed with
no regard to computational efficiency. The trade-off between accuracy, redundancy,
and precision is depicted in Fig. 9 [16]. In general, one may expect to obtain high
accuracy when using high-precision (e.g., floating-point) arithmetic (Pt. 2 in Fig. 9)
and lower accuracy when using low-precision arithmetic (Pt. 4). But low-precision
arithmetic may be offset with redundancy (e.g., larger models) (Pt. 1). Likewise the
errors caused by using low-redundancy (few weights) models may be offset, to some
extent, with high-precision arithmetic.

Ultimately, it is the DNN architect’s task to find a design which achieves
minimum acceptable performance, given a particular resource (e.g., latency, silicon
area, power) budget. The methods introduced in this chapter facilitate this task.
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A Zero-Entry Cyber Range Environment
for Future Learning Ecosystems

Elaine M. Raybourn, Michael Kunz, David Fritz, and Vince Urias

Abstract Sandia National Laboratories performed a 6-month effort to stand up a
“zero-entry” cyber range environment for the purpose of providing self-directed
practice to augment transmedia learning across diverse media and/or devices that
may be part of a loosely coupled, distributed ecosystem. This 6-month effort
leveraged Minimega, an open-source Emulytics™ (emulation + analytics) tool for
launching and managing virtual machines in a cyber range. The proof of concept
addressed a set of learning objectives for cybersecurity operations by providing
three, short “zero-entry” exercises for beginner, intermediate, and advanced levels
in network forensics, social engineering, penetration testing, and reverse engineer-
ing. Learners provided answers to problems they explored in networked virtual
machines. The hands-on environment, Cyber Scorpion, participated in a preliminary
demonstration in April 2017 at Ft. Bragg, NC. The present chapter describes the
learning experience research and software development effort for a cybersecurity
use case and subsequent lessons learned. It offers general recommendations for
challenges which may be present in future learning ecosystems.

1 Introduction

Most technology-mediated learning interventions, instructions, and assessments
are intended for use in blended (instructor-led) or formal (schoolhouse-based)
learning contexts. Most cybersecurity education geared for adult learners is
delivered online via e-learning slide presentations, webinars, video lectures (see
Federal Virtual Training Environment https://niccs.us-cert.gov/training/federal-
virtual-training-environment-fedvte),or face-to-face consisting primarily of lecture,
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hands-on individual practice, team practice, and/or Capture the Flag (CTF)
exercises. While cybersecurity education may require self-motivation for student
success, few curricula are actually designed to facilitate informed self-directed
learning such as that found in an apprenticeship, internship, or mentorship program
(see Sandia National Laboratories Technical Internships to Advance National
Security [TITANS] http://www.sandia.gov/titans/), and even fewer still offer
connected learning experiences such as those supported by storytelling that comes
to life in and across different media—offering off-ramps to auxiliary resources and
activities intended to incentivize rich on-demand, self-directed, informal learning.
Connected learning experiences are facilitated by transmedia learning. Transmedia
learning is defined as the scalable system of messages representing a narrative or
core experience that unfolds from the use of multiple media, emotionally engaging
learners by involving them personally in the story [1].

A science and technology (S&T) goal for many is to enable personalized,
data-driven, and lifelong technology-enabled learning. The long-term goal is that
ecosystems of connected, transmedia systems will provide adaptive, personalized
learning that is facilitated by data shared among technologies in the ecosystems.
While transmedia learning is a goal of future learning ecosystems, near-term empha-
sis is usually placed on supporting instructor-led, blended, linearly sequenced, or
stand-alone learning via different web-based technologies. In that respect, future
transmedia learning ecosystems—those that offer self-directed, connected, story-
driven learning experiences—must not only engage the learner personally but also
provide authentic experiences for learners of all levels. The S&T challenge is to
create rapidly configurable environments and learning pathways flexible enough
to support a learner’s unique and authentic journey across multiple media and
modalities, and designed to promote self-directed exploration over time.

Our team developed Cyber Scorpion, a Capture the Flag cyber range lab
environment to address this gap. Cyber Scorpion can share exercise completion data
through a web interface using the xAPI specification [2] saving to a Learning Record
Store (LRS). Subsequent sections describe the research and development effort of
Cyber Scorpion for the specific use case of offering off-ramps to auxiliary cyber-
security resources, activities, and lessons learned. Cyber Scorpion logged when
learning started, when milestones were being attempted, and when milestones were
completed. While Minimega, the technology underlying the virtual lab in Cyber
Scorpion, is capable of stealth assessment (see [3]), learner actions and behaviors in
the emulated environment were not logged or recorded in the present effort.

2 Limitations of Current Practice

As described in the previous section, the current practice of cybersecurity training
for adult learners is largely delivered online via e-learning slide presentations,
webinars, video lectures, slide presentations, or face-to-face consisting primarily
of lecture, hands-on individual practice, team practice, and/or Capture the Flag

http://www.sandia.gov/titans/
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(CTF) exercises. However, the current practice of pass/fail assessment results in
insufficient fidelity to reveal useful detail about whether/how/when “learning” is
occurring. Although adult active duty military or reserve learners may engage in
highly orchestrated exercises distributed across installations in the United States or
around the globe, these exercises, such as Cyber Flag and Cyber Guard, may only
occur once a year. Additionally, many ranges used for these exercises are “heavy”—
being bound to a physical infrastructure, particular vendor software stack, databases,
and large maintenance staff.

Military-grade cybersecurity game-based training is gaining popularity, but these
games are usually not lightweight and rapidly configurable, nor rapidly scalable.
Other options for training are more “academic” and often do not reflect real-world
network or adversary behavior. Modernization will require much more realistic
scenarios utilizing robust models, simulations, and emulations, with adaptive,
persistent, and blended live, virtual, constructive, and gaming environments [4].
According to retired CYBERCOM Chief of Staff, Air Force Major General Jim
Keffer, “We don’t have—but we need—an exercise environment where you do
rehearsals, go against adversary networks, and figure out ways to better protect your
own . . . the team training, the force-on-force training, that is primarily limited by a
lack of a persistent training environment” [5].

Another limitation to the current practice is the lack of congruency with respect
to language and meaning leading to misunderstandings. For example, the definitions
for emulation and simulation are often confused, especially when referring to cyber
training environments. Emulation has been defined as a reproduction or replica of
the function or action of a particular system, whether it is software or hardware. An
emulation replicates a system as specifically and exactly as possible. Simulation, on
the other hand, models the internal state of a system and is an abstraction rather
than an exact replica. Emulation may or may not model the internal state of a
system. In cybersecurity operations training, it is important to “train as you fight,
fight as you train.” To do this, training should be executed in emulated systems and
networks.

Finally, cyber operations training is not nearly as on-demand as required, so
learners do not have the opportunity to continually train as much as they should.
Therefore, much of the current practice is either limited to training that is not rapidly
configurable, unengaging, and stale or highly engaging training that is executed
by face-to-face teams or via logistically complicated, over-orchestrated distributed
exercises.

To summarize, there are at least three limitations to the current practice that
Sandia Cyber Scorpion sought to address:

• Not rapidly configurable or scalable
• Not persistent or on-demand
• Not sufficiently realistic



96 E. M. Raybourn et al.

2.1 Specific Problem Being Solved

Currently, cyber defender training is performed on (1) operational systems, (2) a
limited testbed, or (3) simulated models of the system of interest. Each of these has
inherent limitations that can be addressed by using an emulated system.

According to Urias et al. [6], “Analysis and training on operational systems is
usually limited to the most benign levels since any disruption to the operational
system has potentially severe consequences. Testbeds for analysis and training are
typically expensive and time-consuming to construct and deploy, single-purpose,
and difficult to maintain. Another option for cyber defender training would be a
simulated environment. In many cases however, the simulation program code needs
to be developed to simulate the system and devices in question or extensions need to
be made to answer specific questions. These (sometimes buggy) simulation codes
typically do not depict an accurate picture of the system. To increase simulation
result accuracy, models have to be extended and validated.”

These processes can be time-consuming and inefficient. Thus there is a need
for the ability to rapidly create, tear down, recombine, and reuse high-fidelity
replications, or emulations, of information systems for cybersecurity training. Our
team has participated on multi-year research projects in the development of new
strategies and methodologies that enable researchers to quickly and accurately
model information systems hosts and networks of interest for cyber analysis and
training. Therefore an early determination was made that Cyber Scorpion should
serve as a “zero-entry” practice environment.

The specific problem being solved by Cyber Scorpion is the demonstration of
the ability to offer a cyber range capability with a government-owned, open-source
virtual machine (VM) management tool called Minimega via a web interface with
the ability to share learner data. Cyber Scorpion, by virtue of being an emulated
environment, is rapidly configurable and able to support persistent training that
allows learners to “train as they fight, fight as they train.”

3 Research

3.1 Research Question

The authors of the present chapter addressed the following research question, “What
are the learning experience challenges associated with bringing a zero-entry, cyber
range environment to future learning ecosystems that allow learners and instructors
to transition among learning activities, devices, and modalities?”

Subsequent sections detail the approach taken by our team for design and
software development, followed by the lessons learned.
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3.2 Learning Science Approach

Learning experience design (LX) is a subset of user experience design (UX) that
addresses the synthesis of learning sciences, human-computer interaction, and
design thinking. Learning experience design puts the learner at the center of the
product or service design process. As more immersive simulations and persistent
transmedia learning [1] experiences are developed with distributed exercise envi-
ronments, games, and virtual/mixed/augmented realities, it can be useful to ground
approaches in theory such as Distributed Cognition (see Sect. 3.2.2) and design
methods such as the Simulation Experience Design Method [4]. The Simulation
Experience Design Method specifically aims to bring to the fore initial assumptions,
biases, or notions of expectations that inform the decisions shaping the design of
learning experiences. Sections 3.2.1 and 3.2.2 further discuss the method used to
design the learning experience and its theoretical underpinning.

3.2.1 Simulation Experience Design Method

The Simulation Experience Design Method and Framework [4] is a process that
addresses the design of learning as a system of experiences that exists within an
emergent, adaptive cultural context that the designer strives to engender throughout
engagement, as well as before, between, and after formal learning has concluded.

The word simulation in the name of the method refers to an experience in
which the role of a human, environment, or both can be simulated. The Simulation
Experience Design Method, briefly described in this section, has been applied by
the author and others to serious game design [4, 7] and transmedia learning [1].
Whether UX or LX, experience design solutions require that designers understand
what makes a good experience first and then translate these principles, as efficiently
as possible, into the desired medium without the technology dictating the form of
the experience. In simulated environments in which learners are creatively problem
solving together, one’s experience may be unpredictable, may not have a right
or wrong approach, or may not be what the designer intended. The Simulation
Experience Design Method can be helpful in framing the co-creation of problem-
solving opportunities as an open-ended, rich system of experiences that fosters
learning (Fig. 1).

The Simulation Experience Design Method suggests that supporting equitable
intercultural communication and learning is comprised of several salient elements,
among them (1) the interactions or type of communication (interpersonal, group,
etc.); (2) the narratives that are co-created by interlocutors; (3) the place, or
context, in which narratives occur; and (4) the culture that emerges from the social
construction of experience [8]. Following the circular framework from upper left
to upper right, design tasks may then be considered as facilitating a journey or
connected learning experience from interactions to emergent culture that iteratively
lead to new interactions spawned by the emergent culture. Use of the framework



98 E. M. Raybourn et al.

Fig. 1 Simulation Experience Design Method and Framework [4]

is intended to improve the quality of equitable learning in collaborative, immersive
environments such as serious games, simulations, and transmedia storytelling and
learning ecosystems [1, 4, 7].

Finally, by treating intercultural communication as a core value, the individual
cultural backgrounds the players bring to their experiences are considered strengths,
not design liabilities. As we strive to create engaging immersive experiences,
differing cultural values of designers, developers, stakeholders, and players can
create a myriad of complications and competing desires or expectations. The
Simulation Experience Design Method can serve to socially construct narratives and
establish a shared understanding for thoughtful analysis from which to better ground
assessment and evaluation of human performance, creativity, and expertise [9].

3.2.2 Distributed Cognition Theory

The theory of Distributed Cognition, advanced by Edwin Hutchins [10], provides a
framework from which cognition can be viewed as an ecosystem involving people,
artifacts, tools, and environments. The Simulation Experience Design Method and
Framework applies Distributed Cognition and the notion of “cognition in the wild”
to LX design. Cognition in the wild refers to human cognition as it naturally
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occurs and adapts in the everyday world—situated in culturally constituted human
activity [10]. Distributed Cognition is a distributed, social process in which human
knowledge and cognition are not confined to the individual and often reside in
other people, tools, or artifacts. As we move along the Simulation Experience
Design Method and Framework to supporting learning with technology, we can
see the application of Distributed Cognition. For example, learners may work in
face-to-face teams, but they also use media—papers, pencils, tablets, collaborative
tools, computers, etc. They may engage in dialogue as they walk through Cyber
Scorpion exercises, but they may also take notes or save data to extend their working
memory. Their cognition may be characterized as distributed among artifacts and
people. After the 10-hour test and demonstration, they may have engaged in online
discussions and/or crowdsourced information via social media. Their cognition is
also distributed among persistent artifacts such as digital messages that facilitate
asynchronous collaboration and help them remember, understand, and connect with
others. In this sense, their working knowledge exists among diverse systems and
cannot truly be understood without taking this socially distributed sense-making
into account [11]. Distributed Cognition underpins distributed learning science and
particularly transmedia learning, by providing a grounding theory for the learning
experience facilitated by transmedia ecosystems utilizing diverse media, devices,
and modalities.

3.3 Learner Analysis

The John F. Kennedy Special Warfare Center and School (JFKSWCS) is the United
States Army’s school for professional training of Army special operations forces
personnel. The United States Army JFKSWCS (USAJFKSWCS) is also responsible
for training US Army Reserve and National Guard Civil Affairs and Psychological
Operations conventional forces. As a component subordinate command of the
United States Army Special Operations Command, JFKSWCS enables the Army
Special Operations Force (ARSOF) force modernization and conducts institutional
training through a headquarter, center, and school. There are two formal distance
learning (DL) instances in JFKSWCS training—(1) the Reserve Component Civil
Affairs (CA) Phases 1 and 3 of Captains Career Course and (2) the Psychological
Operations (PSYOP) Reserve Officer Qualification Course Phase 1.

Little was known about the individual learner’s job/role at the time of Cyber
Scorpion learning experience development. However, we assumed that since learn-
ers could potentially be from CA, Military Information Support Operations Com-
mand (MISOC) formerly PSYOP, and SF (Special Forces), we could apply this
general information to the design of a zero-entry environment that would engage
beginners, intermediate, and advanced learners.

We also observed that the learners could be highly motivated individuals who
are risk-takers, adaptive, and competitive. They could speak a second or third
language or be in the process of learning one. Trained in understanding the human
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Table 1 Terminal learning objectives

1. Describe network architecture, browser configuration, and hardware/software for secure
Internet browsing

2. Understand social engineering concepts in cyberattacks (e.g., phishing, waterhole attacks,
lures)

3. Run penetration tests to locate potential security threats (network enumeration using
NMAP, Wireshark)

4. Know how to analyze a network packet capture file
5. Recognize, document, and analyze a successful attack from point of entry, pivoting, and

systems controlled
6. Successfully execute the steps in creating a software exploit

domain, these individuals could have prior knowledge that is relevant to the topic of
social engineering, but not likely network forensics, penetration testing, or reverse
engineering. As they may already be skilled social engineers, their expectations
could be high regarding this topic, and it is likely that this topic will be easiest for
them and of interest. In either case, they would not like to waste their free time,
since they do not normally get a lot of it. Given the background information above,
we concluded that the learning experience be designed to address the variance in
prior knowledge, interest, and familiarity with the technical topics.

3.4 Cybersecurity Terminal Learning Objectives

Informed by the learner analysis, we identified six terminal learning objectives
(TLOs) for cybersecurity that were based on the National Cybersecurity Workforce
Framework [12]. The terminal learning objectives are documented in Table 1.

Given the tactical emphasis of the JFKSWCS, we decided to address terminal
and enabling learning objectives by focusing on providing “hands-on practice” in
the emulated Cyber Scorpion environment.

4 Cyber Scorpion Design

Based on the observations from the learner analysis, our technical approach for
the preliminary user experience demonstration was to design an experience that
facilitated a “zero-entry” mindset intended to incentivize learners’ curiosity to dig
deeper and explore transmedia content. Using The Simulation Experience Design
Method [4], a hypothetical narrative was generated to identify potential challenges
and opportunities that might arise during the learning experience demonstration
[13]. This narrative, or learner sketch, also informed the design of Cyber Scorpion
exercises and its interaction experience approach.
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4.1 Cyber Scorpion Learner Sketch

An excerpt of the full learner sketch is provided in the present section to orient the
reader toward the intended use of Cyber Scorpion in the context of the transmedia
learning demonstration.

US Army Captain Angela Diablo has volunteered for a 4-day cybersecurity transmedia
learning experience. She has volunteered because in her support role as a PSYOP specialist
she needs to leverage cyber technologies to conduct research for the development of PSYOP
campaigns. She’s interested in learning about offensive and defensive techniques. She
arrives at the computer lab and sits in front of an open work area.

The facilitator directs her attention to the devices in front of her: a laptop, a smart phone,
ear buds, and a tablet. She picks up the tablet and notices content on the basics of social
engineering. There is a flashcard game that is fun for a while. She watches a video on
the smart phone. She looks at the clock and 20 minutes have gone by. This background
information is okay, but she wants to test her skills. She logs into the laptop and sees
several applications: a lecture-based cyber security course, some penetration testing tools
with associated exercises, videos and PowerPoint slides, read me files on how to access a
cyber range called Cyber Scorpion, and a game. She starts playing the education game. It
starts out easy, but she soon realizes she doesn’t understand how to solve the challenges.

She decides to brush up her skills with Cyber Scorpion, where she can learn pentesting
and gain hands-on experience. While getting hands-on training in the Cyber Scorpion
environment, she proceeds at her own pace through the scenarios and puzzles by watching
Cyber Scorpion step-by-step video tutorials and accessing other resources available on the
laptop or from the Internet. Cyber Scorpion allows her to use virtual machines from the
web interface without downloading a plug-in. The zero-entry approach gradually increases
the difficulty without overwhelming her confidence. After a few hours of hands-on training,
she’s ready to try the game or go straight to the Cyber Scorpion “capstone” final assessment
exercise.

We anticipated an interaction experience during the demonstration for motivated,
self-directed learning. Cyber Scorpion was designed to increase learner familiarity
and boost confidence. We believed this approach to LX could also engender
curiosity and encourage learners to engage other content longer.

Subsequent sections describe the software development approach and underlying
technology for Cyber Scorpion.

5 Software Environment

5.1 Cyber Scorpion Underlying Technology: Minimega

Cyber Scorpion leverages a distributed virtual machine (VM) lab environment that
is managed by using an open-source tool called Minimega (see http://Minimega.org,
https://github.com/sandia-Minimega/Minimega). Cyber Scorpion reflects a low cost
of entry by being accessible from a modern browser which allows learners to train
from whichever platform they chose, whether that be desktops, laptops, tablets,
or phone. The virtual machine state was synchronized across all their platforms

http://minimega.org
https://github.com/sandia-minimega/minimega


102 E. M. Raybourn et al.

facilitating multitasking and allowing seamless transition from platform to platform.
Thus, Cyber Scorpion was able to provide off-ramps for more connected learning
experiences such as those supported by storytelling across different media and on-
demand, self-directed learning.

Minimega was designed to easily integrate VMs into other systems, training
toolkits, and front-ends through a simple scripted interface.

The Minimega platform can be installed on both commodity desktop Linux
environments for individual training and on clusters of machines, which allow for
large-scale team training/experimentation. Sandia National Laboratories leverages
decades of supercomputing and high-performance computing (HPC) expertise to
provide scale to networks. In extreme scenarios, Minimega has been able to launch
experiments with over 4 million endpoints.

Between 2012 and mid 2013, Minimega supported more than 12 active projects
for university and private industry use that were not involved with Sandia National
Laboratories. Minimega is also used by over a dozen government sponsors for test
and evaluation of hardware and software stacks in representative environments.

5.2 Software Development Approach

Cyber Scorpion focused on providing approximately 10 hours of digital content
(hands-on training environment, video walk-through, and exercises) to introduce
and coach learners on topics consistent with the learning objectives. Straightforward
exercises were developed to incentivize learning in an immersive, realistic cyber
environment. Examples of the analysis techniques, procedures used to perform
offensive and defensive maneuvers, and exposure to common tools were provided.

Micro scenario exercises were designed to “get familiar with tools and tech-
niques” while distilling “key nuggets” of information for micro training sessions,
etc. Videos of “what right looks like” provided lead-ins to problem-based learning.
Cyber Scorpion environment served as a “capstone” final assessment exercise for
the test and demonstration.

Cyber Scorpion is a Jeopardy-style Capture the Flag interface based on the Open-
Source Technology CTFd (see https://github.com/CTFd/CTFd). Identity manage-
ment was handled by the Open-Source Project Keycloak, and when people logged
into their machines at the start of their day for training, they did not have to
log in again. Actions learners performed in the web interface, such as starting or
completing a challenge, were reported to a repository. From whatever platform
users chose to use (tablet, mobile, desktop, etc.), they would be presented with the
responsive web page in Fig. 2.

When a challenge tile was clicked on, the learner was presented with a question
and a link to open a new tab that instantly bridged users into a virtual lab where
they had control of their own remote machines. These machines were required to
solve the challenge and provided real-world hands-on cybersecurity experience. The
following screenshot shows the virtual machine integration in the browser (Fig. 3).

https://github.com/CTFd/CTFd
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Fig. 2 Cyber Scorpion jeopardy framework (CTFd)

Fig. 3 Cyber Scorpion jeopardy framework (Minimega)
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Fig. 4 Cyber Scorpion Jeopardy scoreboard

This session, where learners could control the keyboard and mouse, was shared
and synced live between whatever platform learners chose to use, including a mobile
phone or tablet. The remote machines had training modules with objectives that
when completed netted a secret phrase, commonly referred to as a flag, hence
“Capture the Flag.”

This flag could then be entered by the learner into Cyber Scorpion’s Jeopardy
board, and when submitted, the framework would send predefined progress state-
ments to a repository.

The CTFd Jeopardy framework also has a built-in scoreboard, and during the
competition, administrators could follow what challenges were being completed and
could track the progress of the learners (Fig. 4).

A pilot test was conducted a month prior to the demonstration at Ft. Bragg.
During the pilot test, Cyber Scorpion was able to prove scalability, demonstrating
50 simulated learners heavily using the application. It was concluded that Cyber
Scorpion would demonstrate well as the exercise environment elicited positive
feedback and was proposed by the SME assisting the research team to be the
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culminating learning assessment environment for learners who would later pursue
the network forensics training track.

6 Learner Experience Demonstration and Lessons Learned

A preliminary learning experience demonstration of Cyber Scorpion (and other
technology resources) was conducted at the JFKSWCS, Ft. Bragg, NC, in the
spring of 2017 during a 10-hour period of spaced exposure (2 hours per day
over 4-day period). Sixty-seven learners from ages 18–30, volunteered to use the
resources during the 10-hour period to increase their understanding of cybersecurity
in two different areas: social engineering and network forensics. Participants used
resources at their own discretion. All had prior experience with mobile phones
and computer-based e-learning, but fewer were familiar with tablets, simulations,
and games [14]. Some completed certain activities to achieve badges in “social
engineering” and “cyber apprentice.” To achieve the badge for “cyber apprentice,”
participants completed the pentest exercises in Cyber Scorpion as their culminating
“competency” learning assessment.

Learner anecdotal feedback indicated that the ability to move from an interactive
multimedia instructional (IMI) resource (i.e., game) and Cyber Scorpion (real-world
hands-on cyber range lab) worked well. Participants explored a topic in the game
and then tested their knowledge using Cyber Scorpion exercises.

User feedback was captured during the exercise and in one-on-one interviews
conducted at the end of the demonstration to better gauge whether learners thought
Cyber Scorpion could be better tailored in the future. The learners who volun-
teered for the test and demonstration sessions were mostly nontechnical. Teaching
cybersecurity topics to people of such varying backgrounds is very difficult, and the
feedback illuminated this.

For some, the exercises were too easy, while for others (without command line
experience) they found the exercises appropriate. Without the ability to conduct a
user needs analysis, Cyber Scorpion content was developed to be very direct and
capable of being learned without much prior experience. With more information
about the learners in advance, Cyber Scorpion could have been better tailored to
be more in line with users’ existing knowledge, skills, and abilities (KSAs). It’s
interesting to note that, as predicted, other learners focused on completion badges
and a chance to take home a coin as a prize. These learners achieved their own
training goals by being self-directed and actively sought out exercises that were
interesting to them, which they felt incentivized to complete.

In general, the preliminary learning experience demonstration illuminated valu-
able lessons learned for future development. During this 6-month effort, we
addressed the following research question, “What are the challenges associated with
bringing a zero-entry, cyber range environment to future learning ecosystems that
allow learners and instructors to transition among learning activities, devices, and
modalities?”
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A number of key observations were made during this preliminary development
and demonstration cycle. First, a few factors contributed to Cyber Scorpion’s
successful demonstration:

1. Leveraging open-source frameworks. Cyber Scorpion itself is an open-source
framework, and additional tools such as the scoreboard system were quickly
integrated into its platform.

2. Not attempting to be everything to everyone. Focusing the exercises on tasks
that supported learning objectives is consistent with modern cyber-education
pedagogies. While there is an opportunity to iterate and improve pedagogical
approaches, the “zero-entry” approach appeared to work well given the learners,
the difficulty level of the content, and amount of time on task, and spaced
exposure.

3. Using contemporary technologies. Many educational frameworks are outdated
soon after deployment, and this is especially true with cyber-education frame-
works. The use of a highly configurable, emulated practice environment con-
tributed to its success.

In addition to these success indicators, we observed several challenges or areas
where improvements could be made in future phases. They include:

4. Scalability. We provided small-scale hosting for the Ft. Bragg demonstration via
an ad hoc network connection and development hardware. While successful, the
need for locally hosted infrastructure, scaled to the expected audience, is critical
for continued success.

5. Atypical interfaces. While an S&T goal is to enable personalized, data-driven,
and lifelong technology-enabled learning, many of the envisioned interfaces are
atypical of those most cybersecurity professionals expect to use. By providing a
more generic (workstation, tablet, Android mobile phone, or other OS) accessible
interface, several technical limitations could be avoided.

6. Cybersecurity. Due to the potential sensitivity of learner privacy and data secu-
rity, a design assurance perspective (designing cybersecurity into the prototypes
and subsequent iterations) is recommended when designing new systems for
training and education [15]. Also see Sandia National Laboratories IDART—
Information Design Assurance Red Team (http://www.idart.sandia.gov/).

7 Limitations and Future Work

Cybersecurity training is not nearly as on-demand as required, so learners do not
have the opportunity to continually train as much as they should. Much of the current
practice is either limited to training that is not rapidly configurable, unengaging,
and stale or highly engaging training that is executed by face-to-face teams or via
logistically complicated, over-orchestrated distributed exercises. Sandia intended
to address this gap with Cyber Scorpion, a zero-entry cyber range environment

http://www.idart.sandia.gov/


A Zero-Entry Cyber Range Environment for Future Learning Ecosystems 107

offering off-ramps to auxiliary resources and activities intended to incentivize rich
on-demand, self-directed, transmedia learning.

As noted previously, Capture the Flag (CTF) exercises may not provide ade-
quate, real-time assessments of recorded events or facilitate observation of human
performance without introducing artifacts into the system. Additionally, there is
rarely a standardized concept or methods for offering and assessing the efficacy of
cyber training, even though multiple recommendations to develop and implement
standards have been made [6].

Few CTF exercises are supported with auxiliary material to enable on-demand,
informal learning. Future development could better address this gap through the
application of design principles and methods toward transmedia learning [1].

CTF-style measurement, in the long run, does not have sufficient fidelity to
reveal much about learning that is occurring. Therefore, future research should
focus on capturing and interpreting learner activity in these self-directed exercise
environments.

Future work may consist the following:

• Instrument Cyber Scorpion to share (output) and leverage (ingest) learner data
and/or analytics generated by other systems.

• Design and test human performance-based assessment for immersive environ-
ments.

• Develop more training modules (with varying degrees of complexity and story-
driven off-ramps) for Cyber Scorpion.

8 Conclusion

In the highly VUCA environment that is cyber operations, training is obsolete as
soon as it is deployed. A survey of service strategy documents highlights the shared
belief of the need for training and education modernization and some congruence
on how to achieve it. Modernization will require much more realistic scenarios
utilizing robust models, simulations, and emulations, with adaptive, persistent, and
blended live, virtual, constructive, and gaming environments. According to retired
CYBERCOM Chief of Staff, Air Force Major General Jim Keffer, “We don’t
have—but we need—an exercise environment where you do rehearsals, go against
adversary networks, and figure out ways to better protect your own . . . the team
training, the force-on-force training, that is primarily limited by a lack of a persistent
training environment” [5].

This 6-month effort leveraged an existing technology (Minimega) utilized by
CPT (cyber protection teams) and DOD agencies to facilitate cyber operator mission
rehearsal. The resulting exercise environment, Cyber Scorpion, is a zero-entry
practice/competency mastery environment.

Minimega is used by over a dozen government sponsors for test and evaluation of
hardware and software stacks in representative environments. Because of this, Cyber
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Scorpion can be used for training, mission rehearsal, experimentation, or testing
theories and hypotheses related to training efficacy, human systems integration,
learning science, visualization, and development of data-driven, learner behavior
analytics.

Our technical approach to use Minimega to manage the distributed VMs for
Cyber Scorpion resulted in a robust, stable software environment. Our learning
science approach was successful because the exercises are purposely kept simple,
approachable, and doable—to offset a potentially, unnecessarily complicated learn-
ing experience that may have otherwise introduced increased cognitive load.

In future phases, we anticipate employing better understanding of capturing
learner activity in constructivist environments such as scenario-based simulations
and emulated practice exercises for cybersecurity training and testing.
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Parallel Programming in Cyber-Physical
Systems

Sandro Bartolini and Biagio Peccerillo

Abstract The growing diffusion of heterogeneous Cyber-Physical Systems (CPSs)
poses a problem of security. The employment of cryptographic strategies and
techniques is a fundamental part in the attempt of finding a solution to it.
Cryptographic algorithms, however, need to increase their security level due to
the growing computational power in the hands of potential attackers. To avoid
a consequent performance worsening and keep CPSs functioning and secure,
these cryptographic techniques must be implemented so to exploit the aggregate
computational power that modern parallel architectures provide. In this chapter
we investigate the possibility to parallelize two very common basic operations in
cryptography: modular exponentiation and Karatsuba multiplication. For the former,
we propose two different techniques (m-ary and exponent slicing) that reduce
calculation time of 30/40%. For the latter, we show various implementations of a
three-thread parallelization scheme that provides up to 60% better performance with
respect to a sequential implementation.

1 Introduction

Cyber-physical system, or CPS, is the term used to denote a variety of systems in
which the components are electronic devices that form a network and interact with
the environment via physical inputs/outputs.

They are already shaping the world we live in and are expected to play a
strategical role in the upcoming society and world in general. Their growth and
diffusion are comparable with the “Internet of Things” (IoT) trend, and furthermore
these two concepts share a similar architecture. There are already many examples in
the real world of CPSs, and other examples are going to make their appearance in
near future. For instance, CPSs operating physical plants and production systems,
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monitoring and tracking shipments for optimal logistics, monitoring passengers
and/or vehicles in public transport systems, controlling irrigation in fields depend-
ing on the recorded humidity levels, controlling various aspects and services in
smarthomes and smart cities, smart vehicles and integrated transportation, and so on.

In these connected, distributed, and (semi-)autonomous systems, various facets
of safety and security have a crucial importance [19], specifically the security
of some involved data (e.g., privacy of personal data or safe management of
industrial sensitive information) and, most importantly, the operational security of
the systems/services themselves. It is fundamental to avoid malicious intrusion into
the systems and to avoid data tampering even from sensors and peripheral devices
with reduced computational capabilities. In fact, also this peripheral kind of attack
could hamper the rated functioning of systems up to the risk of possibly inducing
big direct and indirect economical losses to companies and people, severe threats
for human lives, and even public safety of countries [11].

Cryptographic protocols, algorithms, and related techniques are key ingredients,
though not the only ones needed, for securing cyber-physical systems. However,
CPSs pose specific challenges to cryptographic strategies for reaching the overall
security and safety. In fact, CPSs are, first of all, very heterogeneous systems in
their composition and in their distribution both physical logical and also related to
the network connectivity of the various subsystems.

The deployment of security features into systems in general, and into cyber-
physical ones in particular, requires highly efficient implementations from both
performance and energy standpoints. In fact, as security requirements need to
increase over time due to the growing computational power easily available to
possible attackers, cryptographic techniques need to increase their security level
accordingly (e.g., key size). At the same time, the presence of a variety of simple
embedded devices into current and future CPSs introduces a great pressure in
running complex cryptographic calculations fast, reliably, and efficiently even with
scarce computational resources.

1.1 Parallel Architectures

About 15 years ago, uniprocessor design began to approach its limits: the end of
frequency scaling due to heat dissipation and power consumption reaching a critical
threshold [16], the end of ILP (Instruction-Level Parallelism) improvements due
to power growing faster than performance [4], and the emerging of wire-delay
issues which caused communication energy cost to be greater than computation
energy cost [2]. In an attempt to overcome these difficulties and overtake the
impasse, processor manufacturers embraced the replication of components as the
main form of technological evolution. Mainly, multiple cores of execution have
been shipped into processors, which are now multi-cores by default. A core works
like a traditional processor and can have specific connectivity, and resource sharing
(e.g., caches), with other cores in the same processor chip. Parallelism became the
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Fig. 1 Historical trend of microprocessors’ technological evolution. Single-core frequency has
stopped in 2004, and single-core performance has obtained only marginal improvement since then

driving force in the industry, and all the signals currently suggest that there will be
no inversion of the trend anytime soon, as depicted by Fig. 1.

From the end user point of view, the parallel revolution did not always bring
him/her the performance wonders promised. On the contrary, in some cases, a
simplified design of the parallel cores with respect to the highly complex single-core
processors of a previous generation caused users’ programs to perform even slightly
worse than before. In general, in order to exploit the aggregate computational
power of multi-cores, a program needs to be reorganized in concurrent, possibly
independent units of execution.

As confirmed from the data in Table 1, nowadays, processors are more and more
parallel. Apart from multiprocessors (desktop and server) having reached about tens
of cores, GPUs and so-called many-core devices can count on even thousands of
cores (e.g., 5120 for the NVIDIA Tesla V100 board), thus pushing the hardware
parallelism further. The tendency, however, is not limited to the desktop world,
and also mobile and embedded devices are evolving in the direction of an ever-
increasing parallelism. It is now common to have smart-phone SoCs with eight
cores, plus a powerful GPU, DSPs, and even some purpose-specific processing
unit (e.g., for deep learning applications). So, it is not an isolated phenomenon, but
rather a general trend in the industry and the main source of innovation in hardware
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Table 1 General features of some Intel processors, NVIDIA CUDA-enabled GPUs, and Snap-
dragon System on Chip (SoC) over time

Cores (threads)

Launch [CPUs ] SM Frequencies

Model year (CUDA cores) [GPUs] GHz (turbo) Notes

Intel Pentium-4 2000 1 (1) 1.3–3.8 (–) Desktop CPU

Intel Pentium-4 NW 2002 1 (2) 3.2–3.8 (–) Desktop CPU

Intel Core 2 Duo 2007 2 (2) 1.86–3.33 (–) Desktop CPU

Intel i7 Bloomfield 2008 4 (8) 2.13–2.66 (3.3) Desktop CPU

Intel i7 Coffee Lake 2017 6 (12) 3.2–3.7 (4.3) Desktop CPU

Intel Xeon E7-v4 2016 24 (48) 2.0–2.4 (3.4) Server CPU

NVIDIA GeForce 6xx 2012 16 (512) 0.5–1.0 PCIe GPU (4 GB RAM)

NVIDIA GeForce 9xx 2015 Up to 96 (3072) 0.9–1.17 PCIe GPU (12 GB RAM)

NVIDIA Tesla V100 2017 160 (5120)a 1.38 PCIe GPU (16 GB RAM)

Snapdragon 820E 2018 4+4b+DSP+GPU(256) 2.2 (0.7 GPU) Mobile SoC

The increase of core number is sustaining Moore’s law. Clock frequency has substantially saturated more
than 10 years ago. GPUs are increasing their memory capacity to exploit local and massively parallel
computations
aPlus 640 Tensor Cores for AI deep learning and inference
bCustomizable cores

manufacturing at the present day. For this reason, it is completely reasonable to
think that also the upcoming IoT devices will join this trend.

2 Parallel Programming in CPSs

As specified before, the only way to harness the power of the modern, parallel
architectures is to explicitly design applications as composed by concurrent units
that can execute in parallel. For this reason, parallel programming techniques should
be central in education so to give the programmers of tomorrow a fundamental tool
that is gaining even more importance during the years as CPSs spread across the
world and the demand for reliable, efficient, cryptography-based security grows.

Identifying concurrent activities in applications and programming their execution
in parallel are however not trivial because it requires an unprecedented multidisci-
plinary approach encompassing also operating system interaction, synchronization
between parallel activities, non-determinism in the execution interleaving of the
different cores, etc. Since years also other technology-induced issues must be taken
into account for effective parallel programming. In fact, Fig. 2, taken from a famous
Bill Dally’s Keynote in 2010, witnesses a paradigm change in computer engineering.
Specifically, it shows that the energy to perform a double-precision operation in a
processor (20 pJ) is 10× smaller than the energy needed to move the operands from
halfway the typical size of the chip (256 pJ) and 50× smaller than moving them
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Fig. 2 Comparison between the energy needed to perform a 64-bit double-precision operation
(20 pJ) and the energy for moving the operands at various distances on-chip and off-chip (circa
year 2010). Since years, communication energy cost exceeds by far the computation cost [2]

from the opposite chip corner (1 nJ). Therefore, nowadays we need far more energy
to bring operands to the cores (across the chip) than to perform the operation on
them. As energy is tightly linked to time at the technological level, this means that
an increasing amount of time is needed to bring data around the chip compared
to traditional processors. This time is far bigger than the time to perform many
operations: in fact around 30 cycles can be observed to communicate corner-to-
corner on-chip and only one cycle to perform an integer addition in the functional
unit. In parallel programming this fact hampers also the possibility to quickly
coordinate processing cores on-chip within a parallel computation. Essentially, for
efficiency and performance scalability in nowadays computing systems, elaboration
must be as local and parallel as possible.

In this chapter we will go through the analysis of two cryptographic algorithms in
order to devise possible parallelization strategies that can improve their performance
on parallel architectures. As we will see, the intrinsic sequential nature of these
algorithms makes this approach quite challenging, but nonetheless we will highlight
interesting performance margins to be exploited.

Specifically we will focus on parallel approaches to:

• Modular exponentiation: m-ary and exponent slicing approaches
• Karatsuba multiplication

These cases are significant in cryptography because Karatsuba multiplication [7]
and derived approaches are typically used to efficiently multiply multi-precision
numbers (hundreds/thousands bits long). Then, modular exponentiation is the
operation on which RSA [15] public-key cryptographic protocol is based.
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We will adopt an educational approach to present, highlight, and discuss such
case studies. This will allow us to underline the key features, along with the
opportunities and limitations, of different parallel programming approaches in
this specific application domain. As a consequence, we will favor clarity and
focus on principles without looking for the ultimate performance/optimizations in
the algorithms and in the parallelization strategies. For the same reason, we are
using algorithms that are known to be vulnerable to both cache and timing side-
channel attacks [6, 9, 14], but their simplicity allows us to explain some parallel
programming concepts more easily. For sure, the highlighted principles will be
applicable in general and not limited to the cases used for their explanation.

2.1 Experimental Methodology

We have implemented the described algorithms in modern (i.e., post 2011) C++
programming language and compiled the programs with g++ 6.3 compiler with -
O3 optimization flag and selecting C++14 version. We relied on GMP [17] library
for the implementation of arbitrary precision numbers and for measuring some
reference performance of the considered algorithms.

Performance was evaluated considering repeated executions with enough iter-
ations to amortize warmup effects in processor internals and caches. Moreover,
the execution time of each experiment was tuned to be exceeding some hundreds
of seconds so that operating system time quantum and (re-)scheduling would not
significantly affect results.

Experiments were performed on machines running Linux Debian versions 8
and 9.

2.2 Modular Exponentiation

Modular exponentiation (see Eq. (1)) is the key mathematical operation that allows
the implementation of RSA cryptographic protocol for both encryption and decryp-
tion operations. Exponentiation applies to numbers (base and exponent) big as the
key size, which depends on the desired level of security. Even if typically the public
exponent is small (e.g., 65,535), bases and private exponents are as big as the key
size. Currently key sizes deemed secure are at least 2048/4096 bits long, and in near
future such sizes are expected to grow [3]:

Me mod n (1)

The square-and-multiply, or binary method, allows the implementation of mod-
ular exponentiation through repeated modular squares and multiplications of the
partial results with the base. The method relies on the binary expansion of the
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Algorithm 1: Square-and-multiply modular exponentiation algorithm
Input: M, e, n

Output: C =Me mod n

begin
if ek−1 == 1 then C := M else C := 1 ;
for i = k − 2 downto 0 do

C := C · C mod n ;
if ei == 1 then C := C ·M mod n;

end
return C ;

end

exponent e = (ek−1, ek−2, . . . , e1, e0), having k bits, and on the observation that
e = ∑k−1

i=0 ei2i . Therefore, the exponentiation can be calculated according to
Algorithm 1 [8].

Essentially, the core part of the algorithm scans exponent bits from the most
significant one, and it performs a square on each partial result. Then, depending on
the bit being “1” or “0,” it performs or not, respectively, an additional multiplication
with the base M.

These experiments were run on a dual-Xeon machine with 64 GB RAM, evenly
split between the sockets close to each processor. Processors were Xeon E5-2650 v2
operating at 2.60 GHz (3.4 GHz turbo) and featuring 8 cores (16 threads, thanks to
Hyperthreading SMT1 [18]). Each core has 32 KB, separated instruction and data,
private level-1 (L1) caches, and a private 256 KB level-2 (L2). Each processor has
a 20 MB level-3 (L3) cache shared between all the cores, 64 GB RAM machine.

2.2.1 m-ary Approach

The m-ary method is the generalization of the binary one. While in the latter the
scanning of the exponent is done one bit at a time, in the former the bits are visited
in groups of log2(m) at a time. So, for m = 2, the two methods coincide.

The method is described in Algorithm 2 [8].
Here, the k bits of the exponent are decomposed in s groups of r bits each so

that r = log2(m) and k = sr . A padding of r—(k mod r) zeroes may be necessary
if r does not divide k. For each group i of bits, Fi represents the binary value of
the group. For each possible value of Fi , ı.e., w = 0, 1, . . . ,m − 1, excluded the
trivial ones 0 and 1, the w power of M is pre-computed and stored. Then the k bits
are scanned in groups of r from the most significant to the least significant. For
each group, the partial result is raised to the 2r = m power and multiplied by MFi

modulo n.

1Simultaneous multi-threading.
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Algorithm 2: m-ary modular exponentiation algorithm
Input: M, e, n

Output: C =Me mod n

begin
Compute and store Mw mod n for w = 2, 3, . . . , m− 1 ;
Decompose e into r-bit words Fi for i = 0, 1, . . . , s − 1 ;
C := MFs−1 mod n ;
for i = s − 2 downto 0 do

C := C2r
mod n ;

if Fi �= 0 then C := C ·MFi mod n;
end
return C ;

end

The main advantage of this method over the binary method is that it can reduce
the number of multiplications performed. By increasing m, the number of steps
necessary to scan the exponent decreases, and so does the number of multiplications,
since there is at most one for each step. However, when increasing m, the number
of pre-computed powers of M grows accordingly, and thus it is not trivial to guess
the optimal value of m.

An important source of performance comes from the possibility to calculate the
exponentiation by employing Nt -independent threads of execution. This can be done
by expressing the exponent e as a sum of exponents ẽj for j = 0, 1, . . . , Nt ,
calculating the single exponentiations independently, and then multiplying the
partial results together as Eq. (2) shows:

e =
Nt∑
i=0

ẽi ⇒ Me mod n = M
∑Nt

i=0 ẽi mod n =
Nt∏
i=0

Mẽi mod n (2)

The easiest way to construct Nt exponents ẽj that sum to e is by dividing the bits
in Nt different sets that cover the whole exponent, copying the bits of each set j in
the same positions in exponent ẽj , and zeroing the other bits.

This is exemplified in Fig. 3 where the bits of the original exponent e are split into
four exponents ei using a comb-like approach. Each colored zone of the exponents
has width r = log2(m) bits. In this way four threads can calculate in parallel, and
independently, Ri = Mei , i = 0, 1, 2, 3.

We consider a definition of the j -th set as composed by the bits in the i-th group
of r = log2(m) bits with index i = j + hNt , where h = 0, 1, . . . . Or, in other
words, the groups of bits whose index i is such that i mod Nt = j . So, the j -th
exponent ẽj is defined as shown in Eq. (3):

ẽj =
s−1∑
i=0

F̃i2ir , F̃i =
{

Fi if i mod Nt = j

0 otherwise
(3)
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Fig. 3 Sample parallelization scheme for m-ary modular exponentiation with four threads

This algorithmic approach requires a limited computational overhead both (a) in
the setup of the parallel computation and (b) after the parallel execution to obtain
the overall result R. In fact, the former requires to allocate space and fill the ẽj

exponents for the threads, which is relatively fast being O(k). Then the final step is
performed by the main thread, once all parallel threads have finished their work,
and consists in three modular multiplications between the Rj partial results to
obtain R. Both these conceptual steps require a small time compared to the modular
exponentiations Mẽj performed in parallel. It is interesting to underline that m-
ariety and parallelization degree are independent design variables of the algorithm
implementation and can be tuned independently to maximize performance on a
specific platform.

From the performance point of view, however, the expected speedup of the
parallel m-ary exponentiation compared to the serial one cannot be expected to
be huge. In fact, Fig. 3 highlights that the work to be performed by each thread
appears very similar to the one of a serial implementation, i.e., one thread doing the
whole Me computation. And, in particular, the third thread dealing with the most
significant bits of e actually manages an exponent which is as long as e itself. The
performance improvement can derive from the fact that each thread, by construction,
deals with exponents ẽj which exposes fewer 1 bits than e: statistically, half of the
bits of the colored parts. Therefore, despite performing a modular squaring for each
bit in ẽj , the number of multiplications performed by each thread is about k

Nt ·2
instead of k

2 .
Then, m-ary method itself requires a pre-computation step for calculating the m

(2r − 2) nontrivial2 multiples of base M , which need to be conceptually available
before the exponent scan from the threads. For this reason, pre-computation

2M0 = 1 for every non-zero M , and M1 =M .
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overhead exponentially increases with m, so we have explored the possibility to
work in parallel also on the pre-computation of the m powers of M . Basically,
we split such work between some pre-computation threads and calculated via
GMP/MPIR functions.

Figure 4 shows the achieved performance of various implementations of a
parallel m-ary modular exponentiation for key sizes of 2018, 4096, and 8192.
Performance is measured in elapsed time to complete a computation, so less is
better. The green area is bounded by square-and-multiply performance, so every
sample in this area performs better than the basic implementation. For each curve,
the number of threads employed in the main computation is highlighted (thr) along
with the threads employed in the pre-computation of the powers of M (thPr). These
threads are started together with the others and are used to calculate the factors
necessary in the multiplications. GMP/MPIR indicates the achieved performance
by the reference highly optimized, sequential, GMP-library implementation.

In Fig. 4a, relative to 2048-bit operands, the best configuration is four threads,
four pre-computation threads, and m = 22. The corresponding performance
improvement is 26% with respect to square-and-multiply. As a side observation,
we can see that threading, especially in pre-computation, allows the scheme to
be more performance-stable when m-ariety is varied. Specifically, pre-computation
parallelism is required to support exponentiation parallelism.

In Fig. 4b 4096-bit performance is shown. In this case the best configuration
is eight threads, four pre-computation threads, and m = 23, for a performance
improvement of 26%, again, with respect to binary method. However, also four
threads perform very close to such one.

Finally, Fig. 4c corresponds to the biggest key size measured (8192) and shows
that the performance gain is up to 23.5% with respect to square-and-multiply when
eight threads, four pre-computation threads, and m = 22 are employed. Again, also
four threads can reach almost the very same performance.

All these figures show that elapsed time grows exponentially when big values of
m are used. This is due to the fact that the powers of M that need to be pre-computed
grow exponentially with r , which increases linearly on the x-axis in the figures. So,
for big ms, pre-computation dominates the whole calculation time.

A possible solution is to avoid calculating the powers of M in advance. In fact,
as m grows, the probability of needing each power of M in the exponent decreases,
and thus there is no guarantee that all of them are actually needed. We thus explore
a variation of the illustrated method in which there are no pre-computation threads.
When a thread needs a power of M , it accesses the shared pre-computation table
and uses the required entry, if present; otherwise it calculates it on-demand and put
it in the table for future uses by itself or other threads.

Figure 5 shows that on-demand calculation generally improves performance
compared to preliminary computation of all powers, shown in Fig. 4b. In this case
the best configuration delivers a 27% improvement with only three threads and
m = 26 or four threads and m = 24. As expected, the pre-computation overhead
is far better amortized even for bigger m-ariety. Interestingly, performance becomes
less sensitive than before to thread count, making this approach more flexible to
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Fig. 4 Performance of m-ary modular exponentiation for different thread count and m-ariety.
2048-, 4096-, and 8192-bit key sizes. The top limit of the green zone represents the speed of
the plain sequential square-and-multiply, while X_thr(Y_thPr) data represents a version with
X computation threads with Y threads dedicated to pre-calculate the required M multiples.
GMP/MPIR is the highly optimized sequential modular exponentiation in GMP/MPIR libraries.
(a) 2048-bit. (b) 4096-bit. (c) 8192-bit
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Fig. 5 Performance of parallel m-ary modular exponentiation with 4096-bit operands and
on-demand calculation of the required powers of M

accommodate on processors with different number of cores. From two threads
onward, performance increases significantly with thread count only for m-ariety
bigger than 26.

From the parallel programming standpoint, this implementation needs to impose
synchronization between the working threads only when they attempt to pre-
calculate the same multiple of M . In fact, if one thread needs a specific multiple
Mu when another thread is already pre-calculating it, we need to stop it and let it
wait the result from the other one for both consistency of the table entries and to
avoid performing redundant work. Paradoxically, it could be interesting to analyze
an additional variation of the scheme, where the second thread calculates the same
power even if the first is already calculating it. In fact, due to wire-delay issues
on-chip and inter-thread synchronization delays, it may be that this approach can be
slightly faster because the threads never stop. Obviously only the first who computes
the given power must update the shared table. The other(s) must not update the table
and simply discard the power that they used locally. We leave the evaluation of this
variant to the interested reader.

2.2.2 Slicing Approach

Exponent “slicing” is a pretty intuitive way for approaching work splitting in
modular exponentiation so that parallel threads can work on independent exponent
slices in parallel. The binary expansion of the exponent is divided in Np partitions
so that e = (ek−1, ek−2, . . . , e1, e0) = (pNp−1, pNp−2, . . . , p1, p0). By denoting
with Bj the number of bits of the j -th partition, the following equation holds:

e =
k−1∑
i=0

ei2i =
Np−1∑
j=0

Bj−1∑
i=0

ei+sj 2i+sj =
Np−1∑
j=0

ẽj (4)
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where sj is the index of the least significant bit of the j -th partition or expressed in
formula:

sj =
j−1∑
h=0

Bh (5)

So, the exponent can be expressed as a sum of addends ẽj , each one determined by
a single partition, and thus the slicing method is eligible for parallelization as done
before. It’s also important to note that the binary expansion of each addend is just
the few contiguous bits of the partition followed by a number of zeroes that amounts
to the sum of all the bits of all the previous partitions. When applying the square-
and-multiply approach to each exponent ẽj , modular multiplications are performed
in the initial non-zero portion only, while the subsequent stride of contiguous zeroes
induces only repeated modular squarings.

The number of non-zero bits of each partition Bj can be chosen in various ways.
A naïve but very intuitive approach is to divide the exponents in chunks of the same
size, so Bj = k/Np for j = 0, 1, . . . , Np − 1, as exemplified in Fig. 6. This
leads to a quite unbalanced distribution of operations among the threads. In fact,
the exponent is bigger when hosting the bit partitions on the most significant side
of the original exponent. All exponents ẽj would expose the same average number
of multiplications but with a very different number of squarings. A more balanced
approach would aim to reduce Bj as j approaches Np − 1 so that it would require
less multiplications to compensate for the increased number of squarings.

In this sense, Lara et al. [10] present an optimal method to calculate the partition
sizes depending on Np and considering “0” and “1” values as having the same
probability to appear in the binary expansion of the exponent. Furthermore, they
propose also a way to determine the optimal number of partitions Np .

Fig. 6 Sample parallelization scheme exploiting exponent slicing in modular exponentiation with
three threads
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From the parallel programming viewpoint, the preparation of the exponents ẽj to
enable the parallel working threads has a complexity which is linear with the number
of bits of the exponent and with the number of threads to activate, as in the m-ary
approach described in Sect. 2.2.1. In particular, the exact overhead can be expected
to be even slightly smaller because (a) some exponents are fairly smaller as their
average size is k/2 and (b) the non-zero part of each exponent can be filled from the
original exponent with a contiguous copy of processor words and bits, exploiting
more likely its cache locality. The final reduction of the partial results into the final
result R = Me works exactly as in the m-ary method, i.e., requires Np − 1 modular
multiplications. For these reasons, the measured performance differences can be
reliably attributed to the core part of the parallel exponentiation algorithms.

Performance-wise we can expect a speedup over the serial version similar, if
not smaller, than in the m-ary case, especially for evenly split exponents. In fact
the overall result can be computed only when the thread dealing with the longest
exponent has finished. Such exponent has the same length as the original one and
features the same average number of 1 bits, which require multiplications, as in the
longest exponent in the m-ary approach. The main structural difference between
such exponents is that in the slicing method, all ones appear at the start of the
exponent scan, while in the m-ary they appear periodically interleaved with some
groups of zeroes.

Figure 7 shows the achieved performance of parallel modular exponentiation
with different exponent partitionings and operand sizes. All the partitionings have
been obtained by varying Np and by determining each Bj as explained in [10], so
to balance optimally the work between threads.

Slicing into three or four parts (threads) is typically enough to get the maximum
benefit. For 1024- and 2048-bit number size, the slicing approach reaches up to

Fig. 7 Performance of parallel modular exponentiation with slicing method in correspondence of
different exponent partitionings and operand sizes
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35–40%, while it reliably reaches 30% for bigger number sizes. Then, in our
platforms, we observe that the optimum splitting does not deliver the maximum
performance improvement.

Comparing the performance of the slicing approach to the m-ary method, we can
observe that, counterintuitively, the first is marginally faster than the latter and that it
is far more robust in the speedup over the serial version when considering different
numbers of threads and for the various key sizes.

At the same number of threads, given that the performance of each of the two
methods is limited by the execution time of the thread that is assigned with the
longest partial exponent and that the two exponents differ only in the localization of
the non-zero bits, the performance differences between the two approaches are due
to two combined effects: (a) in the m-ary case, the pre-computation of the needed
powers can bias the execution of m-ary, even if it is then amortized when reusing
the same power, and (b) the sequence of successive zeroes is only one, and far
longer, in the slicing method. The net effect of (a) can be considered in favor of
m-ary especially in the on-demand variation because only the required powers are
computed and potentially reused along the exponent. So the reason why the slicing
method is quicker can be attributed to the faster execution of the repeated modular
squarings. This can be justified considering how modern processors work. In fact,
a repeated small sequence of instructions executed many times in a row (i.e., many
successive squarings in slicing method) performs faster than the same number of
squarings interleaved with modular multiplications in the m-ary approach, mainly
due to better cache locality and branch predictor accuracy.

2.2.3 Conclusions: Modular Exponentiation

Overall we have illustrated two parallelization approaches for the modular exponen-
tiation algorithm, m-ary and exponent slicing, with also an on-demand variation in
case of the m-ary one. We have discussed some aspects related to the interaction
between the parallelization in itself and the specific parallelized algorithms. Fur-
thermore, we can conclude that the m-ary approach can achieve up to about 26%
speedup over the serial version using four threads for 2048- and 4096-bit numbers,
while about 23% for eight threads in the 8192-bit case. A variation that allows to
pre-compute powers only when needed, and once for all threads, shows to be very
robust against thread count and m-ariety and reaching reliably around 27%. Then
the slicing method appears the most robust and the fastest among the considered
ones, reaching 35–40% speedup for 1024- and 2048-bit key sizes and reliably 30%
for bigger ones and using small number of threads.

Considering that modular exponentiation is not trivially parallelizable and that,
conversely, it has sequential semantics intrinsically in the algorithm, the achieved
speedup can be regarded as interesting for speeding up modular exponentiation in
devices that, after all, typically have multiple cores available. In fact, if we are
dealing with a datacenter implementing RSA algorithm, we can reduce by 30%
the number of machines required for the number of concurrent connections. At the
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other extreme of the architecture spectrum, one can think of a smartphone that can
perform a session-key exchange 30% faster, or in the same time but requiring 30%
less clock rate.

2.3 Karatsuba Multiplication

Many cryptographic algorithms rely on the modular multiplication of big numbers
(x ·y mod n) and in turn on multiplication itself. For instance, as seen in the previous
section, it constitutes the core part of modular exponentiation.

For this reason, multiplication is typically used repeatedly in cryptographic
routines, so its efficient implementation is of the utmost importance. A number of
research studies and implementations have been proposed during the years [1, 13]
for high-performance multiplication of big, multi-precision numbers. Here in the
following, we present a parallel implementation of the Karatsuba approach [7].

When multiplying two k-bit numbers x and y, the result x · y is a 2k-bit
number, which is reduced back to k bit after modulo calculation. The complexity
of the pencil-and-paper algorithm for multiplication grows quadratically with k,
O(k2) asymptotic complexity. Conversely, Karatsuba method reduces the big-O
complexity down to O(k1.583). The scheme is based on a divide-et-impera strategy
along with the reuse of some partial results.

Specifically, if m is a number such that 0 < m < k, the two operands can be
expressed as:

x = 2mx1 + x0 (6)

y = 2my1 + y0 (7)

And their product can be expressed as:

x · y = (2mx1 + x0)(2my1 + y0) = 22mx1y1 + 2m(x1y0 + x0y1)+ x0y0 (8)

So, it is possible to express the product of two numbers in terms of multiplications
and additions of smaller elements. By choosing m = k/2, the operation is balanced
and the four products are k-bit terms each. Also, the multiplications for powers of
two can be obtained as simple left-shift operations in binary arithmetic.

However, from the complexity point of view, this is not an improvement as the
asymptotic complexity to perform a k-bit multiplication (≈ k2) is the same as the
one required for performing four k/2-bit operations (≈ 4 · (k/2)2 = k2).
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So, Karatsuba algorithm introduces a clever rewriting of the m = k/2 multipli-
cations, as highlighted in Eq. (9):

t0 = x0y0

t2 = x1y1

t1 = (x0 + x1)(y0 + y1)− t0 − t2 = x1y0 + x0y1

x · y = 22mt2 + 2mt1 + t0

(9)

The number of multiplications between m-bit operands is reduced from four
to three, but the number of additions is increased from three to five. Since the
complexity of additions grows linearly with m, the whole operation gains in
efficiency both in practice and, asymptotically, when m grows.

Coming to possible parallelization strategies, we observe that the calculation of
ti terms is independent of each other, and so a natural way to express Karatsuba in
parallel is by using three threads, the main one with two other helper threads. Once
all the ti terms have been calculated, they can be properly shifted and added together
to obtain the final result, as visualized in Fig. 8.

As in the modular exponentiation case, let’s analyze whether the parallelization
scheme can be reasonable or not. Essentially we must evaluate the overhead of
activating, i.e., spawning, the working threads and of composing the final result
out of the partial results of each thread.

Each thread performs a multiplication, and two of the three can immediately use
the original operands, the high and low part of x and y, respectively. The operands
of the third thread must instead be prepared. So, memory space for the additional
numbers must be allocated and the numbers filled according to Eq. (9). In this,
the most time-consuming operation is the memory allocation, if such temporary
space is not maintained available across successive multiplications. The required
subtractions are the remaining operations to be done and, being linear in the number
size, they are far faster than the multiplication itself. When the threads complete
(see Fig. 8), the three partial results need to be merged through scaling, i.e., bit

Fig. 8 Karatsuba multiplication computes a k-bit multiplication using only three k/2-bit ones,
reducing asymptotic complexity and execution time
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shifting and actually almost zero-complexity word-level shifting, and additions.
All such operations are fast and linear with k. Therefore we can conclude that, in
principle and considering the asymptotic complexity, this Karatsuba parallelization
is promising.

Then, in order to achieve a speedup in practical cases, that is, considering
interesting number sizes (thousands bits), we have to consider such overheads also
in terms of time. There is another implicit overhead that must be considered: how
fast the operating system allows the program to spawn new threads compared to the
multiplication time. In fact such time is typically in the critical path of the parallel
processing and could potentially decrease the theoretical speedup.

We implemented the sequential Karatsuba algorithm, where all three multiplica-
tions are performed in the same main thread, as a reference for the parallel versions.
Table 2 shows the execution time of the sequential Karatsuba algorithm (Kara_seq),
as well as the one of the highly optimized sequential multiplication of GMP library
(GMP_mul), for various bit sizes on an Intel E5-2650 v2 machine. These values
need to be compared to the spawn and join time of a thread. Incidentally, we observe
that the GMP_mul algorithm is almost three× faster than our simple implementation
of Karatsuba for 1024-bit numbers, but only 13.7% faster in case of very big
numbers (65,536-bit). This is probably due to some optimizations that we are
missing in our purposely simplistic code, but the overall asymptotic complexity
appears to be similar.

Table 3 shows the measured spawn and join times of a thread on three Linux
machines. Specifically, we have repeatedly generated and joined an empty thread
from the main one and measured the required average elapsed time. We have also
evaluated the quotes for thread spawning and joining time, separately.

Table 2 Execution time (μs)
of sequential GMP-library
and Karatsuba multiplications
for various bit sizes

Bits GMP_mul (μs) Kara_seq (μs)

1024 0.616 1.727

2048 0.874 2.291

4096 2.579 4.070

8192 7.865 9.558

16,384 21.161 26.396

32,768 55.902 67.858

65,536 153.327 174.204

The simple handcrafted Karatsuba version
is 2.7× slower than GMP one for 1024-bit
numbers but only 13.7% slower for 65,536-
bit

Table 3 List of the times
needed to spawn and join a
thread on three different
Linux machines

Processor Spawn (μs) Join (μs) Total (μs)

i7 2600 6.5 9.5 16.0

Xeon E5-2650 v2 4.3 5.8 10.1

i7 6800K 4.4 6.0 10.4
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Fig. 9 Execution time (μs) of various parallelization approaches of the Karatsuba multiplication
algorithm on an Intel i7-2600 machine. Karatsuba sequential (Kara_seq) and two variations of
the parallel Karatsuba (Kara_thrAs and Kara_thr) are shown. Furthermore, the sequential highly
optimized GMP multiplication (GMPmul) is also indicated for overall reference

From the comparison between Tables 2 and 3, we can see that the thread
management overhead alone is not only comparable with the expected execution
time of each of them, but most importantly, it is even dominant for number sizes
smaller or equal to 8192 bits.

This observation is confirmed in Fig. 9 which highlights that our simple parallel
Karatsuba approach (Kara_thrAs and Kara_thr series) improves over the serial ver-
sion (Kara_thr) by about 40% and 50% only for 32,768-bit and 65,536-bit numbers,
respectively, on an Intel i7 2600 machine. For 16,384-bit ones, performance is the
same as in the sequential version. For smaller numbers, parallel Karatsuba exhibits
a slowdown as the execution is dominated by the unavoidable thread spawn-join
overhead. In fact, the latter last about 4×–6×more than the parallel multiplications
performed. From a practical perspective, the speedup for so big numbers, and thus
key sizes, is quite beyond the current and short-term security requirements, and so
it is not exploitable. On the other reference machines, results are slightly different
numerically, but the trend is exactly the same; therefore we are not showing them
for space reasons. The core part of the source code of Kara_seq and Kara_thrAs
versions is shown in “Appendix: Sequential and Basic Parallel Code for Karatsuba”
at the end of the chapter.

As a sidenote, Kara_thrAs and Kara_thr represent the same conceptual paral-
lelization approach where the parallel activities are implemented via std::async

and std::thread [5] C++11 classes, respectively. The outcoming performances are
very similar as both are implemented in terms of the same operating system threads.

Based on these results, we can conclude that a standard parallelization strategy
that generates the required threads on-demand does not work very well on reason-
ably sized keys because of the intrinsic time needed to generate and deallocate such
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threads even if, from the application point of view, both work splitting and partial
result recomposition steps are negligible compared to the parallel execution and
would be compatible with an effective parallelization.

Given this, we have then tried to apply more advanced parallel programming
approaches for reducing the thread management overhead, and we have done it in
incremental complexity steps.

The first approach is based on a thread pool that works as follows:

• The so-called worker threads are always active and wait on a condition variable
in an infinite loop.

• The main thread fills the input structures of the worker threads and triggers them.
• They compute the partial multiplications, store the results in a shared data

structure, and block again.
• The main thread retrieves the partial results or block until they are produced.

The blocking/triggering of the worker threads is performed using condition
variables and mutual exclusion (mutex) thread synchronization constructs, within
C++11 standard, and is implemented interacting with the operating system sched-
uler and user-space semaphores.

We can expect this approach to improve over the previous one if the thread
synchronizations are significantly faster than thread spawn/join operations. We
measured that the time to unblock a thread in this scheme, and on the same
considered machines, is within 2.3–4.2 μs. Therefore, it is about 2.5×–4× faster,
but it is still comparable with the execution time of multiplications on reasonably
sized numbers (2048–4096-bit). So we can expect to, at most, break even with
the sequential Karatsuba only when multiplying 8192-bit numbers and achieve
speedups only for bigger numbers.

This trend is confirmed by the Kara_InfThr bars shown in Fig. 10 as values
normalized to the sequential Karatsuba version for our Xeon machine. Interestingly,
beyond 16,384 bits, the parallel version outperforms even the highly optimized
sequential GMP multiplication.

Lastly, Fig. 10 shows an additional bar, Kara_infThrLF, which corresponds to a
further refinement of the Kara_infThr implementation. Specifically, it reduces the
mutex and condition variable wake-up costs by using lock-free [12] data structures
for inter-thread synchronization. Here the programming effort is higher than in the
previous cases, but the investment pays off as it allows a performance improvement
of 17%, 33%, and 41% for 4096-, 8192- and 16,384-bit keys, respectively.

In conclusion, thanks to these advanced parallel programming techniques, these
results demonstrate significant acceleration of Karatsuba multiplication for security
levels which are very interesting nowadays and in near future applications (i.e., 4096
bits and soon 8192 bits).
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Fig. 10 Execution time of various parallelization approaches of the Karatsuba multiplication algo-
rithm on an Intel Xeon E5-2650 v2 machine, normalized to sequential Karatsuba (Kara_seq) per-
formance. Four variations are considered: Kara_thrAs, Kara_thr, which use the same approach and
differ only in the C++ parallelization construct, std::async vs. std::thread. Kara_InfThr
employs worker threads in an infinite loop for reduced start-up time, and Kara_InfThrLF further
reduces runtime overhead using lock-free thread synchronization. The sequential highly optimized
GMP multiplication, GMPmul, is also indicated as an overall reference implementation

3 Conclusions

Cyber-Physical Systems are emerging as very crucial assets of our future society
in order to achieve highly efficient and effective services and systems within
production, transportation, energy management, homes, social life, and business
in general. These systems will be distributed, heterogeneous, and connected to
the Internet and toward a multitude of application-level protocols to promote
integration. Securing these systems will be of the utmost importance and will require
to operate on different kinds of devices and, ultimately, processing elements, within
desktop and server computers down to embedded, personal, wearable, and IoT
devices. In this chapter we have highlighted the evolution of processors toward
parallel architectures composed of an increasing number of cores, which contribute
to the overall aggregate computational potential of the chip. However, to harness
such increasing aggregate processor speed, applications must expose independent
activities to be executed as much as possible in parallel by the available cores. Unfor-
tunately, cryptographic algorithms, and the underlying mathematical primitives,
typically expose a sequential nature as the final result is obtained in steps where
each step depends on the previous one like in the sequence of multiplications and
squarings in the square-and-multiply modular exponentiation. We have discussed
and analyzed the possibility to parallelize a pair of mathematical operations which
are very relevant in cryptography: modular exponentiation (e.g., used in RSA)
and Karatsuba multiplication of multi-precision numbers. We have compared two
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possible approaches for parallelizing the m-ary and exponent slicing approaches
for modular exponentiation, and we demonstrate to reach up to −30/−40% across
various key sizes and for 3/4 threads.

Then we have investigated various parallel programming techniques, with
increasing coding complexity, for multi-precision Karatsuba multiplication. We
have shown improvements of −17% to −60% compared to the sequential version
and, most importantly, in key size ranges which are interesting and useful for
nowadays and near future security levels.

Overall, we hope to have made an interesting point for the promotion of edu-
cation into parallel programming in general and, specifically, for the cryptographic
algorithms needed to secure the services offered by Cyber-Physical Systems.

Appendix: Sequential and Basic Parallel Code for Karatsuba

In the following we show the base sequential Karatsuba code (Kara_seq) and the
parallel version based on C++11 std::async asynchronous thread invocation that
we used in our experiments. The purpose is to highlight the changes that need to be
done for enabling a multi-threaded computation.

In Fig. 11 we show the base code that implements a Karatsuba step on the multi-
precision numbers and then delegates the multiplication of the k/2 split numbers
to the native GMP multiplication algorithm, here accessed through overloaded *

Fig. 11 Basic sequential code implementing the Karatsuba step used as a reference for the
discussed parallelized versions. We use multi-precision numbers from the GMPXX (GMP for C++)
library (mpz_class), and the three multiplications on k/2-bit numbers are performed by the main
thread using GMP standard multiplication. The code for splitting the numbers into most and least
significant part is omitted



Parallel Programming in Cyber-Physical Systems 133

Fig. 12 Parallel code implementing the Karatsuba step through C++ std::async concurrency
construct. Each of the three multiplications on k/2-bit numbers is performed by a different thread:
the first two by additional threads, each operating inside the std::async, and the third directly
performed in the main thread. The main thread then waits the completion of the other ones
(e.g., retLL.get()) before calculating the final result

operator. The two operands are split, and the three multiplications are performed
in sequence by the same main thread, which eventually calculates the final result
from the three partial ones. splitBigNum_limb procedure, not shown, splits a
multi-precision number into its most and least significant parts using the limb,
i.e., processor word, granularity.

Then, Fig. 12 shows the version (Kara_thrAs) in which two additional threads
are spawned through the std::async C++ construct to calculate the first two
multiplication concurrently and, in parallel with the third one, computed in the main
thread. Then the main thread retrieves the partial results calculated by the helper
ones or blocks until they are ready (e.g., retLL.get() call).

Threads are spawned in the points indicated by the green arrows and are joined
to the main execution in the points indicated by the red arrows.

Kara_thr version is very similar to the Kara_thrAs with only two differences.
Firstly, std::thread is used in place of std::async, and the retrieval of partial
results requires to preliminarily join the threads via thread::join() method,
i.e., possibly waiting for their completion.

The other more advanced versions, kara_infThr and kara_infThrLF, are not
shown as the detailed analysis of their code would require too many advanced
concepts of parallel programming for the scope of this chapter. However, their main
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features and operational principles are summarized without approximations in the
overall discussion of Sect. 2.3.
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Automatic Application of Software
Countermeasures Against Physical
Attacks

Nicolas Belleville, Karine Heydemann, Damien Couroussé, Thierno Barry,
Bruno Robisson, Abderrahmane Seriai, and Henri-Pierre Charles

Abstract While the number of embedded systems is continuously increasing,
securing software against physical attacks is costly and error-prone. Several works
proposed solutions that automatically insert protections against these attacks in
order to reduce this cost and this risk of error. In this chapter, we present a
survey of existing approaches and classify them by the level at which they apply
the countermeasure. We consider three different levels: the source code level, the
compilation level, and the assembly/binary level. We explain the advantages and
disadvantages of each level considering different criteria. Finally, we encourage
future works to take compilation into account when designing tools, to consider
the problem of combining countermeasures, as well as the interactions between
countermeasures and compiler optimisations. Going one step further, we encourage
future works to imagine how compilation could be modified or redesigned to
optimise both performance and security.

1 Introduction

Nowadays, embedded systems have become integral part of our daily life and are of
the largest consumer electronics market segment. The number of embedded systems
a person manipulates every day is expected to rise massively due to the Internet of
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Things. Back in 2008, this number was already huge as a person used about 230
embedded chips every day [73].

These embedded systems often manipulate sensitive data. For instance, privacy-
critical data are handled every day by payment cards, transport cards, smartphones,
GPS, etc. Therefore, the security of these systems reveals itself as a major concern
for both industrials and state organisations.

Secure devices rely on cryptography to protect sensitive data. While they use
cryptographic algorithms that are robust against cryptanalysis, attackers can exploit
a physical access to a device either to extract sensitive data such as a cryptographic
key, or to bypass authentication, or in certain cases to reverse engineer intellectual
properties. These attacks, known as physical attacks, are of two categories. (1) Side
channel attacks, introduced in 1996 by Kocher et al. [48], exploit the correlation
between the data being processed inside the device and a set of physical quantities
that can be measured from outside the device. These physical quantities can be
the power consumption of the device [23, 49, 54, 63, 78], the electromagnetic
radiation [6, 42], the acoustic emissions [43], the execution time [36, 48], etc.
(2) Fault injection attacks, introduced in 1997 by Boneh et al. [21], exploit the
effect of a deliberate perturbation of a system during its operation. Fault injection
attacks can be carried out by means of laser/light beam [39, 75], electromagnetic
injection [35, 62, 65], variation of the supply voltage [12, 24], clock glitch [5],
temperature [46, 74], etc.

Several protections to thwart physical attacks have been proposed at software and
hardware levels. There are also some mixed hardware-software approaches [9, 18,
31]. In practice, secure elements rely both on hardware and software countermea-
sures. Moreover, hardware-based solutions are considered as too expensive for IoT
devices that face strong cost requirements. The current software hardening process
is most often manual and so costly as well as error-prone and tedious. Automating
the deployment of software countermeasures is becoming paramount in order to
reduce the overall cost and also to offer code hardening solutions for IoT devices.

In this survey, we present how automatic application of software countermea-
sures has been carried out in the literature by categorising approaches by the level
where the countermeasure is applied, either on source code, or on assembly, or
within the compilation process. We begin by a brief background (Sect. 2) about
side-channel attacks, fault injection attacks, their countermeasures, and the issues
related to the compilation of secured code as well as usual ways to circumvent
them. Then, we present the approaches that propose an automated application of
a countermeasure (Sect. 3) at source code level, compilation level, and assembly
level, and we point out their pros and cons. Then we take a step back to compare the
different levels (Sect. 4.1). Finally we discuss the important remaining challenges
(Sect. 4.2) before concluding (Sect. 5).
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2 Background

2.1 Side-Channel Attacks

Instructions and data manipulated by a processor during a program execution affect
the processor’s power consumption, electromagnetic emissions, and execution time.
Side-channel attacks exploit this correlation. Many side-channel attacks proposed in
the literature [23, 49, 54, 63, 78] exploit the power consumption of a chip, [36, 48]
the execution time of the implementation, and [6, 42] the electromagnetic radiation
of a chip.

During an attack, the attacker makes measurements of a physical quantity, while
the processor executes the targeted program. She then retrieves the data manipulated
by the processor from these measurements, by statistically comparing the measure-
ments with a behavioural model. In this survey, we focus on side-channel attacks
that exploit the power consumption or the electromagnetic emissions.

In the case of a correlation power analysis (CPA), the attacker chooses the data
she provides as an input to the program, or reads the output of the program (e.g. the
encrypted texts). To find the encryption key of an AES, she proceeds byte by byte.
Each byte is found as follows: the attacker places an electromagnetic probe on the
processor or directly measures its electrical consumption with an oscilloscope. She
carries out electrical consumption measurements during several AES executions.
For each new run, she gives a random clear text to the program. She calculates
theoretical consumptions for each value of the key byte that she is attacking using
a consumption model (e. g. the Hamming weight of the value returned by the
SBox of the first round). She compares the measurements obtained on several
executions with the theoretical consumptions using a statistical operator, here the
Pearson correlation. The byte hypothesis that gives the strongest correlation between
theoretical and measured consumptions corresponds to the true value of the key byte
if enough measurements have been taken.

2.2 Fault Injection Attacks

Processors are designed to work under certain conditions. By using a processor
outside these conditions, for example, at a high temperature, faults appear in
the calculations [46, 74]. Fault injection attacks exploit this principle. They can
use various physical means to provoke faults: light [39, 75], electromagnetic
injection [35, 62, 65], temperature [46, 74], etc.

The effects of faults are manifold:

• Bit flips in a register or a memory cell [14, 20, 22, 38, 60, 61]
• Random modification of a value in a register
• Random modification of a value while it is transferred between the CPU and

dynamic or non-volatile memory [37, 56]
• Instruction replacement when the instruction fetch gets corrupted [56]
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Fault injection attacks can then be used to hijack the execution flow of a program
(e.g. to bypass a password verification of a VerifyPIN) or to retrieve information
about data manipulated by the program (e.g. finding a cryptographic key). To
retrieve a secret data, the attacker analyses the erroneous output that results from
these faults, or even the absence of an error on the output, and compares this
information using a fault attack model that makes the link between the expected
output and the possible outputs in the presence of faults.

2.3 Combined Attacks

Combined attacks are physical attacks that combine side-channel analysis and fault
injection.

Currently, all fault attacks are combined with a side-channel observation in
practice, in order to monitor the injection of the fault, i.e. to (1) find a suitable
moment for the fault injection and (2) precisely control the moment when the fault
is injected [77].

Second, some attacks use side-channel analysis and fault injection attack as
steps of a wider attack [10]. Several approaches showed that these attacks can
break implementations that were protected against both side-channel attacks and
fault injection attacks, for example, on an AES implementation [32, 71] or an ECC
implementation [41].

2.4 Countermeasures

This section presents the main categories of countermeasures against side-channel
attacks and fault injection attacks.

For side-channel attacks, we focus on side channels related to power consump-
tion or electromagnetic emissions and on approaches that were evaluated on these
side channels.

Software countermeasures against side-channel attacks can be of two different
natures: hiding and masking.

A hiding countermeasure is designed to make attacker’s measurements too
noisy to be exploitable [26]. For example, one can use dummy rounds or random
delays, so that the measurements gathered in two different executions are no more
aligned. The link between the measurements and the targeted information is not
removed, but the exploitation of the measurements becomes more complicated.
There are several types of hiding countermeasures: dummy rounds, random delays,
static multiversionning, polymorphism, dual rail, etc. [8, 26–28]. Static multiver-
sionning consists in generating statically several different equivalent execution
paths and choosing between them randomly at runtime. Polymorphism consists
in dynamically changing the binary code in memory, so that the code is renewed
regularly. It was introduced by Amarilli et al. who indicated that it was possible
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to automatically implement such countermeasure [8]. Both static multiversionning
and runtime polymorphism can use random delay insertion or instruction shuffling,
for example, to make the code vary. As complementary approaches, the dual-
rail and random precharging countermeasures are sometimes used. Dual rail with
precharge logic consists in changing the value encoding so that the Hamming weight
of the manipulated values becomes a constant value, and precharging destination
registers with the value 0 so that the Hamming distance becomes constant too.
Random precharging consists in putting a random value in a register before loading a
sensitive value into it in order to prevent transition-based leakages. Note that hiding
has been also used outside the scope of power consumption and electromagnetic
emission side channels [30, 45, 66].

A masking countermeasure is designed to remove the direct link between the
measurements and sensitive data manipulated by the processor [44]. For this
purpose, the algorithm of the target program is modified so that all intermediate
results that depend on the secret data are separated into several shares, where all
the shares are needed to reconstruct the results. For example, first-order Boolean
masking consists in performing an “exclusive or” between the secret data and a
random number and then carrying out all calculations with this masked data. The
masked data and the random number are the two shares here. The random number
is changed at each execution, so that the values of the shares change randomly from
one execution to another. In practice, hiding and masking countermeasures need to
be combined [70]. Indeed, masking needs a certain amount of noise to be effective
[47], and hiding can increase the noise.

Software countermeasures against fault attacks can be of three different types:
fault tolerance, fault detection, or infective.

A fault tolerance countermeasure aims to ensure that a fault does not alter the
output of a program. For example, an instruction duplication countermeasure can
be used to tolerate a fault of the type “replacement of an instruction by a nop” [57].
A fault detection countermeasure is intended to detect an attack and then allows to
adapt the response to produce (e.g. destroying the system). Control flow integrity
countermeasures are fault detection countermeasures that detect a change in control
flow [33]. One can also duplicate instructions in order to compare the results to
detect a fault. An infective countermeasure aims to make the result of a fault more
difficult for an attacker to exploit [67]. The goal is that the attacker does not derive
information from the program result when a fault occurred. It can be used as a
reaction to a fault detection.

2.5 Compilation of Secured Code

In this section, we give a brief background about compilation and the problem that
can arise when compiling secured applications.

Compilation is the process of translating a source code into a binary program for
a target architecture [11, 59, 76]. Compilers are usually divided into three parts.
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• The front end is in charge of parsing the source code and generating an
intermediate representation (IR).

• The middle end is responsible for target-independent optimisations. It is com-
posed of a sequence of analysis and transformation passes that optimise the IR
code.

• The back end is responsible for target-dependant optimisations, as well as
instruction selection and register allocation, and finally emits the binary program.

Several works have shown that the compiler can alter countermeasures against
both side-channel and fault injection attacks when these countermeasures are
applied on the source code [13, 15, 72].

Countermeasures can be threatened by various passes. In the case of masking, the
passes that simplify arithmetic operations, the instruction scheduling and register
allocation passes may alter the countermeasure. For example, the compiler could
invert the order of two xors, revealing a secret data. In the case of addition of noise
instructions or of instruction redundancy, all the passes that suppress dead code
may threaten the countermeasure. In the case of instruction shuffling, the instruction
scheduling pass may also alter the countermeasure. Please note that this list is not an
exhaustive list of passes that could threaten the countermeasures. Such a list depends
on the compiler, its version, the target architecture, etc.

In order to circumvent this problem, one can use various ways:

• One can compile code using the -O0 optimisation flag so that few optimisations
remain enabled. Yet, the compilation process remains risky: the code still goes
through instruction selection, register allocation, and instruction scheduling, for
example, each of these passes being able to alter some countermeasures. In
addition, it increases the code surface available for an attack, and there are a
lot of register spilling and filling, which increase the information available via
side channel.

• One can use the volatile keyword in C/C++ source code to force the compiler
to not perform memory-access optimisations on some selected variable.

• One can disable some specific passes by using the compiler command line
options.

• One can inline assembly code in its source code. However, this solution leads
to complex implementations, as developers have to make the link between the
C/C++ variables and physical registers. Moreover, the source code is no more
portable and becomes harder to maintain.

• One can apply directly the countermeasure on assembly, so that the compilation
problem is bypassed. We will see later however that this solution has drawbacks
too.
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3 Automatic Application of Software Countermeasures

This section presents several state-of-the-art approaches proposed for automatic
application of software protections. Table 1 shows an overview of the approaches
presented in this section. We present the different approaches, both in this section
and in Table 1, gathered according to the code level on which the automatic
application is carried out.

The different levels of application for automated approaches will be mainly
compared on both their ease of use and the complexity of their implementation.
The pros and cons of each level of application will also be presented.

We consider as a usage constraint either the replacement of programming
language or the replacement of tools in the developer’s usual production chain,
such as the compiler. Indeed, changing the programming language can prevent from
reusing reference implementations. Also, replacing one of the tools in a production
toolchain may not be possible: as an example, closed source software components
do not offer the ability to modify the source code or some components may have
been certified and any modification would require a new certification process.

While comparing the security level achieved for a specific approach as well
as the impact of a protection on performance and code size would be of high
interest, it is quite impossible to achieve. Evaluations carried out in the literature
vary with the target platform, the considered benchmarks, and the attacks or tests
performed. To fairly compare all the approaches, it would then require to dispose
of all approaches, to choose a common target of evaluation, and to mount realistic
security evaluation scenarios. Hence, we only report fair performance comparison
of approaches available in the literature (between approaches [57] and [16]).

3.1 At Source Code Level

Several approaches are proposed to automatically apply countermeasures at source
code level.

3.1.1 Side-Channel Attack Countermeasures

Luo et al. proposed an automated hiding countermeasure where independent C
operations are shuffled [51]. The associated tool takes C code as input. It gathers
statements by group of independent statements, and shuffling is performed at
runtime inside each group. It adds dummy statements when too few independent
statements have been found for a group in order to increase shuffling effect. It
assumes that the code does not contain any loop or branch.

Couroussé et al. proposed an approach to deploy a hiding countermeasure based
on runtime polymorphic code generation [29]. Their approach requires to use a



142 N. Belleville et al.

Table 1 Overview of existing automated approaches for side-channel attacks or fault injection
attacks gathered by the code level at which they are deployed

Countermeasure principle

Approach Side-channel attacks Fault injection attacks Requirements or constraints

Source level

[51] Static multiversioning
(hiding)

None Straight-line code

[29] Polymorphism with
runtime code generation
(hiding)

None Domain-specific language

[40] Masking None No input-dependent control
flow

[50] None Control flow integrity –

[7] None Control flow integrity –

Compiler level

[53] Static multiversioning
(hiding)

None –

[1] Polymorphism with
runtime code
modification (hiding)

None –

[4] Static multiversionning
(hiding) and partial
masking

None –

[3] Other None –

[58] Masking None Domain-specific language

[2] Masking None –

[19] Random precharging and
masking

None Measurements (optional)

[52] Threshold
implementation
(masking)

None –

[16] None Instruction duplication
(fault tolerance)

–

[69] None Instruction duplication
(fault detection) and
control flow integrity

–

[64] None Instruction duplication
on loop exits (fault
detection)

–

[25] None Instruction and data
redundancy (fault
detection)

Availability of SIMD
instructions

(continued)
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Table 1 (continued)

Countermeasure principle

Approach Side-channel attacks Fault injection attacks Requirements or constraints

Assembly level

[17] Random precharging None Measurements to set up the
protection

[68] Dual rail with precharge
logic

None Bitsliced input code

[57] None Instruction duplication
(fault tolerance)

–

[34] None Various fault detection
and fault tolerance
countermeasures

–

Few approaches consider several different countermeasures, and none of them considers counter-
measures for both families of attacks simultaneously

domain-specific language (DSL). The written code is translated by a tool that
produces the C code of a specialised polymorphic code generator. The generator
regularly produces new versions of the machine code at runtime using semantic
variants at machine instruction level, instructions and registers shuffling, and
insertion of noise instructions.

Eldib et al. proposed an approach to automatically find and apply a masking
countermeasure, with the help of a SMT solver [40]. They assume that the program
has an input-independent control flow. The program is parsed and transformed into
LLVM’s intermediate representation (LLVM IR) by clang. The code in LLVM IR
format is then transformed into a Boolean program. Then, each operation of the
program is masked, directly if it is a linear operation, by finding a sequence of
equivalent masked instructions found out by a SMT solver. Then, the secured code is
emitted as C++ code and compiled in -O0 (this information comes from a discussion
with authors).

3.1.2 Fault Injection Countermeasures

Lalande et al. proposed to apply a control flow integrity countermeasure based on
counters and additional variables at the source code level [50]. The countermeasure
is applied in two phases; first, all vulnerabilities of the original code are searched
for by simulating control flow hijacking faults at the source code level; then the
countermeasure is applied to vulnerable points. Jump attacks larger than two C
statements are systematically detected. However, smaller faults, for example that
only affect one assembly instruction, are not always detected.

Akkar et al. also presented an automated application of a control flow integrity
countermeasure [7]. The developer must annotate his code beforehand using
pragmas to indicate the areas to secure. The application is done by a tool that comes
in the form of a preprocessor.
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3.1.3 Pros and Cons of Source Code Level

The source code level has the advantage of being compatible with the use of
proprietary compilers and even of allowing the use of several different toolchains
without any compatibility concerns.

In addition, a substantial amount of information is available at this level, such as
variable typing information.

This level of application also enables to be independent of the target architecture.
Thus, the development of a tool may be easier at this level if a lot of architectures
have to be supported.

However, the countermeasures may be altered by compilation. This is not always
the case, for example, in the COGITO approach [29], the countermeasure is applied
at runtime by a dedicated generator, and therefore there is no risk that it will be
altered by the compilation. Approaches [50] and [40] suggest to compile the secure
parts without compiler optimisations to circumvent this problem, which does not
remove completely the risk as discussed in Sect. 2.5. Thus, developers will have to
check for each hardened application at source code level that the countermeasures
are still present and correct after compilation. This typically involves reviewing the
assembly code produced by the compiler, which is a tedious and error-prone task.

3.2 During Compilation

Several approaches are proposed to apply countermeasures during compilation.
Table 2 summarises the level of application inside the compiler and the passes that
have been modified for each approach.

3.2.1 Side-Channel Attack Countermeasures

Malagón et al. proposed to deploy a hiding countermeasure based on static
generation of several variants of a function [53]. This countermeasure consists in
randomly choosing between different versions of the same code at runtime. The
source code must be annotated using pragmas by developers to indicate functions
where sensitive data are being manipulated. The compiler then generates several
different versions of the function code by changing optimisation configuration
parameters, for example, using the loop unwinding pass. It also inserts the code that
is in charge of randomly selecting at runtime the version of the code to be executed.

Agosta et al. proposed another hiding countermeasure based on dynamic mod-
ification of code [1]. The code is modified at runtime using semantic equivalence
at instruction level, randomisation of table accesses, and mixed instructions. The
countermeasure is automatically applied by a compiler: some transformation passes
have been added in LLVM in order to statically prepare the transformations made at
runtime.
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Table 2 Level of application and modified passes within the compiler for compiler-level
approaches

Approach Level of application Modified passes

Malagón et al. [53] Middle end Loop unwinding pass

Agosta et al. [1] Unknown –

Agosta et al. [4] Middle end and back end Several (unknown) passes in middle end and
back end

Agosta et al. [3] Middle end and back end Instruction selection

Moss et al. [58] Middle end –

Agosta et al. [2] Middle end –

Bayrak et al. [19] Middle end and back end –

Eldib et al. [40] Middle end –

Barry et al. [16] Back end Instruction selection and register allocation

Reis et al. [69] Unknown –

Proy et al. [64] Middle end and back end Branch folding and register allocation

Chen et al. [25] Middle end –

Luo et al. [52] Middle end –

Agosta et al. also proposed a hiding countermeasure based on static generation of
several variants [4]. The authors propose to generate automatically a code containing
multiple execution paths, with choice between the different paths at runtime, which
is also a hiding countermeasure. This approach also incorporates some masking
elements, since the SBox accesses are masked. In addition, the process of saving
registers on the stack is modified: one register is dedicated to hold a random value
used to mask any register value stored in the stack. When the content of the register
is restored, it is also unmasked so that it can be used again. All these transformations
are handled by new transformation passes in LLVM. Some existing passes have also
been modified. Among other things, modifications to existing passes are intended to
ensure that an instruction that was in an area to be protected cannot leave this area
because of optimisations. The developer must provide a C file annotated so as to
specify the code regions to protect and the SBox. In addition to the source file, the
compiler takes an input file that specifies the equivalent instructions to be used.

Agosta et al. also proposed a new countermeasure against side-channel attacks
that aims to bring out several key hypotheses instead of one during an attack so that
the attacker cannot know which one is the right hypothesis [3]. This countermeasure
is entirely applied during compilation, in several steps. Several passes have been
added in the middle end and back end; also the instruction selection pass has been
changed. The compiler takes an input file annotated by the developer that specifies
the parts of the code to be protected.

Moss et al. proposed to automatically apply a Boolean masking countermeasure
during compilation [58]. The developer must write his program in a domain-specific
language (DSL). This DSL allows to express with predefined types the level of
confidentiality of variables, for example, to indicate that a variable is secret. The
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compiler then uses this information to determine which intermediate values are to
be masked and thus masks these values.

Agosta et al. also proposed an approach for the application of a masking
countermeasure. Their approach allows to generate higher-order masked code [2].
The compiler calculates for each key-dependent value the number of key bits on
which the value depends. This analysis enables to apply the countermeasure only
to intermediate values that depend on a small number of key bits. For example,
intermediate values dependent on all bits of the key are not masked. This principle
reduces the overhead of the countermeasure.

Bayrak et al. also proposed a compilation approach to apply Boolean masking
to a program [19]. An important difference with the other approaches is that they
use the compiler to decompile a binary program to a higher-level representation
and then recompile the program while applying the protection. To find out where
to apply the countermeasure, they suggest to start by identifying instructions that
may reveal sensitive data through a side channel. This analysis is either done
using measurements provided by the user or statically. The countermeasure is
then applied to all instructions that were found to be critical compared to a
predefined threshold. This enables to partially apply the countermeasure and to
reduce the performance overheads. In addition, the compiler can also apply a
random precharging countermeasure.

Luo et al. proposed a similar approach to generate a threshold implementation
automatically on LLVM IR [52]. Threshold implementation is a countermeasure
close to the masking countermeasure, as the secret is split into shares. Yet, in
threshold implementation, every function is independent from at least one of the
shares, which is not the case for masking. They use a SAT solver along with a
transformation step in order to find suitable solution. Every function is split into a
succession of smaller functions so that the SAT solver can find solutions effectively.

3.2.2 Fault Injection Countermeasures

Barry et al. used the compiler to automatically apply a fault tolerance coun-
termeasure [16]. They duplicate assembly instructions to tolerate the skip of
one instruction. The use of the compiler is twofold compared to a lower-level
approach: it favours the selection of instructions compliant with the duplication
scheme, increasing the number of idempotent instructions, and takes advantage of
optimisations to gain performance. To this end, several passes have been added
to LLVM, and the instruction selection and register allocation passes have been
modified. The overheads obtained are lower than those obtained by applying this
countermeasure at the assembly level.

Reis et al. proposed to deploy a fault detection countermeasure during compila-
tion [69]. Instructions are duplicated so that their results are compared in order to
detect faults. In addition, additional checks are added to ensure that the control flow
is not hijacked. The authors indicate that the approach could be easily extended to
include fault tolerance.
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Proy et al. proposed to use the compiler to apply a countermeasure to secure loops
against fault injection attacks [64]. The instructions involved in the computation
of conditions for exiting the loop are duplicated to add checking blocks in charge
of detecting an early exit or an extra iteration. This transformation is applied at
IR level. They explain that some compiler passes had to be modified to keep the
countermeasure correctly applied until the code is emitted.

Finally, Chen et al. proposed to achieve operation redundancy by using SIMD
instructions [25]. Their compiler vectorises some instructions in order to have
instruction redundancy and adds error-checking codes. All the code transformations
are performed at the IR level, and the approach is architecture-independent. It only
requires the target architecture to have support for SIMD instructions. The use of
SIMD instructions allows to obtain a smaller performance overhead compared to
classic instruction duplication approaches.

3.2.3 Pros and Cons of Compiler Level

The compiler level is interesting if several source languages need to be supported,
as the front end usually supports various languages.

Moreover, the back end must most often be modified and therefore the approach
depends on the architecture. However, some elements applied in the middle end are
common for all architectures, so adding support for an architecture is done without
starting from scratch.

What is more, the application of countermeasures during the compilation process
makes it possible to finely control the transformations carried out in the compiler
and to choose when to apply the countermeasure to avoid the risk that it will be
altered by the compilation. The compiler allows to have both high-level information
such as the types of variables and low-level information that depends on the
target architecture. Thus, countermeasure can be applied in several transformation
passes, strategically placed in the compilation process. As an example, Reis et
al. [69] and Barry et al. [16] exploit the scheduling instruction pass to reduce the
countermeasure overhead by creating parallelism at the instruction level (depending
on the latency of the instructions). In addition, several approaches modify compiler
transformation passes such as instruction selection or register allocation to prepare
the countermeasure application in order to produce a more efficient code.

Moreover, if developers manage to propagate the necessary information through-
out the compilation process, developers can add a check pass before issuing
instructions to confirm that the countermeasure has been correctly applied and that
it has not been altered by possible downstream optimisations.

The engineering effort deployed to implement such approaches is important;
nevertheless, the control offered by this level of application makes it possible to
obtain an important confidence in the produced code. In case a checking pass is
added before code emission, it is not necessary to manually check the presence and
the effectiveness of the countermeasures in the produced assembly code for each
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hardened application. In that case, the developer does not need to be an expert in
security to be able to effectively secure his applications.

This level of application requires to have access to the compiler source code.
If the developer uses a closed-source compiler, using a compiler approach would
imply to use an open-source one to disassemble a file, reconstruct an intermediate
representation, apply the countermeasure to the code, and recompile it, which is a
tough process.

3.3 At Link Time/At Assembly Level

This section presents approaches that apply countermeasures directly on an assem-
bly file, during or before the linking phase.

3.3.1 Side-Channel Attack Countermeasures

Bayrak et al. proposed to automatically apply a random precharging countermeasure
at assembly level [17]. The application of this countermeasure is quite natural at this
level, as register allocation has already been performed. Empirical measurements
made on unsecure code are used to determine the instructions to be secured.

Rauzy et al. also implemented a side-channel countermeasure at assembly level:
dual rail with precharge logic [68]. Their approach requires that the code has
previously been bitsliced. Their approach also makes it possible to prove that the
transformation is correct and that the program obtained after transformation remains
semantically correct.

3.3.2 Fault Attack Countermeasures

Moro et al. proposed a countermeasure based on instruction duplication to achieve
fault tolerance [55]. This countermeasure is intended to tolerate the jump of one
instruction. For this purpose, each instruction is replaced by a sequence of instruc-
tions, this sequence being semantically equivalent to the original instruction and
being tolerant to one instruction skip. As this countermeasure requires additional
registers, it is sometimes necessary to spill some registers. In addition, some
instructions (e.g. volatile loads) cannot be replaced by a fault-tolerant sequence.
This is the same countermeasure as the one automated by Barry et al. [16] afterwards
at compilation level.

De Keulenaer et al. showed how to automatically deploy various countermea-
sures against fault attacks at binary level using link-time rewriting [34]. Their tool
combines both fault tolerance countermeasures and fault detection countermeasures:
duplication of conditional jumps, call graph integrity, verification of memory
entries, and duplication of loop counters.
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3.3.3 Pros and Cons of Assembly Level

This level is mostly used to apply countermeasures that are quite low level,
as applying higher-level countermeasures at this level is complicated since it is
then necessary to reconstruct a certain amount of information that has been lost.
For example, variable typing information is no longer present. In addition, the
application of countermeasures often requires the use of additional registers, which
requires either register spilling or a complete reallocation of registers.

Thus, during the development of an automatic approach at this level, a major
engineering effort is necessary to obtain information that was available at compila-
tion or to redo treatments that had been done by the compiler in a way that was not
optimal with respect to the countermeasure to be applied.

However, applying countermeasures at this level avoids having to check manu-
ally if the countermeasure is still present in the final code, since the compilation
process takes place entirely before the countermeasure application. This allows
the use of such a tool by a non-security expert developer. Moreover, this level of
application allows to be independent of source code language, which is interesting
if several source languages need to be supported. In addition, it allows to secure
code after link-time optimisation and to potentially secure binary libraries.

4 Discussion

4.1 Confrontation of Pros and Cons of the Different Levels

This section discusses the advantages and disadvantages of the aforementioned
levels of automatic application of countermeasures.

The first aspect to consider is the time taken for developing an automated tool.
This aspect depends on the countermeasure that has to be applied. A masking
countermeasure is easier to apply at source code level than at assembly level because
it requires a modification of the algorithm. The compiler is a place where various
countermeasures can be applied, as during compilation the compiler manipulates
both quite high-level representations (e.g. with typed variables) and low-level
representations (e.g. with assembly instructions).

Developing an automated tool implies parsing and emitting code in the targetted
formats. Compilers already have the necessary code for that, and usually the
developer only has to add a pragma support to delimit the code zones to be
secured. For source code and assembly-level approaches, the developers often have
to implement or reuse a parser and/or an emitter for the targetted codes.

The engineering cost taken at using the tools must be considered too. As these
tools are automatic, the cost of producing secured code is close to zero, yet
the development of the tools requires a lot of work. When the tool applies the
countermeasure at source code level, code review is facilitated, but the user has
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to check that the countermeasure is still valid at the assembly level. This time-
consuming task is one of the main drawbacks of the source code-level approach. The
assembly approach does not suffer from this drawback: applying a countermeasure
at the assembly level prevents from alteration during compilation. Applying a
countermeasure during compilation allows to check that the countermeasure is
still valid just before assembly/binary code emission if the developer manages
to propagate the necessary information throughout the compiler. If checking the
countermeasure before code emission is not possible, a step of assembly code review
is still needed.

Considering performance in terms of code size and of execution time, the
compiler level allows fine-tuning. When a countermeasure is applied within the
compiler, it can benefit from optimisations, whereas if it is applied outside the
compilation process, it requires to redevelop some optimisations afterwards. Several
approaches that use compilers modify some passes of the compiler to reduce the cost
of the countermeasures. The passes that apply the countermeasure can be carefully
interleaved with compiler passes to take advantage of these passes without risking
the countermeasure to get altered by optimisations [16]. At other levels, tuning
transformations for performance may be harder. For example, at assembly level, the
need for additional registers either requires to do register spilling or to perform again
the register allocation. As a comparison, Moro et al. and Barry et al. implemented
the same countermeasure at assembly level and compiler level, respectively. Barry
et al. obtained execution time overheads and size overheads lower than Moro et al.

4.2 Future Works

All of these approaches target either side-channel attacks or fault injection attacks,
and few of them consider the application of several different countermeasures.
Yet, programs have to be secured against both families of attacks and within
each family of attack and have to be secured against a large number of variants.
Thus, countermeasures have to be combined so that the programs meet the security
requirements.

The problem of automatic application of combined countermeasure has not been
investigated yet to the best of our knowledge. It raises important questions in order to
be able to guarantee that every countermeasure is correctly applied on the produced
code.

Similarly to the conflicts that can appear between countermeasures and some
optimisation passes of a compiler, conflicts can appear between different coun-
termeasures. The order of application of the countermeasures should be well
thought: which countermeasure must be applied first? Must the countermeasures be
applied in a combined way? Several compiler approaches are proposed to apply a
countermeasure in several steps, interleaved with compiler passes. How should one
interleave all the different steps to apply two very different countermeasures? This
issue is present whatever the level at which countermeasures are applied and refrains
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the simple approach that would consist in simply combining several different tools
one after the other as they would not be aware of the countermeasures that are
applied by the others.

In addition, when the compiler level is chosen to apply the countermeasures,
strategies for the modification of compiler passes have to be made with all
countermeasures in mind. For example, register allocation should be compliant
with several countermeasures that may have different objectives: one may want to
constrain register spilling to prevent distance-based leakage in the presence of a
masking countermeasure while needing new registers to implement a fault detection
countermeasure.

We encourage future works to consider the problem of compilation for security,
to study the interaction between the different countermeasures and performance
optimisations, and to rethink the compilation process so that it can optimise at the
same time the performance and security goals.

5 Conclusion

The automatic application of countermeasures against physical attacks is a crucial
research problem as a lot of platforms are concerned by these threats while securing
them manually is costly. We presented the different approaches to automatically
deploy software countermeasures against these attacks. Some of them directly
modify the source code, others modify the assembly code, and others propose to
modify the compiler so that the countermeasure is applied during the compilation
process. While developing solutions at the compilation level is not always possible,
we encourage this practice as it allows to tune performance while providing
confidence that the countermeasure remains correctly applied in the assembly file.
We also encourage future research to consider the problem of automatic application
of combined countermeasures that has not yet been addressed, their interaction with
compiler optimisations, and to try to create compilers that optimise both security
and performance. These are interesting and challenging issues to solve to be able to
offer security automatically.
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Time-Delay Attacks in Network Systems

Gianluca Bianchin and Fabio Pasqualetti

Abstract Modern cyber-physical systems rely on dependable communication
channels to accomplish cooperative tasks, such as forming and maintaining a
coordinated platooning configuration in groups of interconnected vehicles. We
define and study a class of adversary attacks that tamper with the temporal
characteristics of the communication channels, thus leading to delays in the signals
received by certain network nodes. We show how such attacks may affect the
stability of the overall interconnection, even when the number of compromised
channels is limited. Our algorithms allow us to identify the links that are inherently
less robust to this class of attacks and to study the resilience of different network
topologies when the attacker goal is to minimize the number of compromised
communication channels. Based on our numerical results, we reveal a relation
between the robustness of a certain network topology and the degree distribution of
its nodes.

1 Introduction

Networks of cyber and physical agents are broadly employed across diverse engi-
neering applications to model critical infrastructures such as transportation systems
and power grids [1, 2]. The increased coupling between physical components and
cyber layers oftentimes comes at the expense of vulnerabilities and security weak-
nesses. Several real-world incidents and recent research papers have highlighted
the vulnerabilities of these infrastructures on both their physical and cyber layers
[3–6]. The available literature on cyber-physical system security has mainly focused
on two categories of attacks: deception and denial of service. Deception attacks
compromise the integrity of the data exchanged across the network and are cast by
altering the behavior of sensors, actuators, and communication channels. On the
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other hand, denial-of-service attacks compromise the availability of resources by,
for instance, jamming the communication channels.

Yet, an aspect that critically affects the operation of several classes of cyber-
physical systems is the indirect effect of non-ideal communication channels that
can introduce timing aberrations in the signals exchanged among their nodes.
Timing aberrations can be the indirect result of hardware faults or can be the
effect of intentional attacks. For instance, an adversary may temporarily jam
communication channels with the goal of delaying the transmitted signal streams
while maintaining unaltered the information enclosed in the packets. Although this
action does not prevent information from being delivered correctly, it can disrupt the
system operation and performance by impeding the correct synchronization among
different system components. In this work, we focus on attacks that target the agents
communication by delaying the stream of exchanged signals. We consider attacks
that are sparse in the set of attacked channels and employ a security metric that
captures the stability of the underlying system.

The importance of timing and the effect of time delays in networks of dynamical
systems is a well-studied concept (e.g., see [7–10]). Classical methods to study
stability of delayed linear systems can be divided into LMI conditions, which arise
from a Lyapunov-Krasovskii quadratic function analysis [11, 12], and techniques
based on matrix pencils [13, 14]. However, timing-based security is an inherently
different issue from standard communication delay approaches, as an attacker can
deliberately select the targeted channels and the specific pattern of time delays. The
relation between timing and security in cyber-physical systems has been highlighted
in some recent work. In particular, while [15] devises a robust output-feedback
controller which is resilient to an attack that changes the order at which packets
are delivered, the authors in [16] follow a probabilistic approach and model packet
drops through Bernoulli processes representing intentional attacker intrusions. The
effect of malicious packet drops has also motivated the study and development of
resilient controllers in the context of networked control systems [17].

Differently from this line of previous work, securing cyber-physical systems
from timing attacks requires the study and design of a specific, well-designed
set of delayed channels. This work distinguishes from the above line of research
by (i) considering opportunely-defined attacks that do not follow any specific
probabilistic model, and by (ii) relating network resilience to topological properties
and centrality measures such as the degree distribution. We characterize and study
the class of delay attacks from a control perspective and provide a numerical
algorithm to identify the set of communication channels that are less robust to timing
attacks. Our results suggest that improved robustness can be achieved by network
topologies where nodes exhibit significantly large degrees.
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2 Problem Setup

This section describes the models we adopt for the analysis of time delays in
dynamical systems. The description first introduces the ideal modeling framework
in the absence of external attacks and then illustrates the attack scenario.

2.1 Network Model

Consider a network modeled by a directed graph G = (V ,E ), where V =
{1, . . . , n} and E ⊆ V ×V are the vertices and edges sets, respectively. Let aij ∈ R

denote the weight associated with the edge (i, j) ∈ E , and let aij = 0 whenever
(i, j) /∈ E . We associate a real value xi (node state) with each node i ∈ {1, . . . , n}
of the graph and model the state dynamics as

ẋi(t) =
∑
j∈Ni

aij xj (t),

where Ni ⊆ V ,Ni = {j : ∃(i, j) ∈ E } denotes the set of in-neighbors of node i.

Example 1 (Vehicle Platooning) Consider a group of N vehicles moving along a
single lane as in Fig. 1. In a platooning scenario [1], vehicles follow one another
and share their state information (e.g., position, velocity, acceleration) with other
vehicles by communicating through a V2V communication protocol. The behavior
of the i-th vehicle in the platoon, i ∈ {1, . . . , N}, can be described by the two
differential equations representing an inertial agent:

ṙi (t) = vi(t), v̇i (t) = 1

mi

ui(t),

Follower 3 Follower 2 Follower 1 Leader

Fig. 1 Vehicle platooning and associated topology. A group of vehicles is traveling along a
single lane while maintaining a desired inter-vehicle spacing and a certain steady-state speed. To
accomplish this task, each vehicle exchanges information with the platoon leader and the vehicle
immediately ahead
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where ri : R≥0 → R, vi : R≥0 → R, and mi ∈ R>0 denote the i-th vehicle
position, velocity, and mass, respectively.

The goal of maintaining a desired inter-vehicle spacing can be formulated as
the problem of controlling the position and velocities of each vehicle toward the
following desired steady-state values:

ri (t)→ 1

N

N∑
j=1

(
rj (t)+ dij

)
, vi(t) → v̄,

where v̄ denotes the desired steady-state platoon velocity and dij is the desired
spacing distance between agent i and j . The desired steady-state spacing and
velocity can be achieved through a double-integrator consensus protocol [18], of
the form

ui(t) =
N∑

j=1

αij (ri (t)− rj (t)− dij )+ γij (vi(t)− vj (t)),

where
∑N

j=1 αij = ∑N
j=1 γij = 1 for all i ∈ {1, . . . , N}. Therefore, the goal of

attaining a platooning configuration can be achieved by modeling each vehicle as a
two-node subsystem with states ri and vi , respectively, and dynamics

ṙi (t) = vi(t),

v̇i (t) = 1

mi

N∑
j=1

αij (ri (t)− rj (t)− dij )+ γij (vi(t)− vj (t)),

Thus, the above scenario belongs to the more general class of models considered in
this work. ()

In order to implement the described cooperation protocol, each node is required
to transmit the state over a (potentially lossy) communication channel to all its
neighbors. For ideal communication channels, the signal transmitted by agent j and
received by agent i coincides; therefore, network dynamics can be modeled by a
continuous LTI system as

ẋ(t) = Ax(t), (1)

where x : R≥0 → R
n contains the node states and A ∈ R

n×n is the adjacency
matrix of the network. We will make the assumption that the adjacency matrix in (1)
is (marginally) Hurwitz, that is, for all z ∈ {z ∈ C : det(zI − A) = 0}, *(z) ≤ 0.
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2.2 Attack Model

Common transmission protocols often reframe signals into streams of data packets
before transmission. We assume that this underlying process is intangible, and we
will equivalently refer to signal streams or to streams of packets in the remainder.
We consider attacks that target communication channels and delay the stream
of information in the path between transmitter and receiver (Fig. 2). In order to
implement the cooperative protocol (1), we assume that every node j ∈ {1, . . . , N}
shares the current value of the state xj (t) with the set of available neighbors and
denote by r(i, j, t) : V ×V ×R≥0 → R the corresponding continuous-time signal
received at node i, i ∈ {1, . . . , n}. In general, the relation

r(i, j, t) = xj (t),

may not be satisfied due to the lossy nature of the communication channels. Notably,
these have the effect of altering the content of transmitted data packets and/or
of introducing time delays in the signal streams. We consider scenarios where
attackers can maliciously exploit these features in order to compromise the correct
functionality of the system. We make the following assumptions:

1. The attacker does not alter the information contained in transmitted signals.
2. There exists an upper bound τmax to the largest packet delay.
3. Data is used as soon as it becomes available at the receiver.

While scenarios where attackers alter the content of the transmitted signals have
been extensively studied in previous works (see, e.g., [19]), we argue that malicious
attacks targeting the communication timing can lead to similar disruptive behaviors.

Remark 1 (Compensation Mechanisms) In the presence of communication delays,
two compensation mechanisms are often adopted. Either data that is classified as
obsolete (for instance, by time stamping the transmitted packets) is discarded at the
receiver or data is used as soon as it is available at the receiver [20]. We consider
scenarios where the latter protocol is used. ()

We model received signals in the presence of attacks as

r(i, j, t) = xj (t − τij ),

where τij ∈ R≥0, 0 ≤ τij ≤ τmax, for all i, j ∈ {1, . . . , n}, represent (deterministic)
time delays introduced by the attacker. Then, the dynamics of agent i in the presence

Fig. 2 Time-delay attacks
can occur in the
communication channel
between every pair of nodes j i

xj(t) r(i, j, t)
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of attacks can be written as

ẋi(t) =
∑
j∈Ni

aij r(i, j, t) =
∑
j∈Ni

aij xj (t − τij ).

We denote by A ⊆ E the set edges under attack, that is,

A = {(i, j) : τij > 0}.

Then, the time evolution of the network state can be written as

ẋ(t) = Āx(t)+
∑

(i,j)∈A
Ãij x(t − τij ), (2)

where Ãij ∈ R
n×n,

Ãij (p, q) =
{

aij if p = i, q = j , and τij > 0,

0 otherwise,

for all p, q ∈ {1, . . . , n}, and Ā = A−∑
(i,j)∈A Ãij .

Example 2 (Transmitter Delay and Receiver Delay Attacks) Scenarios where an
attacker compromises the behavior of a certain network node and deliberately
transmits (receives) delayed messages can be modeled as in (2). For instance,
consider the circumstance where a compromised node intentionally (i) transmits
obsolete information to all its neighbors or (ii) updates its state with obsolete
neighboring data. These two classes of vulnerabilities are referred to as transmitter
delay attacks and receiver delay attacks, respectively, and are discussed next.

Transmitter delay attacks, illustrated in Fig. 3(a), model scenarios where a certain
time shift is intentionally introduced in all the packets transmitted from an agent to
its neighbors. Let i ∈ {1, . . . , n} denote the (single) agent under attack; then

r(j, i, t) = xi(t − τ )

j

(a)

j

(b)

Fig. 3 Illustration of (a) transmitter delay attack and (b) receiver delay attack. Red patterns
represent attacker intrusions
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for all j such that i ∈ Nj . Moreover, the network model under transmission delay
attack can be written as

ẋ(t) = Āx(t)+ Ãx(t − τ ),

where Ã has only n nonzero entries corresponding to its i-th column, that is,

Ã(p, q) =
{

apq if q = i

0 otherwise,

for all p, q ∈ {1, . . . , n}, and Ā = A− Ã.
Receiver delay attacks, illustrated in Fig. 3(b), model scenarios where the

attacker prevents a timely state update of a certain node. This, for instance, can be
the result of overloading the local processing units of the node. Let i ∈ {1, . . . , n}
denote the (single) node under attack; then

r(i, j, t) = xj (t − τ ),

for all j ∈ Ni . Moreover, the network model under resources overload attack can
be written as

ẋ(t) = Āx(t)+ Ãx(t − τ ),

where Ã ∈ R
n×n has only n nonzero entries corresponding to its i-th row,

Ã(p, q) =
{

apq if p = i,

0 otherwise,

and Ā = A− Ã.

2.3 Problem Formulation

In this work, we focus on attacks that aim at compromising the stability properties
of (2). Next, we recall a standard definition of convergence.

Definition 1 (Convergence Criteria) The time evolution of system state in (2) is
convergent to a limit vector x̄ ∈ R

n if, for every ε > 0, there exist t̄ ∈ R≥0 such
that

‖x(t)− x̄‖ ≤ ε, for all t ≥ t̄ .
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We recall that the convergence of (2), in general, depends on the nominal adjacency
matrix A, the attack set A , and the time delays τij . We then restrict our analysis to
the uniform delay case, that is, on the model:

ẋ(t) = Āx(t)+ Ãx(t − τ ), (3)

and focus on the following problem.

Problem 1 Find the minimal cardinality attack set A ∗ that makes dynamics (3)
non-convergent.

3 Minimum Cardinality Attack Sets

In this section we propose a numerical technique to solve Problem 1. Recall that the
trajectories of (3) are convergent if and only if all the characteristic roots, which are
the zeros of1

det(sIn − Ā− Ãe−sτ ) = 0, s ∈ C,

where In ∈ R
n×n denotes the identity matrix, are in the open left half plane (see,

e.g., [7]). We then report a well-known result for time-delay dynamical systems that
will be needed in the subsequent analysis.

Theorem 1 ([21, Theorem 4.1]) Consider the delayed dynamical system (3), and
define the dual characteristic equation

det(sIn − Ā− Ãe−jθ ) = 0, (4)

where s ∈ C and θ ∈ [0, 2π]. The time evolution of (3) is convergent if and only if
any solution s to (4) satisfies

s ∈ {s = σ + jω : σ ∈ R, ω ∈ R, σ < 0} ∪ {0},

for all θ ∈ [0, 2π].
The following comments are in order. First, Theorem 1 allows us to simplify the
nonlinear dependency of the primal characteristic equation from variable s by
introducing the independent variable θ . Second, since θ only affects the coefficients
of the polynomial (4), the corresponding roots are continuous functions of θ .
Therefore, the roots of (4) form closed curves in the complex plane as θ is varied
over the interval [0, 2π]. It follows that the convergence of linear dynamical systems

1This will be referred to as primal characteristic equation.
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in the presence of delayed communication edges can be assessed through the study
of the real part of the eigenvalues of the pencil Ā + Ãe−jθ as the scalar parameter
θ is varied over [0, 2π]. Third, by comparing the primal and dual characteristic
equations, it immediately follows that if s = jω is a root of (4) for a fixed value
of θ , then the choice τ = θ/ω will satisfy the primal equation. In the remainder,
we will use the compact notation (s, θ) to denote a root s of (4) associated with a
fixed θ .

The following result provides a characterization of the roots of (4).

Lemma 1 (Hermitian Property) Let the pair (s, θ) denote a solution to (4),
where s = σ + jω, σ ∈ R, ω ∈ R. Then, (s̄,−θ) is also a solution to (4), with
s̄ = σ − jω.

Proof Recall that det
(
sIn − Ā− Ãe−jθ

)
= 0 if and only if

(Ā+ Ãe−jθ )v = (σ + jω)v,

for some v ∈ C
n. By taking the complex conjugate of the above equation, we obtain

(Ā+ Ãejθ )v̄ = (σ − jω)v̄,

where v̄ denotes the complex conjugate of v that proves the claimed statement. ()
The conjugate property illustrated in the above lemma, combined with the periodic
relation e−jθ = ej (2π−θ), implies that the curves describing the roots of (4) for θ ∈
[0, π] are the complex conjugate of the curves describing the corresponding roots
for θ ∈ (π, 2π). An illustration of the behavior of the roots of the dual characteristic
equation (4) as a function of θ is presented in Fig. 4.

-1.5 -1 -0.5 0 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(a)

-1.5 -1 -0.5 0
(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

Fig. 4 Numerical study of the roots of (4) for two realizations of a full adjacency matrix A with
uniform entries in the interval [0, 1]. As highlighted in the comparison, the roots (a) may cross the
imaginary axis, or (b) may not cross the imaginary axis. The symbols ∗ represents the roots for
θ = 0
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We now employ the above characterization of time-delay linear systems for the
solution of Problem 1. Let Ψ = [ψij ] ∈ R

n, with ψij ∈ {0, 1}, and decompose the
network adjacency matrix as

A = (1n×n − Ψ ) ◦ A︸ ︷︷ ︸
ĀΨ

+Ψ ◦ A,︸ ︷︷ ︸
ÃΨ

where 1n×n ∈ R
n×n denotes a n by n matrix of ones and ◦ denotes the Hadamard

operator. The notation ĀΨ and ÃΨ is employed to emphasize the dependency on
Ψ . We then formalize Problem 1 as the following minimization problem: given the
network adjacency matrix A and an upper bound to the largest communication delay
τmax, determine the delayed adjacency matrix Ψ ◦ A satisfying

Ψ ∗ = arg min
Ψ,θ,v,ω

‖Ψ ‖�1

subject to A = (1n×n − Ψ ) ◦ A︸ ︷︷ ︸
ĀΨ

+Ψ ◦ A︸ ︷︷ ︸
ÃΨ

, (5a)

(ĀΨ + ÃΨ e−jθ )v = jωv, (5b)

ψij ∈ {0, 1}, (5c)

θ ≤ ωτmax, (5d)

where i, j ∈ {1, . . . , n}. It should be observed that (5) is of the form of a mixed-
integer optimization problem, where the Boolean variables ψij , the real variables
θ , ω, and the complex variable v are the optimization parameters. Two major
complexities arise in solving (5). First, the optimization variables ψij are integers.
Second, the variables ÃΨ , θ , v, and ω are related by the nonlinear constraint (5b).
It is also worth noting that the feasibility of the constraint set depends on the largest
allowed time delay τmax, and it is independent on the nominal adjacency matrix
A. To see this, we observe that for any A with eigenvalues λ1, . . . , λn, by letting
θ = π/2 and Ψ = 1n×n, then Ā+ Ãe−jθ = Ae−jθ has eigenvalues jλ1, . . . , jλn.
It follows that, the feasible set of (5) is always nonempty.

3.1 Optimal Delay Attacks

We now reformulate minimization problem (5) to facilitate its solution. We perform
two simplifying steps to rewrite the Hadamard product (5a) and the eigenvalue
constraint (5b).
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Let vec (M) = [m11, . . . ,mm1,m12, . . . ,mmn] denote the vectorization of
matrix M = [mij ] ∈ R

m×n, and let diag (v) ∈ R
n×n denote a diagonal matrix

with diagonal entries given by the elements of vector v ∈ R
n. Then, the Hadamard

products in (5a) are linear functions of the entries of Ψ , as formalized in the
following result.

Lemma 2 (Linearity of Hadamard Product) Let ĀΨ = (1n×n − Ψ ) ◦ A and
ÃΨ = Ψ ◦ A. Then

vec
(
ĀΨ

) = diag (vec (A))
(
1n2 − vec (Ψ )

)
,

vec
(
ÃΨ

)
= diag (vec (A)) vec (Ψ ) ,

where 1n2 ∈ R
n2

denotes the vector of all ones.

Proof The claimed statement can be verified by inspection. ()
Next, we drop the dependency of constraint (5b) on the complex variable v.

Lemma 3 (Rank Constraint) Let ĀΨ + ÃΨ = A. There exists a solution v =
v* + jv., ω ∈ R≥0 and θ ∈ [0, 2π] to (5b) if and only if

Rank (ΛΨ ) < 2n,

where

ΛΨ =
[ −ÃΨ sin θ − ωIn A+ ÃΨ (cos θ − 1)

−A− ÃΨ (cos θ − 1) −ÃΨ sin θ − ωIn

]
. (6)

Proof By substituting ĀΨ = A − ÃΨ , e−jθ = cos θ − j sin θ , and v = v* + jv.
into (5b) and by expanding the products, we obtain

(
A+ ÃΨ (cos θ − 1)− jÃΨ sin θ

)
(v* + jv.) = jω(v* + jv.),

or equivalently, by separating real and imaginary parts,

(A+ ÃΨ (cos θ − 1))v* + ÃΨ sin θv. = −ωv.,(
A+ ÃΨ (cos θ − 1)

)
v. − ÃΨ sin θv* = ωv*.

The two equations above can be collected together and rewritten in matrix form as

[ −ÃΨ sin θ A+ ÃΨ (cos θ − 1)

−A+ ÃΨ (cos θ − 1) −ÃΨ sin θ

]

︸ ︷︷ ︸
�Ψ

[
v*
v.

]
= ω

[
v*
v.

]
,

from which the claimed statement follows. ()
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These simplifications lead to the following result.

Lemma 4 (Equivalent Minimization Problem) Let ΛΨ be defined as in (6) and
let ĀΨ + ÃΨ = A, where ÃΨ satisfies

vec
(
ÃΨ

)
= diag (vec (A))

(
1n2 − vec (Ψ )

)
.

The following minimization problem is equivalent to (5)

Ψ ∗ = arg min
Ψ,θ,ω

‖Ψ ‖�1

subject to Rank(ΛΨ ) < 2n,

ψij ∈ {0, 1},
θ ≤ ωτmax. (7)

It should be noticed that the two simplifying steps performed allow us to (i) write the
entries of �Ψ as linear functions of the optimizing variables ψij , and (ii) discard the
dependency of the optimization problem from the complex variable v. In the next
section, we further simplify the optimization problem (7) and propose a numerical
method to find an approximate solution.

3.2 Numerical Methods for Finding Optimal Attacks

We observe that the optimization problem (7) is not convex because of (i) the
presence of integer optimization variables Ψ , (ii) the nonlinear relation between
�Ψ and θ in (6), and (iii) the rank constraint that is nonlinear in the entries of
�Ψ . We now develop a numerical method to find a delayed set of edges that can
be used to gain information about the solution to (7). First, we relax the original
integer variables by letting ψij vary on the interval [0, 1]. Second, we emphasize that
rank constraints produce challenging nonconvex feasible sets, for which all known
finite-time algorithms have exponential running times [22]. We will therefore focus
on proposing a heuristic that solves a relaxed version of the problem (7). A good
heuristic is a tractable method that in practice will solve the considered optimization
problem, although there is no guarantee on its optimality.

Recent works (see, e.g., [22]) propose to relax rank constraints to constraints on
the nuclear norm of the considered matrix. Formally, for a (nonnecessarily square)
matrix M ∈ R

m×n, the nuclear norm is defined as

‖M‖∗ =
min{m,n}∑

i=1

σi(M),

where σi denotes the i-th singular value of M . The nuclear norm is a convex function
that can be optimized efficiently and is a good convex approximation of the rank
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function [23]. Loosely speaking, ‖M‖∗ represents the �1-norm of the vector of the
singular values of M; therefore, constraining the nuclear norm will promote sparsity
in such vector [22]. Thus, we consider the relaxed version of the rank constraint (7),
that is,

‖�Ψ ‖∗ < 2n. (8)

Nuclear norm regularization constraints can be reformulated in the form of SDP
constraints [23], as formalized in the following result.

Lemma 5 (SDP Constraint) There exists ΛΨ that satisfies (8) if and only if there
exist symmetric matrices M ∈ S

n×n and N ∈ S
n×n that satisfy

[
M ΛΨ

ΛT
Ψ N

]
/ 0, and Trace (M + N) = n− 1

2
.

Proof The proof follows immediately from [23, Lemma 1]. ()
These simplifications lead to the following relaxed version of (7):

Ψ̂ ∗ = arg min
Ψ,θ,ω,M,N

‖Ψ ‖�1

subject to

[
M �Ψ

�T
Ψ N

]
/ 0,

Trace (M +N) = n− 1

2
,

ψij ∈ [0, 1],
θ ≤ ωτmax, (9)

where M ∈ S
n×n, N ∈ S

n×n, and �Ψ are defined in (6). We observe that the
feasible set in (9) is a convex set in the optimization variables Ψ , ω, M , and N ,
as all its constraints are linear functions of these variables. In the next section, we
numerically solve (9) for fixed θ and present how the resulting solutions provide
an insight on the relation between the smallest cardinality attack sets and network
topology.

4 Optimal Attack Sets and Relation with Topology

This section discusses numerical simulations in support of the approximate solution
method proposed in Sect. 3, and includes numerical investigations that provide
useful insights regarding the resilience of different network topologies under attack.
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We first focus on numerically evaluating the optimality gap between the opti-
mization problem (5) and its relaxation (9). Recall that Ψ ∗ denotes the true
combinatorial optimal solution to (5) and Ψ̂ ∗ denotes the solution of the convex
relaxation (9). We observe that, in general, the inequality ‖Ψ̂ ∗‖�1 ≤ ‖Ψ ∗‖�1 holds
as the feasible set of the combinatorial problem is a subset of the feasible set of (9).
We employ a rounding algorithm that uses the solution of the convex relaxation with
objective value Ψ̂ ∗ to produce a feasible integer solution with (possibly suboptimal)
value Ψ̂ ∗

FEAS. The relation between Ψ ∗, Ψ̂ ∗, and Ψ̂ ∗
FEAS is depicted in Fig. 5.

To evaluate the optimality gap, that is, the gap between ‖Ψ ∗‖�1 and ‖Ψ̂ ∗
FEAS‖�1 ,

we consider graphs constructed by interconnecting nodes randomly [24], where
each edge is included in the graph with probability p = 1/2, independent from every
other edge. Edge weights are chosen randomly in the interval [0, 1], and θ is chosen
equal to π/2. A Monte Carlo simulation obtained by sampling from the above set of
graphs is illustrated in Fig. 6, where a feasible optimal solution is compared with the
combinatorial solution Ψ ∗ for increasing network sizes. The comparison shows that
feasible solutions originated from the relaxed problem (9) represent, in this scenario,
accurate approximations of the combinatorial optimal solution.

Next, we employ the proposed optimization technique to compare the robustness
of different network topologies against timing attacks. We consider (i) the class of
random graphs with edge probability p = 1/2, (ii) the line topology (Fig. 7a), and
(iii) the platooning formation (Fig. 7b). Figure 8 shows a comparison between the
norms ‖Ψ̂ ∗‖�1 and ‖Ψ̂ ∗

FEAS‖�1 for increasing network sizes. It is worth noting that,

‖Ψ̂∗‖�1 ‖Ψ∗‖�1 ‖Ψ̂∗
FEAS‖�1

Fig. 5 Relation ‖Ψ ∗‖�1 ≤ ‖Ψ̂ ∗‖�1 ≤ ‖Ψ̂ ∗
FEAS‖�1 and optimality gap for the considered problem
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‖Ψ∗‖�1

‖Ψ̂∗
FEAS‖�1

Fig. 6 Monte Carlo simulation illustrating the optimality gap for random graphs where edges
between each pairs of nodes have probability p = 1/2. Solid lines represent the mean value over
the sample and colored bands illustrate standard deviation. Sample size is chosen equal to 10
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(a) (b)

Fig. 7 Considered topologies for variable n, (a) line, (b) platoon
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Fig. 8 Norm of optimal attacks for different network topologies. (a) Line topology, (b) platooning
formation, (c) random graphs with p = 1/2. Solid lines represent the mean value over the sample
and colored bands illustrate standard deviation. Sample size is chosen equal to 10

while solving the combinatorial problem (5) is prohibitive for significantly large n,
‖Ψ̂ ∗‖�1 and ‖Ψ̂ ∗

FEAS‖�1 provide a lower bound and an upper bound to this quantity,
respectively (Fig. 5).

The comparison shows that the resilience of line and platoon topology degrades
for increasing network sizes n, as opposed to the class of random graphs. We
interpret this result by observing that the average degree2 of the nodes in the
random graphs scales with the network size, as opposed to the constant degree of

2|Ni | represents the degree of node i, i ∈ {1, . . . , n}.
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Fig. 9 Mean value of Monte Carlo simulations for optimal attacks to graphs with fixed degree for
all nodes. Edge weights are uniform in the interval [0, 1], and sample size is chosen equal to 10

the nodes in the two topologies in Fig. 7. This consideration suggests a relation
between attack resilience and the degree distribution of the nodes in the network.
To validate this interpretation, we consider random graphs where all nodes have
fixed identical degree and compare optimal attacks as a function of this parameter.
The comparison shown in Fig. 9 numerically validates this claim and suggests
that improved robustness can be achieved by designing networks with large node
degrees.

5 Conclusions

This work defines and studies a class of attacks that tamper with the temporal
characteristic of the communication channels, leading to time delays in the signals
exchanged between adjacent nodes. Differently from considering conventional
channel communication delays, the problem of securing network systems from
intentional and specific timing aberrations sets out new security challenges and
design goals. In addition to providing a framework to characterize and study
timing attacks from a control perspective, this work proposes numerical ways
and algorithms to identify links that are inherently less robust to tampering. Our
methods suggest that improved robustness can be achieved by designing network
topologies in which all nodes have large degree distributions. The numerical
nature of the proposed study motivates more rigorous formalization in future
works.
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Attack Tree Construction and Its
Application to the Connected Vehicle

Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M. Abdelaziz Elaabid

Abstract Remote connectivity of today’s and future cars increases their capabilities
of autonomy and safety, but also their attack surface, as reported by several research
papers. In the automotive domain, the security has a direct impact on the user’s
safety. Thus, the management of risk is becoming the main concern of automotive
manufacturers, especially for the future fully connected and autonomous cars.
A possible way to quantify the overall risk of a system is the systematic construction
of attack graphs and attack trees. These formalisms are presented as one of the
possible solutions in the new Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems (SAE-J3061). In this chapter we propose to use graph transformation to
formally model the car architecture and its state evolution in order to study cyber-
physical attacks against it. The resulting attacks are converted into attack trees which
are used to estimate the overall risk of the system. Consequently, it becomes possible
to study improvements while building a more secure architecture. The proposed
method is designed to support the conceptual phase of the vehicle’s cyber-physical
system. We illustrate the method on a small pedagogical example to show how it is
possible to prove its efficiency.
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1 Introduction

During the last 15 years, the automotive domain has been subject to many develop-
ments that allow car manufacturers to enhance most of features by digital processing
assistance. These changes helped to build more robust, safer, more comfortable, and
user-friendly cars. Later developments introduced the car to remote connectivity
technologies that allowed even more advanced functionality to be integrated in the
car. Wi-Fi and Bluetooth connectivity to smartphone and cellular connectivity offer
a plethora of possibilities for the user. Unfortunately these technologies exposed the
car to the outside world, and like every connected device, the car became one of
the targets for hackers [6, 15]. Motivation of such hackers could go from a simple
privacy violation where the goal is to steal private information from the car owner
or the car manufacturer to a more dangerous scenario that could threaten user safety.

Since the car used to be a closed system, hypothesis about some trusted domains
that used to be true in a not connected car is no longer valid, especially when it
comes to the internal communication buses. An attacker may leverage these trust
relations along with some code vulnerabilities to retrieve, compromise, and steal
private information or, even worse, take control over the entire vehicle or some of
its functionalities [4, 6, 15].

In fact, in the last years, some researchers began to report multiple important
issues related to the design and implementation of the car architecture. In [8] an
early work of Hoppe et al. pointed out the threats on in-vehicle bus networks based
on characterizations carried out on a simulated bench. These conclusions have been
further confirmed later in [12] and [4] that performed CAN frame injections on a
real vehicle but with direct physical access to the communication bus of the car.
In a more advanced attack, Miller et al. reported in [15] that the physical access
to the vehicle is not necessary if an attacker can find some code vulnerability that
allows him to reach these communication buses using another wireless attack vector.
In general, the recent works performed in this area have shown that combinations
of exploits and mis-configurations are the typical means by which an attacker
breaks into a car communication bus. Facing this increasingly growing threat, car
manufacturers have to guarantee a certain security level of the equipment embedded
in the automobile. The obvious approach to this problem is to conduct a security
assessment study. The goal of the security assessment is to identify the assets and
the associated attack scenarios regarding availability, integrity, and confidentiality.
There are available methods like EBIOS and TVRA that could be adapted to
conduct such a study in the automotive domain. Ultimately the study will help the
manufacturer decide where to best spend the security budget. To do so, the risk is
evaluated relatively to each attack scenario based on its impact and its likelihood.

Risk =
∑

i

Impact (sci)× Pocc(sci) where
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• {sci} is the set of identified attack scenarios.
• Impact is a function that evaluates the impact of a given scenario.
• Pocc is the likelihood or the probability of occurrence of the given scenario.

While the impact of the attack scenario has to be defined by the security experts,
determining what attack scenarios are likely to occur is a little more complex and
strongly depends on the given architecture. Eventually security experts have to
imagine every possible way the attacker can exploit the system in order to reach
her objective. A fairly good way to model these attacks and to document them is to
use attack trees or the attack graphs.

Attack trees have been introduced in [21] as a useful way to document and
understand attacks on a given system and most importantly is a way of making
decisions about how to improve the security of the target system. The root node in
an attack tree represents the attack goal (or attack scenario), and leaf nodes represent
basic attacks. Each node in the tree is either an [AND] node or an [OR] node. An
[AND] node has child nodes that represent different steps of achieving the goal,
and an [OR] node has child nodes that represent different ways of achieving the
goal. Attack graphs are also a good way to document attacks. They are composed
of vertices (that represent the system states) and edges (that represent attacks
performed on the system).

Attack trees are well designed to support risk assessment studies [13]. Never-
theless, the elaboration of attack trees can be a tedious task and error prone for
large systems. This is why automated techniques to generate such representations
of attacks have been proposed.

1.1 Attack Trees in the Automotive Domain

In the automotive domain, little work has been conducted in such direction. To
the best of our knowledge, the work of Salfer et al. [19, 20] is the only one
that proposes such approach. In [20], Salfer et al. present automated attack tree
generation as a reachability problem of assets inside the cyber-physical architecture
of the vehicle. Nevertheless, the proposed model focuses on scalability issue using
heuristic techniques and does not address the exhaustivity of the attack paths.

Lugou et al. [14] and Apvrille et al. [3] use SysML-Sec modeling language to
model safety and security aspects of the car architecture and formally prove safety
(with Uppaal) and security (with ProVerif) properties. In [2] Apvrille et al. explain
how to use an input attack graph modeled with SysML-Sec for the verification of a
system. The issue of how to create such an attack graph is not addressed; in other
words the attack scenarios are not automatically generated and need to be manually
fed to the tool.
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1.2 Attack Tree Generation

In contrast automated generation of attack trees has been addressed in other
domains, especially in network security and enterprise security [1, 9, 11, 17].

In [17] Phillips et al. build an attack graph based on topology and vulnerability
information; they also use the attack graph to identify attack paths with high
probability or low cost. In [18] Ritchey et al. used a model checker to provide
single attack scenarios to depict vulnerabilities due to the configuration of various
hosts in a network. The pieces of information about the network are fed to a model
checker and then assert that an attacker cannot acquire a given privilege on a given
host. The model checker provides a counterexample (the attack steps) in case the
assertion is false. As an extension of this work, in [22] Sheyner et al. present
an automated method to analyze a network of hosts with known vulnerabilities
and produce an attack graph that depicts all possible ways for the attacker to
reach his goal. Later works focused on reducing the complexity of the approaches.
In [1] Ammann et al. propose a scalable attack graph generation based on the
monotonicity assumption (an exploit never invalidates another exploit). In [16] Ou
et al. introduced a logic-based approach for network security analysis. The method
relies on inference rules implemented on a modified version of the XSB inference
engine to depict all attack paths combining vulnerabilities in a network. In [9] Ingols
et al. use network configuration data to automatically compute network reachability,
classify vulnerabilities, and build an attack graph used to recommend actions
to improve network security. In [11] Jajodia et al. use topological information
to analyze vulnerability dependencies and assess the impact of individual and
combined vulnerabilities on overall security, then identify key vulnerabilities, and
provide strategies for protection.

The problem has also been investigated for enterprise security domain [5, 10].
The goal is to implement enterprise security policy against possible “insider attack”
or attacks that leverage certain “trust” relations and social interactions between
actors (employees). Thus efforts focused on modeling trust relations and asset
mobility. In [10] Ivanova et al. present a general framework of a model for enterprise
security and how to transform this model to an attack tree that exploits possible trust
relations between actors. In [5] only the modeling aspect of the problem is discussed
and focuses also on trust relations and asset mobility.

Those generation techniques rely on models that are not suited for the automotive
domain. However the general approach could be adapted. This approach is more or
less the same for all of the presented works : first the real system is abstracted in
a model that captures only the important aspects. Second the modeled system is
expressed using the language of an inference engine (model checker, Horn clauses,
etc.). It is then processed by the inference engine whose output is a set of possible
attacks to be analyzed.
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1.3 Contributions

In this chapter we first propose a method to model elements of the cyber-physical
architecture of the vehicle using graphs. The model captures the security policy
implemented as well as vulnerability information and access rights. Besides we
consider an attacker model as a set of attacks originating from all the attack vectors
(short range, long range, and indirect physical access). The system and attacker are
modeled with behavioral rules using graph transformation system.

Second, we use the model to generate possible attack paths (combinations of
actions) that can be used by the attacker to drag the system into a vulnerable state.
Thus the generated attacks are more detailed and we can capture more information
about the possible attacker actions. The simulation of this behavioral model will
allow us to find all vulnerable states and to retrace attacker actions that allowed him
to reach it. Using this information we generate an attack tree that summarizes all
possible steps that allow the attacker to reach his goal.

Based on such model, we can try to answer questions like:

• Is a vulnerable configuration/state reachable from an initial state? In other words
is an attack scenario achievable on the proposed architecture?

• Which sequence of basic attacks the attacker has to perform in order to reach
such vulnerable state?

In what follows, Sect. 2 gives some preliminary notions and definitions in the
automotive domain and introduces the formal modeling language used. In Sect. 3
we explain how to generate attack scenarios. Section 4 shows how to deduce the
attack tree necessary risk assessment. The small example introduced in Sect. 2.2
helps the reader understand the methodology throughout the chapter. And finally
Sect. 6 concludes the paper.

2 Background and Definitions

In this section we introduce to the reader some notions relative to the automotive
domain that will be used in the reminder of the article, we introduce the modeling
language that we used to build the model, and finally we present a small example
that we will use in the following sections to illustrate the different steps.

2.1 Automotive Architecture

The cyber-physical architecture of the car is composed of multiple components that
could be categorized in four main categories:

• Sensors: these are components whose role is to report information about the
state of the vehicle (speed, closed/open doors, break/acceleration,etc.) and its
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surroundings (vision radars, . . . ). The data that produced by the sensors are sent
to Electronic Control Units (ECUs) to be processed.

• Actuators: these are the components that transform commands coming from
different ECUs into actions (engine, wheel orientation, . . . )

• ECUs: short for Electronic Control Units that are the most important part of the
architecture. In general they are composed of hardware electronic components
(memories, microcontrollers, etc.) that have a processing capacity and that
embed algorithms (software) needed to ensure the control of every single
functionality inside the vehicle from breaking to air-conditioning and more
advanced functionality that ensure the user’s comfort (e.g., Internet connectivity,
smart applications, etc.. . . )

• Communication buses: they are an important part of the architecture as they
represent the main medium of communication between the ECUs. Multiple
technologies of buses could be found in today’s cars, e.g., CAN, FlexRay,
Ethernet, and others. Each technology has some characteristics that justify
its presence between certain ECUs: robustness, throughput, etc. For historical
reasons and up until lately, these technologies (CAN protocol being on top of
the list) did not implement security mechanisms as these communications were
assumed to be “trusted.”

Some of the ECUs inside this architecture implement advanced services that open
the whole architecture to the outside world. Examples of these services are internet
connection, Bluetooth, Wi-Fi for smartphones, etc. Given the fact that automotive
architecture used to be a closed system and that internal communication buses still
used were not designed with security in mind, the new attack vectors expose the
architecture to sophisticated attacks that leverage these “trusted” relations.

2.2 Architectural Graph

In this section we identify key elements of the automotive architecture introduced in
Sect. 2.1 and the relations between them. Using these elements, we model the cyber-
physical system of the car using graphs: the main idea is to model communication
buses, hardware components of the ECUs (including the sensors and actuators), and
the software components as graph nodes. Arcs in the graph model relations between
the nodes. Figure 1 represents an example of an architectural graph.

• Service node:
Automotive services are built around the notion of function blocks, which

emphasizes the connection of inputs and outputs to core software modules. Those
software modules are then mapped to different ECUs. Automotive software
frameworks such as AUTOSAR are particularly designed to support such
architecture. We base the model around this concept. A service is modeled as
a node in the graph. To communicate data, services use read and write access
to shared memory or to/from network hardware, sensors and actuators. These
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Fig. 1 Small example

access rights are modeled with arcs directed to the corresponding hardware
elements. Besides access rights, we also capture the vulnerability information
of the modeled service.

• Hardware node:
A hardware node is a special node that abstracts a hardware component: it

is used to represent sensors, actuators, memory components, communication
controllers, etc. Software nodes have access rights over the hardware nodes.

• Communication node:
A communication node models communication mechanisms between hard-

ware nodes that are used to exchange data. It is designed to model a bus
communication between multiple hardware nodes as well as a point-to-point
communication between only two hardware nodes.

• Data node:
A data node models a data asset that can be located on a service node, a

hardware node, or a communication node.

Running Example

To clarify the model, let us consider the example of Fig. 1. In this example we
propose an architecture composed of three ECUs connected to the same CAN bus.
The CAN bus is connected to the OBD port: ECU-1 contains a CAN transceiver that
allows it to communicate over the CAN bus, a processing unit and a speed sensor.
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On the CPU runs a service whose job is to make the speed acquisition and send it
over the CAN bus. This service has a read access to the sensor and a write access to
the CAN transceiver. On ECU-2 we have also a CAN transceiver, a processing unit,
and a screen. On this processing unit runs a service whose job is to read the speed
information from the CAN bus and to pass it to the screen to be displayed. Thus
it has a read access over the CAN transceiver and a write access over the screen
hardware. ECU-3 is connected to both the CAN bus and the cellular network. We
suppose that on the CPU of this ECU runs a vulnerable service that has a read/write
access to the cellular hardware and a read/write access to the CAN transceiver. ECU-
1 is supposed to sense the speed and send it over the CAN bus to be displayed by
ECU-2 over the screen.

2.3 Graph Transformation

In this section we briefly introduce graph transformation system (GTS) as a rule-
based modeling approach that allows to capture the structural as well as behavioral
aspects of a system. We use it as the underlying formal modeling language
supporting the methodology.

A graph transformation system is a formal approach for structural modifications
of graphs via the application of transformation rules. A graph transformation system
is thus a tuple (G,R) where G is a graph and R is a set of transformation rules.
A typed GTS is a GTS where each element of the graph is assigned a type.
Transformation rules are then type preserving. We consider typed graphs. A graph
transformation rule consists of a left-hand side graph L, a right-hand side graph
R, a Negative Application Condition (NAC), and a mechanism specifying how to
transform L into R when the NAC is satisfied.

In general we model three types of transformation rules:

• Transformation rules to describe the behavior of services (one or multiple rules
for each service). This rule is conditioned by the availability of the input data.
We assume that as soon as the input data are all available, the transformation
rule can be triggered. The effect of this transformation rules will be to delete
the input data (consumed by the service) and to create the output data with the
correct output type and made available for other services. Some transformation
rules may add an attribute to the input data node when there is no need to delete
and create another data “type.”

• Transformation rules to describe the normal behavior of the hardware com-
ponents. For each type of hardware node, we define a behavioral model. For
instance, a memory node used to store data accepts a data node only from a
service that has a write (w) access right on it and also can transfer data only to a
service that have a read (r) access right on it.

• Transformation rules to describe the attacker actions: the behavior of the attacker
is modeled with transformation rules that represent basic attacks or actions that
the attacker can perform on the system to interact with it.
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Example

As an example let us introduce transformation rules that we model for the
architectural graph (Fig. 1) of the example introduced above.

1. To describe the behavior of the speed-acquisition service (S1), we implement the
transformation rule of Fig. 2. This rule means that if the speed data is available,
the speed-acquisition service (S1) will read a speed data from the speed sensor.

The transformation rule of Fig. 3 means that is the speed data is available on
the speed-acquisition service (S1) and that service has the write access right to
the CAN hardware; then the service can send the data the CAN hardware.

2. To describe the behavior of the CAN hardware, we implement the transformation
rule of Fig. 4. Note that at this stage, it does not matter if the data is a speed data
or not. This is mainly because this behavioral rule is designed to send any data

Fig. 2 Speed-acquisition rule
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Fig. 5 Example of attacker rule

on the CAN bus. The rule is also common to all CAN hardware as opposed to
some rules that are sometimes specific to one in particular.

3. To describe the behavior of the attacker, we model transformation rules that gives
her the ability to connect to any communication link and to read and write data
on that link. She is also able to exploit vulnerabilities and modify the collected
data and replay it. The transformation rule (Fig. 5) could be read as follows: if
the attacker (Att) is connected to the CAN network, and if there is a data packet
transiting on the CAN network, then the attacker can copy the data.

3 Attack Graph Generation

Given a start graph, and a set of transformation rules, the recursive application of the
transformation rules on the start graph will generate a state space which represents
all possible states that could be generated from the set of transformation rules. In the
state space, each state represents a graph, and a transition between two states (source
and destination) represents a rule application that allowed the transformation of the
graph from the source state to match that of the destination state. For instance, the
application of the transformation rules of Figs. 2 and 3 for the modeled example of
Fig. 1 will produce the state space of Fig. 6.

The modeled rules are a combination of attacker actions (or basic attacks)
and rules that describe the behavior of the modeled elements. The produced state
space contains transitions that model both attacker steps and element behavior. By
definition of the attack graph, the state space contains the attack graph.

Given a particular attack scenario (attacker objective), we have to make a query to
find states in the state space where the scenario is realized (the attacker has reached
its objective). Thus queries allow to detect a vulnerable state. They are expressed
also in the form of graph. Figure 7 gives an example of a query that allows us to
detect if there is a state of the system where the screen displays a modified speed.
In practice we model the architectural graph and transformation rules using a tool
named GROOVE [7]. This tool allows the transformation of the input model and
produces the associated state space.

In the next section, we will process this state space to capture only attacker
actions in the form of an attack tree.
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4 Attack Tree Generation

The generated state space is quite complex and large (for the introduced small
example, we have 768 states and 2860 transitions). Besides it includes transitions
that describe the behavior of the system as well as transitions that describe basic
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attacks performed by the attacker. A convenient way to reduce the information is
to transform this state space into an attack tree that only combines attacker actions.
The attack tree procedure will allow us to discard all the transitions that are not basic
attacks and to output, in the form of a tree, a compact representation of complex
attacks. Based on the attack graph (state space) generated in the previous section, we
follow a simple way to transform this attack graph into an attack tree. Let (G,R) be
an attack graph with a start state S0. Let Sv be a vulnerable state of the system (i.e.,
a state where a security breach has been detected). The security breach detected by
that state is placed on the root of the attack tree. The goal is to collect all sequences
of transformations (attacker actions only) that led to that state. We explore the attack
graph from the target state (Sv) backward to the start state: each time we encounter
a state with more than one incoming edges, we place an [Or] node in the attack
tree (meaning that there is more than one way to reach that state), and each time we
encounter a state with only one incoming edge, we place an [And] node in the attack
tree. And finally each time we encounter a state with more than one outgoing edges,
we place a sub-tree and check if we already computed that sub-tree. Sub-trees are
attack trees that are present more than once inside a single attack tree (Fig. 8).

Using the example introduced in Fig. 1, we make a query (Fig. 7) to detect
vulnerable states where the attacker can force the system into a state where the
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Fig. 9 Attack tree automatically produced from input model Fig. 1

screen displays a modified speed. The results produced by the methodology are
shown in Fig. 9.

The attack tree shows that the analysis of the modeled architecture identified
three attacks.

• Attack-1: where the attacker connects to the OBD port, eavesdrops on the CAN
bus to dump the speed frame, then connects to the vehicle from the cellular
network, exploits an exposed vulnerable service (S3) that has a write access on
the CAN controller, and then replays the data

• Attack-2: where the attacker connects to the OBD port, eavesdrops on the CAN
bus to dump the speed frame, and then replays it from the OBD port on the same
CAN bus.

• Attack-3: where the attacker only operates from the cellular, connects to the
cellular, exploits the exposed service, and then uses that service to eavesdrop
on the CAN hardware to dump and then replay the speed frame

5 Countermeasure

We are interested in attack-3 where the attacker only operated from the cellular
network attack vector. This attack seems important as it does not require a physical
access to the vehicle. Analyzing the steps of the attack, if we can prevent at least
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one of the basic attacks from happening, we can prevent the whole attack from
happening as it is an [And] node. It seems possible to either deploy a patch for
the vulnerable service or to revoke the read access right of the service to the CAN
controller. As a short-term solution, we opt for the second choice. Rerunning the
simulation with the modified architecture produces the attack graph presented in
Fig. 10.

We can see that now there are only two attack options for the attacker, since the
service does not have a read access right to the CAN controller; the third attack
scenario is no longer valid and hence not reported in the attack tree. The overall
impact of the objective is affected because through the changes we made, we were
able to block the attack path.

6 Conclusion

The chapter presents a modeling methodology using graph transformation to
construct attack trees in order to analyze attacks to a connected vehicle. The attack
tree synthesizes all possible attack paths with respect to the model and, thus, serves
as the basis for further analysis. Impact quantification and sensitivity analysis can
be conducted given such attack tree whose goal is to improve the overall security
of an automotive architecture during design phase. The described methodology has
nevertheless certain limitations due to required input data, which are:

• A structural and behavioral model of the service nodes
• A structural and behavioral model for hardware components
• An attacker model

From the car manufacturer point of view, the fact that the modeling methodology
requires architectural information of service nodes can be considered as a limitation
as some software architecture and implementation tasks are outsourced to other
companies.
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Reinforcement Learning
and Trustworthy Autonomy

Jieliang Luo, Sam Green, Peter Feghali, George Legrady, and Çetin Kaya Koç

Abstract Cyber-Physical Systems (CPS) possess physical and software inter-
dependence and are typically designed by teams of mechanical, electrical, and
software engineers. The interdisciplinary nature of CPS makes them difficult to
design with safety guarantees. When autonomy is incorporated, design complexity
and, especially, the difficulty of providing safety assurances are increased. Vision-
based reinforcement learning is an increasingly popular family of machine learning
algorithms that may be used to provide autonomy for CPS. Understanding how
visual stimuli trigger various actions is critical for trustworthy autonomy. In this
chapter we introduce reinforcement learning in the context of Microsoft’s AirSim
drone simulator. Specifically, we guide the reader through the necessary steps for
creating a drone simulation environment suitable for experimenting with vision-
based reinforcement learning. We also explore how existing vision-oriented deep
learning analysis methods may be applied toward safety verification in vision-based
reinforcement learning applications.

1 Introduction

Cyber-Physical Systems (CPS) are becoming increasingly powerful and complex.
For example, standard passenger vehicles have millions of lines of code and tens
of processors [1], and they are the product of years of planning and engineering
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İstinye University, İstanbul, Turkey
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between diverse teams. In similar ways, both smaller CPS, like smart locks, and
larger CPS, like electric power transmission systems, require teams with diverse
skills. These modern systems are being augmented with full or partial autonomy.
Because of the physical aspect of certain CPS, it is critical that they operate reliably
and safely. However, the interdisciplinary nature of CPS makes them difficult to
design with safety and security guarantees. When autonomy is incorporated, design
complexity and, more importantly, the difficulty of providing safety and security
assurances are increased. Yet because of the benefits of autonomy, we will continue
to see its use expand.

Reinforcement learning (RL) is a family of machine learning algorithms
aimed at providing autonomy, and these algorithms are being used to provide
autonomous capabilities to CPS. RL has historic roots in dynamic programming
and the psychological concepts of operant conditioning, or learning by trial and
error. RL methods are flexible. For example, an RL policy may be developed using
simulation and then transferred to a physical agent, or a policy may incorporate prior
knowledge about the environment, or a policy may be trained tabula rasa. Because of
the flexibility of these methods, RL with CPS is ideally suited for interdisciplinary
development, with each field bringing distinct capability-enhancing contributions.
On the other hand, an individual can develop basic autonomous methods with RL
which may later be improved.

In mammals, vision processing accounts for a high percentage of neural activity.
Likewise, in CPS, visuomotor control will be an important area of research, e.g., for
self-driving cars or package delivery drones. Understanding the visual stimuli that
influences behavior is critical for safe autonomy. Advanced RL methods typically
process visual inputs with convolutional neural networks (CNNs). In 2012, CNNs
gained popularity when the AlexNet architecture became the first CNN method
to win the ImageNet competition [2]. At that time, CNNs were treated like black
box functions that worked well, but it was difficult to determine why. Since then, a
number of visualization algorithms have been devised to provide introspection into
the behavior of a CNN. Such methods may also be applied in the context of RL in
order to provide insight into the reliability of a particular CNN.

In this chapter we introduce reinforcement learning in the context of Microsoft’s
AirSim drone simulator. AirSim is a physics-based simulator which enables experi-
mentation with self-driving and flight applications. We have extended the simulator
to support teaching a drone how to autonomously navigate a sequence of waypoints
(Fig. 1). The source code for these experiments is available at https://github.

Fig. 1 In this chapter we train a drone to use its camera to perform path planning. Training is
performed via reinforcement learning, and the goal is to learn vision-to-action mappings which
allow the drone to collect cubes

https://github.com/RodgerLuo/CPS-Book-Chapter
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com/RodgerLuo/CPS-Book-Chapter. After an introduction to RL and AirSim, we
explain how to use CNN visualization techniques to increase trust in the safety of
RL-based drone control.

2 Reinforcement Learning Preliminaries

Reinforcement learning is a family of methods aimed at training an agent to collect
rewards from an environment. At each time step t , the agent is given information
about the state of its environment in the form of an observation st and then makes
an action at . The agent’s policy π(st ) is the logic which takes state observations
and returns action selections. After each action the environment will return a new
state observation st+1 and reward rt+1. This cycle is illustrated in Fig. 2.

The agent’s policy is parameterized by the tensor θ , giving it a more explicit
notation of πθ(st ). For example, in a linear model, the policy would have the form:

πθ(s) = θ1s1 + θ2s2 + · · · + θmsm = θ#s, (1)

where the time step t has been dropped for notation clarity and m is the number
of features in the state space. In a similar manner, a neural network would be
parameterized by a parameter tensor. The goal of the agent is to maximize collection
of rewards from the environment. In a finite time horizon, the goal is accomplished
by finding parameters θ� which provide this maximization:

θ� = arg max
θ

T−1∑
t=0

r(st , at ), (2)

where T − 1 is the number of time steps experienced and r(st , at ) is the environ-
ment’s reward function. In many real-world cases, the reward function is not given as
a closed-form expression, but must be sampled by the agent’s interactions with the
environment. One of the strengths of RL is its ability to learn using this experiential
method.

Agent

Environment

Fig. 2 In reinforcement learning, an agent interacts with an environment. At each time step, the
agent receives a state and reward signal from the environment. Based on this information, the agent
selects its next action

https://github.com/RodgerLuo/CPS-Book-Chapter
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In the remainder of this section, we describe attributes of the environment in
which RL agents are assumed to exist, and we introduce a common method to solve
the objective given in Eq. (2). This background will prepare the reader for drone
control tasks described in Sect. 3 and for approaching more efficient methods found
in literature.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the environments which reinforcement
learning was developed to solve. A major aspect of MDPs is that they have states
in which an agent exists, and the outcomes of actions depend only on the current
state, not on past states and actions; in this sense MDPs are memoryless. The
memoryless property is captured in the environment’s state-transition and reward
function notation:

p(st+1|st , at , st−1, at−1, . . . , s0, a0) = p(st+1|st , at ),

r(st+1|st , at , st−1, at−1, . . . , s0, a0) = r(st+1|st , at ).
(3)

The state-transition and reward functions in Eq. (3) state that function outcomes
depend only on the current state and action and are independent of past states and
actions.

A second major aspect of MDPs is that the state-transition and/or reward
functions may be stochastic, which means their return values are drawn from some
underlying probability distributions. In standard RL settings, these distributions
must be stationary which means the probabilities do not shift over time. Methods
exist for using RL in nonstationary environments. Investigating such advanced
methods is critical for using RL in safety-critical CPS applications. For example,
state-transition and reward distributions may shift from what was observed during
training in the event of an anomalous situation, e.g., an emergency. In which case
it could be disastrous were the agent to follow its policy decisions blindly. For that
reason, consider the methods introduced in this chapter as an introduction to what
is possible, but safety mechanisms would be put in place for a real-world RL+CPS
application.

Within an MDP, agents may observe their current state and make actions which
attempt to affect the future state. The agent’s objective is to maximize collection of
rewards. An example three-state MDP1 is given in Fig. 3. In this example, the initial
state is s0, and the agent has two action options: a0 and a1. If the agent chooses
action a0, it is guaranteed to stay in state s0, denoted by p(s0|s0, a0) = 1. If the agent
chooses action a1, there is a 25% probability that it will transition to s1, denoted

1In the notation for this example, the subscripts denote “options,” versus the usual meaning, which
is time in this chapter.
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Fig. 3 Example Markov Decision Process. There are three states and two actions. Unless
otherwise indicated, the state-transition probability is 1 and reward is 0. Transition from s0 to
s2 is the most interesting with r(s2|s0, a1) = 1 and p(s2|s0, a1) = 0.75

by p(s1|s0, a1) = 0.25, and a 75% probability it will transition to s2, denoted by
p(s2|s0, a1) = 0.75. The environment returns reward of 0 for all state transitions
except for s0 → s2, and in this case it returns r(s2|s0, a1) = 1.

The agent’s only goal is to maximize collection of rewards. In the context of
Fig. 3, the agent should always select action a1, as it is the only action that leads to a
non-zero reward. While we can see that is the solution, an agent must learn it. There
are two general approaches for learning in RL: value iteration methods and policy
gradient methods. Value iteration is the classical approach to RL and includes the
Q-learning algorithm and its descendents. Policy gradient methods directly optimize
a policy through gradient ascent. Policy gradient methods perform well in many
situations, they are relatively straightforward to implement, and we focus on them
in this chapter. More advanced methods combine value iteration and policy gradient
methods.

2.2 Reinforce Method

In the context of reinforcement learning, our first-order objective was defined in
Eq. (2) as the sum of rewards, but here we will refine it. As stated in the previous
subsection, MDPs often have stochastic state-transition and reward functions; for
that reason the objective J (θ) of the agent is actually to maximize the expected sum
of rewards under the trajectory probability distribution (defined in Eq. (9)). This
is achieved by discovering optimal policy parameters θ� for the objective function
J (θ):

θ� = arg max
θ

Eτ∼pθ

T−1∑
t=0

r(st , at ) = arg max
θ

J (θ), (4)

where τ is the trajectory of state-action pairs (s0, a0, s1, a1, . . . , sT , aT ) and pθ is
the trajectory probability distribution.

The REINFORCE method uses gradient ascent to adjust the policy param-
eters in a direction which increases J (θ) [3]. For notation convenience let
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r(τ ) = ∑T−1
t=0 r(st , at ), and by the definition of expectation, the objective can

be written as:

J (θ) = Eτ∼pθ r(τ ) =
∫

pθ(τ )r(τ )dτ, (5)

where pθ(τ ) is the probability of a specific trajectory. Taking the gradient of J (θ)

with respect to θ then gives:

∇θ J (θ) = ∇θ

∫
pθ(τ )r(τ )dτ =

∫
∇θpθ (τ )r(τ )dτ. (6)

For reasons that will become clear, we recall the following identity:

∇θpθ (τ ) = pθ(τ )
∇θpθ (τ )

pθ (τ )
= pθ(τ )∇θ log(pθ (τ )), (7)

allowing us to rewrite Eq. (6) as:

∇θ J (θ) =
∫

pθ(τ )∇θ log(pθ (τ ))r(τ )dτ,

= Eτ∼pθ ∇θ log(pθ (τ ))r(τ ).

(8)

We now explain why the identity in Eq. (7) was used. The probability of a
sampled (i.e., experienced) trajectory τ has a probability that can be explicitly
calculated only if the underlying state-transition function is known:

pθ(τ ) = p(s0)

T−1∏
t=0

πθ(at |st )p(st+1|st , at ), (9)

where p(s0) is the probability of starting the trajectory in state s0 and is independent
of θ and πθ(at |st ) is the probability of the selected action given the state observation
st . To better understand the notation πθ(at |st ), note that the policy is stochastic. In
other words, when the policy is given a state observation st , the output of πθ(st ) is a
vector of probabilities derived from the sof tmax function.2 In the discrete action-
space environments considered here, there is one output probability per possible
action. A random action is then drawn from the given probability distribution, and
the probability of the selected action is denoted πθ(at |st ).

2sof tmax(xi |x) := exi∑|x|
j=1 e

xj
, where x is a vector of reals.
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In real-world problems, p(st+1|st , at ) is not known, so pθ(τ ) would be impossi-
ble to calculate. However:

log pθ (τ ) = log

(
p(s0)

T−1∏
t=0

πθ(at |st )p(st+1|st , at )

)

= log p(s0)+
T−1∑
t=0

log πθ(at |st )+ log p(st+1|st , at ),

(10)

and replacing log pθ(τ ) in Eq. (8) with its expanded form gives:

∇θJ (θ) = Eτ∼pθ ∇θ

[
log p(s0)+

T−1∑
t=0

log πθ(at |st )+ log p(st+1|st , at )

]
r(τ ),

= Eτ∼pθ

T−1∑
t=0

∇θ log πθ(at |st )r(τ ).

(11)

In this form, we are able to approximate the gradient. Recall that πθ is a neural
network (or some other differentiable function), so the gradient of its log may be
calculated explicitly given each at and st over the trajectory. Also, we know the sum
of rewards r(τ ) for each trajectory. Finally, the outer expectation is approximated by
performing N episodes, i.e., experiencing multiple trajectories, and then averaging
the sums giving:

∇θ J (θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θ log πθ(an,t |sn,t )r(τn). (12)

After having obtained an approximation of the objective’s gradient, we may use
it to update the neural network parameters with standard stochastic gradient ascent:

θ = θ + α∇θ J (θ), (13)

where α is the learning rate and whose appropriate value must be experimentally
found.

The REINFORCE method works surprisingly well for a broad range of problems,
and there are many improvements that have been made to it to increase its
performance. Understanding the method presented here is a good foundation for
approaching current literature. The source code we provide for this chapter at https://
github.com/RodgerLuo/CPS-Book-Chapter uses REINFORCE.

https://github.com/RodgerLuo/CPS-Book-Chapter
https://github.com/RodgerLuo/CPS-Book-Chapter
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3 Microsoft’s AirSim

3.1 Overview

Developed by Microsoft Research AI in 2017, AirSim is an Unreal Engine plug-in to
provide physically realistic simulations for autonomous vehicles in Unreal Engine
environments [4]. The goal of AirSim is to offer an open-source platform for arti-
ficial intelligence research, especially in developing and comparing reinforcement
learning algorithms.

The installation of AirSim is straightforward, and its official web page provides
explicit instructions: https://github.com/Microsoft/AirSim/blob/master/docs/build_
windows.md. AirSim delivers binaries and builds for Windows and for Linux.
We recommend installing AirSim using builds because it gives more freedom for
customizing environments in Unreal. For this chapter, we built AirSim on Windows
10 Pro version 1709. For the rest of the section, we will introduce the core features
of AirSim concerning reinforcement learning and its Python APIs. We will discuss
how to customize Unreal environments in the following section.

By default, AirSim has two built-in vehicle models: multirotor and car.
For the rest of the chapter, we will use “drone” to indicate multirotor mode.
Users can choose to either manually fly the drone or drive the car with a remote
control or programmatically control the vehicles in C++, C#, Python, Java, etc.
This section focuses on programmatic control, particularly using APIs in Python.
Readers can find the official document for remote control configuration on this
web page: https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.
md. We chose AirSim for our studies mainly because of two features: (1) the
combination of AirSim and Unreal provides a more realistic training environment
than other existing RL environments such as OpenAI Gym or Unity ML library,
and (2) the support of software-in-loop and hardware-in-loop with popular flight
controllers provides a potential smooth transition from the simulator to the real
world. This chapter focuses on drone simulation in which AirSim provides four
different flight modes, discussed in Table 1.

To choose a simulation mode and configure other settings, users can edit
setting.json at Documents\AirSim on Windows or ~/Documents/AirSim
on Linux. The minimal configuration is as follows:

{
‘SettingsVersion’:1.0

}

Listing 1 The minimal version of AirSim configuration

SettingsVersion instructs AirSim to load default settings when the Unreal
Engine starts. It is the only item required in setting.json and is usually listed
as the first item in the file. Any items after the SettingsVersion override the
related parameters in the default setting.

https://github.com/Microsoft/AirSim/blob/master/docs/build_windows.md
https://github.com/Microsoft/AirSim/blob/master/docs/build_windows.md
https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.md
https://github.com/Microsoft/AirSim/blob/master/docs/remote_control.md
~/Documents/AirSim
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Table 1 Drone simulation modes in AirSim

Simulation mode Description

Computer vision No vehicle physics and dynamics involved in this mode. Users can
use keyboards or APIs to navigate and position the virtual drone.
This mode is usually used for proof of concept and rapid
prototyping

Simple flight A built-in flight controller provides realistic drone-flying
experience in Unreal. It doesn’t require additional configurations

Hardware-in-loopa The flight controller runs on physical hardware, which
communicates with AirSim using the USB port. The mode is the
closest scenario in comparison to flying a real drone, but requires
additional setups and is usually hard to debug

Software-in-loopa This mode is similar to hardware-in-loop, except the firmware runs
on the computer as opposed to a separate board. Regarding the
relationship to flying the drone in the real world, this mode is
in-between the simple flight and hardware-in-loop

aHardware-in-loop and software-in-loop are usually for advanced users. By far, AirSim supports
PX4 flight controller and plans to support ROSFlight and Hackflight in the future

Listing 2 shows how to load the virtual drone and use the computer vision mode
in the environment.SimMode determines whether to load the drone or car by setting
the parameter to multirotor or car, respectively. Setting UsageScenario to
ComputerVision disables physical simulation, so the drone would hang in the
air. Readers can find a comprehensive description about the settings of AirSim from
this web page: https://github.com/Microsoft/AirSim/blob/master/docs/settings.md.

{
‘SettingsVersion’: 1.0,
‘SimMode’: ‘Multirotor’,
‘UsageScenario’: ‘ComputerVision’

}

Listing 2 A configuration of AirSim to load the drone model and activate the computer vision
mode

3.2 Python APIs

In this section, we introduce two major features of the AirSim Python APIs: drone
navigation and image processing.

In the APIs for drone navigation, except for computer vision mode, all simulators
need to obey the rules of flying a real drone. Namely, the drone needs to be armed
before taking off and disarmed after landing. All other navigation commands
should wait until the drone takes off and hovers at a stable height. Table 2 shows five
auto-flight modes in the Python APIs that facilitate the drone navigation process. In

https://github.com/Microsoft/AirSim/blob/master/docs/settings.md
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Table 2 Five auto-flight modes in AirSim Python APIs

Auto-flight command Description

armDisarm Mandatory before taking off or after landing the drone

takeoff Take off and ascend to default height

land Land drone at its current position

goHome Move drone to its take-off location, followed by land command

hover Hover the drone at its current position

the computer vision mode, however, the drone is spawned directly in the air with no
physics and dynamics and doesn’t need to obey any aforementioned rules. We can
consider the drone as a non-gravity block with visual inputs in the computer vision
mode.

Before we discuss more sophisticated APIs to navigate the drone, it is necessary
to introduce four aircraft terms: pitch, roll, yaw, and throttle. Unlike driving a car,
controlling a drone is performed by making it rotate in three axes: normal axis,
lateral axis, and longitudinal axis. Figure 4 illustrates these axes.

The normal axis, also known as the vertical axis, is perpendicular to the body of
the drone and is directed toward the bottom. Yaw is the motion for this axis. Positive
yaw moves the head of the drone to the right.

The lateral axis is directed to the right of the drone and parallel to an invisible
line drawn from the left edge to the right edge. Pitch is the motion for this axis.
Positive pitch raises the head of the drone and lowers the end.

The longitudinal axis is directed forward, parallel to the body of the drone. Roll
is the motion for this axis. Positive roll lifts the left side of the drone and lowers the
right ride.

Besides the three motions, throttle controls the vertical movements of the drone.
Positive throttle raises the drone vertically.

Fig. 4 An illustration of the
four drone axes: roll, yaw,
pitch, and throttle

Roll

Yaw

Throttle -

Throttle +

Pitch
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Table 3 Five common navigation methods in AirSim

Methods Parameters

moveByAngle pitch, roll, z, yaw, durationa

moveByVelocity vx, vy, vz, duration, drivetrainb, yaw_modec

moveByPath path, velocity, max_wait_secondsd, drivetrain,
yaw_mode, lookaheade, adaptive_lookaheade

moveToPosition x, y, z, velocity, max_wait_seconds,
drivetrain, yaw_mode, lookahead,
adaptive_lookahead

moveByManual vx_max, vy_max, z_min, duration, drivetrain,
yaw_mode

aMethods taking the duration parameter are usually followed by a time.sleep function,
because the methods release control immediately. Without the time.sleep function, the
methods would not have enough time to finish
bDrivetrain has two modes: ForwardOnly and MaxDegreeOfFreedom.
ForwardOnly keeps the drone’s front always pointing in the direction of travel, while
MaxDegreeOfFreedom doesn’t have such restriction
cYaw_mode has two fields: is_rate and yaw_or_rate. Usually, it is set to yaw_mode
(false, 0) to keep the yaw constant
dIn comparison to duration, max_wait_seconds blocks the amount of time, in order to
make sure the action completes
eMost of the time, we set lookahead= −1 and adaptive_lookahead= 0 to let the drone
auto-decide the path

AirSim Python APIs provide five commands to navigate the drone by taking
different physical parameters as inputs. Some commands also have simpler versions
that take less parameters. Table 3 lists the five commands and the parameters each
command takes.

A necessary component for vision-based deep reinforcement learning is
acquiring visual inputs from the drone. AirSim provides seven image types: scene,
depth planner, depth perspective, depth vis, disparity
normalized, segmentation, and surface normals. We used the scene
type to get images for our studies. The following line of code demonstrates how
to acquire raw image data from the AirSim Unreal environment:

rawData = self.client.simGetImages([ImageRequest(1,
AirSimImageType.Scene, False, False)])

Listing 3 A command using AirSim API to acquire image data. The command takes four
variables: camera_id, activating a particular camera on the drone; image_type, choosing
one of the seven image types mentioned above; pixels_as_float, determining whether the
data type of pixels is float or integer; and compress, determining whether the acquired image is
compressed or not. The above command chooses the front-center camera, uses scene image type,
encodes the pixel values as integers, and keeps the image uncompressed

AirSim embedded five cameras on the drone: three of them are in the front, one
is in the back, and one is on the bottom of the drone. The three front cameras are
located on the right, center, and left, respectively. Camera No.1 refers to the front-
center camera, which is the camera we used for our reinforcement learning tasks.
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The orientations and positions of the cameras are customizable in Unreal. Besides
APIs for drone navigation and image processing, other useful APIs consist of
Collision, Reset, SimGetObjectPos, and ApiControlEnabled. More
details about the AirSim Python APIs can be accessed from: (1) https://github.com/
Microsoft/AirSim/blob/master/docs/apis.md and (2) https://github.com/Microsoft/
AirSim/blob/master/PythonClient/AirSimClient.py

4 Reinforcement Learning in AirSim

In this section we give a detailed introduction of how to implement RL using the
AirSim extensions detailed in Sect. 3. Our task is to train the drone to automatically
“collect” cubes in the environment, which consists of (1) an Unreal level for
dynamically positioning the cubes and monitoring the interactions between the
drone and the cubes and (2) a Python library used as an intermediate to receive and
send data between the Unreal level and RL algorithms. In terms of the navigation,
we simplify the drone’s movements by constraining it to three actions: left action,
right action, and forward action. Figure 5 demonstrates the drone’s movements used
in the cube collection task.

4.1 Unreal Dynamic Environment

Our Unreal environment was designed specifically for the cube collection task.
The environment fulfills the following requirements: (1) for each episode in the
RL training, the cubes should be randomly positioned in a restricted area; (2)
the cubes should vanish when the drone hits them or bypasses them. We don’t
want the drone to accidentally collide with the cubes by moving to the left or
right when no cube is visible in the drone’s camera view, because it will result in

Fig. 5 Drone’s movements
were simplified to fulfill the
requirement for our cube
collection task

https://github.com/Microsoft/AirSim/blob/master/docs/apis.md
https://github.com/Microsoft/AirSim/blob/master/docs/apis.md
https://github.com/Microsoft/AirSim/blob/master/PythonClient/AirSimClient.py
https://github.com/Microsoft/AirSim/blob/master/PythonClient/AirSimClient.py
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Fig. 6 A screenshot from Unreal, immediately after the drone spawned in the environment

false rewards3; (3) the environment should have invisible boundaries on the front,
left, and right to constrain the drone’s movements; (4) the number of the cubes
should be dynamic, and the invisible boundaries should be automatically adjusted
according to the number of the cubes. We adapted the Block Unreal environment
created by AirSim (https://github.com/Microsoft/AirSim/blob/master/docs/unreal_
blocks.md) and removed the unnecessary environmental details to create a minimal
Unreal environment for our task. Users can also use AirSim in any other Unreal
environments. A documentation of how to install AirSim in Unreal environments is
here: https://github.com/Microsoft/AirSim/blob/master/docs/unreal_custenv.md.

Generally speaking, Unreal has two modes: (1) edit mode, for editing
the environment, and (2) play mode, for testing the environment. The drone
only appears in play mode and spawns at the origin in the environment. To
change the spawning position of the drone, users need to modify the position
of PlayerStarter, an object corresponding to the drone’s position. In play
mode, users can see different camera views by pressing 1, 2, or 3. Pressing F1
can activate a detailed help menu. Figure 6 shows an initial state after spawning the
drone in the environment.

The requirements mentioned above were implemented in Unreal’s own visual
programming language, called blueprints. We created two blueprints to manage the
drone-cube interactions in the environment. The first blueprint is applied to all the
cubes so that each cube would be removed immediately after the drone hits or passes
it. The second blueprint is to randomly spawn all cubes in a constrained space, once
the drone is reset to its origin. Given the visual complexity of the two blueprints,
we present the high-level abstract structure of the two blueprints in Algorithm 1 and

3This is because our RL policy is memoryless. If an RNN or LSTM were used, instead of a vanilla
CNN, the policy gains memory, and it would be possible for the drone to learn to bump into cubes
which it can no longer see.

https://github.com/Microsoft/AirSim/blob/master/docs/unreal_blocks.md
https://github.com/Microsoft/AirSim/blob/master/docs/unreal_blocks.md
https://github.com/Microsoft/AirSim/blob/master/docs/unreal_custenv.md
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Algorithm 1: Apply to all the cubes in the environment that each cube
would be removed immediately after the drone hits or passes it

1 while env is running do
2 if collision then
3 remove the cube
4 else if drone.xPosition > cube.xPosition then
5 remove the cube
6 end

Algorithm 2: Randomly reposition all the cubes in a constrained space,
once the drone is reset to its origin

1 while env is running do
2 if drone.position == origin.position then
3 remove_all_cubes()
4 for cube_index in range(num_cubes) do
5 spawn.xPos = cube_index * cube_distance + starting_pos
6 spawn.yPos, spawn.zPos = random(-bound, bound)
7 spawn_cube(spawn.position)
8 end
9 end

10 end

Algorithm 2, respectively. Readers can download the blueprint files from our source
code repository.

Usually, blueprints and models are located in Asset folder in Unreal. However,
since the drone is imported from AirSim rather than created in Unreal, it doesn’t
exist in the Asset folder. To modify the drone’s blueprint, we need to switch
to play mode in which an object called BP_FlyingPawn highlighted in gold
will appear in the World Outliner window. The blueprint exists at the Event
Graph menu after clicking Edit→ BP_FlyingPawn.

We also expanded the field of view of the original camera on the drone to better
keep cubes in the drone’s view. To modify the cameras’ attributes, we open the editor
of BP_PIPCCamera, by using the same method of accessing the drone’s blueprint.
The field of view can be found on the Details window, under the Projection
menu. We changed the field of view from 90.0 to 135.0.

4.2 Python Environment Library

Our Python environment library serves as an intermediate to send and receive
data between the Unreal environment and our reinforcement learning algorithms.
It is designed explicitly for the AimSim Python APIs and is compatible with any
automatic differentiation framework, such as TensorFlow or PyTorch.
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Table 4 A high-level description of the Python environment library

Function Description

__init__ Setup connections to the AirSim Python APIs. Parse the parameters
of the drone and the environment

reset Position the drone to the origin. Reset parameters

step Send the updated drone’s position to AirSim. Return state, reward,
done, and infoa

get_image Convert and process raw image data from AirSim to NumPy arrays
which are compatible with our convolutional neural network

aThe details of the four parameters will be introduced in the following paragraph

The library has four major functions: (1) initialize the environment; (2) reset the
environment; (3) for each step, navigate the drone based on the received action and
return the essential training data, such as state, reward, and done; and (4) process
raw image data from Unreal to make them compatible with the deep neural network.
Each function can be called independently during the training process. Table 4
shows a high-level description of the library.

The core part in the library is the step function of which the logic is presented
in Algorithm 3. The function is responsible for returning four essential values for
our RL training:

Algorithm 3: step function, a core function in our Python Environment
Library that takes action as the input and returns state, reward, done, and
number of collected cubes
Input: action
Output: state, reward, done, number of collected cubes

1 the drone’s current position = GetPosition();
2 distance = Move(action);
3 SetPosition(the drone’s current position + distance);
4 state = GetImage();
5 collision info = GetCollisionInfo();
6 if collided then
7 reward = 1;
8 num of collected cubes += 1;
9 end

10 if the drone out of the boundary then
11 done = 1
12 else if num of collected cubes == num of cubes placed in the env then
13 done = 1
14 else if num of steps == threshold then
15 done = 1
16 else
17 done = 0
18 end
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• state: represents the drone’s observation of the environment. In our case, the
states are the images captured by the camera on the drone.

• reward: the amount of rewards acquired by the previous action. We set the
reward to 1 for collecting a cube and 0 for any other actions.

• done: whether the episode ends. In our case, one episode ends when the
drone collects all the cubes in the environment or moves outside of the defined
boundaries.

• info: diagnostic information useful for debugging. We are particularly inter-
ested in the number of cubes collected by the drone.

4.3 REINFORCEMethod in AirSim

We now adapt the concepts of the REINFORCE method from Sect. 2.2 to the cube
collection task. A simple convolutional neural network is used to represent the
policy. We will refine the objective (from Eq. (2)) of finding network parameters
which maximize the expected sum of rewards across all time steps in the episode:

θ� = arg max
θ

Eτ∼pθ

T−1∑
t=0

r(st , at ).

In the cube collection task, a reward of 1 is provided by the environment each time
a cube is collected by the drone, and 0 reward when no cube is collected, so the
objective is to collect as many cubes as possible in each episode (i.e., during time
step t = 0 . . . T − 1, where T − 1 is the step when the last cube is collected or the
drone has gone out of bounds). In the context of REINFORCE, this objective was
discovered by taking its gradient (from Eq. (12)):

∇θ J (θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θ log πθ(an,t |sn,t )r(τn),

and then updating the neural network parameters based on the gradient. Recall that
πθ is the neural network, and, in the drone collection tasks, πθ(an,t |sn,t ) is the output
probability4 of going left, right, or forward, given input pixels from the drone’s
camera.

The weakness of Eq. (12) for our context is that the rewards are sparse, because
there are only three cubes total to collect in each trajectory. If r(τn) is used directly
as the reinforcing signal, then entire trajectory probabilities are increased or are
unchanged. This results in high variance in performance between each episode. An
approach to get faster results in the cube collection task is to “smooth” the attribution

4Softmax of the network’s logits.
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Algorithm 4: REINFORCE algorithm in the context of the AirSim cube
collection task
Input: Old policy parameters θ , learning rate α, tuple of (observations s, actions a,

rewards r) from last cube collection episode
Output: Updated policy θ

1 Apply Eq. (14) to obtain discounted rewards g from a

2 Normalize g

3 Set sumof grads = 0
4 for t = 0 . . . T − 1 do
5 sumof grads = sumof grads + gt∇θ log πθ (at |st )
6 end
7 θ = θ + αsumof grads

8 return θ

of rewards from later stages to earlier stages by applying a discounted return to the
gradient at each time step. Discounted return is defined as:

gt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+3 + γ t+T rt+T =
T−1∑
k=0

γ krt+k+1, (14)

where γ ∈ [0, 1] is the discount rate. The resulting g vector of Eq. (14) is also
normalized5 in the cube collection task. Using g we update Eq. (12) to give:

∇θJ (θ) ≈
T−1∑
t=0

∇θ log πθ(at |st )gt , (15)

where we are only collecting a single trajectory between applications of gradient
ascent. There are better approaches than using the discounted return, and our source
code example is parameterized to allow experimentation between other reward
function alternatives.

We summarize the use of the REINFORCE method in the context of our AirSim
cube collection task formally in Algorithm 4. This algorithm is implemented in the
provided source code.

5 Increased Trustworthiness Through Visualization

Machine vision algorithms have changed radically in the era of artificial intelli-
gence. For example, prior to the age of AI, if we asked a machine to look for a face in
an image, we knew what the machine would look at. With the development of deep

5Normalization is defined as g ← (g−μ(g))/σ (g), where scalar operations are applied element-
wise to the vector.
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neural networks, we significantly increased machine vision performance, surpassing
that of traditional methods, but we initially had limited understanding regarding
which part of the input triggered the machine to come to its conclusion. Such “black-
box” performance is tolerated for some applications, but, in order to develop trust
in AI’s decision-making process, it is important for engineers to understand the
mechanism behind the machine’s decision-making.

This section will introduce three common visualization techniques: T-SNE,
action visualization, and attribution visualization. We adapt these visualization
methods for applications of understanding deep reinforcement learning. As a case
study, we use imagery and trained policies from the cube collecting example which
was detailed in previous sections. For each visualization technique, we analyze three
policies that have been trained to collect cubes using the REINFORCE algorithm.
The policies have the following descriptions:

• Good policy: collects most cubes in the environment.
• Poor policy: is unable to collect any cubes except randomly
• Right-and-forward policy: is only able to collect cubes directly in front or to

the right. Ignores all cubes on the left

5.1 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduc-
tion algorithm developed by Laurens van der Maaten and Geoffrey Hinton [5].
It is well suited for visualizing high-dimensional datasets in 2D or 3D spaces.
Specifically, the visualization maps each high-dimensional data point to a two- or
three-dimensional space in a way that similar data points are nearby and dissimilar
ones are distant. The technique was adapted later to reveal structure of images at
many different scales. The most recent application of visualizing images via t-SNE
is to use a convolutional neural network to extract features from images, input the
extracted features of each image to t-SNE to get the “position” of each image, and
then arrange the images on a 2D or 3D space based on the given positions.

Formally, t-SNE measures the pair-wise distance between all points in a high-
dimensional dataset. It then projects the high-dimensional dataset to a 2D or 3D
space and adjusts the points in the projection to have pair-wise distances which are
similar to the high-dimensional dataset. The pair-wise distance between points xi

and xj in dataset x is defined as the probability that xj would be chosen from a
Gaussian centered at xi:

pj |i = e(−‖xi−xj ‖2/2σ 2
i )

∑
k �=i e(−‖xi−xk‖2/2σ 2

i )
, (16)
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where σi is the variance of a Gaussian centered on data point xi . Using a similar
metric, the distances between low-dimensional points yi and yj are measured as:

qj |i = e(−‖yi−yj ‖2)

∑
k �=i e(−‖yi−yk‖2)

. (17)

For each low-dimension point yi , the similarity of the high-dimensional and
low-dimensional dataset is measured by taking the sum of the Kullback-Leibler
divergences between p∗|i and q∗|i . A cost function is defined by this sum, and then
the projection of point yi is adjusted via gradient descent. By iteratively adjusting
each low-dimension point in this way, the low-dimension dataset takes on distance
characteristics of the high-dimensional dataset.

In this subsection, we use t-SNE to examine the representations learned from
the cube collection task to have a visual overview of the three trained policies.
To distinguish the three different actions (forward, right, and left) triggered by the
visual inputs, we tinted each visual input based on its predicted action: red indicates
forward, green indicates left, and blue indicates right.

Figure 7 shows the two-dimensional t-SNE embedding of the visual inputs when
using the poor policy (left) and the right-and-forward policy (right). The t-SNE
visualization provides insight into the policy’s quality. In the poor policy, e.g.,
the drone only moved to the left from the beginning to the end of each episode,
regardless of the visual inputs. In the right-and-forward policy, the majority of the

Fig. 7 Two-dimensional t-SNE embedding of visual inputs obtained by applying the poor policy
(left) and right-and-forward policy (right) to the cube collection task. The left shows 400 inputs
from 15 episodes from the poor policy; the right presents 400 inputs from 8 episodes from the
right-and-forward policy. Tinted colors indicate the predicted actions: red, forward; green, left;
and blue, right. It can be seen that the poor policy always chooses the left action (green), no matter
the input. The right-and-forward policy usually chooses forward (red) and will occasionally go
right (blue)
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Fig. 8 Two-dimensional t-SNE embedding of 625 visual inputs from 7 episodes of applying the
good policy to the cube collection task. Tinted colors indicate the predicted actions: red, forward;
green, left; and blue, right. The large red cluster makes sense, because the policy should choose
forward in those images. Furthermore, most of the scattered blue and green make sense. But the
larger blue cluster highlights a weakness in the so-called good policy, as the policy should go left
in such settings, but instead chooses right

moves are forward, and occasionally the policy chose to move to the right. As t-SNE
arranges images based on their visual similarity, the scattered blue images indicate
that something is wrong with the policy. Images that trigger the same behavior
should logically be placed together by t-SNE.

By observing the t-SNE visualization of the so-called good policy in Fig. 8, we
see that cubes in the center of the image are likely to trigger the forward action and
cubes in the left or right of the images are likely to trigger the left or the right action,
respectively. By examining Fig. 8, we also see that t-SNE may be used as an efficient
tool to detect flaws in RL policies, even if the policies have good performance, like
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Fig. 9 These two visually similar images triggered opposite actions (left and right) in the so-called
good policy. This indicates a flaw in the trained policy. t-SNE enables the RL policy developer to
quickly spot such anomalies

this one. For example, in Fig. 8 the green area on the upper left and the blue area on
the lower right both contain cubes located on the left edge of the image; however it
can be seen that those images triggered two opposite actions, which is against the
intuition of a good policy for the cube collection task. After examining the raw data,
we found the drone stuck in such situations by moving back and forth between left
and right. Figure 9 highlights the two individual visual inputs causing the opposite
actions.

5.2 Action Visualization

Action visualization methods generate visual inputs which would activate a partic-
ular action in a trained policy network. This approach allows for a high level of
human comprehension about the behavior of a network, rather than treating the net-
work like a black box model. For our specific action visualization approach, we use
the Class Model Visualization (CMV) technique introduced in [6]. CMV generates
inputs which will trigger any specific output class in a trained convolutional neural
network.

In this subsection we are interested in understanding what visual input causes
specific actions to be selected by the RL policy of interest. In our study, we
generate inputs to optimize for the three action cases: left, right, and forward. After
choosing an action to optimize for, a uniformly random image is generated.6 This
initially random image is then evaluated by the trained policy network. The output
probability for the desired action is then increased through back-propagation, where
the gradient is calculated with respect to the image pixels. We repeat this process of
forward and back-propagation, until the action probability is maximized.

Formally, we let a represent the action for which we want to generate an input
image to trigger; s is the input image which will be optimized such that the action
probability is maximized. We let πθ(a|s) represent the probability of taking action

6For the cube collection task used in this chapter, we used a simple CNN with a grayscale image
as input, so we generate grayscale images for action visualization.
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(a) (b) (c)

Fig. 10 Action visualizations for the good policy. The drone learns that when the camera is
occluded (dark spots), it should move in the direction of the occlusion. (a) Left action. (b) Forward
action. (c) Right action

a ∈ {left, right, forward}, given the image s. The goal then is to solve the following
optimization problem:

s∗ = arg max
s

π(a|s). (18)

In practice, the optimal image s∗ is found using gradient ascent by an automatic
differentiation tool like TensorFlow or PyTorch.

Note that CMV differs from the normal application of back-propagation, which
typically considers the input (s in this case) to be fixed and instead finds neural
network parameters θ which optimize the objective function. In the case of CMV,
parameters are locked after policy training, and it is instead s which is optimized.

Generating action visualizations is currently an art, and, unfortunately, if the
basic objective derived from Eq. (18) is used, an unsatisfactory optimal image s∗
may be generated. However, there are a number of refinements that generate more
meaningful images using CMV. If images are unsatisfactory, one refinement is to
preprocess the current input image s by subtracting the mean and standard deviation
of the training set images from s between each iteration.7 Another refinement is to
blur s between iterations. Another refinement is to use large learning rates during
optimization, e.g., 20. See [7] and [6] for more optimizations.

Using CMV, we generated action visualizations shown in Figs. 10, 11, and 12.
These visualizations illustrate the inputs which would maximize probabilities for
selecting the three possible drone actions by the good policy, poor policy, and the
right-and-forward policy. If we choose a single random image s and iterate on it for
an extended period of time using the methods described above, we will obtain an
input image which will trigger the desired action in the policy of interest.

The good policy’s action visualization in Fig. 10 clearly explains what the
network is looking for. The bias toward the left, forward, or right is apparent in each
image, depending on the position of the cube. Specifically, if a cube blocks the view
of the camera on the left, then the policy will most likely choose the left action.
Similarly for the forward and right actions, note that horizon is somewhat visible
(near the center) in the left and forward action visualizations. It is also interesting to

7In this case, the training set consists of the set of images captured by the drone during its episodes.



Reinforcement Learning and Trustworthy Autonomy 213

(a) (b) (c)

Fig. 11 Action visualizations for the poor policy. The forward action visualization shows that
only the forward action is most probable. All actions have roughly equivalent action visualizations,
indicated by the “murky” figures. (a) Left action. (b) Forward action. (c) Right action

(a) Left action (b) Forward action (c) Right action

Fig. 12 Action visualizations for the right-and-forward policy. In (a) we observe that only an
empty field of view (which should never happen in our simulation) would cause the drone to move
left. In (b) the forward action visualization is also incorrect (see Fig. 10 for a correct version) and
objects on the left will trigger a forward action. In (c) the right action has the expected action
visualization

note that the images are not quite symmetric (the left action visualization does not
look like the right action visualization).

Action visualizations of the poor policy help explain why the drone performs
so poorly. Figure 11a–c illustrates that the actions of the poor policy are equally
triggered by noise. The policy used to generate the images in Fig. 11 was unable to
collect cubes in the simulation.

Action visualizations for the right-and-forward policy are given in Fig. 12. At a
high level, we can see that only the right action visualization makes sense. That is,
when the camera is occluded on the right, the policy will choose to move to the
right. The left action visualization shows that there is a small response to camera
occlusion on the left, but the forward action visualization dominates the left action.
These visualizations explain why the policy collects 100% of the cubes that occur
on the right side of the drone, but no cubes on the left side.

The degenerate right-and-forward policy is especially insightful and highlights
one of the challenges in reinforcement learning. If the learning rate (α in Eq. (13))
is too high, the policy might finalize its decision-making process based on early
experience. In this case, the drone experienced an early success by moving right
and forward almost exclusively during early experiences. Combined with a learning
rate that was too high, this early success led to a catastrophic elimination of left
action probabilities. The remedy for this was to lower the learning rate of the policy
updates and retrain the policy.

The ability to visualize and understand the desired inputs for any individual
policy action is a useful tool for verification and debugging of policies. The
downside to the Class Model Visualization technique presented here is the number
of hyperparameters which must be manually tuned.
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We now move to a technique which is able to highlight areas of an experienced
input image responsible for triggering specific actions.

5.3 Attribution Visualization

Attribution visualization techniques highlight regions in an input which were most
responsible for a particular action in a CNN-based policy. In this subsection we use
an attribution visualization technique called Gradient-Weighted Class Activation
Mapping (Grad-CAM) [8].

CNNs are particularly well suited for attribution visualization, because they
maintain spatial structure of the input as it flows through the network; this is why
we can extract meaning from the last layer. A feature map is the output of a
convolutional layer after it has passed through a nonlinearity function (e.g., ReLU8).
Feature maps typically have many channels, and the goal of Grad-CAM is to find
which channels contribute the most to an action taken. Grad-CAM achieves that
goal by calculating the average derivative of the policy network, given a specific
action a and input image s, with respect to the feature map of interest9:

αk = 1

Z

∑
i

∑
j

∂πθ (a|s)
∂Ak

ij

, (19)

where A is the feature map of our target convolutional layer, Ak is the channel k of
A, Ak

ij is the neuron at position i, j , and Z = i× j . αk is known as the importance
weight for feature map channel k.

To help clarify Eq. (19), consider that each partial derivative ∂πθ(a|s)/∂Ak
ij gives

the change in the probability of the desired action, with respect to activation i, j .
Summing over all i, j in a channel gives the total change in the probability with
respect to all of the channel activations. Finally, αk is the average derivative of the
feature map channel. Feature maps typically have many channels, denoted by K ,
and a unique αk is calculated for each one.

Once importance weights α1, α2, . . . , αK are known, they may be used to
linearly combine feature map channels 1 through K , giving a “class activation map”:

Grad− CAM = ReLU
(∑

k

αkA
k
)
, (20)

where ReLU is being used to filter for derivatives with a positive effect.

8ReLU stands for rectified linear unit and is defined as ReLU(x) = max(0, x).
9When using Grad-CAM, a and s are sampled from the policy and environment, while the policy
controlled the drone, whereas with CMV (presented in the previous subsection) s was generated
by the method and a was specified.
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Attribution visualizations for a sequence of observation-action pairs from the good policy.
The ⊥ shape in the gray region indicates action probabilities (by the lengths) and the action that
was chosen (colored red). Brighter areas indicate regions most responsible for actions

In the remainder of this section, we use Grad-CAM to create attribution visual-
izations for the left, forward, and right actions. In addition, the action visualization
created the good policy, poor policy, and right-and-forward policy. In each example,
we have six images which were captured while the drone performed in the simulator.
Each visualization shown below also has an indicator which shows three bars: one
for left, forward, and right, where the length of each bar gives the action probability
output from the policy. The action indicated by the red bar is the action for which
attribution visualization is generated in each image.

In Fig. 13, we first consider attribution visualizations for the good policy.
First consider Fig. 13a. In this image, we see that the left action has the highest
probability. But because the forward action was chosen, it is colored red. Grad-
CAM was then used to visualize exactly what in the input image cased the forward
action to have the probability that it had. The bright spots in the image give
that information. We can see that the cube is very bright, which indicates that
it had a high influence on choosing the forward movement. Figure 13f is also
worth considering. In this case the forward action was the only action with a high
probability, and the entire cube is bright, indicating its responsibility for the action.
Also note in Fig. 13f how the ground is bright, which indicates that our policy has
learned not just to look for cubes, but also pays attention to other aspects of the
environment.

In Fig. 14 we see visualizations for the poor policy. In that figure, observe that all
action probabilities are roughly the same, as indicated by the⊥ shape, regardless of
the position of the drone relative to the cubes. For example, in Fig. 14f, the action
probability for left is slightly larger than that for right, even though the cube is on
the right. For a rational probability for that observation, consider Fig. 13c, where the
left action probability dominates other possibilities.

Figure 15 provides attribution visualizations for the right-and-forward policy. In
the top row, we see a sequence (a–c) where the policy should be predicting left
actions, but it does not. The policy is blind to objects on the left. In the bottom row,
sequence (d–f), the policy does respond in an expected manner to objects to the front
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Attribution visualizations for a sequence of observation-action pairs from the poor policy.
Highlighting varies randomly from frame to frame, indicating that the policy has not learned to pay
attention to the correct features

(a) (b) (c)

(d) (e) (f)

Fig. 15 Attribution visualizations for a sequence of observation-action pairs from the degenerate
right-and-forward policy. The policy is not paying any attention to the cube, as it is black. All
decisions are made based on the view of the horizon

and right, but it is not the object that triggers the action, but only the shape of the
horizon.

6 Conclusion

In this chapter we have presented how to use Microsoft’s drone simulation environ-
ment and reinforcement learning to train a drone to navigate to and “collect” cubes
which are scattered in front of it. In addition, we showed how to use existing deep
neural network visualization techniques to understand the reinforcement learning-
derived control policies. Because they can be improved and extended, the methods
introduced here are a good starting point for multidisciplinary teams aiming to apply
reinforcement learning to Cyber-Physical Systems.

Specifically, this chapter may be used by academic or industrial engineering
teams as an entry point into the field of vision-based deep reinforcement learning.
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In this chapter, a basic reinforcement learning algorithm was introduced, and it may
be extended in many ways. For example, if a team has the ability to build optimal
control policies, then more advanced reinforcement learning methods may be used.
Similarly, if a team has the ability to build physical drones, then the policies learned
in simulation may be transferred to the physical drone. The avenues for enhancing
what was presented here are limited only by the diversity of the team.

The source code for the cube collection environment and solution is available at
https://github.com/RodgerLuo/CPS-Book-Chapter.
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Identifier Randomization: An Efficient
Protection Against CAN-Bus Attacks

Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M. Abdelaziz Elaabid

Abstract The Cyber-Physical Architecture of vehicles is composed of sensors,
actuators, and electronic control units all communicating over shared commu-
nication buses. For historical reasons the internal communication buses, as the
Controller Area Network (CAN), do not implement security mechanisms; the
communications are assumed to be “trusted.” Recently these trusted relations have
been challenged and leveraged to launch cyber-physical attacks against modern
vehicles. As a result, it becomes urgent to enhance the security features of vehicles
and notably the robustness of the CAN bus which represents an important channel
of attacks.

In this work we develop identifier randomization procedures whose aim is to
protect the CAN protocol from reverse-engineering, replay, and injection attacks.
The idea behind this proposition is to constantly change the message identifiers in a
random fashion in a way that both sender and receiver can recover the original mes-
sage identifier but not the adversary. We present the main challenges of the CAN-ID
randomization solution, we highlight the weaknesses of state-of-the-art solutions
presented in other scientific papers, and we propose and study candidate solutions
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to overcome these weaknesses. To compare our solutions to state-of-the-art solution,
we propose to use the entropy and the conditional entropy as a metrics of security.
Results show that the randomization functions that we propose outperform the state-
of-the-art solution in terms of both entropy and conditional entropy.

1 Introduction

Two important requirements of today’s cars are a high level of safety and connectiv-
ity with the outside world. This involves the use of advanced technologies based on
a computing infrastructure composed of numerous electronic components—named
electronic control units (ECUs)—embedded inside the vehicle. These ECUs are in
charge of processing sensed data through embedded sensors and transforming it
into commands for the actuators. Communication buses in the automotive domain
were introduced as soon as the ECUs embedded in the vehicle have reached a
certain level of complexity. This made a point-to-point communication approach
no longer viable and impossible to implement and maintain. At that point, the
car is a system on its own, as isolated from its external world. The choice of
communication buses was not motivated by information security, but rather by
safety and robustness issues. The Controller Area Network (CAN) imposed itself
as the de facto communication bus for the automotive applications. It implements
an approach known as multiplexing, which consists in connecting to the same wires
(a bus) a large number of computers. The communication is orchestrated by the
protocol. Almost all automotive manufacturers are implementing the CAN bus in
their cars. The CAN protocol is used for periodic and event-based messages that
allows the ECUs to monitor the vehicle state. It is also used to control and supervise
the state of sensors and actuators.

Recently, the CAN protocol has become the center of multiple cyber-security
issues [1, 4]. Miller and Valasek [16] showed how the CAN protocol can be an
important attack vector that enables remote control of a vehicle. In this context,
Hoppe et al. [8] were the first to point out the weaknesses of the CAN bus.
These findings were further investigated and confirmed by Koscher et al. [13] and
Checkoway et al. [1] that performed frame replay and frame injection attacks on a
real vehicle. In these attacks, the attacker physically connects to the CAN network
and replays or injects messages on the CAN bus. Given the fact that arbitrary read
and write accesses are possible on the CAN network, the attacker who sends the
right message with the right identifier and payload cannot be detected. Thus, the
attacker message will be processed by all receiving ECUs giving her the ability to
anonymously influence and control the behavior of these ECUs. This can greatly
impact the safety of passengers.

Even though the CAN standard is used by almost all car manufacturers, each one
implements its own messages depending on its own needs and the underlying Cyber-
Physical Architecture. Each car manufacturer customizes the set of used message
identifiers, payload information, and their periodicity. Hence the attacks, as the
injection and replay attacks, are generally specific to a car manufacturer and not
always reproducible to another car designed by another company.



Identifier Randomization: An Efficient Protection Against CAN-Bus Attacks 221

The CAN frame does not contain a source and destination, but rather a frame
identifier that indicates the “content of the data” conveyed by the frame. The same
information is always sent over the same message identifier. For instance, the vehicle
speed information coming from the speed sensor is always sent over the same
message identifier in order for the receiving ECUs to recognize the message. This
makes that some equipment have multi-architectures and are backwards compatible
within the same car manufacturer. To overcome this issue, reverse engineering the
protocol of a specific manufacturer is an important attack, which gives rise to other
attacks against the target architecture. Precisely, the reverse-engineering attack is
to identify the message identifiers, their periodicity, and the payload information
before injecting messages. Miller et al. [15] show the difficulty to engage in such
task. As this step seems particularly tedious given the number of messages used,
there are some automatic and statistical tools, as penetration testing tools, that have
emerged [19, 21]. These tools can lower the complexity of the reverse-engineering
step and make it rather straightforward. Due to these weaknesses, the CAN bus
has to be hardened in order to protect the connected car from potentially harmful
attacks. Researchers have already proposed possible security countermeasures to
protect the CAN bus from some of these attacks. Nevertheless these solutions are
not fully satisfactory, as they have flaws which are presented in the next section.

In this chapter we make the following contributions:

• First, we identify state-of-the-art protection mechanisms for the CAN bus and
highlight their respective flaws.

• Second, we develop identifier randomization procedures to protect the CAN
network from reverse-engineering, replay, and injection attacks, both at software
and hardware levels.

• Third, we propose information theory-based metrics to evaluate the proposed
methods and to compare them with state-of-the-art solutions.

In what follows, Sect. 2 introduces the main state-of-the-art solutions dedicated to
the CAN bus and their flaws. In Sect. 3, we focus on a particular solution, namely,
the identifier randomization, and we propose novel randomization strategies both at
software and hardware levels, to enhance the security of the CAN protocol. These
protections are evaluated with information theoretic metrics. In Sect. 4 we compare
the aforementioned randomization strategies with the state-of-the-art solutions.
Finally Sect. 5 concludes the chapter.

2 State-of-the-Art CAN Protections

In this section, we identify the current solutions that are proposed to secure the
CAN network from different security breaches. We start by explaining the CAN
protocol stack; then we expose the principles of protection mechanisms that are
payload protection, intrusion detection and prevention, and identifier protection. For
each mechanism we identify the flaws and limitations.
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2.1 Controller Area Network Overview

The CAN bus is an asynchronous, serial field bus system. It was introduced in 1983
by Bosch company for the networking of control devices in automobiles. The aim
of this communication bus was the reduction of cable length and weight. Since
1991, CAN is internationally standardized as ISO 11898 and defines the Layer 2
(data link layer) [10] and Layer 1 (physical layer) [11, 12] of the OSI reference
model presented in Fig. 1. The physical layer can be realized in two versions:
high-speed CAN (ISO 11898-2) and low-speed CAN (ISO 11898-3). Usually these
layers are implemented, respectively, in a CAN transceiver and a CAN controller. A
CAN frame (Fig. 2) is composed of multiple fields. It starts with a Start-Of-Frame
(SOF) bit, then arbitration field which is the frame identifier (ID), control field that
indicates the length of data, data field, followed by a Cyclic Redundancy Check
(CRC) field for integrity check and an acknowledgment field, and finally the End-
Of-Frame (EOF) field. Each ECU that communicates on the CAN bus is equipped
with a CAN controller and a CAN transceiver (Fig. 3). On the application level,
whenever the ECU software wants to send a message on the CAN bus, it specifies
the ID and the payload to the CAN controller (Layer 2). Then the CAN controller
constructs the appropriate CAN frame by adding the remaining fields and sends it
to the CAN transceiver (Layer 1) whose role is to physically send the frame on the
communication bus.

The CAN bus is event-triggered protocol. Whenever a node needs to send a
frame on the bus, it needs to check whether the bus is free; then it starts sending.
Sometimes collision between two nodes trying to send information at the same
time happens. The CAN protocol gives the priority to one of them according to the
arbitration rule. The arbitration in the CAN protocol is decided during the sending
of the frame identifier (or arbitration field) and is governed by the following rule.

Data Link (Layer 2) ISO 11898-1

Physical (Layer 1)
ISO 11898-2

[CAN High speed]

ISO 11898-3

[CAN Low speed]

Fig. 1 CAN layer model
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If one node transmits a dominant bit (“0”) and another node transmits a recessive
bit (“1”), then there is a collision and the dominant bit “wins.” Notice that the ID
is sent bit by bit starting from the Most Significant Bit (MSB). Whenever there is a
conflict between two ECUs trying to send different messages with different IDs, the
smaller ID wins the arbitration and will be sent; the other will have to wait for the
next frame. To send a frame to other nodes over the CAN bus, the ECU software
needs to specify the ID and payload of the frame to the CAN controller (Layer 2).
This information is temporarily stored in a buffer waiting to be sent on the bus. The
CAN controller constructs the appropriate frame by adding the remaining fields and
sends it to the CAN transceiver (Layer 1). To physically send the frame on the bus,
the CAN transceiver needs to check if the bus is free (no information is being sent).
Sometimes collision between two nodes trying to send frames at the same times
happens. The CAN protocol gives the priority to the frame with lower ID.

Usually, for safety reasons, safety-critical signals are assigned to priority mes-
sage identifiers. The more the signal is safety relevant, the higher the priority is
assigned to its identifier.
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2.2 Payload Protection

Historically, one of the first and obvious family of solutions that were proposed
to secure the CAN bus is the payload protection solutions. In fact, if we consider
the problem as an authenticity violation, the first step toward overcoming this
weakness is to protect the payload with cryptographic mechanisms. Nilsson et al.
[18] proposed to send message authentication codes over consecutive CAN frames
to authenticate the messages. Hartkopp et al. [7] proposed to use Cipher-Based
Message Authentication Code (CMAC) as a symmetric authentication measure
between the sender and the receiver.

Flaws

The main limitation of this type of protections is that the produced data is larger than
the original data which causes a bandwidth overhead on the communication link.
For instance, if we want to use an encryption function to protect the confidentiality
of the data, state-of-the-art encryption solutions suggest to use no less than 128-bit
encryption key with a block cipher of minimum 64 bits (128 bytes for AES-128).
This involves a significant increase of data size, as the data size is of 8 bytes or 16
bytes, even if the required payload is a few bytes. Similarly, if we want to protect the
authenticity of the sent data, we have to send a data authentication code along with
the original data. While the impact of this transformation could be negligible for
only one message, the generalization of the use of such solutions to all the messages
will cause a significant network overhead. This will have practical side effects such
as increasing the delay of messages and increasing errors on the CAN network.

Furthermore, the payload protection mechanism does protect the confidentiality
and integrity of the data, but does not protect against reverse-engineering and frame
injection attacks. Since the identifiers are kept unchanged, the attacker can still
reverse the messages and their periods. Also the attacker can perform exhaustion
attack on the ECUs, by sending messages with correct identifier but wrong payload,
thus forcing dummy and useless processing.

2.3 Intrusion Detection and Prevention Systems

Another family of protection solutions is known as CAN network Intrusion Detec-
tion and Prevention Systems (CAN-IDPS). The role of these systems is to monitor
the CAN network for suspicious behavior like frame injection and replay attacks
and either physically kill suspicious frame by causing a frame error or by filtering
out the suspicious frames. In general, state-of-the-art detection mechanisms can be
categorized into two main classes: rule-based detection mechanisms and statistical
detection mechanisms.
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Rule-based intrusion detection mechanisms tend to define specific rules of how
the network traffic should be. Any message that does not comply with these
predefined rules are reported as intrusions. Miller et al. [15] propose to define
detection rules of diagnostics messages based on the state of the vehicle and
detection rules of periodic messages based on their respective periods. In fact, since
the goal of the CAN-IDPS is to protect against injecting extra packets onto the
network, and given the fact that most normal frames have predefined frequencies,
then if the particular message does not respect its frequency, it should be reported
as an intrusion. Taylor et al. [20] propose a detection algorithm based on the
comparison of previous and current frame timings to implement this principle.
Another example of rule-based detection mechanism is proposed by Marchetti et
al. [14] who use the CAN identifier sequence to detect possible injected frames.

Regarding statistical detection mechanisms, they define statistical measurements
computed over a window of time and used to classify normal and suspicious
behavior. In this context, an early work of Müter et al. [17] proposes to use
the entropy of the CAN bus as a measurement to classify normal and abnormal
behaviors observed on the CAN bus. Dario et al. [2] propose an intrusion detection
algorithm that identifies anomalies by computing the Hamming distance between
consecutive payloads. This Hamming distance is compared with minimum and
maximum thresholds defined during set-up phase.

Flaws

On the one hand, statistical detection measurements do not allow to know the
precise CAN frames which have been attacked. They report misbehavior detected
on a relatively large time window, which means that the attacker can always inject
and replay frames. On the other hand, rule-based detection mechanisms are more
effective as they allow only for compliant packets to be accepted. In practice these
rules have to be more flexible due to communication imperfections, and the attacker
can use this flexibility for her own benefit. If we take the example of frequency-
based detection, with a message identifier ID and with a periodicity p, we define
a rule that accepts only one packet of identifier ID within a time window p. All
the other messages with the same identifier will have to be filtered out or killed. It
follows that once the algorithm is synchronized with a legitimate first frame at t0,
the next frames that arrive at t0 + n × p will be accepted; all the others will be
blocked. In practice the periodicity is not fixed and is subject to a certain variability
of approximately 10%. If the attacker injects a frame close to the legitimate frame,
the detection algorithm cannot know which one is the legitimate frame. Besides
these flaws, neither statistical nor rule-based IDPS, do not protect against reverse
engineering of the protocol.
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2.4 Identifier Protection

The identifier protection family is efficient to protect the CAN bus from reverse-
engineering, injection, and replay attacks. The idea behind this security principle
is to make the identifiers not fixed, but instead constantly changing. In fact, if the
identifier is not fixed across vehicles, a large-scale attack that could affect all the cars
is no longer possible as the identifiers of messages will change from one vehicle to
another. Moreover, if the identifiers are not fixed within the same vehicle, a frame
replay attack will not succeed because the identifier is constantly changing, and thus
no ECU will catch the replayed frame. A frame injection attack neither will work,
because the attacker will have to “predict” what will be the next identifier to be
injected in order for the attack to be successful.

Humayed et al. [9] proposed a solution called ID-Hopping to counter DOS
(Denial-Of-Service) attacks directed against a specific message. Their method
works closely with an intrusion detection mechanism which is needed to identify the
existence of an attack against a specific message. Once the attack is detected, the ID-
Hopping mechanism is activated. Its role is to assign a new but previously defined
identifier as a substitute identifier for the attacked message. Another interesting
solution to protect the CAN protocol is to constantly randomize the identifier. The
constraint is that both the sender and receiver share the same identifier. Han et al.
[5, 6] proposed a candidate randomization function. To the best of our knowledge,
this solution is the only one that has been proposed for this purpose in the state of
the art.

Flaws

While it effectively protects against replay and injection attacks, this randomization
principle is not efficient enough to protect against reverse engineering. In the next
section, we expose and analyze in details this solution and propose an enhanced
protection.

3 Solutions Based on Randomization and Their Evaluation

In this section we focus on the identifier protection family, precisely those based on
randomization functions which present the best security features. We first identify
the main characteristics and constraints of the randomization function that have to be
used for protection. Then we analyze the state-of-the-art solutions and propose new
functions that offer better protection from the security point of view. The evaluation
of these different solutions is done by defining formal security metrics coming from
the information theory.
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3.1 Principle and Formalism

The way the CAN protocol is used today by car manufacturers is the following: each
information that needs to be communicated between two ECUs is sent in a CAN
frame. Figure 4 illustrated the CAN protocol and the histogram of the identifiers.
Each frame has a fixed identifier which is known by the sender and the receiver.
It can also be known to the attacker as it is communicated in clear on the CAN
bus. The identifiers are fixed during the design phase of the vehicle and respond to
priority criteria for safety reasons. The priority level defines the criticality of the
information and allows the CAN protocol arbitrates between concurrent messages.
It is directly linked to the ID value: the lower the ID, the greater the priority of the
associated message.

As explained in Sect. 1, the fact that the same information is always sent over
the same frame identifier enables the attacker to reverse the protocol and forge
frames that can be accepted by the vehicle ECUs. The attacker first starts with a
reverse-engineering step during which she identifies the message identifiers and
their frequencies. Then she builds an attack by injecting, or replaying, one or
multiple CAN frames.

In order to protect the CAN network from such attacks, we want to change the
message identifiers every time the ECU needs to send information. This should be
done in a way that the receiving ECUs can recover the original identifier and do not
allow the attacker to reverse the protocol or inject messages that can be accepted
by other ECUs. To do so, an identifier randomization function F is added in such a
way that it takes the original identifier ID and substitutes it with another identifier
IDr that changes at every occurrence m of a new frame on the CAN bus. The index
m is the value of a message counter which has to be embedded in every ECU for
consistency reasons, as m is not communicated on the CAN bus:

IDr = F(ID,m) (1)

At the receiver side, the ID is recovered by using the inverse function of F and F−1s
and the value m of the internal counter of the ECU:

ID = F−1(IDr ,m) (2)

ID Payload

CAN-Controller
CAN-Bus Transceiver

(Sender)

CAN-Controller
CAN-Bus Transceiver

(Receiver)CAN-Bus

Identifiers histogram ID Payload

Fig. 4 Controller Area Network with original identifier distribution
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Fig. 5 CAN-ID randomization principle

The randomization function F has to satisfy certain conditions in order to be
effective:

• First, F has to be injective and efficiently computable in order for the receiver to
recover rapidly the original identifier. Figure 5 shows how this function could be
integrated. We can see in this figure that the histogram of randomized identifier
IDr is more spread compared to the one in Fig. 4.

• Second, and for safety reasons, the function F has to be priority-preserving. This
means that the priority of message identifiers ID1 and ID2 has to be the same as
F(ID1) and F(ID2), respectively. This boils down to the following condition:

ID1 < ID2 ⇒ F(ID1,m) < F(ID2,m) (3)

• Third, the priority condition has to be preserved over time. Indeed, the message
can go through a transmission buffer before being physically sent to the bus.
Consequently, the state of every ECU counter m can be different from the real
number of transaction counter on the physical layer. In order to be consistent, the
randomization function has to guarantee that the identifiers keep their priority
even if the transaction counter m is different. This is expressed by:

ID1 < ID2, m1 < m2 ⇒ F(ID1,m1) < F(ID2,m2), F (ID1,m2)

< F(ID2,m1) (4)

• Fourth, the output of the randomization function F has to be unpredictable. An
attacker that has some information about previous outputs or identifiers should
not be able to predict with high probability the randomized identifier. We achieve
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this goal by choosing a randomization function based on a cryptographically
secure pseudorandom number generator (PRNG).

3.2 Evaluation Metrics

Many functions with randomization can meet the previous constraints. In order to
compare these functions between them, we need to define security metrics that
measure the ability of these functions to protect against reverse-engineering and
replay/injection attacks. These metrics are based on information theory, which
links them to optimal attacks, that is, attacks which maximize the likelihood of
success [3].

3.2.1 Reverse-Engineering Attack

In the presence of a randomization scheme, the attacker knows that each original
identifier has multiple substitute identifiers. The reverse-engineering challenge is
to be able to determine for each original identifier the set of substitute identifiers
that it could be randomized into. A randomization scheme is perfect if the resulting
randomized identifiers are identically distributed over the set of identifiers. From
an information theory point of view, the capacity of the attacker to perform this
task is related to the entropy of the resulting randomized identifiers. The more the
identifiers look random, the harder it is for the attacker to reverse the protocol.
Thus we use the entropy as a security metrics to evaluate the protection level of
the randomization function against reverse engineering:

H(idr) =
∑

x∈[0,2n−1]
P(idr = x)× log2

(
1

P(idr = x)

)
. (5)

3.2.2 Replay and Injection Attacks

In order for the attacker to successfully inject a message on the CAN bus with the
presence of a randomization function, she needs to “predict” the next randomized
identifier to be sent. If the attacker successfully conducts a reverse-engineering
attacks, she should be able to predict the next original identifier to be sent. Knowing
the original identifier, the attacker has to predict its randomized version. Since we
suggested to combine the randomization function with a cryptographically secure
pseudorandom number generator that has a uniform distribution, we suppose that
the prediction capability of the attacker is not better than a simple “guess.” Thus, the
conditional entropy of the randomized identifier knowing the original identifier can
be used as a metrics to evaluate the protection level of the randomization function
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against replay and injection attacks:

H(idr |ido) =
∑

x∈[0,2n−1]
P(idr = x|ido)× log2

(
1

P(idr = x|ido)

)
. (6)

3.3 The IA-CAN Approach

In [5, 6] Han et al. gave a method for identifier randomization of the CAN protocol
called Identity-Anonymized CAN (IA-CAN). Their approach is to mix a part of the
identifier (LSB part) and a part of the payload with a random variable generated at
sender and receiver sides. Here we want to focus only on the randomization of the
CAN identifier. This is motivated by the fact that if the attacker successfully injects
an identifier that gets passed through the CAN filter, even if the rest of the payload
is not correct, it will nevertheless exhaust the receiver ECU.

If we disregard the payload part of the anonymization in the IA-CAN approach,
we can conclude that the randomization function being used is as follows: (We refer
the reader to the original paper [5, 6] for further details.)

fr : [0, 2a − 1] × [2a, 2n − 1] → [0, 2n − 1]
r id → idMSB(n−a) + idLSB(a)⊕ r

(7)

where

• n is the number of bits of the identifier (n = 11 for standard CAN, n = 29 for
extended CAN).

• a is the number of bits that will be used for randomization (a < n).
• r is a random variable in [0, 2a − 1] generated at both sender and receiver sides.
• id is the original identifier of the message.
• idMSB(α) is the identifier α Most Significant Bit.
• idLSB(α) is the identifier α Least Significant Bit.

We assume that the random number r is uniformly distributed over the randomiza-
tion interval [0, 2a − 1]. Figure 6 shows the principle of the transformation applied
to the identifiers.

Obviously the choice of the variable a is bounded by the total number of original
used identifiers N and the minimum of interspace between all identifiers:

1 ≤ a ≤ ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(8)

In order to maximize the randomness of the identifiers, we have to choose the
maximum possible a : this means that for better security performance, we have
to choose:

a = ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(9)
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Fig. 6 IA-CAN identifier transformation

3.3.1 Particular Case

A particular case arises when the identifier interspace is constant between all
original identifiers. The constant is then 2n

N
. The upper bound of a is then expressed

as the following:

⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋ = n− ⌈
log2(N)

⌉
(10)

To measure the efficiency of this randomization function, we compute the entropy
of the randomized identifiers:

HIA− CAN(idr) = H(ido)+ a (11)

And to quantify the attacker capacity to inject new frames, we compute the
conditional entropy of the randomized identifiers knowing the original identifiers:

HIA− CAN(idr |ido) = a = ⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(12)

In case the identifier interspace is constant:

HIA− CAN(idr |ido) = a = n− ⌈
log2(N)

⌉
(13)
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Fig. 7 IA-CAN transformation: Original (left) and randomized (right)

Proof of Eqs. (11) and (12) is presented in the Appendix.

3.3.2 Testing

To test this approach, we made a real acquisition on a vehicle CAN bus, which we
used with this randomization procedure to assess its efficiency. Figure 7 shows the
identifier histograms before and after randomization. On this particular example,
the randomization was done over a = 4 bits which means that for each identifier,
we allocated 2a = 24 = 16 substitute identifiers. The computed entropy of the
original distribution is H(ido) = 3.05. After randomization, the computed entropy
of the randomized identifiers is HIA− CAN(idr) = 7.05. The computed conditional
entropy is HIA− CAN(idr |ido) = 4. We can observe from the randomized identifier
distribution of Fig. 7 that the attacker can still distinguish frequencies of the
messages. It is also clear from Eq. (11) that the entropy of randomized identifiers
depends on the entropy of the original identifiers. Using this information the attacker
can deduce the next original identifier to be sent and try to inject a frame within the
observed randomization interval.

3.4 Equal Intervals

The first observation that we can make concerning the IA-CAN approach is that
there is still room for amelioration in terms of entropy and conditional entropy. In
fact, the randomization of IA-CAN is done only on the a least significant bits of the
identifier, which makes the added entropy bounded by a which is also bounded by
log2(Mini,j∈[1,N]|idi − idj |)

A first possible improvement is to create a mapping function that assigns
to each original identifier a substitute identifier. The set of substitute identifiers
should satisfy the equidistance condition, mentioned in the previous section, that
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maximizes random space. A second improvement is to change the randomization
function from an XOR function to an arithmetic addition in order to increase the
randomness and thus the entropy.

If we have N identifiers id1 < id2 < · · · < idN , we have to partition the
identifier space [0, 2n − 1] over N intervals Ii = [infi, supi ] such that

• inf1 = 0, supN = 2n − 1
• For each i ∈ [1, N − 1] : infi+1 = supi + 1
• For each i ∈ [1, N − 1] : supi − infi = const = 2n

N

Thus the identifier mapping function Map:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(14)

The Map function is designed to redefine the distribution of the identifier (by
assigning a substitute identifier to the original one) in such a way that the new
identifiers maximize the identifier interspace.

Given this new distribution, in the interval Ii = [infi, supi ], we have only one
identifier idi ; we can exploit all the interval to randomize that identifier.

Thus the randomization function:

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi)+ r[0,supi−infi ]

(15)

Figure 8 shows the transformation applied to the identifiers. To compare this
proposed solution to the previous one, we compute the proposed security metrics:

Entropy:

HEI (idr) = H(ido)+ n− log2(N) (16)

Fig. 8 Equal interval
identifier transformation

0 2nid1 id2 id3

P (id1)

P (id2)
P (id3)

0 2n

0 2n

Map

fr



234 K. Karray et al.

Fig. 9 Equal interval transformation: Original (left) and randomized (right)

Conditional entropy:

HEI (idr |ido) = n− log2(N) (17)

Proof of Eqs. (16) and (17) is presented in the Appendix.
In Sect. 4 we show that based on theoretical analysis of the proposed metrics, this

randomization function is more secure than the state-of-the-art solution.

3.4.1 Testing

The randomization function is applied to the same identifier distribution used in
the previous section. Figure 9 shows the identifier histograms before and after
randomization.

We can see that compared to the IA-CAN approach, the equal interval ran-
domization function (15) exploits all the available identifier space. The computed
entropy of this particular example is HEI (idr) = 10, 72. Compared to the IA-CAN
randomization function (HIA− CAN = 7.05), the equal interval randomization func-
tion generates more entropy. The conditional entropy of the randomized identifier
knowing the original identifier is HEI (idr |ido) = 7.67. We can also observe that
compared to IA-CAN (HIA− CAN(idr |ido) = 4), it has better conditional entropy.
In Sect. 4, we formally prove that it is always the case. Nevertheless the attacker can
still identify clusters of randomized identifiers that can guide him in the reverse-
engineering process even if the probability of a successful injection is slightly
smaller than the previous solution.

3.5 Frequency Intervals

The previous methods are not secure enough against reversing the original iden-
tifiers and periods. Indeed, given the histogram, the attacker can identify clusters
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of identifiers and thus can identify the original identifier and its frequency. In
this section we design a new randomization function whose aim is to overcome
this limitation. The goal of this function is to make the randomized identifier
distribution [histogram] as uniform as possible to improve the entropy of the
randomized identifier by still preserving the priority order. In order to do that, a
flattening of the peaks has to be done. We choose the randomization interval of each
identifier to be proportional to its frequency of appearance on the CAN bus. Thus
an identifier that has a high frequency (small period) will appear more frequently
on the CAN bus; this identifier will be assigned a large interval of randomization.
Similarly, an identifier that has a small frequency (large period) of appearance on
the CAN bus will appear less frequently and thus will be assigned a small interval
of randomization. In order for this strategy to be possible, we also need a mapping
function that assigns substitute identifiers to the original identifier. Then we apply
the randomization to the substitute identifier.

Suppose there are N identifiers id1 < id2 < · · · < idN , respectively, with
a sending frequency of f1, f2, . . . , fN . We have to partition the identifier space
[0, 2n − 1] over N intervals Ii = [infi, supi ] such that:

• inf1 = 0, supk = 2n − 1
• For each i ∈ [1, N − 1] : infi+1 = supi + 1
• For each i ∈ [1, N − 1] : supi − infi = 2n×fi∑N

j=1 fj

= P(idi)× 2n

where P(idi) is the probability of the identifier idi to appear on the CAN bus.
We define an identifier mapping function Map that assigns substitute identifiers

to the original ones such that the identifier interspace is proportional to the frequency
of the smaller identifier:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(18)

The randomization function then assigns a randomized identifier to the substitute
identifier. Each identifier is randomized in an interval proportional to its frequency:

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi)+ r[0,supi−infi ]

(19)

Figure 10 shows the transformation applied to the identifiers.
To compare this proposed solution to the previous one, the proposed security

metrics is computed:
Entropy:

HFI (idr) = n (20)
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Fig. 10 Frequency interval identifier transformation

Fig. 11 Frequency interval transformation: Original (left) and randomized (right)

Conditional entropy:

HFI (idr |ido) = n−H(id) (21)

A first observation is that in terms of theoretical entropy, this solution reaches
the maximum entropy which is n. Another interesting result is that it gives an
enhancement of the conditional entropy as it is shown in Sect. 4. From a theoretical
analysis, it is shown in Appendix section “Fixed Mapping Optimality Proof” that
the maximum conditional entropy is optimal if the mapping is constant. We will see
in the next section that a dynamic mapping will increase the conditional entropy.

3.5.1 Testing

To test this randomization strategy, we apply it to the identifier distribution used
for the previous functions. Figure 11 shows the identifier histograms before and
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after randomization. The computed entropy for this example is HFI (idr) = 10.99.
The computed conditional entropy is HFI (idr |ido) = 7.94. It is clear from the
histogram and the computed entropy that the randomized identifier distribution is
more uniform than the previous solutions. A uniform distribution of identifiers is
a perfect protection against reverse engineering as it is harder for the attacker to
distinguish clusters of identifiers. We can also observe that there is an enhancement
in terms of conditional entropy compared to the previous solutions. That is to say,
this solution has better security performance against injection attacks.

3.6 Dynamic Intervals

We can now raise the question to increase the conditional entropy obtained with the
Frequency Intervals, by using a dynamic mapping. A practical observation of the
CAN bus behavior shows that there is a strong dependency between consecutive
identifiers: the majority of identifiers will have zero probability to appear right
after idi . This observation involves that using a fixed identifier mapping, after that
identifier idi has been sent, an important part of the allocated space for identifiers
will not be used. Hence, if the mapping is changed dynamically after every sending
of idi , and according to the dependency between identifiers, we can increase the
conditional entropy.

To construct such randomization function, the Markov matrix can be built to give
the probabilities pi,j = P(idt+1

j /idt
i ) of receiving an identifier idj at iteration t+1

knowing that we received the identifier idi at iteration t :

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. idt+1
1 idt+1

2 . . . idt+1
j . . . idt+1

n

idt
1 p(idt+1

1 /idt
1) p(idt+1

2 /idt
1) . . p(idt+1

n /idt
1)

idt
2 p(idt+1

1 /idt
2) p(idt+1

2 /idt
2) . . p(idt+1

n /idt
2)

idt
3 . . . . .

... . . . . .

idi . . . p(idt+1
j /idt

i ) .

... . . . . .

idt
n . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

Each time we receive an identifier idi , immediately after, we have p(idt+1
j /idt

i )

probability to receive idj .With this in mind, we opt for the Frequency Interval
strategy to randomize the upcoming identifiers since it is the optimal strategy that
guarantees the maximal entropy. We keep updating the interval partition according
to Frequency Interval strategy and to the probabilities in the matrix.
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We define the identifier mapping function as the following:

Mapt+1 : [0, 2n − 1] → [0, 2n − 1]
idi+1 → idi + 2n × pk,i

(23)

The Map function has to be updated every received identifier according to the
Frequency Interval strategy. At an instant t + 1, knowing that the previous sent
identifier is idk, identifier idi has an assigned randomization interval of Ii of width
W(Ii) = 2n × pk,i The resulting randomization function is the following:

f t+1
r : [0, 2n − 1] → [0, 2n − 1]

idi → Mapt+1(idi)+ r[0,2n×pk,i ]
(24)

3.6.1 Illustrative Example

As an example, consider the following sequence of identifiers appearing on the CAN
bus: [id2, id3, id1, id2, id3, id1, id2, id3, id2, id1, id2, id3, id2, id1, id2].

After analyzing the sequence, the following transition matrix can be established:

M =

⎛
⎜⎜⎝

. idt+1
1 idt+1

2 idt+1
3

idt
1 0 1 0

idt
2

1
3 0 2

3
idt

3
1
2

1
2 0

⎞
⎟⎟⎠ (25)

This transition matrix is used to define new mapping upon reception of a new
identifier. Figure 12 shows the transformation applied to the identifiers after
reception of id2 and then id3.

The security metrics obtained with the Dynamic Interval strategy is the follow-
ing:

Entropy:

HDI(idr) = n (26)

Conditional entropy:

HDI (id
t+1
r |idt+1

o ) =
∑

x∈[0,2n]

∑
idt+1

j

∑
idt

i

1

W(Ii,j )
P (idi) log2

⎛
⎝ 1∑

idt
k

1
W(Ik,j )

P (idk)

⎞
⎠

(27)

3.6.2 Testing

To test this randomization strategy, we apply it to the identifier distribution used for
the previous functions. The computed entropy for this example is HDI (idr) = 11.
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we can receive either id1 with prob-
ability 1

3 or id3 with probability 2
3 .
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Fig. 12 Dynamic interval identifier transformation at t + 1 (left) and t + 2 (right)

Fig. 13 Dynamic interval transformation: Original (left) and randomized (right)

The computed conditional entropy is HDI(idr |ido) = 10.24. It is clear from the
histogram and the computed entropy that the randomized identifier distribution is
uniform as for the frequency interval randomization strategy. Moreover, this method
provides a significant enhancement in terms of conditional entropy, compared to the
previous solutions (Fig. 13).

3.7 Arithmetic Masking

All of the above-proposed solutions can be applied at software level (Layer 3).
This subsection considers a hardware solution which can involve some change in
the CAN controllers. The payoff of this choice is to eliminate the third constraint
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imposed on Sect. 3.1 that states that the randomization function has to preserve
priority over time. Here we consider that the new hardware at physical layer does
not have any frame buffer. Hence there is a possibility that all the CAN controllers
share the same random variable in a consistent manner. The internal changes of
this random variable could be done by a pseudorandom number generator (PRNG)
which is initialized identically in every CAN controller at start-up.

The hardware randomization proposal is based on Arithmetic Masking, meaning
that the random variable is added arithmetically to the base identifier. The operations
are the following:

• First a mapping function is defined. It assigns new substitute identifiers to the
original identifiers.

• Then the randomization is performed by adding the random variable to the
substitute identifier.

• The random variable is such that it is shared with all CAN controllers and the
randomized identifier does not exceed 211. This allows to preserve the priority
between identifiers.

Suppose there are N identifiers id1 < id2 < · · · < idN , with a sending
frequencies of f1, f2, . . . , fN . A substitute and random identifier is assigned for
each original identifier. The identifier mapping function is defined as the following:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → i − 1

(28)

The mapping function substitutes the original identifiers with the N first lowest
identifiers. The rest of interval [N, 2n] is used for randomization:

fr : [0, 2n − N] × [0, 2n−1 − 1] → [0, 2n]
r idi → Map(idi)+ r

(29)

Figure 14 shows the transformation applied to the identifiers.

Fig. 14 Arithmetic masking
identifier transformation

0 2nid1 id2 id3

P (id1)

P (id2)
P (id3)
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The security metrics applied to the Arithmetic Masking solution give the
following results:

Entropy:

HAM(idr) = log2(2
n −N + 1)+ 1

2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P(idi)

× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi)× log2

(
1∑N−1

i=x+1 P(idi)

)

Conditional entropy:

HAM(idr |ido) = log2(2
n −N + 1) (30)

3.7.1 Testing

To test this randomization strategy, we apply it to the identifier distribution used
for the previous functions. The computed entropy for this example is HAM(idr) =
10.99. The computed conditional entropy is HAM(idr |ido) = 10.99. The histogram
and the computed entropy show that the randomized identifier distribution is
approximately uniform. Moreover, we observe a significant enhancement in terms
of conditional entropy compared to the previous solutions (Fig. 15).

Fig. 15 Arithmetic masking transformation: Original (left) and randomized (right)
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4 Comparison

In the previous section, we introduced the state-of-the-art solution for CAN
identifier randomization, and we proposed solutions both at software and hardware
layers. These solutions were tested on a real identifier trace captured from a real
vehicle. In this section a comparison of the proposed solutions is applied to more
identifier distributions by using the proposed security metrics.

Four reference identifier distributions are considered. Table 1 summarizes the
obtained results. The visual inspection of the histograms indicates that frequency
interval and dynamic interval randomization strategies have more uniform distribu-
tion than equal intervals and IA-CAN. Hence, these solutions should offer better
protection against reverse-engineering attack, at first glance. This observation can
be theoretically proven. By comparing the closed-form expressions of the respective
entropies, we can establish the following:

HIA− CAN(idr) ≤ HEI (idr) ≤ HFI (idr) = HDI(idr) (31)

Proof

H(ido) ≤ log2(N)

And we can establish from Eqs. (8) and (10) that:

a ≤ n− ⌈
log2(N)

⌉ ≤ n− log2(N)

⇒ H(ido)+ a ≤ H(ido)+ n− log2(N)

⇒ HIA− CAN(idr) ≤ HEI (idr)

Since

HDI (idr) = HFI (idr) = n

Then:

HIA− CAN(idr) ≤ HEI (idr) ≤ HFI (idr) = HDI(idr)

It is clear that compared to Arithmetic Masking, Dynamic Intervals and Frequency
Intervals have better performance in terms of entropy, involving a high robustness
against reverse engineering. Comparing the Arithmetic Masking to IA-CAN and
Equal Intervals is not trivial. This is mainly because established entropy expressions
depend on the entropy of the original identifier distribution. If we consider that
the original identifiers have equal probabilities (example of the first distribution),
the Equal Interval solution has better entropy (HEI (idr) = 10.9997, HAM(idr) =
10.9948). Theoretically, the entropy of Equal Intervals for this example is maximal.
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Fig. 16 Conditional entropy H(idr |ido) = f (N)

On the other side, concerning the second distribution, we can observe that the
Arithmetic Masking performs better.

To compare the protection level against replay and injection attacks, the condi-
tional entropy metrics is used. Based on the closed-form expressions established in
the previous sections, we draw the curve showing the evolution of the conditional
entropy as a function of the total number of identifiers. Figure 16 shows the results.
From this graph we can conclude that all the proposed solutions outperform the
IA-CAN strategy. Second, it appears that the hardware-based solution, namely,
Arithmetic Masking, is the best against replay and injection attacks. However, as
discussed previously, the Arithmetic Masking needs to be implemented in the CAN
controller between the physical and data link layer, which makes it not easy to
deploy. At software level, the Frequency Interval strategy performs the best, both
against replay and injection attacks and against reverse engineering.

5 Conclusion

This chapter first presents the state-of-the-art solutions to protect the CAN bus from
possible malicious attacks, namely, reverse-engineering, frame injection, and frame
replay attacks. It appears that one of the most efficient classes of protection is based
on the randomization of the CAN identifiers. Starting from the existing Identity-
Anonymized CAN (IA-CAN), three major enhancements based on randomization
have been proposed: with Equal Intervals, Frequency Intervals, and Dynamic
Intervals. In case it is possible to change the CAN hardware, a randomization
based on Arithmetic Masking has also been introduced. The security assessment
has been carried out by using security metrics coming from the information theory:
entropy (for the reverse-engineering attack) and conditional entropy (for the replay
and injection attacks). It has been shown that the enhanced protections provide a
significant gain compared to the IA-CAN approach. The entropy obtained from the
new randomization solutions is very near the optimum (11 bits), thus presenting
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a high robustness against reverse-engineering attacks. The conditional entropy is
better achieved with the Arithmetic Masking and the Dynamic Intervals. This last
solution has the interest not to modify the hardware of the CAN interface. Overall,
the proposed solutions are much better than the existing IA-CAN, as proven by the
resulting security gain formally expressed by means of information theory metrics.

Appendix

Let ido be a random variable representing original identifiers whose outcome is
id1, id2, . . . , idN with probabilities P(id1), P (id2), . . . , P (idN). We consider a
second random variable idr representing randomized identifiers whose outcome is
in [0, 2n − 1].

Entropy of Fixed Mapping

The entropy of the fixed mapping solutions (IA-CAN, equal intervals, fre-
quency intervals) is the following:

• IA-CAN: HIA− CAN(idr) = H(ido)+ a

• Equal Intervals: HEI (idr) = H(ido)+ n− log2(N)

• Frequency Intervals: HFI (idr) = n

Proof According to the fixed mapping randomization functions (IA-CAN, equal
intervals, frequency intervals), each identifier idi is randomized over a fixed interval
Ii of width W(Ii). We begin by computing the probability that the random variable
idr takes the value x ∈ [0, 2n]:

P(idr = x) =
N∑

i=1

P(idr = x|idi)× P(idi)

The conditional probability of idr knowing the original identifier ido = idi:

P(idr = x|idi) = 1Ii (x)

W(Ii )

H(idr) =
∑

x∈[0,2n−1]
P(idr = x)× log2

(
1

P(idr = x)

)
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=
∑

x∈[0,2n−1]

[
N∑

i=1

P(idi)
1Ii (x)

W(Ii)

]
× log2

⎛
⎜⎜⎝ 1[∑N

j=1 P(idj )
1Ij

(x)

W(Ij )

]
⎞
⎟⎟⎠

=
N∑

i=1

∑
x∈[0,2n−1]

P(idi)
1Ii (x)

W(Ii )
× log2

⎛
⎜⎜⎝ 1[∑N

j=1 P(idj )
1Ij

(x)

W(Ij )

]
⎞
⎟⎟⎠

H(idr) =
N∑

i=1

∑
x∈Ii

P (idi)
1Ii (x)

W(Ii)
× log2

⎛
⎜⎜⎝ 1[∑N

j=1 P(idj )
1Ij

(x)

W(Ij )

]
⎞
⎟⎟⎠

Since the intervals Ii are nonoverlapping: ∀x ∈ Ii ,∀j �= i → 1Ij (x) = 0

We can thus simplify the expression: ∀x ∈ Ii ,∀j �= i →∑N
j=1 P(idj )

1Ij
(x)

W(Ij )
=

P(idi)
1Ii

(x)

W(Ii)

H (idr) =
N∑

i=1

∑
x∈Ii

P (idi)
1Ii (x)

W(Ii)
× log2

⎛
⎝ 1

P(idi)
1Ii

(x)

W(Ii)

⎞
⎠

=
N∑

i=1

∑
x∈Ii

P (idi)
1

W(Ii)
× log2

(
1

P(idi)
1

W(Ii)

)

• IA-CAN entropy: ∀i ∈ [1, N], W(Ii ) = 2a

H(idr) =
N∑

i=1

∑
x∈Ii

P (idi)
1

2a
× log2

(
1

P(idi)
1
2a

)
= H(ido)+ a

• Equal interval entropy: ∀i ∈ [1, N], W(Ii) = 2n

N

H(idr) =
N∑

i=1

∑
x∈Ii

P (idi)
1
2n

N

× log2

⎛
⎝ 1

P(idi)
1
2n

N

⎞
⎠ = H(ido)+ n− log2(N)
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• Frequency interval entropy: ∀i ∈ [1, N], W(Ii ) = 2n × P(idi)

H(idr) =
N∑

i=1

∑
x∈Ii

P (idi)
1

2n × P(idi)
× log2

(
1

P(idi)
1

2n×P(idi)

)
= n

()

Conditional Entropy of Fixed Mapping

The conditional entropy of randomized identifiers knowing the original
identifiers of the fixed mapping solutions (IA-CAN, equal intervals, frequency
intervals) is the following:

• IA-CAN: HIA− CAN(idr |ido) = a

• Equal Intervals: HEI (idr |ido) = n− log2(N)

• Frequency Intervals: HFI (idr |ido) = n−H(ido)

Proof

H(idr |ido) = H(idr, ido)−H(ido)

H(idr, ido) =
∑

x∈[0,2n−1]

N∑
i=0

P(idr = x, ido = idi) log2

(
1

P(idr = x, ido = idi)

)

P(idr = x, ido = idi) =
{

P(idi)× 1
w(Ii )

, x ∈ Ii

0 , elsewhere

H(idr, ido) =
N∑

i=0

∑
x∈Ii

P (idi)

w(Ii)
log2

(
1

P(idi)
1

w(Ii)

)

H(idr, ido) = H(idr)

H(idr |ido) = H(idr)−H(ido)

- IA-CAN conditional entropy : H(idr |ido) = a

- Equal interval conditional entropy : H(idr |ido) = n− log2(N)

- Frequency interval conditional entropy : H(idr |ido) = n−H(ido)

()
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Entropy of Dynamic Intervals

Let idt
o be a Markov chain over the space of original identifiers

(id1, id2, . . . idN). And the matrix M presented in Eq. (25) be its transi-
tion matrix. Let idr be the random variable over [0, 2n − 1], generated
using the dynamic interval randomization strategy applied to idt

o. We have
HDI (idr) = n

Proof

H(idr) =
∑

x∈[0,2n−1]
P(idr = x)× log2

(
1

P(idr = x)

)

P(idr = x) =
N∑
i

P (idr = x|idt
o = idi)× P(idt

o = idi)

P (idr = x) =
N∑
i

N∑
j

P (idr = x|idt
i , id

t+1
j )× P(idt+1

j |idt
i )× P(idt

i )

P (idr = x|idt
i , id

t+1
j ) = 1Ii,j (x)

W(Ii,j )

where W(Ii,j ) = P(idt+1
j |idt

i )× 2nis the width of the interval Ii,j

P (idr = x) =
N∑
i

N∑
j

1Ii,j (x)

W(Ii,j )
× P(idt+1

j |idt
i )× P(idt

i )

=
N∑
i

N∑
j

1Ii,j (x)

P (idt+1
j |idt

i )× 2n
× P(idt+1

j |idt
i )× P(idt

i )

=
N∑
i

N∑
j

1Ii,j (x)

2n
× P(idt

i )

∀x ∈ [0, 2n − 1],∑N
j 1Ii,j (x) = 1

P(idr = x) =
N∑
i

1

2n
× P(idt

i ) =
1

2n
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H(idr) =
∑

x∈[0,2n−1]

1

2n
× log2

(
1

2n

)

H(idr) = n

()

Entropy of Arithmetic Masking

Proof

H(idr) =
∑

x∈[0,2n−1]
P(idr = x) log2

(
1

P(idr = x)

)

P(idr = x) =

⎧⎪⎨
⎪⎩

∑x
i=0

P(idi )
2n−N+1 , x ∈ [0, N − 2]

1
2n−N+1 , x ∈ [N − 1, 2n −N]∑N−1

i=x−2n+N
P(idi)

2n−N+1 , x ∈ [2n −N + 1, 2n − 1]

H(idr) =
∑

x∈[N−1,2n−N]

1

2n − N + 1
× log2(2

n −N + 1)

+
∑

x∈[0,N−2]

[
x∑

i=0

P(idi)

2n −N + 1

]
× log2

(
1∑x

i=0
P(idi)

2n−N+1

)

+
∑

x∈[2n−N+1,2n−1]

[
N−1∑

i=x−2n+N

P(idi)

2n −N + 1

]

× log2

(
1∑N−1

i=x−2n+N
P(idi)

2n−N+1

)

H(idr) =2n − 2(N − 1)

2n −N + 1
log2(2

n −N + 1)+
∑

x∈[0,N−2]

[
x∑

i=0

P(idi)

2n −N + 1

]

× log2

(
1∑x

i=0
P(idi)

2n−N+1

)

+
[

N−1∑
i=x+1

P(idi)

2n −N + 1

]
× log2

(
1∑N−1

i=x+1
P(idi )

2n−N+1

)



250 K. Karray et al.

H(idr) =2n − 2(N − 1)

2n −N + 1
log2(2

n −N + 1)

+
∑

x∈[0,N−2]

1

2n −N + 1
log2(2

n −N + 1)

+
∑

x∈[0,N−2]

x∑
i=0

P(idi)

2n −N + 1
× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi)

2n −N + 1
× log2

(
1∑N−1

i=x+1 P(idi)

)

H(idr) =2n − 2(N − 1)

2n −N + 1
log2(2

n −N + 1)+ N − 1

2n −N + 1
log2(2

n −N + 1)

+ 1

2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P(idi)× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi)× log2

(
1∑N−1

i=x+1 P(idi)

)

H(idr) =2n −N + 1

2n −N + 1
log2(2

n −N + 1)

+ 1

2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P(idi)× log2

(
1∑x

i=0 P(idi)

)

+
N−1∑

i=x+1

P(idi)× log2

(
1∑N−1

i=x+1 P(idi)

)

H(idr) = log2(2
n −N + 1)+ 1

2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P(idi)

× log2

(
1∑x

i=0 P(idi)

)
+

N−1∑
i=x+1

P(idi)

× log2

(
1∑N−1

i=x+1 P(idi)

)

()
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Conditional Entropy of Arithmetic

The arithmetic masking conditional entropy is:

HAM(idr |ido) = log2(2
n −N + 1)

Proof

P(idr = x|ido = idi) = 1[i−1,2n−N+i−1]
2n −N + 1

HAM(idr |ido) =
N∑

i=0

P(idi)H(idr |ido = idi)

HAM(idr |ido) =
N∑

i=0

P(idi)
∑

x∈[i−1,2n−N+i−1]
P(idr = x|ido = idi)

× log2

(
1

P(idr = x|ido = idi)

)

HAM(idr |ido) =
N∑

i=0

P(idi)
∑

x∈[i−1,2n−N+i−1]

1

2n −N + 1
log2

(
1
1

2n−N+1

)

HAM(idr |ido) =
N∑

i=0

P(idi) log2(2
n −N + 1)

HAM(idr |ido) = log2(2
n − N + 1)

()

Fixed Mapping Optimality Proof

If we adopt a fixed mapping randomization strategy, the optimal solution in
terms of conditional entropy is the frequency interval solutions.
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Proof In the context of fixed mapping, we want to find the best decomposition of
intervals that maximizes the conditional entropy. We previously showed that the
conditional entropy of all fixed mapping solutions can be expressed as H(idr |ido) =∑

i∈[1,N] P(idi)× log2(Wi), where Ii is the randomization interval of idi of width
W(Ii). For the fixed mapping solutions, the intervals are nonoverlapping. Besides
the width of each interval Ii is positive (W(Ii) ≥ 0) and their sum equals 2n. Thus
we define the following problem:

Argmax
{Ii },i∈[1,N]

H(idr |ido) =
∑

i

P (idi)× log2(Wi)

Subject to the following constraints:

h0 :∑i∈[1,N]Wi − 2n = 0
hi : ∀i ∈ [1, N],−Wi ≤ 0

To find the solution to this problem, we use the Lagrangian multiplier:

L (W1, . . . ,WN, λ1, . . . λN , λ0) = H(idr |ido)+
N∑

j=0

λjhj

and solve the equation system: ∂L
∂Wi

= 0, ∀i ∈ [1, N]

∂L

∂Wi

(W1, . . . ,WN , λ1, . . . λN , λ0) = ∂H

∂Wi

+
N∑

j=0

λj

∂hj

∂Wi

∀i ∈ [0, N] : λi × hi = 0

h0 :∑i∈[1,N]Wi − 2n = 0
hi : ∀i ∈ [1, N],−Wi ≤ 0

We have: ∂H
∂Wi

= P(idi)× 1
Wi

and ∂h0
∂Wi

= 1 and ∂hj

∂Wi
= −1 if (i = j), 0 otherwise

∀i ∈ [1, N] : P(idi)× 1

Wi

+ λ0 − λi = 0

∀i ∈ [1, N] : λi × hi = 0
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Resolving this system of equations gives:

λi = 0, ∀i ∈ [1, N]

λ0 = −1

2n

Hence:

⇒ ∀i ∈ [1, N] : Wi = P(idi)× 2n

()
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Public Key-Based Lightweight Swarm
Authentication

Simon Cogliani, Bao Feng, Houda Ferradi, Rémi Géraud, Diana Maimuţ,
David Naccache, Rodrigo Portella do Canto, and Guilin Wang

Abstract We describe a lightweight algorithm performing whole-network authen-
tication in a distributed way. This protocol is more efficient than one-to-one node
authentication: it results in less communication, less computation and overall lower
energy consumption. The proposed algorithm is provably secure and achieves zero-
knowledge authentication of a network in a time logarithmic in the number of nodes.

1 Introduction

A growing market focuses on lightweight devices, whose low cost and easy
production allow for creative and pervasive uses. The Internet of Things (IoT)
consists in spatially distributed nodes that form a network, able to control or monitor
physical or environmental conditions (such as temperature, pressure, image and
sound), perform computations or store data. IoT nodes are typically low-cost devices
with limited computational resources and limited battery. They transmit the data
they acquire through the network to a gateway, also called the transceiver, which
collects information and sends it to a processing unit. Nodes are usually deployed in
hostile environments and are therefore susceptible to physical attacks, harsh weather
conditions and communication interferences.
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Due to the open and distributed nature of the IoT, security is key to the entire
network’s proper operation [14]. However, the lightweight nature of sensor nodes
heavily restricts the type of cryptographic operations that they can perform, and the
constrained power resources make any communication costly.

This chapter describes an authentication protocol that establishes network
integrity and leverages the distributed nature of computing nodes to alleviate
individual computational effort. This enables the base station to identify which
nodes need replacement or attention.

This is most useful in the context of wireless sensor networks and the IoT, but
applies equally well to mesh network authentication and similar situations.

1.1 Related Work

Zero-knowledge (ZK) protocols have been considered for authentication of wireless
sensor networks. For instance, Anshul and Roy [1] describe a modified version
of the Guillou–Quisquater identification scheme [8], combined with the μTesla
protocol [11] for authentication broadcast in constrained environments. We stress
that the purpose of the scheme of [1], and similar ones, is to authenticate the base
station.

Aggregate signature schemes such as [2, 15] may be used to achieve the goal
pursued here—however they are intrinsically noninteractive—and the most efficient
aggregate constructions use elliptic curve pairings, which require powerful devices.

Closer to our concerns, [13] describes a ZK network authentication protocol, but
it only authenticates two nodes at a time, and the base station acts like a trusted
third party. As such it takes a very large number of interactions to authenticate the
network as a whole.

What we propose instead is a collective perspective on authentication and not an
isolated one.

1.2 Structure of This Chapter

Section 2 recalls the Fiat–Shamir authentication scheme and presents a distributed
algorithm for topology-aware networks. We describe the core idea of our chapter, a
distributed Fiat–Shamir protocol for IoT authentication, in Sect. 3. We analyse the
security of the proposed protocol in Sect. 4. Section 5 provides several improve-
ments and explores trade-offs between security, transmission and storage.
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2 Preliminaries

2.1 Fiat–Shamir Authentication

The Fiat–Shamir authentication protocol [5] enables a prover P to convince a
verifier V that P possesses a secret key without ever revealing the secret key [4, 7].

The algorithm first runs a one-time setup, whereby a trusted authority publishes
an RSA modulus n = pq but keeps the factors p and q private. The proverP selects
a secret s < n such that gcd(n, s) = 1 computes v = s2 mod n and publishes v as
its public key.

When a verifier V wishes to identify P , he uses the protocol of Protocol 1. V
may run this protocol several times until V is convinced that P indeed knows the
square root s of v modulo n.

Protocol 1: Fiat–Shamir authentication

Prover Verifier

r
$←− [1, n − 1]

x ← r2 mod n
x−−−−−−→

{e1, . . . , ek} $←− {0, 1}k
e1,...,ek←−−−−−−

y ← r

k∏
i=1

s
ei

i mod n

y−−−−−−→

Check y2 = x

k∏
i=1

v
ei

i mod n

Protocol 1 describes the original Fiat–Shamir authentication protocol [5], which
is honest verifier zero knowledge1 and whose security is proven assuming the
hardness of computing arbitrary square roots modulo a composite n, which is
equivalent to factoring n.

As pointed out by [5], instead of sending x, P can hash it and send the first bits
of H(x) to V , for instance, the first 128 bits. With that variant, the last step of the
protocol is replaced by the computation of H(y2∏k

i=1 v
ai

i mod n), truncated to the
first 128 bits and compared to the value sent by P . Using this “short commitment”
version reduces somewhat the number of communicated bits. However, it comes at
the expense of a reduced security level. A refined analysis of this technique is given
in [6].

1This can be fixed by requiring V to commit on the ai before P has sent anything, but this
modification will not be necessary for our purpose.
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2.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communication
system, the overall network topology is subject to change. Since sensors send data
through the network, a sudden disruption of the usual route may result in the whole
network shutting down.

2.2.1 Topology-Aware Networks

A topology-aware network detects changes in the connectivity of neighbours, so
that each node has an accurate description of its position within the network.
This information is used to determine a good route for sending sensor data to the
base station. This could be implemented in many ways, for instance, by sending
discovery messages (to detect additions) and detecting unacknowledged packets
(for deletions). Note that the precise implementation strategy does not impact the
algorithm.

Given any graph G = (V ,E) with a distinguished vertex B (the base station),
the optimal route for any vertex v is the shortest path from v to B on the minimum
degree spanning tree S = (V ,E′) of G. Unfortunately, the problem of finding such
a spanning tree is NP-hard [12], even though there exist optimal approximation
algorithms [9, 12]. Any spanning tree would work for the proposed algorithm;
however the performance of the algorithm gets better as the spanning tree degree
gets smaller.

2.2.2 Mooij–Goga–Wesselink’s Algorithm

The network’s topology is described by a spanning tree W constructed in a
distributed fashion by the Mooij–Goga–Wesselink algorithm [10]. We assume that
nodes can locally detect whether a neighbour has appeared or disappeared, i.e. graph
edge deletion and additions.

W is constructed by aggregating smaller subtrees together. Each node in W is
attributed a “parent” node, which already belongs to a subtree. The complete tree
structure of W is characterized by the parenthood relationship, which the Mooij–
Goga–Wesselink algorithm computes. Finally, by topological reordering, the base
station T can be put as the root of W .

Each node in W has three local variables {parent, root,dist} that are initially
set to a null value ⊥. Nodes construct distributively a spanning tree by exchanging
“M-messages” containing a root information, distance information and a type. The
algorithm has two parts:

• Basic: maintains a spanning tree as long as no edge is removed (it is a variant of
the union-find algorithm [3]). When a new neighbour w is detected, a discovery
M-message (root,dist) is sent to it. If no topology change is detected for w, and
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an M-message is received from it, it is processed by Algorithm 1. Note that a
node only becomes active upon an event such as the arriving of an M-message
or a topology change.

• Removal: intervenes after the edge deletion so that the basic algorithm can be run
again and give correct results.

Algorithm 1: Mooij–Goga–Wesselink algorithm (Basic part)

Receive: An M-message (r, d) coming from a neighbour w.

1. (parent, root,dist)← (⊥,⊥,⊥)

2. if (r, d + 1) < (root,dist)
3. parent← w

4. root← r

5. dist← d + 1
6. send the M-message (root,dist) to all neighbours except w

Algorithm 1 has converged once all topology change events have been processed.
At that point we have a spanning tree [10].

For our purposes, we may assume that the network was set up and that
Algorithm 1 is running on it, so that at all times the nodes of the network have
access to their parent node. Note that this incurs very little overhead as long as
topology changes are rare.

3 Distributed Fiat–Shamir Authentication

3.1 The Approach

Given a k-node network N1, . . . ,Nk , we may consider the nodes Ni as users and
the base station as a trusted centre T . In this context, each node will be given only
an2 si . To achieve collective authentication, we propose the following Fiat–Shamir-
based algorithm:

• Step 0: Wait until the network topology has converged and a spanning tree W is
constructed with Algorithm 1 presented in Sect. 2.2. When that happens,T sends
an authentication request message (AR-message) to all the Ni directly connected
to it. The AR-message may contain a commitment to e (cf. Step 2) to guarantee
the protocol’s zero-knowledge property even against dishonest verifiers.

2This is for clarity. It is straightforward to give each node several private keys and adapt the
algorithm accordingly.
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Fig. 1 The proposed algorithm running on a network: computation of xc (left) and of yc (right).
Each parent node aggregates the values computed by its children and adds its own information
before transmitting the result upwards to the base station

• Step 1: Upon receiving an AR-message, each Ni generates a private ri and
computes xi ← r2

i mod n. Ni then sends an A-message to all its children, if
any. When they respond, Ni multiplies all the xj sent by its children together,
and with its own xi , and sends the result up to its own parent. This recursive
construction enables the network to compute the product of all the xis and send
the result xc to the top of the tree in d steps (where d = deg W ). This is illustrated
for a simple network including four nodes and a base station in Fig. 1.

• Step 2: T sends a random e as an authentication challenge (AC-message) to the
Ni directly connected to it.

• Step 3: Upon receiving an AC-message e, each Ni computes yi ← ris
ei

i . Ni

then sends the AC-message to all its children, if any. When they respond, Ni

multiplies the yj values received from all its children together, and with its
own yi , and sends the result to its own parent. The network therefore computes
collectively the product of all the yi’s and transmits the result yc to T . This is
illustrated in Fig. 1.

• Step 4: Upon receiving yc, T checks that y2
c = xc

∏
v

ei

i , where v1, . . . , vk are
the public keys corresponding to s1, . . . , sk , respectively.

Note that the protocol may be interrupted at any step. In the version of the
algorithm that we have just described, this results in a failed authentication.

3.2 Backup Authentication

Network authentication may fail for many reasons described and analysed in detail
in Sect. 4.3.3. As a consequence of the algorithm’s distributed nature that we have
just described, a single defective node suffices for authentication to fail.
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This is the intended behaviour; however there are contexts in which such a brutal
answer is not enough, and more information is needed. For instance, one could wish
to know which node is responsible for the authentication failure.

A simple backup strategy consists in performing usual Fiat–Shamir authentica-
tion with all the nodes that still respond, to try and identify where the problem lies.
Note that, as long as the network is healthy, using our distributed algorithm instead
is more efficient and consumes less bandwidth and less energy.

Since all nodes already embark the hardware and software required for Fiat–
Shamir computations, and can use the same keys, there is no real additional burden
in implementing this solution.

4 Security Proofs

In this section we wish to discuss the security properties relevant to our construction.
The first and foremost fact is that algorithm given in Sect. 3 is correct: a legitimate
network will always succeed in proving its authenticity, provided that packets are
correctly transmitted to the base station T (possibly hopping from node to node)
and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such
hypotheses do not hold.

4.1 Soundness

Lemma 1 (Soundness) If the authentication protocol succeeds, then with over-
whelming probability the network nodes are genuine.

Proof Assume that an adversaryA simulates the whole network, but does not know
the si , and cannot compute in polynomial time the square roots of the public keys
vi . Then, as for the original Fiat–Shamir protocol [5], the base station will accept
A ’s identification with probability bounded by 2k where k is the number of nodes.

4.2 Zero Knowledge

Lemma 2 (Zero Knowledge) The distributed authentication protocol of Sect. 3.1
achieves statistical zero knowledge.

Proof Let P be a prover and A be a (possibly cheating) verifier, who can use any
adaptive strategy and bias the choice of the challenges to try and obtain information
about the secret keys.
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Consider the following simulator S :

Step 1. Choose e
$←− {0, 1}k and y

$←− [0, n− 1] using any random tape ω′.
Step 2. Compute x ← y2 ∏ v

ei

i and output (x, e, y).

The simulator S runs in polynomial time and outputs triples that are indistinguish-
able from the output of a prover that knows the corresponding private key.

If we assume the protocol is run N times, and that A has learnt information
which we denote η, then A chooses adaptively a challenge using all information
available to it e(x, η, ω) (where ω is a random tape). The proof still holds if we
modify S in the following way:

Step 1. Choose e
$←− {0, 1}k and y

$←− [0, n− 1] using any random tape ω′.
Step 2. Compute x ← y2 ∏ v

ei

i .
Step 3. If e(x, η, ω) = e, then go to Step 1; else output (x, e, y).

Note that the protocol is also “locally” ZK, in the sense that an adversary simulating
� out of k nodes of the network still has to face the original Fiat–Shamir protocol.

4.3 Security Analysis

4.3.1 Choice of Parameters

Let λ be a security parameter. To ensure this security level, the following constraints
should be enforced on parameters:

• The identification protocol should be run t ≥ 	λ/k
 times (according to
Lemma 1), which is reasonably close to one as soon as the network is large
enough.

• The modulus n should take more than 2λt operations to factor.
• Private and public keys are of size comparable to n.

4.3.2 Algorithmic Complexity

The number of operations required to authenticate the network depends on the exact
topology at hand, but can safely be bounded above:

• Number of modular squarings: 2kt

• Number of modular multiplications≤ 3kt

In average, each Ni performs only a constant (a small) number of operations.
Finally, only O(d) messages are sent, where d is the degree of the minimum
spanning tree of the network. Pathological cases aside, d = O(log k), so that only a
logarithmic number of messages are sent during authentication.
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All in all, for λ = 256, k = 1024 nodes and t = 1, we have n ≥ 21024 and up to
5 modular operations per node.

4.3.3 Root Causes of Authentication Failure

Authentication may fail for several reasons. This may be caused by network
disruption, so that no response is received from the network—at which point not
much can be done.

However, more interestingly, T may have received an invalid value of yc. The
possible causes are easy to spot:

1. A topology change occurred during the protocol:

• If all the nodes are still active and responding, the topology will eventually
converge and the algorithm will get back to Step 0.

• If, however, the topology change is due to nodes being added or removed, the
network’s integrity has been altered.

2. A message was not transmitted: this is equivalent to a change in topology.
3. A node sent a wrong result. This may stem from low battery failure or when

errors appear within the algorithm the node has to perform (fault injection,
malfunctioning, etc). In that case authentication is expected to fail.

4.3.4 Effect of Network Noise

Individual nodes may occasionally receive incorrect (ill-formed, or well-formed
but containing wrong information) messages, be it during topology reconstruction
(M-messages) or distributed authentication (A-messages). Upon receiving incorrect
A- or M-messages, nodes may dismiss them or try and acknowledge them, which
may result in a temporary failure to authenticate. An important parameter which
has to be taken into account in such an authentication context is the number of
children of a node. When a node with many children starts failing, all its children are
disconnected from the network and cannot be contacted or authenticated anymore.
While a dysfunction at the leaf level might be benign, the failure of a fertile node is
catastrophic.

4.3.5 Man-in-the-Middle Attacks

An adversary could instal itself between nodes, or between nodes and the base
station, and try to intercept or modify communications. Lemma 2 proves that a
passive adversary cannot learn anything valuable, and Lemma 1 shows that an active
adversary cannot fool authentication.
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It is still possible that the adversary relays information, but any attempt to
intercept or send messages over the network would be detected.

5 Variants and Implementation Trade-Offs

The protocol may be adapted to better fit operational constraints: in the context of
IoT, for instance, communication is a very costly operation. We describe variants
that aim at reducing the amount of information sent by individual nodes while
maintaining security.

5.1 Shorter Challenge Variant

In the protocol, the long (say, 128-bit) challenge e is sent throughout the network
to all individual nodes. One way to reduce the length of e without compromising
security is the following:

• A short (say, 80-bit) value e is sent to the nodes.
• Each node i computes ei ← H(e‖i) and uses ei as a challenge.
• The base station also computes ei the same way and uses this challenge to check

authentication.

This variant does not impact security, assuming an ideal hash function H , and it can
be used in conjunction with the other improvements described below.

5.2 Multiple-Secret Variant

Instead of keeping one secret value si , each node could have multiple-secret values
si,1, . . . , si,�. Note that these additional secrets need not be stored: they can be
derived from a secret seed.

The multiple-secret variant is described here for a single node, for the sake of
clarity. Upon receiving a challenge ei (assuming, for instance, that ei was generated
by the above procedure), each node computes a response:

yi ← ris
ei,1
i,1 s

ei,2
i,2 · · · sei,�

i,� mod n.

This can be checked by the verifier by checking whether:

y2
i

?= xiv
ei,1
i,1 v

ei,2
i,2 · · · vei,�

i,� mod n.
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To do swarm authentication, it suffices to perform aggregation as described in the
protocol of Sect. 3 at intermediate nodes.

Using this approach, one can adjust the memory-communication trade-off, as
the security level is λ = t� (single-node compromission). Therefore, if � = 80,
for instance, it suffices to authenticate once to get the same security as t = 80
authentications with � = 1 (which is the protocol of Sect. 3). This drastically cuts
bandwidth usage, a scarce resource for IoT devices.

Furthermore, computational effort can be reduced by using batch exponentiation
techniques to compute yi .

5.3 Precomputed Alphabet Variant

A way to further reduce computational cost is the following: each node chooses an
alphabet of m words w0, . . . , wm−1 (a word is a 32-bit value) and computes once
and for all the table of all pairwise products pi,j = mimj . Note that each pi,j entry
is 64 bits long.

The values si are generated by randomly sampling from this alphabet. Put
differently, si is built by concatenating u words (bit patterns) taken from the alphabet
only. We thus see that the si , which are mu-bit integers, can take mu possible values.

Example 1 For instance, if m = u = 32, then si is a 1024-bit number chosen
amongst 3232 = 2160 possible values. Thanks to the lookup table, most multiplica-
tions need not be performed, which provides a substantial speed-up over the naive
approach.

The size of the lookup table is moderate, for the example given; all we need to
store is 32×31/2+32 = 528 values. This can be further reduced by noting that the
first lines in the table can be removed: 32 values are zeros, 31 values are the results
of multiplications by 1, 30 values are left shifts by 1 of the previous line, 29 values
are the sum of the previous 2 and 28 values are left shifts by 2. Hence all in all the
table can be compressed into 528− 32− 31− 29− 28= 408 entries. Because each
entry is a word, this boils down to 1632 bytes only.

5.4 Precomputed Combination Variant

The idea is that computational cost can be cut down if we precompute and store
some products, only to assemble them online during Fiat–Shamir authentication:
the values of si,1,2 ← si,1si,2, si,2,3 ← si,2si,3, . . . are stored in a lookup table.
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The use of combined values si,a,b in the evaluation of y results in three possible
scenarios for each:

1. sasb appears in y—the probability of this occurring is 1/4—in which case one
additional multiplication must be performed.

2. sasb does not appear in y—the probability of this occurring is 1/4—in which case
no action is performed.

3. sa or sb appears, but not both—this happens with probability 1/2—in which case
one single multiplication is required.

As a result the expected number of multiplications is reduced by 25%, to wit 3
4 ×

2m−1, where m is the size of e.
The method can be extended to work in a window of size κ ≥ 2; for instance,

with κ = 3, we would precompute:

si,3n,3n+1 ← si,3nsi,3n+1

si,3n+1,3n+2 ← si,3n+1si,3n+2

si,3n,3n+2 ← si,3nsi,3n+2

si,3n,3n+1,3n+2 ← si,3nsi,3n+1si,3n+2

Following the same analysis as above, the expected number of multiplications
during the challenge-response phase is 7

8 × 2m

3 . The price to pay is that larger values
of κ claim more precomputing and memory. More precisely, we have the following
trade-offs, writing μ = 2m mod κ :

Multiplications(expected) = 2m
(

2κ−1
2κ

(⌊
2m

κ
− 1

⌋)
− 2μ−1

2μ

)

Premultiplications = �− 1+
(
(2κ − κ − 1)

⌊
2m

κ

⌋)
+ (2μ − μ− 1)

Storedvalues = (2κ − 1)
⌊

2m

κ

⌋
+ (2μ − 1)

where � is the number of components of si .

6 Conclusion

In this work we describe a distributed Fiat–Shamir authentication protocol that
enables network authentication using very few communication rounds, thereby
alleviating the burden of resource-limited devices such as wireless sensors and other
IoT nodes. Instead of performing one-on-one authentication to check the network’s
integrity, our protocol gives a proof of integrity for the whole network at once.
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Physical Security Versus Masking
Schemes

Jean-Luc Danger, Sylvain Guilley, Annelie Heuser, Axel Legay,
and Tang Ming

Abstract Numerous masking schemes have been designed as provable counter-
measures against side-channel attacks. However, currently, several side-channel
attack models coexist, such as “probing” and “bounded moment” models, at bit or
word levels. From a defensive standpoint, it is thus unclear which protection strategy
is the most relevant to adopt.

In this survey article, we review adversarial hypotheses and challenge masking
schemes with respect to practical attacks. In a view to explain in a pedagogical way
how to secure implementations, we highlight the key aspects to be considered when
implementing a masking scheme.

1 Context About the Protection Problem

Sensitive computations must be secured against non-invasive attacks, which attempt
to correlate the leakage of some operations with a hypothetical model [13].

A protection against this threat is the masking [13, Chap. 9] countermeasure.
Masking consists in changing the intermediate variables of the computation into
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randomized versions, which are thus decorrelated from the unprotected variables,
each being a potential target for a side-channel attack. Indeed, leakage localization
tests have been put forward to pinpoint leakages [4, 10, 14]; hence masking schemes
must have a full coverage.

In particular, in the field of symmetrical encryption, the mainstream approach
consists in the use of purely Boolean structures. This is the case of widely used (and
standardized) ciphers, such as DES [15] and AES [16]. In both these examples, the
operations (except for simple data move, which will simply amplify the leakage
signal-to-noise ratio, but not create new leakage model) simply consist in XORs
and in look-up tables (LUTs). It is therefore natural to restrict to so-called Boolean
masking, where the only operation in terms of masking is the XOR. This is innately
compatible with the functional XOR operations, and LUTs are also easy to protect,
e.g., using recomputation [20].

1.1 Nature of Computation

Complex computations, like cryptographic algorithms, can be seen as a sequence
of parallel basic operations. In hardware, the basic operations are logic gates. They
take as input a small amount of bits (e.g., 1, 2, 3, up to maximum 6 usually) and
yield another bit according to a Boolean function. In software, the basic operations
are instructions. They take a couple of operands and yield another one, computed
through a deterministic function. For instance, xor r1 r2 r3 computes the
exclusive-or of 32-bit registers r2 and r3 and saves the result r2 xor r3 in r1.

1.2 Combinational or Sequential?

We notice the spatio-temporal nature of computation: many bits are manipulated
in parallel, and sometimes, the computation has loops. In hardware, this is called
an iterative implementation, for instance, the instantiation of gates for one round
of AES-128, which are evaluated ten times. In software, interestingly, the loops
(in the underlying hardware, i.e., the processor) cannot be unrolled, because all
operations pass through a unique integer unit. Typically, the accumulated register
is updated again and again at each instruction (at least, for most instructions—with
the exception of instructions where the result is saved directly in memory).1

1This highlights a very paradoxical modelization of software, even when is it straight line. A
straight-line code is seen as sequential in software where it indeed consists in looping of the
hardware accumulator register into itself when operations are chained in series. Obviously, the
looping of the accumulator into itself only holds for basic controllers. Performance-oriented
processors may behave in a more complex way—typically, the pipeline in a processor can break
those loops.
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1.3 Outline of the Article

The rest of this article is structured as follows: First of all, the mainstream masking
algorithms are presented and challenged from a security standpoint in Sect. 2.
Second, masking is analyzed vis-à-vis technological and logical high-order leakage
function in Sect. 3. A new definition of realistic security objectives is given in
Sect. 4. Eventually, this chapter is concluded in Sect. 5.

2 Definition of t-Order Security by ISW [12]

2.1 Revisiting of ISW Definition

Ishai, Sahai, and Wagner (ISW) define as stateless circuits [12, Sec. 2] fully
combinational circuits, which are acyclic. This models fully unrolled hardware
implementations, which are usually prohibitive in cost, but all the same imple-
mented in some contexts like for extremely low latency or for some sort of
side-channel resistance [3]. On the other hand, stateful circuits are circuits with
loops.

Definition 1 (t-Order Security, as per ISW) According to ISW, a circuit is t-
order secure if the attacker can get no information about the unprotected variables
by:

1. Using t probes at arbitrary positions in one loop2

2. But with the possibility to re-probe (and even to move the t probes) for free at
every loop3

2.2 Ill-Formed Definition

The problem with this definition of probing security is that it does not characterize
well some countermeasures. For instance, perfect masking [5] of order t can
be either secure or insecure depending on the implementation. The secure

2We quote [12, p. 464]: “a t-limited adversary is one that can observe at most t wires of the circuit
within a certain time period (such as during one clock cycle).”
3We quote footnote 6 page 464 of [12]: “By default, we allow the adversary to adaptively move its t

probes between time periods, but not within a time period.” See also the complement given in [12,
pp. 466–467]; we quote next: “Prior to each invocation, the adversary may fix an arbitrary set of t

internal wires to which it will gain access in that invocation. We stress that while this choice may
be adaptive between invocations, i.e., may depend on the outputs and on wire values observed in
previous invocations, the adversary is assumed to be too slow to move its probes while the values
propagate through the circuit.”
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Fig. 1 Parallel (a) vs. sequential (b) implementation of perfect masking for t = 2
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Fig. 2 Linear readout of one bit in a word of n = 32 bits, using one prober tip

implementation is the parallel one (see Fig. 1a), because indeed t probes are needed,
whereas the insecure implementation is the sequential one (see Fig. 1b), because
one probe suffices to read out one bit of the t shares over t clock cycles (even
without changing the probe location). This kind of linear readout attack scenario
is illustrated in Fig. 2; once the probe tip is installed on top on the register bit to
probe, the consecutive values held in this DFF (Data Flip-Flop) are read out non-
invasively, one after the other. This definition shall not be confused with the more
general (word) probing model where whole words can be read out at once.

Admittedly (this was the hypothesis in seminal paper of ISW [12]), the relevant
security parameter in probing is the number of probes. Indeed:

1. The probe tips are very small, but the probe itself is large (see Fig. 3a); hence
only few of them can be placed over a circuit.

2. The step consisting in placing the probe is costly, for at least two reasons. First
of all, the identification of the probe’s location is time-consuming (it consists, as
to say, to identify a needle in a haystack). Second, the positioning of the probe
(see Fig. 3a) is slightly invasive, in that it requires to scratch the chip surface to
get a reliable electrical contact with the resource to spy (see Fig. 3b).
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thick holder

thin tip
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Fig. 3 Probe example, courtesy of http://www.bridgetec.com/holders.html (a) and operation for
the probe tip to properly contact the targeted area (b)

2.3 Attack on Coron’s Higher-Order Masking of Look-Up
Tables [8]

Coron’s higher-order masking of look-up tables [8] is a software variant of ISW
scheme [12] (more precisely, it is a variant of the word-level variant of ISW,
namely [22]). This scheme is proven high-order secure, but the proof is incorrect,
because the given implementation and the one assumed in the proof do not match: in
the given implementation (algorithms), some resources are reused over time, hence
creating a security weakness, as we shall detail in this section.

We recall Coron’s masked computation of look-up table S : F
n
2 → F

n
2

in Algorithm 1, which makes use of masks sharing refresh procedure given in
Algorithm 2. In this latter algorithm, the operator “←R” stands for uniformly
randomized affectation.

We show that there is a second-order attack (in the sense of ISW) on Coron’s
scheme:

• The attacker probes at line 2 of Algorithm 2; then [one bit of] all the random
numbers injected in Algorithm 1 are known. Let us call them ri,j for 0 ≤ i ≤ t

(the ith time the RefreshMasks function is called) and for 1 ≤ j ≤ t (the j th
fresh mask in invocation i of RefreshMasks).

• In parallel, the attacker also probes [one bit of] y0 at line 12 of Algorithm 1. This
value is equal to S(

⊕t
i=0 xi)⊕⊕i

i′=0
⊕t

j=1 ri′,j . As the attacker knows [one bit

of] all the ri,j , he can deduce [one bit of] S(
⊕t

i=0 xi) = S(x).

With one probe, only one bit of the n = 8 bit register can be probed, which
allows nonetheless to recover one bit of S(x) in the clear. However, this is sufficient
information to break the AES: after knowing about n values of S(x) targeted bit for
x = p ⊕ k (plaintext p ∈ F

n
2 xored with the key byte k ∈ F

n
2) knowing the values

of p, a unique k can be derived.

http://www.bridgetec.com/holders.html
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Input : x0, . . . , xt such that x = x0 ⊕ . . .⊕ xt

Output : y0, . . . , yt such that y = S(x) = y0 ⊕ . . .⊕ yt

1 for u ∈ F
n
2 do

2 T (u) ← (S(u), 0, . . . , 0) �⊕t
j=0 T (u)[j ] = S(u)

3 end
4 for i = 0 to t − 1 do
5 for u ∈ F

n
2 do

6 for j = 0 to t do T ′(u)[j ] ← T (u⊕ xi)[j ]
7 end

�⊕t
j=0 T ′(u)[j ] = S(u⊕ x0 ⊕ . . .⊕ xi )

8 for u ∈ F
n
2 do

9 T (u) ← RefreshMasks(T ′(u))

10 end
�⊕t

j=0 T (u)[j ] = S(u⊕ x0 ⊕ . . .⊕ xi )

11 end
12 (y0, . . . , yt ) ← RefreshMasks(T (xt )) �⊕t

j=0 T (xn)[j ] = S(x)

13 return (y0, . . . , yt )

Algorithm 1: Masked computation of y = S(x) (Alg. 1 in [8])

Input : z0, . . . , zt such that z = z0 ⊕ . . .⊕ zt

Output : z0, . . . , zt such that z = z0 ⊕ . . .⊕ zt

1 for j = 1 to t do
2 tmp ←R F

n
2

3 z0 ← z0 ⊕ tmp

4 zj ← zj ⊕ tmp

5 end
6 return (z1, . . . , zt )

Algorithm 2: The RefreshMasks function (Alg. 2 in [8])

The values to probe can be found as well in the reference code of https://github.
com/coron/htable/blob/master/src/aes_htable.c (hash a9e88df, put online on 25
Sep 2015):

• Line 39, in function subbyte_table (line 12 of Algorithm 1)
• Line 51, in function refreshword (line 2 of Algorithm 2)

The online version of file aes_htable.c shall thus not be used as is. Its
security problem can be fixed easily, by avoiding the reuse t − 1 times of tables T

and T ′ and (t−1)× t times of variable tmp. The corrected algorithm is Algorithm 3
(which calls Algorithms 4 and 5 as subfunctions).

https://github.com/coron/htable/blob/master/src/aes_htable.c
https://github.com/coron/htable/blob/master/src/aes_htable.c
https://github.com/coron/htable/blob/master/src/aes_htable.c
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Input : x0, . . . , xt such that x = x0 ⊕ . . .⊕ xt

Output : y0, . . . , yt such that y = S(x) = y0 ⊕ . . .⊕ yt

1 Initialize table ri,j (0 ≤ i ≤ t, 1 ≤ j ≤ t) with InitRefreshMasks � using Algorithm 5

2 for u ∈ F
n
2 do

3 T (u) ← (S(u), 0, . . . , 0) �⊕t
j=0 T (u)[j ] = S(u)

4 end
5 for i = 0 to t − 1 do
6 for u ∈ F

n
2 do

7 for j = 0 to t do T ′(u + i × 2n)[j ] ← T ((u ⊕ xi)+ i × 2n)[j ]
8 end

�⊕t
j=0 T ′(u+ i × 2n)[j ] = S(u⊕ x0 ⊕ . . .⊕ xi )

9 for u ∈ F
n
2 do

10 T (u+ (i + 1)× 2n) ← RefreshMasks(i, T ′(u+ i × 2n)) � using Algorithm 4
11 end

�⊕t
j=0 T (u+ (i + 1)× 2n)[j ] = S(u⊕ x0 ⊕ . . .⊕ xi )

12 end
13 (y0, . . . , yt ) ← RefreshMasks(t, T (xt + t × 2n)) � using Algorithm 4

�⊕t
j=0 T (xn + t × 2n)[j ] = S(x)

14 return (y0, . . . , yt )

Algorithm 3: Masked computation of y = S(x) (fixed version of Algorithm 1)

Input : Index i, 0 ≤ i ≤ t , and z0, . . . , zt such that z = z0 ⊕ . . .⊕ zt

Output : z0, . . . , zt such that z = z0 ⊕ . . .⊕ zt

1 for j = 1 to t do
2 z0 ← z0 ⊕ ri,j
3 zj ← zj ⊕ ri,j

4 end
5 return (z1, . . . , zt )

Algorithm 4: The RefreshMasks function (fixed version of Algorithm 2)

Input : None
Output : A table of t × (t − 1) random numbers

1 for i = 0 to t do
2 for j = 1 to t do
3 ri,j ←R F

n
2

4 end
5 end
6 return ri,j

Algorithm 5: The generation of internal masks InitRefreshMasks
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2.4 Motivation for Bit-Mixing Masking Schemes

The attack in the previous Sect. 2.3 has revealed structural weaknesses in state-of-
the-art masking schemes. In particular, the attack exploiting the consecutive values
taken by one bit allows to break arbitrary high-order masking schemes such as
perfect masking scheme [5] or Coron’s table-based masking [8].

In reaction to this weakness, so-called inner product masking schemes have been
proposed [1, 2, 18, 23], which make such attack more chancy. A comprehensive
analysis between probing security at bit versus word levels is carried out in [7, 19].

3 Analysis of the Security Issue

In the previous section, we showed how one single probe is able to defeat at bit level
high-order masking schemes proved at word level. Therefore, we recommended in
Sect. 2.4 masking schemes which combine, by design, several bits together. In this
section, we examine how multi-bit high-order leakage might arise, created either by
the hardware or the software themselves (to the free benefit of the attacker).

3.1 Hardware Case

In the hardware case, coupling between bits can be due:

• Spatially, to:

– Glitches: in combinational logic, gates do not evaluate in their order in the
netlist (since they are non-synchronizing); for more information on how
glitches appear in combinational circuits and contribute to lower the security
with respect to side-channel attacks, we refer the reader to the didactic
explanations provided in section 4 of [11] devoted to this topic.

– IR drop: individual gates cannot be considered independent, since they share
the same power/ground network; the effect is well illustrated in Fig. 9(b) of [9,
Sec. 4.2.3].

– Capacitive coupling: some gates, physically placed close one to each other,
can have a capacitive coupling of their output nets; the effect is well illustrated
in Fig. 9(c) of [9, Sec. 4.2.3].

– Unselected gates: some gates are instantiated in a netlist and supposed to
be have a useful functionality only at some times. But actually, being there
(i.e., being instantiated and thus activated), they contribute to the leakage
continuously, even when they handle data which is eventually not selected
(i.e., not used downstream). For example, Fig. 4a illustrates a complete
masking scheme, made up of f our algorithms: (1) data masking, (2) operation
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InitRefreshMasks: ri,j, 0 ≤ i ≤ t, 1 ≤ j ≤ t (Alg. 5)

(a) Principle

(b) Example for t = 2

Fig. 4 Masking scheme steps (a) and illustration of a netlist for perfect masking with t = 2 shares
(b), with an unselected gate’s leakage flaw

masking, (3) masks refresh (optional), and (4) data unmasking. The last
algorithm should, obviously, be executed only at the end of the computation.
In the example of a masked iterative block cipher with � rounds, the shares
can be combined only to recover the ciphertext. However, Fig. 4b shows
a faulty implementation of a perfect masking scheme, wherein the data
unmasking logic is executed at each round 0 ≤ ω ≤ � of the block cipher,
thereby leaking information on all intermediate rounds.4

• Temporally, when some gates are reused over time, as explained in the linear
probing issue (recall Fig. 2 of Sect. 2.2).

3.2 Software Case

In this section, we tackle the question of software security with respect to side-
channel leakage. Let us first precise what is implied under the term “software.”
Software means that some control is written in a memory, but the execution is carried
out by one (or several) processor(s). Now, processors are pieces of hardware and
hence suffer from the same leakage sources as mentioned in previous Sect. 3.1.

Let us recall two optimizations occurring at compilation stage, which make
software execution more amenable to side-channel attacks [17]:

4Notice that Fig. 4b purposely represents an incorrect masking scheme for an iterative block cipher
(for the sake of counterexample) and shall not be implemented this way. Rather, in a secure version,
the XOR demasking gate shall be enabled only for the last round (i.e., when round counter ω is equal
to its maximal value �).
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• Register packing consists in regrouping several variables into one register.
Indeed, registers are usually wide and hence can accommodate the concatenation
of several words (say shares), to be processed in parallel, e.g., using bitslice
operations.

• In Static Single Assignment (SSA) mode, any new variable is affected to a new
virtual register. However, in the next pass, registers are allocated. Dead registers
are considered as fresh resources and hence are reused, which opens the door to
linear probing issues.

For the sake of pedagogy, let us make explicit some unusual sources of leakage
occurring in software. One important point to make clear is that glitches do exist
in software. In particular, we find in CPUs the case of leakage of unselected gates,
owing to unselected logic mentioned in the previous section. Let us illustrate this
on the example of two CPUs: 1. 6502, 2. LEON3. For the sake of legibility, lines
which are too long (ending by a “\” sign) have been folded.

6502

Let us analyze the integer unit of 6502 processor, described in VHDL in
https://github.com/chenxiao07/vhdl-nes/tree/master. Lines 765–772 of source file
vhdl-nes-master/src/free6502.vhd are recalled below:

https://github.com/chenxiao07/vhdl-nes/tree/master
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LEON3

Let us also analyze the integer unit of LEON3 processor, described in VHDL in
iu3.vhd excerpt below:

Analysis of the 6502 and LEON3 Codes

It clearly appears that both CPUs (6502 and LEON3) do compute all the possible
bitwise operations in parallel before selecting the one actually relevant for the
computation indicated by the current instruction. This behavior is explained in Fig. 5
and corresponds to an unselected gate’s flaw. In particular, the arithmetic addition
combines all the bits (since there is a carry propagation, i.e., the last bit depends on
all previous bits) and hence defeats the register packing strategy. This is illustrated
in Fig. 6. The structure of the full adder (FA) is recalled in Fig. 7.
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4 New Definition of Security Order

Therefore, in the probing model of ISW, the defender has only one option to enhance
the security: disallow the adversary from probing more than once with one probe
by

• In hardware: unrolling circuits, hence designing fully combinational logic (as
in [3, 24])

• In software: unrolling loops, hence using n2 times more memory than announced
in [8]

For this reason, we propose a new definition of security order. We call this
definition the security order in the Noisy Non-Injective (NNI) model.

Definition 2 (t-Order Security, in the NNI Model) The implementation is t-
order secure in the NNI model if no information can be recovered by measuring

• tspace different bits, at
• ttime different times,

where tspace × ttime ≤ t .

In this definition,

• tspace relates to the “high-order” aspect of side-channel attacks in the NNI model.
• ttime relates to the “multivariate” aspect of side-channel attacks.

We introduce the following result to motive for the definition:

Proposition 1 Let L be a pseudo-Boolean function F
n
2 → R, of degree one. Then,

assuming the attacker performs a zero-offset attack (i.e., ttime = 1), we have that

∀i, 0 ≤ i ≤ t, E(L (Z)i |X = x) does not depend on x

if the implementation is t-order secure.

Proof See, for instance, Theorem 2 and/or Proposition 3 in [6].

This means that the attacker will need to raise the leakage traces to the power
tspace; hence a noise variance raised to the power tspace. Assuming that the noise
is independent from sample to sample, then we also have that the noise variance is
raised to the power ttime in t-variate attacks [21].

Thus, the relevant quantity is indeed the product between tspace × ttime.
This model is more satisfactory, as it allows for the designer to do:

• In hardware, fully combinational circuits (ttime = 1)
• In software, fully sequential bitslice implementations (tspace = 1))

The security notion of Definition 2 is thus more flexible in terms of design solutions
to thwart attacks and also more realistic than Definition 1.
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However, this model is relevant only in the case where the noise is minimal, so
that taking two consecutive measurements decreases the effectiveness of the attack.

5 Conclusion

In this article, we reviewed some masking schemes of the scientific literature.
We present their effectiveness with respect to real-world analysis methods and
suggest some adaptations. The goal of this article is mostly to underline the
discrepancy which can exist between attacks and designs. As of today, attacks
arise from the academic world and are pretty virulent. The protection of sensitive
circuits is evolving less fast, but a key for a good protection is to understand the
risk. The analysis of several adversarial models is performed, and the attacks are
confronted to real implementations. We clearly identify a gap between attacks and
countermeasures and contribute to bridge it.
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Embedded Classifiers
for Energy-Constrained IoT
Network Security

Jennifer Hasler

Abstract We discuss the impact of physical computing techniques to classifying
network security issues for ultra-low power networked IoT devices. Energy-
constrained IoT systems, such as wearable devices, are already sensor rich and
processing/computation constrained. The digital energy efficiency wall constrains
the amount of signal processing possible at energy-constrained nodes. One rarely
has any computational resources left to consider network security, leaving devices
exposed. Fortunately many of these devices have infrequent wireless communi-
cation with very constrained command structures, but they still exhibit a system
vulnerability, particularly when monitoring or controlling physical infrastructure.
Physical computing approaches enable at least a factor of 1000 improvement in
computational energy efficiency empowering a new generation of local computa-
tional structures for embedded IoT devices. These techniques offer computational
capability to address network security concerns.

1 Sensor Nodes Empowered by SoC FPAA Devices

Analog Computing has grown up, fueled through the emergence of large-scale
Field-Programmable Analog Array (FPAA) devices (e.g., SoC FPAA [11]), the gen-
eralization of FPGAs. Physical computing [12], which includes analog computing,
enables both improved computational efficiency (speed and/or larger complexity) of
×1000 or more compared to digital solutions (as predicted by [27]) and potential
improvements in area efficiency of x100. Physical computing is now programmable
and configurable (e.g., [11]). The rise of programmable and configurable analog
techniques (e.g., [11]), integrated with digital processing, enables a wide use of
physical computing techniques, not limiting to a few analog IC design specialists
[11, 12].
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Fig. 1 Embedded configurable physical computation. (a) Physical computation in an embedded
platform enabling a sea of analog and digital interacting and computation enable significant
computing resources moving from sensors to decisions to be communicated. (b) Overview picture
of the recently published SoC FPAA device [11]. (c) A wireless sensor node using this FPAA
device, heavily utilizing context-aware techniques. The data from these experimentally measured
structures will guide further scaling efforts (size, energy consumed). One application for this
sensor network would be for ground-level monitoring of people, cars, trucks, machineries, or other
elements through acoustic or MEMS vibration/accelerometer sensors. A second application for
this sensor network would be for a body-level sensing network, monitoring the behavior of knees,
heart, and other internal organs through a combination of vibrational and acoustic sensors

Figure 1 illustrates discussions on a wireless sensor node utilizing FPAA. FPAA
devices allow the user to investigate many physical computing designs within a few
weeks of time. The alternative for one design would require years of IC design by
potentially multiple individuals. The sensor node could classify (e.g., [11]) and learn
(e.g., [15]) from original sensor signals, performing all of the computation required
for the computation and operating the entire system in its real-world application
environment. Embedded learning approaches, implemented in a single FPAA
device, illustrate the small area and ultra-low power capabilities of configurable
physical computing. Section 2 discusses the context-aware opportunities in FPAA
architectures.

Although the low-power physical computing could have huge impacts for net-
work of autonomous sensor nodes, these FPAA-enabled nodes often require secure
operation. Although FPAAs are a recent technology, widespread adoption of these
devices eventually requires some level of security measures against malicious users.
This discussion overviews low-power context-aware FPAA architectures (Sect. 2)
and then addresses FPAAs as physical computing devices for low-power embedded
applications (Sect. 3). The conversation moves to secure FPAA devices (Sect. 4),
showing positive FPAA security attributes (Sect. 4.1) and addressing FPAA security
issues (Sect. 4.2). FPAA devices can be used to investigate security of analog/mixed-
signal capabilities (Sect. 5), as well as be part of the resulting secure computation,
such as implementing unique functions (Sect. 5.3). The final section summarizes
the discussions as well as addresses remaining issues for secure ultra-low power
embedded FPAA devices.
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2 Low-Power Context-Aware FPAA Architectures

Many portable and wearable devices are constrained by their energy efficiency.
Figure 2 illustrates the energy impact for cloud computation, on-device digital
computation, and FPAA-assisted computation. The digital communication typically
dominates the overall energy consumption [14].

Cloud-based computing removes issues of real-time embedded (e.g., fixed-point
arithmetic) to be done on some far away (and supposedly free) server using
MATLAB-style coding. Computation done off-device is not seen and considered
effectively endless; eventually that resulting energy and resulting infrastructure
required still have significant impacts. The host system still must constantly transmit
and receive data through its wireless communication system to perform these
computations. The network connectivity must have a minimum quality at all times;
otherwise performance noticeably drops. One often assumes the cloud is nearly
free for a small number of users; as the product scales to the consumer market,
these assumptions can break down. Although the local digital device computation
(for a good wireless network) requires similar energy for cloud and on-device
computation (at a 100MMAC(/s) level), physical computation, such as FPAA-
empowered devices, enables factors of 1000x improvement in the overall power
requirements.

Fig. 2 Comparison of cloud computation, on-device computation, and FPAA computation. For
cloud computation and for on-device computation, we only consider the energy required for
communication. All devices might have an RF radio; we consider just the part required for this
core computation. For FPAA computation we include the entire device. If cloud computation were
considered free, then cloud and on-device computation would appear of similar complexity. FPAA
computation dramatically decreases the resulting on-device computation
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These approaches enable ultra-low power physical computing that enables
small devices capable of computational-intensive (>10MMAC(/s)) context-aware
processing. This approach requires low-power components, continuously operating
or operating frequently, that can decide when to wake up the expensive hardware
components. A node requiring 100µW average power could operate for several
months on a single battery. These computing components are enabled by the
x1000 energy improvement (and×100 area improvement) from FPAA classification
algorithms. The always-on computation in stage one requires being physical
computation, both because of its computational power and its close proximity to
sensor inputs.

The need for low-average power consumption requires that higher-power
devices, like wireless transceivers and even embedded μP, must be shut down
most of the time. These devices should be active only in those rare cases where they
are needed, such as when messages need to be passed between nodes. Similarly
high-power sensors and actuators (e.g., acoustic speaker) need to be shut down
except when it is being used. Without using physical computation, the sensor
node would be a simple, low-speed data acquisition node and likely cannot stay
under 1mW given the power constraints of the embedded processor and wireless
transceiver. The rest of the processing probably still needs to take place on some
other digital system.

Physical computing in context-aware architectures enables potential energy-
harvesting opportunities. Most energy-harvesting devices supply≈10µW of power
per cm2 except in unusual environments. Figure 3b shows the device lifetime (due
to average power consumption) for a single coin cell battery (0.1–0.5 Ah). A 10 cm2

energy-harvesting device could supply 100µW of average power, a manageable
area for an embedded sensor node.

3 FPAAs as Physical Computation Devices

FPAA devices are our vehicle for discussing ultra-low energy computing. FPAA
devices allow the user to investigate many physical computing designs within a few
weeks of time. The alternative for one design would require years of IC design by
potentially multiple individuals. These FPAAs compare favorably against custom
designs, and unlike FPGA designs, FPAA architectures are open to the academic
community.

Floating-gate (FG) devices empower FPAA by providing a ubiquitous, small,
dense, nonvolatile memory element [19] (Fig. 4). A single device can store a
weight value, compute signal(s) with that weight value, and program or adapt
that weight value, all in a single device available in standard CMOS [17, 18].
The circuit components involve FG-programmed transconductance amplifiers and
transistors (and similar components) with current sources programmable over six
orders of magnitude in current (and therefore time constant) [24]. Devices not used
are programmed to require virtually zero power. FG devices enable programming
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Vd,pulse

Vg1

Vdd

Vtun
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Q

Fig. 4 Circuit diagram for basic FG device. The device can store a nonvolatile charge (Q), enables
feedforward computation of functions involving Q, can program, and can adapt Q, all in a compact
device structure. Multiple transistors sometimes ease the programming infrastructure for generic
programming architectures

around device mismatch characteristics, enabling each device in a batch of ICs to
perform similarly.

The SoC FPAA [11] ecosystem represents a device to system user-configurable
system. An SoC FPAA implemented a command-word acoustic classifier utilizing
hand-tuned weights demonstrating command-word recognition in less than 23µW
power utilizing standard digital interfaces (Fig. 5) [11]. Multiple analog signal
processing functions are a factor of 1000× more efficient than digital processing,
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Fig. 5 High-level picture of low-power classification using an acoustic classifier for command-
word classification. This approach enables computation from sensor to classified output in a single
structure, handling all of the initial sensor processing and early-stage signal processing. The SoC
FPAA device classified the word, such as dark from the TIMIT database phrases. This analog
computation (<23µW) is radically different than the class of expected analog operations

such as Vector-Matrix Multiplication (VMM), frequency decomposition, adaptive
filtering, and classification (e.g., [11] and references within). Embedded classifiers
have found initial success using this SoC FPAA device toward acoustic classification
and learning (e.g., [11, 15] ) in 10–30µW average power consumption. The circuits
compute from sensor to classified output in a single structure, handling all of
the initial sensor processing and early-stage signal processing. This ecosystem
will scale with newer ICs built to this standard, as expected by all future FPAA
devices [20].

This new capability creates opportunities, but also creates design stress to address
the resulting large co-design problem. The designer must choose the sensors as
well as where to implement algorithms between the analog front end, analog
signal processing blocks, classification (mixed-signal computation) which includes
symbolic (e.g., digital) representations, digital computation blocks, and resulting
μP computation. Moving heavy processing to analog computation tends to have
less impact on signal line and substrate coupling to neighboring elements compared
to digital systems, an issue often affecting the integration of analog components
with mostly digital computing systems. Often the line between digital and analog
computation is blurred, for example, for data converters or their more general
concepts, analog classifier blocks that typically have digital outputs. The digital
processor will be invaluable for bookkeeping functions, including interfacing,
memory buffering, and related computations, as well as serial computations that
are just better understood at the time of a particular design. Some heuristic concepts
have been used previously, but far more research is required in building applications
and the framework of these applications to enable co-design procedures in this
space.
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Fig. 6 SoC FPAA approach consists of key innovations in FPAA hardware, innovations and
developments in FPAA tool structure, as well as innovations in the bridges between them. One
typically focuses on what circuit and system applications can be built on the FPAA platform, but
every solution is built up for a large number of components ideally abstracted away from the user

Analog computation [12] becomes relevant with the advent of FPAA devices,
particularly the SoC FPAA devices [11]. Figure 6 shows a high-level view of the
demonstrated infrastructure and tools for the SoC FPAA, from FG programming,
device scaling, and PC board infrastructure through system-enabling technologies
as calibration and built-in self-test methodologies and through high-level tools for
design as well as education (e.g., [21]). This framework is essential for application-
based system design using physical systems particularly given modern comfort
with structured and automated digital design from code to working application.
This framework utilizes abstractions in a mixed analog–digital framework [13],
as well as development of high-level tools to enable non-device/analog circuit
designers to effectively use these approaches [9] (Fig. 6). High-level design tools are
implemented in Scilab/Xcos that enable automated compilation to working FPAA
hardware [9]. These tools give the user the ability to create, model, and simulate
analog and digital designs. Physical algorithms may show improvements beyond
just energy efficiency for digital computing machines [12].

4 Embedded FPAA Security Concerns

The FPAA opportunities presented in the last section, particularly the ultra-low
energy and small size characteristics, require consideration to make these embedded
nodes secure. This section discusses multiple opportunities toward secure FPAA
devices. Sections 4.1 and 4.1 discuss the positive characteristics and security issues,
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in turn, for the FPAA device family. Sections 5.1 and 5.2 discuss the aspects of using
FPAA devices to develop training and procedures for deconstructing custom ICs,
giving a sense of the security of a compromised FPAA device. Section 5.3 discusses
using the FPAA infrastructure to build a unique function for security, potentially in
securing the given FPAA device.

4.1 Positive FPAA Security Attributes

The FPAA structure has a number of good security aspects. The FPAA uses
FG devices to store the device state without any SRAM loading vulnerability,
particularly from an external IC. Once the FG values on the chip are programmed
and loaded, the FPAA code is secure, unless one can scan out the states of the FG
elements. FG programming an IC will have minimal changes over the lifetime (e.g.,
10-year rating) of the part. The programming code is not the IC μP SRAM, but only
used for programming, and then purged after programming. Analog values can be
hard to measure without disturbing the values significantly, and digital computation
can be encoded with analog computation and storage. Further, very low-power
circuits are challenging to externally measure due to the low-circuit currents (e.g.,
pA and nA). These transistors do not have enough current or field to generate light
to measure transistor behavior and become very hard to measure the external fields.

On the other hand, the FPAA structure is a platform for creating secure
applications. The SoC FPAA structure is a generic structure, openly published, and
built from general components. None of the particular components are unknown
or confidential. IC layout says almost nothing about the programmed IC functions.
The motivation to steal the knowledge of on-chip FPAA circuits is minimal. The
infrastructure can measure the analog behavior at any given node in the FPAA.
FPAAs allow for scanning every hardware node internally to the circuit (e.g.,
[11, 33]). If the core FG programming on the IC is verified, effectively part of
the calibration procedure and measurement [25], then the entire IC can be verified.
Secure analog and digital code can be programmed in a secure space.

The IC could have intelligence, using internal signals and voltages, to choose to
erase its contents. If tampering is suspected, the operating device could pull up on
the tunneling voltage line(s) in an attempt to erase the previous operating code. The
device parallel erase occurs from a combination of electron tunneling and reverse
tunneling. The result leaves little chance of recovering any previous code even with
a short erase cycle. One is more likely to pick up device mismatch patterns rather
than anything of the previous code.
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4.2 Addressing FPAA Security Issues

FPAA devices are far from safe from a potential malicious agent, even with
a number of good starting properties. For example, the current FPAA devices
do not have encryption and related security on the input control of the device.
If an actor could connect to the particular control connections, even if the IC
pins are disconnected or disabled, they could get direct control of the device
and programming infrastructure. Future FPAA devices will have encryption on
the control structure, particularly as they move to a wider user community. The
encrypted access can make use of a PUF from the particular FPAA, such as the
approach shown in Sect. 5.3. Encryption is a straightforward solution used on secure
FPGA devices. This section will consider the resulting issues for these devices.

Figure 7 illustrates possible security issues and types of attacks for an embedded
system built with SoC FPAA device. The FPAA attacks could happen by physical
tampering with an existing device, as well as electronic attacks through the com-
munication port, such as a transceiver port. In a physical FPAA attack, the device
is obtained while avoiding self-destruct sequence to be explicitly deconstructed.
If the internal code can be obtained, likely at considerable expense, one could
potentially reconstruct the FPAA function. Mismatch encoded functions would
require additional computational and measurement structures. An alternate physical
FPAA attack could use a compiled digital serial port to gain access to the digital
control and resulting programming interface. When digital interfaces (e.g., SPI) are
controlled by the processor, getting control of the processor is unlikely. A more
likely situation is finding a way to stall the computation resulting from a physical
attack on the clock structure. Many systems are far less secure due to physical
tampering if the device has been obtained, and any self-destruct/erase mechanism
was somehow avoided. A more likely situation is a nonphysical attack through the
transceiver interface into the IC. These can include attacks to gain control of the
FPAA device to reprogram the device or constantly attacking a device to drain the
node battery power.

SoC 
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Sensors
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Immitation 
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FPAA attack 
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Transceiver 
Port Attack 

Physical 
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Fig. 7 Possible security issues for an embedded system built with SoC FPAA device. Some attacks
could occur through the known communication path, such as through the wireless transceiver port,
and other attaches could occur through direct physical access to the device
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Table 1 Summary classification of IoT systems

Category RAM ROM

Class 2 (C2) 50 kB 250 kB

Class 1 (C1) 10 kB 100 kB

Class 0 (C0) <10 kB <100 kB

Low-energy computation opens application opportunities at 10 mW, 1 mW, and
lower-average power consumption, and yet the low power consumption constrains
the system security capabilities. Embedded FPAA applications have limited digital
memory because of the system cost. Network security is characterized in terms of
classes of networked devices, summarized in Table 1 [6, 22, 26, 29, 31]. SoC FPAA
is a C0 device having only 32 kB total digital memory. Digital memory is expensive
in terms of relative on-chip area, complexity, and energy dissipation. Many systems
going forward might have less total digital memory, as well as many systems that
will not rise to the C1 memory level. FPAAs enable a whole opportunity of C0
devices, devices many assume are impossible to secure over a network. Running a
minimal OS and security code may exceed the rest of system energy budget.

So how do we have an ultra-low power secure IoT system? Part of the opportunity
is coding systems outside of a minimal OS, consistent with the rest of the event-
based FPAA μP code, as well as enabling tight secure stack and security aspects
in MSP 430 assembly language. Digital FPAA event code is coded in assembly
language and encapsulated in graphical code for easy user reuse.

5 FPAAs for Investigating IC Validation

When a user has a programmed FPAA device, it looks like any other custom IC that
performs one or a set of functions. Further, the IC layout says nothing about the
actual device performance. If the user knows it is an FPAA device and has sufficient
knowledge of its programming functions, they might have additional information to
figure out the function; otherwise, all they have is the device to characterize.

FPAA devices become good test platforms to investigate how individuals might
deconstruct a particular IC. FPAA devices allow for many reprogrammed circuits,
so the approach can be repeated many times. In the following subsections, we will
discuss two such cases. First we will overview the inspiration of this study, the Black
Box (BB) exam at Caltech (CNS 182). Second, we will discuss how this approach
was modified, in an academic setting enabled by FPAA devices, to Training IC
Deconstruction.
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5.1 Black Box (BB) Exam: CNS 182

Academic groups are not usually interested in deconstructing known ICs, and when
they are, the details are rarely discussed. One particular exception I personally
experienced, both as a student (1993) and a teacher (1994–1996), was the Black
Box (BB) exam at Caltech (CNS 182). This particular exercise was the final exam
for the second quarter (Winter quarter) for CNS 182, Analog VLSI, and Neural
Systems, between 1989 and 1996.

The exam consisted of a 2-h lab session followed by several days (4–5) to write
up the results discovered during the lab session. The students in the class spent
every week for two quarters measuring custom-built ICs, starting with transistors
through small systems, using typical computer-controlled bench equipment. When
the students arrived in the lab for the BB exam, a particular circuit consisting of
3–5 pins (besides power (Vdd) and ground (GND)) was operating correctly in one
possible mode. Typically the circuit was a single transconductance amplifier (TA)
or 2 TA circuit with a couple of transistors and known to be somewhat related to
course topics over the first two quarters. This circuit was part of a 40-pin chip custom
fabricated for the course; the students did not have access to any layout information.
At least one element was a bias, set by a potentiometer. No FG devices were used.
In the end, roughly half of the students would correctly guess the correct circuit with
various levels of experimental justification.

5.2 Training IC Deconstruction Using FPAA BB Approach

The BB experience was recreated between 2011 and 2012 using currently available
FPAA devices. The FPAA enables investigating deconstructing circuits, by provid-
ing a structured platform to instantiate a large number of circuits and systems. Each
case would look from the IC pins to be some custom IC device and could be tested
accordingly. The deconstruction capabilities can be quantified for different amounts
of IC knowledge, such as routing information or netlists. These techniques could be
used to verify a desired circuit implementation, as well as search for any additional
component that was placed in the circuit. The FPAAs used for these experiments
were designed between 2007 and 2010 (e.g., [4, 33]); the results should directly
extend to using the SoC FPAA devices.

A group of graduate student IC designers were trained through a set of six BB
events (Table 2) over a 9-month timeframe to eventually deconstruct a custom-
fabricated IC. This BB approach arose from the constant interaction between
courses and research. One person designed, compiled, and experimentally character-
ized the design completely without the knowledge of others. The groups had no idea
of the functionality of the circuits before they arrived in the lab. Each person on the
student team was previously familiar with measuring the FPAA devices. Between
events students developed additional tools to assist in deconstructing the IC design.
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Table 2 Summary of FPAA black box experiments

Components to find Group info Analysis techniques Teams Time

BB1 Analog Amps/muxes Only IC DC I/V, scopes 3 (2 people ) >8 h

BB2 Am Demod + hidden Switch Switch list analysis 2 (3 people) ≈ 4 h

list + DC I/V, scopes

BB3 DAC: 5ibt R-22R + Netlist Low-level netlists 2 (3 people) 7–8 h

3-bit V-mode = 8 bits ≈100 + DC I/V, scopes

BB4 Low-frequency Netlist Netlists, clustering, 2( 4 people) 6–8 h

transciever circuit (spice) + DC I/V, scopes

BB5 VCO controlled Netlist Netlists, clustering, 2 (3 people) 5–6 h

by 7-bit DAC (spice) + DC I/V, scopes

BB6 Multiplexed 1 8bit DAC Netlist Netlists, clustering, 2 (3 people) 4–5 h

two in, two out (spice) + DC I/V, scopes

Different events had different level of information (Table 2). The first case
paralleled the Caltech experience to get a baseline performance, but with roughly
double the number of chip pins and number of components, as well as the students
involved did not prepare before this starting exercise. The groups did a number of I–
V measurements at the chip pins to identify the resulting circuit. In the second case,
the groups had a switch list (Fig. 8b), similar in format to the SoC FPAA approach
[24]. The group made extensive use of the routing visualization tool, Routing
Activity Tool (RAT), to uncover the resulting circuits. Whiteboard pictures prove
this solution approach. Figure 8b shows the expected demodulation circuit which
all groups found; the groups also found an unexpected extra oscillator that was
explicitly added. In later cases the groups were given a form of netlist, compatible
with the existing tools, for their analysis. All of the groups developed clustering
algorithms to assist with grouping and identifying the resulting circuits. At each
level, the speed to fully recognize and experimentally verify a particular circuit
increased with the increasing circuit complexity.

The final goal was to extract and verify an entire custom IC developed by another
group. A group of four Ph.D. students is involved in the BB experiences, and
Dr. Hasler would spend three isolated days together to analyze this IC. Although
the promised information varied throughout, in the end, the group was given
(approximate) delayered information extracted from the IC, not including n-type or
p-type selections. After 3 days and 2 additional days to write the report, the group
found all four interleaved DACs, although only one was populated fully. The group
discovered an error on the VCO due to a misplaced GND line.

This process showed FPAAs could be used to train individuals to deconstruct the
circuitry on a particular device, as well as important insights to secure a particular
FPAA device. Nonvolatile analog FG storage makes discovering the internal code
of a programmed device extremely difficult without huge expenses. The approach
showed some unique aspects of using physical computation related to security; the
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Fig. 8 Illustration of the Black Box exam setup. (a) A student would arrive into the lab with a
working device demonstrating some characteristic of the circuit. The question is to find the entire
circuit, a circuit inside an integrated circuit with a few, e.g., I/O pins, in a finite amount of time
(e.g., 2 h). This experience has parallels to security issues when deconstructing an unknown analog
or mixed-mode circuit. (b) A low-frequency signal demodulator is an example system (BB2) to
deconstruct from the available data. Each of these components was built using available CAB
components and routed into the FPAA infrastructure. Typical electrical engineers might predict
such an architecture when faced with multiple components. If an additional component is sitting in
this circuit, it might create confusion or might just be overlooked. (c) In BB2, the groups had the
switch list programmed into the FPAA device. The switch list communicates the physical routing
on the FPAA IC. The first two columns are position in x and y direction on chip. The third column
is log-encoded value for current level; 1.8 is a value to program as a switch

wider opportunities in physical computing [12] show these items are just scratching
the surface of what is possible.

5.3 FPAAs for Unique Functions

Unique functions in FPAA IC devices are rich platforms to construct unique
functions, particularly for security. The FPAA device allows for the selection of
many devices, devices that have mismatch specific to a particular IC and mismatch
that can be selected and compiled into a particular circuit. The mismatch between
pFETs for a FG device enables almost 1M mismatched components.

Unique functions and PUFs have been implemented in FPGAs (digital) [28, 37]
and analog circuits [8, 32]. For example, [37] uses delay variability in the FPGA
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to create a specific code directly affected by the component variability. All of
these functions are based on the mismatch of the resulting device, whether custom
fabricated or compiled in the structure [36]. This FPAA approach is similar to the
FPGA approach for making unique functions and PUF, in that a function is compiled
on the device and utilized to create a unique output code for a particular input
stimulus code.

Figure 9 shows an example of FPAA circuit for generating a unique function [16].
This approach utilizes the mismatch available in the FPAA circuit, mismatch we
typically remove from the device. The structure yields a code for encryption of data,
enabled by programming the desired code by the user. One use for the input code
(stimulation) is the address of the FG elements to measure. The resulting outputs,
scanned through shift registers available throughout the IC, would be thresholded to
yield a digital code (Fig. 10). The FG elements would be programmed to bias the
resulting code as desired, modulating the mismatch pattern. Typically one would
program all elements to the same current to bring out the mismatch pattern (e.g.,
[11]). The programmed values would be retained for the operation of the FPAA IC,
showing μV shift over a typical 10-year lifetime. The function could be compiled
right into the rest of the circuitry, where implementation and routing of other circuits
would obfuscate the resulting devices. This technique allows for an evolution of the
codes through secure FG updates. If a code was suspected to be discovered, one
could easily just move the sensing circuitry to an open circuit area. This unique
function circuit may not have to be on the chip, but can be compiled onto a particular
IC when needed [16]. If the IC is erased, knowledge of the PUF is erased except in
the secure space originally used.
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Fig. 10 Effective circuit
diagram for the PVT analysis
of the unique function circuit.
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6 Summary and Next Directions

Physical computing opens great opportunities in energy-constrained IoT environ-
ments while creating significant security challenges for these IoT devices. FPAA
devices enable the large-scale deployment of physical computation, and yet, these
FPAA-enabled nodes often require secure operation against malicious users. Low-
power context-aware FPAA architectures enable a number of autonomous sensor
nodes. FPAA devices have a number of positive security attributes and security
issues. FPAA devices can be used to investigate security and be part of the resulting
secure computation.

We want to summarize current issues for building and deploying secure ultra-low
power embedded FPAA devices. These directions include:

• Encrypt the control (and therefore programming) data stream, likely using a PUF
circuit for the encryption code as part of the FPAA IC.

• Develop ultra-small security framework in dedicated assembly code + mixed-
signal classification that integrates with event-based μP operation.

Network traffic attacks on FPAA-based systems are likely to be a point of vul-
nerability, requiring building tables and metrics of proper and improper network
activity and classifying the resulting responses [1–3, 5, 7, 10, 23, 30, 34, 35].
These functions must be done in as low computational energy as possible. The
functions require a minimal digital energy in parsing and creating these tables.
Classification energy would be minimized using learning classifiers compiled on
the FPAA infrastructure [15].

Security for ultra-low power embedded computing platforms based on FPAA
devices is possible and is a space rich in potential research opportunities. The need
for secure ultra-low power embedded computing platforms will likely only grow in
the near future.
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Challenges in Cyber Security:
Ransomware Phenomenon

Vlad-Raul Paşca and Emil Simion

Abstract Ransomware has become one of the major threats nowadays due to
its huge impact and increased rate of infections around the world. According to
https://www.adaware.com/blog/cryptowall-ransomware-cost-users-325-million-in-
2015, just one family, CryptoWall 3, was responsible for damages of over 325
millions of dollars, since its discovery in 2015. Recently, another family of
ransomware appeared in the cyberspace which is called WannaCry, and according to
https://www.cnet.com/news/wannacry-wannacrypt-uiwix-ransomware-everything-
you-need-to-know, over 230,000 computers around the world, in over 150
countries, were infected. This type of ransomware exploited a vulnerability which is
present in the Microsoft Windows operating systems called EternalBlue, an exploit
which was developed by the US National Security Agency (NSA) and released by
The Shadow Brokers on April 14, 2017.

Spora ransomware is a major player in the field of ransomware families and is
prepared by professionals. It has the ability to encrypt files offline like other families
of ransomware, DMA Locker 3.0, Cerber, or some editions of Locky. Currently,
there is no decryptor available in the market for the Spora ransomware.

Spora is distributed using phishing e-mails and infected websites which drops
malicious payloads. There are some distribution methods which are presented
in http://malware-traffic-analysis.net/2017/02/14/index2.html (the campaign from
February 14, 2017) and http://malware-traffic-analysis.net/2017/03/06/index.html
(the campaign from March 6, 2017).

Once the infection has begun, Spora runs silently and encrypts files with a
specific extension, not all extensions are encrypted. This type of ransomware is
interested in office documents, PDF documents, Corel Draw documents, database
files, images, and archives and is important to present the entire list of extension in
order to warn people about this type of attack: xls, doc, xlsx, docx, rtf, odt, pdf, psd,
dwg, cdr, cd, mdb, 1cd, dbf, sqlite, accdb, jpg, jpeg, tiff, zip, rar, 7z, backup, sql,
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and bak. One crucial point here is that everybody can rename the files in order to
avoid such infections, but the mandatory requirement is to back up the data.

Spora doesn’t add extensions to the encrypted files, which is really unusual in
the case of ransomware, for example, Locky adds .locky extension, TeslaCrypt adds
.aaa extension, and WannaCry appends .WNCRY extension. In this case, each file
is encrypted with a separate key, and it is a nondeterministic encryption (files with
an identical content are encrypted in different ciphertexts); the content which was
encrypted has a high entropy and visualization of an encrypted file, which suggests
that a stream cipher or chained block was used (AES in CBC mode is suggested,
because of the popularity of this mode of operation in ransomware’s encryption
schemes).

There are some methods which are used frequently to assure that a single copy
of a malware is running, for example, the creation of a mutex, which means that the
encrypted data is not encrypted again; therefore, we have a single step of encryption.
Of course, there are some folders which are excluded from encryption, because the
system must remain in a working state in order to make a payment, so Spora doesn’t
encrypt the files which are located in the following directories: windows, program
files, program files (x86), and games.

Spora uses Windows Crypto API for the whole encryption process. Firstly the
malware comes with a hardcoded AES 256 key, which is being imported using
CryptImportKey (the parameters which are passed to this function reveal that an
AES 256 key is present). The AES key is further used to decrypt another key, which
is a RSA public key, using a CryptDecrypt function (a ransom note is also decrypted
using the AES key, as well as a hardcoded ID of the sample).

For every computer, Spora creates a new pair of RSA keys. This process uses the
function CryptGenKey with some parameters which are specific for RSA keys, after
that the private key from the pair is exported using the function CryptExportKey
and Base64 encoded using the function CryptBinaryToString. A new AES 256 key
is generated using CryptGenKey, is exported using CryptExportKey, and is used
to encrypt the generated private RSA key (finally, the key is encrypted using the
hardcoded RSA public key and stored in the ransom note). For every file a new AES
key is generated which is used to encrypt the file, is encrypted using the generated
public RSA key, and is stored at the end of every encrypted file.

Spora is a professional product created by skilled attackers, but the code
is not obfuscated or packed, which makes the analysis a little bit easier. The
implementation of cryptographic algorithms uses the Windows Crypto API and
seems to be consistent; nonetheless the decryption of files is not really possible
without paying the ransom. The ability to handle a complex process of encryption
offline makes Spora ransomware a real danger for unprepared clients.

Ransomware usually uses the RSA algorithm to protect the encryption key and
AES for encrypting the files. If these algorithms are correctly implemented, then it
is impossible to recover the encrypted information.

Some attacks, nonetheless, work against the implementation of RSA. These
attacks are not against the basic algorithm, but against the protocol. Examples of
such attacks on RSA are chosen-ciphertext attack, common modulus attack, low
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encryption exponent attack, low decryption exponent attack, attack on encryption
and signing with the same pair of keys, and attack in case of small difference
between prime numbers p and q .

The attacks on AES implementation include ECB attack, CBC implementation
without HMAC verification and oracle padding attack.

In the following sections, we present the fully analysis on three representative
ransomware: Spora, DMA Locker, and WannaCry.

1 Spora Ransomware

Name: 9ae49d4a4202b14efe.exe
md5: 116d339b412cd1baf48bcc8e4124a20b
Type: encrypting ransomware

In Fig. 1 a detection report by VirusTotal scanner mechanism is presented, which
shows that the malware is known and most vendors already offer a protection mech-
anism for it. Figure 2 shows us that the malware itself is not packed; nonetheless
later results will show that the malware is obfuscated and hence the complexity of
the analysis grows.

Figure 3 shows a string which is pushed on the stack 699 times; this trick is used
to obfuscate the code.

In Fig. 4 it is shown that a function is called 700 times (the function calls
OpenMutexA, which tries to open an existing mutex), which doesn’t make sense

Fig. 1 VirusTotal report



306 V.-R. Paşca and E. Simion

Fig. 2 PEiD report

Fig. 3 IDA Pro 1

in this case, because the malware doesn’t call CreateMutexA; this is another trick
used to complicate the analysis. The malware uses the function VirtualAlloc to
allocate space in the process address space, and then it writes the actual payload in
that space. The initial conclusion is that the initial executable is just a packer and
the actual malicious code is contained in the newly executable, which has the md5
97e84cc8afca475d15d8c3e1f38d deba.

The malware calls GetVolumeInformationW to get information about the file
system and volume associated with the root directory, as shown in Fig. 5.
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Fig. 4 IDA Pro 2

Fig. 5 GetVolumeInformationW call

A mutex is created and it has the following format:
m〈GetVolumeInformationResult〉 (in decimal), to ensure that the malware
runs only once. The sample creates a file which has the following name:
C:\Users\〈user〉\AppData\Roaming\〈Mutex〉. The malware comes with a
hardcoded key, which is being imported using the function CryptImportKey,
as shown in Fig. 6. It represents an AES256 key, stored in a form of a blob. The
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Fig. 6 CryptImportKey call

explanation of the fields is: 08 represents PLAINTEXTKEYBLOB and means that
the key is a session key; 02 CUR_BLOB_VERSION, 0x00006610 which represents
Alg_ID: CALG_AES_256, 0x20=32 represents key length.

The AES key is used to decrypt another key, which is a RSA key embedded
in the binary, as shown in Fig. 7. The AES key is also used to decrypt the ransom
note and the binary’s hardcoded ID. The malware uses GetLogicalDrives to obtain
the currently available disk drives and then a loop, which selects the files that
have a specified extension which is attacked by this ransomware, is created. The
malware also uses WNetOpenEnum and WNetEnumResource APIs to enumerate
the network resources, and the created file is used to store temporary data, like the
files which will be encrypted.
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Fig. 7 CryptDecrypt calls

The attacked extensions are presented in the table below:

.xls .doc .xlsx .docx .rtf .odt .pdf .ppt .pptx

.psd .dwg .cdr .cd .mdb .1cd .dbf .sqlite .accdb

.jpg .jpeg .tiff .zip .rar .7z .backup .sql .bak

The next folders are excluded from the attack:

windows programfiles programfiles(x86) games

For every victim, the malware creates a pair of RSA keys. The fragment which
generates the RSA key pair (1024 bits) is shown in Fig. 8.

The relevant parameters for CryptGenKey are 0xA400 which represents AlgId:
CALG_RSA_KEYX and 0x04000001 which represents RSA1024BIT_KEY |
CRYPT_EXPORTABLE. The private RSA key is exported and Base64 encoded,
as shown in Fig. 9. The encryption of the private RSA key is stored into a buffer
alongside the data regarding the machine and the infection, like date, username,
country code, malware ID, and statistics of encrypted file types. An example is
shown in Fig. 10. The malware uses a MD5 algorithm to hash the buffer which
contains the private RSA key (the hash is used to create the user ID) as shown
in Fig. 11. Another AES key is generated; then it’s exported and encrypted using
public RSA key that was hardcoded. In Fig. 12 this process is shown. The generated
AES key is used to encrypt the data (including the RSA private key), as shown in
Fig. 13. Finally, all encrypted data is Base64 encoded and stored in the ransom note.
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Fig. 8 CryptGenKey call

Fig. 9 RSA key is Base64 encoded

For every file a new AES256 key is generated, as shown in Fig. 14. The AES key is
encrypted using the generated public RSA key, and it is appended to the encrypted
file; also the CRC32 is being computed and stored in the file (Fig. 15). Each file is
encrypted using the AES key, as shown in Fig. 16.

In order to decrypt a file, a ransom note is uploaded to the server giving
the attacker access to all information needed. He uses the private RSA key
corresponding to the hardcoded public RSA key to decrypt the first AES key, and
then the key is used to decrypt the generated private RSA key. Because of the fact
that each AES256 key is encrypted using the corresponding public RSA key and
stored at the end of each file, it is possible to decrypt each key and then decrypt each
file individually.
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Fig. 10 Buffer contains information about the system

Fig. 11 MD5 Algorithm is used to hash the buffer
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Fig. 12 Another AES key is generated, exported, and encrypted using the embedded RSA key

Fig. 13 The AES key, which was generated, is used to encrypt a private RSA key



Challenges in Cyber Security: Ransomware Phenomenon 313

Fig. 14 Another AES256 key is generated

Fig. 15 The AES key is encrypted using RSA key

Fig. 16 The file is encrypted using the AES key

2 DMA Locker Ransomware

Name: dma.exe
md5: FDECD41824E51F79DE6A25CDF62A04B5
Type: encrypting ransomware

In Fig. 17 a report by VirusTotal, which shows that the malware is known to most
vendors, is presented.

According to Fig. 18, the ransomware isn’t packed; if this is obfuscated, it
is then necessary to reveal it. As shown in Fig. 19, the malware moves the
original file to C:\ProgramData and renames the file svchosd.exe ( the author
of ransomware is trying to hide the malicious purposes, in order to look like
the Service Host Process svchost.exe). Once the file is copied, the malware
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Fig. 17 VirusTotal report DMA Locker

Fig. 18 PEiD report DMA Locker
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Fig. 19 The malware moves the original file to another location

starts svchosd.exe process (which obviously is a copy of the original process)
and then exits. As shown in Fig. 20, the function CreateProcessW is used.
The original process creates two keys in registry for persistence:HKLM\
Software\Microsoft\Windows\CurrentVersion\Run\WindowsFirewall which
has the value C:\ProgramData\svchosd.exe and HKLM\Software\Microsoft\
Windows\CurrentVersion\Run\Windows Update, which has the value notepad
C:\ProgramData\cryptinfo.txt (at every reboot the ransom note is shown). The
DMA Locker deletes backups and shadow copies, using the native Windows
utility VSSAdmin, as shown in Fig. 21. A start.text file is created to show that
the encryption has begun (and there is no need to restart it again). Logical disks
and network shares are attacked, and checks against the Floppy and CD using
QueryDosDeviceA(Floppy and CD are skipped) are made, as shown in Fig. 22.
The sample uses a hardcoded public RSA key, stored in a form of BLOB, as shown
in Fig. 23. Some directories are excluded from the encryption process; this entire list
is in Fig. 24. A list of skipped extensions is presented in Fig. 25. A unique AES256
key is generated for every file using the API CryptGenRandom, as shown in
Fig. 26. The AES key is used to encrypt 16-byte-long data with AES ECB mode,
as shown in Fig. 27. Once used, the AES key is encrypted using the hardcoded
RSA key (Fig. 28). The structure of the encrypted file is the prefix which is added,
the encrypted AES key, and the encrypted original content (Fig. 29). Once the
encryption process is complete, a message alert is presented (Fig. 30). The malware
may be fooled in order to avoid the encryption through the creation of the files
start.txt and cryptinfo.txt in ProgramData directory. If these two files are present,
the encryption cannot start and only the ransom message is displayed. However,
if the algorithms, which are used in the encryption process, are consistent, the
decryption without the RSA private key which is kept secret will not be possible.
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Fig. 20 The malware starts a copy of the original process

Fig. 21 DMA Locker deletes backups and shadow copies

Fig. 22 Floppy and CD are skipped
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Fig. 23 Hardcoded RSA key

Fig. 24 The directories which are excluded from the encryption

Fig. 25 Skipped extensions
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Fig. 26 A unique AES key is generated
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Fig. 27 The data is split in chunks of 16 bytes and encrypted

Fig. 28 The AES key is encrypted using the hardcoded RSA key
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Fig. 29 A prefix is added to each file

Fig. 30 DMA Locker Message
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Fig. 31 A unique identifier is generated for every victim

Fig. 32 Ransom notes
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Fig. 33 Private RSA key is being imported

Fig. 34 The encrypted key is decrypted using private RSA key
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Fig. 35 Public RSA key is being imported
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Fig. 36 The public key is exported and saved to 00000000.pky



Challenges in Cyber Security: Ransomware Phenomenon 325

Fig. 37 The private key is encrypted using hardcoded RSA key

Fig. 38 Firstly, the 8 generated bytes and 128 zero bytes are written to the file
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Fig. 39 Another RSA key is being imported

Fig. 40 The malware creates a LNK which points to @WanaDecryptor@.exe
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Fig. 41 Targeted extensions by malware

Fig. 42 A new AES key is generated for every file

Fig. 43 The AES key is encrypted using RSA key
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Fig. 44 Executed commands after the encryption is over

3 WannaCry Ransomware

Name: diskpart.exe
md5: 84c82835a5d21bbcf75a61706d8ab549
Type: encrypting ransomware

The malware generates a unique identifier based on the computer name, as shown
in Fig. 31. A check is made to see if the malware was started with /i argument.

Run with /i Argument
The malware copies the binary to C:\ProgramData\ 〈GeneratedID〉 \
tasksche.exe if the directory exists; otherwise it is copied to C:\Intel
\ 〈GeneratedID〉\tasksche.exe and updates the current directory to the new
directory. The binary tries to open the service named 〈GeneratedID〉. If it doesn’t
exist, the malware creates one with DisplayName 〈GeneratedID〉, the BinaryPath
of cmd \c 〈PathOf tasksche.exe〉, and starts the service. It attempts to open the
mutex Global\MsWinZonesCacheCounterMutexA0; if it isn’t created within 60 s,
the malware starts itself with no arguments.

Run Without /i Argument
The binary updates the current directory to the path of the module and creates a
new registry key HKLM\Software\WanaCrypt0r\wd which is set to the CD. The
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malware then loads the XIA resource and extracts multiple files to the current
directory; the complete list is shown below:

Filename MD5 hash

b.wnry c17170262312f3be7027bc2ca825bf0c

c.wnry ae08f79a0d800b82fcbe1b43cdbdbefc

r.wnry 3e0020fc529b1c2a061016dd2469ba96

s.wnry ad4c9de7c8c40813f200ba1c2fa33083

t.wnry 5dcaac857e695a65f5c3ef1441a73a8f

u.wnry 7bf2b57f2a205768755c07f238fb32cc

taskdl.exe 4fef5e34143e646dbf9907c4374276f5

taskse.exe 8495400f199ac77853c53b5a3f278f3e

The msg directory is created with different ransom notes in multiple
languages (Fig. 32). The ransomware opens c.wnry (configuration data) and
loads it into memory. The malware chooses between three bitcoin addresses,
13AM4VW2dhxYgXeQepoHkH SQuy6NgaE b94, 12t9YDPgwueZ9NyMgw519-
p7AA8isjr6SMw, and 115p7UMMngoj1 pMvkpHijcRdfJNXj 6LrLn, writes it to
offset 0xB2 in the config data, and writes the updates back to c.wnry. The binary
sets a hidden attribute to the current directory using CreateProcessA API with attrib
+h and executes the command icacls ./grant Everyone:F /T /C /Q in order to grant
all users permissions to the current directory.

The malware uses CryptImportKey to import the hardcoded private RSA key
(Fig. 33). The file t.wnry is then opened and the first 8 bytes are compared with
the magic value “WANACRY!”; the next 4 bytes need to be 0x100; then the next
256 bytes are written in memory. The encrypted key decrypts to the AES key
BEE19B98D2E5B12 211CE211EECB13DE6, as shown in Fig. 34. The AES key is
used to decrypt the encrypted data, which was read from t.wnry and saves the result
as a DLL. The TaskStart export function of the DLL is called, and it deals with the
encryption of the files. It creates a mutex which is called MsWinZonesCacheCoun-
terMutexA and reads the configuration file c.wnry. A new mutex is then created by
the ransomware, Global\MsWinZonesCacheCounterMutexA0.

The binary will try to open a file 00000000.dky file, which at this point doesn’t
exist, and it will then try to load a 00000000.pky file. If this one doesn’t exist,
the ransomware will then import a public RSA key, as shown in Fig. 35. A new
pair of RSA2048 keys is generated and the public key is saved to 00000000.pky, as
shown in Fig. 36. The malware uses the hardcoded RSA key to encrypt the generated
private key and saves the result to 00000000.eky (Fig. 37). A thread that writes 136
bytes to 00000000.key is created every 25 s (if it exists, otherwise it is created).
Initially, as shown Fig. 38, 8 generated bytes and 128 zero bytes are written to the
file, and after that it is written to a buffer, which contains the current time of the
system. A thread that launched taskdl.exe, which is used to delete encrypted files,
is created (which has that specific extension). Another thread is created that scans
for new drives every 3 s; if it finds a new drive and this isn’t a CDROM drive, it
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encrypts the drive. The sample imports another RSA key, as shown in Fig. 39. The
process @WanaDecryptor@.exe with the “fi” argument is created, and this one can
communicate with the server in order to obtain an updated bitcoin address. The
file u.wrny is copied and saved as @WanaDecryptor@.exe; a script file is created
and executed with the content shown below. The ransomware reads the content of
r.wnry, updates the content with a ransom amount and bitcoin address, and writes
the content to @Please_Read_Me@.txt (Fig. 40). The process starts scanning a
directory, creates a hidden file with the prefix “∼SD,” and then deletes it. The
files which have the .exe, .dll, and .WNCRY extensions as well as the files which
were created by the malware are not encrypted. The list of attacked extensions is
presented in Fig. 41. Each file is encrypted using AES-128 algorithm in CBC mode
with NULL IV. For every file a unique AES key is generated, as is shown in Fig. 42.
The structure of an encrypted file is WANACRY!, length of RSA encrypted data,
RSA encrypted AES key, file type, original file size, and AES encrypted content.
The AES key is encrypted using the embedded RSA key or generated RSA key
depending on a number which is generated (if it is a multiple of 100, the AES
key is encrypted using the embedded RSA key; otherwise it is encrypted using
the generated RSA public key), as shown in Fig. 43. The ransomware executes the
following commands after the encryption is finished (Fig. 44). The process is trying
to encrypt the logical drives that aren’t of DRIVE_CD
ROM type; it executes the commands @WanaDecryptor@.exe co and cmd.exe
/c start /b @WanaDecryptor@.exe vs and copies the b.wnry to every folder on
the desktop (it is saved as @WanaDecryptor@.bmp). The encryption algorithms
are consistent and it is not possible to restore the files without paying the ransom;
however there are some decryptors that work for Windows XP, Windows 7,
Windows Vista, and Windows Servers 2003 and 2008.

Acknowledgment The authors would like to thank University Politehnica of Bucharest for the
financial support.



Applying Model-Based Situational
Awareness and Augmented Reality
to Next-Generation Physical Security
Systems

Elaine M. Raybourn and Ray Trechter

Abstract Mixed, augmented, and virtual reality holds promise for many security-
related applications including physical security systems. When combined with
models of a site, an augmented reality (AR) approach can be designed to enhance
knowledge and understanding of the status of the facility. The present chapter
describes how improved modeling and simulation will increase situational aware-
ness by blurring the lines among the use of tools for analysis, rehearsal, and
training—especially when coupled with immersive interaction experiences offered
by augmented reality. We demonstrate how the notion of a digital twin can blur these
lines. We conclude with challenges that must be overcome when applying digital
twins, advanced modeling, and augmented reality to the design and development of
next-generation physical security systems.

1 Introduction

Augmented reality (AR), mixed reality (MR), and virtual reality (VR) hold promise
for many security-related applications including installation security. When com-
bined with a virtual representation of a site created through modeling, these
approaches can be designed to enhance the knowledge and understanding of the
status of the facility. A user can view and interact with a 3D model of an entire
facility updated with probabilistic assessments based on all current data including
predictions for likely potential threats. The commander could know exactly where
security personnel are at all times, and the system could guide the operator’s actions
based on current and historical data [1].

As cyber-physical security systems become model-based and leverage aug-
mented, virtual, or mixed reality, the gaps between training, planning/analysis, and
situational awareness simulations disappear. Through a model-driven contextual
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interface, trainees have the ability to experience a virtual representation of a real-
world facility and participate in realistic training. Security force leadership can
similarly use this model to improve tactics or to plan upgrades. Users of these
systems will be able to virtually experience a combat sequence or, in the case of
actual watch standers, participate in virtual no-notice drills.

Current efforts by the authors and others include the development of flexible,
powerful tools for analyzing security in operational spaces, particularly facilities,
and their surrounding terrain. These physics-based, 3D, terrain-aware simulations
analyze a system’s performance often including the interplay between its compo-
nents (e.g., sensors, energy, cybersecurity, and personnel). The use of autonomous
systems, especially Unmanned Aerial Systems (UAS), as dynamic sensors and other
applications is underway. AR is being used to explore and visualize new security
concepts. Simulations also often incorporate a mixture of these live and simulated
assets.

A science and technology (S&T) goal for next-generation physical security
facilities is to increase situational awareness with the use of new technologies such
as the integration of artificial intelligence, machine learning, and software analytics
with a virtual representation or model of the site [2]. Professor Michael Grieves
[3] coined the term “digital twin” in 2003 to refer to “a virtual, digital equivalent
to a physical product.” This term gained traction in the past decade and has been
expanded to manufacturing enterprises, operations, and facilities. When combined
with data from sensors, the devices, personnel, and other sources create a living,
digital simulation model or digital twin of a site [4]. A facility’s digital twin updates
and changes as their physical counterparts change, providing understanding of each
unique asset, in this case a facility, over time. In addition to real-time data feeds, a
digital twin can be informed by historical data from a variety of sources. The twin is
not just a generic model of a facility; it is for all intents and purposes a representation
of a specific site that improves with data over time.

Ultimately, the creation of a secure site’s digital twin will provide new and
more versatile tools for evaluating security systems that blur the lines between
activities such as real-time situational awareness, command and control, design,
analysis, training, and various modes of exercises—be they tabletops or force-
on-force rehearsals. Immersive technologies underpinning a digital twin approach
will accelerate the adoption of intelligent, adaptive training ecosystems for game-
based and transmedia learning [5, 6]. The twin and its data can support a virtual
environment, or world, for VR training applications with multiple participants.
That same digital twin can easily provide coordination of virtual assets, along with
virtual features and cues for AR training applications. Physical security system
designers can take advantage of a twin collecting data and learning over time to
check proposed design changes, and a vulnerability analyst can use that same data
to identify possible threats and a site’s readiness to handle them.

Just as important as creating high-fidelity simulations with these techniques are
the real-time data channels that feed real sensory data to the virtual representation
and vice versa. It is here where autonomous systems and humans with AR
technology work with the virtual system to improve overall situational awareness.
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AR presents a compelling opportunity to improve security personnel’s situational
awareness by displaying elements of the virtual world’s model, including entities
that are not in the responder’s line of sight, and predictive analytics based on a
simulation’s ability to run faster than real time. Examples where the predictive
capabilities of simulations might be quite helpful are providing security forces paths
that avoid enemy fire or observation, and predicting the future positions of hostile
forces based on previous observations.

However, a sobering realization is that far too many critical infrastructure sys-
tems and facilities are vulnerable to cyber and physical attack. The physical security
installation community has identified several emerging scenarios which serve to
update critical infrastructure defensive security countermeasures, but nevertheless
there always remain a number of considerations [7]. For example, modern physical
security systems and facilities that rely on subsystems communicating via Internet
Protocol have given rise to cyber-physical attacks. Cyber-physical system attacks
can cripple a nation’s critical infrastructure, energy grids, transportation, etc.

Model-based situational awareness is required for improvements in analysis,
rehearsal, and training. Subsequent sections of the present chapter describe how
achieving this S&T goal is addressed with tools for modeling, simulation, and
current practices underway. Simulations are enhanced especially when coupled with
immersive interaction experiences offered by AR, MR, and VR [8].1 We discuss the
notion of digital twin in the context of physical security system installations. We
then apply this concept to a hypothetical use case loosely based on actual events,
in which we set the stage for the ways improved modeling and simulation may
facilitate improved situational awareness. We conclude by identifying challenges
and proposing recommendations for next-generation physical security systems.

2 Model-Based Situational Awareness for Physical Security

A facility’s physical security system is truly a system of systems when one considers
all the elements needed to secure a location. To model a facility at the necessary level
of fidelity, a site’s barriers, buildings, sensors, vehicles, people, and other significant
real-world objects must be presented in a model. When done well, simulations may
detect vulnerabilities in tactical operations by analyzing the environment based on
geography, sensing, and timing. Users can then conduct specified analyses, such as
the effectiveness of observation posts in detecting targets and exploring multiple
phenomenology including physical, cyber, and human behavioral effects. These
analyses may allow a user to target specific areas of concern, minimizing overall
system costs [9].

Many tools are used to improve the physical security of facilities today. For
example, the Joint Conflict and Tactical Simulation (JCATS) is a well-known

1The combination of AR, MR, and VR with real environments is also known as XR (extended
reality)
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human-in-the-loop simulator that allows response force effectiveness to be evaluated
through live, force-on-force exercises using teams of attackers and defenders.
However, these exercises can be costly and time-consuming. That said, a simulated
force-on-force exercise with JCATS is a great alternative to a live exercise, as it
captures the critical human dimension introduced by system operators and provides
the opportunity for participants to share knowledge and train together. Site personnel
can improve site security by combining simulated exercise results with robust data
analysis, the results of other models and simulations, and consultation with subject
matter experts.

Facilities also use video game technology, such as serious games and game-
based training, to facilitate cognitive training and experiential learning in situated
contexts and immersive scenarios [5, 6, 8]. The goals of these cognitive trainers for
physical security system personnel are often enhanced retention of knowledge, skill
development, and practice of key training objectives. When combined with analytics
resulting from tools such as JCATS and game-based trainers, virtual environments
become force multipliers (Fig. 1).

Current modeling and simulation capabilities support the analytics and technol-
ogy underpinning the next-generation digital twin and, as such, directly determine
whether an advantage will be provided to the security forces. One such tool, Dante,
develops physics-based, 3D, terrain-aware simulations that analyze a security
system’s performance [1]. Simulations include physical objects (e.g., buildings,
equipment, vehicles, and weapons), people and their behaviors, communications,

1
st

 Attack Team
Boundary sensing

Fig. 1 Virtual facility display with Dante [1]
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Fig. 2 Dante terrain with features (e.g., buildings, fences) [1]

cyber systems, and the interplay between each of these components. Intelligent
characters are driven by non-deterministic simulated behaviors. The characters are
influenced by their environment and their perceptions. As such, they may respond
differently given the same situation. An important consideration for this discussion
is that the simulations created with Dante may incorporate a mixture of live and
simulated assets. Linkages between the virtual and physical worlds are built into
this simulation framework.

Creating an accurate 3D terrain model of a facility for use in a Dante simulation
is of key importance (Fig. 2). Terrain models serve as the synthetic environment
for a site’s virtual world and as a vital backdrop for simulation, exploration,
and visualization of security concepts and operations. These terrain models have
elevation data, imagery, road data, barriers, buildings, and often building interiors.
Geographic Information Systems (GIS) and 3D modeling tools are used along with
tools that seek discontinuities, paths, and features to improve confidence in terrain
accuracy. Fortunately, terrain data in security simulations tends to consist of static
features for a site (e.g., installation features such as buildings and roads do not tend
to move often.) Accurate terrain supports path generation algorithms based upon
multiple influences such as terrain features, sensor fields, data from imagery, and
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energy signatures. For example, these algorithms can plan intelligent movement
around a camera’s view and take threats into account when finding an optimal
route. Accurate terrain is especially important for AR applications as the location
of physical world features needs to be mapped into the coordinates of the facility
model so that virtual feature and cues generated by a simulation show up in an
operator’s field of view correctly (e.g., a suggested route on an operator’s head-
mounted display shows a path around a building rather than through it).

AR applications show promise for enhancing model-based situational awareness,
especially when used with physics-based, 3D, terrain-aware simulations that can
analyze a security system’s performance. AR applications need not only enhance
model-based situational awareness with visual representations or feedback. Rep-
resentations may also be auditory, haptic, or olfactory. AR may also be dynamic,
adaptive, and persistent. AR can be used with physical security system models to
(1) serve as cues for the existence of sensors that are not visible (blind spots), (2)
provide locations of key assets, (3) recommend defensive positions, (4) locate/mark
opposing forces for training and experimentation, and (5) generate avatars reflecting
“patterns of life,” especially those representing vulnerable populations such as
children, elderly, etc. While there remain technology maturity challenges with
respect to the use of outdoor AR for geolocating personnel (motion, weather,
blockage, night, sensor drift, etc.), these applications can support installation design,
test and evaluation, and simulation of training and rehearsal.

In summary, we briefly discussed some of the tools for modeling and simulation
that are characteristic of current practices underway today as an introduction to the
notions that follow. In the next section, we discuss the application of a digital twin
to the context of physical security system installations.

3 A Secure Facility Meets Its Digital Twin

Accurate facility modeling and terrain development are needed for security simula-
tions in general and to implement a digital twin. Data feeds must be added to reflect
the current situation on the ground along with adding predictive capabilities to this
adaptive model. The site’s digital twin needs sufficient data updates by various
means (e.g., sensor input, updates from responders) to stay synchronized with
physical counterparts, and support response force decisions with real-time status.
Secure facilities usually have a variety of sensors including cameras, fence line
sensors, and radars that can update the digital twin in real time, and this information
can be made immediately available to the entire response force.

The response force itself is a source of real-time information. Staff in the central
alarm/control station and responders typically use radio communications to direct
forces and communicate an unfolding situation with each other. Having a digital
twin focused on command and control systems, and the right equipment such as
a smartphone, tablet, or a head-mounted display, allows communications to be
relayed visually and persistently through an AR channel. A display is used in lieu
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of, or in conjunction with, radios. The alarm station can mark entities such as
enemy forces, identify areas of relative safety, or direct responders to engagement
locations. Responders, in turn, can assess and mark threats and other items of tactical
significance through their smart devices and feed these back to the twin that stitches
together personnel and sensor reports into an overall picture for an engagement as
it unfolds. This works the same with training exercises in and around the facility as
data is captured from observer notes and After Action Review (AAR) reports along
with data from automated engagement systems using Multiple Integrated Laser
Engagement Systems (MILES). These data sources can be used to tune a digital
twin’s artificial intelligence (AI) over time, and, given the virtual representations’
near-perfect understanding of the site terrain and pathways to target areas, the
system becomes a formidable opponent that can be used to train response forces
or act as an aide during actual operations.

In addition to real-time data of an operation, there are innumerable facility data
sources that can be used to align a twin with its physical counterpart and improve
its usefulness for decision support. A facility’s badge system is a great source of
information of normal and possibly anomalous access to secure areas [10]. The
electronic security system that connects various sensors and cameras can be gleaned
for false alarm rates by time of day, season, and environmental conditions such
as sun, rain, and wind to better discriminate among real threats and noise in the
environment. Recoding the weather may be important given its impact on sensors.
Along with these data sources, video captures from numerous cameras can help to
establish an installation pattern of life that can be data mined for possible threats.

As it turns out, a site’s digital twin may be used in part to address another bedev-
iling problem faced by the installation community: cyberattacks upon elements of
the physical security systems itself [11]. Typically, the operational networks with
cameras and other sensors using IP for connectivity are air gapped and have careful
configuration management. However, as is the case with other control systems,
vulnerabilities may occur through improper configuration, insider attack, and cover
communications links. Attacks on cyber infrastructure are hard to diagnose and may
go unnoticed because it is the network itself that is used to detect and respond
to cyber exploits. If the infrastructure is compromised to some degree and clever
attackers cover their tracks, a digital twin can have access to the actual state of
the device in the control system and not just the state reported on the network.
According to Colin Parris, Vice President of Software Research for GE Global
Research, “We’re using physics to detect what’s going on and we know what the
normal state is for the machine” [11]. Using an industrial control system example,
Parris further explained that “if a cyber attacker were to spoof a sensor it may be
obvious if one sensor says it’s 20 degrees and another says it’s 200” [11].

Extending this example to the world of physical security, installations have
access to overlapping cameras or other sensors covering a particular area. By
directly accessing these devices through a separate or redundant path, the signals
(e.g., pixels in the case of a camera) from each can be used to update their twin
image. These virtual sensor representations can then be compared and triangulated
to point out a sensor that is at odds with the status reported over the network
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and thus detect some types of exploits [12]. For example, consensus may then be
reached among different sensor types (e.g., do a fence line sensor and camera have a
signal that represents an intruder in the same location?). What is perhaps even more
powerful is the notion that digital twin images of sensors may be able to virtually
reconstruct what should be seen by another device, allowing a compromised sensor
or malfunctioning device to be bypassed and allowing security staff to continue their
activities without a gap in their situational awareness.

In the next section, we describe a fictional scenario and fictional tools used by
a team of attackers and hackers. This example attack with both a physical and
cyber element is based loosely on the 2015 and 2016 attacks against the Ukraine
power grid. S&T efforts are needed in artificial intelligence, machine learning, and
software analytics if we are to create living, digital simulation models that update
and change as their physical counterparts change.

4 Scene: Sunday, 1600. Somewhere in the Countryside . . .

A group of insurgents, traveling by van, roll through the countryside on a sleepy
Sunday afternoon. The attack team’s assignment is straightforward: they are to
breach the facility perimeter, proceed to the location of the control systems,
and use their explosives charges to damage the power plant (including backup
generators) beyond repair, necessitating weeks for restoration. A cyber exploit will
be used in conjunction with the physical attack to compromise the site’s Alarm
Communication and Display (AC&D) system and hide sensor alarms from the
defenders. The attack team is armed modestly with rifles, breaching tools, and some
explosive cutting charges. What the assault team lacks in materiel provisioning is
made up for by intelligence along with an insider who is part of their team.

The facility, which is experiencing yet another routine day among many, is
prepared. Its perimeter has a clear zone made from two parallel physical fences
with sensors installed in between the fences. Access into this perimeter is controlled
at vehicle and personnel access points. The facility bristles with cameras, thermal
imagers, and other devices that feed into a central alarm station. Central alarm
station operators monitor video stream and sensor alerts, assess potential anomalies
and intrusions, and maintain contact with both forces and the watch commander
via radio. Security forces patrol both outside the perimeter and within the facility,
backed up by a Quick Reaction Force (QRF) on duty at security forces’ headquarters
a few minutes away. These security elements—cameras, sensors, and the alarm
station—are connected by Alarm Communications and Display (AC&D) software,
isolated on its own network. Modern equipment uses the IP protocol, which
makes configuration and extension of the AC&D relatively easy. The AC&D is
the trusted source for status of the cameras and sensors for the site’s physical
security. Unbeknownst to the facility’s defenders, one of their own has been working
patiently over time with a hostile information operations team to compromise the
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AC&D at the targeted facility. Their chosen method uses a cyber exploit similar to
that of the well-known attack on the Ukrainian power grid.

A fascinating article on the subject of the Ukraine power grid attacks was
published in Wired on June 20, 2017. Recall that on December 23, 2015, at exactly
midnight, a cyberattack to the power grid resulted in 225,000 Ukrainians losing
electric power. The same thing happened almost exactly to the day a year later [13].
While power was lost only for a few hours on each occasion, it was enough to be
noticed by the global community, especially since it had been noted by Ukrainian
officials that “there had been 6500 cyber attacks on 36 Ukrainian targets in just
the previous 2 months,” including a cyberattack that took down two servers at the
same time at StarLightMedia, the largest broadcast conglomerate in the Ukraine
[13]. During the forensic analysis of the SilverLightMedia cyber attack, it was
discovered that “the hackers used BlackEnergy for access and reconnaissance, then
KillDisk for destruction” [13]. By this time, BlackEnergy and KillDisk had infected
the networks of at least three Ukrainian power companies and were waiting to be
deployed by the hackers at the appropriate moment [14, 15]. All this was preparatory
work for the main thrust of the attack; a copy of control software used by the power
company had been surreptitiously obtained by the hackers and was run remotely
to issue commands that shut down power generation to a large part of the country.
According to Greenberg [13], attacks of this kind are becoming more common as
hackers find way to obtain copies of system control software and make their own
“enhancements.”

In our notional scenario, the goal for the cyber element of the attack is to hide the
many alarms, video, and other information provided by the AC&D, thereby blinding
the central alarm stations and providing the attackers with a tactical advantage.
Preparation for this type of attack begins with the acquisition of a legitimate
copy of the AC&D software [7]. The software is then examined for configuration
options, supporting XML definitions and source code when available. Changes to
the Human-Machine Interface (HMI) to not show sensor alarms leave the alarm
station operators and watch commander in the dark about events as they unfold and
thus prevent effective response. A special command line key sequence can be added
that allows the AC&D software to function normally during system checkout and
mask off alarms prior to an attack. All that is needed is for an insider colluding with
the attack team to load the exploited AC&D software during routinely scheduled
maintenance and upgrades.

To execute the plan discussed above, the attack team stops by the road a half-
mile away from the mission-critical facility, out of sight and beyond the site’s sensor
field coverage. Five insurgents exit the van and begin their approach to the south of
the facility, while those remaining in the van head north. The attack team on foot
is a diversion. They plan to breach and attack the side of the facility opposite of
the building housing the critical asset, so as to draw the security personnel toward
the south. These attackers take a stealthy approach to the assigned breach point
on the fence. They wait for an opportune time to cut the fence and then move
aggressively to a diversion target building in the facility. The team remaining in the
van positioned themselves and began the main assault from the north at the sound
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of gunfire and communications from the diversion team leader that their breach had
been successful. The main attack team hopes to win a race against the distracted
security personnel to the target building, place their charges in a fashion to cut both
normal and backup power, and engage security forces as they arrive. All seems
normal from the display in the alarm station and will continue to appear that way
even as the facility enters the fight of its life.

4.1 A Digital Twin Saves the Day

With the standard setup of cameras and sensors feeding a central AC&D, the defense
of such a facility would be in question. Lacking the situational awareness to discern
the number and direction of the attacks in a fight that lasts but a few minutes, there
is a reasonable chance that the diversion will succeed, drawing security personnel
away just long enough for the main assault on the critical asset building. However,
this facility has a digital twin that includes not only the physical security system
and its AR displays but also other aspects of the site such as emergency services,
building automation systems, and utility usage. The twin has many uses such
as predictive maintenance and energy management, but in this case, it serves as
secondary status or a watchdog for the electronic security system (ESS), which has
virtual representations for all components, even the AC&D system itself. The digital
twin is implemented in a continuous simulation with a separate path to sensors
sometimes avoiding the network adapter and accessing the device’s signals directly.
This approach allows the output from different sensor types covering the same
terrain to be compared through algorithms that look at the location, size, speed,
and even the surmised intent of the entity; it also allows these virtual security
system elements to watch each sensor, achieve consensus in what may be in the
field of view, and detect when a device is not functioning properly due to hardware
malfunction or perhaps even a cyber exploit such as the one planned in our fictitious
scenario.

As the diversion attack starts, the alarm station is rightfully caught off guard,
but not for long. As the attackers cross the sensing fields, the AC&D system
continues to report nothing interesting; however, sensor events are relayed directly
from the digital twin to secure phones carried by the security forces and to the
AR-enabled, truck-mounted displays. With a heads-up on suspicious activity on the
south side of the facility, security forces discover the breaching team as they cross
the fence. Meanwhile, the momentarily bewildered alarm station crew also using
the status updates provided by the site’s twin begins to piece together the situation.
The consensus mechanisms built into the twin’s virtual agents quickly identify the
AC&D system as “odd man out” by not showing an alerted state. Security forces
are already executing the defense plan on the south side of the perimeter through
radio communications and twin updates. By the time the main attack has initiated,
the site security forces have established their response rhythm, and, thanks in part
to the twin, this attack is no surprise.
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The site’s digital twin has more than sensor data at its disposal. The terrain,
buildings, fences, and other features have been recorded with a laser scanner. This
information includes exact detail of the facility. Every berm, depression, and natural
cover from vegetation on all pathways to and from the facility has been enumerated,
along with their ease of traversal. Further, the digital twin has participated in
and been informed by simulated and live training exercises allowing its artificial
intelligence to learn over time. The twin had already proven to be a formidable
opponent when training security forces—all the while training its own algorithms.
The security forces have used AR and digital twin artificial intelligence to train with
“what-if” scenarios involving virtual assets. In this scenario the twin’s knowledge
was used in real time to suggest maneuver routes and courses of action to the
security forces. Those suggested moves were optimized to bring the breach quickly
to an end while at the same time ensuring minimal damage. The site’s digital twin
provided the security personnel with knowledge overmatch.

5 Toward Digital Twin

The preceding section foot stomps how intelligent digital twin technology will
ultimately provide improved model-based situational awareness for a variety of
cyber-physical security systems to include facilities, military installations, mobile
security command posts, and next-generation physical security incorporating AR.
The digital twin, as a learning system, learns from itself—using sensor data that
convey various aspects of its operating condition. Sensor data can come from
(1) human experts, such as engineers with deep and relevant industry domain
knowledge, (2) from other similar machines or fleets of machines, and (3) from the
larger system and environment of which it may be a part. A digital twin integrates
historical data from past machine usage into its digital model.

As a way of introducing how improved models via digital twins and AR
representations can improve situational awareness, we embellished one of the most
intriguing public hacks against a private company and described how (an albeit
futuristic) digital twin could have played a role in a provocative view of the future.
While the addition of digital twin technology could greatly enhance cyber-physical
security systems, it may also present significant challenges for physical security
systems and personnel.

For example, a survey of different-sized companies found that many organiza-
tions are not prepared for modern technical challenges. Digital twins present unique
modern, socio-technical challenges. The authors of the survey concluded that to
face modern technical challenges, security systems must be “supported by educated,
informed, well-equipped personnel that grow their skill sets over time” ([16], p. 30).
Additionally, according to Gregory-Brown and Wylie [16], safeguarding remains an
important cyber-physical security issue:
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. . . reliance on control systems continues to expand across not only industrial settings, but
also the operation and maintenance of our cities, our buildings and all kinds of modern
smart applications. Recognition that even dedicated, special-purpose ICS components, such
as intelligent embedded devices and programmable devices that are used for command
and control, can carry vulnerabilities exploitable by malefactors is increasing among ICS
security practitioners and the broader security community, as is concern about ransomware,
which has started to invade the corners of almost any digital system.

Stamp and others [17] echo the call for training and education of security personnel,
as S&T moves toward automation and the inclusion of intelligent technologies
for physical security systems and facilities. They underscore the potential for
inadequately trained personnel to cause security deficiencies, especially if they
interact with automation.

The Ukraine power grid hack should serve as an example of how important it is
to mitigate cyber-physical security system vulnerabilities across the board. Several
more recent attacks use similar tools as those on the Ukraine power grid [18]. Clem
and others [7] recommend utilizing LVC (live, virtual, constructive) model-based
situational awareness and simulation to test cyber exploitation of control systems
and physical security systems.

In addition to next-generation approaches to using testbeds or LVC to validate
intrusion detection systems or approaches against simulated attacks, Yang et al.
[19] proposed a multilayer approach to security that utilizes intelligent, electronic
devices that initiate alerts toward self-recovery without human intervention, a part
of the system’s resilience. Another challenge will be keeping the security, reliability,
and integrity of machine learning algorithms intact [20] as organizations and
security personnel alike begin to trust and depend more heavily on the predictions
and recommendations made by intelligent digital twin technology.

Finally, the National Academies found that the electric grid of the United States
is vulnerable to a number of attacks, among them cyber [21]. In the report, the
US Departments of Energy and Homeland Security are urged to work together to
address the vulnerabilities. As far as the impact—it can be far reaching—according
to Morgan, a professor of engineering at Carnegie Mellon University and chair of the
committee, “long-duration outages that leave millions without power could result in
economic damages estimated in the billions of dollars, posing serious threats to
health and public safety, and also potentially compromising national security” [21].
Strengthening our cyber-physical security systems for US critical infrastructure with
cyber countermeasures remains an evolving challenge for the federal government,
private enterprise, and the public that must be addressed collaboratively.

6 Conclusion

In the highly VUCA environment that constitutes cyber-physical security systems
and security operations, training is obsolete as soon as it is deployed. A survey
of service strategy documents conducted by the first author highlights the shared
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belief of the need for training and education modernization and some congruence
on how to achieve it. Modernization will require much more realistic scenarios
utilizing robust models, emulated software and hardware environments, and XR
simulations, with adaptive, persistent, and blended live, virtual, constructive, and
gaming environments [5, 6, 8, 22]. The use of AR, model-based situational aware-
ness, and digital twins will greatly enhance the future of training personnel with
immersive simulation. According to Machi [22], AR and XR could be combined
with artificially intelligent avatars who serve as instructors to train personnel in a
number of maneuvers. As cyber-physical security systems become model-based and
leverage extended (XR) reality, the gaps between training, planning/analysis, and
situational awareness simulations disappear. In the present chapter, we discussed the
notion of digital twin in the context of physical security system facilities. We applied
this notion to a hypothetical scenario loosely based on actual events. We concluded
with a discussion on the challenges that will be encountered as S&T moves toward
digital twin technology and offered general recommendations for next-generation
physical security systems.
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