
Chapter 7
Interval-Level Variables

Chapter 7 of The Measurement of Association applies exact and Monte Carlo
permutation statistical methods to measures of association designed for two or
more interval-level variables. While permutation statistical methods are commonly
associated with non-parametric statistics and, therefore, thought by many to be
limited to nominal- and ordinal-level measurements, such is certainly not the case,
as noted by Feinstein in 1973 [12]. In fact, a great strength of exact and Monte Carlo
permutation statistical methods is in the analysis of interval-level measurements [6].
Chapter 7 begins with a discussion and comparison of simple and multiple ordinary
least squares (OLS) regression and simple and multiple least absolute deviation
(LAD) regression using permutation statistical methods. Multiple regression with
multiple independent variables and multivariate dependent variables is described
and illustrated. Point-biserial and biserial correlation coefficients are described and
analyzed with exact and Monte Carlo permutation methods. Fisher’s z transform
is examined and evaluated as to its utility in transforming skewed distributions
for both hypothesis testing and confidence intervals. Chapter 7 concludes with
a discussion of permutation statistical methods applied to Pearson’s intraclass
correlation coefficient.

7.1 Ordinary Least Squares (OLS) Linear Regression

Ordinary least squares (OLS) regression with a single predictor is a popular
statistical measure of the degree of association (correlation) between two interval-
level variables, usually denoted as x and y. The assumption of normality comes
into play when the null hypothesis is tested by conventional means. Permutation
statistical methods do not assume normality and, therefore, are often more useful
than conventional statistical methods, especially when the sample size is small. Let
rxy denote the Pearson product-moment correlation coefficient for variables x and y
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given by

rxy =

N∑

i=1

(xi − x̄)(yi − ȳ)

√√√√
[

N∑

i=1

(xi − x̄)2

][
N∑

i=1

(yi − ȳ)2

] ,

where x̄ and ȳ denote the arithmetic means of variables x and y, respectively, and
N is the number of bivariate measurements. The conventional test of significance is
given by

t = rxy

√
N − 2√

1 − r2xy

,

which is distributed as Student’s t with N − 2 degrees of freedom, under the
assumption of normality.

More useful than simple OLS regression and correlation is multiple OLS
regressionwith p predictors, x1, x2, . . . , xp. LetRy.x1, x2, ..., xp indicate the multiple
correlation coefficient for variables y and x1, x2, . . . , xp given by

R2
x1, x2, ..., xp

= β ′ry ,

where β ′ is the transposed vector of standardized regression weights and ry is
the vector of zero-order correlation coefficients of y with x1, x2, . . . , xp. The
conventional test of significance is given by

F = (N − p − 1)R2
y.x1, x2, ..., xp

p(1 − R2
y.x1, x2, ..., xp

)
,

which is distributed as Snedecor’s F with p and N − p − 1 degrees of freedom,
under the assumption of normality.

7.1.1 Univariate Example of OLS Regression

Consider the example set of bivariate data listed in Table 7.1 for N = 11 subjects.
For the bivariate data listed in Table 7.1, the Pearson product-moment correlation
coefficient is rxy = +0.8509. An exact permutation analysis requires random
shuffles of either the x or the y values with the other set of values held constant.



7.1 Ordinary Least Squares (OLS) Linear Regression 373

Table 7.1 Example bivariate
OLS correlation data on
N = 11 subjects

Subject x y

1 11 4

2 18 11

3 12 1

4 27 16

5 15 5

6 21 9

7 25 10

8 15 2

9 18 8

10 23 7

11 12 3

For this small example there are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of
the observed bivariate data, making an exact permutation analysis feasible. Monte
Carlo resampling methods are generally preferred for permutation correlation
analyses since N ! is usually a very large number, e.g., with N = 13 there are
13! = 6,227,020,800 possible arrangements. Let ro indicate the observed value
of rxy . Then, based on L = 1,000,000 random arrangements of the observed
data under the null hypothesis, there are 861 |rxy | values equal to or greater than
|ro| = 0.8509, yielding a Monte Carlo resampling two-sided probability value of
P = 861/1,000,000 = 0.8610×10−3.

While M = 39,916,800 possible arrangements of the observed data makes an
exact permutation analysis impractical, it is not impossible. Based on the M =
39,916,800 arrangements of the observed data under the null hypothesis, there
are 35,216 |rxy | values equal to or greater than |ro| = 0.8509, yielding an exact
two-sided probability value of P = 35,216/39,916,800 = 0.8822×10−3. For
comparison, for the data listed in Table 7.1 t = 4.8591 and the two-sided probability
value of |ro| = 0.8509 based on Student’s t distribution with N − 2 = 11 − 2 = 9
degrees of freedom is P = 0.8969×10−3.

7.1.2 Multivariate Example of OLS Regression

For a multivariate example of OLS linear regression, consider the small example
data set with p = 2 predictors listed in Table 7.2 where variable y is Weight in
pounds, variable x1 is Height in inches, and variable x2 is Age in years for N = 12
school children. For the multivariate data listed in Table 7.2, the unstandardized
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Table 7.2 Example
multivariate OLS correlation
data on N = 12 children

Child x1 x2 y

1 57 8 64

2 59 10 71

3 49 6 53

4 62 11 67

5 51 8 55

6 50 7 58

7 55 10 77

8 48 9 57

9 52 6 56

10 42 12 51

11 61 9 76

12 57 9 68

OLS regression coefficients are

β̂1 = +1.1973 and β̂2 = +1.1709 ,

and the squared OLS multiple correlation coefficient is R2
y.x1, x2

= 0.7301

(henceforth, simply R2). An exact permutation analysis of multiple correlation
requires random shuffles of either the x or the y values. It is important to note
that the predictor variables must be shuffled as a unit, i.e., x1, . . . , xp. Otherwise,
a researcher may end up with a combination of predictor variables that make no
sense, e.g., 4-year-old child, married, with two children. Thus, it is advisable to
simply shuffle the y values. Even with this very small example there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements of the observed data, making an exact permu-
tation analysis impractical. Based on L = 1,000,000 random arrangements of the
observed data, the Monte Carlo resampling probability of R2 = 0.7301 is

P
(
R2 ≥ R2

o

∣∣H0
) = number of R2 values ≥ R2

o

L
= 2,370

1,000,000

= 0.2370×10−2 ,

where R2
o denotes the observed value of R2.

While M = 479,001,600 possible arrangements makes an exact permutation
analysis impractical, it is not impossible. If the reference set of all possible
permutations of the observed scores in Table 7.2 occur with equal chance, the exact
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probability of R2 = 0.7301 under the null hypothesis is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 1,147,714

479,001,600

= 0.2396×10−2 ,

where R2
o denotes the observed value of R2. For comparison, for the data listed

in Fig. 7.2, F = 12.1728 and the probability value of R2 = 0.7301 based on
Snedecor’s F distribution with p,N − p − 1 = 2, 12 − 2 − 1 = 2, 9 degrees
of freedom is approximately P = 0.2757×10−2, under the null hypothesis.

7.2 Least Absolute Deviation (LAD) Regression

Ordinary least squares (OLS) linear regression has long been recognized as a useful
tool in many areas of research. The optimal properties of OLS linear regression
are well known when the errors are normally distributed. In practice, however,
the assumption of normality is rarely justified. Least absolute deviation (LAD)
linear regression is often superior to OLS linear regression when the errors are not
normally distributed [8, 9, 29, 44, 55]. Estimators of OLS regression parameters
can be severely affected by unusual values in either the criterion variable or in
one or more of the predictor variables, which is largely due to the weight given
to each data point when minimizing the sum of squared errors. In contrast, LAD
regression is less sensitive to the effects of unusual values because the errors are not
squared. The comparison between OLS and LAD linear regression is analogous to
the effect of extreme values on the mean and median as measures of location [8]. In
this section, the robust nature of least absolute linear regression is illustrated with
a simple example and the effects of distance, leverage, and influence are examined.
For clarity and efficiency, the illustration and ensuing discussion are limited to
simple linear regression with one predictor variable (x) and one criterion variable
(y), with no loss of generality.

Consider N paired xi and yi observed values for i = 1, . . . , N . For the OLS
regression equation given by

ŷi = α̂yx + β̂yxxi ,

where ŷi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̂yx and β̂yx are the OLS parameter estimates of the intercept (αyx) and slope
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(βyx), respectively, and are given by

β̂yx =

N∑

i=1

(
yi − ȳ

)(
xi − x̄

)

N∑

i=1

(
xi − x̄

)2
(7.1)

and

α̂yx = ȳ − β̂yxx̄ , (7.2)

where x̄ and ȳ are the sample means of variables x and y, respectively. Estimates
of OLS regression parameters minimize the sum of the squared differences between
the observed and predicted criterion values, i.e.,

N∑

i=1

(
yi − ŷi

)2
.

For the LAD regression equation given by

ỹi = α̃yx + β̃yxxi ,

where ỹi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̃yx and β̃yx are the LAD parameter estimates of the intercept (αyx) and
slope (βyx), respectively.1 Unlike OLS regression, no simple expressions can be
given for α̃yx and β̃yx , as for OLS regression in Eqs. (7.1) and (7.2). However, values
for α̃yx and β̃yx may be found through an efficient linear programming algorithm,
such as provided by Barrodale and Roberts [1, 2]. In contrast to estimates of OLS
regression parameters, estimates of LAD regression parameters minimize the sum
of the absolute differences between the observed and predicted criterion values, i.e.,

N∑

i=1

∣∣yi − ỹi

∣∣ .

1In this chapter, a caret (∧) over a symbol such as α̂ or β̂ indicates an OLS regression model
predicted value of a corresponding population parameter, while a tilde (∼) over a symbol such as α̃

or β̃ indicates a LAD regression model predicted value of a corresponding population parameter.
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It is convenient to have a measure of agreement, not correlation, between the
observed and predicted y values. Let

δ = 1

N

N∑

i=1

∣∣yi − ỹi

∣∣ .

Then, the expected value of δ is given by

μδ = 1

N2

N∑

i=1

N∑

j=1

∣∣yi − ỹj

∣∣ ,

and a measure of agreement between the observed y values and the predicted ỹ

values is given by

� = 1 − δ

μδ

.

� is a chance-corrected measure of agreement and/or effect size, reflecting the
amount of agreement in excess of what would be expected by chance. � attains a
maximum value of unity when the agreement between the observed y values and the
predicted ỹ values is perfect, i.e., yi and ỹi values are identical for i = 1, . . . , N . �
is zero when the agreement between the observed y values and predicted ỹ values
is equal to what is expected by chance, i.e., E[�|H0] = 0. Like all chance-corrected
measures,� will occasionally be slightly negative when agreement is less than what
is expected by chance.

7.2.1 Illustration of Effects of Extreme Values

Three useful diagnostics for assessing the potential effects of extreme values
on regression estimators are distance, leverage, and influence. In general terms,
distance refers to the possible presence of unusual values in the criterion variable
and is typically measured as the deviation of a value from the measured center of the
criterion variable (y). Leverage refers to the possible presence of unusual values in
a predictor variable. In the case of a single predictor, leverage is typically measured
as the deviation of a value from the measured center of the predictor variable (x).
Influence incorporates both distance and leverage and refers to the possible presence
of unusual values in some combination of the criterion and predictor variables.

For OLS regression, the measure of distance for any data point is simply an error
term or residual, i.e., ei = yi − ŷi and is sometimes standardized and sometimes
Studentized. Leverage is a measure of the importance of the ith observation in
determining the model fit and is usually designated as hi . More specifically, hi is
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the ith diagonal element of the N×N matrix

H = X
(
X′X

)−1 X′

called the “hat matrix,” since ŷ = Hy in which ŷ is the transposed column vector

ŷ = (ŷ1, ŷ2, . . . , ŷN

)′ and y = (y1, y2, . . . , yN)′ .

In the case of only one predictor, leverage is simply a function of the deviation of
an x score on that predictor from the prediction mean and is given by

hi = 1

N
+ (xi − x̄)2

(N − 1)s2x
for i = 1, . . . , N ,

where s2x is the estimated population variance for variable x given by

s2x = 1

N − 1

N∑

i=1

(
xi − x̄

)2
.

Influence combines both leverage and distance, measured as a Studentized
residual, to identify unusually influential observations. Residuals are sometimes
standardized and sometimes Studentized. Standardized residuals are given by

zi = ei

sy.x

for i = 1, . . . , N ,

where ei = yi − ŷi for i = 1, . . . , N is the unstandardized residual and

sy.x =
(

1

N − p − 1

N∑

i=1

e2i

)1/2

is the standard error of estimate. Standardized residuals have a mean of zero and a
variance of one. Studentized residuals are given by

ri = ei

sy.x

√
1 − hi

= zi√
1 − hi

for i = 1, . . . , N .

Studentized residuals follow Student’s t distribution with mean near zero and
variance slightly greater than one.

The most common measure of influence is Cook’s distance given by

di =
(

1

p + 1

)
r2i

(
hi

1 − hi

)
,
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where r2i denotes the squared Studentized residual and p is the number of predictor
variables.

To illustrate the effects of extreme values on the estimates of OLS and LAD
regression parameters, consider an example of linear regression with one predictor
and a single extreme data point. This simplified example permits the isolation and
assessment of distance, leverage, and influence and allows comparison of the effects
of an atypical value on estimates of OLS and LAD regression parameters. The
data for a linear regression with one predictor variable are listed in Table 7.3.
The bivariate data listed in Table 7.3 consist of nine data points with xi = i and
yi = 10 − i for i = 1, . . . , 9 and describe a perfect negative linear relationship.
Figure 7.1 displays the example bivariate data listed in Table 7.3 and indicates the
directions of unusual values implicit in distance (D), leverage (L), and influence (I).

Table 7.3 Example bivariate
data on N = 9 objects for a
perfect negative linear
regression with one predictor
variable

Object

Variable 1 2 3 4 5 6 7 8 9

x 3 6 1 8 5 9 2 4 7

y 7 4 9 2 5 1 8 6 3

Fig. 7.1 Scatterplot of the data given in Table 7.3 with the directions of extreme values indicated
by D, I, and L for distance, influence, and leverage, respectively
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Distance

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3
where (x10, y10) = (5, 5), the new data point is located at the common mean and
median of both variable x and variable y and, therefore, does not affect the perfect
linear relationship between the variables. If x10 is held constant at x10 = 5, but y10
takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and 100, then the effects of
distance on the two regression models can be observed. The vertical movement of
y10 with variable x held constant at x10 = 5 is depicted by the directional arrow
labeled “D” in Fig. 7.1 and by the four white circles in Fig. 7.2, illustrating an
additional data point moving vertically away from location (x5, y5) = (5, 5) by
increments of one y unit, i.e., (5, 6), (5, 7), (5, 8), and so on.

Table 7.4 lists the values for x10 and y10 in the first two columns, the α̂yx and
β̂yx estimates of the OLS regression parameters in the next two columns, and the
α̃yx and β̃yx estimates of the LAD regression parameters in the last two columns.
The α̃yx and β̃yx parameter estimates in the last two columns of Table 7.4 were
obtained using the linear program of Barrodale and Roberts [2]. The estimates of the
OLS regression parameters listed in Table 7.4 demonstrate that α̂yx systematically
changes with increases in distance, but β̂yx remains constant at −1.00. In contrast,
estimates of the LAD regression parameters are unaffected by changes in distance,
remaining constant at α̃yx = 10.00 and β̃yx = −1.00 for x10 = 5 and any value
of y10. Given the nine bivariate data points listed in Table 7.3 and an additional

Fig. 7.2 Scatterplot of the
data given in Table 7.3 with
the locations of an added
tenth value indicated by four
white circles
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Table 7.4 Effects of distance
on intercepts and slopes of
OLS and LAD linear
regression models

OLS model LAD model

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

5 6 +10.1000 −1.0000 +10.0000 −1.0000

5 7 +10.2000 −1.0000 +10.0000 −1.0000

5 8 +10.3000 −1.0000 +10.0000 −1.0000

5 9 +10.4000 −1.0000 +10.0000 −1.0000

5 10 +10.5000 −1.0000 +10.0000 −1.0000

5 11 +10.6000 −1.0000 +10.0000 −1.0000

5 12 +10.7000 −1.0000 +10.0000 −1.0000

5 13 +10.8000 −1.0000 +10.0000 −1.0000

5 14 +10.9000 −1.0000 +10.0000 −1.0000

5 15 +11.0000 −1.0000 +10.0000 −1.0000

5 16 +11.1000 −1.0000 +10.0000 −1.0000

5 17 +11.2000 −1.0000 +10.0000 −1.0000

5 18 +11.3000 −1.0000 +10.0000 −1.0000

5 19 +11.4000 −1.0000 +10.0000 −1.0000

5 20 +11.5000 −1.0000 +10.0000 −1.0000

5 21 +11.6000 −1.0000 +10.0000 −1.0000

5 22 +11.7000 −1.0000 +10.0000 −1.0000

5 23 +11.8000 −1.0000 +10.0000 −1.0000

5 24 +11.9000 −1.0000 +10.0000 −1.0000

5 25 +12.0000 −1.0000 +10.0000 −1.0000

5 26 +12.1000 −1.0000 +10.0000 −1.0000

5 27 +12.2000 −1.0000 +10.0000 −1.0000

5 28 +12.3000 −1.0000 +10.0000 −1.0000

5 29 +12.4000 −1.0000 +10.0000 −1.0000

5 30 +12.5000 −1.0000 +10.0000 −1.0000

5 40 +13.5000 −1.0000 +10.0000 −1.0000

5 60 +15.5000 −1.0000 +10.0000 −1.0000

5 80 +17.5000 −1.0000 +10.0000 −1.0000

5 100 +19.5000 −1.0000 +10.0000 −1.0000

bivariate data point with x10 = 5, it follows that

10∑

i=1

∣∣yi − ỹi

∣∣ = ∣∣y10 − 5
∣∣ .

Leverage

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3
where y10 = 5 and x10 takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and
100, then the effects of leverage on the two regression models can be observed.
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Fig. 7.3 Scatterplot of the data given in Table 7.3 with the locations of an added tenth value
indicated by four white circles

The horizontal movement of x10 with y10 held constant at y10 = 5 is depicted
by the directional arrow labeled “L” in Fig. 7.1 and by the four white circles
in Fig. 7.3, illustrating an additional data point moving horizontally away from
(x5, y5) = (5, 5) by increments of one x unit, i.e., (6, 5), (7, 5), (8, 5), and so on.

Table 7.5 lists the values of x10 and y10 in the first two columns, the α̂yx and β̂yx

estimates of the OLS regression parameters in the next two columns, and the α̃yx

and β̃yx estimates of the LAD regression parameters in the last two columns. The
α̃yx and β̃yx estimates were again obtained using the linear program of Barrodale
and Roberts [2]. The estimates of the OLS regression parameters listed in Table 7.5
demonstrate that both α̂yx and β̂yx exhibit complex changes with increases in
leverage. Note the dramatic changes in the intercept from α̂yx = +10.00 to α̂yx =
+5.1063, approaching the mean of y (+5.00), and the slope from β̂yx = −1.00
to β̂yx = −0.0073, approaching a slope of zero. In contrast, α̃yx and β̃yx are
unaffected for y10 = 5 and 5 ≤ x10 ≤ 24. For y10 = 5 and x10 ≥ 26, the LAD
estimated regression parameters change from α̃yx = +10.00 and β̃yx = −1.00 to
α̃yx = +5.00 and β̃yx = 0.00.

Given the bivariate data listed in Table 7.3 on p. 379 and an additional bivariate
data point with variable y held constant at y10 = 5, it follows that

10∑

i=1

∣∣yi − ỹi

∣∣ ≤ 20.00
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Table 7.5 Effects of
leverage on intercepts and
slopes of OLS and LAD
linear regression models

OLS model LAD model

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

6 5 +10.0246 −0.9852 +10.0000 −1.0000

7 5 +9.9057 −0.9434 +10.0000 −1.0000

8 5 +9.6696 −0.8811 +10.0000 −1.0000

9 5 +9.3548 −0.8065 +10.0000 −1.0000

10 5 +9.0000 −0.7273 +10.0000 −1.0000

11 5 +8.6364 −0.6494 +10.0000 −1.0000

12 5 +8.2853 −0.5764 +10.0000 −1.0000

13 5 +7.9592 −0.5102 +10.0000 −1.0000

14 5 +7.6637 −0.4515 +10.0000 −1.0000

15 5 +7.4000 −0.4000 +10.0000 −1.0000

16 5 +7.1670 −0.3552 +10.0000 −1.0000

17 5 +6.9620 −0.3165 +10.0000 −1.0000

18 5 +6.7822 −0.2829 +10.0000 −1.0000

19 5 +6.6244 −0.2538 +10.0000 −1.0000

20 5 +6.4857 −0.2286 +10.0000 −1.0000

21 5 +6.3636 −0.2066 +10.0000 −1.0000

22 5 +6.2559 −0.1874 +10.0000 −1.0000

23 5 +6.1604 −0.1706 +10.0000 −1.0000

24 5 +6.0756 −0.1559 +10.0000 −1.0000

25 5 +6.0000 −0.1429 +10.0000 −1.0000

26 5 +5.9324 −0.1313 +5.0000 0.0000

27 5 +5.8717 −0.1211 +5.0000 0.0000

28 5 +5.8170 −0.1119 +5.0000 0.0000

29 5 +5.7676 −0.1037 +5.0000 0.0000

30 5 +5.7229 −0.0964 +5.0000 0.0000

40 5 +5.4387 −0.0516 +5.0000 0.0000

60 5 +5.2264 −0.0216 +5.0000 0.0000

80 5 +5.1464 −0.0117 +5.0000 0.0000

100 5 +5.1063 −0.0073 +5.0000 0.0000

for x10 ≤ 25 and

10∑

i=1

∣∣yi − ỹi

∣∣ = 20.00

for x10 ≥ 25. When x10 ≤ 25, the LAD regression line defined by α̃yx = +10.00
and β̃yx = −1.00 yields the minimum sum of absolute differences. However, when
x10 ≥ 25 the LAD regression line defined by α̃yx = +5.00 and β̃yx = 0.00
that passes through the data point located at (x10, y10) yields the minimum sum
of absolute differences. For x10 = 25, the LAD regression line is not unique. While
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Fig. 7.4 Scatterplot of the
data given in Table 7.3 with
the regression line β̃yx
depicted and the locations of
an added tenth value
indicated by four white
circles

this is an interesting property of LAD regression and can easily be demonstrated
with one predictor and a small number of data points, in practice any extreme value
would have to be so far removed from the measured center of the distribution of
variable x to be considered a “grossly aberrant” value [47, p. 871].

The fact that when y10 = 5 and x10 = 25, the solution is not unique and either of
the two LAD regression lines is appropriate, deserves some additional explanation.
Consider the data points in Fig. 7.4 where the additional tenth point is indicated at
locations

(x6, y5), (x7, y5), . . . , (x9, y5)

and the LAD regression line for the original nine data points with α̃ = +10.00 and
β̃ = −1.00 is depicted. If only the original nine data points are considered, the sum
of absolute deviations is zero, i.e.,

9∑

i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 9
∣∣+ ∣∣8 − 8

∣∣+ ∣∣7 − 7
∣∣+ ∣∣6 − 6

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 4

∣∣

+ ∣∣3 − 3
∣∣+ ∣∣2 − 2

∣∣+ ∣∣1 − 1
∣∣ = 0.00 .

The addition of a tenth data point at location (x6, y5), the first white circle to
the right of the regression line in Fig. 7.4, increases the sum of absolute deviations
by one, i.e., |yi − ŷi | = |6 − 5| = 1. Moving the new data point horizontally
to location (x7, y5), the second white circle to the right of the regression line in
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Fig. 7.4, increases the sum of absolute deviations by two, i.e., |yi − ỹi | = |7 −
5| = 2. Continuing to move the new data point horizontally increments the sum of
absolute deviations by increasing amounts. Consider locations (x24, y5), (x25, y5),
and (x26, y5), where

∣∣yi − ỹi

∣∣ = ∣∣24 − 5
∣∣ = 19 ,

∣∣yi − ỹi

∣∣ = ∣∣25 − 5
∣∣ = 20 ,

and

∣∣yi − ỹi

∣∣ = ∣∣26 − 5
∣∣ = 21 ,

respectively.
Thus, for an additional value up to location (x25, y5) the sum of absolute

deviations will be equal to or less than 20, and for an additional value beyond
location (x25, y5) the sum of absolute deviations will be equal to or greater than
20. However, when a data point is added at location (x25, y5) something interesting
happens, which is readily apparent in Table 7.5. At this point a dramatic shift in the
LAD regression line occurs, from α̃yx = +10.00 and β̃yx = −1.00 to α̃yx = +5.00
and β̃yx = 0.00. The regression line is leveraged and forced through the new data
point location at (x25, y5). The new regression line is depicted in Fig. 7.5 with the
absolute errors indicated by dashed lines. The sum of the absolute errors around the

Fig. 7.5 Scatterplot of the
data given in Table 7.3 with
absolute errors indicated by
dashed lines
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new regression line is

10∑

i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 5
∣∣+ ∣∣8 − 5

∣∣+ ∣∣7 − 5
∣∣+ ∣∣6 − 5

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 5

∣∣

+ ∣∣3 − 5
∣∣+ ∣∣2 − 5

∣∣+ ∣∣1 − 5
∣∣+ ∣∣5 − 5

∣∣ = 20.00 .

Thus both regression lines given by α̃yx = +10.00 and β̃yx = −1.00 and α̃yx =
+5.00 and β̃yx = 0.00 minimize the sum of absolute deviations when an additional
data point is located at (x25, y5). Note, however, that the additional data point is
far to the right and is a very extreme value, unlikely to be encountered in everyday
research. Specifically, for this minimalist example, a tenth value at location (x25, y5)

is almost three times the range and over seven standard deviations above the mean—
too extreme to be of concern in practice. Thus, LAD regression is highly stable
under all but the most extreme cases.

Influence

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3 on
p. 379 where x10 = y10 takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and
100, then the effects of influence on the two regression models can be observed. The
diagonal movement of (x10, y10) is depicted by the directional arrow labeled “I” in
Fig. 7.3 and by the four white circles in Fig. 7.6, illustrating an additional data point

Fig. 7.6 Scatterplot of the
data given in Table 7.3 with
the locations of an added
tenth value indicated by four
white circles
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moving diagonally away from (x5, y5) = (5, 5) by increments of one x and one y

unit, i.e., (6, 6), (7, 7), (8, 8), and so on.
Table 7.6 lists the values of x10 and y10 in the first two columns, the α̂yx and β̂yx

estimates of the OLS regression parameters in the next two columns, and the α̃yx

and β̃yx estimates of the LAD regression parameters in the last two columns. The
estimates of the OLS regression parameters listed in Table 7.4 demonstrate that both
α̂yx and β̂yx exhibit complex changes with increases in influence, quickly becoming
unstable with changes in the intercept from α̂yx = +10.00 to α̂yx = +0.2126 and
changes in the slope from β̂yx = −1.00 to β̂yx = +0.9853. Note that β̂yx is negative
from x10 = 5 up to x10 = 13, then changes to positive for x10 = 14 up to x10 = 100.

Table 7.6 Effects of
influence on intercepts and
slopes of OLS and LAD
linear regression models

OLS model| LAD model|

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

6 6 +10.0493 −0.9704 +10.0000 −1.0000

7 7 +9.8113 −0.8868 +10.0000 −1.0000

8 8 +9.3392 −0.7621 +10.0000 −1.0000

9 9 +8.7097 −0.6129 +10.0000 −1.0000

10 10 +8.0000 −0.4545 +10.0000 −1.0000

11 11 +7.2727 −0.2987 +10.0000 −1.0000

12 12 +6.5706 −0.1527 +10.0000 −1.0000

13 13 +5.9184 −0.0204 +10.0000 −1.0000

14 14 +5.3273 +0.0971 +10.0000 −1.0000

15 15 +4.8000 +0.2000 +10.0000 −1.0000

16 16 +4.3339 +0.2895 +10.0000 −1.0000

17 17 +3.9241 +0.3671 +10.0000 −1.0000

18 18 +3.5644 +0.4342 +10.0000 −1.0000

19 19 +3.2487 +0.4924 +10.0000 −1.0000

20 20 +2.9714 +0.5429 +10.0000 −1.0000

21 21 +2.7273 +0.5868 +10.0000 −1.0000

22 22 +2.5117 +0.6251 +10.0000 −1.0000

23 23 +2.3208 +0.6587 +10.0000 −1.0000

24 24 +2.1512 +0.6882 +10.0000 −1.0000

25 25 +2.0000 +0.7143 0.0000 +1.0000

26 26 +1.8647 +0.7374 0.0000 +1.0000

27 27 +1.7433 +0.7579 0.0000 +1.0000

28 28 +1.6340 +0.7762 0.0000 +1.0000

29 29 +1.5353 +0.7925 0.0000 +1.0000

30 30 +1.4458 +0.8072 0.0000 +1.0000

40 40 +0.8774 +0.8968 0.0000 +1.0000

60 60 +0.4528 +0.9569 0.0000 +1.0000

80 80 +0.2928 +0.9766 0.0000 +1.0000

100 100 +0.2126 +0.9853 0.0000 +1.0000
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Fig. 7.7 Scatterplot of the
data given in Table 7.3 with
the regression lines
minimizing the sum of
absolute errors

Note also that the range of changes in β̂yx is from β̂yx = −1.00 for x10 = 5
approaching β̂yx = +1.00 for x10 = 100; actually, β̂yx = +0.9853 for x10 = 100.
In contrast, α̃yx and β̃yx do not change for 5 ≤ x10 = y10 ≤ 24. For x10 = y10 ≥ 26,
the estimates of the LAD regression parameters change from α̃yx = +10.00 and
β̃yx = −1.00 to α̃yx = 0.00 and β̃yx = +1.00. When x10 = y10 = 25, either of
the two LAD regression lines holds since the solution is not unique. Thus, two LAD
regression lines minimize the sum of absolute errors: one with α̃yx = +10.00 and
β̃yx = −1.00 and the other with α̃yx = 0.00 and β̃yx = +1.00.

Figure 7.7 depicts the two LAD regression lines, labeled with the values for α̃yx

and β̃yx , and dashed lines indicating the errors around the regression line with α̃yx =
0.00 and β̃yx = +1.00. As shown in Fig. 7.7, the sum of absolute errors is

10∑

i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 1
∣∣+ ∣∣8 − 2

∣∣+ ∣∣7 − 3
∣∣+ ∣∣6 − 4

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 6

∣∣

+ ∣∣3 − 7
∣∣+ ∣∣2 − 8

∣∣+ ∣∣1 − 9
∣∣+ ∣∣25 − 25

∣∣ = 40.00 .

Given the bivariate data listed in Table 7.3 on p. 379 and an additional bivariate
data point x10 = y10, it follows that

10∑

i=1

∣∣yi − ỹi

∣∣ ≤ 40.00
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for 5 ≤ x10 = y10 ≤ 25 and

10∑

i=1

∣∣yi − ỹi

∣∣ = 40.00

for x10 = y10 ≥ 25. When x10 = y10 ≤ 25, the LAD regression line defined by
α̃yx = +10.00 and β̃yx = −1.00 yields the minimum sum of absolute differences
between yi and ỹi for i = 1, . . . , N . However, when x10 = y10 ≥ 25, the LAD
regression line defined by α̃yx = 0.00 and β̃yx = +1.00 that passes through the data
point located at (x10, y10) yields the minimum sum of absolute differences between
yi and ỹi for i = 1, . . . , N . For x10 = y10 = 25, the LAD regression line is not
unique. It should be noted that the shift in the LAD regression line is a consequence
of only the leverage component of influence. For these data, the LAD regression
line is defined by α̃yx = +10.00 and β̃yx = −1.00 if |x10 − 5| ≤ 20.00 and the
regression line is unique if |x10 − 5| < 20.0 or y10 = 10 − x10.

LAD linear regression is a robust alternative to OLS linear regression, especially
when errors are generated by fat-tailed distributions [10, 52]. Fat-tailed distributions
mean an abundance of extreme values and OLS linear regression gives dispropor-
tionate weight to extreme values. In practice, LAD linear regression is virtually
unaffected by the presence of a few extreme values. While the effects of distance,
leverage, and influence are illustrated with only a simplified example of perfect
linear regression with one predictor, the results extend to more general regression
models. If a less-than-perfect regression model with p predictors is considered,
then the estimators of the LAD regression parameters are unaffected by unusual
yi values, when the leverage effect is absent. In addition, only exceedingly extreme
values of the predictors x1, . . . , xp have any effect on the estimation of the LAD
regression parameters.

7.2.2 Univariate Example of LAD Regression

Consider the small example set of bivariate data listed in Table 7.7 for N = 10
subjects. For the bivariate data listed in Table 7.7, the LAD regression coefficient is
β̃ = +2.1111, δ = 5.9889, μδ = 9.2267, and the LAD chance-corrected measure
of agreement between the observed y values and the predicted ỹ values is

� = 1 − δ

μδ

= 1 − 5.9889

9.2267
= +0.3509 .

Since there are M = N ! = 10! = 3,628,800 possible arrangements of the observed
data, an exact permutation analysis may not be practical. Based on L = 1,000,000
random arrangements of the observed data, the Monte Carlo resampling probability
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Table 7.7 Example bivariate
LAD correlation data on
N = 10 subjects

Subject x y

1 14 25

2 8 23

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

value of � = +0.3509 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 6,679

1,000,000

= 0.6679×10−2 ,

where �o denotes the observed value of �.
While M = 3,628,800 possible arrangements makes an exact permutation

analysis impractical, it is not impossible. If the reference set of all possible
permutations of the observed scores in Table 7.7 occur with equal chance, the exact
probability of � = +0.3509 under the null hypothesis is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M
= 26,966

3,628,800

= 0.7431×10−2 ,

where �o denotes the observed value of �.

7.2.3 Multivariate Example of LAD Regression

To illustrate a multivariate LAD linear regression analysis, an application of the
LAD regression model to forecasting African rainfall in the western Sahel is
utilized [38]. For the multivariate data listed in Table 7.8, the first column lists
N = 15 calendar years from 1950 to 1964 and the second through fourth columns
(U50, U30, and |U50 − U30|) contain values based on the quasibiennial oscillation of
equatorial east/west winds. U50 is the zonal wind measured in meters per second at
50 millibars (approximately 20 km in altitude) and U30 is the zonal wind measured
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Table 7.8 Regional rainfall precipitation by years with predictors U50, U30, |U50 − U30|, Rs ,
and Rg

Predictor

Year U50 U30 |U50 − U30| Rs Rg Rainfall

1950 −3 −3 0 −0.14 +1.07 +1.05

1951 −4 −13 9 +1.68 −0.66 +0.74

1952 −23 −26 3 +0.49 +0.65 +1.45

1953 0 −18 18 +0.93 +0.41 +0.99

1954 −23 −32 9 +0.20 −0.16 +1.12

1955 0 −4 4 +0.60 +0.64 +1.07

1956 −19 −33 14 +1.00 +0.41 +0.36

1957 −2 −3 1 +0.47 −0.36 +0.87

1958 −12 −28 16 +0.58 +1.03 +0.86

1959 −9 −5 4 +1.45 −0.74 +0.30

1960 −6 −21 15 +0.25 +0.12 +0.24

1961 −3 −3 0 +0.23 +1.05 +0.20

1962 −12 −32 20 +0.48 −0.74 +0.41

1963 −17 −3 14 +0.28 +0.73 +0.22

1964 −4 −18 14 −0.12 +1.18 +0.76

in meters per second at 30 millibars (approximately 23 km is altitude).2 The Rs

values in the fifth column are standard deviations from the mean rainfall for the
western Sahel region. The values for Rg in the sixth column are standard deviations
from the mean rainfall for the Gulf of Guinea. The dependent variable in the
seventh column is the April to October rainfall in the western Sahel region based
on recordings from 20 stations in the region.

For the multivariate data listed in Table 7.8, the LAD regression coefficients are

β̃1 = −0.0021 , β̃2 = −0.0364 , β̃3 = −0.0325 ,

β̃4 = +0.5328 , and β̃5 = +0.5215 ,

δ = 0.3439, μδ = 0.4756, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

� = 1 − δ

μδ

= 1 − 0.3439

0.4756
= +0.2768.

Even with a small sample of observations such as this, there are

M = N ! = 15! = 1,307,674,368,000

2For comparison, the top of Mount Everest is approximately 8.85 km with a pressure of about 300
millibars.
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possible, equally-likely arrangements of the observed to be considered, far too many
for an exact permutation analysis. Based on L = 1,000,000 random arrangements
of the observed data, theMonte Carlo resampling probability value of� = +0.2768
is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 42,279

1,000,000
= 0.0423 ,

where �o denotes the observed value of �.

7.3 LAD Multivariate Multiple Regression

An extension of LAD multiple linear regression to include multiple response vari-
ables, coupledwith multiple predictor variables, is developed in this section [36, 37].
The extension was prompted by a multivariate Least Sum of Euclidean Distances
(LSED) algorithm developed by Kaufman, Taylor, Mielke, and Berry in 2002 [24].

Consider the multivariate multiple linear regression model given by

yik =
m∑

j=1

xijβjk + eik

for i = 1, . . . , N and k = 1, . . . , r , where yik represents the ith ofN measurements
for the kth of r response variables, possibly affected by a treatment; xij is the j th of
m covariates associated with the ith response, where xi1 = 1 if the model includes
an intercept; βjk denotes the j th ofm regression parameters for the kth of r response
variables; and eik designates the error associated with the ith of N measurements
for the k of r response variables.

If estimates of βjk that minimize

N∑

i=1

(
r∑

k=1

e2ik

)1/2

are denoted by β̃jk for j = 1, . . . , m and k = 1, . . . , r , then the N r-dimensional
residuals of the LSED multivariate multiple linear regression model are given by

eik = yik −
m∑

j=1

xij β̃jk

for i = 1, . . . , N and k = 1, . . . , r .
Let the N r-dimensional residuals, ei1, . . . , eir for i = 1, . . . , N , obtained

from a LSED multivariate multiple linear regression model, be partitioned into g
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treatment groups of sizes n1, . . . , ng , where ni ≥ 2 for i = 1, . . . , g and

N =
g∑

i=1

ni .

The analysis of the multivariate multiple regression residuals depends on test
statistic

δ =
g∑

i=1

Ciξi , (7.3)

where Ci = ni/N is a positive weight for the ith of g treatment groups and ξi is the
average pairwise Euclidean distance among the ni r-dimensional residuals in the ith
of g treatment groups defined by

ξi =
(

ni

2

)−1 N−1∑

k=1

N∑

l=k+1

⎡

⎣
r∑

j=1

(
ekj − elj

)2
⎤

⎦
1/2

�ki�li , (7.4)

where

�ki =
⎧
⎨

⎩
1 if (ek1, . . . , ekr ) is in the ith treatment group ,

0 otherwise .

The null hypothesis specifies that each of the

M = N !
g∏

i=1

ni !

possible allocations of the N r-dimensional residuals to the g treatment groups is
equally-likely. Under the null hypothesis, an exact probability value associated with
the observed value of δ, δo, is given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
.

As with LAD univariate multiple regression models, the criterion for fitting
LSED multivariate multiple regression models based on δ is the chance-corrected
measure of effect size between the observed and predicted response measurement
values given by

� = 1 − δ

μδ

, (7.5)
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where μδ is the expected value of δ over the N ! possible pairings under the null
hypothesis, given by

μδ = 1

M

M∑

i=1

δi . (7.6)

Note that � = 1 implies perfect agreement between the observed and model-
predicted response vectors and the expected value of � is 0 under the null
hypothesis, i.e., chance-corrected.

7.3.1 Example of Multivariate Multiple Regression

To illustrate a multivariate LSED multiple regression analysis, consider an unbal-
anced two-way randomized-block experimental design in which N = 16 subjects
are tested over a = 3 levels of Factor A, the experiment is repeated b = 2 times for
Factor B, and there are r = 2 response measurement scores for each subject. The
data are listed in Table 7.9. The design is intentionally kept small to illustrate the
multivariate multiple regression procedure.

Analysis of Factor A

A design matrix of dummy codes (0, 1) for a regression analysis of Factor A is
given in Table 7.10, where the first column of 1 values provides for an intercept,
the next column contains the dummy codes for Factor B, and the third and fourth
columns contain the bivariate response measurement scores listed according to the
original random assignment of the N = 16 subjects to the a = 3 levels of Factor
A, with the first nA1 = 5 scores, the next nA2 = 7 scores, and the last nA3 = 4
scores associated with the a = 3 levels of Factor A, respectively. The analysis of

Table 7.9 Example data for
a two-way randomized-block
design with a = 3 blocks,
b = 2 treatments, and
N = 16 subjects

Factor A

Factor B A1 A2 A3

B1 (49, 102) (63, 84) (45, 107)

(60, 89) (50, 100)

(42, 111)

(46, 104)

B2 (48, 103) (27, 114)

(58, 94) (66, 83)

(51, 100) (74, 79)

(55, 97) (69, 88)

(71, 82)
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Table 7.10 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
A with N = 16 subjects

Matrix Scores

1 1 49 102

1 0 48 103

1 0 58 94

1 0 51 100

1 0 55 97

1 1 63 84

1 1 60 89

1 0 27 114

1 0 66 83

1 0 74 79

1 0 69 88

1 0 71 82

1 1 45 107

1 1 50 100

1 1 42 111

1 1 46 104

the data listed in Table 7.10 examines the N = 16 regression residuals for possible
differences among the a = 3 treatment levels of Factor A; consequently, no dummy
codes are provided for Factor A as this information is implicit in the ordering of the
a = 3 levels of Factor A in the last two columns of Table 7.10.

Because there are only

M = N !
a∏

i=1

nAi !
= 16!

5! 7! 4! = 1,441,440

possible, equally-likely arrangements of the N = 16 bivariate response measure-
ment scores listed in Table 7.10, an exact permutation analysis is feasible. The
analysis of the N = 16 LAD regression residuals calculated on the bivariate
response measurement scores for Factor A in Table 7.10 yields estimated LAD
regression coefficients of

β̃1,1 = +58.00 , β̃2,1 = −9.00 , β̃1,2 = +94.00 , and β̃2,2 = +8.00

for Factor A. Table 7.11 lists the observed yik values, LAD-predicted ỹik values,
and residual eik values for i = 1, . . . , 16 subjects and k = 1, 2 response variables.

Following Eq. (7.4) on p. 393 and employing ordinary Euclidean distance
between residuals, the N = 16 LAD regression residuals listed in Table 7.11 yield
a = 3 average distance-function values of

ξA1 = 7.2294 , ξA2 = 20.0289 , and ξA3 = 7.3475 .
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Table 7.11 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor A with N = 16
subjects

yi1 yi2 ỹi1 ỹi2 ei1 ei2

49 102 49.00 102.00 0.00 0.00

48 103 58.00 94.00 −10.00 +9.00

58 94 58.00 94.00 0.00 0.00

51 100 58.00 94.00 −7.00 +6.00

55 97 58.00 94.00 −3.00 +3.00

63 84 49.00 102.00 +14.00 −18.00

60 89 49.00 102.00 +11.00 −13.00

27 114 58.00 94.00 −31.00 +20.00

66 83 58.00 94.00 +8.00 −11.00

74 79 58.00 94.00 +16.00 −15.00

69 88 58.00 94.00 +11.00 −6.00

71 82 58.00 94.00 +13.00 −12.00

45 107 49.00 102.00 −4.00 +5.00

50 100 49.00 102.00 +1.00 −2.00

42 111 49.00 102.00 −7.00 +9.00

46 104 49.00 102.00 −3.00 +2.00

Following Eq. (7.3) on p. 393, the observed value of test statistic δ calculated on the
N = 16 LAD regression residuals listed in Table 7.11 with treatment group weights

Cj = nAj

N
for j = 1, 2, 3

is

δA =
a∑

j=1

Cj ξj = 1

16

[
(5)(7.2294) + (7)(20.0289) + (4)(7.3475)

] = 12.8587 .

If all M arrangements of the N = 16 observed LAD regression residuals listed
in Table 7.11 occur with equal chance, the exact probability value of δA = 12.8587
computed on the M = 1,441,440 possible arrangements of the observed LAD
regression residuals with nA1 = 5, nA2 = 7, and nA3 = 4 preserved for each
arrangement is

P(δ ≤ δA|H0) = number of δ values ≤ δA

M
= 6,676

1,441,440
= 0.0046 .

Following Eq. (7.6) on p. 394, the exact expected value of the M = 1,441,440 δ

values is

μδ = 1

M

M∑

i=1

δi = 26,092,946.8800

1,441,440
= 18.1020
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and, following Eq. (7.5) on p. 393, the observed chance-corrected measure of effect
size for the yi and ỹi values, i = 1, . . . , N , is

�A = 1 − δA

μδ

= 1 − 12.8587

18.1020
= +0.2897 ,

indicating approximately 29% agreement between the observed and predicted
values above that expected by chance.

Analysis of Factor B

A design matrix of dummy codes (0, 1) for a regression analysis of Factor B is
given in Table 7.12, where the first column of 1 values provides for an intercept, the
next two columns contain the dummy codes for Factor A, and the fourth and fifth
columns contain the bivariate response measurement scores listed according to the
original random assignment of the N = 16 subjects to the b = 2 levels of Factor
B, with the first nB1 = 7 scores and the last nB2 = 9 scores associated with the
b = 2 levels of Factor B, respectively. The analysis of the data listed in Table 7.12
examines the N = 16 regression residuals for possible differences between the
b = 2 treatment levels of Factor B; consequently, no dummy codes are provided for
Factor B as this information is implicit in the ordering of the b = 2 levels of Factor
B in the last two columns of Table 7.12.

Table 7.12 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
B with N = 16 subjects

Matrix Scores

1 1 0 49 102

1 0 1 63 84

1 0 1 60 89

1 0 0 45 107

1 0 0 50 100

1 1 0 42 111

1 1 0 46 104

1 0 0 48 103

1 0 0 58 94

1 0 0 51 100

1 0 0 55 97

1 0 1 27 114

1 1 1 66 83

1 1 1 74 79

1 1 1 69 88

1 1 1 71 82
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Because there are only

M = N !
b∏

i=1

nBi !
= 16!

7! 9! = 11,440

possible, equally-likely arrangements of the N = 16 response measurement scores
listed in Table 7.12, an exact permutation analysis is feasible. The analysis of the
N = 16 LAD regression residuals calculated on the bivariate response measurement
scores for Factor B in Table 7.12 yields estimated LAD regression coefficients of

β̃1,1 = +46.00 , β̃2,1 = +5.00 , β̃3,1 = +20.00 , β̃1,2 = +104.00 ,

β̃2,2 = −4.00 , and β̃3,2 = −20.00

for Factor B. Table 7.13 lists the observed yik values, LAD-predicted ỹik values,
and residual eik values for i = 1, . . . , 16 subjects and k = 1, 2 response variables.

Following Eq. (7.4) on p. 393 and employing ordinary Euclidean distance
between residuals, the N = 16 LAD regression residuals listed in Table 7.13 yield
b = 2 average distance-function values of

ξB1 = 6.0229 and ξB2 = 16.7440 .

Table 7.13 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor A with N = 16
subjects

yi1 yi2 ỹi1 ỹi2 ei1 ei2

49 102 51.00 100.00 −2.00 +2.00

63 84 66.00 84.00 −3.00 0.00

60 89 66.00 84.00 −6.00 +5.00

45 107 46.00 104.00 −1.00 +3.00

50 100 46.00 104.00 +4.00 −4.00

42 111 46.00 104.00 −4.00 +7.00

46 104 46.00 104.00 0.00 0.00

48 103 51.00 100.00 −3.00 +3.00

58 94 51.00 100.00 +7.00 −6.00

51 100 51.00 100.00 0.00 0.00

55 97 51.00 100.00 +4.00 −3.00

27 114 66.00 84.00 −39.00 +30.00

66 83 66.00 84.00 0.00 −1.00

74 79 66.00 84.00 −8.00 −5.00

69 88 66.00 84.00 +3.00 +4.00

71 82 66.00 84.00 +5.00 −2.00
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Following Eq. (7.3) on p. 393, the observed value of test statistic δ calculated on the
N = 16 LAD regression residuals listed in Table 7.13 with treatment group weights

Ci = nBi

N
for i = 1, 2 ,

is

δB =
b∑

i=1

Ciξi = 1

16

[
(7)(6.0229) + (9)(16.7440)

]= 12.0535 .

If all M arrangements of the N = 16 observed LAD regression residuals listed
in Table 7.13 occur with equal chance, the exact probability value of δB = 12.0535
computed on the M = 11,440 possible arrangements of the observed LAD
regression residuals with nB1 = 7 and nB2 = 9 preserved for each arrangement is

P(δ ≤ δB |H0) = number of δ values ≤ δB

M
= 2,090

11,440
= 0.1827 .

Following Eq. (7.6) on p. 394, the exact expected value of the M = 11,440 δ

values is

μδ = 1

M

M∑

i=1

δi = 140,623.9120

11,440
= 12.2923

and, following Eq. (7.5) on p. 393, the observed chance-corrected measure of effect
size for the yi and ỹi values, i = 1, . . . , N , is

�B = 1 − δB

μδ

= 1 − 12.0535

12.2923
= +0.0194 ,

indicating approximately 2% agreement between the observed and predicted values
above that expected by chance.

For another example of LAD multiple multivariate example, see an informative
and widely cited article by Endler and Mielke on “Comparing entire colour patterns
as birds see them” in Biological Journal of the Linnean Society [11].

7.4 Comparison of OLS and LAD Linear Regression

In this section, OLS and LAD linear regression analyses are illustrated and
compared on two example data sets—one with p = 2 predictors and no extreme
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Table 7.14 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 4

values and one with p = 2 predictors and a single extreme value.3 Consider first
the small example data set with p = 2 predictors listed in Table 7.14 where variable
y is Hours of Housework done by husbands per week, variable x1 is Number of
Children, and variable x2 is husband’s Years of Education for N = 12 families.

7.4.1 Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 7.14, the unstandardized OLS regression
coefficients are

β̂1 = +0.6356 and β̂2 = −0.0649 ,

and the observed squared OLS multiple correlation coefficient is R2
o = 0.2539.

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of R2

o = 0.2539 is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 268,026

1,000,000
= 0.2680 ,

where R2
o denotes the observed value of R2. For comparison, the exact probability

value of R2
o = 0.2539 based on M = N ! = 12! = 479,001,600 possible

arrangements of the data listed in Table 7.14 is P = 0.2681.

3For real-life applications and comparisons of OLS and LAD regression applied to meteorological
forecasting, see two articles inWeather and Forecasting by Mielke, Berry, Landsea, and Gray [39,
40].
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7.4.2 Least Absolute Deviation (LAD) Analysis

For the multivariate data listed in Table 7.14, the LAD regression coefficients are

β̃1 = +0.4138 and β̃2 = +0.1207 ,

δ = 1.5000, μδ = 1.8084, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

�o = 1 − δ

μδ

= 1 − 1.5000

1.8084
= +0.1706 .

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of � = +0.1706 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 19,176

1,000,000
= 0.0192 ,

where �o denotes the observed value of �. For comparison, the exact probability
value of �o = +0.1706 based on M = N ! = 12! = 479,001,600 possible
arrangements of the data listed in Table 7.14 is P = 0.0221.

Now, suppose that the husband in family “L” was a stay-at-home house-husband
and instead of contributing just four hours of housework per week, he actually
contributed 40 hours, as in Table 7.15.

Table 7.15 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors, where the
husband in Family L
contributed 40 hours of
housework per week

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 40
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7.4.3 Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 7.15, the unstandardized OLS regression
coefficients are

β̂1 = +5.7492 and β̂2 = +2.3896 ,

and the observed squared OLS multiple correlation coefficient is R2
o = 0.5786.

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of R2

o = 0.5786 is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 15,215

1,000,000
= 0.0152 ,

where R2
o denotes the observed value of R2. For comparison, the exact probability

value of R2
o = 0.5786 based on M = N ! = 12! = 479,001,600 possible

arrangements of the data listed in Table 7.15 is P = 0.0153.

7.4.4 Least Absolute Deviation (LAD) Analysis

For the multivariate data listed in Table 7.15, the LAD regression coefficients are

β̃1 = +1.3000 and β̃2 = +0.0500 ,

δo = 4.0333, μδ = 5.2194, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

�o = 1 − δo

μδ

= 1 − 4.0333

5.2194
= +0.2272 .

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of �o = +0.2272 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 4,517

1,000,000

= 0.4571×10−2 ,

where �o denotes the observed value of �. For comparison, the exact probability
value of �o = +0.2272 based on M = N ! = 12! = 479,001,600 possible
arrangements of the data listed in Table 7.14 is P = 0.5630×10−2.

The results of the comparison of OLS and LAD analyses with 4 and 40 hours of
housework by the husband in family “L” are summarized in Table 7.16. The value
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Table 7.16 Comparison of OLS and LAD analyses for the data given in Table 7.14 with 4 hours
of housework for the husband in family L and the data given in Table 7.15 with 40 hours of
housework for the husband in family L

OLS analysis LAD analysis

Hours R2 Probability � Probability

4 0.2539 0.2680 0.1706 0.0192

40 0.5786 0.0152 0.2272 0.0046

|�| 0.3247 0.2528 0.0566 0.0146

of 40 hours of housework by the husband in family “L” is, by any definition, an
extreme value. It is six times the mean of ȳ = 6.3333 and three standard deviations
above the mean. It is readily apparent that the extreme value of 40 hours had a
profound impact on the results of the OLS analysis. The OLS multiple correlation
coefficient more than doubled from R2

o = 0.2539 to R2
o = 0.5786, a difference of

R2 = 0.3247, and the corresponding probability value decreased from P = 0.2680
to P = 0.0152, a difference of P = 0.2528. The impact of 40 hours of housework
on the LAD analysis is more modest with the LAD chance-corrected measure of
agreement increasing only slightly from �o = 0.1706 to �o = 0.2272, a difference
of � = 0.0566, and the probability value decreasing from P = 0.0192 to P =
0.0046, a difference of only P = 0.0146.

7.5 Fisher’s rxy to z Transformation

In order to attach a probability statement to inferences about the Pearson product-
moment correlation coefficient, it is necessary to know the sampling distribution
of a statistic that relates the sample correlation coefficient, rxy , to the population
parameter, ρxy . Because −1.0 ≤ rxy ≤ +1.0, the sampling distribution of statistic
rxy is asymmetric whenever ρxy 	= 0.0.4 Given two random variables that follow
the bivariate normal distribution with population parameter ρxy , the sampling
distribution of statistic rxy approaches normality as the sample size increases;
however, it converges very slowly for |ρxy | ≥ 0.6, even with samples as large as
N = 400 [7, p. xxxiii]. Fisher [13, 14] obtained the basic distribution of rxy and
showed that, when bivariate normality is assumed, a logarithmic transformation of
rxy (henceforth referred to as the Fisher z transform),

z = 1

2
ln

(
1 + rxy

1 − rxy

)
= tanh−1(rxy) ,

4It is probably safe to assume that in any actual research situation, the population correlation
coefficient is always not equal to zero.
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becomes normally distributed with a mean of approximately

1

2
ln

(
1 + ρxy

1 − ρxy

)
= tanh−1(ρxy)

and the standard error approaches

1√
N − 3

as N → ∞.
The Fisher rxy to z transform is presented in most textbooks and is available

in a wide array of statistical software packages. In this section, the precision
and accuracy of the Fisher z transform are examined for a variety of bivariate
distributions, sample sizes, and values of ρxy [5]. If ρxy 	= 0.0 and the distribution is
not bivariate normal, then the desired properties of the Fisher z transform generally
fail.

There are two general applications of the Fisher z transform. The first application
comprises the computation of the confidence limits for ρxy and the second involves
the testing of hypotheses about specified values of ρxy 	= 0.0. The second
application is more tractable than the first application as a hypothesized value of
ρxy is available. The next part of this section describes the bivariate distributions to
be examined, followed by an exploration of confidence intervals and an examination
of hypothesis testing. The last part of the section provides some general conclusions
about the propriety of uncritically using the Fisher z transform in actual research.

7.5.1 Distributions

Seven bivariate distributions are utilized to test the Fisher z transform. In addition,
two related methods by Gayen [17] and Jeyaratnam [22] are also examined.
The Gayen and Jeyaratnam techniques are characterized by simplicity, accuracy,
and ease of use. For other interesting approaches, see David [7]; Hotelling [21];
Kraemer [25]; Liu, Woodward, and Bonett [28]; Mudholkar and Chaubey [41];
Pillai [45]; Ruben [48]; and Samiuddin [49].

Normal Distribution

The density function of the standardized normal, N(0, 1), distribution is given by

f (x) = (2π)−1/2 exp(−x2/2) .
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Generalized Logistic Distribution

The density function of the generalized logistic (GL) distribution is given by

f (x) = [ exp(θx)/θ
]1/θ[1 + exp(θx)/θ

]−(θ+1)/θ

for θ > 0 [34]. The generalized logistic distribution is positively skewed for θ < 1
and negatively skewed for θ > 1. When θ = 1.0, GL(θ) is a logistic distribution
that closely resembles the normal distribution, with somewhat lighter tails. When
θ = 0.10,GL(θ) is a generalized logistic distribution with positive skewness. When
θ = 0.01, GL(θ) is a generalized logistic distribution with even greater positive
skewness.

Symmetric Kappa Distribution

The density function of the symmetric kappa (SK) distribution is given by

f (x) = 0.5λ−1/λ (1 + |x|λ/λ)−(λ+1)/λ

for λ > 0 [34, 35]. The shape of the symmetric kappa distribution ranges from an
exceedingly heavy-tailed distribution as λ approaches zero to a uniform distribution
as λ goes to infinity. When λ = 2, SK(λ) is a peaked, heavy-tailed distribution,
identical to Student’s t distribution with 2 degrees of freedom. Thus, the variance of
SK(2) does not exist. When λ = 3, SK(λ) is also a heavy-tailed distribution, but the
variance does exist. When λ = 25, SK(λ) is a loaf-shaped distribution resembling
a uniform distribution with the addition of very light tails. These distributions
provide a variety of populations from which to sample and evaluate the Fisher z

transformation and the Gayen [17] and Jeyaratnam [22] modifications.
Seven bivariate correlated distributions were constructed in the following man-

ner. Let x and y be independent identically distributed univariate random vari-
ables from each of seven univariate distributions, i.e., N(0, 1), GL(1.0), GL(0.1),
GL(0.01), SK(2), SK(3), and SK(25), and define the correlated random variables
U1 and U2 of each bivariate distribution by

U1 = x(1 − ρ2
xy)1/2 + ρxyy

and U2 = y, where ρxy is the desired Pearson product-moment correlation
coefficient of random variables U1 and U2. Then a Monte Carlo procedure obtains
random samples, corresponding to x and y, from the normal, generalized logistic,
and symmetric kappa distributions.
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7.5.2 Confidence Intervals

In this section, Monte Carlo confidence intervals are based on the seven distri-
butions: N(0, 1), GL(1.0), GL(0.1), GL(0.01), SK(2), SK(3), and SK(25). Each
simulation is based on L = 1,000,000 bivariate random samples, U1 and U2, of
size N = 10, 20, 40, and 80 for ρxy = 0.00, +0.40, +0.60, and +0.80 with
1 − α = 0.90, 0.95, and 0.99. Confidence intervals obtained from two methods
are considered. The first confidence interval is based on the Fisher z transform and
is defined by

tanh

[
tanh−1(rxy) − zα/2√

N − 3

]
≤ ρxy ≤ tanh

[
tanh−1(rxy) + zα/2√

N − 3

]
,

where zα/2 is the upper 0.50α probability point of the N(0, 1) distribution. The
second confidence interval is based on a method proposed by Jeyaratnam [22] and
is defined by

rxy − w

1 − rxyw
≤ ρxy ≤ rxy + w

1 + rxyw
,

where

w =
(
tα/2,N−2

)
/
√

N − 2
[
1 + (tα/2,N−2

)2
/
√

N − 2
]1/2

and tα/2,N−2 is the upper 0.50α probability point of Student’s t distribution with
N − 2 degrees of freedom.

The results of the Monte Carlo analyses are summarized in Tables 7.17, 7.18,
7.19, 7.20, 7.21, 7.22, 7.23, which contain simulated containment probability values
for the seven bivariate distributions with specified nominal values of 1 − α (0.90,
0.95, 0.99), ρxy (0.00, +0.40, +0.60, +0.80), and N (10, 20, 40, 80) for the Fisher
(F) and Jeyaratnam (J) confidence intervals. Table 7.17 analyzes data obtained
from the N(0, 1) distribution; Tables 7.18, 7.19, and 7.20 analyze data obtained
from the generalized logistic distribution with θ = 1.0, 0.1, and 0.01, respectively;
and Tables 7.21, 7.22, and 7.23 analyze data obtained from the symmetric kappa
distribution with λ = 2, 3, and 25, respectively.

In each of the seven tables, the Monte Carlo containment probability values
for a 1 − α confidence interval based on the Fisher z transform and a 1 − α

confidence interval based on the Jeyaratnam technique were obtained from the
same L = 1,000,000 bivariate random samples of size N drawn with replacement
from the designated bivariate distribution characterized by the specified population
correlation ρxy . If the Fisher and Jeyaratnam transforms are appropriate for the
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Table 7.17 Containment probability values for a bivariate N(0, 1) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9014 0.8992 0.9026 0.9004 0.9037 0.9015 0.9048 0.9025

20 0.9012 0.9005 0.9015 0.9008 0.9009 0.9002 0.9020 0.9014

40 0.9004 0.9001 0.9012 0.9009 0.9009 0.9006 0.9011 0.9009

80 0.9002 0.9001 0.9000 0.9000 0.9006 0.9005 0.9008 0.9007

0.95 10 0.9491 0.9501 0.9490 0.9501 0.9497 0.9508 0.9516 0.9516

20 0.9495 0.9502 0.9493 0.9501 0.9500 0.9507 0.9500 0.9507

40 0.9495 0.9499 0.9497 0.9501 0.9493 0.9497 0.9502 0.9506

80 0.9595 0.9498 0.9497 0.9499 0.9501 0.9503 0.9498 0.9500

0.99 10 0.9875 0.9900 0.9877 0.9900 0.9877 0.9901 0.9880 0.9904

20 0.9889 0.9900 0.9888 0.9900 0.9890 0.9901 0.9891 0.9902

40 0.9893 0.9899 0.9896 0.9901 0.9894 0.9900 0.9895 0.9901

80 0.9896 0.9899 0.9897 0.9900 0.9897 0.9900 0.9897 0.9900

Table 7.18 Containment probability values for a bivariate GL(1.0) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9011 0.8990 0.8930 0.8907 0.8833 0.8809 0.8710 0.8684

20 0.9009 0.9002 0.8894 0.8886 0.8742 0.8734 0.8565 0.8557

40 0.9007 0.9004 0.8873 0.8871 0.8701 0.8698 0.8484 0.8481

80 0.9005 0.9004 0.8851 0.8850 0.8677 0.8676 0.8438 0.8437

0.95 10 0.9485 0.9496 0.9425 0.9437 0.9359 0.9372 0.9273 0.9287

20 0.9491 0.9498 0.9407 0.9415 0.9313 0.9322 0.9170 0.9181

40 0.9491 0.9496 0.9402 0.9406 0.9274 0.9279 0.9116 0.9121

80 0.9497 0.9499 0.9394 0.9396 0.9266 0.9269 0.9082 0.9085

0.99 10 0.9873 0.9897 0.9852 0.9880 0.9827 0.9858 0.9794 0.9832

20 0.9886 0.9897 0.9855 0.9870 0.9821 0.9838 0.9764 0.9785

40 0.9891 0.9897 0.9861 0.9867 0.9815 0.9823 0.9744 0.9755

80 0.9895 0.9898 0.9860 0.9864 0.9808 0.9812 0.9729 0.9735

simulated data, the containment probability values should agree with the nominal
1 − α values.

Some general observations can be made about the Monte Carlo results contained
in Tables 7.17 through 7.23. First, in each of the tables there is little difference
between the Fisher and Jeyaratnam Monte Carlo containment probability values
and both techniques provide values close to the nominal 1 − α values for the
N(0, 1) distribution analyzed in Table 7.17 with any value of ρxy and for any of the
other distributions analyzed in Tables 7.18 through 7.23 when ρxy = 0.00. Second,
for the skewed and heavy-tailed distributions, i.e., GL(0.1), GL(0.01), SK(2), and
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Table 7.19 Containment probability values for a bivariate GL(0.1) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9016 0.8995 0.8878 0.8854 0.8729 0.8704 0.8544 0.8516

20 0.9013 0.9006 0.8821 0.8813 0.8593 0.8584 0.8321 0.8313

40 0.9010 0.9007 0.8780 0.8777 0.8510 0.8507 0.8174 0.8170

80 0.9006 0.9004 0.8760 0.8759 0.8459 0.8457 0.8081 0.8079

0.95 10 0.9486 0.9497 0.9389 0.9401 0.9281 0.9295 0.9150 0.9165

20 0.9495 0.9502 0.9354 0.9362 0.9197 0.9206 0.8982 0.8993

40 0.9495 0.9499 0.9335 0.9340 0.9136 0.9141 0.8871 0.8877

80 0.9498 0.9500 0.9320 0.9323 0.9100 0.9102 0.8797 0.8800

0.99 10 0.9871 0.9895 0.9835 0.9865 0.9793 0.9830 0.9744 0.9787

20 0.9882 0.9895 0.9833 0.9850 0.9770 0.9790 0.9674 0.9700

40 0.9890 0.9895 0.9833 0.9841 0.9752 0.9763 0.9623 0.9637

80 0.9895 0.9898 0.9828 0.9832 0.9737 0.9743 0.9585 0.9592

Table 7.20 Containment probability values for a bivariate GL(0.01) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9019 0.8996 0.8860 0.8837 0.8693 0.8667 0.8485 0.8457

20 0.9015 0.9008 0.8798 0.8790 0.8545 0.8537 0.8243 0.8234

40 0.9012 0.9009 0.8754 0.8752 0.8454 0.8450 0.8084 0.8080

80 0.9002 0.9001 0.8726 0.8724 0.8394 0.8393 0.7984 0.7982

0.95 10 0.9485 0.9496 0.9375 0.9388 0.9255 0.9269 0.9106 0.9121

20 0.9496 0.9503 0.9337 0.9346 0.9160 0.9170 0.8921 0.8932

40 0.9495 0.9499 0.9317 0.9321 0.9092 0.9097 0.8797 0.8803

80 0.9500 0.9502 0.9296 0.9298 0.9055 0.9057 0.8713 0.8716

0.99 10 0.9869 0.9893 0.9829 0.9860 0.9782 0.9820 0.9725 0.9771

20 0.9881 0.9893 0.9825 0.9842 0.9752 0.9774 0.9644 0.9671

40 0.9889 0.9895 0.9825 0.9833 0.9732 0.9743 0.9584 0.9600

80 0.9897 0.9897 0.9821 0.9825 0.9712 0.9718 0.9540 0.9548

SK(3), with N held constant, the differences between the Monte Carlo containment
probability values and the nominal 1 − α values become greater as |ρxy | increases.
Third, the differences between the Monte Carlo containment probability values and
the nominal 1 − α values increase with increasing N and |ρxy | > 0.00 for all the
distributions except N(0, 1) and SK(25). This is especially evident with the skewed
and heavy-tailed distributions GL(0.1), GL(0.01), SK(2), and SK(3).
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Table 7.21 Containment probability values for a bivariate SK(2) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.8961 0.8942 0.8054 0.8029 0.7487 0.7457 0.6806 0.6774

20 0.9002 0.8996 0.7582 0.7573 0.6650 0.6641 0.5733 0.5723

40 0.9050 0.9048 0.6968 0.6965 0.5755 0.5752 0.4784 0.4781

80 0.9097 0.9096 0.6192 0.6191 0.4884 0.4883 0.3942 0.3941

0.95 10 0.9403 0.9413 0.8670 0.8687 0.8198 0.8217 0.7612 0.7634

20 0.9415 0.9421 0.8257 0.8269 0.7442 0.7457 0.6522 0.6538

40 0.9436 0.9439 0.7726 0.7732 0.6543 0.6551 0.5521 0.5528

80 0.9461 0.9463 0.6982 0.6986 0.5630 0.5634 0.4599 0.4602

0.99 10 0.9797 0.9828 0.9357 0.9420 0.9068 0.9152 0.8697 0.8810

20 0.9789 0.9803 0.9065 0.9102 0.8523 0.8577 0.7761 0.7829

40 0.9788 0.9794 0.8694 0.8715 0.7748 0.7780 0.6733 0.6768

80 0.9794 0.9797 0.8107 0.8121 0.6819 0.6835 0.5721 0.5738

Table 7.22 Containment probability values for a bivariate SK(3) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9007 0.8985 0.8707 0.8707 0.8451 0.8424 0.8145 0.8117

20 0.9009 0.9002 0.8508 0.8499 0.8068 0.8060 0.7575 0.7566

40 0.9015 0.9012 0.8284 0.8280 0.7670 0.7667 0.7027 0.7023

80 0.9016 0.9015 0.8022 0.8021 0.7246 0.7245 0.6490 0.6488

0.95 10 0.9474 0.9485 0.9248 0.9262 0.9052 0.9067 0.8810 0.8827

20 0.9479 0.9486 0.9095 0.9105 0.8751 0.8762 0.8306 0.8318

40 0.9482 0.9485 0.8920 0.8925 0.8382 0.8388 0.7803 0.7810

80 0.9490 0.9491 0.8697 0.8700 0.8010 0.8013 0.7275 0.7279

0.99 10 0.9863 0.9888 0.9758 0.9796 0.9660 0.9708 0.9536 0.9596

20 0.9869 0.9881 0.9682 0.9705 0.9488 0.9518 0.9217 0.9257

40 0.9873 0.9879 0.9588 0.9601 0.9256 0.9275 0.8825 0.8849

80 0.9878 0.9880 0.9455 0.9462 0.8968 0.8980 0.8387 0.8401

7.5.3 Hypothesis Testing

In this section, Monte Carlo tests of hypotheses are based on the same seven
distributions: N(0, 1), GL(1.0), GL(0.1), GL(0.01), SK(2), SK(3), and SK(25).
Each simulation is based on L = 1,000,000 bivariate random samples of size
N = 20 and N = 80 for ρxy = 0.00 and ρxy = +0.60 and compared to seven
nominal upper-tail probability values of P = 0.99, 0.90, 0.75, 0.50, 0.25, 0.10, and
0.01. Two tests of ρxy 	= 0.00 are considered. The first test is based on the Fisher z
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Table 7.23 Containment probability values for a bivariate SK(25) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9009 0.8988 0.9134 0.9114 0.9288 0.9270 0.9485 0.9471

20 0.9010 0.9003 0.9151 0.9145 0.9322 0.9317 0.9556 0.9552

40 0.9006 0.9004 0.9159 0.9157 0.9340 0.9338 0.9590 0.9589

80 0.9005 0.9004 0.9157 0.9156 0.9347 0.9346 0.9605 0.9604

0.95 10 0.9476 0.9487 0.9551 0.9561 0.9648 0.9657 0.9759 0.9765

20 0.9489 0.9496 0.9577 0.9583 0.9691 0.9696 0.9817 0.9821

40 0.9496 0.9496 0.9592 0.9595 0.9704 0.9707 0.9844 0.9845

80 0.9494 0.9496 0.9599 0.9600 0.9716 0.9717 0.9853 0.9854

0.99 10 0.9862 0.9888 0.9889 0.9910 0.9919 0.9935 0.9950 0.9960

20 0.9881 0.9892 0.9911 0.9921 0.9943 0.9950 0.9973 0.9976

40 0.9891 0.9897 0.9923 0.9927 0.9951 0.9954 0.9981 0.9982

80 0.9896 0.9898 0.9925 0.9928 0.9959 0.9960 0.9985 0.9986

transform and uses the standardized test statistic given by

T = z − μz

σz

,

where

z = tanh−1(rxy) , μz = tanh−1(ρxy) , and σz = 1√
N − 3

.

The second test is based on corrected values proposed by Gayen [17], where

z = tanh−1(rxy) ,

μz = tanh−1(ρxy) + ρxy

2(N − 1)

[
1 + 5 − ρ2

xy

4(N − 1)

]
,

and

σz =
{

1

N − 1

[
1 + 4 − ρ2

xy

2(N − 1)
+ 22 − 6ρ2

xy − 3ρ4
xy

6(N − 1)2

]}1/2

.

The results of the Monte Carlo analyses are summarized in Tables 7.24, 7.25,
7.26, 7.27, 7.28, 7.29, 7.30, which contain simulated upper-tail probability values
for the seven distributions with specified nominal probability values of P (0.99,
0.95, 0.75, 0.50, 0.25, 0.10, 0.01), ρxy (0.00, +0.60), and N (20, 80) for the Fisher
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Table 7.24 Upper-tail probability values compared with nominal values (P ) for a bivariate
N(0, 1) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = 0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = +0.60

P F G F G F G F G

0.99 0.9894 0.9893 0.9915 0.9895 0.9898 0.9898 0.9908 0.9899

0.90 0.9016 0.9014 0.9147 0.9022 0.9009 0.9009 0.9065 0.9005

0.75 0.7531 0.7529 0.7754 0.7525 0.7514 0.7514 0.7622 0.7512

0.50 0.5001 0.5001 0.5281 0.4997 0.5008 0.5008 0.5141 0.5006

0.25 0.2464 0.2466 0.2685 0.2471 0.2495 0.2496 0.2601 0.2494

0.10 0.0983 0.0985 0.1098 0.0986 0.0999 0.1000 0.1054 0.0995

0.01 0.0108 0.0108 0.0126 0.0110 0.0102 0.0102 0.0110 0.0101

Table 7.25 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(1.0) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9892 0.9891 0.9878 0.9853 0.9897 0.9897 0.9851 0.9838

0.90 0.9019 0.9016 0.9020 0.8888 0.9011 0.9011 0.8880 0.8817

0.75 0.7539 0.7537 0.7638 0.7419 0.7518 0.7518 0.7451 0.7348

0.50 0.4999 0.4999 0.5324 0.5060 0.5004 0.5004 0.5158 0.5037

0.25 0.2457 0.2460 0.2895 0.2688 0.2495 0.2495 0.2815 0.2715

0.10 0.0981 0.0983 0.1314 0.1197 0.1000 0.1000 0.1290 0.1228

0.01 0.0109 0.0109 0.0195 0.0173 0.0102 0.0102 0.0190 0.0177

Table 7.26 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(0.1) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9918 0.9918 0.9869 0.9841 0.9916 0.9916 0.9819 0.9804

0.90 0.9059 0.9056 0.8954 0.8818 0.9026 0.9026 0.8774 0.8710

0.75 0.7502 0.7499 0.7560 0.7342 0.7484 0.7484 0.7347 0.7247

0.50 0.2436 0.4908 0.5297 0.5045 0.4937 0.4937 0.5144 0.5027

0.25 0.1016 0.2438 0.2982 0.2784 0.2470 0.2470 0.2921 0.2824

0.10 0.0137 0.1018 0.1441 0.1323 0.1016 0.1016 0.1435 0.1373

0.01 0.0000 0.0138 0.0257 0.0231 0.0122 0.0122 0.0265 0.0250
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Table 7.27 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(0.01) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9924 0.9923 0.9865 0.9837 0.9920 0.9920 0.9890 0.9792

0.90 0.9060 0.9058 0.8940 0.8803 0.9030 0.9030 0.8740 0.8675

0.75 0.7491 0.7488 0.7544 0.7329 0.7481 0.7481 0.7311 0.7210

0.50 0.4893 0.4893 0.5301 0.5054 0.4921 0.4921 0.5135 0.5018

0.25 0.2429 0.2431 0.3010 0.2810 0.2469 0.2469 0.2947 0.2850

0.10 0.1019 0.1021 0.1476 0.1357 0.1019 0.1019 0.1476 0.1416

0.01 0.0141 0.0142 0.0279 0.0250 0.0128 0.0128 0.0285 0.0268

Table 7.28 Upper-tail probability values compared with nominal values (P ) for a bivariate SK(2)
distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9842 0.9841 0.9487 0.9423 0.9852 0.9852 0.8480 0.8442

0.90 0.9096 0.9094 0.8159 0.8016 0.9167 0.9167 0.7162 0.7111

0.75 0.7739 0.7737 0.6918 0.6750 0.7838 0.7837 0.6221 0.6165

0.50 0.5001 0.5001 0.5327 0.5163 0.5002 0.5002 0.5121 0.5064

0.25 0.2263 0.2265 0.3797 0.3662 0.2172 0.2172 0.4060 0.4011

0.10 0.0905 0.0907 0.2650 0.2548 0.0834 0.0834 0.3224 0.3182

0.01 0.0159 0.0160 0.1333 0.1284 0.0151 0.0151 0.2099 0.2071

Table 7.29 Upper-tail probability values compared with nominal values (P ) for a bivariate SK(3)
distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9883 0.9883 0.9766 0.9726 0.9887 0.9887 0.9463 0.9437

0.90 0.9034 0.9032 0.8731 0.8595 0.9031 0.9031 0.8215 0.8152

0.75 0.7559 0.7557 0.7394 0.7192 0.7553 0.7553 0.6941 0.6854

0.50 0.4998 0.4998 0.5348 0.5119 0.4998 0.4998 0.5169 0.5076

0.25 0.2440 0.2442 0.3249 0.3067 0.2450 0.2451 0.3394 0.3315

0.10 0.0967 0.0970 0.1790 0.1672 0.0973 0.0973 0.2107 0.2051

0.01 0.0118 0.0119 0.0506 0.0471 0.0112 0.0112 0.0807 0.0783
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Table 7.30 Upper-tail probability values compared with nominal values (P ) for a bivariate
SK(25) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9890 0.9889 0.9955 0.9943 0.9899 0.9899 0.9958 0.9953

0.90 0.9014 0.9017 0.9337 0.9217 0.9006 0.9006 0.9292 0.9237

0.75 0.7538 0.7536 0.7928 0.7679 0.7512 0.7512 0.7831 0.7714

0.50 0.5005 0.5005 0.5179 0.4861 0.5004 0.5004 0.5076 0.4924

0.25 0.2463 0.2465 0.2354 0.2133 0.2493 0.2493 0.2295 0.2184

0.10 0.0975 0.0978 0.0830 0.0734 0.0999 0.0999 0.0785 0.0734

0.01 0.0111 0.0112 0.0072 0.0062 0.0103 0.0103 0.0054 0.0049

(F) and Gayen (G) test statistics. Table 7.24 analyzes data obtained from the N(0, 1)
distribution; Tables 7.25, 7.26, and 7.27 analyze data obtained from the generalized
logistic distribution with θ = 1.0, 0.1, and 0.01, respectively; and Tables 7.28, 7.29,
and 7.30 analyze data obtained from the symmetric kappa distribution with λ = 2,
3, and 25, respectively.

In each table, the Monte Carlo upper-tail probability values for tests of hypothe-
ses based on the Fisher and Gayen approaches were obtained from the same
L = 1,000,000 bivariate random samples of size N drawn with replacement
from the designated bivariate distribution characterized by the specified population
correlation ρxy . If the Fisher [14] and Gayen [17] techniques are appropriate for
the simulated data, the upper-tail probability values should agree with the nominal
upper-tail values, P .

Considered as a set, some general statements can be made about the Monte Carlo
results contained in Tables 7.24 through 7.30. First, both the Fisher z transform and
the Gayen correction provide very satisfactory results for the N(0, 1) distribution
analyzed in Table 7.24 with any value of ρxy and for any of the other distributions
analyzed in Tables 7.25 through 7.30 when ρxy = 0.00. Second, in general the
Monte Carlo upper-tail probability values obtained with the Gayen correction are
better than those obtained with the uncorrected Fisher z transform, especially near
P = 0.50. Where differences exist, the Fisher z transform is somewhat better
than the Gayen correction with P > 0.75 and the Gayen correction performs
better when P < 0.75. Third, discrepancies between the Monte Carlo upper-
tail probability values and the nominal probability values are noticeably larger for
N = 80 than for N = 20 and for ρxy = 0.60 than for ρxy = 0.00, especially for the
skewed and heavy-tailed distributions, i.e., GL(0.1), GL(0.01), SK(2), and SK(3).
Fourth, the Monte Carlo upper-tail probability values in Tables 7.24 through 7.30
are consistently closer to the nominal values for ρxy = 0.00 than for ρxy = +0.60.

To illustrate the difference in results among the seven distributions, consider the
first and last values in the last column in each table, i.e., the two Gayen values
corresponding to P = 0.99 and P = 0.01 for N = 80 and ρxy = +0.60 in



414 7 Interval-Level Variables

Tables 7.25 to 7.30, inclusive. If an investigator was to test the null hypothesis
H0: ρxy = +0.60 with a two-tailed test at α = 0.02, then given the N(0, 1)
distribution analyzed in Table 7.24, the investigator would reject the null hypothesis
at a rate of 0.0202 or about 2.02% of the time, i.e., 1.0000 − 0.9899 + 0.0101 =
0.0202, which is very close to α = 0.02. For the light-tailed GL(1.0) or generalized
logistic distribution analyzed in Table 7.25, the investigator would reject H0: ρxy =
0.60 at a rate of 0.0339 or about 3.39% of the time, i.e., 1.0000−0.9838+0.0177 =
0.0339, compared with the specified α = 0.02. For the skewed GL(0.1) distribution
analyzed in Table 7.26, the investigator would reject H0: ρxy = +0.60 at a rate of
0.0446 or about 4.46% of the time, and for the GL(0.01) distribution analyzed in
Table 7.27, which has a more pronounced skewness than GL(0.1), the rejection rate
is 0.0476 or about 4.76%, compared to α = 0.02. The heavy-tailed distributions,
SK(2) and SK(3), analyzed in Tables 7.28 and 7.29, respectively, yield rejection
rates of 0.3629 and 0.1346, respectively, which are not the least bit close to
α = 0.02. Finally, the very light-tailed distribution, SK(25), analyzed in Table 7.30
yields a reversal with a very conservative rejection rate of 0.0096, compared to
α = 0.02.

7.5.4 Discussion

The Fisher z transform of the sample correlation coefficient, rxy , is widely used in
a variety of disciplines for both estimating population ρxy values and for testing
hypothesized values of ρxy 	= 0.00. The transform is presented in most textbooks
and is a standard feature of many statistical software packages. The assumptions
underlying the use of the Fisher z transform are (1) a simple random sample drawn
with replacement from (2) a bivariate normal distribution. It is commonly believed
that the Fisher z transform is robust to non-normality. For example, in 1929 Karl
Pearson observed:

[T]he normal bivariate surface can be mutilated and distorted to a remarkable degree without
affecting the frequency distribution of r in samples as small as 20 [43, p. 357].

Given correlated non-normal bivariate distributions, these Monte Carlo analyses
demonstrate that the Fisher z transform is not at all robust.

In general, while the Fisher z transform and the alternative techniques proposed
by Gayen [17] and Jeyaratnam [22] provide accurate results for a bivariate normal
distribution with any value of ρxy and for non-normal bivariate distributions when
ρxy = 0.0, serious problems surface with non-normal bivariate distributions when
|ρxy | > 0.0. The results for the light-tailed SK(25) distribution are, in general,
slightly conservative when |ρxy | > 0.0; cf. Liu, Woodward, and Bonett [28, p. 508].
This is usually not seen as a serious problem in practice as conservative results imply
possible failure to reject the null hypothesis and a potential increase in type II error.
In comparison, the results for the heavy-tailed distributions, SK(2) and SK(3), and
the skewed distributions, GL(0.1) and GL(0.01) are quite liberal when |ρxy | > 0.0.
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Also, GL(1.0) is a light-tailed distribution that yields slightly liberal results. Liberal
results are much more serious than conservative results, as they imply possible
rejection of the null hypothesis and a potential increase in type I error.

Most surprisingly, from a statistical perspective, for the heavy-tailed and skewed
distributions, small samples provide better estimates than large samples. Table 7.31
extends the analyses of Tables 7.21, 7.22, 7.23, and 7.24 to larger sample sizes.
In Table 7.31 the investigation is limited to Monte Carlo containment probability
values obtained from the Fisher z transform for the skewed bivariate distributions
based on GL(0.1) and GL(0.01) and for the heavy-tailed bivariate distributions
based on SK(2) and SK(3), with ρxy = 0.00 and ρxy = 0.60, and for N = 10,
20, 40, 80, 160, 320, and 640. Inspection of Table 7.31 confirms that the trend
observed in Tables 7.19 through 7.22 continues with larger sample sizes, producing
increasingly smaller containment probability values with increasing N for |ρxy | >

0.00, where ρxy = +0.60 is considered representative of larger ρxy values.
The impact of large sample sizes is most pronounced in the heavy-tailed bivariate

distribution based on SK(2) and the skewed bivariate distribution based onGL(0.01)
where, with ρxy = +0.60, the divergence between the containment probability
values and the nominal 1 − α values for N = 10 and N = 640 is quite extreme.
For example, SK(2) with 1 − α = 0.90, ρxy = +0.60, and N = 10 yields a
containment probability value of P = 0.7487, whereasN = 640 for this case yields
a containment probability value of P = 0.2677, compared with 1 − α = 0.90.
Obviously, large samples have a greater chance of selecting rare extreme values
than small samples. Consequently, the Monte Carlo containment probability values
become worse with increasing sample size when heavy-tailed distributions are
encountered.

It is clear that the Fisher z transform provides very good results for the bivariate
normal distribution and any of the other distributions when ρxy = 0.00. However, if
a distribution is not bivariate normal and ρxy > 0.00, then the Fisher z random
variable does not follow a normal distribution. Geary [18, p. 241] admonished:
“Normality is a myth; there never was, and never will be, a normal distribution.”
In the absence of bivariate normality and in the presence of correlated heavy-tailed
bivariate distributions, such as those contaminated by extreme values, or correlated
skewed bivariate distributions, the Fisher z transform and related techniques can
yield highly inaccurate results.

Given that normally distributed populations are rarely encountered in actual
research situations [18, 33] and that both heavy-tailed symmetrical distributions
and heavy-tailed skewed distributions are prevalent in much research, considerable
caution should be exercised when using the Fisher z transform or related techniques
such as those proposed by Gayen [17] and Jeyaratnam [22], as these methods clearly
are not robust to deviations from normality when |ρxy | 	= 0.0. In general, there
is no easy answer to this problem. However, a researcher cannot simply ignore a
problem just because it is annoying. Unfortunately, given a non-normal population
with ρxy 	= 0.0, there appear to be no published alternative tests of significance nor
viable options for the construction of confidence intervals.
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Finally, to paraphrase a line from Thompson regarding the use of tiltmeters in
volcanology [53, p. 258],

1. Do not use the Fisher z transformation.
2. If you do use it, don’t believe it.
3. If you do believe it, don’t publish it.
4. If you do publish it, don’t be the first author.

7.6 Point-Biserial Linear Correlation

The point-biserial correlation coefficient measures the association between a
dichotomous variable and an interval-level variable. Applications of the point-
biserial correlation abound in fields such as education and educational psychology.
The point-biserial correlation may be thought of simply as the Pearson product-
moment correlation between an interval-level variable and a variable with two
disjoint, unordered categories.

7.6.1 Example

To illustrate the point-biserial correlation coefficient, consider the dichotomous
data listed in Table 7.32 for N = 13 subjects where variable x is a dichotomous
variable coded (0, 1) and variable y is an interval-level variable. The point-biserial
correlation is usually computed as

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
,

Table 7.32 Example
bivariate data for
point-biserial correlation on
N = 13 subjects

Subject x y

1 0 19

2 1 17

3 0 18

4 0 18

5 1 26

6 1 28

7 0 20

8 1 19

9 0 22

10 1 23

11 1 26

12 0 25

13 1 30
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where n0 and n1 denote the number of y values coded 0 and 1, respectively, N =
n0 +n1, ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, and
sy is the sample standard deviation of the y values given by

sy =
√√√√ 1

N − 1

N∑

i=1

(
yi − ȳ

)2
.

For the data listed in Table 7.32, n0 = 6, n1 = 7, ȳ0 = 20.3333, ȳ1 = 24.1429,
sy = 4.2728, and the point-biserial correlation is

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 24.1429− 20.3333

4.2728

√
(6)(7)

13(13− 1)
= +0.4626 .

However, rpb can also be calculated simply as the Pearson product-moment
correlation (rxy ) between dichotomous variable x and interval variable y. For the
data listed in Table 7.32, N = 13,

N∑

i=1

xi =
N∑

i=1

x2
i = 7 ,

N∑

i=1

yi = 291 ,

N∑

i=1

y2
i = 6,733 ,

N∑

i=1

xiyi = 169 ,

and

rxy =
N

N∑

i=1

xiyi −
N∑

i=1

xi

N∑

i=1

yi

√√√√√

⎡

⎣N

N∑

i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤

⎦

⎡

⎣N

N∑

i=1

y2
i −

(
N∑

i=1

yi

)2⎤

⎦

= (13)(169) − (7)(291)√[
(13)(7) − 72

][
(13)(6,733) − 2912

] = +0.4626 .

Approaching the calculation of the probability value from a product-moment
perspective, there are

M = N ! = 13! = 6,227,020,800

possible, equally-likely arrangements in the reference set of all permutations of
the observed bivariate data, making an exact permutation analysis impractical. Let
ro denote the observed value of rpb. Then, based on L = 1,000,000 random
arrangements of the observed data under the null hypothesis, there are 121,667 |rpb|



7.6 Point-Biserial Linear Correlation 419

values equal to or greater than |ro| = 0.4626, yielding a Monte Carlo resampling
two-sided probability value of P = 121,667/1,000,000 = 0.121667.

In general, L = 1,000,000 ensures three decimal places of accuracy. However,
it requires an increase of two orders of magnitude, i.e., L = 100,000,000,
to ensure four decimal places of accuracy [23]. Based on L = 100,000,000
random arrangements of the observed bivariate data, the two-sided Monte Carlo
resampling probability value of rpb = +0.4626 to six decimal places is P =
12,121,600/100,000,000 = 0.121216.

However, because variable x is composed of only two categories, an alternative
procedure exists for establishing the probability value of rpb . The relationships
between rpb and Student’s two-sample t test are

rpb =
√

t2

t2 + N − 2
and t = rpb

√
N − 2

√
1 − r2pb

.

Thus, the probability value for a specified point-biserial correlation coefficient can
be calculated much more efficiently as the probability value of a two-sample t test
with N − 2 degrees of freedom. Consider the data in Table 7.32 rearranged into two
groups coded 0 and 1 as in Table 7.33.

For the observed data listed in Table 7.33, Student’s t test statistic is

t = rpb

√
N − 2

√
1 − r2pb

= +0.4626
√
13 − 2√

1 − (+0.4626)2
= +1.7307 .

For the data listed in Table 7.33, there are only

M = N !
n0! n1! = 13!

6! 7! = 1,716

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, compared with

M = N ! = 13! = 6,227,020,800

Table 7.33 Example data on
N = 13 subjects for Student’s
t test

0 1

19 17

18 26

18 28

20 19

22 23

25 26

30
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in the initial set, making an exact permutation analysis possible. If all arrangements
of the N = 13 observed scores occur with equal chance, the exact two-sided
probability value of t = +1.7307 to six places computed on the M = 1,716
possible arrangements of the observed data with n0 = 6 and n1 = 7 preserved
for each arrangement is 208/1,716 = 0.121212.

The Monte Carlo resampling probability value of P = 0.121667 based on L =
1,000,000 and the Monte Carlo resampling probability value of P = 0.121216
based on L = 100,000,000 both compare favorably with the exact probability value
of P = 0.121212. For comparison, the two-sided probability value of t = +1.7303
based on Student’s t distribution with N − 2 = 13 − 2 = 11 degrees of freedom is
P = 0.111421.

7.6.2 Problems with the Point-Biserial Coefficient

Whenever a dichotomous variable is correlated with an interval-level variable, as in
point-biserial correlation, there are potential problemswith proper norming between
±1. In brief, it is not possible to obtain a perfect correlation, positive or negative,
between a dichotomous variable and a continuous variable [42, p. 145]. The reason
is simply that it is not possible for a dichotomous variable and a continuous variable
to have the same shape, as illustrated in Fig. 7.8 where a dichotomous variable (x) is
correlated with a continuous variable (y) that is comprised of a uniform distribution,
i.e, y = 1, 2, . . . , 10. In order to achieve a perfect correlation of rpb = +1.00, it

Fig. 7.8 Scatterplot of a
uniform distribution of y

values with the regression
line overlaid
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Fig. 7.9 Scatterplot of
clusters of y values located at
x = 0 and x = 1 with the
regression line overlaid

would be necessary for all the scores at the two points of variable x (x = 0 and
x = 1) to fall exactly on two points on variable y, as depicted in Fig. 7.9 where the
larger black circles represent a cluster of points at x = 0 and x = 1. Since variable y

is assumed to be continuous, this is not possible. Consequently, values of variable y

at either of the two points on variable x (the dichotomous variable) must correspond
to a range of points on variable y (the continuous variable).

As Jum Nunnally showed in 1978, the maximum value of rpb between a
dichotomous variable and a normally distributed variable is approximately rpb =
±0.80, which occurs only when p = n0/N = 0.50 [42]. As p deviates from 0.50 in
either direction, the maximum value of rpb is further reduced. Consequently, when
p = 0.25 or p = 0.75, the maximum value of rpb is approximately rpb = ±0.75,
and when p = 0.90 or p = 0.10, the maximum value of rpb is only approximately
rpb = ±0.58.5

The problem can be illustrated with a small empirical example. Table 7.34
contains 10 scores (1, 2, . . . , 10) with frequencies corresponding to an expanded
binomial distribution, which approximates a normal distribution with N = 512. For

5The problem is not confined to rpb . In general, the problem is called the base-rate problem or the
marginal-dependent problem. See two excellent discussions of the problem by Goodman [19] and
McGrath and Meyer [31].
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Table 7.34 Example
binomial distribution on
N = 512 subjects with
p = 0.50

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

0 4 84 336 16 1,344

0 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

the binomial data listed in Table 7.34 with p = 0.50,

ȳ0 =
(

n0∑

i=1

fi

)−1 n0∑

i=1

fiyi = 1 + 18 + 108 + 336 + 630

1 + 9 + 36 + 84 + 126
= 4.2695 ,

ȳ1 =
(

n1∑

i=1

fi

)−1 n1∑

i=1

fiyi = 756 + 588 + 288 + 81 + 10

126 + 84 + 36 + 9 + 1
= 6.7305 ,

sy =

√√√√√√√√√√

N∑

i=1

fy2 −

(
N∑

i=1

fy

)2

N

N − 1
=

√√√√√16,640 − (2,816)2

512
512 − 1

= 1.5015 ,

and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 6.7305− 4.2695

1.5015

√
(256)(256)

512(512− 1)

= +0.8203 ,

which approximates Nunnally’s estimate of rpb = +0.80.
Table 7.35 illustrates a binomial distribution with N = 512 and p � 0.25, i.e.,

p = 1

N

n0∑

i=1

fi = 1 + 9 + 36 + 84

512
= 0.2539 .
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Table 7.35 Example
binomial distribution on
N = 512 subjects with
p � 0.25

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

0 4 84 336 16 1,344

1 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

For the binomial data in Table 7.35 with p � 0.25,

ȳ0 =
(

n0∑

i=1

fi

)−1 n0∑

i=1

fiyi = 1 + 18 + 108 + 336

1 + 9 + 36 + 84
= 3.5615 ,

ȳ1 =
(

n1∑

i=1

fi

)−1 n1∑

i=1

fiyi = 630 + 756 + 588 + 288 + 81 + 10

126 + 126 + 84 + 36 + 9 + 1
= 6.1597 ,

the standard deviation of the y values is unchanged at sy = 1.5015 and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 6.1597− 3.5615

1.5015

√
(130)(382)

512(512− 1)

= +0.7539 ,

which approximates Nunnally’s estimate of rpb = +0.75.
While it is not convenient to take exactly 10% of N = 512 cases, as arranged in

Table 7.34, it is possible to take 9% of N = 512 cases. Thus,

p = 1

N

n0∑

i=1

= 1 + 9 + 36

512
= 46

512
= 0.0898.
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Table 7.36 Example
binomial distribution on
N = 512 subjects with
p = 0.09

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

1 4 84 336 16 1,344

1 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

Table 7.36 illustrates a binomial distribution with N = 512 and p = 0.09. For the
binomial data listed in Table 7.36 with p � 0.10,

ȳ0 =
(

n0∑

1=1

fi

)−1 n0∑

i=1

fiyi = 1 + 18 + 108

1 + 9 + 36
= 2.7609 ,

ȳ1 =
(

n1∑

i=1

fi

)−1 n1∑

i=1

fiyi = 336 + 630+ 756 + 588 + 288 + 81 + 10

84 + 126 + 126 + 84 + 36 + 9 + 1

= 5.7704 ,

the standard deviation of the y values is unchanged at sy = 1.5015 and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 5.7704− 2.7609

1.5015

√
(46)(466)

512(512− 1)

= +0.5737 ,

which approximates Nunnally’s estimate of rpb = +0.58.

7.7 Biserial Linear Correlation

Point-biserial correlation measures the degree of association between an interval-
level variable and a dichotomous variable that is a true dichotomy, such as right
and wrong, true and false, or left and right. On the other hand, biserial correlation
measures the degree of association between an interval-level variable and a dichoto-
mous variable that has been created from a variable that is assumed to be continuous
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and normally distributed, such as grades that have been dichotomized into “pass”
and “fail” or weight that has been classified into “normal” and “obese.”6 Biserial
correlation has long been difficult to compute, requiring the ordinate of a unit-
normal distribution. Some approximating methods have been suggested to simplify
computation [16], but these are unnecessary with permutation methods.

Let x represent the dichotomous variable and y represent the continuous interval-
level variable, then the biserial correlation coefficient is given by

rb = (ȳ1 − ȳ0)pq

uSy

,

where p and q = 1 − p denote the proportions of all y values coded 0 and 1,
respectively, ȳ0 and ȳ1 denote the arithmetic means of the y values coded 0 and 1,
respectively, Sy is the standard deviation of the y values given by7

Sy =
√√√√ 1

N

N∑

i=1

(
yi − ȳ

)2
,

and u is the ordinate of the unit normal curve at the point of division between the p

and q proportions under the curve given by

u = exp(−z2/2)√
2π

.

Written in raw terms without the p and q proportions,

rb = (ȳ0 − ȳ1)n0n1

N2uSy

,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, and
N = n0 + n1. The biserial correlation may also be written in terms of the point-
biserial correlation coefficient,

rb = rpb
√

pq

u
= rpb

√
n0n1

Nu
,

6For many years height has been considered as normally distributed, but recent research indicates
that this is not necessarily the case [30, pp. 205–207].
7Note that the sum of squared deviation is divided by N , not N −1 and the symbol for the standard
deviation is Sy with an uppercase letter S to distinguish it from the usual sample standard deviation
denoted by sy .
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where the point-biserial correlation coefficient is given by

rpb = (ȳ1 − ȳ0)
√

pq

Sy

.

7.7.1 Example

To illustrate the calculation of the biserial correlation coefficient, consider the set
of data given in Table 7.37 where N = 15 subjects are scored on interval-level
variable y and are classified into types on dichotomous variable x. For the data
listed in Table 7.37, n0 = 6, n1 = 9, p = 6/15 = 0.40, q = 9/15 = 0.60,

ȳ0 = 1

n0

n0∑

i=1

yi = 12 + 15 + 11 + 18 + 13 + 11

6
= 13.3333 ,

ȳ1 = 1

n1

n1∑

i=1

yi = 10 + 33 + 19 + 21 + 29 + 12 + 19 + 23 + 16

9
= 20.2222 ,

Sy =
√√√√ 1

N

N∑

i=1

(
yi − ȳ

)2 =
√
649.7333

15
= 6.5815 ,

the standard score that defines the lower p = 0.40 of the unit-normal distribution is
z = −0.2533,

u = exp(−z2/2)√
2π

= exp[−(−0.2533)2/2]√
(2)(3.1416)

= 0.3863 ,

and

rb = (ȳ1 − ȳ0)pq

uSy

= (20.2222− 13.3333)(0.40)(0.60)

(0.3863)(6.5815)
= +0.6503 .

For the data listed in Table 7.37, the point-biserial correlation coefficient is

rpb = (ȳ1 − ȳ0)
√

pq

Sy

= (20.2222− 13.3333)
√

(0.40)(0.60)

6.5815
= +0.5128 ,

and in terms of the point-biserial correlation coefficient, the biserial correlation
coefficient is

rb = rpb
√

pq

u
= +0.5128

√
(0.40)(0.60)

0.3863
= +0.6503 .
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Table 7.37 Example biserial
correlation data on N = 15
subjects

Subject x y

1 0 12

2 0 15

3 0 11

4 0 18

5 0 13

6 0 11

7 1 10

8 1 33

9 1 19

10 1 21

11 1 29

12 1 12

13 1 19

14 1 23

15 1 16

For the N = 15 scores listed in Table 7.37, there are only

M = N !
n0! n1! = 15!

6! 9! = 5,005

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis easily accomplished. Note
that in the formula for the biserial correlation coefficient,

rb = ȳ1 − ȳ0pq

uSy

p, q , u, and Sy are invariant under permutation. Therefore, the permutation
distribution can efficiently be based entirely on ȳ1 − ȳ0. If all M = 5,005
arrangements of the N = 15 observed values occur with equal chance, the exact
two-sided probability value of |rb| = +0.6503 computed on the M = 5,005
possible arrangements of the observed data with n0 = 6 and n1 = 9 preserved
for each arrangement is P = 263/5,005 = 0.0525.

7.8 Intraclass Correlation

There exists an extensive, and controversial, literature on the intraclass correlation
coefficient and its uses. The standard reference is by E.A. Haggard, Intraclass
Correlation and the Analysis of Variance [20], although it has been heavily criticized
for both its exposition and its statistical accuracy [51]. See also discussions by
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Bartko [3, 2, 4], Kraemer [27], Kraemer and Thiemann [26, pp. 32–34, 54–56],
Shrout and Fleiss [50], von Eye andMun [54, pp. 116-122], andWiner [56, pp. 289–
296].

The intraclass correlation coefficient is most often used for measuring the level
of agreement among judges. The coefficient represents concordance, where +1
indicates perfect agreement and 0 indicates no agreement. While the maximum
value of the intraclass correlation coefficient is +1, the minimum is given by
−1/(k − 1), where k is the number of judges. Thus, for k = 2 judges the lower
limit is −1, but for k = 3 judges the lower limit is −1/2, for k = 4 judges the lower
limit is −1/3, for k = 5 judges the lower limit is −1/4, and so on, approaching zero
as the number of judges increases. A number of authors recommend that when the
intraclass correlation coefficient is negative, it should be interpreted as zero [4, 20,
p. 71], but this seems intuitively wrong.

In many ways the intraclass correlation coefficient is a special form of the
Pearson product-moment (interclass) correlation coefficient. Consider the small set
of data given in Table 7.38 with N = 5 subjects and measurements on Height (x)
and Weight (y). For the bivariate data given in Table 7.38 with N = 5 subjects,

N∑

i=1

xi = 15 ,

N∑

i=1

x2
i = 55 ,

N∑

i=1

yi = 25 ,

N∑

i=1

y2
i = 135 ,

N∑

i=1

xiyi = 83 ,

and the Pearson product-moment correlation coefficient is rxy = +0.80.
Now consider N = 5 sets of twins and let the variable under consideration be

Weight, as in Table 7.39. The question is, which of the two variables labeled Weight
is to be considered variable x and which is to be considered variable y? The problem
can be solved by the intraclass correlation coefficient using double entries. The
intraclass correlation between N pairs of observations on two variables, x and y, is
by definition the ordinary Pearson product-moment (interclass) correlation between
2N pairs of observations, the first N of which are the original observations, and the

Table 7.38 Example
bivariate correlation data on
N = 5 subjects

Subject Height (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

Table 7.39 Example
bivariate correlation data on
N = 5 twins

Twins Weight Weight

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6
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second N the original observations with variable x replacing variable y and vice
versa [15, Sect. 38]. Table 7.40 illustrates the arrangement. For the bivariate data
given in Table 7.40 with 2N = 10 subjects,

N∑

i=1

xi =
N∑

i=1

yi = 40 ,

N∑

i=1

x2
i =

N∑

i=1

y2
i = 190 ,

N∑

i=1

xiyi = 166 ,

and the intraclass correlation coefficient is rI = +0.20. Note that certain compu-
tational simplifications follow from the reversal of the variables, mainly because
the reversals make the marginal distributions for the new variables the same and,
therefore, the means and variances of the new variables are also the same [46, p. 20].

For cases with k > 2, the construction of a table suitable for calculating the
intraclass correlation coefficient is more laborious. For example, given k = 3 judges,
designate the three values for each subject as x1, x2, and x3. The three values are
entered into the table as six observations, each being one of the six permutations of
two values that can be made from the original three values. That is, the values of the
three values x1, x2, and x3 for each subject are entered into a bivariate correlation
table with coordinates (x1, x2), (x1, x3), (x2, x3), (x2, x1), (x3, x1), and (x3, x2), and
the Pearson product-moment correlation coefficient is computed for the resulting
table, yielding the intraclass correlation coefficient.

To illustrate, consider the small data set given in Table 7.41 with N = 3 subjects
and k = 3 judges. The permutations of the observations in Table 7.41 are listed in
the correlation matrix given in Table 7.42. For the bivariate data listed in Table 7.42

Table 7.40 Example
bivariate correlation data on
2N = 10 twins

Twins Weight (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

A′ 4 1

B′ 3 2

C′ 5 3

D′ 7 4

E′ 6 5

Table 7.41 Example
correlation data with k = 3
judges and N = 3 subjects

Subject x1 x2 x3

A 1 2 3

B 6 4 5

C 8 9 7
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Table 7.42 Bivariate permutation matrix for k = 3 judges and N = 3 subjects

Ss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x 1 1 2 6 6 4 8 8 9 3 3 2 5 5 4 7 7 9

y 2 3 3 4 5 5 9 7 7 1 2 1 4 6 6 9 8 8

Table 7.43 Example data for
Case 1, Form 1, with N = 6
subjects (S) and k = 4 judges
(A)

Judge (A)

Subject (S) 1 2 3 4

1 9 2 5 8

2 6 1 3 2

3 8 4 6 8

4 7 1 2 6

5 10 5 6 9

6 6 2 4 7

with N = 18 subjects,

N∑

i=1

xi =
N∑

i=1

yi = 90 ,

N∑

i=1

x2
i =

N∑

i=1

y2
i = 570 ,

N∑

i=1

xiyi = 552 ,

and the intraclass correlation coefficient obtained via the Pearson product-moment
correlation coefficient is rI = rxy = +0.85.

Because of the complexity of double entries with k > 2, the intraclass correlation
coefficient is usually formulated as an analysis of variance with variableA a random
variable. There are actually three different intraclass correlation coefficients, and
two forms of each [32, 50, 57]. The three types and two forms are designated as:

ICC(1, 1) and ICC(1, k),

ICC(2, 1) and ICC(2, k),

ICC(3, 1) and ICC(3, k).

Case 1, Form 1: ICC(1, 1) For Case 1, Form 1, there exists a pool of judges. For
each subject, a researcher randomly samples k judges from the pool to evaluate each
subject. The k judges who rate Subject 1 are not necessarily the same judges who
rate Subject 2. To illustrate Case 1, Form 1, Table 7.43 lists example data for k = 4
judges (A) and N = 6 subjects (S).

Now consider the data given in Table 7.43 as a one-way randomized-block
analysis of variance, given in Table 7.44. For the summary data given in Table 7.44,
let a indicate the number of levels of Factor A, then the sum-of-squares Total is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2

Na
= 841 − (127)2

(6)(4)
= 168.9583 ,
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Table 7.44 Example data for
Case 1, Form 1, prepared for
an analysis of variance with
N = 6 subjects (S) and k = 4
judges (A)

Judge (A)

Subject (S) 1 2 3 4 TS

1 9 2 5 8 24

2 6 1 3 2 12

3 8 4 6 8 26

4 7 1 2 6 16

5 10 5 6 9 30

6 6 2 4 7 19

N 6 6 6 6 24

TA 46 15 26 40 127

Σx2 366 51 126 298 841

the sum-of-squares Between Subjects (BS) is

SSBS =

N∑

i=1

T 2
Si

a
−

(
N∑

i=1

xi

)2

Na

= (24)2 + (12)2 + · · · + (19)2

4
− (127)2

(6)(4)
= 56.2083 ,

the sum-of-squares for Factor A is

SSA =

a∑

j=1

TA2
j

N
−

(
N∑

i=1

xi

)2

Na

= (46)2 + (15)2 + (26)2 + (40)2

6
− (127)2

(6)(4)
= 97.4583 ,

the sum-of-squares Within Subjects (WS) is

SSWS = SSTotal − SSBS = 168.9583− 56.2083 = 112.7500 ,

and the sum-of-squares Error is

SSError = SSA×S = SSWS − SSA = 112.7500− 97.4583 = 15.2917 .
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Table 7.45 Analysis of
variance source table for the
data given in Table 7.44 with
k = 4 judges and N = 6
subjects

Source SS df MS F

Between S 56.2083 5 11.2417

Within S 112.7500 18 6.2639

Factor A 97.4583 3 32.4861 31.87

Error (A×S) 15.2917 15 1.0194

Total 168.9583 23

The analysis of variance source table is given in Table 7.45. For Case 1, Form 1, the
intraclass correlation coefficient is given by

ICC(1, 1) = MSBS − MSWS

MSBS + (a − 1)MSWS

= 11.2417− 6.2639

11.2417+ (4 − 1)(6.2639)
= +0.1659 .

Case 1, Form k: ICC(1,k) If each judge is replaced with a group of k judges, such
as a team of clinicians, and the score is the average score of the k judges, then for
Case 1, Form k, the intraclass correlation coefficient is

ICC(1, k) = MSBS − MSWS

MSBS
= 11.2417− 6.2639

11.2417
= +0.4428 .

Case 2, Form 1: ICC(2, 1) If the same set of k judges rate each subject and the k

judges are considered a random sample from a population of potential judges, then
the intraclass correlation coefficient is designated ICC(2, 1). Because this is the most
common case/form, it is usually designated simply as rI in the literature.

ICC(2, 1) = MSBS − MSA×S

MSBS + (a − 1)MSA×S + a(MSA − MSA×S)

N

= 11.2417− 1.0194

11.2417+ (4 − 1)(1.0194) + (4)(32.4861− 1.0194)

6

= +0.2898 .

Case 2, Form k: ICC(2, k) If each judge is replaced with a team of k judges, and
the score is the average score of the k judges, then for Case 2, Form k, the intraclass
correlation coefficient is

ICC(2, k) = MSBS − MSA×S

MSBS + MSA − MSA×S

N

= 11.2417− 1.0194

11.2417+ 32.4861− 1.0194

6

= +0.6200 .



7.8 Intraclass Correlation 433

Case 3, Form 1: ICC(3, 1) Case 3, Form 1 is the same as Case 2, Form 1, except
that the raters are considered as fixed, not random. For Case 3, Form 1, the intraclass
correlation coefficient is

ICC(3, 1) = MSBS − MSA×S

MSBS + (a − 1)MSA×S

= 11.2417− 1.0194

11.2417+ (4 − 1)(1.0194)
= +0.7148 .

Case 3, Form k: ICC(3, k) If each judge is replaced with a team of k judges and
the teams are considered as fixed, not random, the intraclass correlation coefficient is

ICC(3, k) = MSBS − MSA×S

MSBS
= 11.2417− 1.0194

11.2417
= +0.9093 .

7.8.1 Example

For another example of the intraclass correlation coefficient, consider Case 2, Form
1, the most common in the literature, with k judges randomly selected from a
pool of potential judges. Table 7.46 contains data for k = 3 judges and N = 5
subjects. Table 7.47 contains the analysis of variance source table for the data given
in Table 7.46. Given the analysis of variance source table in Table 7.47, the intraclass

Table 7.46 Example data for
Case 2, Form 1, with N = 5
subjects (S) and k = 3 judges
(A)

Judge (A)

Subject (S) 1 2 3

1 12 10 8

2 15 11 7

3 9 9 6

4 6 5 4

5 8 5 5

Table 7.47 Analysis of
variance source table for the
data given in Table 7.46 with
k = 3 judges and N = 5
subjects

Source SS df MS F

Between S 78.00 4 19.50

Within S 54.00 10 5.40

Factor A 40.00 2 20.00 11.43

Error (A×S) 14.00 8 1.75

Total 132.00 14
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correlation coefficient is

rI = MSBS − MSA×S

MSBS + (a − 1)MSA×S + a(MSA − MSA×S)

N

= 19.50− 1.75

19.50+ (3 − 1)(1.75) + (3)(20.00− 1.75)

5

= 0.5228 .

7.8.2 A Permutation Analysis

Permutation analyses are completely data-dependent and do not depend on random
sampling and/or fixed- or random-effects models. For the data given in Table 7.46
for k = 3 judges and N = 5 subjects there are only

M = (k!)N = (3!)5 = 7,776

possible, equally-likely arrangements in the reference set of all permutations of the
observed data, making an exact permutation analysis possible. If ro denotes the
observed value of rI, the exact upper-tail probability value of the observed value
of rI is

P
(
rI ≥ ro|H0

) = number of rI values ≥ ro

M
= 24

7,776
= 0.0031 .

7.8.3 Interclass and Intraclass Linear Correlation

In the special case of k = 2 the relationship between the Pearson product-
moment (interclass) correlation coefficient and the Pearson intraclass correlation
coefficient can easily be demonstrated. Given k = 2 judges, the value of the
intraclass correlation depends in part upon the corresponding Pearson product-
moment correlation, but it also depends upon the differences between the means
and standard deviations of the two variables. Thus,

rI =
[(

σ 2
x + σ 2

y

)
− (σx − σy

)2]
rxy − (x̄ − ȳ)2 /2

(σ 2
x + σ 2

y ) + (x̄ − ȳ)2 /2
,
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Table 7.48 Example
bivariate correlation data on
N = 5 subjects

Subject Height (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

where x̄ and ȳ denote the means, σ 2
x and σ 2

y the variances, and rxy the Pearson
product-moment correlation of variables x and y. Thus, for the bivariate data given
in Table 7.38 on p. 428, replicated in Table 7.48 for convenience,

x̄ = 3.00 , ȳ = 5.00 , σx = σy = 1.4142 , σ 2
x = σ 2

y = 2.00 ,

rxy = +0.80, and

rI =
[
2.00 + 2.00 − (1.4142− 1.4142)2

]
0.80 − (3.00− 5.00)2/2

(2.00 + 2.00) + (3.00 − 5.00)2/2

= 1.20

6.00
= +0.20 ,

the same value found with 2N pairs of observations.

7.9 Coda

Chapter 7 applied permutation statistical methods to measures of association for
two variables at the interval level of measurement. Included in Chap. 7 were dis-
cussions of ordinary least squares (OLS) regression, least absolute deviation (LAD
regression), multivariate multiple regression, point-biserial correlation, biserial
correlation, intraclass correlation, and Fisher’s z transform for skewed distributions.

Chapter 8 applies exact and Monte Carlo resampling permutation statistical
methods to measures of association for two variables at different levels of measure-
ment, e.g., a nominal-level variable and an ordinal-level variable, a nominal-level
variable and an interval-level variable, and an ordinal-level variable and an interval-
level variable. Included in Chap. 8 are permutation statistical methods applied to
Freeman’s θ , Agresti’s δ̂, Piccarreta’s τ̂ , Whitfield’s S, Cureton’s rrb, Pearson’s η2,
Kelley’s ε2, Hays’ ω̂2, and Jaspen’s multiserial correlation coefficient.
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46. Robinson, W.S.: The statistical measurement of agreement. Am. Sociol. Rev. 22, 17–25 (1957)
47. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79, 871–880 (1984)
48. Ruben, H.: Some new results on the distribution of the sample correlation coefficient. J. R.

Stat. Soc. 28, 513–525 (1966)
49. Samiuddin, M.: On a test for an assigned value of correlation in a bivariate normal distribution.

Biometrika 57, 461–464 (1970)
50. Shrout, P.E., Fleiss, J.L.: Intraclass correlations: Uses in assessing rater relaibility. Psychol.

Bull. 86, 420–428 (1979)
51. Sitgreaves, R.: Review of “Intraclass Correlation and the Analysis of Variance” by E. A.

Haggard. J. Am. Stat. Assoc. 55, 384–385 (1960)
52. Taylor, L.D.: Estimation by minimizing the sum of absolute errors. In: Zarembka, P. (ed.)

Frontiers in Econometrics, pp. 169–190. Academic Press, New York (1974)
53. Thompson, D.: Volcano Cowboys. St. Martin’s Press, New York (2000)
54. von Eye, A., Mun, E.Y.: Analyzing Rater Agreement. Lawrence Erlbaum, Mahwah, NJ (2005)
55. Wilson, H.G.: Least squares versus minimum absolute deviations estimation in linear models.

Dec. Sci. 9, 322–325 (1978)
56. Winer, B.J.: Statistical Principles in Experimental Design, 2nd edn. McGraw–Hill, New York

(1971)
57. Wong, S.P., McGraw, K.O.: Confidence intervals and F tests for intraclass correlations based

on three-way random effects models. Educ. Psychol. Meas. 59, 270–288 (1999)


	7 Interval-Level Variables
	7.1 Ordinary Least Squares (OLS) Linear Regression
	7.1.1 Univariate Example of OLS Regression
	7.1.2 Multivariate Example of OLS Regression

	7.2 Least Absolute Deviation (LAD) Regression
	7.2.1 Illustration of Effects of Extreme Values
	Distance
	Leverage
	Influence

	7.2.2 Univariate Example of LAD Regression
	7.2.3 Multivariate Example of LAD Regression

	7.3 LAD Multivariate Multiple Regression
	7.3.1 Example of Multivariate Multiple Regression
	Analysis of Factor A
	Analysis of Factor B


	7.4 Comparison of OLS and LAD Linear Regression
	7.4.1 Ordinary Least Squares (OLS) Analysis
	7.4.2 Least Absolute Deviation (LAD) Analysis
	7.4.3 Ordinary Least Squares (OLS) Analysis
	7.4.4 Least Absolute Deviation (LAD) Analysis

	7.5 Fisher's rxy to z Transformation
	7.5.1 Distributions
	Normal Distribution
	Generalized Logistic Distribution
	Symmetric Kappa Distribution

	7.5.2 Confidence Intervals
	7.5.3 Hypothesis Testing
	7.5.4 Discussion

	7.6 Point-Biserial Linear Correlation
	7.6.1 Example
	7.6.2 Problems with the Point-Biserial Coefficient

	7.7 Biserial Linear Correlation
	7.7.1 Example

	7.8 Intraclass Correlation
	7.8.1 Example
	7.8.2 A Permutation Analysis
	7.8.3 Interclass and Intraclass Linear Correlation

	7.9 Coda
	References


