
Chapter 4
Nominal-Level Variables, II

Chapter 3 of The Measurement of Association applied permutation statistical
methods to measures of association based on Pearson’s chi-squared test statistic
for two nominal-level (categorical) variables, e.g., Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, and Pearson’s C. This fourth chapter of The Measurement of
Association continues the examination of measures of association designed for
nominal-level variables, but concentrates on exact and Monte Carlo permutation
statistical methods for measures of nominal association that are based on criteria
other than Pearson’s chi-squared test statistic. First, two asymmetric measures
of nominal-level association proposed by Goodman and Kruskal in 1954, λ and
t , are described [37]. Next, Cohen’s unweighted kappa coefficient, κ , provides
an introduction to the measurement of agreement, in contrast to measures of
association [23]. Also included in Chap. 4 are McNemar’s [63] and Cochran’s [22]
Q tests that measure the degree to which response measurements change over time,
Leik and Gove’s [52] d c

N measure of nominal association, and a solution to the
matrix occupancy problem proposed by Mielke and Siddiqui [68]. Fisher’s [32]
exact probability test is the iconic permutation test for contingency tables. While
Fisher’s exact test is typically limited to 2×2 contingency tables, for which it was
originally intended, in this chapter Fisher’s exact test is extended to 2×c, 3×3,
2×2×2, and other larger contingency tables.

Some measures designed for ordinal-level variables also serve as measures of
association for nominal-level variables when r = 2 rows and c = 2 columns, i.e.,
a 2×2 contingency table. Other measures were originally designed for 2×2 contin-
gency tables with nominal-level variables. Included in measures of association for
2×2 contingency tables are percentage differences, Yule’s Q and Y measures [90],
the odds ratio, and Somers’ asymmetric measures, dyx and dxy [78]. These measures
are more appropriately described and discussed in Chaps. 9 and 10, which are
devoted to measures of association for analyzing 2×2 contingency tables, where
the level of measurement is often irrelevant.
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Table 4.1 Notation for a
2×2 contingency table

A1 A2 Total

B1 n11 n12 R1

B2 n21 n22 R2

Total C1 C2 N

4.1 Hypergeometric Probability Values

Exact permutation statistical methods, especially when applied to contingency
tables, are heavily dependent on hypergeometric probability values.1 In this section,
a brief introduction to hypergeometric probability values illustrates their calculation
and interpretation. For 2×2 contingency tables, the calculation of hypergeometric
probability values is easily demonstrated. Consider the 2×2 contingency table in
Table 4.1 where n11, . . . , n22 denote the four cell frequencies, R1 and R2 denote
the two row marginal frequency totals, C1 and C2 denote the two column marginal
frequency totals, and

N =
2∑

i=1

2∑

j=1

nij .

Because the contingency table given in Table 4.1 is a 2×2 table and, conse-
quently, has only one degree of freedom, the probability of any one cell frequency
constitutes the probability of the entire contingency table. Thus, the hypergeometric
point probability value for the cell containing n11 is given by:

p(n11|R1, C1, N) =
(

C1

n11

)(
C2

n12

)(
N

R1

)−1

=
(

R1

n11

)(
R2

n21

)(
N

C1

)−1

= R1! R2! C1! C2!
N ! n11! n12! n21! n22! . (4.1)

To illustrate the calculation of a hypergeometric point probability value for a
2×2 contingency table, consider the frequency data given in Table 4.2 with N = 20
observations. Following Eq. (4.1)

p(n11|R1, C1, N) = R1! R2! C1! C2!
N ! n11! n12! n21! n22! = 11! 9! 12! 8!

20! 9! 2! 3! 6! = 0.0367 .

The calculation of hypergeometric probability values for r×c contingency
tables is more complex than for simple 2×2 contingency tables. Consider the

1While exact permutation statistical methods for r×c contingency tables depend on hypergeomet-
ric probability values for each of the M possible arrangements of cell frequencies, Monte Carlo
resampling permutation statistical methods do not rely on hypergeometric probability values.
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Table 4.2 Example 2×2
contingency table

A1 A2 Total

B1 9 2 11

B2 3 6 9

Total 12 8 20

Table 4.3 Notation for a
4×3 contingency table

A1 A2 A3 Total

B1 n11 n12 n13 R1

B2 n21 n22 n23 R2

B3 n31 n32 n33 R3

B4 n41 n42 n43 R4

Total C1 C2 C3 N

4×3 contingency table given in Table 4.3 where n11, . . . , n43 denote the 12 cell
frequencies, R1, . . . , R4 denote the four row marginal frequency totals, C1, C2,
and C3 denote the three column marginal frequency totals, and

N =
4∑

i=1

3∑

j=1

nij .

When there are only two rows, as in the previous 2×2 example, each column
probability value is binomial, but with four rows each column probability value is
multinomial. It is well known that a multinomial probability value can be obtained
from an inter-connected series of binomial expressions. For example, for column
A1 in Table 4.3,

(
C1

n11

)(
C1 − n11

n21

)(
C1 − n11 − n21

n31

)
= C1!

n11! (C1 − n11)!

× (C1 − n11)!
n21! (C1 − n11 − n21)! × (C1 − n11 − n21)!

n31! (C1 − n11 − n21 − n31)!
= C1!

n11! n21! n31! n41! ,

for column A2 in Table 4.3,

(
C2

n12

)(
C2 − n12

n22

)(
C2 − n12 − n22

n32

)
= C2!

n12! (C2 − n12)!

× (C2 − n12)!
n22! (C2 − n12 − n22)! × (C2 − n12 − n22)!

n32! (C2 − n12 − n22 − n32)!
= C2!

n12! n22! n32! n42! ,
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for column A3 in Table 4.3,

(
C3

n13

)(
C3 − n13

n23

)(
C3 − n13 − n23

n33

)
= C3!

n13! (C3 − n13)!

× (C3 − n13)!
n23! (C3 − n13 − n23)! × (C3 − n13 − n23)!

n33! (C3 − n13 − n23 − n33)!
= C3!

n13! n23! n33! n43! ,

and for the row marginal frequency distribution in Table 4.3,

(
N

R1

)(
N − R1

R2

)(
N − R1 − R2

R3

)
= N !

R1! (N − R1)!

× (N − R1)!
R2! (N − R1 − R2)! × (N − R1 − R2)!

R3! (N − R1 − R2 − R3)!
= N !

R1! R2! R3! R4! .

Thus, for an r×c contingency table,

p(nij |Ri,Cj ,N) =

(
r∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞

⎠

N !
r∏

i=1

c∏

j=1

nij !
. (4.2)

In this form, Eq. (4.2) can easily be generalized to more complex multi-way
contingency tables [64].

To illustrate the calculation of a hypergeometric point probability value for an
r×c contingency table, consider the sparse frequency data given in Table 4.4 with
N = 14 observations. Following Eq. (4.2)

p(nij |Ri,Cj ,N) =

(
r∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞

⎠

N !
r∏

i=1

c∏

j=1

nij !

= 3! 4! 3! 4! 5! 5! 5!
14! 2! 1! 0! 0! 1! 3! 0! 3! 0! 3! 0! 1! = 0.1903×10−3 .
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Table 4.4 Example 4×3
contingency table

A1 A2 A3 Total

B1 2 1 0 3

B2 0 1 3 4

B3 0 3 0 3

B4 3 0 1 4

Total 5 5 4 14

While this section illustrates the calculation of a hypergeometric point probabil-
ity value, for an exact permutation test of an r×c contingency table it is necessary
to calculate the selected measure of association for the observed cell frequencies
and, then, exhaustively enumerate all possible, equally-likely arrangements of the
N objects in the rc cells, given the observed marginal frequency distributions.

For each arrangement in the reference set of all permutations of cell frequencies,
a measure of association, say, T , is calculated and the exact hypergeometric point
probability value, p(nij |Ri,Cj ,N) for i = 1, . . . , r and j = 1, . . . , c, is
calculated. If To denotes the value of the observed test statistic, i.e., measure
of association, the exact two-sided probability value of To is the sum of the
hypergeometric point probability values associated with the values of T computed
on all possible arrangements of cell frequencies that are equal to or greater than To.

When the number of possible arrangements of cell frequencies is very large,
exact tests are impractical and Monte Carlo permutation statistical methods become
necessary. Monte Carlo permutation statistical methods generate a random sample
of all possible arrangements of cell frequencies, drawn with replacement, given the
observed marginal frequency distributions. The resampling two-sided probability
value is simply the proportion of the T values computed on the randomly selected
arrangements that are equal to or greater than To. In the case of Monte Carlo resam-
pling, hypergeometric probability values are not involved—simply the proportion
of the values of the measures of association (T values) equal to or greater than the
value of the observed measure of association (To).

4.2 Goodman and Kruskal’s λa and λb Measures

A common problem that many researchers confront is the analysis of a cross-
classification table where both variables are categorical, as categorical variables
usually do not contain as much information as ordinal- or interval-level vari-
ables [54]. As noted in Chap. 3, the usual measures of association based on
chi-squared, such as Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s
C, have proven to be less than satisfactory due to difficulties in interpretation;
see, for example, discussions by Agresti and Finlay [2, p. 284], Berry, Martin, and
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Table 4.5 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

Olson [11], Berry, Johnston, and Mielke [8, 9], Blalock [18, p. 306], Costner [27],
Ferguson [30, p. 422], Guilford [42, p. 342], and Wickens [86, p. 226].

In 1954, Leo Goodman and William Kruskal proposed several new measures
of association [37].2 Among the measures were two asymmetric proportional-
reduction-in-error (PRE) prediction measures for the analyses of a random sample
of two categorical variables: λa , for when A was considered to be the dependent
variable, and λb , for when B was considered to be the dependent variable [37].3

Consider an r×c contingency table such as depicted in Table 4.5, where aj for
j = 1, . . . , c denotes the c categories for dependent variable A, bi for i = 1, . . . , r

denotes the r categories for independent variable B, nij denotes a cell frequency for
i = 1, . . . , r and j = 1, . . . , c, and N denotes the total of cell frequencies in the
table. Denote by a dot (·) the partial sum of all rows or all columns, depending on
the position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows and if the (·) is in the second subscript position, the sum
is over all columns. Thus, ni. denotes the marginal frequency total of the ith row,
i = 1, . . . , r , summed over all columns, and n.j denotes the marginal frequency
total of the j th column, j = 1, . . . , c summed over all rows.

Given the notation in Table 4.5, let

W =
r∑

i=1

max(ni1, ni2, . . . , nic)

and

X = max(n.1, n.2, . . . , n.c) .

Then, λa , with variable A the dependent variable, is given by:

λa = W − X

N − X
.

2This formative 1954 article by Goodman and Kruskal [37] was followed by three subsequent
articles on measures of association for cross-classifications in 1959, 1963, and 1972 [38, 39, 40]
3These same statistics, λa and λb, were independently developed by Louis (Eliyahu) Guttman in
1941 [43].
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In like manner, let

Y =
c∑

j=1

max(n1j , n2j , . . . , nrj )

and

Z = max(n1., n2., . . . , nr.) .

Then, λb, with variable B the dependent variable, is given by:

λb = Y − Z

N − Z
.

Both λa and λb are proportional-reduction-in-error (PRE) measures. Consider λa

and two possible scenarios:

Case 1: Knowledge of only the disjoint categories of dependent variable A.
Case 2: Knowledge of the disjoint categories of variable A, and also knowledge

of the disjoint categories of independent variable B.

For Case 1, it is expedient for a researcher to guess the category of dependent
variable A that has the largest marginal frequency total (mode), which in this case is
X = max(n.1, . . . , n.c). Then, the probability of error is N −X; label these “errors
of the first kind” or E1. For Case 2, it is expedient for a researcher to guess the
category of dependent variable A that has the largest cell frequency (mode) in each
category of the independent variable B, which in this case is

W =
r∑

i=1

max(ni1, ni2, . . . , nic) .

The probability of error is then N − W ; label these “errors of the second kind” or
E2. Then, λa may be expressed as:

λa = E1 − E2

E1
= N − X − (N − W)

N − X
= W − X

N − X
.

As noted by Goodman and Kruskal in 1954, a problem was immediately
observed with the interpretations of both λa and λb . Since both measures were
based on the modal values of the categories of the independent variable, when the
modal values all occurred in the same category of the dependent variable λa and
λb returned results of zero [37, p. 742]. Thus, while λa and λb were equal to zero
under independence, λa and λb could also be equal to zero for cases other than
independence. This made both λa and λb difficult to interpret; consequently, λa and
λb are seldom found in the contemporary literature. The problem is easy to illustrate
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Table 4.6 Example 2×2
contingency table with
variables A and B

independent

A1 A2 Total

B1 36 24 60

B2 24 16 40

Total 60 40 100

Table 4.7 Example 2×2
contingency table with
variables A and B not
independent

A1 A2 Total

B1 32 28 60

B2 28 12 40

Total 60 40 100

with simple 2×2 contingency tables. Consider first the 2×2 contingency table given
in Table 4.6 where the cell frequencies indicate independence between variables A

and B. For the frequency data given in Table 4.6,

W =
r∑

i=1

max(ni1, . . . , nic) = max(36, 24) + max(24, 16) = 36 + 24 = 60 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 60 − 60

100 − 60
= 0.00 .

Now, consider the 2×2 contingency table given in Table 4.7 where the cell
frequencies do not indicate independence between variables A and B. For the
frequency data given in Table 4.7,

W =
r∑

i=1

max(ni1, . . . , nic) = max(32, 28) + max(28, 12) = 32 + 28 = 60 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 60 − 60

100 − 60
= 0.00 .

Finally, consider the 2×2 contingency table given in Table 4.8, where the
cell frequencies indicate perfect association between variables A and B. For the
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Table 4.8 Example 2×2
contingency table with
variables A and B in perfect
association

A1 A2 Total

B1 60 0 60

B2 0 40 40

Total 60 40 100

frequency data given in Table 4.8,

W =
r∑

i=1

max(ni1, . . . , nic) = max(60, 0) + max(0, 40) = 60 + 40 = 100 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 100 − 60

100 − 60
= 1.00 .

Thus, as Goodman and Kruskal explained in 1954 [37, p. 742]:

1. λa is indeterminate if and only if the population lies in one column; that is, it
appears in one category of variable A.

2. Otherwise, the value of λa lies between the limits 0 and 1.
3. λa is 0 if and only if knowledge of the B classification is of no help in predicting

the A classification.
4. λa is 1 if and only if knowledge of an object’s B category completely specifies

its A category, i.e., if each row of the cross-classification table contains at most
one non-zero value.

5. In the case of statistical independence, λa , when determinate, is zero. The
converse need not hold: λa may be zero without statistical independence holding.

6. λa is unchanged by any permutation of rows or columns.

4.2.1 Example λa and λb Analyses

For a more realistic application of Goodman and Kruskal’s λa and λb measures of
nominal association, consider the 3×4 contingency table given in Table 4.9, where
for λa

W =
r∑

i=1

max(ni1, . . . , nic) = max(5, 0, 15, 0) + max(5, 5, 15, 5)

+ max(5, 20, 5, 10) = 15 + 15 + 20 = 50 ,

X = max(n.1, . . . , n.c) = max(15, 25, 35, 15) = 35 ,



148 4 Nominal-Level Variables, II

Table 4.9 Example 3×4
contingency table for
Goodman and Kruskal’s λa

and λb

A1 A2 A3 A4 Total

B1 5 0 15 0 20

B2 5 5 15 5 30

B3 5 20 5 10 40

Total 15 25 35 15 90

and the observed value of λa is

λa = W − X

N − X
= 50 − 35

90 − 35
= 0.2727 .

The exact probability value of an observed value of λa under the null hypothesis
is given by the sum of the hypergeometric point probability values associated with
values of λa equal to or greater than the observed λa value. For the frequency
data given in Table 4.9, there are only M = 3,453,501 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {20, 30, 40} and
{15, 25, 35, 15}, respectively, making an exact permutation analysis possible. The
exact upper-tail probability value of the observed λa value is P = 0.2715, i.e.,
the sum of the hypergeometric point probability values associated with values of
λa = 0.2727 or greater.

The frequency data given in Table 4.9 can also be considered with variable B as
the dependent variable. Thus, for λb

Y =
c∑

j=1

max(n1j , . . . , nrj ) = max(5, 5, 5) + max(0, 5, 20)

+ max(15, 15, 5) + max(0, 5, 10) = 5 + 20 + 15 + 10 = 50 ,

Z = max(n1., . . . , nr.) = max(20, 30, 40) = 40 ,

and the observed value of λb is

λb = Y − Z

N − Z
= 50 − 40

90 − 40
= 0.20 .

For the frequency data given in Table 4.9, there are only M = 3,453,501
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 30, 40} and {15, 25, 35, 15}, respectively, making an exact permutation analysis
feasible. The exact upper-tail probability value of the observed λb value is P =
0.7669, i.e., the sum of the hypergeometric point probability values associated with
values of λb = 0.20 or greater.
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Table 4.10 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

4.3 Goodman and Kruskal’s ta and tb Measures

As noted, vide supra, in 1954 Leo Goodman and William Kruskal proposed several
new measures of association. Among the measures was an asymmetric proportional-
reduction-in-error (PRE) prediction measure, ta , for the analysis of a random
sample of two categorical variables [37]. Consider two cross-classified unordered
polytomies, A and B, with variable A the dependent variable and variable B the
independent variable. Table 4.5 on p. 144, replicated in Table 4.10 for convenience,
provides notation for the cross-classification, where aj for j = 1, . . . , c denotes the
c categories for dependent variable A, bi for i = 1, . . . , r denotes the r categories
for independent variable B, N denotes the total of cell frequencies in the table, ni.

denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes a marginal frequency total for the j th column, j = 1, . . . , c,
summed over all rows, and nij denotes a cell frequency for i = 1, . . . , r and
j = 1, . . . , c.

Goodman and Kruskal’s ta statistic is a measure of the relative reduction in
prediction error where two types of errors are defined. The first type is the error in
prediction based solely on knowledge of the distribution of the dependent variable,
termed “errors of the first kind” (E1) and consisting of the expected number of
errors when predicting the c dependent variable categories (a1, . . . , ac) from the
observed distribution of the marginals of the dependent variable (n.1, . . . , n.c). The
second type is the error in prediction based on knowledge of the distributions of both
the independent and dependent variables, termed “errors of the second kind” (E2)
and consisting of the expected number or errors when predicting the c dependent
variable categories (a1, . . . , ac) from knowledge of the r independent variable
categories (b1, . . . , br ).

To illustrate the two error types, consider predicting category a1 only from
knowledge of its marginal distribution, n.1, . . . , n.c. Clearly, n.1 out of the N total
cases are in category a1, but exactly which n.1 of the N cases is unknown. The
probability of incorrectly identifying one of the N cases in category a1 by chance
alone is given by:

N − n.1

N
.
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Since there are n.1 such classifications required, the number of expected incorrect
classifications is

n.1(N − n.1)

N

and, for all c categories of variable A, the number of expected errors of the first kind
is given by:

E1 =
c∑

j=1

n.j (N − n.j )

N
.

Likewise, to predict n11, . . . , n1c from the independent category b1, the proba-
bility of incorrectly classifying one of the n1. cases in cell n11 by chance alone is

n1. − n11

n1.

.

Since there are n11 such classifications required, the number of incorrect classifica-
tions is

n11(n1. − n11)

n1.

and, for all cr cells, the number of expected errors of the second kind is given by:

E2 =
c∑

j=1

r∑

i=1

nij (ni. − nij )

ni.

.

Goodman and Kruskal’s ta statistic is then defined as:

ta = E1 − E2

E1
.

An efficient computation form for Goodman and Kruskal’s ta is given by:

ta =
N

r∑

i=1

c∑

j=1

n2
ij

ni.
−

c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

. (4.3)

A computed value of ta indicates the proportional reduction in prediction error
given knowledge of the distribution of independent variable B over and above
knowledge of only the distribution of dependent variable A. As defined, ta is a point
estimator of Goodman and Kruskal’s population parameter τa for the population
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from which the sample of N cases was obtained. If variable B is considered the
dependent variable and variable A the independent variable, then Goodman and
Kruskal’s test statistic tb and associated population parameter τb are analogously
defined.

While parameter τa norms properly from 0 to 1, possesses a clear and meaningful
proportional-reduction-in-error interpretation [27], and is characterized by high
intuitive and factorial validity [45], test statistic ta poses difficulties whenever the
null hypothesis posits that H0: τa = 0 [61]. The problem is that the sampling
distribution of ta is not asymptotically normal under the null hypothesis H0: τa = 0.
Consequently, the applicability of Goodman and Kruskal’s ta to typical tests of null
hypotheses has been severely circumscribed.

Although ta was developed by Goodman and Kruskal in 1954, it was not
until 1963 that the asymptotic normality for ta was established and an asymptotic
variance was given for ta , but only for 0 < τa < 1 [39]. Unfortunately, the
asymptotic variance for ta given in 1963 was later found to be incorrect, and it was
not until 1972 that the correct asymptotic variance for ta was obtained, but again,
only for 0 < τa < 1.

In 1971, Richard Light and Barry Margolin developed R2, an analysis-of-
variance technique for categorical response variables, called CATANOVA for
CATegorical ANalysis Of VAriance [55]. Light and Margolin apparently were
unaware that R2 was identical to Goodman and Kruskal’s ta and that they had
asymptotically solved the longstanding problem of testing H0: τa = 0. The identity
between R2 and ta was first recognized by Särndal in 1974 [75] and later discussed
by Margolin and Light [61], where they showed that ta(N−1)(r−1) was distributed
as chi-squared with (r − 1)(c − 1) degrees of freedom under H0: τa = 0 as
N → ∞ [13].

4.3.1 Example Analysis for ta

Consider the same 3×4 contingency table analyzed with Goodman and Kruskal’s
λa , replicated in Table 4.11 for convenience. Following Eq. (4.3), the observed value
of Goodman and Kruskal’s ta is

ta =
N

r∑

i=1

c∑

j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
90

(
52

20
+ 02

20
+ · · · + 102

40

)
− (152 + 252 + 352 + 152)

902 − (152 + 252 + 352 + 152)
= 0.1659 .
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Table 4.11 Example 3×4
contingency table

A1 A2 A3 A4 Total

B1 5 0 15 0 20

B2 5 5 15 5 30

B3 5 20 5 10 40

Total 15 25 35 15 90

The exact probability value of an observed ta under the null hypothesis is given
by the sum of the hypergeometric point probability values associated with values of
ta equal to or greater than the observed value of ta . For the frequency data given in
Table 4.11, there are only M = 3,453,501 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed
row and column marginal frequency distributions, {20, 30, 40} and {15, 25, 35, 15},
respectively, making an exact permutation analysis possible. The exact upper-tail
probability value of the observed ta value is P = 0.3828, i.e., the sum of the
hypergeometric point probability values associated with values of ta = 0.1659 or
greater.

4.3.2 Example Analysis for tb

Now, consider variable B as the dependent variable. A convenient computing
formula for tb is

tb =
N

c∑

j=1

r∑

i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

.

Thus, for the frequency data given in Table 4.11 the observed value of tb is

tb =
90

(
52

15
+ 02

25
+ · · · + 102

40

)
− (202 + 302 + 402)

902 − (202 + 302 + 402)
= 0.2022 .

For the frequency data given in Table 4.11, there are only M = 3,453,501
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 30, 40} and {15, 25, 35, 15}, respectively, making an exact permutation analysis
feasible. The exact upper-tail probability value of the observed tb value is P =
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0.5187, i.e., the sum of the hypergeometric point probability values associated with
values of tb = 0.2022 or greater.

4.4 An Asymmetric Test of Homogeneity

Oftentimes a research question involves determining if the proportions of items
in a set of mutually exclusive categories are the same for two or more groups.
When independent random samples are drawn from each of g ≥ 2 groups and
then classified into r ≥ 2 mutually exclusive categories, the appropriate test is a
test of homogeneity of the g distributions. In a test of homogeneity, one of the
marginal distributions is known prior to collecting the data, i.e., the row or column
marginal frequency totals indicating the numbers in each of the g groups. This is
termed product multinomial sampling, since the sampling distribution is the product
of g multinomial distributions and the null hypothesis is that the g multinomial
distributions are identical [19, 49, 61].

A test of homogeneity is quite different from a test of independence, where
a single sample is drawn and then classified on both variables. In a test of
independence, both sets of marginal frequency totals are known only after the
data have been collected [62]. This is termed simple multinomial sampling, since
the sampling distribution is a multinomial distribution [19, 49]. The most widely
used test of homogeneity is the Pearson [69] chi-squared test of homogeneity with
degrees of freedom given by df = (r − 1)(g − 1). The Pearson chi-squared
test of homogeneity tests the null hypothesis that there is no difference in the
proportions of subjects in a set of mutually exclusive categories between two or
more populations [60].

Pearson’s chi-squared test of homogeneity is a symmetrical test, yielding only a
single value for an r×g contingency table. In contrast, an asymmetrical test yields
two values depending on which variable is considered to be the dependent variable.
As noted by Berkson, if the differences are all in one direction, a symmetrical test
such as chi-squared is insensitive to this fact [6, p. 536].

A symmetrical test of homogeneity, by its nature, excludes known information
about the data—which variable is the independent variable and which variable is
the dependent variable. While it is sometimes necessary to reduce the level of
measurement when distributional requirements cannot be met, in general it is not
advisable to use a statistical test that discounts important information [29, p. 911].
For example, a researcher should not discard the magnitude of a set of scores and
use a signed-ranks test instead of a Fisher–Pitman test, nor should a researcher
subsequently ignore the ranks and reduce the analysis to a simple sign test. In
the same fashion, given the problem of examining the contingency of two ordered
polytomies, the use of a chi-squared-based measure of association does not take into
consideration the inherent ordering of the categories [7].

Consider two cross-classified unordered polytomies, A and B, with B the
dependent variable. Let b1, . . . , br represent the r ≥ 2 categories of the dependent
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Table 4.12 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , g and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ag Total

b1 n11 n12 · · · n1g n1.

b2 n21 n22 · · · n2g n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrg nr.

Total n.1 n.2 · · · n.g N

variable, a1, . . . , ag represent the g ≥ 2 categories of the independent variable,
nij indicate the cell frequency in the ith row and j th column, i = 1, . . . , r

and j = 1, . . . , g, and N denote the total sample size. Denote by a dot (·) the
partial sum of all rows or all columns, depending on the position of the (·) in the
subscript list. If the (·) is in the first subscript position, the sum is over all rows
and if the (·) is in the second subscript position, the sum is over all columns.
Thus, n1., . . . , nr. denotes the marginal frequency totals of row variable B summed
over all columns and n.1, . . . , n.g denotes the marginal frequency totals of column
variable A summed over all rows. The cross-classification of variables A and B is
displayed in Table 4.12.

Although never advanced as a test of homogeneity, the asymmetrical test tb, first
introduced by Goodman and Kruskal in 1954 [37], is an attractive alternative to the
symmetrical chi-squared test of homogeneity. The test statistic is given by:

tb =
N

g∑

j=1

r∑

i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

,

where B is the dependent variable and the associated population parameter is
denoted as τb. If variable A is considered the dependent variable, the test statistic is
given by:

ta =
N

r∑

i=1

g∑

j=1

n2
ij

ni.

−
g∑

j=1

n2
.j

N2 −
g∑

j=1

n2
.j

and the associated population parameter is τa .
Test statistic tb takes on values between 0 and 1; tb is 0 if and only if there is

homogeneity over the r categories of the dependent variable (B) for all g groups,
and tb is 1 if and only if knowledge of variable Aj for j = 1, . . . , g completely
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determines knowledge of variable Bi for i = 1, . . . , r . In like fashion, test statistic
ta is 0 if and only if there is homogeneity over the g categories of the dependent
variable (A) for all r groups, and ta is 1 if and only if knowledge of variable Bi for
i = 1, . . . , r completely determines knowledge of variable Aj for j = 1, . . . , g.

While no general equivalence exists for test statistics tb, ta , and χ2, certain
relationships hold among tb, ta , and χ2 under special conditions. If g = 2, χ2 =
Ntb , and if g > 2 and n.j = N/g for j = 1, . . . , g, χ2 = N(g − 1)tb. Similarly, if
r = 2, χ2 = Nta , and if r > 2 and ni. = N/r for i = 1, . . . , r , χ2 = N(r − 1)ta .
It follows that if r = g = 2, tb = ta = χ2/N , which is the Pearson mean-
squared contingency coefficient, φ2. Finally, as N → ∞, tb(N − 1)(r − 1) and
ta(N − 1)(g − 1) are distributed as chi-squared with (r − 1)(g − 1) degrees of
freedom.

There are three methods to determine the probability value of a computed tb
or ta test statistic: exact, Monte Carlo resampling, and asymptotic procedures. The
following discussions consider only tb, but the methods are analogous for ta .

Exact Probability Values Under the null hypothesis, H0: τb = 0, each of the M

possible arrangements of the N cases over the rg categories of the contingency
table is equally probable with fixed marginal frequency distributions. For each
arrangement of the observed data in the reference set of all possible arrangements,
the desired test statistic is calculated. The exact probability value of an observed
tb test statistic is the sum of the hypergeometric point probability values associated
with values of tb or greater.

Resampling Probability Values An exact test is computationally not practical
except for fairly small samples. An alternative method that avoids the computational
demands of an exact test is a resampling permutation approximation. Under the null
hypothesis, H0: τb = 0, resampling permutation tests generate and examine a Monte
Carlo random subset of all possible, equally-likely arrangements of the observed
data. For each randomly selected arrangement of the observed data, the desired test
statistic is calculated. The Monte Carlo resampling probability value of an observed
tb test statistic is simply the proportion of the randomly selected values of tb equal
to or greater than the observed value of tb.

Asymptotic Probability Values Under the null hypothesis, H0: τb = 0, as N →
∞, tb(N −1)(g−1) is distributed as chi-squared with (r−1)(g−1) degrees of free-
dom [61]. The asymptotic probability value is the proportion of the appropriate chi-
squared distribution equal to or greater than the observed value of tb(N − 1)(g − 1).

4.4.1 Example 1

Consider a sample of N = 80 seventh grade female students, all from complete
families with three children, stratified by Resident Type (Rural, Suburban, or
Urban). Each subject is categorized into one of four Personality Characteristics
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Table 4.13 Example data set
of residence type (A) and
personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban Total

Domineering 15 15 15 45

Assertive 15 0 0 15

Submissive 0 15 0 15

Passive 0 0 5 5

Total 30 30 20 80

(Domineering, Assertive, Submissive, or Passive) in a classroom setting by a panel
of trained observers. The data are given in Table 4.13. The null hypothesis posits
that the proportions of the r = 4 observed Personality Types are the same for each
of the g = 3 Residence Types. Thus, Residence Type (A) is the independent variable
and Personality Type (B) is the dependent variable.

For the frequency data given in Table 4.13,

tb =
N

g∑

j=1

r∑

i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
80

(
152

30
+ 152

30
+ · · · + 52

20

)
− (452 + 152 + 152 + 52)

802 − (452 + 152 + 152 + 52)
= 0.2308 .

There are only M = 359,961 possible, equally-likely arrangements in the reference
set of all permutations of cell frequencies given the observed row and column
marginal frequency distributions, {45, 15, 15, 5} and {30, 30, 20}, respectively,
making an exact permutation analysis reasonable. The exact upper-tail probability
value for the observed value of tb is P = 0.1728, i.e., the sum of the hyper-
geometric point probability values associated with values of tb = 0.2308 or
greater.

In dramatic contrast, the Pearson chi-squared test of homogeneity yields a
computed value of χ2 = 66.6667 for the frequency data given in Table 4.13 and
the exact Pearson χ2 probability value is P = 0.1699×10−12. For comparison, the
asymptotic Pearson χ2 probability value based on (r−1)(g−1) = (4−1)(3−1) = 6
degrees of freedom is P = 0.1969×10−11.

The Pearson χ2 test of homogeneity is a symmetrical test and does not
distinguish between independent and dependent variables, thus excluding important
information. Because the Pearson χ2 test of homogeneity considers both variables
A and B, some insight can be gained by calculating a value for ta . For the frequency
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data given in Table 4.13,

ta =
N

r∑

i=1

g∑

j=1

n2
ij

ni.

−
g∑

j=1

n2
.j

N2 −
g∑

j=1

n2
.j

=
80

(
152

45
+ 152

45
+ · · · + 52

5

)
− (302 + 302 + 202)

802 − (302 + 302 + 202)
= 0.4286 ,

which is considerably larger than the value for tb of 0.2308. There are only
M = 359,961 possible, equally-likely arrangements in the reference set of all
permutations of cell frequencies given the observed row and column marginal
frequency distributions, {45, 15, 15, 5} and {30, 30, 20}, respectively, making an
exact permutation analysis feasible. The exact upper-tail probability value for the
observed value of ta is P = 0.0073, i.e., the sum of the hypergeometric point
probability values associated with values of ta = 0.4286 or greater.

Clearly, the Pearson χ2 test of homogeneity is detecting the substantial departure
from homogeneity of the row proportions. This is reflected in the relatively low
probability value for ta (P = 0.0073) where the column variable (A) is considered
to be the dependent variable. As the dependent variable of interest is variable B,
the Pearson χ2 test of homogeneity yields a misleading result with an asymptotic
probability value of P = 0.1969×10−11 compared with the exact probability value
for tb of P = 0.1728.

Table 4.14 displays the conditional column proportions obtained from the sample
cell frequencies of Table 4.13. In Table 4.14, variable B is the dependent variable
and the conditional column proportions are given by pi|j = nij /n.j , e.g., p1|1 =
15/30 = 0.5000. Table 4.15 displays the conditional row proportions obtained
from the sample cell frequencies of Table 4.13. In Table 4.15, variable A is the
dependent variable and the conditional row proportions are given by pj |i = nij /ni.,
e.g., p1|1 = 15/45 = 0.3333.

Table 4.14 Conditional
column proportions for
residence type (A) and
personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban

Domineering 0.5000 0.5000 0.7500

Assertive 0.5000 0.0000 0.0000

Submissive 0.0000 0.5000 0.0000

Passive 0.0000 0.0000 0.2500

Total 1.0000 1.0000 1.0000
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Table 4.15 Conditional row
proportions for residence type
(A) and personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban Total

Domineering 0.3333 0.3333 0.3333 1.0000

Assertive 1.0000 0.0000 0.0000 1.0000

Submissive 0.0000 1.0000 0.0000 1.0000

Passive 0.0000 0.0000 1.0000 1.0000

Even the most casual inspection of Tables 4.14 and 4.15 reveals the relative
homogeneity extant among the proportions in the columns of Table 4.14, compared
with the lack of homogeneity among the proportions in the rows of Table 4.15.
Compare, for example, the Domineering (0.3333, 0.3333, 0.3333) and Assertive
(1.0000, 0.0000, 0.0000) row proportions in Table 4.15. It is this departure from
homogeneity in the row proportions that contributes to the low probability value,
i.e., P = 0.1969×10−11, associated with the Pearson χ2 test of homogeneity.

4.4.2 Example 2

To clarify the utility of a test of homogeneity based on Goodman and Kruskal’s
tb test statistic, consider a simplified example. Suppose that a researcher wishes to
conduct a test of homogeneity with respect to Voting Behavior on three categories of
Marital Status. The null hypothesis posits that the proportions of the r = 3 observed
categories of Marital Status (independent variable) are the same for each of the
g = 3 categories of Voting Behavior (dependent variable). The researcher obtains
three independent simple random samples of 80 individuals from each of the three
categories of Marital Status—Single, Married, and Divorced—in a local election.
Table 4.16 contains the raw frequency data and conditional row proportions where
independent variable Marital Status (Single, Married, Divorced) is cross-classified
with dependent variable Voting Behavior (Republican, Democrat, Independent).

Table 4.16 Example data set of marital status (A) and voting behavior (B) with row proportions
in parentheses

Voting Behavior (B)

Marital Status (A) Republican Democrat Independent Total

Single 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Married 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Divorced 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Total 150 60 30 240



4.5 The Measurement of Agreement 159

Because the frequency data given in Table 4.16 correspond to the expected
values for each of the nine cells, Pearson’s chi-squared test of homogeneity is
χ2 = 0.00 with a probability value under the null hypothesis of P = 1.00. In
contrast, Goodman and Kruskal’s test statistic, with variable B (Voting Behavior)
the dependent variable is tb = 1.00 with a probability value under the null
hypothesis of P = 0.00.

4.5 The Measurement of Agreement

The measurement of agreement is a special case of measuring association between
two or more variables. A number of statistical research problems require the
measurement of agreement, rather than association or correlation. Agreement
indices measure the extent to which a set of response measurements are identical
to another set, i.e., agree, rather than the extent to which one set of response
measurements is a linear function of another set of response measurements, i.e.,
correlated.

The usual research situation involving a measure of agreement arises when
several judges or raters assign objects to a set of disjoint, unordered categories.
In 1957, W.S. Robinson published an article in American Sociological Review on
“The statistical measurement of agreement” [73]. In this formative article, Robinson
developed the idea of agreement, as contrasted with correlation, and showed that
a simple modification of the intraclass correlation coefficient was an appropriate
measure of statistical agreement, which he called A, presumably for agreement [73,
p. 20]. Robinson explained that statistical agreement requires that paired values be
identical, while correlation requires only that the paired values be linked by some
mathematical function [73, p. 19]. Thus, agreement is a more restrictive measure
than is correlation. Robinson argued that the distinction between agreement and
correlation leads to the conclusion that a logically correct estimate of the reliability
of a test is given by the intraclass correlation coefficient rather than the Pearsonian
(interclass) correlation coefficient and that the concept of agreement, rather than
correlation, is the proper basis of reliability theory [73, p. 18]. The 1957 Robinson
article, which was quite mathematical, was followed by a more interpretive article
in 1959 in the same journal on “The geometric interpretation of agreement” [74].

A measure of inter-rater agreement should, as a minimum, embody seven basic
attributes [16]. First, it is generally agreed that a measure of agreement should
be chance corrected, i.e., any agreement coefficient should reflect the amount of
agreement in excess of what would be expected by chance. Several researchers
have advocated chance-corrected measures of agreement, including Brennan and
Prediger [20], Cicchetti, Showalter, and Tyrer [21], Cohen [23], Conger [26],
and Krippendorff [50]. Although some investigators have argued against chance-
corrected measures of agreement, e.g., Armitage, Blendis, and Smyllie [3] and
Goodman and Kruskal [37], supporters of chance-corrected measures of agreement
far outweigh detractors.



160 4 Nominal-Level Variables, II

Second, as noted by Bartko [4, 5], Bartko and Carpenter [5], Krippendorff [50],
and Robinson [72], a measure of inter-rater agreement possesses an added advantage
if it is directly applicable to the assessment of reliability. Robinson, in particular,
was emphatic that reliability could not simply be measured by some function
of Pearsonian product-moment correlation, such as in the split-half or test–retest
methods, and argued that the concept of agreement should be the basis of reliability
theory, not correlation [73, p. 18].

Third, a number of researchers have commented on the simplicity of Euclidean
distance for measures of inter-rater agreement, noting that the squaring of dif-
ferences between scale values is questionable at best, while acknowledging that
squared differences allow for familiar interpretations of coefficients [34, 50].
Moreover, Graham and Jackson noted that squaring of differences between values,
i.e., quadratic weighting, results in a measure of association, not agreement [41].
Thus, Euclidean distance is a desired property for measures of inter-rater agreement.

Fourth, every measure of agreement should have a statistical base [5]. A measure
of agreement without a proper test of significance is severely limited in application
to practical research situations. Asymptotic analyses are interesting and useful,
under large sample conditions, but often limited in their practical utility when
sample sizes are small.

Fifth, a measure of agreement that analyzes multivariate data has a decided
advantage over univariate measures of agreement. Thus, if one observer locates a
set of objects in an r-dimensional space, a multivariate measure of agreement can
ascertain the degree to which a second observer locates the same set of objects in
the defined r-dimensional space.

Sixth, a measure of agreement should be able to analyze data at any level of
measurement. Cohen’s kappa measure of inter-rater agreement is, at the present
time, the most widely used measure of agreement. Extensions of Cohen’s kappa
to incompletely ranked data by Iachan [46] and to continuous categorical data by
Conger [26] have been established. An extension of Cohen’s kappa measure of
agreement to fully ranked ordinal data and to interval data was provided by Berry
and Mielke in 1988 [16].

Seventh, a measure of agreement should be able to evaluate information from
more than two raters or judges. Fleiss proposed a measure of agreement for multiple
raters on a nominal scale [33]. Williams presented a measure that was limited to
comparisons of the joint agreement of several raters with another rater singled out
as being of special interest [88]. Landis and Koch considered agreement among
several raters in terms of a majority opinion [51]. Light focused on an extension
of Cohen’s [23] kappa measure of inter-rater agreement to multiple raters that was
based on the average of all pairwise kappa values [54].

Unfortunately, the measure proposed by Fleiss was dependent on the average
proportion of raters who agree on the classification of each observation. The
limitation in the measure proposed by Williams appears to be overly restrictive, and
the formulation by Landis and Koch becomes computationally prohibitive if either
the number of observers or the number of response categories is large. Moreover,
the extension of kappa proposed by Fleiss did not reduce to Cohen’s kappa when
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the number of raters was two. Finally, Hubert [44] and Conger [25] provided
critical summaries of the problem of extending Cohen’s kappa measure of inter-
rater agreement to multiple raters for categorical data.

4.5.1 Robinson’s Measure of Agreement

An early measure of maximum-corrected agreement was developed by W.S.
Robinson in 1957 [73, 74]. Assume that k = 2 judges independently rate N

objects. Robinson argued that the Pearson product-moment (interclass) correlation
calculated between the ratings of two judges was an inadequate measure of
agreement because it measures the degree to which the paired values of the two
variables are proportional, when expressed as deviations from their means, rather
than identical [73, p. 19]. Robinson proposed a new measure of agreement based on
the intraclass correlation coefficient that he called A. Consider two sets of ratings
such as given in Table 4.17, where there are N = 3 pairs of values. Robinson defined
A as:

A = 1 − D

Dmax
,

where D (for Disagreement) is given by:

D =
N∑

i=1

(
X1i − X̄i

)2 +
N∑

i=1

(
X2i − X̄i

)2

and

X1i = the value of X1 for the ith pair of ratings ,

X2i = the value of X2 for the ith pair of ratings ,

X̄i = the mean of X1 and X2 for the ith pair of ratings .

Robinson noted that, by itself, D is not a very useful measure because it involves the
units of X1 and X2. To find a relative, rather than an absolute, measure of agreement,
Robinson standardized D by its range of possible variation, given by:

Dmax =
N∑

i=1

(
X1i − X̄

)2 +
N∑

i=1

(
X2i − X̄

)2
,
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Table 4.17 Example data for
Robinson’s A coefficient of
agreement

X1 X2

1 2

3 7

8 12

Table 4.18 Illustration of the
calculation of Robinson’s D

coefficient of agreement

X1i X2i X̄i

(
X1i − X̄i

)2 (
X2i − X̄i

)2

1 2 1.50 0.25 0.25

3 7 5.00 4.00 4.00

8 12 10.00 4.00 4.00

12 21 8.25 8.25

where the common mean is given by:

X̄ =

N∑

i=1

X1i +
N∑

i=1

X2i

2N
.

Example

Consider the data listed in Table 4.17 on p. 162 with N = 3 paired observations and
k = 2 sets of ratings, replicated in Table 4.18 for convenience. Then,

D =
N∑

i=1

(
X1i − X̄i

)2 +
N∑

i=1

(
X2i − X̄i

)2 = 8.25 + 8.25 = 16.50 .

Define the common mean as:

X̄ =

N∑

i=1

X1i +
N∑

i=1

X2i

2N
= 12 + 21

(2)(3)
= 5.50 ,

then the maximum value of D is illustrated in Table 4.19. The maximum value of
D is then

Dmax =
N∑

i=1

(
X1i − X̄

)2 +
N∑

i=1

(
X2i − X̄

)2 = 32.75 + 56.75 = 89.50
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Table 4.19 Illustration of
calculation of Robinson’s
maximum value of D

X1i X2i X̄i

(
X1i − X̄i

)2 (
X2i − X̄i

)2

1 2 5.50 20.25 12.25

3 7 5.50 6.25 2.25

8 12 5.50 6.25 42.25

12 21 32.75 56.75

Table 4.20 The M = 6
possible arrangements of the
X1i values, i = 1, 2, 3, with
associated values of
Robinson’s D and A

Arrangement X1 D A

1∗ 1, 3, 8 16.50 0.8156

2 3, 1, 8 26.50 0.7039

3 1, 8, 3 41.50 0.5363

4 3, 8, 1 61.50 0.3128

5 8, 1, 3 76.50 0.1453

6 8, 3, 1 86.50 0.0335

and Robinson’s A is

A = 1 − D

Dmax
= 1 − 16.50

89.50
= 0.8156 .

The sums,

N∑

i=1

X1i = 12 and
N∑

i=1

X2i = 21,

are invariant under permutation. Therefore, X̄ = 5.50 and Dmax = 89.50 are also
invariant under permutation. Moreover,

N∑

i=1

(
X1i − X̄i

)2 =
N∑

i=1

(
X2i − X̄i

)2

for all arrangements of the observed data. Thus, for an exact permutation analysis,
it is only required to calculate either

N∑

i=1

(
X1i − X̄i

)2 or
N∑

i=1

(
X2i − X̄i

)2
.

In addition, it is only necessary to shuffle either the X1i values or the X2i values,
i = 1, 2, 3, while holding the X2i or X1i values, respectively, constant.

For the data listed in Table 4.18, there are only M = 6 possible, equally-likely
arrangements of the observed data. Since M = 6 is a very small number, it will
be illustrative to list the shuffled X1i values and the associated D and A values
in Table 4.20, where the arrangement with the observed values in Table 4.18 is
indicated with an asterisk. The exact upper-tail probability of the observed value of



164 4 Nominal-Level Variables, II

Table 4.21 Example data for
the intraclass correlation
coefficient

X1i X2i X2
1i X2

2i X1iX2i

1 2 1 4 2

3 7 9 49 21

8 12 64 144 96

2 1 4 1 2

7 3 49 9 21

12 8 144 64 96

33 33 271 271 238

A = 0.8156 under the null hypothesis is given by:

P(A ≥ Ao|H0) = number of A values ≥ Ao

M
= 1

6
= 0.1667 ,

where Ao denotes the observed value of Robinson’s A. Alternatively,

P(D ≤ Do|H0) = number of D values ≤ Do

M
= 1

6
= 0.1667 ,

where Do denotes the observed value of Robinson’s D.

The Intraclass Correlation Coefficient

It is well known that the intraclass correlation coefficient (rI) between N pairs of
observations on two variables is by definition the ordinary Pearson product-moment
(interclass) correlation between 2N pairs of observations, the first N of which are
the original observations, and the second N the original observations with X1i

replacing X2i and vice versa for i = 1, . . . , N [31, Sect. 38]. Thus, the intraclass
correlation between the values of X1i and X2i for i = 1, . . . , N given in Table 4.18
on p. 162 is the Pearson product-moment correlation between the six pairs of values,
as illustrated in Table 4.21.

For the data given in Table 4.21 with N = 6 pairs of observations, the intraclass
correlation coefficient is

rI = r12 =
N

N∑

i=1

X1jX2i −
N∑

i=1

X1i

N∑

i=1

X2i

√√√√√

⎡

⎣N

N∑

i=1

X2
1i −

(
N∑

i=1

X1i

)2 ⎤

⎦

⎡

⎣N

N∑

i=1

X2
2i −

(
N∑

i=1

X2i

)2 ⎤

⎦

= (6)(238) − (33)(33)√[
(6)(271) − (33)2

][
(6)(271) − (33)2

] = +0.6313 . (4.4)
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It is obvious from Eq. (4.4) that certain computational simplifications follow from
the reversal of the variable values, i.e., the row and column marginal frequency
distributions for the new variables are identical and, therefore, the means and
variances of the new variables are identical [73, p. 20].

For the case of two variables, the relationships between Robinson’s coefficient of
agreement and the coefficient of intraclass correlation are given by:

rI = 2A − 1 and A = rI + 1

2
.

Thus, in the case of two variables the intraclass correlation is a simple linear function
of the coefficient of agreement. For the example data given in Table 4.18 on p. 162,

rI = 2(0.8156) − 1 = 0.6313 and A = 0.6313 + 1

2
= 0.8156 .

For k > 2 sets of ratings, the relationships between the intraclass correlation
coefficient and Robinson’s A are not so simple and are given by:

rI = kA − 1

k − 1
and A = rI(k − 1) + 1

k
. (4.5)

It is apparent from the expressions in Eq. (4.5) that the value of the intraclass
coefficient depends not only upon A but also upon k, the number of observations
per case. The range of Robinson’s A is always from zero to unity regardless of the
number of observations. Therefore, comparisons between agreement coefficients
based upon different numbers of variables are commensurable [73, p. 22]. The upper
limit of the intraclass correlation coefficient is always unity, but its lower limit is
−1/(k − 1) [31, Sect. 38]. For k = 2 variables, the lower limit of rI is −1, but for
k = 3 variables the lower limit is −1/2, for k = 4 the lower limit is −1/3, for k = 5
the lower limit is −1/4, and so on.

4.5.2 Scott’s π Measure of Agreement

An early measure of chance-corrected agreement was introduced by William Scott
in 1955 [76]. Assume that two judges or raters independently classify each of N

observations into one of c categories. The resulting classifications can be displayed
in a c×c contingency table, such as the 3×3 table in Table 4.22, with frequencies for
cell entries. Denote by a dot (·) the partial sum of all rows or all columns, depending
on the position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows and if the (·) is in the second subscript position, the sum
is over all columns. Thus, ni. denotes the marginal frequency total of the ith row,
i = 1, . . . , r , summed over all columns; n.j denotes the marginal frequency total
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Table 4.22 Example 3×3
cross-classification
(agreement) table with
frequencies for cell entries

Column

Row 1 2 3 Total

1 n11 n12 n13 n1.

2 n21 n22 n23 n2.

3 n31 n32 n33 n3.

Total n.1 n.2 n.3 N

of the j th column, j = 1, . . . , c, summed over all rows; and

N =
r∑

i=1

c∑

j=1

nij

denotes the table frequency total. In the notation of Table 4.22, Scott’s coefficient of
agreement for nominal-level data is given by:

π = po − pe

1 − pe
, (4.6)

where

po = 1

N

c∑

i=1

nii and pe = 1

4N2

c∑

k=1

(
n.k + nk.

)2
.

In this configuration, po is the observed proportion of observations on which the
judges agree, pe is the proportion of observations for which agreement is expected
by chance, po − pe is the proportion of agreement beyond that expected by chance,
1 − pe is the maximum possible proportion of agreement beyond that expected by
chance, and Scott’s π is the proportion of agreement between the two judges, after
chance agreement has been removed.

Example

For an example of Scott’s π measure of inter-rater agreement, consider the
frequency data given in Table 4.23, where two judges have independently classified
N = 40 objects into four disjoint categories: A, B, C, and D. For the agreement data
given in Table 4.23,

po = 1

N

c∑

1=1

nii = 4 + 4 + 4 + 4

40
= 0.40 ,

pe = 1

4N2

c∑

k=1

(n.k + nk.)
2 = 1

(4)(402)

[
(10 + 10)2 + (10 + 10)2

+ (10 + 10)2 + (10 + 10)2] = 0.25 ,
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Table 4.23 Example 4×4
cross-classification
(agreement) table

Judge 2

Judge 1 A B C D Total

A 4 3 2 1 10

B 3 4 1 3 10

C 2 1 4 2 10

D 1 2 3 4 10

Total 10 10 10 10 40

and the observed value of Scott’s π is

π = po − pe

1 − pe
= 0.40 − 0.25

1 − 0.25
= +0.20 , (4.7)

indicating 20% agreement above that expected by chance.
The exact probability value of an observed value of Scott’s π under the null

hypothesis is given by the sum of the hypergeometric point probability values
associated with the π values equal to or greater than the observed π value. For the
frequency data given in Table 4.23, there are only M = 5,045,326 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {10, 10, 10, 10} and
{10, 10, 10, 10}, respectively, making an exact permutation analysis possible. The
exact upper-tail probability value of the observed π value is P = 0.2047, i.e.,
the sum of the hypergeometric point probability values associated with values of
π = +0.20 or greater.

While Scott’s π is interesting from a historical perspective, π has fallen into
desuetude and is no longer found in the current literature. Based as it is on joint
proportions, Scott’s π makes the assumption that the two judges have the same
distribution of responses, as in the example data in Table 4.18 on p. 162 with
identical marginal distributions, {10, 10, 10, 10} and {10, 10, 10, 10}. Cohen’s
κ measure does not make this assumption and, consequently, has emerged
as the preferred chance-corrected measure of inter-rater agreement for two
judges/raters.

4.5.3 Cohen’s κ Measure of Agreement

Currently, the most popular measure of agreement between two judges or raters
is the chance-corrected measure of inter-rater agreement first proposed by Jacob
Cohen in 1960 and termed kappa [23]. Cohen’s kappa measures the magnitude of
agreement between b = 2 observers on the assignment of N objects to a set of c

disjoint, unordered categories. In 1968, Cohen proposed a version of kappa that
allowed for weighting of the c categories [24]. Whereas the original (unweighted)



168 4 Nominal-Level Variables, II

Table 4.24 Example 3×3
cross-classification table with
proportions for cell entries

Column

Row 1 2 3 Total

1 p11 p12 p13 p1.

2 p21 p22 p23 p2.

3 p31 p32 p33 p3.

Total p.1 p.2 p.3 p..

kappa did not distinguish among magnitudes of disagreement, weighted kappa
incorporated the magnitude of each disagreement and provided partial credit
for disagreements when agreement was not complete [57]. The usual approach
is to assign weights to each disagreement pair with larger weights indicating
greater disagreement.4

In both the unweighted and weighted cases, kappa is equal to +1 when perfect
agreement among two or more judges occurs, 0 when agreement is equal to that
expected under independence, and negative when agreement is less than expected
by chance. Because weighted kappa applies to ordered categories, it is discussed in
Chap. 6. Unweighted kappa is discussed here as it is typically used for unordered
categorical data.

Assume that two judges or raters independently classify each of N observations
into one of c mutually exclusive, exhaustive, unordered categories. The resulting
classifications can be displayed in a c×c cross-classification, such as the 3×3
contingency table in Table 4.24, with proportions for cell entries. Denote by a dot
(·) the partial sum of all rows or all columns, depending on the position of the (·)
in the subscript list. If the (·) is in the first subscript position, the sum is over all
rows and if the (·) is in the second subscript position, the sum is over all columns.
Thus, pi. denotes the marginal proportion total of the ith row, i = 1, . . . , c,
summed over all columns; p.j denotes the marginal proportion total of the j th
column, j = 1, . . . , c, summed over all rows; and p.. = 1.00. In the notation
of Table 4.24, Cohen’s unweighted kappa coefficient for nominal-level data is given
by:

κ = po − pe

1 − pe
, (4.8)

where

po =
c∑

i=1

pii and pe =
c∑

i=1

pi.p.i .

4Some authors prefer to define kappa in terms of agreement weights, instead of disagreement
weights, e.g., Fleiss [33] and Vanbelle and Albert [83].



4.5 The Measurement of Agreement 169

Cohen’s kappa can also be defined in terms of raw frequency values, making
calculations somewhat more straightforward. Thus,

κ =

c∑

i=1

Oii −
c∑

i=1

Eii

N −
c∑

i=1

Eii

,

where Oii denotes an observed cell frequency value on the principal diagonal of a
c×c agreement table, Eii denotes an expected cell frequency value on the principal
diagonal, and

Eii = ni.n.i

N
for i = 1, . . . , c .

In the configuration of Table 4.24, po is the observed proportion of observations
on which the judges agree, pe is the proportion of observations for which agreement
is expected by chance, po − pe is the proportion of agreement beyond that expected
by chance, 1 − pe is the maximum possible proportion of agreement beyond that
expected by chance, and Cohen’s kappa test statistic is the proportion of agreement
between the two judges, after chance agreement has been removed.

Example 1

To illustrate Cohen’s kappa measure of chance-corrected inter-rater agreement, con-
sider the frequency data given in Table 4.25 where two judges have independently
classified N = 5 objects into c = 3 disjoint, unordered categories: A, B, and C. For
the agreement data given in Table 4.25,

po =
c∑

i=1

pii = 0

5
+ 2

5
+ 1

5
= 0.60 ,

pe =
c∑

i=1

pi.p.i =
(

1

5

)(
1

5

)
+
(

2

5

)(
3

5

)
+
(

2

5

)(
1

5

)
= 0.36 ,

and following Eq. (4.8), the observed value of Cohen’s κ is

κ = po − pe

1 − pe
= 0.60 − 0.36

1 − 0.36
= +0.3750 ,

indicating approximately 37% agreement above that expected by chance.
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Table 4.25 Example 3×3
cross-classification table for
Cohen’s unweighted kappa

Judge 2

Judge 1 A B C Total

A 0 1 0 1

B 0 2 0 2

C 1 0 1 2

Total 1 3 1 5

Table 4.26 Listing of the
eight sets of 3×3 cell
frequencies with row
marginal distribution {1, 2, 2}
and column marginal
distribution {1, 3, 1}

Table 1 Table 2 Table 3 Table 4

0 0 1 0 1 0 0 1 0 0 0 1

0 2 0 0 1 1 0 2 0 1 1 0

1 1 0 1 1 0 1 0 1 0 2 0

Table 5 Table 6 Table 7 Table 8

0 1 0 0 1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 1 1 0 2 0

0 2 0 0 1 1 0 2 0 0 1 1

Table 4.27 Kappa and
hypergeometric probability
values for the eight 3×3
contingency tables listed in
Table 4.26

Table κ Probability

8∗ +0.6875 0.2000

3∗ +0.3750 0.1000

1 +0.0625 0.1000

6 +0.0625 0.1000

7 +0.0625 0.1000

2 −0.2500 0.1000

4 −0.2500 0.1000

5 −0.5625 0.2000

The exact probability value of an observed κ value under the null hypothesis is
given by the sum of the hypergeometric point probability values associated with
the κ values equal to or greater than the observed κ value. For the frequency data
given in Table 4.25, there are only M = 8 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed row
and column marginal frequency distributions, {1, 2, 2} and {1, 3, 1}, respectively,
making an exact permutation analysis possible. The eight possible arrangements
of cell frequencies, given the observed marginal frequency totals, are listed in
Table 4.26, where Table 3 of Table 4.26 contains the N = 5 observed cell
frequencies.

Table 4.27 lists the computed κ values and associated hypergeometric point
probability values for the M = 8 tables given in Table 4.26, ordered from high
to low by the κ values. Only two κ values are equal to or greater than the
observed value of κ = +0.3750, those belonging to Tables 8 and 3 (indicated with
asterisks). Thus, the exact upper-tail probability value of the observed κ value is
P = 0.2000 + 0.1000 = 0.3000, the sum of the hypergeometric point probability
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Table 4.28 Example 4×4
cross-classification table

Judge 2

Judge 1 A B C D Total

A 8 4 2 1 15

B 1 7 6 3 17

C 2 4 9 5 20

D 0 1 7 8 16

Total 11 16 24 17 68

values associated with values of κ = +0.3750 or greater, i.e., κ8 = +0.6875 and
κ3 = +0.3750.

Example 2

For a second, more realistic, example of Cohen’s unweighted kappa measure
of chance-corrected inter-rater agreement, consider the frequency data given in
Table 4.28, where two judges have independently classified N = 68 objects into
four disjoint, unordered categories: A, B, C, and D. For the agreement data given in
Table 4.28,

po =
c∑

i=1

pii = 8

68
+ 7

68
+ 9

68
+ 8

68
= 0.4706 ,

pe =
c∑

i=1

pi.p.i

=
(

15

68

)(
11

68

)
+
(

17

68

)(
16

68

)
+
(

20

68

)(
24

68

)
+
(

16

68

)(
17

68

)

= 0.2571 ,

and following Eq. (4.8), the observed value of Cohen’s κ is

κ = po − pe

1 − pe
= 0.4706 − 0.2571

1 − 0.2571
= +0.2873 ,

indicating approximately 29% agreement above that expected by chance.
The exact probability value of an observed κ value under the null hypothesis is

given by the sum of the hypergeometric point probability values associated with κ

values equal to or greater than the observed κ value. For the frequency data given
in Table 4.28, there are M = 181,260,684 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies, given the observed row
and column marginal frequency distributions, {15, 17, 20, 16} and {11, 16, 24, 17},
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respectively, making an exact permutation analysis feasible. The exact upper-tail
probability value of the observed κ value is P = 0.1098×10−3, i.e., the sum of the
hypergeometric point probability values associated with values of κ = +0.2873 or
greater.

4.5.4 Application with Multiple Judges

Cohen’s κ measure of chance-corrected inter-rater agreement was originally
designed for, and limited to, only b = 2 judges. In this section, a procedure is
introduced for computing unweighted kappa with multiple judges. Although the
procedure is appropriate for any number of c ≥ 2 disjoint, unordered categories and
b ≥ 2 judges, the description of the procedure is confined to b = 3 independent
judges and the example is limited to b = 3 independent judges and c = 3 disjoint,
unordered categories to simplify presentation.

Consider b = 3 judges who independently classify N objects into c disjoint,
unordered categories. The classification may be conceptualized as a c×c×c contin-
gency table with c rows, c columns, and c slices. Let nijk , Ri , Cj , and Sk denote the
observed cell frequencies and the row, column, and slice marginal frequency totals
for i, j, k = 1, . . . , c and let the frequency total be given by:

N =
c∑

i=1

c∑

j=1

c∑

k=1

nijk .

Cohen’s unweighted kappa test statistic for a three-way contingency table is
given by:

κ = 1 −
N2

c∑

i=1

c∑

j=1

c∑

k=1

wijknijk

c∑

i=1

c∑

j=1

c∑

k=1

wijkRiCjSk

, (4.9)

where wijk are disagreement “weights” assigned to each cell for i, j, k = 1, . . . , c.
For unweighted kappa, the disagreement weights are given by:

wijk =
⎧
⎨

⎩
0 if i = j = k ,

1 otherwise .

Given a c×c×c contingency table with N objects cross-classified by b = 3
independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c3 cells, while preserving the
marginal frequency distributions. For each arrangement of cell frequencies, the
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unweighted kappa statistic, κ , and the exact hypergeometric point probability value
under the null hypothesis, p(nijk |Ri,Cj , Sk,N), are calculated, where

p(nijk |Ri,Cj , Sk,N) =

(
c∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞

⎠
(

c∏

k=1

Sk!
)

(N !)b−1
c∏

i=1

c∏

j=1

c∏

k=1

nijk !
. (4.10)

If κo denotes the value of the observed unweighted kappa test statistic, the exact
probability value of κo under the null hypothesis is given by:

P(κo) =
M∑

l=1

�l

(
nijk |Ri,Cj , Sk,N

)
,

where

�l

(
nijk |Ri,Cj , Sk,N

) =
⎧
⎨

⎩
p(nijk |Ri,Cj , Sk,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely cell frequency arrange-
ments in the reference set of all possible arrangements of cell frequencies, given
the observed marginal frequency distributions. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling procedures become necessary. In such cases, a random sample of the
M possible, equally-likely arrangements of cell frequencies provides a comparison
of κ test statistics calculated on L random multi-way tables with the κ test statistic
calculated on the observed multi-way contingency table.

An efficient Monte Carlo resampling algorithm to generate random cell fre-
quency arrangements for multi-way contingency tables with fixed marginal fre-
quency distributions was developed by Mielke, Berry, and Johnston in 2007 [66,
pp. 19–20]. For a three-way contingency table with r rows, c columns, and s slices,
the resampling algorithm is given in 12 simple steps.

STEP 1. Construct an r×c×s contingency table from the observed data.
STEP 2. Obtain the fixed marginal frequency totals R1, . . . , Rr , C1, . . . , Cc,

S1, . . . , Ss , and frequency total N . Set a resampling counter JL = 0, and set
L equal to the number of samples desired.

STEP 3. Set the resampling counter JL = JL + 1.
STEP 4. Set the marginal frequency counters JRi = Ri for i = 1, . . . , r; JCj =

Cj for j = 1, . . . , c; JSk = Sk for k = 1, . . . , s, and M = N .
STEP 5. Set nijk = 0 for i = 1, . . . , r , j = 1, . . . , c, and k = 1, . . . , s, and set

row, column, and slice counters IR, IC, and IS equal to zero.
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STEP 6. Create cumulative probability distributions PRi , PCj , and PSk from the
adjusted marginal frequency totals JRi , JCj , and JSk for i = 1, . . . , r , j =
1, . . . , c, and k = 1, . . . , s, where

PR1 = JR1/M and PRi = PRi−1 + JRi/M

for i = 1, . . . , r ,

PC1 = JC1/M and PCj = PCj−1 + JCj /M

for j = 1, . . . , c, and

PS1 = JS1/M and PSk = PSk−1 + JSk/M

for k = 1, . . . , s.
STEP 7. Generate three uniform pseudorandom numbers Ur , Uc, and Us over

[0, 1) and set row, column, and slice indices i = j = k = 1, respectively.
STEP 8. If Ur ≤ PRi , then IR = i, JRi = JRi − 1, and go to STEP 9; otherwise,

i = i + 1 and repeat STEP 8.
STEP 9. If Uc ≤ PCj , then IC = j , JCj = JCj −1, and go to STEP 10; otherwise,

j = j + 1 and repeat STEP 9.
STEP 10. If Us ≤ PSk , then IS = k, JSk = JSk −1, and go to STEP 11; otherwise,

k = k + 1 and repeat STEP 10.
STEP 11. Set M = M − 1 and nIR,IC,IS = nIR,IC,IS + 1. If M > 0, go to STEP 4;

otherwise, obtain the required test statistic.
STEP 12. If JL < L, go to STEP 3; otherwise, stop.

At the conclusion of the resampling procedure, Cohen’s κ , as given in Eq. (4.9)
on p. 172, is obtained for each of the L random three-way contingency tables, given
fixed marginal frequency distributions. Let κo denote the observed value of κ , then
under the null hypothesis the resampling approximate probability value for κo is
given by:

P (κo) = 1

L

L∑

l=1

�l (κ) ,

where

�l (κ) =
⎧
⎨

⎩
1 if κ ≥ κo ,

0 otherwise .
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Table 4.29 Classification of
N = 93 objects by three
independent judges into one
of three disjoint, unordered
categories: A, B, or C, with
disagreement weights in
parentheses

Judge 3

Judge 1 Judge 2 A B C

A A 6 (0) 4 (1) 2 (1)

B 3 (1) 5 (1) 4 (1)

C 2 (1) 3 (1) 4 (1)

B A 4 (1) 5 (1) 3 (1)

B 5 (1) 8 (0) 4 (1)

C 3 (1) 2 (1) 3 (1)

C A 1 (1) 3 (1) 4 (1)

B 3 (1) 2 (1) 2 (1)

C 1 (1) 2 (1) 5 (0)

4.5.5 Example Analysis with Multiple Judges

The calculation of unweighted kappa and the resampling procedure for obtaining
a probability value with multiple judges can be illustrated with a sparse data set.
Consider b = 3 independent judges who classify N = 93 objects into one of c = 3
disjoint, unordered categories: A, B, or C. Table 4.29 lists the c3 cross-classified
frequencies and corresponding disagreement weights, where the cell disagreement
weights are given in parentheses.

For the frequency data listed in Table 4.29, the observed value of kappa is κ =
+0.1007, indicating approximately 10% agreement among the b = 3 judges above
that expected by chance. If κo denotes the observed value of κ , the approximate
resampling probability value based on L = 1,000,000 random arrangements of the
observed data is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 8,311

1,000,000
= 0.0083 .

4.6 McNemar’s Q Test for Change

In 1947, psychologist Quinn McNemar proposed a test for change that was derived
from the matched-pairs t test for proportions [63]. A typical application is to analyze
binary responses, coded (0, 1), at g = 2 time periods for each of N ≥ 2 subjects,
such as Success and Failure, Yes and No, Agree and Disagree, or Pro and Con. If
the four cells are identified as in Table 4.30, then McNemar’s test for change is
given by:

Q = (B − C)2

B + C
,
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Table 4.30 Notation for a
2×2 cross-classification for
McNemar’s Q test for change

Time 2

Time 1 Pro Con Total

Pro A B A + B

Con C D C + D

Total A + C B + D N

where N = A + B + C + D and B and C represent the two cells of change, i.e.,
from Pro to Con and from Con to Pro.

Alternatively, McNemar’s Q test can be thought of as a chi-squared goodness-of-
fit test with two categories, where the observed frequencies, O1 and O2, correspond
to cells B and C, respectively, and the expected frequencies, E1 and E2, are given
by E1 = E2 = (B + C)/2, i.e., half the subjects are expected to change in
one direction (e.g., from Pro to Con) and half in the other direction (e.g., from
Con to Pro), under the null hypothesis of no change from Time 1 to Time 2.
Let

E = B + C

2

denote an expected value where, by chance, half of the changes are from Pro to
Con and half are from Con to Pro. Then, a chi-squared goodness of fit for the two
categories of change is given by:

χ2 = (B − E)2

E
+ (C − E)2

E
= B2

E
+ C2

E
+ 2E − 2B − 2C .

Substituting (B + C)/2 for E yields

2B2

B + C
+ 2C2

B + C
+ B + C − 2B − 2C

= 2B2

B + C
+ 2C2

B + C
− B − C

= 2B2 + 2C2 − B(B + C) − C(B + C)

B + C

= B2 − 2BC + C2

B + C

= (B − C)2

B + C
.



4.6 McNemar’s Q Test for Change 177

4.6.1 Example 1

To illustrate McNemar’s test for change, consider the frequency data given in
Table 4.31, where N = 50 objects have been recorded as either Pro or Con
on a specified issue at Time 1 and again on the same issue at Time 2. For the
frequency data given in Table 4.31, the observed value of McNemar’s Q test
statistic is

Q = (B − C)2

B + C
= (5 − 25)2

5 + 25
= 13.3333 .

Alternatively, O1 = B = 5, O2 = C = 25, E1 = E2 = (O1 + O2)/2 =
(5 + 25)/2 = 15, and

χ2
1 = (O1 − E1)

2

E1
+ (O2 − E2)

2

E2
= (5 − 15)2

15
+ (25 − 15)2

15
= 13.3333 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values that are equal to or greater than the observed value of Q. For the
frequency data listed in Table 4.31, there are only M = 31 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given the
two cell frequencies of change, 5 and 25, and only 12 Q values are equal to or
greater than the observed value of Q = 13.3333.

Since M = 31 is a reasonably small number of arrangements, it will be
illustrative to list the complete set of Q values and the associated hypergeometric
point probability values in Table 4.32, where rows with hypergeometric point
probability values associated with Q values equal to or greater than the observed
value of Q are indicated with asterisks. The exact upper-tail probability value of the
observed value of Q is the sum of the hypergeometric point probability values that
are associated with values of Q = 13.3333 or greater. Since the distribution of all
possible Q values is symmetrical, the exact two-tailed probability value is

P = 2
(

0.1327×10−3 + 0.2552×10−4 + 0.3781×10−5 + 0.4051×10−6

+0.2794×10−7 + 0.9313×10−9
)

= 0.3429×10−3 .

Table 4.31 Example
frequency data for
McNemar’s test for change
with N = 50 objects

Time 2

Time 1 Pro Con Total

Pro 15 5 20

Con 25 5 30

Total 40 10 50
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Table 4.32 McNemar Q

values and exact
hypergeometric point
probability values for
M = 31 possible
arrangements of the
frequency data given in
Table 4.31

Number B C Q Probability

1∗ 0 30 30.0000 0.9313×10−9

2∗ 1 29 26.1333 0.2794×10−7

3∗ 2 28 22.5333 0.4051×10−6

4∗ 3 27 19.2000 0.3781×10−5

5∗ 4 26 16.1333 0.2552×10−4

6∗ 5 25 13.3333 0.1327×10−3

7 6 24 10.8000 0.5530×10−3

8 7 23 8.5333 0.1896×10−2

9 8 22 6.5333 0.5451×10−2

10 9 21 4.8000 0.1333×10−1

11 10 20 3.3333 0.2798×10−1

12 11 19 2.1333 0.5088×10−1

13 12 18 1.2000 0.8055×10−1

14 13 17 0.5333 0.1115

15 14 16 0.1333 0.1354

16 15 15 0.0000 0.1445

17 16 14 0.1333 0.1354

18 17 13 0.5333 0.1154

19 18 12 1.2000 0.8055×10−1

20 19 11 2.1333 0.5088×10−1

21 20 10 3.3333 0.2798×10−1

22 21 9 4.8000 0.1333×10−1

23 22 8 6.5333 0.5451×10−2

24 23 7 8.5333 0.1896×10−2

25 24 6 10.8000 0.5530×10−3

26∗ 25 5 13.3333 0.1327×10−3

27∗ 26 4 16.1333 0.2552×10−4

28∗ 27 3 19.2000 0.3781×10−5

29∗ 28 2 22.5333 0.4051×10−6

30∗ 29 1 26.1333 0.2794×10−7

31∗ 30 0 30.0000 0.9313×10−9

Sum 1.0000

4.6.2 Example 2

For a second example of McNemar’s Q test, consider the frequency data given in
Table 4.33, where N = 190 objects have been recorded as either Pro or Con on
a specified issue at Time 1 and again at Time 2. For the frequency data given in
Table 4.33, the observed value of McNemar’s Q test statistic is

Q = (B − C)2

B + C
= (59 − 37)2

59 + 37
= 5.0417 .
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Table 4.33 Example
frequency data for
McNemar’s test for change
with N = 190 objects

Time 2

Time 1 Pro Con Total

Pro 73 59 132

Con 37 21 58

Total 110 80 190

Alternatively, O1 = B = 59, O2 = C = 37, E1 = E2 = (O1 + O2)/2 =
(59 + 37)/2 = 48, and

χ2
1 = (O1 − E1)

2

E1
+ (O2 − E2)

2

E2
= (59 − 48)2

48
+ (37 − 48)2

48
= 5.0417 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values that are equal to or greater than the observed value of Q. For the
frequency data listed in Table 4.33, there are only M = 97 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies
given the two cell frequencies of change, 59 and 37, and only 76 Q values are
equal to or greater than the observed value of Q = 5.0417. The exact upper-
tail probability value of the observed Q value is P = 0.0315, i.e., the sum
of the hypergeometric point probability values that are associated with values of
Q = 5.0417 or greater.

4.7 Cochran’s Q Test for Change

The ubiquitous dichotomous variable plays a large role and has many applications
in research and measurement. Conventionally, a value of one is assigned to each
test item that a subject answers correctly and a zero is assigned to each incorrect
answer. A common example application occurs when subjects are placed into an
experimental situation, observed as to whether or not some specified response is
elicited, and scored appropriately [56].

In 1950, William Cochran published an article on “The comparison of per-
centages in matched samples” [22]. In this brief but formative article, Cochran
described a test for equality of matched proportions that is now widely used in
educational and psychological research. The matching may be based on the char-
acteristics of different subjects or on the same subjects under different conditions.
The Cochran Q test may be viewed as an extension of the McNemar [63] test
to three or more treatment conditions. For a typical application, suppose that
a sample of N ≥ 2 subjects is observed in a situation wherein each subject
performs individually under each of k ≥ 1 different experimental conditions. The
performance is scored as a success (1) or as a failure (0). The research question
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evaluates whether the true proportion of successes is constant over the k time
periods.

Cochran’s Q test for the analysis of k treatment conditions (columns) and N

subjects (rows) is given by:

Q =
(k − 1)

⎛

⎝k

k∑

j=1

C2
j − A2

⎞

⎠

kA − B
, (4.11)

where

Cj =
N∑

i=1

xij

is the number of 1s in the j th of k columns,

Ri =
k∑

j=1

xij

is the number of 1s in the ith of N rows,

A =
N∑

i=1

Ri , B =
N∑

i=1

R2
i ,

and xij denotes the cell entry of either 0 or 1 associated with the ith of N rows and
the j th of k columns. The null hypothesis stipulates that each of the

M =
N∏

i=1

(
k

Ri

)

distinguishable arrangements of 1s and 0s within each of the N rows occurs with
equal probability, given that the values of R1, . . . , RN are fixed [65].

4.7.1 Example 1

For an example analysis of Cochran’s Q test, consider the binary-coded data listed
in Table 4.34 consisting of responses (1 or 0) for N = 10 subjects evaluated over
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Table 4.34 Successes (1)
and failures (0) of N = 10
subjects on a series of k = 5
time periods

Time

Subject 1 2 3 4 5 Ri

1 0 1 1 0 0 2

2 1 0 1 0 1 3

3 0 1 1 0 0 2

4 1 1 0 0 0 2

5 1 0 1 1 0 3

6 0 1 1 0 0 2

7 0 1 0 1 0 2

8 0 0 1 0 0 1

9 0 1 0 1 0 2

10 1 1 1 0 0 3

Cj 4 7 7 3 1 22

k = 5 time periods, where a 1 denotes success on a prescribed task and a 0 denotes
failure. For the binary-coded data listed in Table 4.34,

k∑

j=1

C2
j = 42 + 72 + 72 + 32 + 12 = 124 ,

A =
N∑

i=1

Ri = 2 + 3 + 2 + 2 + 3 + 2 + 2 + 1 + 2 + 3 = 22 ,

B =
N∑

i=1

R2
i = 22 + 32 + 22 + 22 + 32 + 22 + 22 + 12 + 22 + 32 = 52 ,

and, following Eq. (4.11) on p. 180, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛

⎝k

k∑

j=1

C2
j − A2

⎞

⎠

kA − B
= (5 − 1)[(5)(124) − 222]

(5)(22) − 52
= 9.3793 .

For the binary-coded data listed in Table 4.34, there are

M =
N∏

i=1

(
k

Ri

)
=
(

5

1

)1(5

2

)6(5

3

)3

= (5)(106)(103) = 5,000,000,000

possible, equally-likely arrangements of the observed data, making an exact permu-
tation analysis prohibitive and a Monte Carlo resampling analysis necessary. Based
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on L = 1,000,000 random arrangements of the observed data, there are 54,486 Q

values equal to or greater than the observed value of Q = 9.3793. If Qo denotes the
observed value of Q, the approximate resampling probability value of the observed
data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

L
= 54,486

1,000,000
= 0.0545 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
9.3793 with k − 1 = 5 − 1 = 4 degrees of freedom is P = 0.0523.

4.7.2 Example 2

For a second example of Cochran’s Q test, consider the binary-coded data listed in
Table 4.35 consisting of responses (1 or 0) for N = 9 subjects evaluated over k = 3
time periods, where a 1 indicates success on a prescribed task and a 0 indicates
failure. For the binary-coded data listed in Table 4.35,

A =
N∑

i=1

Ri = 1 + 1 + 1 + 1 + 2 + 1 + 2 + 1 + 2 = 12 ,

B =
N∑

i=1

R2
i = 12 + 12 + 12 + 12 + 22 + 12 + 22 + 12 + 22 = 18 ,

g∑

j=1

C2
j = 42 + 72 + 12 = 66 ,

Table 4.35 Successes (1)
and failures (0) of N = 9
subjects on a series of k = 3
time periods

Time

Subject 1 2 3 Ri

1 0 1 0 1

2 0 1 0 1

3 1 0 0 1

4 0 1 0 1

5 1 0 1 2

6 0 1 0 1

7 1 1 0 2

8 0 1 0 1

9 1 1 0 2

Cj 4 7 1 12
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and, following Eq. (4.11) on p. 180, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛

⎝k

k∑

j=1

C2
j − A2

⎞

⎠

kA − B
= (3 − 1)[(3)(66) − 122]

(3)(12) − 18
= 6.00 .

For the binary-coded data listed in Table 4.35, there are only

M =
N∏

i=1

(
k

Ri

)
=
(

3

1

)6(3

2

)3

= (36)(33) = 19,683

possible, equally-likely arrangements of the observed data in the reference set of all
possible arrangements, making an exact permutation analysis easily accomplished.
Based on M = 19,683 equally-likely, possible arrangements of the observed data,
there are 1,056 Q values equal to or greater than the observed value of Q = 6.00.
If Qo denotes the observed value of Q, the exact upper-tail probability value of the
observed data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

M
= 1,056

19,683
= 0.0537 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
86.00 with k − 1 = 3 − 1 = 2 degrees of freedom is P = 0.0498.

4.8 A Measure of Effect Size for Cochran’s Q Test

Measures of effect size are increasingly important in reporting research outcomes.
The American Psychological Association (APA) has long recommended measures
of effect size for articles published in APA journals. For example, as far back as
1994 the 4th edition of the APA Publication Manual strongly encouraged reporting
measures of effect size in conjunction with probability values. In 1999, the APA
Task Force on Statistical Inference, under the direction of Leland Wilkinson, noted
that “reporting and interpreting effect sizes in the context of previously reported
effects is essential to good research” [87, p. 599]. In 2016, the American Statistical
Association (ASA) recommended that measures of effect size be included in future
publications in ASA journals [84]. Unfortunately, measures of effect size do not
exist for a number of common statistical tests. In this section, a chance-corrected
measure of effect size is presented for Cochran’s Q test for related proportions [9].

Consider an alternative approach to Cochran’s Q test where g treatments are
applied independently to each of N subjects with the result of each treatment
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application recorded as either 1 or 0, representing any suitable dichotomization of
the treatment results, i.e., a randomized-block design where the subjects are the
blocks and the treatment results are registered as either 1 or 0. Let xij denote the
recorded 1 and 0 response measurements for i = 1, . . . , N and j = 1, . . . , g.
Then, Cochran’s test statistic can be defined as:

Q = g − 1

2
N∑

i=1

pi(1 − pi)

[
2

(
N∑

i=1

pi

)(
N −

N∑

i=1

pi

)
− N(N − 1) δ

]
,

where

δ =
[
g

(
N

2

)]−1 g∑

k=1

N−1∑

i=1

N∑

j=i+1

∣∣xik − xjk

∣∣ (4.12)

and

pi = 1

g

g∑

j=1

xij for i = 1, . . . , N ,

that is, the proportion of 1 values for the ith of N subjects. Note that in this
representation the variation of Q is totally dependent on δ.

In 1979, Acock and Stavig [1] proposed a maximum value for Q given by:

Qmax = N(g − 1) . (4.13)

Acock and Stavig’s maximum value of Q in Eq. (4.13) was employed by Serlin,
Carr, and Marascuilo [77] to provide a measure of effect size for Cochran’s Q

given by:

η̂ 2
Q = Q

Qmax
= Q

N(g − 1)
,

which standardized Cochran’s Q by a maximum value. Unfortunately, the value of
Qmax = N(g − 1) advocated by Acock and Stavig is achieved only when each
subject g-tuple is identical and there is at least one 1 and one 0 in each g-tuple.
Thus, η̂ 2

Q is a “maximum-corrected” measure of effect size and 0 ≤ η̂ 2
Q ≤ 1 only

under these rare conditions.
Assume 0 < pi < 1 for i = 1, . . . , N since pi = 0 and pi = 1 are

uninformative. If pi is constant for i = 1, . . . , N , then Qmax = N(g−1). However,
for the vast majority of cases when pi �= pj for i �= j , Qmax < N(g − 1). Thus, the
routine use of setting Qmax = N(g − 1) is problematic and leads to questionable
results.
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It should also be noted that η̂ 2
Q is a member of the V family of measures of

nominal association based on Cramér’s V 2 test statistic given by:

V 2 = χ2

χ2
max

= χ2

N
[

min(r − 1, c − 1)
] ,

where r and c denote the number of rows and columns in an r×c contingency
table [1]. Other members of the V family are Pearson’s φ2 for 2×2 contingency
tables [70] and Tschuprov’s T 2 for r×c contingency tables where r = c [82]. The
difficulties in interpreting V 2 extend to η̂ 2

Q.

As noted in Chap. 3, Wickens observed that Cramér’s V 2 lacks an intuitive
interpretation other than as a scaling of chi-squared, which limits its usefulness [86,
p. 226]. Also, Costner noted that V 2 and other measures based on Pearson’s chi-
squared lack any interpretation at all for values other than 0 and 1, or the maximum,
given the observed marginal frequency distributions [27]. Agresti and Finlay also
noted that Cramér’s V 2 is very difficult to interpret and recommended other mea-
sures [2, p. 284]. Blalock noted that “all measures based on chi square are somewhat
arbitrary in nature, and their interpretations leave a lot to be desired . . . they all
give greater weight to those columns or rows having the smallest marginals rather
than to those with the largest marginals” [17, 18, p. 306]. Ferguson discussed the
problem of using idealized marginal frequencies [30, p. 422], and Guilford noted
that measures such as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 necessarily
underestimate the magnitude of association present [42, p. 342]. Berry, Martin, and
Olson considered these issues with respect to 2×2 contingency tables [10, 12],
and Berry, Johnston, and Mielke discussed in some detail the problems with using
Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 as measures of effect size [8].
Since η̂ 2

Q is simply a special case of Cramér’s V 2, it presents the same problems

of interpretation. For a detailed assessment of Pearson’s φ2, Tschuprov’s T 2, and
Cramér’s V 2, see Chap. 3.

4.8.1 A Chance-Corrected Measure of Effect Size

Chance-corrected measures of effect size have much to commend them over
maximum-corrected measures. A chance-corrected measure of effect size is a
measure of agreement among the N subjects over g treatments, corrected for chance.
A number of researchers have advocated chance-corrected measures of effect size,
including Brennan and Prediger [20], Cicchetti, Showalter, and Tyrer [21], Con-
ger [26], and Krippendorff [50]. A chance-corrected measure is zero under chance
conditions, unity when agreement among the N subjects is perfect, and negative
under conditions of disagreement. Some well-known chance-corrected measures are
Scott’s coefficient of inter-coder agreement [76], Kendall and Babington Smith’s
u measure of agreement [48], Cohen’s unweighted and weighted coefficients of
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inter-rater agreement [23, 24], and Spearman’s footrule measure [79, 80]. Under
certain conditions, Spearman’s rank-order correlation coefficient [79, 80] is also a
chance-corrected measure of agreement, i.e., when variables x and y consist of ranks
from 1 to N with no tied values, or when variable x includes tied values and variable
y is a permutation of variable x, then Spearman’s rank-order correlation coefficient
is both a measure of correlation and a chance-corrected measure of agreement [50,
p. 144].

Let xij denote the (0, 1) response measurements for i = 1, . . . , N blocks and
j = 1, . . . , g treatments, then

δ =
[
g

(
N

2

)]−1 g∑

k=1

N−1∑

i=1

N∑

j=i+1

∣∣xik − xjk

∣∣ .

Under the null hypothesis that the distribution of δ assigns equal probability to
each of

M = (
g!)N

possible allocations of the g dichotomous response measurements to the g treatment
positions for each of the N subjects, the average value of δ is given by:

μδ = 2

N(N − 1)

[(
N∑

i=1

pi

)(
N −

N∑

i=1

pi

)
−

N∑

i=1

pi(1 − pi)

]
,

where

pi = 1

g

g∑

i=1

xij for i = 1, . . . , N .

Then, a chance-corrected measure of effect size may be defined as:

� = 1 − δ

μδ

.

4.8.2 Example

Consider a sample of N = 6 psychology graduate students enrolled in a seminar
designed to hone skills in assessing patients with various disorders. The seminar
includes a clinical aspect whereby actors, provided with different scripts, present
symptoms that the students then diagnose. There are g = 8 scripts for a variety
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Table 4.36 Example data for
Cochran’s Q test of related
proportions with N = 6
subjects and g = 8 treatments

Treatment

Subject 1 2 3 4 5 6 7 8

1 0 1 1 1 0 0 1 0

2 1 1 1 0 0 1 1 1

3 0 1 0 1 1 0 1 1

4 1 1 1 1 0 1 1 1

5 0 1 1 0 0 0 1 1

6 1 1 1 1 0 1 1 0

Table 4.37 Summations for
pi and pi (1 − pi) for
i = 1, . . . , N

i pi 1 − pi pi(1 − pi )

1 0.5000 0.5000 0.2500

2 0.7500 0.2500 0.1875

3 0.6250 0.3750 0.2344

4 0.8750 0.1250 0.1094

5 0.5000 0.5000 0.2500

6 0.7500 0.2500 0.1875

Total 4.0000 1.2188

of symptoms including eating disorders, anxiety, depression, oppositional defiant
behavior, obsessive-compulsive disorder, and post-traumatic stress disorders, any of
which may be presented over the course of the seminar. The “patients” present at
random intervals during the semester and the students are assessed as to whether or
not the correct diagnosis was made. Table 4.36 lists the data with a 1 (0) indicating
a correct (false) diagnosis. For the binary data listed in Table 4.36, Table 4.37
illustrates the calculation of

N∑

i=1

pi and
N∑

i=1

pi(1 − pi) ,

where

p1 = 1

g

g∑

j=1

x1j = 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0

8
= 0.5000 ,

p2 = 1

g

g∑

j=1

x2j = 1 + 1 + 1 + 0 + 0 + 1 + 1 + 1

8
= 0.7500 ,

p3 = 1

g

g∑

j=1

x3j = 0 + 1 + 0 + 1 + 1 + 0 + 1 + 1

8
= 0.6250 ,
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p4 = 1

g

g∑

j=1

x4j = 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1

8
= 0.8750 ,

p5 = 1

g

g∑

j=1

x5j = 0 + 1 + 1 + 0 + 0 + 0 + 1 + 1

8
= 0.5000 ,

and

p6 = 1

g

g∑

j=1

x6j = 1 + 1 + 1 + 1 + 0 + 1 + 1 + 0

8
= 0.7500 .

Table 4.38 illustrates the calculation of the |xik − xjk| values, i = 1, . . . , N − 1
and j = i + 1, . . . , N , for Treatments 1, 2, . . . , 8. Then,

δ =
[
g

(
N

2

)]−1 g∑

k=1

N−1∑

i=1

N∑

j=i+1

∣∣xik − xjk

∣∣

=
[

8

(
6

2

)]−1

(9 + 0 + 5 + 8 + 5 + 9 + 0 + 8) = 0.3667 ,

Q = g − 1

2
N∑

i=1

pi(1 − pi)

[
2

(
N∑

i=1

pi

)(
N −

N∑

i=1

pi

)
− N(N − 1) δ

]

= 8 − 1

2(1.2188)

[
2(4.00)(6 − 4.00) − 6(6 − 1)(0.3667)

] = 14.3590 ,

μδ = 2

N(N − 1)

[(
N∑

i=1

pi

)(
N −

N∑

i=1

pi

)
−

N∑

i=1

pi(1 − pi)

]

= 2

6(6 − 1)

[
(4.00)(6 − 4.00) − 1.2188

] = 0.4521 ,

and

� = 1 − δ

μδ

= 1 − 0.3667

0.4521
= +0.1889 ,
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Table 4.38 Summation totals for |xik −xjk | for k = 1, 2, . . . , 7, 8 treatments, i = 1, . . . , N −1,
and j = i + 1, . . . , N

Treatment

1 2 · · · 7 8

i |xi1 − xj1| |xi2 − xj2| · · · |xi7 − xj7| |xi8 − xj8|
1 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

2 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

3 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

4 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

5 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 0| = 0

6 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

7 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

8 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

9 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

10 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

11 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

12 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

13 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

14 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

15 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

Total 9 0 · · · 0 8

indicating approximately 19% agreement above that expected by chance. For
comparison, the maximum-corrected measure of effect size proposed by Serlin et
al. [77] is

η̂ 2
Q = Q

Qmax
= Q

N(g − 1)
= 14.3590

6(8 − 1)
= 0.3419.

4.8.3 Advantages of the � Measure of Effect Size

Chance-corrected measures of effect size, such as �, possess distinct advantages
in interpretation over maximum-corrected measures of effect size, such as η̂ 2

Q. The

problem with η̂ 2
Q lies in the manner in which η̂ 2

Q is maximized. The denominator of

η̂ 2
Q, Qmax = N(g−1), standardizes the observed value of Q for the sample size (N)

and the number of treatments (g). Unfortunately, N(g − 1) does not standardize Q

for the data on which Q is based, but rather standardizes Q on another unobserved
hypothetical set of data.

Consider a simple example with N = 10 subjects and g = 2 treatments. The
observed data are given in Table 4.39, where at Time 1 seven subjects were classified
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Table 4.39 Example 2×2
cross-classification for
Cochran’s Q test for change

Time 2

Time 1 Pro Con Total

Pro 5 2 7

Con 0 3 3

Total 5 5 10

Table 4.40 Four possible arrangements of the data given in Table 4.39 with fixed observed row
and column marginal frequency distributions, {7, 3} and {5, 5}, respectively

Table A Table B Table C Table D

Pro Con Pro Con Pro Con Pro Con

Pro 5 2 4 3 3 4 2 5

Con 0 3 1 2 2 1 3 0

as Pro and three subjects were classified as Con, and at Time 2 five subjects were
classified as Pro and five subjects were classified as Con.

Given the observed data in Table 4.39, only four values of Q are possible.
Table 4.40 displays the four possible arrangements in the reference set of all
permutations of cell frequencies given the observed row and column marginal
frequency distributions, {7, 3} and {5, 5}, respectively. Table A in Table 4.40 (the
observed table) yields Q = 2.00, Table B yields Q = 1.00, Table C yields
Q = 0.6667, and Table D yields Q = 0.50. Thus, for the observed data given
in Table 4.40, Q = 2.00 is the maximum value of Q possible, given the observed
marginal frequency distributions. Note that Qmax = N(g − 1) = 10(2 − 1) = 10
cannot be achieved with these data. For the data given in Table A in Table 4.40
with Q = 2.00, η̂ 2

Q is only 0.20, while � = 1.00, indicating the proper maximum-
corrected effect size.

� is a preferred alternative to η̂ 2
Q as a measure of effect size for two reasons.

First, � can achieve an effect size of unity for the observed data, while this is often
impossible for η̂ 2

Q. Second, � is a chance-corrected measure of effect size, meaning
that � is zero under chance conditions, unity when agreement among the N subjects
is perfect, and negative under conditions of disagreement. Therefore, � possesses
a clear interpretation corresponding to Cohen’s coefficient of inter-rater agreement
and other chance-corrected measures that are familiar to most researchers. On the
other hand, η̂ 2

Q possesses no meaningful interpretation except for the limiting values
of Q = 0 and Q = 1.

4.9 Leik and Gove’s d c
N

Measure of Association

In 1971, Robert Leik and Walter Gove proposed a new measure of nominal asso-
ciation based on pairwise comparisons of differences between observations [53].
Dissatisfied with the existing measures of nominal association, Leik and Gove
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suggested a proportional-reduction-in-error measure of association that was cor-
rected for the true maximum amount of association, given the observed marginal
frequency distributions. The new measure was denoted by d c

N , where d indicated
the index, following other indices such as Somers’ dyx and dxy ; the subscript N

indicated the relevance of d to a nominal dependent variable; and the superscript c

indicated that the measure was corrected for the constraints imposed by the marginal
frequency distributions [53, p. 287].

Like d c
N , many measures of association for two variables have been based on

pairwise comparisons of differences between observations. Consider two nominal-
level variables that have been cross-classified into an r×c contingency table, where
r and c denote the number of rows and columns, respectively. Let ni., n.j , and nij

denote the row marginal frequency totals, column marginal frequency totals, and
number of objects in the ijth cell, respectively, for i = 1, . . . , r and j = 1, . . . , c,
and let N denote the total number of objects in the r×c contingency table. If y

and x represent the row and column variables, respectively, there are N(N − 1)/2
pairs of objects in the table that can be partitioned into five mutually exclusive,
exhaustive types of pairs: concordant pairs, discordant pairs, pairs tied on variable y

but differing on variable x, pairs tied on variable x but differing on variable y, and
pairs tied on both variables x and y.

For an r×c contingency table, concordant pairs (pairs of objects that are ranked
in the same order on both variable x and variable y) are given by:

C =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠ ,

discordant pairs (pairs of objects that are ranked in one order on variable x and the
reverse order on variable y) are given by:

D =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠ ,

pairs of objects tied on variable x but differing on variable y are given by:

Tx =
r∑

i=1

c−1∑

j=1

nij

⎛

⎝
c∑

k=j+1

nik

⎞

⎠ ,

pairs of objects tied on variable y but differing on variable x are given by:

Ty =
c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)
,
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Table 4.41 Example
observed values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 15 5 0 20

y2 15 25 10 50

y3 0 10 20 30

Total 30 40 30 100

and pairs of objects tied on both variable x and variable y are given by:

Txy = 1

2

r∑

i=1

c∑

j=1

nij

(
nij − 1

)
.

Then,

C + D + Tx + Ty + Txy = N(N − 1)

2
.

To illustrate the calculation of Leik and Gove’s d c
N measure, consider first an

example 3×3 contingency table, such as given in Table 4.41, where N = 100
observations are cross-classified into variable x and variable y, each with r = c = 3
categories labeled x1, x2, x3 and y1, y2, y3, respectively.

4.9.1 Observed Contingency Table

For the frequency data given in Table 4.41, consider all possible pairs of observed
cell frequency values that have been partitioned into concordant pairs,

C =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (15)(25 + 10 + 10 + 20) + (5)(10 + 20) + (15)(10 + 20) + (25)(20)

= 2,075 ,

all discordant pairs of observed cell frequency values,

D =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (0)(15 + 25 + 0 + 10) + (5)(15 + 0) + (10)(0 + 10) + (25)(0)

= 175 ,
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all pairs of observed cell frequency values tied on variable x,

Tx =
c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)

= (15)(15 + 0) + (15)(0) + (5)(25 + 10) + (25)(10)

+ (0)(10 + 20) + (10)(20) = 850 ,

all pairs of observed cell frequency values tied on variable y,

Ty =
r∑

i=1

c−1∑

j=1

nij

⎛

⎝
c∑

k=j+1

nik

⎞

⎠

(15)(5 + 0) + (5)(0) + (15)(25 + 10) + (25)(10)

+ (0)(10 + 20) + (10)(20) = 1,050 ,

and all pairs of observed cell frequency values tied on both variables x and y,

Txy = 1

2

r∑

i=1

c∑

j=1

nij

(
nij − 1

)

= 1

2

[
(15)(15 − 1) + (5)(5 − 1) + (15)(15 − 1) + (25)(25 − 1)

+ (10)(10 − 1) + (10)(10 − 1) + (20)(20 − 1)
] = 800 .

Then,

C + D + Tx + Ty + Txy = N(N − 1)

2

and, for the observed frequency data given in Table 4.41,

2,075 + 175 + 850 + 1,050 + 800 = 100(100 − 1)

2
= 4,950 .

4.9.2 Expected Contingency Table

Now, consider Table 4.41 expressed as expected cell values, as given in Table 4.42,
where an expected value is given by:

Eij = ni.n.j

N
for i = 1, . . . , r and j = 1, . . . , c .
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Table 4.42 Example
expected values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 6 8 6 20

y2 15 20 15 50

y3 9 12 9 30

Total 30 40 30 100

For example,

E11 = (20)(30)

100
= 6 and E12 = (20)(40)

100
= 8 .

Following Leik and Gove, let a prime (′) indicate a sum of pairs calculated on
the expected cell frequency values. Then, for the expected cell frequency values
given in Table 4.42, consider all possible pairs of expected values partitioned into
concordant pairs,

C ′ =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (6)(20 + 15 + 12 + 9) + (8)(15 + 9) + (15)(12 + 9)

+ (20)(9) = 1,023 ,

all discordant pairs of expected cell frequency values,

D ′ =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (6)(15 + 20 + 9 + 12) + (8)(15 + 9) + (15)(9 + 12)

+ (20)(9) = 1,023 ,

all pairs of expected cell frequency values tied on variable x,

T ′
x =

c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)

= (6)(15 + 9) + (15)(9) + (8)(20 + 12) + (20)(12)

+ (6)(15 + 9) + (15)(9) = 1,054 ,



4.9 Leik and Gove’s d c
N Measure of Association 195

all pairs of expected cell frequency values tied on variable y,

T ′
y =

r∑

i=1

c−1∑

j=1

nij

⎛

⎝
c∑

k=j+1

nik

⎞

⎠

(6)(8 + 6) + (8)(6) + (15)(20 + 15) + (20)(15)

+ (9)(12 + 9) + (12)(9) = 1,254 ,

and all pairs of expected cell frequency values tied on both variables x and y,

T ′
xy = 1

2

r∑

i=1

c∑

j=1

nij

(
nij − 1

)

= 1

2

[
(6)(6 − 1) + (8)(8 − 1) + (6)(6 − 1) + (15)(15 − 1)

+ (20)(20 − 1) + (15)(15 − 1) + (9)(9 − 1) + (12)(12 − 1)

+ (9)(9 − 1)
] = 596 .

Then,

C ′ + D ′ + T ′
x + T ′

y + T ′
xy = N(N − 1)

2

and, for the expected frequency data given in Table 4.42,

1,023 + 1,023 + 1,054 + 1,254 + 596 = 100(100 − 1)

2
= 4,950 .

Fortunately, there is a more convenient way to calculate C ′, D ′, T ′
x , T ′

y ,
and T ′

xy without first calculating the expected values. First, given the observed
row and column marginal frequency distributions in Table 4.41, {20, 50, 30} and
{30, 40, 30}, respectively, calculate the number of pairs of expected cell frequency
values tied on both variables x and y,

T ′
xy = 1

2N2

(
r∑

i=1

n2
i.

)⎛

⎝
c∑

j=1

n2
.j

⎞

⎠− N

2

= 1

2(1002)

(
202 + 502 + 302

) (
302 + 402 + 302

)
− 100

2
= 596 .
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Next, calculate the number of pairs of expected cell frequency values tied on
variable y,

T ′
y = 1

2

r∑

i=1

n2
i. − N

2
− T ′

xy = 1

2

(
202 + 502 + 302

)
− 100

2
− 596 = 1,254 .

In like manner, calculate the number of pairs of expected cell frequency values tied
on variable x,

T ′
x = 1

2

c∑

j=1

n2
.j − N

2
− T ′

xy = 1

2

(
302 + 402 + 302

)
− 100

2
− 596 = 1,054 .

Finally, calculate the number of concordant and discordant pairs of expected cell
frequency values,

C ′ = D ′ = 1

2

[
N(N − 1)

2
− T ′

x − T ′
y − T ′

xy

]

= 1

2

[
100(100 − 1)

2
− 1054 − 1254 − 596

]
= 1,023 .

It should be noted that C ′, D ′, T ′
x , T ′

y , and T ′
xy are all calculated on the observed

marginal frequency totals of the observed contingency table, which are invariant
under permutation.

4.9.3 Maximized Contingency Table

Test statistic d c
N is based on three contingency tables: the table of observed values

given in Table 4.41, the table of expected values given in Table 4.42, and a table
of maximum values to be described next. A contingency table of maximum values
is necessary for computing d c

N . An algorithm for generating an arrangement of cell
frequencies in an r×c contingency table that provides the maximum value of a test
statistic was presented in Chap. 3, Sect. 3.2. The algorithm is reproduced here for
convenience.

STEP 1: List the observed marginal frequency totals of an r×c contingency table
with empty cell frequencies.

STEP 2: If any pair of marginal frequency totals, one from each set of marginals,
are equal to each other, enter that value in the table as nij and subtract the value
from the two marginal frequency totals. For example, if the marginal frequency
total for Row 2 is equal to the marginal frequency total for Column 3, enter the
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marginal frequency total in the table as n23 and subtract the value of n23 from the
marginal frequency totals of Row 2 and Column 3.

Repeat STEP 2 until no two marginal frequency totals are equal. If all marginal
frequency totals have been reduced to zero, go to STEP 5; otherwise, go to
STEP 3.

STEP 3: Find the largest remaining marginal frequency totals in each set and enter
the smaller of the two values in nij . Then, subtract that (smaller) value from the
two marginal frequency totals. Go to STEP 4.

STEP 4: If all marginal frequency totals have been reduced to zero, go to STEP 5;
otherwise, go to STEP 2.

STEP 5: Set any remaining nij values to zero, i = 1, . . . , r and j = 1, . . . , c.

To illustrate the algorithmic procedure, consider the 3×3 contingency table
given in Table 4.41 on p. 192, replicated in Table 4.43 for convenience. Then, the
procedure is:

STEP 1: List the observed row and column marginal frequency totals, leaving the
cell frequencies empty, as in Table 4.44.

STEP 2: For the two sets of marginal frequency totals given in Table 4.44, three
marginal frequency totals are equal to 30, one for Row 3, one for Column 1, and
one for Column 3, i.e., n3. = n.1 = n.3 = 30. Set n31 = 30 and subtract 30
from the two marginal frequency totals. The adjusted row and column marginal
frequency totals are now {20, 50, 0} and {0, 40, 30}, respectively. No other two
marginal frequency totals are identical, so go to STEP 3.

STEP 3: The two largest remaining marginal frequency totals are 50 in Row 2 and
50 in Column 2, i.e., n2. = 50 and n.2 = 40. Set n22 = 40, the smaller of the
two marginal frequency totals, and subtract 40 from the two adjusted marginal
frequency totals. The adjusted row and column marginal frequency totals are now
{20, 10, 0} and {0, 0, 30}, respectively. Go to STEP 4.

STEP 4: Not all marginal frequency totals have been reduced to zero, so go to
STEP 2.

Table 4.43 Example
observed values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 15 5 0 20

y2 15 25 10 50

y3 0 10 20 30

Total 30 40 30 100

Table 4.44 Empty 3×3
contingency table with
observed row marginal
frequency distribution
{20, 50, 30} and observed
column marginal frequency
distribution {30, 40, 30}

x

y x1 x2 x3 Total

y1 – – – 20

y2 – – – 50

y3 – – – 30

Total 30 40 30 100
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STEP 2: No two marginal frequency totals are identical, so go to STEP 3.
STEP 3: The two largest marginal frequency totals are 20 in Row 1 and 30 in

Column 3, i.e., n1. = 20 and n.3 = 30. Set n13 = 20, the smaller of the
two marginal frequency totals and subtract 20 from the two adjusted marginal
frequency totals. The adjusted row and column marginal frequency totals are
now {0, 10, 0} and {0, 0, 10}. Go to STEP 4.

STEP 4: Not all marginal frequency totals have been reduced to zero, so go to
STEP 2.

STEP 2: Two marginal frequency totals are equal to 10, one for Row 2 and one
for Column 3, i.e., n2. = n.3 = 10. Set n23 = 10 and subtract 10 from the two
adjusted marginal frequency totals. The adjusted row and column marginals are
now {0, 0, 0} and {0, 0, 0}. All adjusted marginal frequency totals are now zero,
so go to STEP 5.

STEP 5: Set any remaining nij values to zero; in this case, n11, n12, n21, n32, and
n33 are set to zero.

The completed contingency table is given in Table 4.45. When there are tied values
in a marginal distribution, e.g., n.1 = n.3 = 30, there may be alternative cell
locations for the non-zero entries, meaning that more than one arrangement of
cell frequencies may satisfy the conditions, but the nine cell frequency values
{0, 0, 20, 0, 40, 10, 30, 0, 0} must be included in the 3×3 maximized contingency
table.

Let a double prime (′′) indicate a sum of pairs calculated on the maximized cell
frequency values. Then, for the maximized frequency data given in Table 4.45, the
number of concordant pairs of maximized cell frequency values is

C ′′ =
r−1∑

i=1

c−1∑

j=1

nij

⎛

⎝
r∑

k=i+1

c∑

l=j+1

nkl

⎞

⎠

= (0)(40 + 10 + 0 + 0) + (0)(10 + 0) + (0)(0 + 0)

+ (20)(0) = 0 ,

Table 4.45 Completed 3×3
contingency table with row
marginal frequency
distribution {20, 50, 30} and
column marginal frequency
distribution {30, 40, 30}

x

y x1 x2 x3 Total

y1 0 0 20 20

y2 0 40 10 50

y3 30 0 0 30

Total 30 40 30 100
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the number of discordant pairs of maximized cell frequency values is

D ′′ =
r−1∑

i=1

c−1∑

j=1

ni,c−j+1

⎛

⎝
r∑

k=i+1

c−j∑

l=1

nkl

⎞

⎠

= (20)(0 + 40 + 30 + 0) + (0)(0 + 30) + (10)(30 + 0)

+ (40)(30) = 2,900 ,

the number of pairs of maximized cell frequency values tied on variable x is

T ′′
x =

c∑

j=1

r−1∑

i=1

nij

(
r∑

k=i+1

nkj

)

= (0)(0 + 20) + (0)(20) + (0)(40 + 10) + (40)(10)

+ (30)(0 + 0) + (0)(0) = 400 ,

the number of pairs of maximized cell frequency values tied on variable y is

T ′′
y =

r∑

i=1

c−1∑

j=1

nij

⎛

⎝
c∑

k=j+1

nik

⎞

⎠

(0)(0 + 30) + (0)(30) + (0)(40 + 0) + (40)(0)

+ (20)(10 + 0) + (10)(0) = 200 ,

and the number of pairs of maximized cell frequency values tied on both variables
x and y is

T ′′
xy = 1

2

r∑

i=1

c∑

j=1

nij

(
nij − 1

)

= 1

2

[
(20)(20 − 1) + (40)(40 − 1) + (10)(10 − 1) + (30)(30 − 1)

]

= 1,450 .

Then,

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy = N(N − 1)

2
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Table 4.46 Values for C, D,
Tx , Ty , and Txy obtained from
the observed, expected, and
maximized frequency tables

Frequency table

Pairs Observed Expected Maximized

C 2,075 1,023 0

D 175 1,023 2,900

Tx 850 1,054 200

Ty 1,050 1,254 400

Txy 800 596 1,450

Total 4,950 4,950 4,950

and for the maximized data given in Table 4.45,

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy

= 0 + 2,900 + 200 + 400 + 1,450 = 100(100 − 1)

2
= 4,950 .

Note that the maximized contingency table given in Table 4.45 occurs only
when as few cells as possible contain non-zero entries. Thus, either C ′′ or D ′′
is maximized and the other is minimized; in this case, C ′′ = 0 is the minimum
value of C possible, given the observed marginal frequency distributions, and
D ′′ = 2,900 is the maximum value of D possible, given the observed marginal
frequency distributions. Also, T ′′

x = 200 and T ′′
y = 400 are the minimum values

of Tx and Ty possible, given the observed marginal frequency distributions. On the
other hand, T ′′

xy = 1,450 is the maximum value of Txy possible, given the observed
marginal frequency distributions.

Table 4.46 summarizes the C, D, Tx , Ty , and Txy values obtained from the
observed, expected, and maximized contingency tables.

4.9.4 Calculation of Leik and Gove’s d c
N

Given the observed, expected, and maximized values for C, D, Tx , Ty , and Txy in
Table 4.46, errors of the first kind (E1)—the variation between independence and
maximum association—are given by:

E1 = T ′
y − T ′′

y = 1,254 − 400 = 854

and errors of the second kind (E2)—the variation between the observed table and
the table of maximum association—are given by:

E2 = Ty − T ′′
y = 1,050 − 400 = 650 .
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Then, in the manner of proportional-reduction-in-error measures of association,

d c
N = E1 − E2

E1
= (T ′

y − T ′′
y ) − (Ty − T ′′

y )

T ′
y − T ′′

y

= T ′
y − Ty

T ′
y − T ′′

y

= 1,254 − 1,050

1,254 − 400
= 0.2389 .

Because d c
N is a symmetrical measure, the number of tied values on variable x

can be used in place of the number of tied values on variable y. Thus,

d c
N = T ′

x − Tx

T ′
x − T ′′

x

= 1,054 − 850

1,054 − 200
= 0.2389 .

Alternatively, d c
N can be defined in terms of the number of values tied on both x and

y. Thus,

d c
N = T ′

xy − Txy

T ′
xy − T ′′

xy

= 596 − 800

596 − 1,450
= 0.2389 .

Because the data are categorical, C and D can be considered as grouped together.
Thus,

d c
N =

(
C ′ + D ′) − (

C + D
)

(
C ′ + D ′)− (

C ′′ + D ′′) = (1,023 + 1,023) − (2,075 + 175)

(1,023 + 1,023) − (0 + 2,900)

= 0.2389 .

Finally,

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= T ′
x − Tx

T ′
x − T ′′

x

= T ′
xy − Txy

T ′
xy − T ′′

xy

=
(
C ′ + D ′) − (

C + D
)

(
C ′ + D ′) − (

C ′′ + D ′′) .

As noted by Leik and Gove, for an aid in interpreting the relationship between
variables x and y, it would be preferable to explicitly determine the number of pairs
lost to the marginal requirements of the contingency table. Association can then be
defined within those limits, enabling the index to reach unity if cell frequencies are
as close to a perfect pattern as the marginal distributions allow [53, p. 286]. Thus,
for the frequency data given in Table 4.41 on p. 192, the proportion of cases being
considered is

1 −
2
(
T ′′

x + T ′′
y

)

N(N − 1)
= 1 − 2(200 + 600)

100(100 − 1)
= 0.8384 .
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4.9.5 A Permutation Test for d c
N

Leik and Gove did not provide a standard error for test statistic d c
N [52]. On the

other hand, permutation tests neither assume nor require knowledge of standard
errors. Consider the expression

d c
N = T ′

y − Ty

T ′
y − T ′′

y

.

It is readily apparent that T ′
y and T ′′

y are invariant under permutation. Therefore,
the probability of d c

N under the null hypothesis can be determined by the discrete
permutation distribution of Ty alone, which is easily obtained from the observed
contingency table. Exact permutation statistical methods are highly efficient when
only the variable portion of the defined test statistic is calculated on each of the M

possible arrangements of the observed data; in this case, Ty .
For the frequency data given in Table 4.41 on p. 192, there are only M = 96,151

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 50, 30} and {30, 40, 30}, respectively, making an exact permutation analysis
feasible. If all M = 96,151 arrangements occur with equal chance, the exact
probability value of d c

N under the null hypothesis is the sum of the hypergeometric
point probability values associated with d c

N = 0.2389 or greater. Based on the
underlying hypergeometric probability distribution, the exact upper-tail probability
value is P = 0.1683×10−11.

4.10 A Matrix Occupancy Problem

In many research situations, it is necessary to examine a sequence of observations on
a small group of subjects, where each observation is classified in one of two ways.
Suppose, for example, a Success (1) or Failure (0) is recorded for each of N ≥ 2
subjects on each of k ≥ 2 tasks. The standard test in such cases is Cochran’s Q test,
as described in Sect. 4.7.

However, when the number of subjects is small, e.g., 2 ≤ N ≤ 6, and the number
of treatments is large, e.g., 20 ≤ k ≤ 400, an alternative test may be preferable to
Cochran’s Q test. Such research conditions arise for a number of reasons. First, a
long-term panel study is proposed, but few subjects are willing to make a research
commitment due to the extended time of the research, or the treatment is either
distasteful or time-intensive for the subjects. Second, a longitudinal study begins
with an adequate number of subjects, but there is a high drop-out rate and survival
analysis cannot be justified. Third, very few subjects satisfy the research protocol.
Fourth, the cost of each observation/treatment is expensive for the researcher. Fifth,
subjects are very expensive, as in primate studies. Sixth, a pilot study with a small



4.10 A Matrix Occupancy Problem 203

number of subjects may be implemented to establish the validity of the research
prior to applying for funding for a larger study.

Consider an N×k occupancy matrix with N subjects (rows) and k treatment
conditions (columns). Let xij denote the observation of the ith subject (i =
1, . . . , N) in the j th treatment condition (j = 1, . . . , k), where a success is coded
1 and a failure is coded 0. For any subject, a success might result from the treatment
administered or it might result from some other cause or a random response, i.e., a
false positive. Therefore, a successful treatment response is counted only when all
N subjects score a success, i.e., a full column of 1 values. Clearly, this approach
does not generalize well to a great number of subjects since it is unrealistic for a
large number of subjects to respond in concert. The Q test of Cochran is preferable
when N is large.

In 1965, Mielke and Siddiqui presented an exact permutation procedure for the
matrix occupancy problem in Journal of the American Statistical Association that
is appropriate for small samples (N) and a large number of treatments (k) [68].
Let

Ri =
k∑

j=1

xij

for i = 1, . . . , N denote subject (row) totals, let

M =
N∏

i=1

(
k

Ri

)

denote the number of equally-likely distinguishable N × k occupancy matrices
in the reference set, under the null hypothesis, and let v = min(R1, . . . , RN).
The null hypothesis stipulates that each of the M distinguishable configurations
of 1s and 0s within each of the N rows occurs with equal probability, given that
the R1, . . . , RN values are fixed. If Ug is the number of distinct configurations
where exactly k treatment conditions (columns) are filled with successes (1s),
then

Uv =
(

k

v

) N∏

i=1

(
k − v

Ri − v

)

is the initial value of the recursive relation

Ug =
(

k

g

)⎡

⎣
N∏

i=1

(
k − g

Ri − g

)
−

v∑

j=g+1

(
k − g

j − g

)
Uj(
k
j

)

⎤

⎦ ,
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where 0 ≤ g ≤ v − 1. If g = 0, then

M =
v∑

g=0

Ug

and the exact probability of observing s or more treatment conditions (columns)
completely filled with successes (1s) is given by:

P = 1

M

v∑

g=s

Ug ,

where 0 ≤ s ≤ v.
In 1972, Eicker, Siddiqui, and Mielke described extensions to the matrix occu-

pancy problem [28]. In 1974, Mantel [58] observed that the solution to the matrix
occupancy problem was also the solution to the “committee problem” considered by
Mantel and Pasternack in 1968 [59], Gittelsohn in 1969 [36], Sprott in 1969 [81],
and White in 1971 [85]. Whereas the matrix occupancy problem considers N

subjects and k treatments, scoring a success by a subject for a specific treatment
as a 1 and a failure as a 0, the committee problem considers N committees and k

individuals, scoring a 1 if an individual is not a member of a specified committee and
0 otherwise. The committee problem is concerned with the number of individuals
belonging to no committees, which is equivalent to the concern of the matrix
occupancy problem with the number of treatments associated with successes among
all subjects.

4.10.1 Example Analysis

Consider an experiment with N = 6 subjects and k = 8 treatment conditions,
such as given in Table 4.47. For the binary data listed in Table 4.47, the Ri totals
are {4, 6, 5, 7, 4, 6}, the minimum of Ri , i = 1, . . . , N , is v = 4, the number of

Table 4.47 Successes (1s)
and failures (0s) of N = 6
subjects on a series of k = 8
treatments

Treatment

Subject 1 2 3 4 5 6 7 8 Ri

1 0 1 1 1 0 0 1 0 4

2 1 1 1 0 0 1 1 1 6

3 0 1 0 1 1 0 1 1 5

4 1 1 1 1 0 1 1 1 7

5 0 1 1 0 0 0 1 1 4

6 1 1 1 1 0 1 1 0 6
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treatment conditions filled with 1s is s = 2 (treatments 2 and 7),

v∑

g=s

Ug =
4∑

g=2

Ug = 149,341,920 + 6,838,720 + 40,320 = 156,220,960 ,

the number of N×k occupancy matrices in the reference set of all possible
occupancy matrices, under the null hypothesis, is

M =
N∏

i=1

(
k

Ri

)
=
(

8

4

)(
8

6

)(
8

5

)(
8

7

)(
8

4

)(
8

6

)

= 70 × 28 × 56 × 8 × 70 × 28 = 1,721,036,800 ,

and the exact probability of observing s = 2 or more treatment conditions
completely filled with 1s is

P = 1

M

v∑

g=s

Ug = 156,220,960

1,721,036,800
= 0.0908 .

It is also possible to define a maximum-corrected measure of effect size as R = s/k

that varies between 0 when no treatments (columns) are completely filled with 1s,
to a maximum of 1 when all k columns are filled with 1s; in this example,

R = s

k
= 2

8
= 0.25.

4.11 Fisher’s Exact Probability Test

While Fisher’s exact probability (FEP) test is, strictly speaking, not a measure of
association between two nominal-level variables, it has assumed such importance
in the analysis of 2×2 contingency tables that excluding Fisher’s exact test from
consideration would be a serious omission. That said, however, Fisher’s exact
probability test provides the probability of association rather than a measure of the
strength of association. The Fisher exact probability test was independently devel-
oped by R.A. Fisher, Frank Yates, and Joseph Irwin in the early 1930s [32, 47, 89].
Consequently, the test is often referred to as the Fisher–Yates or the Fisher–Irwin
exact probability test.5

5In this research monograph “Fisher exact probability test” is used throughout.
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Although the Fisher exact probability test was originally designed for 2×2
contingency tables and is used almost exclusively for this purpose, in this section
the test is extended to apply to other contingency tables such as 2×3, 3×3, 3×4,
2×2×2, and other larger contingency tables. For ease of calculation and to avoid
large factorial expressions, a recursion procedure with an arbitrary initial value
provides an efficient method to obtain exact probability values; for a detailed
description of recursion procedures, see Chap. 2, Sects. 2.6.1 and 2.6.2.

4.11.1 Fisher’s Exact Analysis of a 2×2 Table

Consider a 2×2 contingency table with N cases, where xo denotes the observed
frequency of any cell and r and c represent the row and column marginal frequency
totals, respectively, corresponding to xo. Table 4.48 illustrates the notation for a 2×2
contingency table.

If H(x|r, c,N) is a recursively defined positive function in which

H(x|r, c,N) = D ×
(

r

x

)(
N − r

c − x

)(
N

c

)−1

= D × r! c! (N − r)! (N − c)!
N ! x! (r − x)! (c − x)! (N − r − c + x)! ,

where D > 0 is an unknown constant, then solving the recursive relation

H(x + 1|r, c,N) = H(x|r, c,N) × g(x)

yields

g(x) = (r − x)(c − x)

(x + 1)(N − r − c + x + 1)
.

The algorithm may then be employed to enumerate all values of

H(x|r, c,N) ,

Table 4.48 Example
notation for a 2×2
contingency table

A1 A2 Total

B1 x r − x r

B2 c − x N − r − c + x N − r

Total c N − c N
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where a ≤ x ≤ b, a = max(0, r + c − N), b = min(r, c), and H(a|N, r, c) is
initially set to some small positive value [14]. The total over the entire distribution
may be found by:

T =
b∑

k=a

H(k|r, c,N) .

To calculate the probability value of xo, given the observed marginal frequency
distributions, the point probability of the observed table must be determined. This
value, designated by U2 = H(x|r, c,N), is found recursively. Next, the tail of the
probability distribution associated with U2 must be identified. Let

U1 =
⎧
⎨

⎩
H(xo − 1|r, c,N) if xo > a ,

0 if xo = a ,

and

U3 =
⎧
⎨

⎩
H(xo + 1|r, c,N) if xo < b ,

0 if xo = b .

If U1 > U3, U2 is located in the right tail of the distribution; otherwise, U2 is defined
to be in the left tail of the distribution, and the one-tailed (S1) and two-tailed (S2)
subtotals may be found by:

S1(xo|r, c,N) =
b∑

k=a

KkH(k|r, c,N)

and

S2(xo|r, c,N) =
b∑

k=a

LkH(k|r, c,N) ,

respectively, where

Kk =
⎧
⎨

⎩
1 if U1 ≤ U3 and k ≤ xo or if U1 > U2 and k ≥ xo ,

0 otherwise ,
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and

Lk =
⎧
⎨

⎩
1 if H(k|r, c,N) ≤ U2 ,

0 otherwise ,

for k = a, . . . , b. The one- and two-tailed exact probability values are then given
by:

P1 = S1

T
and P2 = S2

T
,

respectively.

A 2×2 Contingency Table Example

To illustrate the calculation of Fisher’s exact probability test for a fourfold contin-
gency table, consider the 2×2 contingency table given in Table 4.49 with xo = 6,
r = 9, c = 8, N = 20,

a = max(0, r + c − N) = max(0, 9 + 8 − 20) = max(0,−3) = 0 ,

b = min(r, c) = min(9, 8) = 8 ,

and b − a + 1 = 8 − 0 + 1 = 9 possible table configurations in the reference set of
all permutations of cell frequencies, given the observed row and column marginal
frequency distributions, {9, 11} and {8, 12}, respectively.

Table 4.50 lists the nine possible values of x in the first column. The second
column of Table 4.50 lists the exact point probability values for x = 0, . . . , 8
calculated from the conventional hypergeometric probability expression given by:

p(x|r, c,N) =
(

r

x

)(
N − r

c − x

)(
N

c

)−1

= r! (N − r)! c! (N − c)!
N ! x! (r − x)! (c − x)! (N − r − c + x)! .

Table 4.49 Example 2×2
contingency table

A1 A2 Total

B1 6 3 9

B2 2 9 11

Total 8 12 20
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Table 4.50 Example of
statistical recursion with an
arbitrary initial value

x Probability H(x|r, c,N) H(x|r, c,N)/T

0 0.001310 1 0.001310

1 0.023577 18 0.023577

2 0.132032 100.80 0.132032

3 0.308073 235.20 0.308073

4 0.330079 252 0.330079

5 0.165039 126 0.165039

6 0.036675 28 0.036675

7 0.003144 2.40 0.003144

8 0.000071 0.054545 0.000071

Total 1.000000 763.454545 1.000000

The third column of Table 4.50 contains the recursion values where, for x = 0, the
initial (starting) value is arbitrarily set to 1 for this example analysis. Then,

1

[
(9)(8)

(1)(4)

]
= 18 ,

18

[
(8)(7)

(2)(5)

]
= 100.80 ,

100.80

[
(7)(6)

(3)(6)

]
= 235.20 ,

235.20

[
(6)(5)

(4)(7)

]
= 252 ,

252

[
(5)(4)

(5)(8)

]
= 126 ,

126

[
(4)(3)

(6)(9)

]
= 28 ,

28

[
(3)(2)

(7)(10)

]
= 2.40 ,

2.40

[
(2)(1)

(8)(11)

]
= 0.054545 .

The total of H(x|r, c,N) for x = 0, . . . , 8 is

T = 1 + 18 + 100.80 + 235.20 + 252 + 126 + 28 + 2.40 + 0.054545

= 763.454545 .
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The fourth column of Table 4.50 corrects the entries of the third column by dividing
each entry by T . For the frequency data given in Table 4.41 on p. 192,

U2 = H(xo|r, c,N) = H(6|9, 8, 20) = 28 .

Because xo > a, i.e., 6 > 1,

U1 = H(xo − 1|r, v,N) = H(5|9, 8, 20) = 126

and because xo < b, i.e., 6 < 8,

U3 = H(xo + 1|r, c,N) = H(7|9, 8, 20) = 2.40 .

Thus, U2 = 28 is located in the right tail of the distribution since U1 > U3, i.e.,
126 > 2.40. Then, the one- and two-tailed subtotals are

S1 = 28 + 2.40 + 0.054545 = 30.454545

and

S2 = 1 + 18 + 28 + 2.40 + 0.054545 = 49.454545 ,

respectively, and the one- and two-tailed exact probability values are

P1 = S1

T
= 30.454545

763.454545
= 0.039890

and

P2 = S2

T
= 49.454545

763.454545
= 0.064777 ,

respectively.

4.11.2 Larger Contingency Tables

Although Fisher’s exact probability test has largely been limited to the analysis of
2×2 contingency tables in the literature, it is not difficult to extend Fisher’s exact
test to larger contingency tables, although such extensions may be computationally
intensive [71, pp. 127–130, 296–298 ]. Consider an example 2×3 contingency table
with N cases, where xo denotes the observed frequency of the cell in the first row
and first column, yo denotes the observed frequency of the cell in the second row
and first column, and r1, r2, and c1 are the observed marginal frequency totals in
the first row, second row, and first column, respectively. If H(x, y), given N , r1,
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r2, and c1, is a recursively defined positive function, then solving the recursive
relation

H(x, y + 1) = H(x, y) × g1(x, y)

yields

g1(x, y) = (c1 − x − y)(r2 − y)

(1 + y)(N − r1 − r2 − c1 + 1 + x + y)
. (4.14)

If y = min(r2, c1 − x), then H(x + 1, y) = H(x, y) × g2(x, y),
where

g2(x, y) = (c1 − x − y)(r1 − x)

(1 + x)(N − r1 − r2 − c1 + 1 + x + y)
, (4.15)

given that max(0, r1 + r2 + c1 − N − x) = 0. However, if y = min(r2, c1 − x) and
max(0, r1 + r2 + c1 − N − x) > 0, then H(x + 1, y − 1) = H(x, y) × g3(x, y),
where

g3(x, y) = y(r1 − x)

(1 + x)(r2 + 1 − y)
. (4.16)

The three recursive expressions given in Eqs. (4.14), (4.15), and (4.16) may be
employed to completely enumerate the distribution of H(x, y), where a ≤ x ≤ b,
a = max(0, r1 + c1 − N), b = min(r1, c1), c(x) ≤ y ≤ d(x), c(x) = max(0, r1 +
r2 + c1 − N + x), d(x) = min(r2, c1 − x), and H [a, c(x)] is initially set to some
small positive value [15]. The total over the completely enumerated distribution may
be found by:

T =
b∑

x=a

d(x)∑

y=c(x)

H (x, y) .

To calculate the probability value of (xo, yo), given the observed marginal
frequency distributions, the hypergeometric point probability value of the observed
2×3 contingency table must be obtained; this value may also be found recursively.
Next, the probability of a result this extreme or more extreme must be found. The
subtotal is given by:

S =
b∑

x=a

d(x)∑

y=c(x)

Jx,yHx,y ,
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Table 4.51 Example 2×3
contingency table

A1 A2 A3 Total

B1 5 3 2 10

B2 8 4 7 19

Total 13 7 9 29

where

Jx,y =
⎧
⎨

⎩
1 if H(x, y) ≤ H(xo, yo) ,

0 otherwise ,

for x = a, . . . , b and y = c(x), . . . , d(x). The exact probability value for
independence associated with the observed cell frequencies, xo and yo is given by
P = S/T .

A 2×3 Contingency Table Example

To illustrate the calculation of Fisher’s exact probability test for a 2×3 contingency
table, consider the frequency data given in Table 4.51 where xo = 5, yo = 3,
r1 = 10, c1 = 13, c2 = 7, and N = 29. For the frequency data given in Table 4.51,
there are only M = 59 arrangements6 of cell frequencies that are consistent with the
observed row and column marginal frequency distributions, {10, 19} and {13, 7, 9},
respectively, and exactly 56 of the arrangements M = 59 have hypergeometric point
probability values equal to or less than the point probability value of the observed
table (p = 0.8096×10−1), yielding an exact probability value of P = 0.6873. Since
the 2×3 table in Table 4.51 has only two degrees of freedom, Table 4.52 lists the
M = 59 values for n11 and n12 for each possible arrangement of cell frequencies,
given the observed marginal frequency totals, and the associated hypergeometric
point probability values. Row 56 contains the observed values of n11 = 5 and n12 =
3 indicated by an asterisk.

A 2×6 Contingency Table Example

Fisher’s exact probability test is easily extended to any 2×c contingency table. For
example, consider the 2×6 contingency table given in Table 4.53 where vo = 1,
wo = 4, xo = 3, yo = 4, zo = 8, r1 = 6, r2 = 5, r3 = 10, r4 = 9, r5 = 10,

6Although it is relatively simple to calculate the number of possible arrangements of cell
frequencies (M) for a 2×2 contingency tables prior to analysis, it is considerably more difficult
to calculate M for larger contingency tables; thus, M is usually determined at the conclusion of the
analysis. For an algorithm to approximate the number of possible arrangements of cell frequencies,
see a 1977 article in Journal of the American Statistical Association by Gail and Mantel [35].
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Table 4.52 Listing of the M = 59 possible cell arrangements for the data given in Table 4.51 with
cell frequencies n11, n12, and associated exact hypergeometric point probability values

Table n11 n12 Probability Table n11 n12 Probability

1 0 1 0.3495×10−6 31 6 4 0.2999×10−2

2 1 0 0.6490×10−6 32 7 3 0.2999×10−2

3 0 7 0.4194×10−5 33 8 1 0.4048×10−2

4 0 2 0.9436×10−5 34 4 5 0.6747×10−2

5 10 0 0.1428×10−4 35 2 2 0.6869×10−2

6 3 7 0.1428×10−4 36 2 5 0.6869×10−2

7 1 7 0.2336×10−4 37 7 0 0.7196×10−2

8 2 0 0.3505×10−4 38 5 0 0.8096×10−2

9 2 7 0.3505×10−4 39 3 1 0.8396×10−2

10 1 1 0.4089×10−4 40 3 5 0.1079×10−1

11 0 6 0.4404×10−4 41 6 0 0.1079×10−1

12 0 3 0.6291×10−4 42 7 2 0.1619×10−1

13 0 5 0.1321×10−3 43 2 3 0.1717×10−1

14 0 4 0.1468×10−3 44 2 4 0.1717×10−1

15 4 6 0.2499×10−3 45 5 4 0.2024×10−1

16 9 1 0.2499×10−3 46 7 1 0.2159×10−1

17 9 0 0.3213×10−3 47 6 3 0.2699×10−1

18 1 6 0.3816×10−3 48 4 1 0.3148×10−1

19 1 2 0.4907×10−3 49 3 2 0.3778×10−1

20 3 0 0.5140×10−3 50 3 4 0.4198×10−1

21 3 6 0.8996×10−3 51 4 4 0.4498×10−1

22 2 6 0.9813×10−3 52 6 1 0.5037×10−1

23 2 1 0.9813×10−3 53 5 1 0.5667×10−1

24 5 5 0.1349×10−2 54 3 3 0.6297×10−1

25 8 2 0.1349×10−2 55 6 2 0.6447×10−1

26 1 5 0.1717×10−2 56∗ 5 3 0.8096×10−1

27 1 3 0.1908×10−2 57 4 2 0.9445×10−1

28 8 0 0.2313×10−2 58 4 3 0.1049

29 1 4 0.2862×10−2 59 5 2 0.1133

30 4 0 0.2999×10−2

Table 4.53 Example 2×6
contingency table

A1 A2 A3 A4 A5 A6 Total

B1 1 4 3 4 8 9 29

B2 5 1 7 5 2 3 23

Total 6 5 10 9 10 12 52

c1 = 29, and N = 52. For the frequency data given in Table 4.53, M = 33,565
arrangements of cell frequencies are consistent with the observed row and column
marginal frequency distributions, {29, 23} and {6, 5, 10, 9, 10, 12}, respectively,
and exactly 27,735 of the M = 33,565 arrangements have hypergeometric point
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probability values equal to or less than the point probability value of the observed
table (p = 0.1159×10−3), yielding an exact probability value of P = 0.0338.

A 3×3 Contingency Table Example

Fisher’s exact probability test can also be applied to larger contingency tables,
although calculation time increases substantially as the number of rows and
columns increase. In this section, Fisher’s exact probability test is applied to a 3×3
contingency table. Consider the 3×3 contingency table given in Table 4.54 where
wo = 3, xo = 5, yo = 2, zo = 9, r1 = 10, r2 = 14, c1 = 13, c2 = 16, and N = 40.
For the frequency data given in Table 4.54, M = 4,818 arrangements of cell
frequencies are consistent with the observed row and column marginal frequency
distributions, {10, 14, 16} and {13, 16, 11}, respectively, and exactly 3,935 of the
M = 4,818 arrangements have hypergeometric point probability values equal to
or less than the point probability value of the observed table (p = 0.1273×10−4),
yielding an exact probability value of P = 0.0475.

A 3×4 Contingency Table Example

Finally, consider the sparse 3×4 contingency table given in Table 4.55. For the
frequency data given in Table 4.55, only M = 706 arrangements of cell frequencies
are consistent with the observed row and column marginal frequency distributions,
{5, 5, 4} and {4, 3, 4, 3}, respectively, and 168 of the M = 706 arrangements have
hypergeometric point probability values equal to or less than the point probability
value of the observed table (p = 0.1903×10−3), yielding an exact probability value
of P = 0.0187.

Table 4.54 Example 3×3
contingency table

A1 A2 A3 Total

B1 3 5 2 10

B2 2 9 3 14

B3 8 2 6 16

Total 13 16 11 40

Table 4.55 Example 3×4
contingency table

A1 A2 A3 A4 Total

B1 3 0 0 2 5

B2 0 3 1 1 5

B3 1 0 3 0 4

Total 4 3 4 3 14
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4.12 Analyses of 2×2×2 Tables

Fisher’s exact probability test is not limited to two-way contingency tables. Consider
a 2×2×2 contingency table, such as depicted in Fig. 4.1, where nijk denotes the cell
frequency of the ith row, j th column, and kth slice for i, j, k = 1, 2. Denote by
a dot (·) the partial sum of all rows, all columns, or all slices, depending on the
position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows, if the (·) is in the second subscript position, the sum is
over all columns, and if the (·) is in the third subscript position, the sum is over all
slices. Thus, ni.. denotes the marginal frequency total of the ith row, i = 1, . . . , r ,
summed over all columns and slices; n.j. denotes the marginal frequency total of the
j th column, j = 1, . . . , c, summed over all rows and slices; and n..k denotes the
marginal frequency total of the kth slice, k = 1, . . . , s, summed over all rows and
columns. Therefore, A = n1.., B = n.1., C = n..1, and N = n... denote the observed
marginal frequency totals of the first row, first column, first slice, and entire table,
respectively, such that 1 ≤ A ≤ B ≤ C ≤ N/2. Also, let w = n111, x = n112,
y = n121, and z = n211 denote cell frequencies of the 2×2×2 contingency table.
Then, the probability for any w, x, y, and z is given by:

P(w, x, y, z|A,B,C,N) =
[
A!(N − A)! B! (N − B)! C!(N − C)!]

× [
(N !)2 w! x! y! z! (A − w − x − y)! (B − w − x − z)!

(C − w − y − z)! (N − A − B − C + 2w + x + y + z)!]−1

[67]. An algorithm to compute Fisher’s exact probability test involves a nested
looping structure and requires two distinct passes. The first pass yields the exact

Fig. 4.1 Graphic depiction
of a 2×2×2 contingency
table
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probability, U , of the observed 2×2×2 contingency table and is terminated when
U is obtained. The second pass yields the exact probability value of all tables with
hypergeometric point probability values equal to or less than the point probability
of the observed contingency table. The four nested loops within each pass are over
the cell frequency indices w, x, y, and z, respectively. The bounds for w, x, y, and
z are

0 ≤w ≤ Mw ,

0 ≤x ≤ Mx ,

0 ≤y ≤ My ,

and

Lx ≤z ≤ Mz ,

respectively, where Mw = A, Mx = A−w, My = A−w − x, Mz = min(B −w −
x,C − w − y), and Lz = max(0, A + B + C − N − 2w − x − y).

The recursion method can be illustrated with the fourth (inner) loop over z, given
w, x, y, A, B, C, and N because the inner loop yields both U on the first pass and
the exact probability value on the second pass. Let H(w, x, y, z) be a recursively
defined positive function given A, B, C, and N , satisfying

H(w, x, y, z + 1) = H(w, x, y, z) × g(w, x, y, z) ,

where

g(w, x, y, z) = (B − w − x − z)(C − w − z)

(z + 1)(N − A − B − C + 2w + x + y + z + 1)
.

The remaining three loops of each pass initialize H(w, x, y, z) for continued
enumerations. Let Ix = max(0, A + B + C − N) and set the initial value
of H(0, 0, 0, Iz) to an arbitrary small positive constant. Then, the total over the
completely enumerated distribution is found by:

T =
Mw∑

w=0

Mx∑

x=0

My∑

y=0

Mx∑

z=Lx

H(w, x, y, z) .

If wo, xo, yo, and zo are the values of w, x, y, and z in the observed 2×2×2
contingency table, then U and the exact probability value (P ) are given by:

U = H(wo, xo, yo, zo)/T
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and

P =
Mw∑

w=0

Mx∑

x=0

My∑

y=0

Mx∑

z=Lx

H(w, x, y, z) ψ(w, x, y, z, )/T .

respectively, where

ψ(w, x, y, z) =
⎧
⎨

⎩
1 if H(w, x, y, z) ≤ H(wo, xo, yo, zo) ,

0 otherwise .

4.12.1 A 2×2×2 Contingency Table Example

Consider a scenario in which N = 1,663 respondents were asked if they agreed with
the statement that women should have equal pay for the same job as men (No, Yes).
The respondents were then classified by region of the country (North, South) and by
year of the survey (2000, 2010). For the frequency data given in Table 4.56, M =
3,683,159,504 arrangements of cell frequencies are consistent with the observed
row, column, and slice marginal frequency distributions, {623, 1040}, {1,279, 384},
and {1,039, 624}, respectively. Exactly 2,761,590,498 of the arrangements have
hypergeometric point probability values equal to or less than the point probability
value of the observed table (p = 0.1684×10−72), yielding an exact probability
value of P = 0.1684×10−65.

4.12.2 A 3×4×2 Contingency Table Example

Fisher’s exact probability test is not limited to multi-way contingency tables with
only two categories in each dimension. Consider the r×c×s contingency table given
in Table 4.57 with r = 3 rows, c = 4 columns, and s = 2 slices. In general, it is not
efficient to analyze complex multi-way tables with exact permutation procedures,
as there are usually too many arrangements of cell frequencies in the reference set
of all possible arrangements of cell frequencies. For the frequency data given in
Table 4.57 with row, column, and slice marginal frequency distributions, {71, 31},

Table 4.56
Cross-classification of
responses (No, Yes),
categorized by year and
region

Region

North South

Year No Yes No Yes

2000 410 56 126 31

2010 439 374 64 163
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Table 4.57 Three-way
contingency table with r = 3
rows, c = 4 columns, and
s = 2 slices

C1 C2 C3 C4

S1 R1 3 4 1 6

R2 7 8 4 9

R3 7 8 9 5

S2 R1 2 6 5 2

R2 0 2 6 1

R3 2 4 0 1

{21, 32, 25, 24}, and {29, 37, 36}, respectively, the approximate resampling proba-
bility value based on L = 1,000,000 random arrangements of cell frequencies is

P = 29,600

1,000,000
= 0.0296 .

4.13 Coda

Chapter 3 applied permutation statistical methods to measures of association for
two nominal-level variables that are based on Pearson’s chi-squared test statistic.
Chapter 4 applied exact and resampling permutation statistical methods to measures
of association for two nominal-level variables that are not based on Pearson’s chi-
squared test statistic. Included in Chap. 4 were Goodman and Kruskal’s asymmetric
λa , λb, ta , and tb measures, Cohen’s unweighted chance-corrected κ coefficient,
McNemar’s and Cochran’s Q measures of change, Leik and Gove’s d c

N measure,
Mielke and Siddiqui’s exact probability for the matrix occupancy problem, and
Fisher’s exact probability test, extended to cover a variety of contingency tables.
For each test, examples illustrated the measures and either exact or resampling
probability values based on the appropriate permutation analysis were provided.

Chapter 5 applies permutation statistical methods to a variety of measures of
association designed for ordinal-level variables that are based on all possible paired
comparisons. Included in Chap. 5 are Kendall’s τa and τb and Stuart’s τc measures of
ordinal association, Somers’ asymmetric dyx and dxy measures, Kim’s dy.x and dx.y

measures, Wilson’s e measure, and Cureton’s rank-biserial correlation coefficient.
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