
Chapter 10
Fourfold Contingency Tables, II

Chapter 10 of The Measurement of Association continues the discussion of fourfold
(2×2) contingency tables initiated in Chap. 9, but concentrates on symmetrical
2×2 contingency tables, where each marginal frequency total is equal to N/2. In
the same way that 2×2 contingency tables are special cases of r×c contingency
tables, symmetrical 2×2 contingency tables are special cases of fourfold tables.
Symmetrical 2×2 tables provide additional insight into the relationships among
various measures of association.

Included in Chap. 10 are exact and Monte Carlo permutation statistical methods
applied to Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, Pearson’s rxy product-
moment correlation coefficient, Leik and Gove’s d c

N measure of nominal associ-
ation, Goodman and Kruskal’s ta and tb asymmetric measures, Kendall’s τb and
Stuart’s τc measures, Somers’ dyx and dxy asymmetric measures, simple percentage
differences, Dx and Dy , Yule’s Y measure of nominal association, and Cohen’s
unweighted and weighted κ measures of chance-corrected inter-rater agreement.

Also included in Chap. 10 are some extensions to multiple 2×2 contingency
tables and 2×2×2 contingency tables, including the Mantel–Haenszel test for
combined 2×2 contingency tables, Cohen’s kappa measure of chance-corrected
inter-rater agreement, McNemar’s and Cochran’s Q tests, Fisher’s exact test for
2×2×2 and 2×2×2×2 contingency tables, and tests for interactions in 2×2×2 and
2×2×2×2 contingency tables.

10.1 Symmetrical Fourfold Tables

A symmetrical fourfold contingency table is a 2×2 contingency table in which N is
even and each marginal frequency total is equal to N/2. To illustrate the analysis of
symmetrical fourfold contingency tables, consider the general layout of a 2×2 table,
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Table 10.1 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Table 10.2 Example 2×2
contingency data for variables
x and y with categories
dummy-coded 0 and 1

y

x 0 1 Total

0 4 2 6

1 2 4 6

Total 6 6 12

such as given in Table 10.1, and an example 2×2 frequency table, such as given in
Table 10.2, where each marginal frequency total is equal to N/2 = 12/2 = 6.

10.1.1 Statistics φ2, T 2, and V 2

For the frequency data given in Table 10.2, Pearson’s chi-squared test statistic is
given by

χ2 = N

⎛
⎝

r∑
i=1

c∑
j=1

O2
ij

RiCj

− 1

⎞
⎠ ,

where Oij is the observed cell frequency for i, j = 1, 2, Ri denotes a row total for
i = 1, 2, and Cj denotes a column total for j = 1, 2. Thus, for the frequency data
given in Table 10.2,

χ2 = 12

[
42 + 22 + 22 + 42

(6)(6)
− 1

]
= 1.3333 .

Then, Pearson’s φ measure of association is given by

φ =
√

χ2

N
=

√
1.3333

12
= ±0.3333

and φ2 = (0.3333)2 = 0.1111. Alternatively, using the notation given in Table 10.1,

φ = ad − bc√
(a + b)(c + d)(a + c)(b + d)

= (4)(4) − (2)(2)√
(6)(6)(6)(6)

= +0.3333 .
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Tschuprov’s measure of nominal association is

T 2 = χ2

N
√

(r − 1)(c − 1)
= 1.3333

12
√

(2 − 1)(2 − 1)
= 0.1111

and T = √
T 2 = √

0.1111 = 0.3333. Also, Cramér’s measure of nominal
association is

V 2 = χ2

N
[

min(r − 1, c − 1)
] = 1.3333

12
[

min(2 − 1, 2 − 1)
] = 0.1111

and V = √
V 2 = √

0.1111 = 0.3333. Thus, Pearson’s φ, Tschuprov’s T , and
Cramér’s V are equivalent for a symmetrical 2×2 contingency table.

10.1.2 Pearson’s rxy Correlation Coefficient

Next, consider Pearson’s product-moment correlation coefficient given by

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦

⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

.

The binary-coded (0, 1) data listed in Table 10.3 were obtained from the frequency
data given in Table 10.2, where Objects 1 through 4, coded (0, 0), represent the four

Table 10.3 Example
dummy-coded (0, 1) values
from the 2×2 contingency
table in Table 10.2

Variable

Object x y

1 0 0

2 0 0

3 0 0

4 0 0

5 0 1

6 0 1

7 1 0

8 1 0

9 1 1

10 1 1

11 1 1

12 1 1
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objects in row 1 and column 1 of Table 10.2; Objects 5 and 6, coded (0, 1), represent
the two objects in row 1 and column 2; Objects 7 and 8, coded (1, 0), represent the
two objects in row 2 and column 1; and Objects 9 through 12, coded (1, 1), represent
the four objects in row 2 and column 2 of Table 10.2.

For the binary-coded data listed in Table 10.3,

N = 12 ,

N∑
i=1

xi =
N∑

i=1

x2
i =

N∑
i=1

yi =
N∑

i=1

y2
i = 6 ,

N∑
i=1

xiyi = +4 ,

Pearson’s product-moment correlation coefficient is

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦

⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

= (12)(+4) − (6)(6)√
[(12)(6) − 62][(12)(6) − 62] = +0.3333 ,

and r2
xy = (+0.3333)2 = 0.1111.

10.1.3 Regression Coefficients

For the binary-coded data listed in Table 10.3, the slope (unstandardized regression
coefficient) of the regression line with variable y the dependent variable is

byx =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

r∑
i=1

x2
i −

(
r∑

i=1

xi

)2 = (12)(+4) − (6)(6)

(12)(6) − 62 = +0.3333

and the standardized regression coefficient with variable x the dependent variable is

β̂yx = byx

(
sx

sy

)
= +0.3333

(
0.5222

0.5222

)
= +0.3333 .
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Also the unstandardized regression coefficient with variable x the dependent
variable is

bxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

r∑
i=1

y2
i −

(
r∑

i=1

yi

)2 = (12)(+4) − (6)(6)

(12)(6) − 62 = +0.3333

and the standardized regression coefficient with variable y the dependent variable is

β̂xy = bxy

(
sx

sy

)
= +0.3333

(
0.5222

0.5222

)
= +0.3333 .

Thus it is demonstrated that φ = T = V = rxy = byx = bxy = β̂yx = β̂xy for a
symmetrical 2×2 contingency table.

10.1.4 Leik and Gove’s d c
N

Statistic

Leik and Gove’s d c
N test statistic for two nominal-level variables is described in

detail in Chap. 4, Sect. 4.9. As noted by Leik and Gove, for symmetrical 2×2
contingency tables, d c

N is equivalent to the traditional chi-squared-based measures
such as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 [15, p. 291]. Test statistic
d c
N is based on three r×c contingency tables: one r×c contingency table containing

the observed cell frequency values, a second r×c contingency table containing the
expected cell frequency values, and a third r×c contingency table containing the
maximized cell frequency values. Here, the observed values of concordant pairs, C;
discordant pairs, D; pairs tied on variable x, Tx ; pairs tied on variable y, Ty ; and
pairs tied on both variables x and y, Txy , are indicated without primes, the expected
values of concordant pairs, C; discordant pairs, D; pairs tied on variable x, Tx ; pairs
tied on variable y, Ty ; and pairs tied on both variables x and y, Txy , are indicated
with a single prime (′), and the maximized values of concordant pairs, C; discordant
pairs, D; pairs tied on variable x, Tx ; pairs tied on variable y, Ty ; and pairs tied on
both variables x and y, Txy , are indicated with double primes (′′).

Consider d c
N for a symmetrical 2×2 contingency table, where

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= T ′
x − Tx

t ′
x − T ′′

x

= T ′
xy − Txy

T ′
xy − T ′′

xy

= (C′ + D′) − (C + D)

(C′ + D′) − (C′′ + D′′)
.
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Table 10.4 Observed values
for a 2×2 contingency table
with categories
dummy-coded 0 and 1

y

x 0 1 Total

0 4 2 6

1 2 4 6

Total 6 6 12

For the observed data given in Table 10.2 on p. 578, replicated in Table 10.4 for
convenience, the observed values of C, D, Tx , Ty , and Txy are

C = ad = (4)(4) = 16 ,

D = bc = (2)(2) = 4 ,

Tx = ab + cd = (4)(2) + (2)(4) = 16 ,

Ty = ac + bd = (4)(2) + (2)(4) = 16 ,

Txy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(4)(3) + (2)(1) + (2)(1) + (4)(3)

] = 14 ,

and

C + D + Tx + Ty + Txy = 16 + 4 + 16 + 16 + 14

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Next, consider the expected values for the observed data in Table 10.4, given in
Table 10.5, where

E11 = E12 = E21 = E22 = (6)(6)

12
= 3 .

Table 10.5 Expected values
for the 2×2 contingency table
data in Table 10.4

y

x 0 1 Total

0 3 3 6

1 3 3 6

Total 6 6 12
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For the expected cell values given in Table 10.5,

C ′ = ad = (3)(3) = 9 ,

D ′ = bc = (3)(3) = 9 ,

T ′
x = ab + cd = (3)(3) + (3)(3) = 18 ,

T ′
y = ac + bd = (3)(3) + (3)(3) = 18 ,

T ′
xy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(3)(2) + (3)(2) + (3)(2) + (3)(2)

] = 12 ,

and

C ′ + D ′ + T ′
x + T ′

y + T ′
xy = 9 + 9 + 18 + 18 + 12

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Finally, consider the maximized cell frequencies for the data in Table 10.4, given
in Table 10.6. For the maximized values given in Table 10.6,

C ′′ = ad = (6)(6) = 36 ,

D ′′ = bc = (0)(0) = 0 ,

T ′′
x = ab + cd = (6)(0) + (0)(6) = 0 ,

T ′′
y = ac + bd = (6)(0) + (0)(6) = 0 ,

T ′′
xy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(6)(5) + (6)(5)

] = 30 ,

Table 10.6 Maximized
values for the 2×2
contingency table data in
Table 10.4

y

x 0 1 Total

0 6 0 6

1 0 6 6

Total 6 6 12
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and

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy = 36 + 0 + 0 + 0 + 30

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Then, Leik and Gove’s d c
N measure is

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= 18 − 16

18 − 0
= 0.1111 ,

or

d c
N = T ′

x − Tx

T ′
x − T ′′

x

= 18 − 16

18 − 0
= 0.1111 ,

or

d c
N = T ′

xy − Txy

T ′
xy − T ′′

xy

= 12 − 14

12 − 30
= 0.1111 ,

or

d c
N = (C ′ + D ′) − (C + D)

(C ′ + D ′) − (C ′′ + D ′′)
= (9 + 9) − (16 + 4)

(9 + 9) − (36 − 0)
= 0.1111 .

Thus it is demonstrated that φ2 = T 2 = V 2 = r2
xy = d c

N for a symmetrical 2×2
contingency table.

10.1.5 Goodman and Kruskal’s ta and tb Statistics

Goodman and Kruskal’s ta and tb measures of nominal association are discussed
in Chap. 4, Sect. 4.3. Consider the notation for a 2×2 contingency table given
in Table 10.7. For the frequency data given in Table 10.4 on p. 582, Goodman
and Kruskal’s asymmetric measure of association with variable a the dependent

Table 10.7 Notation for a
2×2 contingency data for
variables a and b with
dummy (0, 1) coding

a

b 0 1 Total

0 n11 n12 n1.

1 n21 n22 n2.

Total n.1 n.2 N
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variable is

ta =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
12

(
42 + 22 + 22 + 42

6

)
− 62 − 62

122 − 62 − 62
= 0.1111

and Goodman and Kruskal’s asymmetric measure with variable b the dependent
variable is

tb =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
12

(
42 + 22 + 22 + 42

6

)
− 62 − 62

122 − 62 − 62 = 0.1111 .

10.1.6 Kendall’s τb Statistic

Kendall’s τb measure of ordinal association is detailed in Chap. 5, Sect. 5.4. For the
frequency data given in Table 10.4 on p. 582, the number of concordant pairs is

C = ad = (4)(4) = 16 ,

the number of discordant pairs is

D = bc = (2)(2) = 4 ,

the number of pairs tied on variable x but not tied on variable y is

Tx = ab + cd = (4)(2) + (2)(4) = 16 ,

and the number of pairs tied on variable y but not tied on variable x is

Ty = ac + bd = (4)(2) + (2)(4) = 16 .
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Then, Kendall’s τb measure is

τb = C − D√
(C + D + Tx)(C + D + Ty)

= 16 − 4√
(16 + 4 + 16)(16 + 4 + 16)

= +0.3333 .

Alternatively, following the notation given in Table 10.1,

τb = ad − bc√
(a + b)(c + d)(a + c)(b + d)

= (4)(4) − (2)(2)√
(6)(6)(6)(6)

= +0.3333 .

10.1.7 Stuart’s τc Statistic

Stuart’s τc measure of ordinal association is discussed in Chap. 5, Sect. 5.5 and is
given by

τc = 2mS

N2(m − 1)
,

where m is the minimum number of rows or columns. For the frequency data given
in Table 10.4 on p. 582, m = min(r, c) = min(2, 2) = 2, the number of concordant
pairs is

C = ad = (4)(4) = 16 ,

the number of discordant pairs is

D = bc = (2)(2) = 4 ,

Kendall’s S is

S = C − D = 16 − 4 = +12 ,

and Stuart’s τc measure is

τc = 2mS

N2(m − 1)
= 2(2)(+12)

122(2 − 1)
= +0.3333 .
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10.1.8 Somers’ dyx and dxy Statistics

Somers’ dyx and dxy asymmetric measures of ordinal association are discussed in
Chap. 5, Sect. 5.7. For the frequency data given in Table 10.4 on p. 582, Somers’
asymmetric measure of association with variable y the dependent variable is

dyx = C − D

C + D + Ty

= 16 − 4

16 + 4 + 16
= +0.3333

and Somers’ asymmetric measure with variable x the dependent variable is

dxy = C − D

C + D + Tx

= 16 − 4

16 + 4 + 16
= +0.3333 .

Alternatively,

dyx = ad − bc

(a + c)(b + d)
= (4)(4) − (2)(2)

(6)(6)
= +0.3333

and

dxy = ad − bc

(a + b)(c + d)
= (4)(4) − (2)(2)

(6)(6)
= +0.3333 .

10.1.9 Percentage Differences

Percentage differences are discussed in Chap. 9, Sect. 9.10. For the frequency data
given in Table 10.4 on p. 582, the percentage difference for variable x is

Dx =
∣∣∣∣

a

a + b
− c

c + d

∣∣∣∣ =
∣∣∣∣
4

6
− 2

6

∣∣∣∣ = |0.6667 − 0.3333| = 0.3333

and the percentage difference for variable y is

Dy =
∣∣∣∣

a

a + c
− b

b + d

∣∣∣∣ =
∣∣∣∣
4

6
− 2

6

∣∣∣∣ = |0.6667 − 0.3333| = 0.3333 .
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10.1.10 Yule’s Y Statistic

Yule’s Y measure of nominal association is discussed in Chap. 9, Sect. 9.6. For the
frequency data given in Table 10.4 on p. 582, Yule’s coefficient of colligation is

Y =
√

ad − √
bc√

ad + √
bc

=
√

(4)(4) − √
(2)(2)√

(4)(4) + √
(2)(2)

= +0.3333 .

10.1.11 Cohen’s κ Statistic

Cohen’s unweighted kappa measure of inter-rater agreement is discussed in Chap. 4,
Sect. 4.5, and Cohen’s linear and quadratic weighted kappa measures of inter-rater
agreement are discussed in Chap. 6, Sect. 6.5. For the frequency data given in
Table 10.4 on p. 582, let Oii for i = 1, 2 denote the observed cell frequencies
on the principal diagonal and Eii for i = 1, 2 denote the expected cell frequencies
on the principal diagonal. Then, Cohen’s unweighted chance-corrected coefficient
of inter-rater agreement is

κ =

r∑
i=1

Oii −
r∑

i=1

Eii

N −
r∑

i=1

Eii

= (4 + 4) − (3 + 3)

12 − (3 + 3)
= +0.3333 .

Cohen’s weighted kappa measure of inter-rater agreement for b = 2 judges and
c categories is given by

κw = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

, (10.1)

where nij denotes the observed cell frequencies, wij denotes the cell weights, Ri

and Cj denote the observed row and column marginal frequency totals for i, j =
1, . . . , c, and

N =
c∑

i=1

c∑
j=1

nij
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denotes the table frequency total. For Cohen’s unweighted kappa measure of inter-
rater agreement, the cell disagreement “weights” are given by

wij =
⎧⎨
⎩

0 if i = j ,

1 otherwise ,

and for Cohen’s weighted kappa measure of inter-rater agreement the cell disagree-
ment weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

|i − j | otherwise ,

for linear weighting, and

wij =
⎧⎨
⎩

0 if i = j ,

(i − j)2 otherwise ,

for quadratic weighting. For the frequency data given in Table 10.4 on p. 582,
Cohen’s linear-weighted kappa measure of inter-rater agreement is κw = +0.3333
and Cohen’s quadratic-weighted kappa measure of inter-rater agreement is κw =
+0.3333.

10.2 Inter-relationships Among the Measures

The inter-relationships among the various measures for a symmetrical 2×2 contin-
gency table can be summarized as follows. The Pearson product-moment correlation
coefficient, rxy ; the unstandardized slopes of the two regression lines, byx and bxy ;
Yule’s coefficient of colligation, Y ; Pearson’s mean-square contingency coefficient,
φ; Tschuprov’s T measure; Cramér’s V measure; Kendall’s τb measure; Stuart’s
τc measure; Somers’ dyx and dxy asymmetric measures; the two percentage
differences, Dx and Dy ; and Cohen’s κ unweighted and weighted measures of
chance-corrected inter-rater agreement are all equivalent measures, i.e.,

rxy = byx = bxy = Y = φ = T = V = τb = τc = dyx = dxy

= Dx = Dy = κ = κw .

Also, Pearson’s squared product-moment correlation coefficient, r2
xy ; Pearson’s

mean-squared contingency coefficient, φ2; Tschuprov’s T 2 measure; Cramér’s V 2

measure; Leik and Gove’s d c
N measure; and Goodman and Kruskal’s tb and ta
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measures of association are all equivalent measures, i.e.,

r2
xy = φ2 = T 2 = V 2 = d c

N = tb = ta .

10.2.1 Notational Inconsistencies

Measures of association for 2×2 contingency tables in particular, and r×c contin-
gency tables in general, can be very confusing. First, some measures are denoted
by uppercase Latin letters, e.g., Yule’s Q and Y , Tschuprov’s T 2, and Cramér’s V 2;
some measures are denoted by lowercase Latin letters, e.g., Somers’ dyx and dxy ,
Leik and Gove’s d c

N , and Goodman and Kruskal’s ta and tb; and some measures are
denoted by lowercase Greek letters, e.g., Pearson’s φ, Kendall’s τb, and Cohen’s κ .
While it would be preferable to reserve Greek letters for population parameters that
are being estimated by sample statistics and Latin letters for sample statistics, once
symbols are in common use it is difficult to standardize usage.1 Second, certain
measures of association appear as squared, whereas others do not. In particular,
for the 2×2 case, the non-squared symbols tb and ta for Goodman and Kruskal’s
asymmetric measures of nominal association are equivalent to Pearson’s symmetric
measures φ2 and r2

xy . Third, some measures norm between 0 and 1 for 2×2
contingency tables, e.g., Goodman and Kruskal’s ta and tb; others norm between
−1 and +1, e.g., Kendall’s τb and Cramér’s V ; and still others norm between 0 and
∞, e.g., the odds ratio. Finally, some measures identify the two variables as x and
y, e.g., Somers’ dyx and dxy , while others identify the two variables as a and b, e.g.,
Kendall’s τa and τb.

10.3 Extended Fourfold Contingency Tables

In some cases, measures of association have been introduced to analyze fourfold
tables that have either been extended to analyze a series of 2×2 contingency tables
or redesigned to consider multidimensional contingency tables with two categories
in each dimension. In this section a small number of such measures are considered,
including the Mantel–Haenszel test, McNemar’s Q test, Cochran’s Q test, Cohen’s
chance-corrected measure of inter-rater agreement, Fisher’s exact probability test
for 2×2×2 contingency tables, and tests for interactions in 2×2×2 and 2×2×2×2
contingency tables

1It was not too many years ago that while μx and σ 2
x denoted the population mean and variance,

respectively, μ̂x and σ̂ 2
x denoted the unbiased sample-estimated population mean and variance. The

American Psychological Association presently recommends using M for the sample mean instead
of the conventional x̄.
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Table 10.8 General layout of a 3-way contingency table with r = 2 rows, c = 2 columns, and S

strata

Stratum Column 1 Column 2 Total Stratum total Table total

1 Row 1 n111 n121 n1.1

Row 2 n211 n221 n2.1

Total n.11 n.21 n..1

2 Row 1 n112 n122 n1.2

Row 2 n212 n222 n2.2

Total n.12 n.22 n..2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

S Row 1 n11S n12S n1.S

Row 2 n21S n22S n2.S

Total n.1S n.2S n..S

Row 1 Total n11. n12. n1..

Row 2 Total n21. n22. n2..

Column Total n.1. n.2.

Table Total n...

10.4 The Mantel–Haenszel Test

The Mantel–Haenszel test, developed by Nathan Mantel and William Haenszel in
1959, is a test of significance for S combined 2×2 contingency tables.2 Suppose
that a treatment is compared with a control in each of S strata, where the outcome
is binary: success or failure. Of interest is whether or not the treatment increases the
probability of success.

Let nijk denote the cell frequency for i, j = 1, 2 discrete categories and k =
1, . . . , S discrete strata for a 2×2×S contingency table. Table 10.8 illustrates a
three-way contingency table with r = 2 rows, c = 2 columns, and S strata. Denote
by a dot (·) the partial sum of all rows, all columns, or all strata, depending on the
position of the (·) in the subscript list. If the (·) is in the first subscript position, the
sum is over all rows; if the (·) is in the second subscript position, the sum is over all
columns; and if the (·) is in the third subscript position, the sum is over all strata.
Thus, ni.. denotes the marginal frequency total of the ith row, i = 1, 2, summed over
all columns and strata; n.j. denotes the marginal frequency total of the j th column,
j = 1, 2, summed over all rows and strata; n..k denotes the marginal frequency
total of the kth stratum, k = 1, . . . , S, summed over all rows and columns; and
n... denotes the table frequency total. The Mantel–Haenszel statistical model, under
the null hypothesis, states that the S 2×2 contingency tables are independent and
the marginal frequency totals for each of the 2×2 contingency tables are fixed [17].

2The test is often called the Cochran–Mantel–Haenszel test as William Cochran presented
essentially the same test in an earlier paper [5].
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Then, the probability for the n11k frequency of each of the 2×2 contingency tables
under the null hypothesis is the hypergeometric point probability value given by

p (n11k|n1.k, n.1k, n..k) =
(

n.1k

n11k

)(
n.2k

n12k

)(
n..k

n1.k

)−1

= n1.k! n2.k! n.1k! n.2k!
n..k ! n11k! n12k! n21k! n22k! , (10.2)

where n..k = n11k + n12k + n21k + n22k, n2.k = n..k − n1.k , n.2k = n..k − n.1k , and
k = 1, . . . , S.

The test statistic of interest is given by

T =
S∑

k=1

n11k ,

where the summation is over only one cell since for any 2×2 contingency table with
fixed marginal frequency totals the entry in any one cell determines the entries in
the remaining three cells.

Under the null hypothesis (H0) of the model in Eq. (10.2), the mean and variance
of test statistic T are given by

E [T |H0] =
S∑

k=1

n1.k n.1k

n..k

and

VAR (T |H0) =
S∑

k=1

n1.k n2.k n.1k n.2k

(n..k)2(n..k − 1)
,

respectively. The Mantel–Haenszel test statistic, corrected for continuity, is given
by

M =
(∣∣T − E[T |H0]

∣∣ − 1
2

)2

VAR(T |H0)
.

The Mantel–Haenszel test statistic, M , is approximately distributed as Pearson’s
chi-squared with one degree of freedom as N → ∞.3

3The symbol M for the Mantel–Haenszel test should not be confused with the symbol M for the
number of possible, equally-likely arrangements of the observed data under the Fisher–Pitman
permutation model.
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10.4.1 Example Analysis

Consider the example data set given in Table 10.9 with r = 2 rows, c = 2 columns,
S = 3 strata, and n... = 74 total observations. For the data listed in Table 10.9, the
observed value of test statistic T is

To =
S∑

k=1

n11k = 2 + 2 + 4 = 8.00 ,

the expected value of T under the null hypothesis is

E[T |H0] =
S∑

k=1

n1.k n.1k

n..k

= (3)(7)

32
+ (4)(4)

24
+ (5)(5)

18
= 2.7118 ,

the variance of T is

VAR (T |H0) =
S∑

k=1

n1.k n2.k n.1k n.2k

(n..k)2(n..k − 1)

= (3)(29)(7)(25)

(32)2(32 − 1)
+ (4)(20)(4)(20)

(24)2(24 − 1)
+ (5)(13)(5)(13)

(18)2(18 − 1)
= 1.7272 ,

Table 10.9 General layout of a 3-way contingency table with r = 2 rows, c = 2 columns, and
S = 3 strata

Stratum Column 1 Column 2 Total Stratum total Table total

1 Row 1 2 1 3

Row 2 5 24 29

Total 7 25 32

2 Row 1 2 2 4

Row 2 2 18 20

Total 4 20 24

3 Row 1 4 1 5

Row 2 1 12 13

Total 5 13 18

Row 1 Total 8 4 12

Row 2 Total 8 54 62

Column Total 16 58

Table Total 74
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and the observed Mantel–Haenszel test statistic is

Mo =
(∣∣To − E[T |H0]

∣∣ − 1
2

)2

VAR(T |H0)
=

(∣∣8.00 − 2.7118
∣∣− 1

2

)2

1.7272
= 13.2742 .

(10.3)

Mantel and Haenszel’s M test statistic is approximately distributed as Pearson’s chi-
squared with one degree of freedom. For the observed value of Mo = 13.2742 the
approximate chi-squared probability value is P = 0.2691×10−3.

In Eq. (10.3), E[T |H0], VAR(T |H0), and the correction factor, are all invariant
under permutation, leaving only variable T . Thus, for the data listed in Table 10.9
the approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the observed data under the null hypothesis is

P(M ≥ Mo|H0) = number of M values ≥ Mo

L

= P(T ≥ To|H0) = number of T values ≥ To

L
= 2,555

1,000,000

= 0.2555×10−2 .

10.4.2 Measures of Effect Size

Two types of measures of effect size have been proposed to represent the strength of
a treatment effect [32]. One type, designated the d-family, is based on one or more
measures of the differences between groups or levels of an independent variable.
Representative of the d-family is Cohen’s d , which calculates the effect size by
the number of standard deviations separating the means of the groups or levels [8].
The second type of measure of effect size, designated the r-family, represents some
sort of correlation between the independent variables. Measures in the r-family are
typically measures of correlation or association, the most prominent being Pearson’s
squared product-moment correlation coefficient. Since the Mantel–Haenszel test is
based on a 2×2×S contingency table, the d-family is not applicable.

The r-family measures of effect size contains two types of measures: putative
maximum-corrected and chance-corrected. Maximum-corrected measures of effect
size standardize the observed test statistic value by the maximum possible value of
the test statistic. Maximum-corrected measures of effect size are bounded between
0 and 1 and are interpretable as the proportion of the maximum possible value of the
test statistic. On the other hand, chance-corrected measures of effect size standardize
the observed test statistic value by the expected value of the test statistic. Chance-
corrected measures of effect size can attain a maximum value of +1, but may be
less than 0 when the test statistic value is less than expected by chance and are
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interpretable as the proportion above, or below, what is expected by chance. In 2010
Berry, Johnston, and Mielke developed two measures of effect size for the Mantel–
Haenszel test statistic: a maximum-corrected and a chance-corrected measure of
effect size [2].

Maximum-Corrected Measure of Effect Size

Let Mo and To denote the observed values of M and T , respectively. Then, the
maximum-corrected measure of effect size is given by Mo divided by the maximum
possible value of M . The maximum value of T for an observed 2×2×S contingency
table is given by

Tmax =
S∑

k=1

min(n1.k, n.1k) ,

where min(n1.k, n.1k) is the maximum value of n11k in the kth of S 2×2 contingency
tables. Thus, the maximum value of M is given by

Mmax =
(∣∣Tmax − E[T |H0]

∣∣ − 1
2

)2

VAR(T |H0)

and the maximum-corrected measure of effect size for M is given by the observed
value of M divided by the maximum value of M , i.e.,

ESM = Mo

Mmax
.

For the frequency data given in Table 10.2 on p. 578, the maximum value of T is

Tmax =
S∑

k=1

min(n1.k, n.1k) = 3 + 4 + 5 = 12.00 ,

the maximum value of M is

Mmax =
(∣∣Tmax − E[T |H0]

∣∣ − 1
2

)2

VAR(T |H0)
=

(∣∣12.00 − 2.7118
∣∣ − 1

2

)2

1.7272
= 44.7162 ,

and the maximum-corrected measure of effect size is

ESM = Mo

Mmax
= 13.2742

44.7162
= 0.2969 ,
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indicating that Mo = 13.2742 accounts for approximately 30% of the maximum
value of M , given the observed row, column, and stratum marginal frequency
distributions, {12, 62}, {16, 58}, and {32, 24, 18}, respectively.

Chance-Corrected Measure of Effect Size

A chance-corrected measure of effect size for the Mantel–Haenszel test may be
given by statistic M , standardized by the expected value of M . Thus, the chance-
corrected measure is given by

ESC = M − E[M|H0]
Mmax − E[M|H0] = 1 − Mmax − M

Mmax − 1
,

where E[M] = 1 since the mean of a chi-squared distribution is equal to the degrees
of freedom and M is approximately distributed as chi-squared with one degree of
freedom. For the frequency data given in Table 10.2, the chance-corrected measure
of effect size is

ESC = 1 − 44.7162 − 13.2742

44.7162 − 1
= +0.2808 ,

indicating that Mo = 13.2742 accounts for approximately 28% above what is
expected by chance. In general, chance-corrected measures of effect size, such as
ESC, tend to slightly smaller values than maximum-corrected measures, such as
ESM, for the same set of data [2, pp. 398–399].

10.5 Cohen’s Kappa Measure

In 1960 Jacob Cohen introduced statistic kappa, an unweighted, chance-corrected
measure of inter-rater agreement between two judges for a set of c disjoint,
unordered categories [6]. In 1968 Cohen expanded kappa to include weight-
ing for measuring the agreement between two judges for a set of c disjoint,
ordered categories [7]. Unweighted kappa is discussed more completely in Chap. 4,
Sect. 4.5, and weighted kappa is discussed in detail in Chap. 6, Sect. 6.5. Whereas
unweighted kappa for categorical data did not distinguish among magnitudes of
disagreement, weighted kappa for ordinal-level data incorporated the magnitude of
each disagreement and provided partial credit for disagreements when agreement
was not complete [16]. Weighted kappa is easily extended to interval-level data [3].
The usual approach is to assign weights to each disagreement pair with larger
weights indicating greater disagreement. In the cases of both, unweighted and
weighted kappa, kappa is equal to +1 when perfect agreement between the two
judges occurs, 0 when agreement is equal to that expected under independence, and
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negative when agreement is less than expected by chance. Unweighted kappa and
weighted kappa are conventionally designated as κ and κw, respectively. Two forms
of weighting are popular for weighted kappa: linear weighting, in which category
disagreement weights progress outward linearly from the agreement diagonal, and
quadratic weighting, in which category disagreement weights progress outward
geometrically from the agreement diagonal. In keeping with the theme of this
chapter—fourfold contingency tables—κ and κw are extended to multiple judges
with c = 2 categories.

Consider first b = 2 judges and c = 2 categories. A generalized calculation
formula that applies to both unweighted and weighted kappa for b = 2 judges and
c categories is given by

κ = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

, (10.4)

where nij denotes the observed cell frequencies, wij denotes the cell weights, Ri

and Cj denote the observed row and column marginal frequency totals for i, j =
1, . . . , c, and

N =
c∑

i=1

c∑
j=1

nij

denotes the table frequency total.
Given a c×c agreement table with N objects cross-classified by the ratings

of two independent judges into c disjoint categories, an exact permutation test
generates all M possible, equally-likely arrangements of the N objects in the
c2 cells, while preserving the total number of objects in each category, i.e., the
marginal frequency distributions. For each arrangement of cell frequencies with
fixed marginal frequency distributions, the kappa statistic, κ , and the exact point
probability, p(nij |ni., n.j , N), are calculated, where

p(nij |Ri,Cj ,N) =

(
c∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞
⎠

N !
c∏

i=1

c∏
j=1

nij !

is the conventional hypergeometric probability of a c×c contingency table.
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Let κo denote the value of the observed weighted kappa statistic and M denote
the total number of distinct cell frequency arrangements of the N objects in the c×c

agreement table, given fixed marginal frequency totals. Then the exact probability
value of κo under the null hypothesis is given by

P(κo|H0) =
M∑

k=1

�(κk) p(nij |Ri,Cj ,N) ,

where

�(κk) =
⎧⎨
⎩

1 if κk ≥ κo ,

0 otherwise .

When M is very large, exact permutation analyses quickly become impractical and
Monte Carlo resampling procedures become necessary. Let L denote a random
sample of all M possible values of κ . Then, under the null hypothesis the resampling
approximate probability value for the observed value of κ , κo is given by

P (κo) = 1

L

L∑
l=1

�l (κ) ,

where

�l (κ) =
⎧⎨
⎩

1 if κ ≥ κo ,

0 otherwise .

To calculate Cohen’s unweighted kappa with Eq. (10.4) on p. 597, the cell
disagreement “weights” are given by

wij =
⎧⎨
⎩

0 if i = j ,

1 otherwise .

To calculate Cohen’s weighted kappa with linear weighting, the cell disagreement
weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

|i − j | otherwise .
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To calculate Cohen’s weighted kappa with quadratic weighting, the cell disagree-
ment weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

(i − j)2 otherwise .

Thus, as demonstrated, for b = 2 judges and c = 2 categories, the cell disagreement
weights are the same for unweighted kappa (κ) and weighted kappa (κw) with either
linear or quadratic weighting.

10.5.1 Example 1

To illustrate the application of Cohen’s unweighted kappa with b = 2 judges and
c = 2 categories, consider the frequency data given in Table 10.10, where b = 2
independent judges have each assigned N = 123 observations to c = 2 disjoint,
unordered categories labeled Pro and Con. Assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then following
Eq. (10.4) on p. 597,

κ = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

= 1 − 123
[
(0)(42) + (1)(23) + (1)(18) + (0)(40)

]

(0)(65)(60) + (1)(65)(63) + (1)(58)(60) + (0)(58)(63)

= +0.3343 ,

indicating approximately 33% agreement between the two judges above that
expected by chance.

For the frequency data given in Table 10.10, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(65, 60) − max(0, 42 − 40) + 1 = 60 − 2 + 1 = 59

Table 10.10 Example 2×2
contingency table for b = 2
independent judges and c = 2
disjoint categories

Judge 2

Judge 1 Pro Con Total

Pro 42 23 65

Con 18 40 58

Total 60 63 123
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possible, equally-likely arrangements in the reference set of all permutations of
the cell frequencies in Table 10.10 given the observed row and column marginal
frequency distributions, {65, 58} and {60, 63}, respectively, making an exact per-
mutation analysis possible. If the M = 59 possible arrangements of the frequency
data given in Table 10.10 occur with equal chance, the exact probability value of κ

under the null hypothesis is the sum of the hypergeometric point probability values
associated with κ = +0.3343 or greater.

Table 10.11 lists the n11 cell frequency values, unweighted kappa values,
and associated hypergeometric probability values for the frequency data given in
Table 10.10, where the n11 cell values associated with κ values equal to or greater

Table 10.11 Listing of the M = 59 possible arrangements of cell frequencies, unweighted kappa
values, and associated hypergeometric probability values for the data given in Table 10.10

n11 Kappa Probability n11 Kappa Probability

2 −0.9648 0.2825×10−32 32 +0.9505×10−2 0.1425

3 −0.9328 0.3441×10−29 33 +0.4198×10−1 0.1287

4 −0.8998 0.1520×10−26 34 +0.7446×10−1 0.1022

5 −0.8673 0.3462×10−24 35 +0.1069 0.7033×10−1

6 −0.8349 0.4760×10−22 36 +0.1394 0.4370×10−1

7 −0.8024 0.4333×10−20 37 +0.1719 0.2349×10−1

8 −0.7699 0.2775×10−18 38 +0.2044 0.1106×10−1

9 −0.7374 0.1305×10−16 39 +0.2368 0.4552×10−2

10 −0.7049 0.4660×10−15 40 +0.2693 0.1635×10−2

11 −0.6725 0.1295×10−13 41 +0.3018 0.5113×10−3

12 −0.6400 0.2855×10−12 42∗ +0.3343 0.1388×10−3

13 −0.6075 0.5078×10−11 43∗ +0.3667 0.3259×10−4

14 −0.5750 0.7388×10−10 44∗ +0.3992 0.6595×10−5

15 −0.5426 0.8888×10−9 45∗ +0.4317 0.1145×10−5

16 −0.5101 0.8928×10−7 46∗ +0.4642 0.1697×10−6

17 −0.4776 0.7548×10−7 47∗ +0.4966 0.2135×10−7

18 −0.4451 0.5410×10−6 48∗ +0.5291 0.2262×10−8

19 −0.4127 0.3306×10−5 49∗ +0.5616 0.2004×10−9

20 −0.3802 0.1732×10−4 50∗ +0.5941 0.1470×10−10

21 −0.3477 0.7814×10−4 51∗ +0.6265 0.8822×10−12

22 −0.3152 0.3047×10−3 52∗ +0.6590 0.4275×10−13

23 −0.2828 0.1031×10−2 53∗ +0.6915 0.1645×10−14

24 −0.2503 0.3034×10−2 54∗ +0.7240 0.4921×10−16

25 −0.2178 0.7788×10−2 55∗ +0.7564 0.1114×10−17

26 −0.1853 0.1747×10−1 56∗ +0.7889 0.1842×10−19

27 −0.1529 0.3433×10−1 57∗ +0.8214 0.2115×10−21

28 −0.1204 0.5913×10−1 58∗ +0.8539 0.1563×10−23

29 −0.8792×10−1 0.8941×10−1 59∗ +0.8863 0.6507×10−26

30 −0.5545×10−1 0.1188 60∗ +0.9188 0.1122×10−28

31 −0.2297×10−1 0.1387
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than the observed value of κ = +0.3343 are indicated with asterisks. Because there
is only one degree of freedom, it is sufficient to list the cell frequency values for
only one cell, n11. For the frequency data given in Table 10.10, the exact upper-tail
hypergeometric probability value of the observed κ value is

P = 0.1388×10−3 + 0.3259×10−4

+ · · · + 0.6507×10−26 + 0.1122×10−28 = 0.1793×10−3.

10.5.2 Example 2

Although weighted and unweighted kappa were originally formulated to compare
only two judges, both κ and κw can be generalized to accommodate multiple
judges [25]. However, with multiple judges an exact permutation analysis becomes
impractical except for very small sample sizes; therefore, a Monte Carlo resampling
permutation analysis is preferred when analyzing agreement data from multiple
judges. The analysis for b multiple judges may be conceptualized as a b-way
contingency table with c = 2 categories on each axis. Figure 10.1 illustrates a
2×2×2 contingency table with b = 3 judges and c = 2 disjoint, unordered
categories labeled Pro and Con.

To illustrate the application of Cohen’s kappa with multiple judges and c =
2 disjoint categories, consider the frequency data given in Table 10.12, where
b = 3 judges have independently assigned N = 254 observations to c = 2
categories labeled Pro and Con. A generalized calculation formula that applies to

Fig. 10.1 Graphic depiction
of a 2×2×2 contingency
table with b = 3 independent
judges and c = 2 disjoint
categories
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Table 10.12 Example
2×2×2 contingency table for
b = 3 independent judges and
c = 2 disjoint categories

Judge 3

Judge 1 Judge 2 Pro Con

Pro Pro 42 23

Con 18 40

Con Pro 41 29

Con 33 28

both unweighted and weighted kappa for b = 3 judges and c categories is given by

κ = 1 −
N2

c∑
i=1

c∑
j=1

c∑
k=1

wijknijk

c∑
i=1

c∑
j=1

c∑
k=1

wijkRiCjSk

, (10.5)

where nijk denotes the observed cell frequencies, wijk denotes the cell weights, Ri ,
Cj , and Sk denote the observed row, column, and slice marginal frequency totals for
i, j, k = 1, . . . , c, and

N =
c∑

i=1

c∑
j=1

c∑
k=1

nijk

denotes the table frequency total.
Given a c×c×c agreement table with N objects cross-classified by b = 3

independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c3 cells, while preserving
the observed row, column, and slice marginal frequency distributions, {123, 131},
{135, 119}, and {134, 120}, respectively. For each arrangement of cell frequencies,
the kappa statistic, κ , and the exact hypergeometric point probability value under
the null hypothesis, p(nijk |Ri,Cj , Sk,N), are calculated, where

p(nijk |Ri,Cj , Sk,N) =

(
c∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞
⎠

(
c∏

k=1

Sk !
)

(N !)2
c∏

i=1

c∏
j=1

c∏
k=1

nijk !

[20].
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If κo denotes the value of the observed kappa test statistic, the exact probability
value of κo under the null hypothesis is given by

P(κo|H0) =
M∑
l=1

�l

(
nijk |Ri,Cj , Sk,N

)
,

where

�l

(
nijk |Ri,Cj , Sk,N

) =
⎧⎨
⎩

p(nijk |Ri,Cj , Sk,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely arrangements in the
reference set of all permutations of cell frequencies in Table 10.12 given the
observed marginal frequency distributions. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling becomes necessary, where a random sample, L, of the M possible
arrangements of cell frequencies provides for a comparison of κ test statistics
calculated on the L random tables with the κ test statistic calculated on the observed
table.

Unweighted Kappa

Unweighted kappa and weighted kappa, with either linear or quadratic weighting,
yield the same result when analyzing agreement data for b = 2 judges and c = 2
categories. For b > 2 judges and c = 2 categories, unweighted kappa and weighted
kappa usually yield different results, but weighted kappa with linear weighting and
weighted kappa with quadratic weighting yield the same result. For the frequency
data given in Table 10.12, assign the number 1 to the categories labeled “Pro” and
the number 2 to the categories labeled “Con.” Then the cell disagreement “weights”
for unweighted kappa are given by

wijk =
⎧⎨
⎩

0 if i = j = k ,

1 otherwise .

Following Eq. (10.5) on p. 602, Cohen’s unweighted kappa coefficient is κ =
+0.1862, indicating approximately 19% agreement among the b = 3 judges
above that expected by chance. If κo denotes the observed value of κ , the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column,
and slice marginal frequency distributions, {123, 131}, {135, 119}, and {134, 120},
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respectively, is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 2,250

1,000,000
= 0.0023 .

Weighted Kappa

For the frequency data given in Table 10.12, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the linear cell
disagreement weights are given by

wijk = |i − j | + |i − k| + |j − k|

and the quadratic cell disagreement weights are given by

wijk = (i − j)2 + (i − k)2 + (j − k)2

for i, j, k = 1, . . . , c. Table 10.13 lists the eight cell indices and the associated
linear and quadratic weights for a 2×2×2 agreement table, demonstrating that with
c = 2 categories, the linear and quadratic weights are identical.

Following Eq. (10.5) on p. 602, Cohen’s weighted kappa with linear weighting
is κw = +0.0342, indicating approximately 3% agreement among the b = 3
judges above that expected by chance. If κo denotes the observed value of κw, the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column,
and slice marginal frequency distributions, {123, 131}, {135, 119}, and {134, 120},
respectively, is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 190,610

1,000,000
= 0.1906 .

Table 10.13 Cells, linear
weights, and quadratic
weights for b = 3
independent judges and c = 2
disjoint categories

Weight

Cell Linear Quadratic

111 0 0

112 2 2

121 2 2

122 2 2

211 2 2

212 2 2

221 2 2

222 0 0
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Because with c = 2 categories the linear and quadratic weights are the same, the
results are identical with quadratic weighting, i.e., κw = +0.0342 and P = 0.1906.

10.5.3 Example 3

For this third example of Cohen’s chance-corrected measure of inter-rater agree-
ment, consider b = 4 judges who independently assign N = 76 observations to
c = 2 disjoint, unordered categories labeled Pro and Con. The frequency data are
given in Table 10.14.

A generalized calculation formula that applies to both unweighted and weighted
kappa for b = 4 judges and c categories is given by

κ = 1 −
N3

c∑
i=1

c∑
j=1

c∑
k=1

c∑
l=1

wijklnijkl

c∑
i=1

c∑
j=1

c∑
k=1

c∑
l=1

wijklRiCjSkLl

, (10.6)

where nijkl denotes the observed cell frequencies, wijkl denotes the cell weights, Ri ,
Cj , Sk , and Ll denote the observed row, column, slice, and level marginal frequency
totals for i, j, k, l = 1, . . . , c, and

N =
c∑

i=1

c∑
j=1

c∑
k=1

c∑
l=1

nijkl

denotes the table frequency total.
Given a c×c×c×c agreement table with N objects cross-classified by b = 4

independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c4 cells, while preserving the

Table 10.14 Example
2×2×2×2 contingency table
for b = 4 independent judges
and c = 2 disjoint categories

Judge 4

Judge 1 Judge 2 Judge 3 Pro Con

Pro Pro Pro 5 2

Con 4 1

Con Pro 7 3

Con 9 2

Con Pro Pro 8 4

Con 1 9

Con Pro 7 3

Con 3 8



606 10 Fourfold Contingency Tables, II

observed row, column, slice, and level marginal frequency distributions, {33, 43},
{34, 42}, {39, 37}, and {44, 32}, respectively. For each arrangement of cell frequen-
cies, the kappa statistic, κ , and the exact hypergeometric point probability value
under the null hypothesis, p(nijkl |Ri,Cj , Sk, Ll,N), are calculated, where

p(nijkl |Ri,Cj , Sk, Ll,N) =

(
c∏

i=1

Ri !
)⎛

⎝
c∏

j=1

Cj !
⎞
⎠

(
c∏

k=1

Sk!
)(

c∏
l=1

Ll !
)

(N !)3
c∏

i=1

c∏
j=1

c∏
k=1

c∏
l=1

nijkl !

[20].
If κo denotes the value of the observed kappa test statistic, the exact probability

value of κo under the null hypothesis is given by

P(κo|H0) =
M∑
l=1

�l

(
nijkl |Ri,Cj , Sk, Ll,N

)
,

where

�l

(
nijkl |Ri,Cj , Sk, Ll,N

) =
⎧⎨
⎩

p(nijkl |Ri,Cj , Sk, Ll,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely arrangements in the
reference set of all permutations of cell frequencies in Table 10.14 given the
row, column, slice, and level observed marginal frequency distributions, {33, 43},
{34, 42}, {39, 37}, and {44, 32}, respectively. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling becomes necessary, where a random sample, L, of the M possible
arrangements of cell frequencies provides for a comparison of κ test statistics
calculated on the L random tables with the κ test statistic calculated on the observed
table.

Unweighted Kappa

For the frequency data given in Table 10.14, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the cell
disagreement “weights” for unweighted kappa are given by

wijkl =
⎧⎨
⎩

0 if i = j = k = l ,

1 otherwise .
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Following Eq. (10.6) on p. 605, Cohen’s unweighted kappa coefficient is κ =
+0.0561, indicating approximately 6% agreement among the b = 4 judges above
that expected by chance. If κo denotes the observed value of κ , the approximate
Monte Carlo resampling probability value based on L = 1,000,000 random
arrangements of the cell frequencies, given the observed marginal frequency
distributions, is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 9,475

1,000,000
= 0.0095 .

Weighted Kappa

For the frequency data given in Table 10.14, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the linear cell
disagreement weights are given by

wijkl = |i − j | + |i − k| + |i − l| + |j − k| + |j − l| + |k − l|
and the quadratic cell disagreement weights are given by

wijkl = (i − j)2 + (i − k)2 + (i − l)2 + (j − k)2 + (j − l)2 + (k − l)2

for i, j, k, l = 1, . . . , c.
Table 10.15 lists the 16 cell indices and the associated linear and quadratic

weights for a 2×2×2×2 agreement table. Note that for c = 2 categories, the linear
and quadratic weights are identical.

Table 10.15 Cells, linear
weights, and quadratic
weights for b = 4
independent judges and c = 2
disjoint categories

Weight

Cell Linear Quadratic

1111 0 0

1112 3 3

1121 3 3

1122 4 4

1211 3 3

1212 4 4

1221 4 4

1222 3 3

2111 3 3

2112 4 4

2121 4 4

2122 3 3

2211 4 4

2212 3 3

2221 3 3

2222 0 0
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Following Eq. (10.6) on p. 605, Cohen’s weighted kappa with linear weighting
is κw = +0.0654, indicating approximately 7% agreement among the b = 4
judges above that expected by chance. If κo denotes the observed value of κw, the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column, slice,
and level marginal frequency distributions, {33, 43}, {34, 42}, {39, 37}, and {44, 32},
respectively, is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 3,967

1,000,000
= 0.0040 .

Because, with c = 2 categories, the linear and quadratic weights are the same, the
results are identical to those obtained with quadratic weighting, i.e., κw = +0.0654
and P = 0.0040.

10.6 McNemar’s and Cochran’s Q Tests for Change

In 1947 Quinn McNemar proposed a test for change over k = 2 time periods [18].
In 1950 William Cochran developed a test for change for k ≥ 2 time periods [4]. For
k = 2, Cochran’s Q test for related proportions is identical to McNemar’s Q test
for related proportions. The McNemar and Cochran Q tests are described in detail
in Chap. 4, Sects. 4.6 and 4.7, respectively.

10.6.1 McNemar’s Q Test for Change

Represent a 2×2 contingency table as in Table 10.16. Then, McNemar’s test for
change is given by

Q = (B − C)2

B + C
,

where B and C represent the two cells of change, i.e., Pro to Con and Con to Pro.

Table 10.16 Notation for a
2×2 cross-classification for
McNemar’s test for change

Time 2

Time 1 Pro Con Total

Pro A B A + B

Con C D C + D

Total A + C B + D N
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Illustration

To illustrate the calculation of probability values for McNemar’s Q test for change,
consider the frequency data given in Table 10.17, where N = 9 subjects have been
recorded as either Pro or Con on a specified issue at Time 1 and again on the same
issue at Time 2. For the frequency data given in Table 10.17, the observed value of
McNemar’s Q test statistic is

Q = (B − C)2

B + C
= (5 − 1)2

5 + 1
= 2.6667 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values equal to or greater than the observed value of Q. For the frequency
data given in Table 10.17, there are only

M = min(A + B,A + C) − max(0, A − D) + 1

= min(7, 3) − max(0, 2 − 1) + 1 = 3 − 1 + 1 = 3

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the two cell frequencies of change, 5 and 1, and only two Q

values are equal to or greater than the observed value of Q = 2.6667. The exact
upper-tail probability of the observed Q value is P = 0.9167, i.e., the sum of the
hypergeometric point probability values associated with values of Q = 2.6667 or
greater.

More specifically, Table 10.18 displays the complete reference set of three
possible 2×2 contingency tables given the row and column marginal frequency
distributions, {7, 2} and {3, 6}, respectively. For Table A in Table 10.18, Q = 2.0000
and the associated hypergeometric point probability value is p = 0.0833. For

Table 10.17 Example
frequency data for
McNemar’s test for change
with N = 9 subjects

Time 2

Time 1 Pro Con Total

Pro 2 5 7

Con 1 1 2

Total 3 6 9

Table 10.18 Three possible
cell arrangements given the
marginal frequency
distributions {7, 2} and {3, 6},
Q values, and hypergeometric
point probability values

Table Frequency Q Probability

A 1 6

2 0 2.0000 0.0833

B 2 5

1 1 2.6667 0.5000

C 3 4

0 2 4.0000 0.4167
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Table B in Table 10.18, the observed table, Q = 2.6667 and the associated
hypergeometric point probability value is p = 0.5000. And for Table C in
Table 10.18, Q = 4.0000 and the associated hypergeometric point probability
value is p = 0.4167. Thus, the cumulative hypergeometric probability value for
Q = 2.6667 is the sum of the hypergeometric point probability values associated
with values of Q = 2.6667 or greater; in this case, the probability values associated
with Q = 2.6667 and Q = 4.0000, i.e., P = 0.5000 + 0.4167 = 0.9167.

McNemar’s Q test statistic is approximately distributed as chi-squared with 1
degree of freedom. While no responsible researcher would knowingly fit a chi-
squared distribution function to only three possible outcomes, small samples, such
as in Table 10.17, sometimes occur inadvertently. Suppose a researcher is employed
by a national food service provider and begins with a reasonable, but small sample
of subjects. As the research analysis proceeds, an interest develops in a subset of
subjects composed of only women, breast-feeding their first child, and residing
on a Native American reservation. Such unplanned small samples are relatively
common and are not suitable for a conventional analysis. The chi-squared value
for the observed data in Table 10.17 is χ2 = 0.3214 and the probability value is
P = 0.5708, which, as expected, is far removed from the exact probability value of
P = 0.9167.

Example

A more realistic example illustrating McNemar’s Q test for change is given in
Table 10.19, where N = 70 subjects were recorded as either Pro or Con on a
specified issue at Time 1 and again on the same issue at Time 2. At Time 1, 40
of the 70 subjects were in favor of the issue and 30 subjects were opposed. At Time
2, 50 subjects were in favor and 20 were opposed. Of those subjects that changed,
seven changed from Pro to Con and 17 changed from Con to Pro. For the frequency
data given in Table 10.19, McNemar’s test statistic is

Q = (B − C)2

B + C
= (7 − 17)2

7 + 17
= 100

24
= 4.1667 .

Table 10.19 Example
frequency data for
McNemar’s test for change
with N = 70 subjects

Time 2

Time 1 Pro Con Total

Pro 33 7 40

Con 17 13 30

Total 50 20 70
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For the frequency data given in Table 10.19, there are only

M = min(A + B,A + C) − max(0, A − D) + 1

= min(40, 50) − max(0, 33 − 13) + 1 = 40 − 20 + 1 = 21

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{40, 30} and {50, 20}, respectively, making an exact permutation analysis possible.
Since M = 21 is a reasonably small number of arrangements, it will be illustrative
to list the 21 sets of cell frequencies, McNemar’s Q values, and the associated
hypergeometric point probability values in Table 10.20, where the rows with
hypergeometric probability values associated with Q values equal to or greater than
the observed value of Q = 4.1667 are indicated with asterisks.

If the M = 21 possible arrangements of the frequency data given in Table 10.19
occur with equal chance, the exact probability of Q under the null hypothesis is the
sum of the hypergeometric point probability values associated with Q = 4.1667 or
greater. For the frequency data given in Table 10.19, the exact upper-tail probability

Table 10.20 Cell
frequencies, McNemar’s Q

values, and exact
hypergeometric point
probability values for
M = 21 possible
arrangements of the observed
data in Table 10.19

Cell frequencies

Table n11 n12 n21 n22 Q Probability

1 20 20 30 0 2.0000 0.8515×10−6

2 21 19 29 1 2.0833 0.2433×10−4

3 22 18 28 2 2.1739 0.3047×10−3

4 23 17 27 3 2.2727 0.2225×10−2

5 24 16 26 4 2.3809 0.1064×10−1

6 25 15 25 5 2.5000 0.3541×10−1

7 26 14 24 6 2.6316 0.8512×10−1

8 27 13 23 7 2.7778 0.1513

9 28 12 22 8 2.9412 0.2020

10 29 11 21 9 3.1250 0.2043

11 30 10 20 10 3.3333 0.1573

12 31 9 19 11 3.5714 0.9227×10−1

13 32 8 18 12 3.8462 0.4019×10−1

14∗ 33 7 17 13 4.1667 0.1379×10−1

15∗ 34 6 16 14 4.5455 0.3448×10−2

16∗ 35 5 15 15 5.0000 0.6305×10−3

17∗ 36 4 14 16 5.5556 0.8210×10−4

18∗ 37 3 13 17 6.2500 0.7309×10−5

19∗ 38 2 12 18 7.1429 0.4167×10−6

20∗ 39 1 11 19 8.3333 0.1350×10−7

21∗ 40 0 10 20 10.0000 0.1856×10−9

Sum 1.0000



612 10 Fourfold Contingency Tables, II

of the observed value of Q value is

P = 0.1379×10−1 + 0.3448×10−2 + 0.6305×10−3 + 0.8210×10−4

+ 0.7309×10−5 + 0.4167×10−6 + 0.1350×10−7 + 0.1856×10−9

= 0.0180 .

For comparison, the value of chi-squared for the frequency data given in Table 10.19
is χ2 = 5.6058 and with 1 degree of freedom, the probability value is P = 0.0179,
which compares favorably with the exact probability value of P = 0.0180.

10.6.2 Cochran’s Q Test for Change

Cochran’s Q test for k ≥ 2 treatments can be considered an extension of McNemar’s
Q test for k = 2 treatments or time periods. Cochran’s Q test is described more
completely in Chap. 4, Sect. 4.7.

Cochran’s Q test for the analysis of k treatment conditions (columns) and N

subjects (rows) is given by

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
, (10.7)

where

Cj =
N∑

i=1

xij

is the number of 1s in the j th of k columns,

Ri =
k∑

j=1

xij

is the number of 1s in the ith of N rows,

A =
N∑

i=1

Ri , B =
N∑

i=1

R2
i ,
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and xij denotes the cell entry of either 0 or 1 associated with the ith of N rows and
the j th of k columns. The null hypothesis stipulates that each of the

M =
N∏

i=1

(
k

Ri

)

distinguishable arrangements of 1s and 0s within each of the N rows occurs with
equal probability, given that the values of R1, . . . , RN are fixed [21].

Example

To illustrate Cochran’s Q test for change, consider the binary data listed in
Table 10.21 consisting of the responses (1 or 0) for N = 9 subjects evaluated
over k = 3 time periods, where a 1 indicates success on a prescribed task and a
0 indicates failure. For the binary data listed in Table 10.21,

k∑
j=1

C2
j = 12 + 82 + 52 = 90 ,

A =
N∑

i=1

Ri = 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 2 = 14 ,

B =
N∑

i=1

R2
i = 22 + 22 + 22 + 22 + 11 + 12 + 12 + 12 + 22 = 24 ,

Table 10.21 Successes (1)
and failures (0) of N = 9
subjects on a series of k = 3
time periods

Time

Subject 1 2 3 Ri

1 0 1 1 2

2 0 1 1 2

3 0 1 1 2

4 0 1 1 2

5 0 1 0 1

6 0 1 0 1

7 1 0 0 1

8 0 1 0 1

9 0 1 1 2

Cj 1 8 5 14
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and, following Eq. (10.7) on p. 612, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
= (3 − 1)[(3)(90) − 142]

(3)(14) − 24
= 8.2222 .

For the binary data listed in Table 10.21, there are only

M =
N∏

i=1

(
k

Ri

)
=

(
3

1

)4(3

2

)5

= (34)(35) = 19,683

possible, equally-likely arrangements in the reference set of all permutations of the
observed binary data, making an exact permutation analysis feasible. Based on M =
19,683 arrangements of the observed data, there are 312 Q values equal to or greater
than the observed value of Q = 8.2222. If Qo denotes the observed value of Q, the
exact upper-tail probability value of the observed data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

M
= 312

19,683
= 0.0159 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
8.2222 with k − 1 = 3 − 1 = 2 degrees of freedom is P = 0.0164.

10.7 Fisher’s Exact Probability Test

Fisher’s exact probability test was independently developed by R.A. Fisher, Joseph
Irwin, and Frank Yates in the early 1930s [11, 14, 34]. Characteristically, Fisher’s
exact test is applied to 2×2 contingency tables, but can be generalized and extended
to more complex contingency tables. The eponymous exact test for 2×2 tables
and several extensions are detailed in Chap. 4, Sects. 4.11 and 4.12. In this chapter
on fourfold contingency tables, only 2×2 and 2×2×2 contingency tables are
considered.

10.7.1 Analysis of 2×2 Contingency Tables

Consider a 2×2 contingency table containing N cases, where xo denotes the
observed frequency of any cell and r and c represent the row and column marginal
frequency totals, respectively, corresponding to xo. Table 10.22 illustrates the
notation for a 2×2 contingency table.
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Table 10.22 Example
notation for a 2×2
contingency table

A1 A2 Total

B1 x r − x r

B2 c − x N − r − c + x N − r

Total c N − c N

Table 10.23 Example 2×2
contingency table for Fisher’s
exact test

A1 A2 Total

B1 13 2 15

B2 7 8 15

Total 20 10 30

Given the notation in Table 10.22, Fisher’s exact test for 2×2 contingency tables
is given by

P =
b∑

x=a

p(x|r, c,N) ,

where a = max(0, r + c − N), b = min(r, c), and the hypergeometric point
probability value is given by

p(x|r, c,N) =
(

c

x

)(
N − c

r − x

)(
N

r

)−1

= r! (N − r)! c! (N − c)!
N ! x! (r − x)! (N − r − c − x)! .

To illustrate Fisher’s exact probability test for a multi-way contingency table,
consider the 2×2 contingency table given in Table 10.23 where xo = 13, r = 15,
c = 20, and N = 30.

For the frequency data given in Table 10.23, there are only

M = min(r, c) − max(0, r + c − N) + 1

= min(15, 20) − max(0, 15 + 20 − 30) + 1 = 15 − 5 + 1 = 11

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{15, 15} and {20, 10}, respectively, making an exact permutation analysis possible.
Table 10.24 lists the M = 11 possible values of x and associated hypergeometric
point probability values to nine decimal places.

The exact probability value is obtained by summing all the hypergeometric point
probability values equal to or less than the hypergeometric point probability value
of the observed table, indicated with asterisks in Table 10.24. Thus,

P = 0.022488756 + 0.002498751 + 0.000099950 = 0.025087457
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Table 10.24 Probability
values for M = 11 possible
arrangements of cell
frequencies in Table 10.23,
given the marginal frequency
distributions {15, 15} and
{20, 10}

x p(x|r, c,N)

5 0.000099950

6 0.002498751

7 0.022488756

8 0.097451274

9 0.227386307

10 0.300149925

11 0.227386307

12 0.097451274

13∗ 0.022488756

14∗ 0.002498751

15∗ 0.000099950

Total 1.000000000

for the upper tail of the distribution, i.e., the sum of the hypergeometric point
probability values associated with x = 13, 14, and 15. Since the probability
distribution is symmetric in this case, the exact hypergeometric probability value
is twice the probability of the upper tail, i.e., P = 2(0.0251) = 0.0502.

10.7.2 Analysis of 2×2×2 Contingency Tables

Analyses of multi-way contingency tables are more complex than simple two-way
tables; see Chap. 4, Sect. 4.12. For a two-way contingency table the degrees of
freedom are given by df = (r − 1)(c − 1), where r denotes the number of rows
and c denotes the number of columns. Thus, in the case of a 2×2 contingency table
the degrees of freedom are (2 − 1)(2 − 1) = 1 and only one cell frequency need
be permuted over its range. In the 2×2 example above, the chosen cell (A1B1) was
designated as x in Table 10.22.

For multi-way contingency tables the degrees of freedom are given by

df =
r∏

i=1

ci −
r∑

i=1

(ci − 1) − 1 ,

where r denotes the number of dimensions and ci denotes the number of categories
in each dimension, i = 1, . . . , r [24, p. 309]. Thus, for a 2×2×2 contingency table
with c = 2 disjoint categories in each of r = 3 dimensions,

df = 23 − 3(2 − 1) − 1 = 4 .

Consider a 2×2×2 contingency table where nijk denotes the cell frequency of
the ith row, j th column, and kth slice for i, j, k = 1, 2. Let A = n1.., B = n.1.,
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C = n..1, and N = n... denote the observed marginal frequency totals of the first
row, first column, first slice, and entire table, respectively, such that 1 ≤ A ≤ B ≤
C ≤ N/2. Also, let w = n111, x = n112, y = n121, and z = n211 denote four cell
frequencies of the 2×2×2 contingency table. Then, the probability for any specified
w, x, y, and z is given by

p(w, x, y, z|A,B,C,N) =
[
A! (N − A)! B! (N − B)! C! (N − C)!]

× [
(N !)2 w! x! y! z! (A − w − x − y)! (B − w − x − z)!

(C − w − y − z)! (N − A − B − C + 2w + x + y + z)!]−1

[26].
The bounds for w, x, y, and z are

0 ≤w ≤ Mw ,

0 ≤x ≤ Mx ,

0 ≤y ≤ My ,

and

Lx ≤z ≤ Mz ,

respectively, where Mw = A, Mx = A−w, My = A−w − x, Mz = min(B −w −
x,C − w − y), and Lz = max(0, A + B + C − N − 2w − x − y). If wo, xo, yo,
and zo denote the values of w, x, y, and z in the observed contingency table, then
Fisher’s exact probability value for a 2×2×2 contingency table is given by

P =
Mw∑
w=0

Mx∑
x=0

My∑
y=0

Mz∑
z=Lz

p(w, x, y, z|A,B,C,N)ψ(w, x, y, z) ,

where

ψ(w, x, y, x) =
⎧⎨
⎩

1 if p(w, x, y, z) ≤ p(wo, xo, yo, zo) ,

0 otherwise .

To illustrate Fisher’s exact probability test, consider the 2×2×2 contingency
table given in Table 10.25 where N = 75 and the observed values of w, x, y,
and z are wo = 13, xo = 8, yo = 4, and zo = 18. For the frequency data
given in Table 10.25 there are M = 77,910 possible arrangements in the reference
set of all permutations of cell frequencies given the observed row, column, and



618 10 Fourfold Contingency Tables, II

Table 10.25 Example
2×2×2 contingency table for
Fisher’s exact test

Judge 3

Judge 1 Judge 2 Pro Con

Pro Pro 13 8

Con 4 11

Con Pro 18 5

Con 9 7

slice marginal distributions, {44, 31}, {44, 31}, and {44, 31}, respectively, making
an exact permutation analysis feasible. Fisher’s exact probability is the sum of the
hypergeometric point probability values equal to or less than the probability value
associated with the observed contingency table; in this case, there are 2,991 tables
with probability values equal to or less than the probability value of the observed
table, i.e., p = 0.1743×10−4, yielding P = 0.0384.

10.8 Contingency Table Interactions

It is occasionally necessary to test the independence among multiple classification
variables, each of which consists of two mutually exclusive classes, e.g., a 2×2×2
or 23 contingency table. In this section exact permutation procedures are described
for analyzing interactions in 2×2×2 and 2×2×2×2 contingency tables.

10.8.1 Analysis of 2×2×2 Contingency Tables

Mielke, Berry, and Zelterman provided a procedure for determining the exact
global probability value obtained from an examination of all possible arrangements
of the eight cell frequencies of a 2×2×2 contingency table, conditioned on the
observed marginal frequency totals [26]. An alternative approach that is not as
computationally intensive and, quite possibly, more fruitful is to examine the
first- and second-order interactions of a 2×2×2 table when the observed marginal
frequency totals are considered to be fixed [22]. This approach was first proposed by
Bartlett [1] and has been discussed by Darroch [9, 10], Haber [12, 13], Odoroff [27],
Plackett [29], Pomar [30], Simpson [33], and Zachs and Solomon [35]. In this
section an algorithm is described that computes the exact probability values of
the three first-order (two-variable) interactions and the single second-order (three-
variable) interaction.

The logic on which the algorithm is based was apparently first developed
by Lambert Adolphe Jacques Quetelet to calculate binomial probability values
in 1846 [31]. Beginning with a small arbitrary initial value, a simple recursion
procedure generates relative frequency values for all possible 2×2×2 contingency



10.8 Contingency Table Interactions 619

tables, given the observed marginal frequency totals. The desired exact probability
value is obtained by summing the relative frequency values equal to or less than the
observed relative frequency value and dividing the resultant sum by the unrestricted
relative frequency total.

Consider a sample of N independent observations arranged in a 2×2×2 con-
tingency table. Let nijk denote the observed cell frequency of the ith row, j th
column, and kth slice, and let pijk denote the corresponding cell probability
for i, j, k = 1, 2. Also let n.jk , ni.k , nij., n1.., n.j., n..k , and n... indicate the
observed marginal frequency totals of the 2×2×2 contingency table, and let the
corresponding marginals over pijk be indicated by p.jk , pi.k , pij., p1.., p.j., p..k , and
p..., respectively, for i, j, k = 1, 2. Because the categories are mutually exclusive
and exhaustive, n... = N and p... = 1.

Let r denote the number of dimensions and ci denote the number of categories
in each dimension, i = 1, . . . , r . Then for a 2×2×2 contingency table there are

r∏
i=1

ci −
r∑

i=1

(ci − 1) − 1

= (2)(2)(2) − [(2 − 1) + (2 − 1) + (2 − 1)] − 1 = 8 − 3 − 1 = 4

degrees of freedom and, consequently, four interaction terms to be considered: three
first-order and one second-order. Following Bartlett, the null hypotheses for the
three first-order interactions are

H0: p.11p.22 = p.12p.21 ,

H0: p1.1p2.2 = p1.2p2.1 ,

and

H0: p11.p22. = p12.p21.

[1]. The null hypothesis for the second-order interaction is

H0: p111p122p212p221 = p112p121p211p222

[1, 13, 28].
For simplicity, set x = n111, a = n.11, b = n1.1, c = n11., A = n1.., B = n.1.,

C = n..1, and N = n.... The point probability of x is given by

P(x|a, b, c,A,B,C,N) = [
A! (N − A)! B! (N − B)! C! (N − C)!]

× [
(N !)2 x! (a − x)! (b − x)! (c − x)! (A − b − c + x)!

(B − a − c + x)! (C − a − b + x)! (N − A − B − C + a + b + c − x)!]−1
.
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If H(k), given a, b, c, A, B, C, and N , is a recursively defined positive function,
then solving the recursive relation H(k + 1) = H(k) × g(k) yields

g(k) =
(a − k)(b − k)(c − k)(N − A − B − C + a + b + c − k)

(k + 1)(A − b − c + k + 1)(B − a − c + k + 1)(C − a − b + k + 1)
,

which may be used to enumerate the distribution of P(k|a, b, c,A,B,C,N), v ≤
k ≤ w, where

v = max(0, b + c − A, a + c − B, a + b − C) ,

w = min(a, b, c,N − A − B − C + a + b + c) ,

and where H(v) is initially set to some small value, such as 10−20. The total over
the completely enumerated distribution may be found by

T =
w∑

k=v

H(k) .

The exact second-order interaction probability value is found by

P =
w∑

k=v

H(k)Ik

T
,

where

Ik =
⎧⎨
⎩

1 if H(k) ≤ H(x),

0 otherwise .

A 2×2×2 Contingency Table Example

Table 10.26 depicts a 2×2×2 contingency table based on N = 76 responses to a
question (Yes, No) classified by gender (Female, Male), in two elementary school
grades (First, Fourth).

Table 10.26 Cross-
classification of yes/no
responses, categorized by
gender and elementary school
grade

Gender

Female Male

Grade Yes No Yes No

First 10 4 2 16

Fourth 6 11 15 12
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Table 10.27 provides the cell frequencies for Grade by Gender, conditioned
on Response. The first-order interaction probability value associated with the cell
frequencies in Table 10.27 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

31

14

)(
45

18

)(
76

32

)−1

= 32! 44! 31! 45!
76! 14! 18! 17! 27! = 0.8134 .

Table 10.28 provides the cell frequencies for Gender by Response, conditioned
on Grade. The first-order interaction probability value associated with the cell
frequencies in Table 10.28 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

33

16

)(
43

15

)(
76

31

)−1

= 31! 45! 33! 43!
76! 16! 15! 17! 28! = 0.2496 .

Table 10.29 provides the cell frequencies for Grade by Response, conditioned
on Gender The first-order interaction probability value associated with the cell

Table 10.27 Grade by
Gender, conditioned on
Response

Gender

Grade Female Male Total

First 14 18 32

Fourth 17 27 44

Total 31 45 76

Table 10.28 Gender by
Response, conditioned on
Grade

Response

Gender Yes No Total

Female 16 15 31

Male 17 28 45

Total 33 43 76

Table 10.29 Grade by
Response, conditioned on
Gender

Response

Grade Yes No Total

First 12 20 32

Fourth 21 23 44

Total 33 43 76
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frequencies in Table 10.29 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

33

12

)(
43

20

)(
76

32

)−1

= 32! 44! 33! 43!
76! 12! 20! 21! 23! = 0.4830 .

The second-order interaction probability value for the frequency data given in
Table 10.29 is P = 0.9036×10−3 and the global probability of a table this extreme
or more extreme than the observed table in Table 10.29 is P = 0.4453×10−2 [26].

10.8.2 Analysis of 2×2×2×2 Contingency Tables

Utilizing the recursion procedure presented in the previous example, it is possible to
analyze a 2×2×2×2 or 24 contingency table [23]. The conditional probability value
of a 2×2×2×2 contingency table is a special case of the conditional probability
of an r-way contingency table as defined in Mielke and Berry [20]. Zelterman,
Chan, and Mielke [36] provided an algorithm for the exact global probability value
obtained from an examination of all possible arrangements of the 16 cell frequencies
of a 2×2×2×2 contingency table, conditioned on the observed marginal frequency
totals. An alternative approach is to examine the first-, second-, and third-order
interactions in a 2×2×2×2 table when the observed marginal frequency totals are
considered to be fixed.

Let r denote the number of dimensions and ci denote the number of categories
in each dimension, i = 1, . . . , r , then for a 2×2×2×2 contingency table there are

r∏
i=1

ci −
r∑

i=1

(ci − 1) − 1

= (2)(2)(2)(2) − [(2 − 1) + (2 − 1) + (2 − 1) + (2 − 1)] − 1

= 16 − 4 − 1 = 11

degrees of freedom and, consequently, 11 interaction terms to be considered: six
first-order and four second-order, and one third-order. In this section, a procedure
is described for computing the exact probability values of the six first-order (two-
variable) interactions, the four second-order (three-variable) interactions, and the
single third-order (four-variable) interactions for a 2×2×2×2 contingency table.
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Following Mielke [19], let pi1i2i3i4 denote the probability of cell i1i2i3i4 in a
2×2×2×2 contingency table, where the index ij = 1 or 2 for j = 1, 2, 3, 4. The six
null hypotheses of no first-order interactions for a 2×2×2×2 contingency table are

H0: p1100p2200 = p1200p2100 ,

H0: p1010p2020 = p1020p2010 ,

H0: p1001p2002 = p1002p2001 ,

H0: p0110p0220 = p0120p0210 ,

H0: p0101p0202 = p0102p0201 ,

and

H0: p0011p0022 = p0012p0021 ,

where the usual summation convention is employed. Thus, p0101 is the sum over
indices i1 and i3. The four null hypotheses of no second-order interaction for a
2×2×2×2 contingency table are

H0: p1110p2210p1220p2120 = p1120p2220p1210p2110 ,

H0: p1101p2201p1202p2102 = p1102p2202p1201p2101 ,

H0: p1011p2021p1022p2012 = p1012p2022p1021p2011 ,

and

H0: p0111p0221p0122p0212 = p0112p0222p0121p0211 .

The null hypothesis of no third-order interaction for a 2×2×2×2 contingency table
is given by

H0: p1111p2211p1221p2121p1122p2222p1212p2112

= p1112p2212p1222p2122p1121p2221p1211p2111 .

Table 10.30 contains data from a 2×2×2×2 contingency table based on N =
1,356 responses classified on four dichotomous variables: A, B, C, and D. The
first-, second-, and third-order interaction exact probability values associated with
the data listed in Table 10.30 are given in Table 10.31.



624 10 Fourfold Contingency Tables, II

Table 10.30 Example data
for a 2×2×2×2 contingency
table

Variable

A B C D Frequency

1 1 1 1 187

1 1 1 2 15

1 1 2 1 42

1 1 2 2 40

1 2 1 1 256

1 2 1 2 42

1 2 2 1 34

1 2 2 2 62

2 1 1 1 177

2 1 1 2 14

2 1 2 1 30

2 1 2 2 63

2 2 1 1 194

2 2 1 2 27

2 2 2 1 52

2 2 2 2 121

N 1,356

Table 10.31 Interactions and
associated exact
hypergeometric probability
values for the data listed in
Table 10.30

Interaction Probability

A×B 0.3822×10−9

A×C 0.4891×10−3

A×D 0.8690×10−4

B×C 0.2181

B×D 0.5475×10−5

C×D 1.0000

A×B×C 0.4491

A×B×D 0.2792×10−1

A×C×D 0.7999

B×C×D 0.4021×10−2

A×B×C×D 0.6517×10−1

10.9 Coda

Chapter 10 applied exact and Monte Carlo permutation statistical methods to
measures of association for symmetrical 2×2 contingency tables. Included in
Chap. 10 were discussions of Pearson’s φ, Tschuprov’s T 2, and Cramér’s V 2

coefficients of contingency, Pearson’s product-moment correlation coefficient, Leik
and Gove’s d c

N measure, Goodman and Kruskal’s ta and tb asymmetric measures of
nominal association, Kendall’s τb and Stuart’s τc measures of ordinal association,
Somers’ dyx and dxy asymmetric measures of ordinal association, Yule’s Y measure
of nominal association, simple percentage differences, and Cohen’s unweighted and
weighted κ measures of inter-rater agreement.
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Chapter 10 concluded with an examination of extensions to multiple 2×2
contingency tables and 2×2×2 contingency tables, including the Mantel–Haenszel
test for combined 2×2 contingency tables, Cohen’s chance-corrected measure of
inter-rater agreement, McNemar’s and Cochran’s Q tests for change, Fisher’s exact
test for 2×2×2 and 2×2×2×2 contingency tables, and tests for interactions in
2×2×2 and 2×2×2×2 contingency tables.
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