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Introduction

Overview

Intelligent transportation systems (ITS) are state-of-the-art applications to improve
the transportation safety and mobility, as well as move towards an environmentally
friendly system. ITS plays a pivotal role in future smart cities in terms of providing
the users with more informed, safer, more secured, and cost-effective transporta-
tion system. To this end, ITS takes advantage of modern technologies including
communication infrastructure to enable efficient data transfer among smart agents,
advanced computational methods to deal with large-scale optimization problems,
autonomous vehicles, electrified vehicles, connected vehicles, and intelligent traffic
signals. In this chapter, we provide a comprehensive overview of some ITS tech-
nologies. Some of the recent methods to enable these technologies are introduced
to pave the road for future researchers working in this area. To provide readers with
case examples of ITS, two connected vehicle applications are elaborated in this
chapter: queue warning and automatic incident detection. Queue warning systems
are designed to inform the drivers about the back-of-queue (BOQ) location so that
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they brake safely and in a timely manner. An automatic incident detection (AID)
system aims to detect incident occurrence automatically utilizing traffic data such
as speed, volume, and occupancy.

Forecasting the driving patterns and the data provided by advanced traveler infor-
mation systems that affects the traffic in transportation network flow is important
in modernizing the transportation networks and enabling intelligent transportation
systems (ITS). Sharing the predicted traffic conditions, they are able to make more
optimal decisions while traveling. This will lead to traffic congestion reduction as
well as increased efficiency of transportation by enhancing the utilization of the
current assets [1]. In [2], authors proposed an algorithm that takes into account
several effective parameters (e.g., waiting time, density of vehicles, and volume of
traffic) to control the traffic in a real-time fashion based on the wirelessly collected
data. Their method estimates the green light sequence as well as the duration of each
green light. In [3] a route optimization method is proposed for electrified vehicles
which considers variables from both power systems and transportation networks.
In this approach, traffic conditions, electricity price for charging the battery, and
behavioral preferences of drivers are considered while determining the optimal route
from the given origin to the expected destination. A comprehensive introduction to
the theoretical approaches for ITS applications is provided in [4]. These methods are
not only for intelligent transportation networks, but also applicable to other smart
infrastructure. Transportation networks are among crucial sustainable interdepen-
dent networks [5]. First, there is an increasing evolution towards modernizing these
networks by deploying more electric vehicles [6]; second, they are considered as
key players of future smart cities [7]; third, they involve several other networks
such as power systems and communication networks. The interdependent aspects
of power and transportation networks have been extensively studied in [2]. Further,
the effect of electrified vehicle charging demand on the operation of power systems
is investigated in [6].

More information about the performance measures, detection rate (DR), false
alarm rate (FAR), and mean time to detect (MTTD), is provided in [8, 9].

Automatic Incident Detection

An automatic incident detection (AID) system aims to detect incident occurrence
automatically utilizing traffic data such as speed, volume, and occupancy. An AID
system has two components: a data collection system and an incident detection
algorithm. The data collection system provides real-time traffic data such as speed,
occupancy, and flow using data collection devices (e.g., point detectors, CCTV
cameras, tag readers, Bluetooth). The collected data is analyzed through incident
detection algorithms to declare the incident occurrence. The performance of incident
detection algorithms is normally evaluated using three commonly used performance
measures: detection rate (DR), false alarm rate (FAR),and mean time to detect
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(MTTD) [8, 9]. DR is the ratio of number of correct detections by total number
of actual incidents occurring in a time period and is shown in Eq. (6.1):

DR = Number of correct detections

Total number of incidents
× 100% (6.1)

Different researchers have defined different FARs for different purposes.
FARonline and FARoff-line are the two main detentions found in the literature.
FARonline is the percentage of the number of incorrect decisions by the total number
of algorithm decisions (all the declared alarms) while FARoff-line is the ratio of
algorithm incorrect decisions by the number of algorithm applications [10]:

FARonline = Number of incorrect detections

Total number of algorithem decisions
× 100% (6.2)

FARoff−line = Number of incorrect detections

Total number of algorithem decisions
× 100% (6.3)

MTTD is the difference between estimated incident time by the algorithm and
the observed incident time which is shown in Eq. (6.4).

MTTD = Estimated incident time − Observed incident time (6.4)

Generally, automatic incident detection methods are categorized into two main
groups: point detector-based and probe-based algorithms. Most of the traditional
automatic incident detection algorithms use point detector data to detect incidents.
However, there are some disadvantages in using point detector data. The main
drawback of the point detector-based methods is that they cannot detect the incident
until the queue caused by the incident reaches the upstream detector [11], which may
take a long time and even may never happen if the queues due to incidents are short
or do not exist. These algorithms were also found to produce large numbers of false
alarms [12–14]. Furthermore, these sensors cannot be deployed all over the network
as they are expensive and they cannot cover the entire network. It is also difficult to
realize the true traffic conditions, as sensors collect spot traffic data. Incidents may
be detected more efficiently using travel time measurements collected by probes
(e.g., Bluetooth, Wi-Fi, electronic toll tag readers, and GPS) as they have a wider
roadway coverage. Further, spectrum allocation of wireless networks is important
to ensure the energy-efficient communication [15]. Mohammadi et al. proposed
a highly efficient approach to reduce the power consumption of communication
networks using fuzzy logics [15]. Their approach has several advantages compared
with the existing communication platforms and can be deployed for different
applications such as intelligent transportation networks. A summary of the point
detector-based and probe-based algorithm performance reviewed above and other
algorithms are shown in Table 6.1.
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Methodology

This study tests two freeway incident detection methods based on connected vehicle
data. The methods are based on the vehicle’s acceleration estimated based on
connected vehicle data. Due to the fact that the vehicle’s acceleration after slowing
at and then passing the incident location is always positive, the acceleration after
the incident location was selected to identify the incident signature for the proposed
methods.

The methods were tested using the VISSIM microscopic simulation tool. VIS-
SIM was used to emulate incident occurring in a mixed connected vehicle and
not connected vehicles in a traffic stream. The vehicle’s trajectories produced by
VISSIM were fed to the Trajectory Conversion Algorithm (TCA) tool, produced
by the Federal Highway Administration (FHWA) (25) to emulate BSM messages
generating from the simulation. Then, the generated BSM messages were input to
the incident detection methods to investigate their performances. More description
of the TCA tool is presented in the case study section. The subsection below
provides more details about the tested methods.

Method I: The Average Acceleration Distribution Method

This method aims to detect the abnormality in the traffic conditions using a prede-
fined threshold based on the acceptable probability of false alarms. In this method,
the network is decomposed to m segments. Using historical data of connected
vehicle measurements, the acceleration distribution is derived for each segment for
no-incident conditions. Four different hypothesis testing resolutions of 30, 60, and
90 ft. were conducted and the results were compared. In this study, the distributions
are derived using multiple VISSIM runs under no-incident condition. According to
central limit theorem, the average of large number of iterates of a random variable,
regardless of the underlying distribution, is approximately normally distributed. So,
the average acceleration in each segment is normally distributed. This distribution
changes when the traffic demand changes. Thus, different distributions need to
be derived for different periods. In practice, the lengths of the periods can be
done using clustering analysis or other statistical techniques. The focus of this
chapter is incident detection during medium and high traffic demand (high and
medium congestion) for the simple test networks. Thus, for each segment two
distributions were developed based on VISSIM runs with no incident and considered
to be adequate for the purpose of this study. The 95th percentile of the average
acceleration rate in each segment m for the two congestion levels was selected as
the threshold for incident detection Method I. This means that the probability of
the false alarms was set at 5%. The process of calculating the thresholds was done
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off-line. To detect the incident in real time, in each time interval, the whole network
was scanned. If a segment average acceleration was higher than the threshold, the
segment was detected as an incident location.

Method II: The LRT-Based Method

As with Method I, the incident detection problem is converted to a hypothesis testing
problem with the null hypothesis being no incident presence and the alternative
hypothesis being incident presence. The purpose of the hypothesis testing is to
decide whether an incident happened or not in a specific time and location in the
network based on an observed set of measurements {x[0], x[1], . . . , x[N − 1]}, with
each of these measurements representing the individual measurements ahead of
the tested segment for potential incident occurrence. Based on our observation of
acceleration rate measurements in VISSIM, the influence area of the incident is
150 ft. after the incident location. This 150 ft. is decomposed to nsig sub-segments
and for each sub-segment the distribution under the incident and no-incident
conditions is derived. Each of the N measurements within this 150 ft. belongs to
any of nsig distributions. The length of each sub-segment was selected to be 15 ft.
However the resolution for deriving the distributions (15 ft.) can be different from
the hypothesis test segment resolution. The hypothesis test segment resolution was
selected to be 30 ft. However, the hypothesis test segment resolution can be longer
in the expense of losing the accuracy of identification of the exact incident location.
To clarify, if the hypothesis test segment resolution is 150 ft. and one segment is
detected to have incident in it, the exact location of the incident within this 150 ft.
cannot be determined. It should be realized that in most applications, locating the
incidents to within 150 ft. is sufficient.

Hypothesis testing is conducted by looking at the N measurements within
the 150 ft. after the segment and utilizing the pre-stored distributions of the
measurements with and without incidents for the nsig segments. The threshold in the
hypothesis testing is not fixed as in Method I and is updated for each segment at each
time interval. Since the measurements are not uniformly distributed at all locations
in all time step, the number of measurements for each hypothesis testing is not
known beforehand. Furthermore, the relative distance of the measurements to the
respective location of the hypothesis testing is also unknown beforehand. Therefore
the utilized incident detection algorithm is an adaptive detector that changes its form
(test statistic) according to the number of available measurements and the relative
distance of them to the respective hypothesis location. Detector form means the way
to process the data and come up with a test statistic to compare it with a threshold.
To clarify the methodology, suppose we are testing the ith segment of the network
at time interval t. Measurements within 150 ft. after segment ith during time t are
processed (using Eq. (6.7)) and compared with a threshold which is calculated using
Eq. (6.8). According to Neyman-Pearson Theorem [27], in order to maximize the
probability of detection (PD) for a given probability of false alarm:
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(PFA) = α, we accept H1 if

L(X) = P (X;H1)

P (X;H0)
> γ (6.5)

where
X is the measurement vector.
L(X) is the likelihood ratio that determines the likelihood of each X belonging

to H1 versus the likelihood of X belonging to H0, and γ is the threshold which is
obtained from Eq. (6.6):

PFA =
∫

{x:L(x)>γ }
p (x;H0) dx = α (6.6)

The test statistic and the threshold were calculated by simplification of Eqs. (6.5)
and (6.6), respectively, and are shown in Eqs. (6.7) and (6.8):

Tmk(X) =
N−1∑
i=1

xi

(
s′
i − si

)
σ 2

(6.7)

γ ′
lk =

Q−1 (PFA) ∗ var
(
Tmk

(
X

)
(
E

(
Tmk(X)

) (6.8)

where
xi is the ith measurement for testing the hypothesis at segment m and time step k.
s′
i is the expected value of ith measurement under the incident case.

si is the expected value of ith measurement under the no-incident case.
Tmk(X) is the test statistic to be compared with γ ′

mk . If Tmk(X) > γ ′
mk we accept

H1 and conclude that there is an incident in Milepost m and time step k.

Results

The incident detection results for different scenarios are shown in Tables 6.2 and 6.3.
Table 6.2 shows the results for Method I with different test segment resolutions. As
shown in Table 6.2, this method was unable to detect the incidents when the network
was congested when the incident detection threshold was set to 95% and 99% of the
average normal acceleration distribution. When the threshold was changed to 99%,
the PFA and DR decreased as expected but the method could not detect incidents
after the merge even under no-breakdown conditions The reason appears to be the
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Table 6.2 Method I incident detection results

Incident before merge Incident after merge
H.Ra Tb Congestion level MP (%) DR % PFA% MTTD DR % PFA% MTTD

30 ft. 95% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 100% 4.5% 1 min 100% 2.43% 1 min
20 100% 3.65% 1 min 100% 1.57% 1 min

99% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 85% 0.48% 2 min Unable to detect
20 85% 0.32% 2 min

60 ft. 95% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 100% 2.81% 1 min 100% 1.16% 1 min
20 100% 2.57% 1 min 100% 1.08% 1 min

99% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 70% 0 2 min Unable to detect
20 75% 0 2 min

90 ft. 95% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 100% 2.67% 1 min 100% 0.79% 1 min
20 100% 2.48% 1 min 100% 0.42% 1 min

99% With breakdown 3 Unable to detect Unable to detect
20

Without breakdown 3 Unable to detect Unable to detect
20 70% 0 2 min

aHypothesis testing resolution
bThreshold

Table 6.3 Method II incident detection results

Incident before merge Incident after merge
Congestion level MP (%) DR % PFA% MTTD DR % PFA% MTTD

With breakdown 3 100 0 1 min 100 0.02 1 min
20 100 0 1 min 100 0 1 min

Without breakdown 3 100 0.2 1 min 100 0.46 1 min
20 100 0.06 1 min 100 0.3 1 min

overlap between the average acceleration distribution beyond the incident location
and the average acceleration distribution beyond the on-ramp merge location, which
make the differentiation between these two conditions difficult. As can be seen from
Table 6.3, 90 ft. testing segment resolution produced the best incident detection
performance, but it was still not able to detect incidents at the merge area during
traffic breakdown. Table 6.3 shows that Method II (the LTR method) performed
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significantly better than Method I, particularly for breakdown conditions, in terms of
the ability to detect the incidents and false alarm rates. The probability of false alarm
was set to 10−4 (threshold: 9999th percentile) and with this probability of false
alarm it was possible to obtain the best performance of incident detection among
the methods and parameters tested, as shown in Table 6.3. Compare to the other
probe-based methods reviewed in the literature, Method II demonstrated promising
performance with the average DR of 100%, FAR of 0.13%, and MTTD of 1 min.

Queue Warning

In the previous section, the incident detection method based on CV data, as utilized
in this study, was explained. Once the incident is detected, the back-of-queue
estimation algorithm and queue warning are activated in the simulation model. To
identify the back of queue, the segments are sorted based on their position, compared
to the incident location. If a segment average speed is below a threshold, the segment
is considered queued. The algorithm continues to test if the next upstream segment
is queued and the first unqueued segment upstream of the incident is declared as
the back of queue. The BOQ estimation algorithm is shown in Fig. 6.1. Lastly, the
performance of the connected vehicle-based BOQ detection is compared with the
ground truth queue based on VISSIM results and with the queue estimated based
on point detection in the simulation. The point detector-based BOQ algorithm is
taken from the Pesti et al. [28] study, which estimates the location of queue using
the following equation:

X = XDET(i) + 1

2
�XDET (6.9)

where
X = back-of-queue location.
XDET(i) = distance from the incident location to the speed detector i.
ΔXDET = detector spacing.

The queue warning system is activated when the incident (or recurrent bottle-
neck) is detected and the queue starts growing. In this study, the queue warning
impact is modeled by changing a certain percentage of a vehicle’s speed upstream
of the queue using the VISSIM COM interface. It is assumed that the back of
queue is detected by the connected vehicle data and the queue warning message
is shown dynamically at a specific location upstream of the back of queue using
a DMS or connected vehicle onboard units (OBUs). The proportions of vehicles
changing speeds in response to OBU messages reflect the number of connected
vehicles equipped with OBU and driver acceptance of the message advisory. In the
future, with the introduction of connected automated vehicles, the response to queue
warning messages will be set automatically by the vehicle, and the driver acceptance
will become less of a factor.
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Fig. 6.1 Back-of-queue (BOQ) estimation algorithm

The vehicle’s trajectories produced by VISSIM are fed to the TCA tool to
emulate BSM messages generating from the simulated vehicles. The generated
BSM messages are input to the incident and BOQ detection algorithms utilized in
this study to investigate their performances. The results of this part can be found in
Reference [29].
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