
Chapter 4
Blank Materials

Eren Billur and Hyun-Sung Son

Abstract All sheet metal forming operations start with the blank material. The final
part properties are dependent on the incomingmaterial properties and how they could
be changed during the process. To engineer the final part, it is essential to understand
the incoming blankmaterial. This chapter discusses themost common 22MnB5 steel,
and other steel grades already in use or proposed to be used in hot stamping processes.
Incoming blank could be uncoated or coated. Coatings can affect the final properties
due to scale formation, decarburization and by the presence of microcracks. In the
last decade, tailored blanks have been used in a number of automotive applications.
The last section of this chapter summarizes Tailor Rolled, Patchwork, Tailor Welded
blanks, and their combinations.

4.1 22MnB5

Currently, most of the production and research is being done using 22MnB5 grade
(Material number 1.5528). This is a low-carbon steel, with manganese and boron
alloying. The chemical composition of 22MnB5 is given in Table4.1. As delivered,
the steel has a yield strength of approximately 400MPa, UTS around 600MPa and
approximately 22% total elongation. After quenching, the material’s yield strength
exceeds 1000MPa and UTS reaches 1500MPa. The total elongation of the final part
is typically over 5% [1–3] (Fig. 4.1).
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Table 4.1 Chemical composition of 22MnB5 [4–6]
C Mn B Cr Si Al Ti N

Minimum 0.19 1.10 0.0008 0.10 0.00 0.02 0.015 0.000
Nominal 0.22 1.18 0.0020 0.16 0.22 0.03 0.040 0.005
Maximum 0.25 1.40 0.0050 0.35 0.40 0.08 0.050 0.010

0 5 10 15 20 25 30
0

500

1000

1500

Engineering Strain (%)

En
gi

ne
er

in
g 

St
re

ss
 (M

Pa
)

22MnB5 as delivered

After quenching

Fig. 4.1 Engineering stress–strain curves of 22MnB5, in as-delivered conditions and after quench-
ing (re-created after [2])

This alloy has been commercialized by several names, including but not limited to:

• Ultralume by AK Steel, available as uncoated or Al/Si coated [7].
• USIBOR1500byArcelorMittal, typicallyAlSi-coated steel produced andpatented
byArcelorMittal. Zn-coated versions are also available by the nameUSIBOR1500
GI or GA [8, 9].

• BR 1500 HS: by BaoSteel [10],
• BTR 165: uncoated steel by Benteler [11],
• SQ 1500: (Sumi-quench) by Nippon-Sumitomo [12],
• Hot Press Forming (HPF) 1470 by posco, available uncoated, AlSi coated or Zn
(GI) coated [13, 14]

• Docol 1500 PHS: uncoated steel by SSAB, earlier named as Docol 1500 Bor [15,
16]

• MBW1500: Mangan-Bor-Stähl zum Warmumformung, literally meaning
manganese-boron steel for hot formhardening, produced byThyssenKrupp.Avail-
able uncoated or AlSi coated (MBW1500+AS) [17]. There was a ZnNi-coated
version [18] which was later discontinued [19, 20].

• phs-ultraform 1500: Zn-coated steel by voestalpine [21]
• WHT1500HF: uncoated steel by Wisco [22].1

1Steel companies are listed alphabetically.
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4.2 Higher Strength Steels (>1700MPa)

Mn-B alloyed steels have been long available in hot-rolled (i.e., thick blanks) and
uncoated conditions for agriculture and construction machinery industries [23].
Chemical compositions of several standard Mn-B and Mn-B-Cr alloyed steels that
have higher carbon than 22MnB5 are tabulated in Table4.2 [1, 6].

Mn-B alloyed steels are typically delivered in soft, ferritic-pearlitic condition.
First, they have to be austenitized in an atmosphere controlled furnace. Once
quenched, their strength levels are at least doubled, as listed in Table4.3. Steels with
higher carbon level than the most common 22MnB5 typically have higher strength.
These grades may save even more weight, with equivalent intrusion resistance [12,
24, 25]. For hot stamping applications, some of the steels listed in Tables4.2 and 4.3
are slightly modified and commercialized under different names.

Table 4.2 Chemical compositions (wt-%) of higher strength Mn-B and Mn-B-Cr steels (trace
amounts of other elements, balance Fe) [1, 4, 6]

Steel (Mat’l
number)

C Mn B Cr

27MnCrB5 (1.7182) 0.25 1.24 0.002 0.34

28MnB5 0.28 1.30 0.005 –

30MnB5 (1.5531) 0.30 1.30 0.005 –

33MnCrB5 (1.7185) 0.33 1.35 0.005 0.45

34MnB5 0.34 1.30 0.005 –

37MnB4 (1.5537) 0.33 0.81 0.001 0.19

Table 4.3 Yield andUltimate Tensile Strength of several quenchable steels before and after quench-
ing [1, 4, 6]

Steel As delivered Quenched

Yield stress
MPa (ksi)

UTS
MPa (ksi)

Yield stress
MPa (ksi)

UTS
MPa (ksi)

27MnCrB5
(1.7182)

478
(69)

638
(93)

1097
(159)

1611
(234)

28MnB5 420
(61)

620
(90)

1135
(165)

1740
(252)

30MnB5
(1.5531)

510
(61)

700
(90)

1230
(165)

1740
(252)

33MnCrB5
(1.7185)

420
(61)

620
(90)

1290
(187)

1850
(268)

34MnB5 600
(87)

820
(119)

1225
(178)

1919
(278)

37MnB4
(1.5524)

580
(84)

810
(117)

1378
(200)

2040
(296)
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For example, ArcelorMittal has been developing a steel grade similar to 34MnB5,
commercially named as USIBOR� 2000P, which is currently under customer trials.
This grade will be available with AlSi coating [8, 31]. Baosteel is also preparing a
1800MPa steel [13].

Mazda has become the first vehicle manufacturer to use higher strength boron
steels. The CX-5 (SOP 2011) has 1,800MPa (∼260ksi) tensile strength reinforce-
ments in front and rear bumpers, Fig. 4.3. According to Mazda, the new material
saved 4.8kg (∼10.6lbs.) per vehicle. The material was supplied by Sumitomo Met-
als (SumiQuench 1800, SQ1800 as shown in Fig. 4.2, modified 30MnB5) and hot
stamped at a facility of Aisin Takaoka, both in Japan [12, 32]. Figure4.4 shows the
comparison of bumper beams with SQ1500 and SQ1800. With the higher strength
material, it was possible to save 12.5% weight with equal performance [12].

Posco has already demonstrated HPF 2000 steel in a number of component-based
examples, and also in the Renault EOLAB concept car [28, 33]. Since 2016, Posco
has also been developing a 1800MPa grade [14]. SSAB has already commercial-
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Fig. 4.3 Bumper beam reinforcements of Mazda CX-5 (SOP 2011) are the first automotive appli-
cations of higher strength boron steels [32]
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Fig. 4.5 Hardness distribution of an impact beam using ThyssenKrupp Mn-B steels (re-created
after [18, 26])

ized uncoated Docol PHS 1800 (∼30MnB5) and is preparing Docol PHS 2000 [34].
ThyssenKrupp has demonstrated that an MBW� 1900 B-pillar with correct proper-
ties can save 22% weight compared to DP600 and yet costs 9% less than the original
dual-phase design [35]. Ford had also demonstrated that by usingMBW1900 instead
of 22MnB5, a further 15%weight could be saved [24]. Another grade in development
by ThyssenKrupp was MBW� 1700 (28MnB5). Figure4.2 shows MBW� 1900
(34MnB5) tensile data, compared with MBW� 1700 (28MnB5) and MBW� 1500
(22MnB5), with commercial names from other suppliers as well [27]. Voestalpine
has already commercialized phs-ultraform 2000 [36].

Table4.4 summarizes commercially available andunder development steel grades,
designed for hot stamping applications.

Vickers Hardness (HV) values for conventional 22MnB5 steel are in the order of
450–500 HV after quenching. 37MnB4, on the other hand, has a Vickers Hardness of
600–610 HV [4]. Similarly, Overrath et al. [26] found ∼490 HV for MBW� 1500,
∼530 HV for MBW� 1700 and ∼580 HV for MBW� 1900, as shown in Fig. 4.5.
ThyssenKrupp has commercialized MBW� 1900 in 2013 [42]. MBW 1700 has not
been commercialized yet [43].

Problemswith higher strengthmaterials are (1) their low toughness/energy absorp-
tion (i.e., typically even lower elongation than 22MnB5, see Fig. 4.2), (2) delayed
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Fig. 4.6 Energy absorbing capacity decreases with increased hardness. If “Prior Austenite Grain
Size” (PAGS) can be refined, significant improvements can be achieved [re-created after [41, 42]]

cracking and (3) weldability [12]. Delayed cracking is investigated in Sect. 6.19 and
weldability in Chap.7.

Naderi [4] noted that, during tensile test of 37MnB4 (UTS = 2040MPa, 296ksi),
all of the hardened tensile samples were cracked out of the gage length. One possible
way to improve the toughness (energy absorbing capacity) of higher strength steels
is grain refinement. Wang et al. had shown that as the “prior austenite grain size”
(PAGS) of a high-strength steel is reduced, both the strength and elongation values are
improved. Thus, the toughness is improved [44]. Figure4.6 shows energy absorption
of martensitic steels with hardness between 450–650 HV - in the range of most hot
stamping grades.WhenNb alloying is introduced, the toughness is increased through
PAGS refinement [41].

4.3 Higher Elongation/Energy Absorbing Materials

Since hot-stamped parts are extremely strong, but do not absorb much energy, they
are mostly used where intrusion resistance is required. However, lately, there are
newmaterials for hot stamping which have higher elongation (ductility) compared to
22MnB5. Thus, these materials can save weight where energy absorption is required.

These new grades can be investigated in two different strength levels:

(1) 450–600MPa tensile strength level and >15% total elongation and
(2) 1000–1300MPa tensile strength level and >5% total elongation.

ArcelorMittal has been developing 4 new materials, as shown in Table4.5.
Figure4.7 shows the approximate engineering strain–stress diagrams of USIBOR
1500 (22MnB5), DUCTIBOR 1300 and 500. There is also research going on laser
welding DUCTIBOR grades to USIBOR grade material to combine intrusion resis-

http://dx.doi.org/10.1007/978-3-319-98870-2_6
http://dx.doi.org/10.1007/978-3-319-98870-2_7
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Table 4.5 Higher elongation hot stamping materials, developed by ArcelorMittal [8, 31, 47]

Product name Yield strength
MPa (ksi)

Tensile strength
MPa (ksi)

Elongation (%) Status

DUCTIBOR 450 340–460 (50–65) 460–610 (65–90) ≥16 Industrial

DUCTIBOR 500 370–470 (55–70) 550–700
(55–100)

≥16 Industrial

DUCTIBOR
1000

≥800 (≥115) ≥1000 (≥145) ≥6 Customer testing

DUCTIBOR
1300

≥950 (≥135) ≥1300 (≥190) ≥5 n/a
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Fig. 4.7 Comparison of 22MnB5 with high elongation grades [8, 10, 43, 49, 52]

tance and energy absorption properties. For details of these studies, see Sect. 8.2.1
[8, 45]. Since 2015, several Fiat models have a rear rail with Ductibor 450 [46].

ThyssenKrupp and voestalpine have also developed 500MPa (∼75 ksi) grades
with the commercial names MBW� 500 and phs-ultraform 490, respectively. Pro-
duction ofMBW� 500 started in January 2012. Since 2014,Volvo is usingMBW500
steel in the new XC90 in energy absorbing areas [48]. Since then, ThyssenKrupp
also developed MBW� 600 [43], voestalpine rolled phs-ultraform 490, which is
available with Zn coating, in February 2013 [49].

For crashworthiness, bending angle may be a more important indicator compared
to total elongation [50]. Thus, bending angles are also reported in the summary of
450–600MPa steels is given in Table4.6.

In 1000–1300MPa tensile strength grades, BaoSteel has commercialized B1200
steel since 2013. This steel has minimum 900 MPa yield, 1200MPa tensile strength
when quenched properly and can still have 7% uniform elongation [10]. WISCO has
also commercially available 1300MPa grade, WHT 1300 HF [22, 53]. As of 2017,
Ductibor 1000 is under customer testing, and there are no updates about Ductibor
1300 [31] (Table4.7).

http://dx.doi.org/10.1007/978-3-319-98870-2_8
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4.4 Other Steels for Hot Stamping

In the last few years, new steels are also considered for hot stamping process.
Although these are not in mass production yet, research and development were done
on hot stamping of:

(1) Stainless steels,
(2) Medium-Mn steels (including steels with higher Mn content compared to

22MnB5),
(3) Sandwich materials.

4.4.1 Stainless Steels

Aperam and Outokumpu have already demonstrated stainless steel grades that can
be formed in the current hot stamping lines. Aperam’s method is to get almost
100% martensitic structure, whereas Outokumpu recommends duplex (Austenite +
Martensite) microstructure after hot forming and quenching [56, 57]. Stainless steels
are corrosion resistant by their nature in service conditions. They also do not require
a special coating or controlled atmosphere at hot conditions [58].

Aperam has already developed three different steels for hot stamping, one for
intrusion resistance applications and two for energy absorbing areas. The chemical
compositions and mechanical properties are tabulated in Table4.8. According to
Herbelin, almost 100%martensite can be formed at very low cooling rates (as low as
1 ◦C/s, as shown in Fig. 4.8), thus parts producedwith this steel could be air hardened
[58]. The low critical cooling rate allows the part to be formed in amultistep operation
(Fig. 4.22) [59].

Outokumpu has shown that Nirosta 1200 PH grade can be hot formed, which
would have 1100–1300MPa yield and 1700–1850MPa tensile strength, combined
with 12–16% total elongation after quenching (see Table4.8) [56]. The material can
save weight both in intrusion resistance components and energy absorbing compo-
nents, since it can absorb three times the energy 22MnB5 can absorb. Figure4.9
shows the comparison of Nirosta 1200 PH and 22MnB5. This material is classified
as duplex stainless steel, as it contains austenite and martensite.

4.4.2 Medium-Mn Steels

Medium-Mn steels are being developed both for cold and hot stamping applications.
There are several advantages of medium-Mn steels over 22MnB5 in hot stamping:

(1) Austenitization temperature is typically lower than 22MnB5 and decreases
with increasingMn content. This could reduce the energy requirement of the furnaces
and save energy and cost (see Fig. 4.11) [62, 63].
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(2) Martensitic transformation can occur at very low cooling rates and thus
simple dies could be built for hot forming of these grades, as they could be air
hardened. They can also be formed in multistep operations. Martensite start/finish
temperatures are also lower than 22MnB5 [64, 65].

(3) Some retained austenitemay be present in the final part.Medium-Mn steels,
when properly hot stamped, may have high strength and high elongation. For exam-
ple, tensile strength of 1800 MPa could be achieved with 10% total elongation,
similar to the high yield strength medium-Mn steel shown in Fig. 4.10 [62]. Yi et
al. achieved 1880MPa tensile strength with 16% total elongation [66]. Rana et al.
studied a number of heat treatment conditions with a 10 wt.%Mn steel and achieved
1330-1450MPa tensile strength with 16–25% total elongation [67].

Recently, BaoSteel has shown two medium-Mn grades for hot stamping applica-
tions. One of these steels was designed for intrusion resistance applications and have
high yield strength, in the order of 1000–1050MPa (∼145–150ksi). As shown in
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Fig. 4.10, the low yield strength version has 20% total elongation and approximately
1500MPa (215ksi) tensile strength. The chemical compositions were not published
yet, but the austenitization temperatures were listed as 750–850 ◦C (∼1350–1600 ◦F)

[30].
Han et al. have calculated the austenitization temperatures using ThermoCalc

software [62]. As shown in Fig. 4.11, the furnace temperature can be reduced with
increased Mn content. A study funded by the EU for energy efficient hot stamping
has shown that a typical industrial furnace consumes 32m3/h gas for mass produc-
tion 22MnB5 at furnace temperature of 930 ◦C. When the furnace temperature was
reduced to 808 ◦C the consumption went down to 19m3/h and at 785 ◦C it was as
low as 17m3/h [63]. Thus, a medium-Mn steel may save energy in the life cycle
assessment (Table4.9).
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Manganese alloying reduces martensite start–finish temperatures (Ms and M f )

and also retards bainite formation. For 20MnB8 (2.0%-wt. Mn), the critical cooling
rate is around 20 ◦C/s (36 ◦F/s) [68]. In medium-Mn steels (4–7%-wt. Mn), even
10 ◦C/s (18 ◦F/s) could be sufficient for 100% martensitic transformation [64].

4.4.3 Steel Composites

ThyssenKrupp has been developing a family steel composites, called TriBond ®,
since 2006 [69]. Here, three slabs (one core material and two cladding layers) are
surface prepared, stacked on top of each other, andwelded around the edges. Initially,
TriBond ® was designed for wear-resistant cladding and ductile core materials [69].

In 2014, the original composite was modified for hot stamping. The core material
was 22MnB5 and the thinner cladding layers were ductile material (MBW 1500 and
MBW500 respectively), as shown in Fig. 4.12. Coilmaking process was also slightly
modified: after hot rolling, the slabs were then cold rolled, annealed, and aluminum
coated [70]. As tabulated in Table4.10, there are currently two planned versions of
Tribond with approximately 1200 and 1400MPa tensile strength (∼175 and 205ksi
respectively). Both grades have higher bending angles compared with 22MnB5 after
quenching [71].

Ductile cladding
(MBW 500)
10…20 %
High strength core
(MBW 1500)
60…80% of
total thickness
Ductile cladding
(MBW 500)
10…20 %

Fig. 4.12 Schematic view of Tribond®grades (re-created after [72])

Table 4.10 Through thickness compositions and final properties of ThyssenKrupp hot forming
composites [17, 51, 71]

Steel Through thickness
composition

Yield
(MPa)

Tensile
(MPa)

Elongation
(%)

Bending
Angle

MBW 500+AS 100% MBW500 ≥400 ≥550 ≥17 140–155◦

MBW 1500+AS 100% MBW1500 ≥1000 ≥1400 >5 ≥55◦

TRIBOND®1200+AS 20% MBW500
60% MBW1500
20% MBW500

≥730 ≥1100 >5 ≥135◦

TRIBOND®1400+AS 10% MBW500
80% MBW1500
10% MBW500

≥890 >1300 >5 ≥75◦



4 Blank Materials 61

4.5 Coatings

As discussed in Chap. 3, uncoated boron steels suffer from scaling, which adds up
another manufacturing step of descaling. Coating the blank does not only solve the
scaling problem, but also improves protection against corrosion and reduces the risk
of decarburization [21, 73].

If the steel’s surface is not coated and exposed to high-temperature atmosphere,
oxygen and other oxidizing gases react with the steel. Thus, scale forms on the
surface—an oxide layer, typically composed of Fe3O4 [74]. The scale must be
cleaned by sandblasting after hot forming process [1].

Another phenomenon happening during high-temperature heating is “surface
decarburization”. If the conditions are favorable for iron (Fe) to oxidize, it may
also be possible for carbon (C) to be oxidized as well. If the carbon is oxidized to
produce gaseous carbon monoxide and/or carbon dioxide (C O and/or C O2), a layer
close to the surface would lose their carbon content [76]. As discussed in earlier
sections, carbon is one of the most important alloying element affecting the final
hardness. Choi and De Cooman studied the effects of decarburization of uncoated
22MnB5 steel. They found that the depth of decarburization layer increases with
time, until the oxide layer forms a barrier between the steel and atmosphere. As the
carbon is depleted in near-surface regions, the hardness is lowered (Fig. 4.13a) [50].
Decarburization is usually undesirable since it lowers the strength/hardness and may
affect fatigue life [77]. However, in the case of 22MnB5, lower carbon layers close
to the surface creates a composite with high-strength core and ductile layers, similar
to the one explained in previous subsection. As a result, bendability may improve
with decarburized layers, as shown in Fig. 4.13 [50].

Belanger [78] estimated that only 38% of hot stamped components in auto-body
will be in dry areas. Therefore, high cathodic protection is required in 62% of hot-
stamped components. Currently, most coated boron steels sold are AlSi coated,
which only offer barrier corrosion protection. Zn-based coatings are favored for
their cathodic protection, but may require indirect hot stamping followed by an addi-
tional surface cleaning process, such as sandblasting [79]. Table4.11 is a summary
of coatings available in the market and/or proposed for hot stamping.
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Table 4.11 Coatings available for hot stamping blanks [1, 3, 8, 21, 74, 80–85]

Coating type
(commercial name)

Thickness and
chemistry (before/after
quenching)

Advantages Disadvantages

Uncoated (22MnB5,
BTR165)

N/A • Cost • No corrosion
protection,
• Scale formation,
• Decarburization

AlSi (ArcelorMittal
USIBOR,
ThyssenKrupp MBW
+ AS)

AS 150 (150 g/m2)

25µm AlSi / 40µm
AlSiFe

• No scale formation,
• Barrier corrosion
protection

• No cathodic
protection,
• Only applicable for
direct hot stamping

AS 80 (80 g/m2)

13µm AlSi / 20µm
AlSiFe

• Shorter time in
furnace

Zn (voestalpine
phs-ultraform GI)

10µm Zn / 20µm
ZnFe

• Cathodic protection,
• Applicable to both
direct and indirect hot
stamping.

• Surface conditioning
may be required,
• Risk of LMAC

ZnNi (ThyssenKrupp
GammaProtect)

∼10µm ZnNi / 20–25
µm ZnNiFe

• Fast heating
possible,
• Low friction
coefficient
(Fig. 4.14a),
• Applicable to both
direct and indirect
processes

• Risk of LMAC.

Al-Zn (Galvalume) Not a Standard
Coating

• Weldable and has
good paint adhesion,
• Better corrosion
protection than GA

• May require a
preheating to
550–730 ◦C,
• May result in
microcracks.

Zn-Al-Mg Not a Standard
Coating

• Best corrosion
protection,
• Can be applied as a
postprocess coating.

• Risk of LMAC

(Henkel Bonderite
S-FN 7500 PH) Coil
Coating

2–3 µm • Fast heating
possible,
• Weldable without
sandblasting

• Coil Application

Al particles, graphite
and wax in
inorganic–organic
matrix (Nano-X x-tec
CO 4020 coil coating)

7µm Al • Fast heating
possible,
• Low friction
coefficient (Fig. 4.14b)
• Easy to apply
(Fig. 4.23)
• Room Temp. curing

• Has to be removed
before
painting/welding,
• Coil Application

Al in inorganic matrix
(Nano-X Alsi 4001
coil coating)

2–3 µm • Spot weldable,
• Suitable for e-coat

• No cathodic
protection,
• Coil Application,
• High temp. curing
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Fig. 4.14 Friction coefficients of: a AlSi and ZnNi at 700 ◦C (∼1300 ◦F), b uncoated and x-tec
coated blanks versus several tool coatings tested at 620 ◦C (∼1150 ◦F) (re-created after [86, 87])

Blank coatings and the way they are heat treated have great influence on friction
during stamping and the final part quality. Friction coefficient of several coatings and
uncoated steels are given in Fig. 4.14 [86, 87]. Other important expectations from
the coating are:

(1) weldability,
(2) compatibility with e-coating and paint baking cycles, and
(3) corrosion protection [85].

Although uncoated blanks are still used in automotive applications, there are
different coatings available on the market, which could be classified under three
main types [82]:

(1) Al-based coatings.
(2) Zn-based coatings.
(3) Varnish coatings.

4.5.1 Aluminum-Based Coatings

Aluminum-based hot stamping coating was first developed byUsinor, a French steel-
maker thatwas latermerged toArcelor, and then toArcelorMittal. Thefirst pre-coated
steel parts were used in Citroën C5 in 2001 [88–90].

The most common coating used in the recent years is 150 g/m2 AlSi coating. This
is equivalent to 25µm coating thickness before heating. The typical composition is
7–11% Si (nominal 10%) and balance Al. Si is added to form ductile layers in the
coating. In the absence of Si, the coating would be very hard but also brittle. Once
the pre-coated blank is heated, iron diffusion takes place and forms a 40µm thick
AlSiFe of 5 layers, as shown in Fig. 4.15 [8, 82, 85, 91, 92].

The iron diffusion is a time-dependent process. If the diffusion is not completed
(short heating time) the layers would not form as shown in Fig. 4.16a. In a typical
process, the blank is kept in the furnace for 5–6min.s (300–360 s). Layers of coating
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Fig. 4.15 During heat treatment, Fe diffuses from the base steel to the coating and forms AlSiFe
coating (re-created after [95])
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after 6min in the furnace can be seen in Fig. 4.16b, for a 1.2mm thick AS150-coated
steel [93]. If the blank is heated for longer durations, (1) more voids may occur which
increases the porosity of the coating, (2) the total thickness of the coating increases
and (3) Fe2 Al5, FeAl2, and Fe2Si Al2 layers disappear and the coating becomes
a single layer of α-iron with Al and Si in solid solution [8, 82, 94]. The coating
diffusion is extremely important for most applications as it will affect:

(1) weldability of the final part and
(2) surface properties for painting [91].

AlSi coatings successfully prevent scale formation and decarburization evenwith-
out an atmosphere controlled furnace. The coating provides barrier corrosion pro-
tection. As a disadvantage, these coatings cost more compared to uncoated blanks
and require a longer time in the furnace. The total time in furnace is equal to the sum
of heating and dwell times, and depends on three variables [21, 95, 97]:

(1) The initial blank thickness: heating time to ensure austenitization.
(2) The type of coating: AlSi coating requires a maximum 12 ◦C/s, as it will melt

over this rate.
(3) The initial coating thickness: dwell time to ensure coating diffusion.

AlSi-coated steels cannot be cold formed (as in indirect hot stamping) as the Fe–
Al intermetallic coating is very hard (>600 HV) and brittle during cold deformation.
The brittleness of the coating is also critical for the parts produced as their coatings
could be damaged in service. Fan and De Cooman showed that the coating could
crack easily but the cracks would not propagate to the diffusion layer [82]. For this
reason, the thickness of the diffusion layer is critical and has to be controlled. This
can be done by controlling the furnace temperature and dwell time [97].

The typical AlSi coating weighs 150 g/m2. In 2013, ArcelorMittal developed
USIBOR 1500 PAS80 with 80 g/m2 AlSi coating. There were two rationales behind
this development [98]:

(1) Lower cost, to be more competitive.
(2) Reduced coating weight would reduce the heating/dwell time in furnace.

Alden [99] has shown that the furnace dwell time could in practice be halved with
AS80. Windmann et al. found that the dwell time required to form a single layer
coating (which has to be avoided) was 20min for AS80 and 40min for AS150 [94].
Both studies prove that the dwell time could be reduced. On the other hand, Fujita
[100] has shown that hot-formed steel with AS80 coating had approximately twice
the blister width after cyclic corrosion test. Thus, the corrosion resistance is also
halved with AS80 coating.

4.5.2 Zinc-Based Coatings

AlSi coating provides limited corrosion protection—“barrier protection”—as AlSi
coating forms a barrier between the oxidizing environment and the bare steel. How-
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ever, most of the car body components are already zinc coated. Thus, a similar level
of corrosion protection may also be required in hot-stamped components [101].

Most Zn-based coatings have problems associated with “Liquid Metal Assisted
Cracking (LMAC)”. This phenomenon occurs when the coating is in liquid phase
(melting point of zinc is around 420 ◦C ∼ 790 ◦F which is much lower than the
forming temperatures in hot stamping) and stress is applied to the base metal, which
cannot be avoided during metal forming. When both conditions are met, the liquid
coating may penetrate into the base metal, causing cracks on the surface, as seen in
Fig. 4.19.

To avoid LMAC, Zn-based coated steels were typically indirect hot stamped—
where Zn is in solid phase. Indirect hot stamping could be through two different
methods [1, 101]:

1. Cold deformation (most of the deformation is done in cold state) followed by hot
calibration (very little deformation in hot state).

2. 100% of deformation, cutting, and piercing done at cold forming followed by a
“form hardening” (where no deformation is done at hot state).

BMW 7 Series (F01, SOP 2008) was the first car to have Zn-coated hot stamped
steel in its body-in-white [102]. Figure4.17 shows the use of uncoated and Zn-coated
boron steels in BMW 5 Series GT, (F07, SOP 2009) [103, 104].

For LMAC to happen there are three prerequisites as shown in Fig. 4.18 [79, 105]:

(1) Stress level: during hot stamping stress can be reduced by die design or by
improving lubricity (i.e., ZnNi coating has low friction coefficient),

(2) Presence of liquid metal: Pure Zn melts at 420 ◦C (790 ◦F), which is far
lower than the temperatures in hot stamping process. Therefore, even during heat-
ing the blank (i.e., in the furnace) Zn coating on the blank may melt. Thus, liquid

B-Pillar Reinforcement
Zn Coated
Thickness: 1.80 mm

B-Pillar Inner Reinforcement
Uncoated
Thickness: 1.60 mm

A-Pillar Reinforcement
Uncoated
Thickness: 1.60 mm

Outer Rocker Reinforcement
Zn Coated
Thickness: 1.00 mm

Tunnel Reinforcement
Uncoated
Thickness: 1.50 mm

Inner Rocker Reinforcement
Zn Coated
Thickness: 1.50 mm

Hinge Carrier Reinforcement
Zn Coated
Thickness: 1.60 mm

Uncoated Hot Stamped Steel

Zinc coated Hot Stamped Steel

Fig. 4.17 Usage of hot-stamped steels in BMW 5 Gran Turismo (F07, SOP 2009) (re-created after
[104])
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Fig. 4.18 Factors leading to LMAC (Liquid Metal Assisted Cracking) [21]

metal cannot be avoided if the blank is Zn coated. However, the amount of liquid Zn
can be adjusted by the weight of coating (typically given by g/m2) and the coating
technology. Reducing coating weight would sacrifice from cathodic protection and
decrease the time required in furnace for coating to diffuse [21]. If the coating is
galvannealed, iron would diffuse into the coating and increases the melting temper-
ature. Another possibility is to use alloying elements in the coating to increase the
melting temperature. One such design was ZnNi coatings [20, 106] (Fig. 4.19).

(3) Reducing material susceptibility: covers a number of properties of the steel,
including but not limited to (1) chemical composition and carbon equivalence, (2)
yield strength/hardness, and (3) residual stresses [105]. In hot stamping grades, no
practical method was found to lower material susceptibility [68].

The presence ofmicrocracks could reduce the fatigue life of the components. Kurz
has studied the crack depth and fatigue stress. As seen in Fig. 4.20, microcracks up to
10µm in the base metal do not affect the fatigue stress. However, if the crack size
exceeds 10µm, fatigue stress reduces drastically [21].

As the coating weight increases, the time in furnace has to be longer. It was also
found that as the depth of microcracks is also affected by the coating weight. To
avoid microcracks deeper than 10µm in the base metal, GI coating weight is limited
to 70 g/m2 per side (140 g/m2 total, abbreviated as Z140) [21].

Hot dip galvanized (GI) steels have an iron diffusion during heating, similar to
AlSi coating. In GI coatings, 0.2–2.5 wt.% Al is added to form an Al-enriched layer
between the steel and Zn coating [82, 108, 109]. After iron diffusion, there has to
be three layers, as shown in Fig. 4.21a [110]. The outermost layer is an oxide layer,
consisting of aluminum and zinc oxides. This layer is functional during hot stamping
as it suppresses evaporation of Zn but has to be removed before welding/painting
by sandblasting [82, 98, 109]. Below the oxide layer, Zn-rich � phase is found.
This layer plays significant role in the corrosion resistance. For adequate cathodic
protection, this layer should have at least 70wt.%Zn. The Fe-richα phase determines
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Fig. 4.19 Coatings after hot stamping: a microcracks in AlSi coating do not penetrate into steel
substrate [8], b GI coating melts and Zn may penetrate into base material depending on coating
thickness [21]. In c GA and d ZnAlMg coatings, LMAC problem is reduced but still microcracks
may be formed, predominantly not in the base metal [107]
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Fig. 4.20 Effect of microcrack depth in base material on fatigue life of Zn-coated 22MnB5 steel.
Micrographs showing the cracks are also shown [21]

the adhesion of coating to the base metal. It should contain at least 10 wt.% Zn,
preferably in the range of 17–44 wt.% [82, 109].

Zn coating has relatively narrow process window for hot stamping compared to
uncoated and/or AlSi-coated blanks. As pure zinc’s boiling point (907 ◦C� 1665 ◦F)

is very close to the austenitization temperature of 22MnB5 (880 ◦C � 1615 ◦F). If
furnace dwell time is too short, the coating diffusion would not be completed. If the
time is too long, deep microcracks may occur in the base metal [21, 111, 112].
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Fig. 4.21 a Diffusion of Zn (GI) coating (re-created after [82, 110]), b process windows of Zn and
AlSi coatings (re-created after [111–114])

To reduce LMAC and/or the need for surface conditioning, alloying elements
increasing the melting point of Zn could be added into coating. ZnNi coating was
once commercialized by ThyssenKrupp with the name GammaProtect. There were
two mass-produced automotive parts using this coating. However, the coating has
been discontinued and production was switched to AlSi-coated blanks [20, 111,
115]. Other Zn-alloyed coatings could be ZnFe (Galvannealed coating, abbreviated
asGA) andZnAlMg [92, 108].Galvannealing (GA) is a processwhere the galvanized
steel is heated to 480–520 ◦C (∼900–970 ◦F). During this process, iron diffuses into
coating and the final coating may have 10–15 wt.% Fe and 85–90 wt.% Zn [116].
GA coatings may be welded and painted without removing the oxide layer [82, 98].

Another recent solution to LMAC is precooling before plastic deformation. Ghan-
bari [117] found that microcrack formation occurs if forming is done over 782 ◦C
(1440 ◦F). Kurz et al. [101] developed a precooling stage where the cooling rate
is over 50 ◦C/s (90 ◦F/s) but the cooling is interrupted before the martensite start
temperature, Fig. 4.22a. By this method, forming is still done at austenitic phase
[101]. Faderl and Kelsch have shown that if the precooling temperature is lowered,
microcrack depth is reduced [118]. At around 550–570 ◦C (1020–1060 ◦F), Zn coat-
ing is solidified and microcracks are reduced [119, 120]. Typical 22MnB5 could be
held at 550 ◦C (1020 ◦F) for only 2 s before bainite transformation starts. The newly



70 E. Billur and H.-S. Son

Te
m

pe
ra

tu
re

Time

TransferFurnace Transfer Hot forming and quenchingPre
Cooling

(a) (b)

(c) (d) (e) (f) (g)

Fig. 4.22 Multistep hot stamping: a the temperature-time profile, including the “precooling” stage,
b The final part geometry, c thermal controlled transfer die set, d OP10: Precooling, e OP20:
Forming, f OP30: Cutting/Piercing, and g OP40: Cam Trimming (re-created after [20, 101, 121])

designed 20MnB8 alloy can be held at this temperature level formore than 20 s before
the transformation [68]. By using precooling system 20MnB8 GA 90/90 (ZF180)
can be formed in a multistep operation in a transfer press, as shown in Fig. 4.22b–f.

Currently ArcelorMittal, POSCO, and voestalpine offer Zn GI coatings. Arcelor-
Mittal and voestalpine also offer GA coating. Tata Steel is developing MagiZinc
(ZnAlMg) coating for press hardening, but this product is currently not in the market
[9, 14, 101, 122]. According to Dormegny [123], 76% of the hot stamping steel in
EU27+Turkey is AlSi coated. In thesemarkets, 18%of hot stamping steel is uncoated
and only 6% is Zn coated.

4.5.3 Varnish Coatings

Another method to avoid scaling and decarburization is to apply varnish coatings. In
this method, uncoated blanks are either coil coated or roll coated with the paint-like
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Fig. 4.23 x-tec coating can be applied simply by a paint roll or spray gun [74]

varnish coatings. The first such application for hot stamping process was developed
by Nano-X company in 2005. By then, AlSi coating was already in production.
However, in several components of the (then) new Passat, part shapes were extremely
complex. A two-step forming process was needed where some deformation would
be done by cold forming and more in hot forming, as shown in Fig. 1.15, in Chap.1
[124, 125].

The first-generation x-tec (see CO 4020 in Table4.11) had Al particles, graphite
and wax in inorganic–organic matrix. This coating should be applied 6–7µm thick
on the uncoated base steel. It can be applied simply by paint rollers (Fig. 4.23) or
could be coil coated. cures in room temperature. x-tec coating has lower friction
compared to uncoated and AlSi-coated blanks, and was on a par with ZnNi coatings,
see Fig. 10.7. This coating had to be removed (by sandblasting) before e-coating
and/or welding [74].

Second-generation x-tec, AlSi 4001 as shown in Table4.11, was developed to
be weldable without sandblasting. The coating has high heat absorption and since
extra time for diffusion is not required, the total furnace time could be lowered
significantly. It can also handle inductive, conductive, and near infrared heating and
could be applied as thin as 2–3µm [74].

In 2015, Henkel has introduced a varnish coating for hot stamping, called Bon-
derite S-FN 7500 PH. The coating is suitable for fast heating and provides barrier
corrosion protection. Although its friction coefficient is not published yet, it helps
lubricating the blank. The coating is not required to be removed/sandblasted before
e-coating or spot welding [85].
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