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Abstract Methanogenesis in termite guts is a product of symbiotic digestion, fueled
by hydrogen and reduced one-carbon compounds that are formed during the fer-
mentative breakdown of plant fiber and humus. Methanogens are restricted to the
hindgut region and can be found in several distinct microhabitats. In lower termites,
the methanogens belong almost exclusively to the genus Methanobrevibacter. They
are either endosymbionts of flagellate protists or colonize the periphery of the
hindgut, a habitat that is not fully anoxic. The oxygen-reducing capacities of the
few isolates available so far indicate that they are well adapted to the continuous
influx of oxygen across the gut wall. In higher termites, which lack gut flagellates,
the hindgut is highly compartmented and characterized by strong differences in pH,
redox potential, and other microenvironmental conditions. Here, the archaeal com-
munities differ strongly between compartments and comprise not only
Methanobacteriales, but also Methanosarcinales, Methanomicrobiales, and the
recently discovered Methanomassiliicoccales. All methanogens in termite guts
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belong to distinct phylogenetic clusters that are restricted to the intestinal tracts of
insects and millipedes. Only few representatives have been isolated in pure culture.
The high methane emissions of termites, together with their enormous biomass in the
tropics, make them a significant natural source of this important greenhouse gas.

1 Introduction

Most insects that thrive on a fiber-rich diet harbor microbial symbionts that participate
in digestion, but only termites, cockroaches, and the larvae of scarab beetles have been
found to emit methane (Hackstein and van Alen 2018). This methane is produced by
methanogenic archaea, which represent the last link in an anaerobic feeding chain of
microorganisms located in the enlarged hindgut of these insects—microbial bioreactors
that transform lignocellulosic matter to short-chain fatty acids, the major energy source
for the host (Fig. 1). A detailed account of symbiotic digestion in termites can be found
in other reviews of this topic (Brune and Ohkuma 2011; Brune 2014).

This chapter will provide an overview of the diverse aspects of methanogenesis in
termites, including the role of methanogens in symbiotic digestion, the diversity and
structure of the methanogenic community in different termite lineages, and advances

0.5 mm

anoxicmicrooxic

Plant fibers

Acetate

CH4

O2

Foregut
Midgut

Hindgut

H2
+

CO2

Fig. 1 The hindgut of termites is a microbial bioreactor that transforms lignocellulose to acetate
and other short-chain fatty acids. Hydrogen formed during fermentation of plant fibers is the major
substrate of both methanogenesis and reductive acetogenesis. The anoxic status of the hindgut
lumen is maintained by the microorganisms colonizing the microoxic hindgut periphery, which
consume the oxygen diffusing across the gut wall. Originally published in Brune (2010), reprinted
with permission of ©Springer Nature
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in understanding the interactions of methanogens with other gut microbiota and their
physicochemical microenvironment. For detailed coverage of the older literature and
broader surveys of methanogenesis in insects and millipedes and the associations
between methanogens and termite gut flagellates, the reader is referred to other
review articles (Breznak 2000; Ohkuma and Brune 2011; Brune 2018; Hongoh and
Ohkuma 2018).

2 Methane as a Product of Symbiotic Digestion

Methane formation in the guts of termites had been suspected already more than
80 years ago. When Cook (1932) studied the respiratory gas exchange of
Zootermopsis nevadensis, he found that the termite continued to form substantial
amounts of an unidentified gas when the oxygen in the vessel was depleted. He was
not able to analyze the gas, but—inspired by the situation in ruminants—proposed
that the gas was most likely hydrogen or methane or a mixture of both. However, it
took more than 40 years after Cook’s initial observation until methane production in
termite guts was finally recognized by Breznak and coworkers. While demonstrating
nitrogenase activity in living termites and wood-feeding cockroaches with the
acetylene reduction assay, the authors identified methane as an additional peak
present in the gas chromatograms (Breznak et al. 1973, 1974)—a classic case of
serendipity in science. Historical details have been reviewed elsewhere (Breznak
2000; Brune 2018).

Breznak (1975) had pointed out that the amount of methane produced by termites,
if based on body weight, is in the same order of magnitude as that of ruminants. This
observation immediately aroused the interest of atmospheric chemists studying the
role of methane in radiative forcing of the atmosphere, who identified termites as a
potential source of considerable strength of this greenhouse gas (see below). In the
following years, methane production was documented for almost all termite species
investigated (e.g., Brauman et al. 1992; Shinzato et al. 1992; Wheeler et al. 1996;
Bignell et al. 1997; Sugimoto et al. 1998b), with marked differences in the methane
emission rates between wood- and humus-feeding taxa (wood vs. humus; Fig. 2).

Methanogenic archaea form methane in two fundamentally different processes:
(1) the reduction of CO2 or methyl groups to CH4 via the C1 pathway
(hydrogenotrophic methanogenesis); and (2) the cleavage of acetate to CH4 and
CO2 via the acetyl-CoA pathway (aceticlastic methanogenesis) (Liu and Whitman
2008; Thauer et al. 2008). Interestingly, there is no evidence for aceticlastic
methanogenesis in termite guts. As in the human gut and in the rumen, it is assumed
that the relatively slow-growing aceticlastic species cannot cope with the short
retention times of intestinal habitats (Liu and Whitman 2008). However, there is
no explanation why they do not avoid washout by attaching to intestinal surfaces
(see below).

The electron donors of hydrogenotrophic methanogenesis are hydrogen and
reduced C1 compounds, such as methanol and formate, which are formed during
the fermentative breakdown of organic matter. In the hindguts of lower termites,
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hydrogen is the central free intermediate of lignocellulose degradation. It is a major
fermentation product of cellulolytic flagellates and can accumulate to substantial
concentrations (Ebert and Brune 1997; Pester and Brune 2007). Turnover rates are in
the range of 7–16 μmol H2 h

–1 (g fresh weight)–1 (Pester and Brune 2007)—on a
volume basis, hydrogen fluxes in termite guts are in the same range as in the bovine
rumen.

Methane production by lower termites strictly depends on the presence of
(hydrogen-producing) gut flagellates (Odelson and Breznak 1983; Rasmussen and
Khalil 1983; Messer and Lee 1989). However, the rates of methanogenesis are much
lower than one would expect based on the large amount of hydrogen presumably
produced by the microbial fermentations. If termites are fed with antibacterial drugs,
their hydrogen and methane emission rates increase strongly, which indicates that
methanogenic archaea compete with bacteria for hydrogen formed by the flagellates
(Odelson and Breznak 1983).

In the phylogenetically higher termites (family Termitidae), which lack gut
flagellates, the methanogenic substrates are most likely formed by fermenting
bacteria. Here, methanogenesis in intact guts and gut homogenates is strongly
stimulated by the supply of external hydrogen but also by formate (Brauman et al.
1992; Schmitt-Wagner and Brune 1999).

The most prominent process responsible for bacterial hydrogen oxidation in
termite guts is the reduction of CO2 to acetate (Breznak and Switzer 1986). It is a
unique feature of termite guts that the bacteria responsible for reductive
acetogenesis—at least in wood-feeding termite species—are members of the phylum
Spirochaetes (Leadbetter et al. 1999; Ottesen and Leadbetter 2011). Although
hydrogenotrophic methanogenesis occurs in most wood-feeding termites, it becomes
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Fig. 2 Methane emission rates of lower and higher termites compared to those of other inverte-
brates, cows, and humans. The typical diet of the respective taxon is indicated; members of
Termitinae were grouped into wood-feeding (green) and humus-feeding (brown) species. Values
are averages, based on fresh weight, and were compiled from various sources (for details, see Brune
2018). Originally published in Brune (2010), adapted with permission of ©Springer Nature
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more important than reductive acetogenesis in the fungus-cultivating and
humivorous taxa—both in gut homogenates and in situ (Breznak and Switzer
1986; Brauman et al. 1992; Tholen and Brune 1999, 2000; Pester and Brune 2007).

Despite the apparent substrate limitation of methanogenesis in termite guts, ter-
mites Hydrogen emission in considerable amounts (Zimmerman et al. 1982; Odelson
and Breznak 1983; Ebert and Brune 1997; Sugimoto et al. 1998b; Schmitt-Wagner and
Brune 1999; Pester and Brune 2007; Cao et al. 2010; Yanase et al. 2013), which
indicates that production and consumption of hydrogen in the hindgut are not tightly
coupled (see below).

3 Diversity of Methanogens in Termite Guts

The methanogens in termite guts belong to several genus-level lineages of the
orders Methanobacteriales, Methanosarcinales, Methanomicrobiales, and
Methanomassiliicoccales (Fig. 3). However, not all lineages are represented by
pure cultures. There are only three described species, all from the genus
Methanobrevibacter (Methanobacteriales) and all from the same host species,
namely, the lower termite Reticulitermes flavipes (Leadbetter and Breznak 1996;
Leadbetter et al. 1998). Like other members of this genus found in the human gut or
the rumen, they grow exclusively on H2 + CO2 (Methanobrevibacter cuticularis also
grows, albeit poorly, on formate). Their genomes have been sequenced
(Poehlein and Seedorf 2016).

Most of theMethanobacteriales clones from higher termites fall into the radiation
of the genus Methanobrevibacter, but they are phylogenetically distinct from their
relatives in lower termites and other insects. Several strains ofMethanobacteriales in
higher termites have been isolated in pure culture and characterized in some detail
(Deevong et al. 2004). They comprise a Methanobrevibacter strain that is closely
related to Methanobrevibacter arboriphilus and grows also on formate and several
Methanobacterium strains that are close relatives ofMethanobacterium bryantii and
utilize also secondary alcohols. However, none of these strains were deposited in a
culture collection.

The only other methanogen isolated from insect guts is Methanomicrococcus
blatticola from the cockroach Periplaneta americana. It is the first cultivated
representative of a lineage of Methanosarcinales and differs from the
Methanobrevibacter species in its inability to grow on H2 + CO2. Instead, it is
specialized on the hydrogen-dependent reduction of methanol or methylamines to
methane (Sprenger et al. 2000). Its obligate requirement for hydrogen is explained
by the inability to oxidize methyl groups to carbon dioxide (Sprenger et al. 2005). At
low hydrogen concentrations, the use of methanol as the terminal electron acceptor
in methanogenesis is thermodynamically more favorable than the use of carbon
dioxide. As a consequence, the substrate affinity of M. blatticola for hydrogen is
higher than those reported for hydrogenotrophic methanogens and that for methanol
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Fig. 3 Phylogenetic position of methanogens that occur in the guts of termites and other insects
(red) or mammals (green) among other methanogenic (gray) and non-methanogenic (white) clades
of Euryarchaeota. Taxa with representatives from insect guts are in boldface. Simplified version of
a larger maximum-likelihood tree, based on a manually curated alignment of near full-length 16S
rRNA gene sequences; symbols indicate node support (closed circle, >90%; open circle, >70%)
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even surpasses those of other methylotrophic taxa (Methanosphaera stadtmanae,
Methanosarcina barkeri) (Sprenger et al. 2007).

The uncultured members of Methanosarcinales encountered in higher termites
(see below) fall into the radiation of the genus Methanimicrococcus, which com-
prises also clones recovered from other cockroaches and scarab beetle larvae (e.g.,
Hara et al. 2002; Egert et al. 2003). The same is true for the Methanomicrobiales
clones obtained from higher termites, which form a sister group of the genus
Methanospirillum; no representatives of this “insect cluster” have been brought
into culture (Fig. 3).

Members of Methanomassiliicocales fall into the so-called intestinal clade and
form several clusters that consist exclusively of clones from arthropod guts. A highly
enriched culture has been obtained from the soil-feeding termite Cubitermes
ugandensis (Paul et al. 2012). Physiological and ultrastructural characterization,
combined with a comparative analysis of its genome, identified “Candidatus
Methanoplasma termitum” as an obligately methyl-reducing hydrogenotroph with-
out a cell wall (Lang et al. 2015). It shares a new mode of energy metabolism with
the distantly related Methanomassiliicoccales luminyensis and other uncultured
representatives of this order (Borrel et al. 2014; Lang et al. 2015). Since all
Methanomassiliicoccales seem to lack coenzyme F420 (Lang et al. 2015), their
cells cannot be visualized by epifluorescence microscopy.

4 Structure of the Methanogenic Communities

The methanogens colonizing the hindgut of lower termites belong almost exclu-
sively to the genus Methanobrevibacter (Methanobacteriales). Cultivation-
independent, 16S-rRNA-based surveys documented the presence of unique
Methanobrevibacter-related phylotypes in each lower termite investigated (Ohkuma
et al. 1995, 1999; Ohkuma and Kudo 1998; Shinzato et al. 1999, 2001).
Reticulitermes flavipes harbors at least three species with distinct morphotypes,
which colonize the hindgut cuticle and have been isolated in pure culture (Fig. 4).
Also other lower termites harbor more than one lineage of Methanobrevibacter, and
the phylotypes attached to the hindgut cuticle or to filamentous bacteria at the gut
wall are phylogenetically distinct from those associated with the gut flagellates
(Tokura et al. 2000; Hara et al. 2004; Inoue et al. 2008), which suggests an
adaptation to the respective microhabitats (see below).

The methanogenic communities in the hindgut of higher termites are much more
diverse and comprise members of Methanobacteriales, Methanosarcinales,
Methanomicrobiales, and Methanomassiliicoccales. Clone libraries of archaeal 16S
rRNA genes are available for members of the genera Alyscotermes (Apicotermitinae),
Cubitermes and Ophiotermes (Cubitermitinae), Macrotermes and Odontotermes
(Macrotermitinae), Nasutitermes and Trinervitermes (Nasutitermitinae), Peri-
capritermes, and Microcerotermes (Termitinae) (Ohkuma et al. 1999;
Friedrich et al. 2001; Donovan et al. 2004; Miyata et al. 2007; Paul et al. 2012;
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Shi et al. 2015). Short-read amplicon libraries have been obtained for members of the
genera Nasutitermes and Tenuirostritermes (Nasutitermitinae); Drepanotermes,
Gnathamitermes, and Macrognathotermes (Termitinae); and Syntermes
(Syntermitinae) (Rahman et al. 2015; Santana et al. 2015).

While representatives of all four orders have been recovered from Cubitermitinae,
Syntermitinae, and Termitinae, clone libraries of Macrotermitinae yielded no
Methanomicrobiales, and those of Apicotermitinae and Nasutitermitinae yielded
no Methanosarcinales. The results obtained with short-read amplicon libraries
differed between colonies of the same species and were not always consistent with
those previously obtained for other members of the same subfamily, which indicates
differences in community structure even between closely related taxa (Rahman et al.
2015). Coevolution between termites and methanogens is only diffuse and might be
disturbed by rampant host switching, as observed for members of their bacterial
microbiota (Bourguignon et al. 2018). However, the drivers of methanogenic com-
munity structure in termite guts remain unclear.

5 Differences in Methanogenic Activities and Populations

Information on the population sizes of methanogens in insect guts is scarce.
Cultivation-based studies indicate that Reticulitermes flavipes harbors about 106

methanogens per gut, which is about 5% of the total cell count of prokaryotes
(Leadbetter and Breznak 1996; Tholen et al. 1997). Such numbers are inherently
inaccurate because of the uncertainties created by cultivation bias, the absence of

3
2

1

10 µm

Fig. 4 Methanogens associated with the hindgut wall of Reticulitermes flavipes, visualized by the
autofluorescence of their cofactor F420. The arrows point to the characteristic morphotypes of
Methanobrevibacter cuticularis (1), Methanobrevibacter curvatus (2), and Methanobrevibacter
filiformis (3). Microphotograph courtesy of J. R. Leadbetter and J. A. Breznak. Originally published
in Brune (2010), reprinted with permission of ©Springer Nature
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cofactor F420 from Methanomassiliicoccales, and the difficulties in enumerating
prokaryotic cells attached to intestinal surfaces or intimately associated with the
flagellate cells that occupy the bulk of the hindgut volume.

Hybridization of RNA extracted from the guts of a wide range of termite species
with domain-specific oligonucleotide probes indicated that the average proportion of
archaeal rRNA was only 1.5% of all prokaryotic rRNA (Brauman et al. 2001). The
higher fraction of archaeal rRNA in soil-feeding species (2.3 � 0.5%) than in wood-
feeding and fungus-cultivating species (0.9 � 0.5%) is in agreement with a general
trend toward higher methane emission rates among termites with a humivorous
lifestyle (Fig. 2), but it should be kept in mind that not all the archaea in termite
guts are necessarily methanogenic (Friedrich et al. 2001).

Amplicon sequencing studies employing both universal and prokaryote primers
indicated that archaeal reads obtained for Reticulitermes species range between 0.1
and 0.2% of the reads classified as prokaryotes (Boucias et al. 2013; Rahman et al.
2015). However, unrealistically high proportions of archaea obtained for termites
from other genera (e.g., above 50% in Porotermes; Rahman et al. 2015) put into
question the reliability of this approach.

Since soil-feeding termites—in contrast to their wood- and grass-feeding rela-
tives—digest peptide-rich soil organic matter (Ji and Brune 2006; Brune and
Ohkuma 2011), it is tempting to suggest that differences in methanogenic activity
are diet related. However, information on the fermentative processes in the hindguts
of humivorous insects is sparse, and also the substrate spectra of the mostly
uncultivated methanogens in higher termites has to be better understood before a
reasonable hypothesis can be proposed.

Such knowledge may also help to clarify whether the presence of methanogens
provides benefits their respective hosts. So far, such evidence is lacking. In lower
termites, methane emission rates can differ strongly among members of the same
genus, and sometimes members of the same species are not consistently colonized
by methanogens (e.g., Shinzato et al. 1992; Wheeler et al. 1996), indicating that the
presence of methanogens provides no advantage. In Zootermopsis angusticollis,
elimination of methanogens by feeding with bromoethanesulfonic acid (BES) does
not affect the survival of the termites (Messer and Lee 1989).

6 Coexistence with Homoacetogens

The predominance of reductive acetogenesis over methanogenesis in most wood-
feeding termites has puzzled microbiologists for the longest time. For thermo-
dynamic reasons, methanogens should always outcompete homoacetogens for
hydrogen, their common substrate—at least in a well-mixed system. However, the
introduction of microsensor techniques into termite gut research led to the recog-
nition that termite guts are spatially structured microenvironments characterized by
steep diffusion gradients of metabolites (see Brune 1998; Brune and Friedrich 2000).
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This conceptual advance allowed an explanation for the coexistence of methanogens
and homoacetogens in this habitat.

Firstly, it turned out that hydrogen concentrations in termite guts are much higher
than originally considered—far above the threshold concentrations at which
methanogens can outcompete homoacetogens for hydrogen. At the hydrogen partial
pressures observed in the hindgut proper of several lower termites (1–100 kPa; Ebert
and Brune 1997; Pester and Brune 2007), both processes would operate at substrate
saturation, and a direct competition for hydrogen cannot occur. Therefore, the
previous hypothesis explaining the predominance of reductive acetogenesis in
termite guts with an increased competitiveness of homoacetogens based on their
ability to grow mixotrophically on H2 and other substrates (Breznak 1994) was no
longer tenable.

Secondly, high-resolution profiles of hydrogen concentration in the intestinal
tracts of lower and higher termites (Ebert and Brune 1997; Schmitt-Wagner and
Brune 1999; Pester and Brune 2007; Köhler et al. 2012) and rate measurements of
reductive acetogenesis by microinjection of radiotracers (Tholen and Brune 1999,
2000; Pester and Brune 2007) documented that sources and sinks of hydrogen are
not evenly distributed within the hindgut. The high hydrogen concentrations at the
gut center of Reticulitermes spp., the steep hydrogen gradients toward the gut
periphery, and the absence of any stimulatory effect of externally supplied hydrogen
on the in situ rates of reductive acetogenesis indicate that the hydrogen-consuming,
homoacetogenic spirochetes co-locate with the hydrogen-producing flagellates in the
hindgut lumen. By contrast, the strong hydrogen sink at the hindgut wall, which is
clearly caused by an anaerobic process (Ebert and Brune 1997), and the dense
colonization of the cuticle with Methanobrevibacter species (Leadbetter and
Breznak 1996; Leadbetter et al. 1998) explain the strong stimulation of methano-
genesis by externally supplied hydrogen.

The spatial separation of the hydrogenotrophic processes—reductive
acetogenesis in the gut lumen and methanogenesis in the periphery—avoids direct
competition between homoacetogens and methanogens for their common substrate
(Fig. 5). Nevertheless, it remains to be explained why the homoacetogens are able to
colonize the hydrogen-rich gut lumen, whereas the methanogens (unless associated
with gut flagellates) are not. In this context, it is important to recall that the termite
gut is unusual not only with respect to the predominance of reductive acetogenesis
over methanogenesis but also in the abundance of spirochetal life forms in wood-
feeding termites (Lilburn et al. 1999; Breznak 2000). So far, the termite gut is the
only habitat that harbors spirochetes capable of reductive acetogenesis (Leadbetter
et al. 1999; Breznak and Leadbetter 2006).

Diversity studies and expression analysis of FTHFS genes, the functional markers
of reductive acetogenesis, have revealed that termite gut treponemes predominate
over homoacetogenic firmicutes in all wood-feeding termites studied to date
(Salmassi and Leadbetter 2003; Ottesen et al. 2006; Pester and Brune 2006;
Warnecke et al. 2007). Apparently, these highly motile spirochetes are well adapted
to actively maintain their position in the hindgut lumen, whereas methanogens must
attach to surfaces to prevent washout—they can colonize the gut lumen only by
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associating with the gut flagellates or (in some higher termites) by attaching to
cuticular spines that protrude from the gut wall into the lumen (Bignell et al. 1980).

7 Association with Gut Flagellates

Methanogens colonizing intestinal environments are commonly associated with
anaerobic protists (see Hackstein and van Alen 2018). The typical habitats of
methanogens in termite guts are the hindgut cuticle and the surface of filamentous
bacteria colonizing the hindgut wall (Hackstein and Stumm 1994; Leadbetter and
Breznak 1996; Leadbetter et al. 1998), but also the gut flagellates of lower termites
are frequently colonized by methanogenic symbionts (Odelson and Breznak 1985;
Messer and Lee 1989; Shinzato et al. 1992; Hackstein and Stumm 1994; Radek
1994, 1997; Tokura et al. 2000; Hara et al. 2004).

H2 O2

fla

sp

mg

a

b

Fig. 5 Schematic cross section (a) of the hindgut of a wood-feeding lower termite, illustrating the
location of methanogens (mg) at the hindgut wall and homoacetogenic spirochetes (sp) within the
lumen of the paunch. In some termite species, methanogens are also associated with the gut
flagellates (fla). Radial profiles (b) of oxygen and hydrogen partial pressure reveal that the
respiratory activity of the gut microbiota maintains steep oxygen gradients within the gut periphery,
rendering the center anoxic. Hydrogen formed by the flagellates accumulates at the gut center but is
consumed toward the periphery. The strong hydrogen sink below the gut wall is probably caused by
methanogens, which prevent larger amounts of H2 from escaping into the atmosphere. Originally
published in Brune (2010), reprinted with permission of ©Springer Nature
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Generally, only smaller species of termite gut flagellates are associated with
methanogens. Lee et al. (1987) investigated the colonization of gut flagellates by
methanogens in the hindgut of Zootermopsis angusticollis by epifluorescence micro-
scopy and reported that only the small trichomonadid flagellates Trichomitopsis
termopsidis, Tricercomitus termopsidis, and Hexamastix termopsidis were associated
with cells showing the characteristic F420 autofluorescence of methanogens. The larger
hypermastigotes, which appeared to be the major hydrogen source (Messer and Lee
1989), usually lacked methanogenic symbionts. Similar observations were made by
Tokura et al. (2000) with Reticulitermes speratus, where the methanogens were
regularly associated with the oxymonadid Dinenympha parva and a small
hypermastigote Microjoenia sp., and with Hodotermopsis sjoestedti, where the
methanogens were associated with Dinenympha and Microjoenia spp. in large abun-
dance. In all cases, the methanogens seemed to be located within the host cells, which is
in agreement also with ultrastructural data reported by Lee et al. (1987).

Odelson and Breznak (1985) were the first to note that a putatively axenic culture
of Trichomitopsis termopsidis, a gut flagellate isolated from a Zootermopsis species,
contained a methanogenic symbiont. The symbiosis was not obligate because
cultures continued to grow after they were cured of the methanogenic symbiont.
Nevertheless, growth yields of T. termopsidis increased when the flagellate was
cultivated in the presence of the methanogen Methanospirillum hungatei, which
suggested that the flagellates may benefit in a similar manner from their
methanogenic symbiont. There are reports that indicate that methanogens associated
with eukaryotic partner organisms in other environments might benefit from inter-
species hydrogen transfer, and the stimulation of fermentative processes by end
product removal (hydrogen, formate) might even result in a mutual advantage
(Schink 1997). However, considering the high hydrogen concentrations throughout
the gut lumen of lower termites, it is not clear whether termite gut flagellates indeed
benefit from the hydrogen-consuming activity of their methanogenic symbionts
under in situ conditions. At the same time, this would mean that the methanogens
associated with gut flagellates are never hydrogen limited as long as they can
maintain their position in the hydrogen-rich gut lumen—no matter whether their
particular host is producing hydrogen or not. From that perspective, the association
of Methanobrevibacter species with gut flagellates might simply serve to maintain a
stable position in the anoxic and hydrogen-rich hindgut lumen, an argument that may
apply also to the hydrogenotrophic bacteria associated with such protists (see
Hongoh and Ohkuma 2018).

8 Intercompartmental Transfer of Hydrogen

The guts of higher termites are characterized by the absence of cellulolytic flagellates
and show (with the exception of the fungus-cultivating species) also a pronounced
compartmentation, which goes hand in hand with remarkable dynamics of intestinal
pH and redox potential (Brune and Kühl 1996; Kappler and Brune 2002; Köhler
et al. 2012; Fig. 6). Since methanogenesis in termite guts is typically hydrogen
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limited, Sugimoto et al. (1998b) suggested that differences in the rates of hydrogen
and methane emission between termite species might reflect the particular location of
the methanogens relative to the hydrogen source. In soil-feeding Cubitermes species,
hydrogen production and consumption are spatially separated in different gut com-
partments (Schmitt-Wagner and Brune 1999; Tholen and Brune 1999). The strong
stimulation of both methanogenesis and reductive acetogenesis in intact gut com-
partments by external hydrogen led to the hypothesis that hydrogen diffuses across
the gut epithelia between hydrogen-producing and hydrogen-consuming gut regions,
which are in close contact in situ. A cross-epithelial transfer of reducing equivalents
has been experimentally documented in cockroaches and scarab beetle larvae
(Lemke et al. 2001, 2003) and would explain the low hydrogen and high methane
emissions of such soil-feeding termites. Since methanogenesis in the posterior
hindgut is not only stimulated by hydrogen but also by formate, which accumulates
to considerable concentrations in other gut compartments, there might also be
intercompartmental transfer of reducing equivalents via the hemolymph (Schmitt-
Wagner and Brune 1999).

A detailed analysis of the archaeal community structure in the gut compartmen-
tation of Cubitermes orthognathus showed that the different phylogenetic groups
are not evenly distributed among the different hindgut compartments (Friedrich et al.
2001). Each of the individual gut compartments harbors a distinct assemblage
of Euryarchaeota (Fig. 6d). Methanosarcinales colonize the anterior, extremely
alkaline compartment, whereas Methanobacteriales, Methanomicrobiales, and
Methanomassiliicoccales are found in the posterior, less alkaline to neutral com-
partments. These gut regions harbor also the highest methanogenic capacities, and
many of the microbial cells attached to the gut wall or to cuticular spines projecting
from the hindgut wall into the lumen show the characteristic autofluorescence of
methanogens (Schmitt-Wagner and Brune 1999).

9 Relationship to Oxygen

As obligate anaerobes, the methanogens in termites are restricted to the hindgut, the
only gut region characterized by a negative redox potential (Ebert and Brune 1997;
Kappler and Brune 2002; Köhler et al. 2012). It is not clear why they are regularly
(in some cases exclusively) located at the hindgut wall, a microhabitat that experi-
ences a constant influx of oxygen across the epithelium (Brune 1998; Brune and
Friedrich 2000). Like all other methanogens, the three Methanobrevibacter species
colonizing the gut epithelium of Reticulitermes flavipes (Leadbetter and Breznak
1996; Leadbetter et al. 1998) (and also Methanomicrococcus blatticola colonizing
the hindgut epithelium of cockroaches; Sprenger et al. 2000) do not grow in media
containing even traces of oxygen and are much more sensitive to oxygen accumu-
lation than the homoacetogenic Sporomusa species isolated from termite guts
(Boga and Brune 2003). However, Methanobrevibacter species remain metabolic-
ally active in dense cell suspensions that are exposed to controlled oxygen fluxes as
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long as the influx of oxygen does not exceed their capacity for oxygen removal
(Tholen et al. 2007), whereas reductive acetogenesis of Sporomusa species is
inhibited even at the lowest oxygen fluxes (Boga and Brune 2003). It has been
proposed that the redirection of electron flow from methanogenesis toward oxygen
reduction enables Methanobrevibacter species to colonize the hindgut periphery of
termites. The mechanisms of tolerance to reactive oxygen species and the biochem-
istry of oxygen reduction in Methanobrevibacter species have been discussed
elsewhere (Brune 2018).

Nevertheless, the location of methanogens at the gut wall of lower termites, at the
unfavorable end of the outwardly directed hydrogen gradient, remains enigmatic. It
has been suggested that an attachment to the hindgut cuticle might protect against
predation or prevent washout from the gut, which could compensate methanogens
for the negative effects of hydrogen limitation and exposure to inflowing oxygen
(Breznak 2000). In higher termites, the explanation for the colonization of the
hindgut cuticle might lie also in the putative transfer of hydrogen between different
compartments. The microorganisms located at the gut wall might be at the bottom
end of the radial hydrogen flux from the gut proper but might benefit from external
hydrogen entering the hindgut by cross-epithelial transfer from other compartments
(see above).

10 Termites as a Source of Atmospheric Methane

Although the counter-gradients of methane and oxygen in the hindgut periphery
provide seemingly ideal conditions for aerobic methane oxidation (Brune et al.
2000), there is no evidence for the presence of methanotrophic bacteria or their
activities in termite guts (Pester et al. 2007). This means that the different methane
emission rates of termites from different feeding guilds directly reflect differences in
methane production within their intestinal tract. In the past, many attempts were
made to extrapolate from the results of laboratory measurements of methane emis-
sions to the contribution of termites to the global methane budget, but even the most
recent estimates are still far from accurate and suffer from numerous biases (see
Sanderson 1996; Bignell et al. 1997). Sugimoto and colleagues demonstrated that it
is very important to consider methane oxidation in the mound material and the
surrounding soil as an important factor mitigating methane production by termites at
the environmental level (Sugimoto et al. 1998a, 2000). As a consequence, the net
emissions of methane from intact colonies of soil-feeding termites are much lower
than those of wood-feeding termites, even though the opposite would be predicted
from the gross methane emission rates determined with individual termites in the
laboratory.

In view of the grossly overestimated contribution of termites to global methane
emissions into the atmosphere propagated in the older literature (reviewed by Collins
and Wood 1984), it is important to note that the most recent estimates place these
rates at probably less than 10 Tg/year (1.5–7.4 Tg; Sugimoto et al. 1998b) and
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almost certainly below 20 Tg/year (a number that is still used in the last global
budget published by the IPCC; Denman et al. 2007). Although termites remain a
significant natural source of methane on the planet, their contribution to the total
source strength (ca. 600 Tg/year) is certainly dwarfed by the sources under anthro-
pogenic influence (such as the ruminants) (Kirschke et al. 2013). More detailed
reviews of this subject can be found elsewhere (Bignell 2010; Brune 2018).

11 Conclusions

Termites are a significant source of methane in tropical ecosystems. Methane and
short-chain fatty acids are formed from lignocellulosic matter by an anaerobic
feeding chain of microorganisms located in the highly enlarged hindguts. However,
termite hindguts are not purely anoxic fermentors. The gut habitat is characterized by
the continuous influx of O2 across the gut wall and steep hydrogen gradients between
gut lumen and periphery. Despite the high hydrogen concentrations in the gut lumen,
methanogens are not the predominant hydrogenotrophic microorganisms in lower
termites. The ability to attach to biotic or abiotic surfaces or to colonize the
cytoplasm of flagellate protists might be an important factor in the successful
colonization of the intestinal tract. In higher termites, which lack gut flagellates,
the increased methane production is correlated with a dietary shift from wood to
humus. The assemblage of methanogenic archaea in higher termites is more diverse
and changes between the major hindgut compartments, each of which differs with
respect to the prevailing physicochemical conditions. The drivers determining
archaeal community structure in the different microhabitats are not clear, but
might involve the availability of and competition for methanogenic substrates and
differences in adaptation to pH, oxygen, and other stresses imposed by the respective
microenvironments. Since most of the methanogens in termite guts belong to
lineages without any cultured representatives, more isolates are sorely needed to
address these questions.
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