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Abstract Ciliated protozoa are the principal component of the rumen microbiota.
They contribute significantly the digestion of ruminants. As anaerobic fermentative
microorganisms, rumen ciliated protozoa produce a significant amount of hydrogen
and formate. Methanogenic archaea therefore associate closely with rumen ciliated
protozoa. The presence of episymbiotic methanogens in rumen ciliated protozoa has
been demonstrated as early as 1980s by microscopy. The number of ciliate-
associated methanogens increases from the 100 level to 104/cell of ciliates after
feeding. Enhancement of hydrogen and/or formate production from the ciliates by
feeding attracts free-living methanogens. There are a couple of studies about the
phylogeny of the ciliate-associated methanogens based on a molecular ecological
approach. A range of methanogenic archaeal 16S rDNA, representing
Methanobacteriales, Methanomicrobiales and Methanosarcinales, have been
detected as ciliate-associated methanogens. However, it is still difficult to draw a
conclusion about a potentially specific interaction between a particular ciliate species
and a species of methanogenic archaea from these limited studies.
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1 The Rumen and Ciliated Protozoa

The rumen has a great capacity to digest plant polymers with the aid of anaerobic
microbiota (Hungate 1966). This microbial ecosystem allowed ruminant animals to
evolve into the predominant mammals in particular environments such as the semi-
arid savannas (Hoffman 1973).

It is well established that the rumen ciliate protozoa have a significant impact on
feed digestion in the ruminant animals, although the elimination of the ciliated
protozoa does not impair the survival of the ruminant (Ushida et al. 1991).

As an anaerobic environment, the rumen microbial ecosystem requires an elec-
tron sink other than oxygen (Wolin 1975). Methane is the prevalent electron sink in
this particular ecosystem (Hungate 1966). Fermentative microorganisms, therefore,
create a specific relationship with hydrogenotrophic organisms to perform the
different fermentation steps.

In the rumen, ciliated protozoa are known as potent hydrogen and formate pro-
ducers. One cell of an axenic culture of rumen protozoa can produce 5 nmol of
hydrogen per day (Ushida and Jouany 1996; Tokura et al. 1997). Potentially, this
corresponds to a daily hydrogen production of approximately 50 L in the rumen of a
sheep (Ushida et al. 1996). Besides hydrogen, one axenic ciliate cell produces
100 nmol of formate, which corresponds to a daily production of about 50 mol of
formate in the rumen of a sheep. Such a concentration of hydrogen and formate
attracts methanogens and makes the ciliate/methanogen consortium a predominant
contributor for the ruminal methanogenesis. In fact, methanogenic bacteria associ-
ated with rumen ciliates were apparently responsible for 9–25% of methanogenesis
in rumen fluid (Newbold et al. 1995). Consequently, elimination of the ciliated
protozoa from the rumen, the defaunation, is associated with a 30–45% reduction
of ruminal methanogenesis (Ushida et al. 1996).

In the case of rumen ciliates, the elimination of methanogens causes a decrease in
the degradative capacities to some extent (Table 1) (Ushida and Jouany 1996). In
particular, the elimination of methanogenesis increases the hydrogen and formate
production from the ciliates at least by a factor of two but sometimes to a level
several times higher. This slows the fermentation process down (Wolin 1975).

Table 1 Elimination of
methanogenesis from ciliated
protozoa affects the apparent
dry matter degradation (%)
in vitro (Ushida and Jouany
1996)

Fauna type +M �M

Mixed type Aa 67.7 61.1

Epidinium spp. 50.4 42.4

Polyplastron multivesiculatum 49.2 47.0

Isotricha prostoma 27.8 22.7
aMixed type A was defined by Eadie (1967) in which the rumen
harbours Polyplastron multivesiculatum as a particular organism
with common Entodinia and Isotrichids
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2 Methanogens Associated with Rumen Ciliates

Methanogenic archaea associate closely with the rumen ciliates to facilitate the
interspecies hydrogen transfer in the form of an episymbiosis or an endosymbiosis.

No free-living methanogens were detected in the protozoal fraction prepared by
sedimentation (Sharp et al. 1998). Therefore, it was believed that all methanogens
that are metabolically associated with the ciliates are present inside the cell or
intimately attached to the cell surface of the ciliates.

Episymbiotic methanogens of rumen ciliates were microscopically observed as
early as 1980 by their characteristic F420 autofluorescence (Vogels et al. 1980).
Endosymbiotic methanogens were observed by an archaea-specific oligonucleotide
probe approach (Finlay et al. 1994). It has been shown that these endosymbiotic
methanogens are localized in the cytoplasm, not in digestive vacuoles, and adjacent
to the hydrogenosomes. Interestingly, the number of the endosymbiotic
methanogens exceeds the number of those attached on the cell surfaces of ciliates.

The number of ciliate-associated methanogens increased from the level of 100 to
104 most probable number (MPN)/cell of ciliate after feeding (Tokura et al. 1997).
When the ciliated protozoa engulfed and fermented feed particles, the number of
ciliate-associated methanogens increased. Since the maximal level was recorded
shortly (1–2 h) after feeding, it is unlikely that endosymbionts grow to this level in
this short period of time. Accordingly, such a rapid increase in the numbers of ciliate-
associated methanogens may reflect the active attachment or vigorous engulfment of
free-living methanogens. Indeed, the hydrogen supply from the ciliates strongly
attracted free-living methanogens (Stumm et al. 1982).

Ciliated protozoa predate and digest engulfed bacteria as a major prey. If engulfed
methanogens would be the source of the endosymbiotic methanogens, these
methanogens need to be resistant against protozoal lytic activity, or they may escape
from the digestion within food vacuoles. This point may be supported by the fact that
anaerobic ciliates,Metopus spp. and Nyctotherus spp., which harbour methanogenic
symbionts closely related to the free-living organisms (Embley and Finley 1993; van
Hoek et al. 2000). One study evaluated the resistance of methanogenic archaea
against the lytic activity of rumen protozoa. It was found that some of the
methanogens are relatively resistant against the protozoal lytic activities;
i.e. Methanosarcina barkeri DSM 800 was more resistant than Methanobrevibacter
sp. MF1 (Newbold et al. 1996). DSM 800 could establish the interspecies hydrogen
transfer with Polyplastron multivesiculatum (Ushida et al. 1997).

3 Detection of Methanogens Associated with Ciliates

There are a couple of studies about the phylogeny of the ciliate-associated
methanogens based on molecular phylogenetic approaches (Sharp et al. 1998;
Tokura et al. 1999b; Chagan et al. 1999; Ohene-Adjei et al. 2007; Regensbogenova
et al. 2004; Irbis and Ushida 2004; Tymensen et al. 2012; Belanche et al. 2014).
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However, little information is available about the methanogens isolated from cili-
ates. An isolation of methanogens from washed ciliated protozoa was tried, and the
strain Methanobrevibacter sp. MB9 was isolated. This isolate was phylogenetically
close to Methanobrevibacter ruminantium, on the basis of morphology and 16S
rRNA phylogeny (Tokura et al. 1999a). Other attempts for the isolation of symbiotic
methanogens have not been found in the literature probably due to the difficulty and
tediousness of the isolation procedure. Even for the free-living methanogens, rela-
tively few had been isolated from the rumen (Janssen and Kirs 2008). The isolate
Methanobrevibacter sp. MB9 uses hydrogen, formate and small amounts of
2-propanol. This substrate use, 2-propanol, is not common for ruminal
Methanobrevibacter species.

Partial sequences of 16S rDNA of ciliate-associated methanogens are available
from studies in Japan and the UK (Chagan et al. 1999; Tokura et al. 1999b; Irbis and
Ushida 2004; Regensbogenova et al. 2004). DNA was extracted from washed cells
of ciliate protozoa. In some studies, DNA was extracted from a single cell of the
ciliated protozoa. Table 2 shows the distribution of archaeal 16S sequences retrieved
from the cells of ciliated rumen protozoa. The phylogenetic analyses are also shown
in Fig. 1a, b. In this table, there are some unidentified strains of which strain 1Y is
phylogenetically close to Methanobrevibacter gottschalkii, strain SM9 is close to
Methanobrevibacter millerae, strain OCP is close to Methanobrevibacter olleyae
and strain Z8 is close to Methanobrevibacter ruminantium (Rea et al. 2007; Evans
et al. 2009). More recent studies (Tymensen et al. 2012) demonstrated that greater
abundance of OTUs corresponding to the genus Methanobrevibacter in rumen
protozoa associated methanogens (PAM) than free-living methanogens. In the latter,
OTUs corresponding to the genus Methanomicrobium are present in abundance.

Methanobrevibacter-like sequences and those similar to Methanomicrobium
were the predominant sequences detected in different studies. Methanobrevibacter
sp. 1Y-like sequences were found in a range of protozoal species. Lastly,
Methanomicrobium mobile (AY196679)-like sequences were detected in a range
of protozoa both in Japanese and British studies. Methanogens belonging to the
Methanobacteriales were detected predominantly in Japanese studies (Accession
numbers start with AB; see Tokura et al. 1997, 1999a, b; Chagan et al. 1999; Irbis
and Ushida 2004), while those belong to Methanomicrobiales were predominantly
detected in a British study (Accession numbers start with AJ; see Regensbogenova
et al. 2004). Interestingly enough, Ophryoscolex caudatum was studied in both the
Japanese and British studies. This particular rumen protozoon harboured a variety of
methanogens such as Methanobacteriales, Methanomicrobiales and
Methanosarcinales. In addition to these methanogens, Ophryoscolex caudatum
harboured also Thermoplasmatales. Other Entodiniomorphs like Polyplastron
multivesiculatum, Eudiplodinium maggii, Diplodinium dentatum, Metadinium
medium and Entodinium furca harboured relatively limited numbers of species of
methanogens. In the case of holotrichs, Isotricha intestinalis harboured a phyloge-
netically broad range of methanogens similar to that shown in Ophryoscolex
caudatum. An aquatic ciliate, Metopus contortus, can host a broad range of
methanogens. Accordingly, this aquatic ciliate is defined as the generalist host for
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Fig. 1 Neighbour-joining tree computed from partial 16S DNA of methanogens associated with
rumen ciliated protozoa by MEGA 4.0 (Tamura et al. 2007) with 500 replicates for bootstrap. (a)
Partial sequences (E. coli [DQ118017]16S rDNA position 781–1233) are used to analyse ciliate-
associated archaea (AB189856-AB189868); (b) (E. coli [DQ118017] position 218–798) are used to
analyse ciliate-associated archaea (AB022181-AB022186, AB026168-026175, AJ606400-
AJ606419)
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Fig. 1 (continued)
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methanogens (Embley and Finlay 1993). Rumen ciliated protozoa like Isotricha
intestinalis and Ophryoscolex caudatum can also be a generalist host for
methanogens. However, it is still difficult to draw a conclusion about a potentially
specific interaction between a particular ciliate species and a species of
methanogenic archaea from these limited studies.

4 The Effect of Ciliated Protozoa on the Composition
of Methanogenic Archaea in the Rumen

As indicated above, a cell of ciliated protozoa can harbour up to 104 methanogens.
This number may differ according to protozoal species, since protozoal size

determined the number of PAM as big protozoa had 1.7–3.3 times more methanogen
DNA than smaller protozoa (Belanche et al. 2014). Since the number of ciliates
ranges from 105 to 106 cells/mL rumen fluid (Williams and Coleman 1991), they
may encompass a methanogenic population as large as 1010 methanogens/mL. If
there is a specific relationship between the ciliate species and their methanogenic
symbionts, an increase in the number of ciliated protozoa should affect the
methanogenic archaeal population as a selective pressure upon the methanogenic
population. In an in vivo study, Ohene-Adjei et al. (2007) indicated that an inocu-
lation of Polyplastron multivesiculatum into the rumen predominantly associated
with the detection of methanogens closely related to Methanobrevibacter bryantii,
Methanobrevibacter ruminantium and Methanosphaera stadtmanae. These authors
also showed that inoculation of holotrich protozoa (Isotrichidae) into the rumen was
primarily associated with the detection of methanogens closely related to
Methanobrevibacter smithii. Although this Canadian in vivo study appears not to
agree with the results shown in Table 2, it is likely that the presence of particular
ciliate protozoa may promote the predominance of particular species of
methanogens.

Again, the specificity of the host-methanogenic symbiont relationship is still
difficult to be proven, because a long-term pure culture system for rumen ciliates
has not been established so far. Without a pure culture of rumen ciliated protozoa,
consisting of aposymbiotic ciliates, an inoculation study as reported for Trimyema
compressum cannot be realized (Wagener et al. 1990; Holler and Pfennig 1991).
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