®

Check for
updates

Engineering: Parallel Computation
of the Number =

Chapter Summary

In computing the number 7, by simple numerical integration, the focus is in par-
allel implemention on three different parallel architectures and programming envi-
ronments: OpenMP on the multicore processor, MPI on a cluster, and OpenCL on a
GPU. In all three cases a spatial domain decomposition is used for paralelization, but
differences in communication between parallel tasks and in combining the results of
these tasks are shown. Measurements of the running time and speed-up are included
to assist self-studying readers.

A detailed description of the parallel computation of 7 is available in Chap.3
Example 3.4 and in Chap.4 Example4.4. The solution methodology relies on a
numerical integration of unit circle:

1
n=4/\/1—x2dx
0

that is in a direct relation with the value of 7. The numerical integration is performed
by calculation and summation of all N sub-interval areas. A sequential version of
the algorithm in a pseudocode, which results in an approximate value of 7, is given
below:

© Springer Nature Switzerland AG 2018 199
R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_6

6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_6&domain=pdf

200 6 Engineering: Parallel Computation of the Number

102 7100
—O—run-time [s]
—<4—abs-error 1102
10°
110*
‘o 1 4
;‘ 10® o)
2 o
E 10 S
g 1108)
Jl -10
1074 10
Jl 10-12
10 -14
10
10° 102 10* 108 108 100

N -number of sub-intervals

Fig.6.1 Run-time and absolute error on a single MPI process in computation of 7 as a function of
number of sub-intervals N

Algorithm 1 SEQUENTIAL ALGORITHM: COMPUTE_7m
Input: N - number of sub-intervals on interval [0, 1]
l:fori=1...Ndo

2: xi=(1/N)@—-0.5)
3 2

Doyi=1—x;
4: Pi= Pi+4(yi/N)
5: end for

Output: Pi - an approximation for the number

We validate the Algorithm 1 on a single computer in order to prove its correct
behavior. It is expected that with an increased number of sub-intervals N, the approx-
imation of = will become better and better, which should be confirmed by calculated
absolute error of approximate 7z value. This is easy, because we know the 7 value with
arbitrary accuracy. However, with the increased N the run-time will also increase.
Embedding the existing MPI program from Listing4.5 in an additional for loop
that increases the number of intervals by a factor of two, followed by compiling and
running the program:

>mpiexec -n 1 MSMPIPi
on a HP EliteBook 840 notebook, based on Intel Core 64-bit processor i7-7500U
CPU with 2 physical cores and 4 logical processor, on MS Windows 10 operating
system with Visual Studio 2017 compiler, we get the results shown in Fig. 6.1. Note,
that for all presented MPI experiments in this book, the same notebook was used.
We compile in Release mode with optimization for maximal speed, e.g., /02.

To see the full response, the results are shown in logarithmic scale on both axes.
The run-time mostly increases as expected, except with a few smallest values of sub-

6 Engineering: Parallel Computation of the Number 201

intervals, where the impact of MPI program setup time, cache memory, or interactions
with operating system could be present. In the same way, the approximation error
becomes smaller and smaller, until the largest number of intervals, where a small jump
is presents, possibly because of a limited precision of the floating point arithmetic.

The next step is to find out the most efficient way to parallelize the problem, i.e., to
engage a greater number of cooperating processors in order to speed up the program
execution. Even though the sequential Algorithm1 is very simple, it implies most
of the problems that arise also in more complex examples. First, the program needs
to distribute tasks among cooperating processors in a balanced way. A relatively
small portion of data should be communicated to cooperating processes, because the
processes will generate their local data by a common equation for a unit circle. All
processes have to implement their local computation of partial sums, and finally, the
partial results should be assembled, usually by a global communication, in a host
process to be available for users.

Regarding sequential Algorithm 1, we see that the calculation of each sub-interval
areais independent, and consequently, the algorithm has a potential to be parallelized.
In order to make the calculation parallel, we will use domain decomposition approach
and master—slave implementation. Because all values of y; can be calculated locally
and because the domain decomposition is known explicitly, there is no need for a
massive data transfer between the master process and slave processes. The master
process will just broadcast the number of intervals. Then, the local integration will
run in parallel on all processes. Finally, the master process reduces the partial sums
into the final approximation of . The parallelized algorithm is shown below:

Algorithm 2 PARALLEL ALGORITHM: COMPUTE_xt

Input: N - number of sub-intervals on interval [0, 1]

1: Get myI D and the number of cooperating processes p
2: Master broadcast N to all processes

3: Compute a shorter for loop:

4:for j=1...N/pdo

5: xj=(1/N)(j —0.5)

6 yji=,/1~- sz

7 Pj=Pj+4(y;/N)

8: end for

9: Master reduce partial sums P; to the final result Pi

Output: Pi - approximate value of =

We have learned from this simple example that, besides the calculation, there
are other tasks to be done (i) domain decomposition, (ii) their distribution, and
(iii) assembling of the final result, which are inherently sequential, and therefore
limit the final speedup. We further see that all processes are not identical. Some
of the processes are slaves because they just calculate their portion of data. The
master process has to distribute the number of intervals and to gather and sum up the

202 6 Engineering: Parallel Computation of the Number

local results. Parallel implementation approaches on different computing platforms
differ significantly, and therefore their results are presented in the following sections,
separately for: OpenMP, MPI, and OpenCL.

6.1 OpenMP

Computing 7 on a multicore processor has been covered in Chap. 3.

The numerical integration of a unit square (the part of it that lies in the first
quadrant) has been explained in Example 3.4, where the program for computing 7
is shown Listing 3.15. To analyze the performance of the program, it has been run
on a quad-core processor with hyperthreading (Intel Core i7 6700HQ). For 10° sub-
intervals of the interval [0, 1] (when the error is approximately 1073), the results are
shown in Fig. 6.2: the bars show the measured wall clock time and the dashed curve
illustrates the expected wall clock time in case of the ideal speedup in regard to the
number of threads used.

The wall clock time decreases when the number of threads increases, but only up
to the number of logical cores the processor can provide. Once the number of threads
exceeds the number of logical cores, the program (its OpenMP run-time component,
to be precise) places multiple threads on the same core and no reduction of wall
clock time can be gained.

In fact, one must observe that up to the number of logical cores, almost ideal
speedup is achieved. This is not to be expected very often. In this case, however, it
is a consequence of the fact that the entire computation is almost perfectly paral-
lelizable, with the exception of the final reduction. But if 10° intervals are divided
among 8 threads, the time of the reduction becomes insignificant if compared to the
computation of the local sums.

As shown in Example 3.5, 7w can also be computed by random shooting into the
square [0, 1] x [0, 1] and count the number of shots that hit inside the unit square.
The program for computing 7 using this method is shown in Listing 3.18. As with
the numerical integration, the program has been tested on a quad-core processor with
hyperthreading (Intel Core i7 6700HQ). For 103 shots, the measured wall clock time
is shown in Fig. 6.3. Again, the dashed line illustrates the expected wall clock time
in case of the ideal speedup in regard to the number of threads used.

As can be seen in Fig.6.3, (almost) ideal speedup is achieved only for up to 4
threads, i.e., for one thread per physical, not logical core. That implies that instruc-
tions and memory accesses of threads placed on the same physical core result in too
many conflicts to sustain the speedup and truly benefit from multithreading. This can
happen and it is a lesson not to be forgotten.

Even though the wall clock time is what it matters in the end, the CPU time has been
measured as well. In Fig. 6.4 the total amount of CPU time needed for computing
using both methods explained in Chap. 3, namely numerical integration and random
shooting, is shown.

6.1 OpenMP 203

T T T T
» wall clock time ==
7.00 ' ideal speedup - - - -

6.00 | ,

5.00 [v 7]

seconds
N
o
o
T
1

3.00 : . T
2.00 [R _ T
i LL[ITTPPTTITTIY
[ANARENGNARARERE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of threads

Fig.6.2 Computing 7 using the numerical integration of the unit circle using 10° intervals on a
quad-core processor with hyperthreading

300 T T T T T T T T T T T T T T T T
' wall clock time ==
' ideal speedup - - - -
250 F 8
2.00 | | b
n .\
o \
c \
S 150 | -
0] \
w e
1.00 [R 8
° H\H‘ﬂ H H H H H H H H H H-
0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of threads

Fig.6.3 Computing 7 using random shooting into the square [0, 1] x [0, 1] using 108 shots

Although the wall clock time shown in Fig.6.2 in Fig.6.3 decreases with the
number of threads the total amount of CPU time increases. These can be expected,
since more threads require more administrative tasks from the OpenMP run-time.

204 6 Engineering: Parallel Computation of the Number 7

7.30 T T T T T T T T T T T T T T T T T
705k cpu time = i cpu time 3
720k 4.00 [N
"é) 7151 8
8 710f £ 350/
o rosr % 300}
7.00 :
2:22 250t mmll H
1 4567 8 910111213141516 12345678 910111213141516
number of threads number of threads

Fig.6.4 The total CPU time needed to compute 7 using numerical integration (left) and random
shooting (right)

6.2 MPI

An MPI C code for the parallel computation of 7, together with some explanation
and comments, are provided in Chap. 4 Listing4.5. We would like to test the behavior
of run-time as a function of the number of MPI processes p. On the test notebook
computer, two cores are present. Taking into account that four logical processors
are available, we could expect some speedup of the execution with up to four MPI
processes. With more than four processes, the run-time could start increasing, because
of an MPI overhead. We will test our program with up to eight processes. Starting a
same program on different number of processes can be accomplished by consecutive
mpiexec commands with appropriate value of parameter —n or by a simple bash
file that prepares the execution parameters, which are passed to the main program
through its argc and argv arguments.

The behavior of approximation error should be the same as in the case of a sin-
gle process. In the computation of , the following number of sub-intervals have
been used N = [5e9, 5e8, 57, 5e6] (5e9 is a scienific notation for 5.10%). Note,
that such big numbers of sub-intervals were used because we want to have a com-
putationally complex task, even that the computation of sub-interval areas is quite
simple. Usually, in realistic tasks, there is much more computation by itself and tasks
become complex automatically. Two smaller values of N have been used to test the
impact of the ratio calculation/communication complexity on the program execution.
The obtained results for parallel run-times (RT) in seconds and speedups (SU), in
computation of 77, on a notebook computer are shown in Fig.6.5.

We have first checked that the error in parallel approximation of 7 is the same as
in the case of a single process. The run-time behaves as expected, with the maximum
speedup of 2.6 with four processes and large N. With two processes the speedup
is almost 2, because the physical cores have been allocated. Up to four processes,
the speedup increases but not ideal, because logical processors cannot provide the
same performance as the physical cores because of hyperthreading technology. The
program is actually executed on a shared memory computer with potentially negli-
gible communication delays. However, if N is decreased, e.g., to 5e6 or more, the

6.2 MPI 205

—O— RT-5e9 [s] —@— SU-5e9
351} —<—RT-5e8 [s] —#—SU-5e8
—0— RT-5e7 [s] —®—SU-5e7 | 1 3.5
—<+— RT-5e6 [s] —<4— SU-5¢6

3

_25
2, [=%
o 4 3
£ 2 253
< 2
E]

15

1.5

~ A0
-

1 2 3 4 5 6
p - number of MPI processes

Fig.6.5 Parallel run-time (RT) and speedup (SU) in computation of 7 on a notebook computer for
p=11,...,8] MPI processes and N = [5e9, 58, 5e7, 5e6] sub-intervals

speedup is becoming smaller because more processes introduce a larger execution
overhead that diminish the speedup.

Let us finally check the behavior of the parallel MPI program on a computing
cluster. It is built of 36 computing nodes connected in a 6 x 6 mesh, each with 6
Gigabit ports to a Gigabit switch. Computing nodes are built as a dual 64-bit CPU Intel
Xeon 5520, each of CPUs with 4 physical cores (two threads/core) and 6 GB of local
memory. The computing cluster runs under server version of Ubuntu 16.04.3 LTS
with GCC Version 7.3 compiler. Only 8 out of 36 interconnected cluster computers
(CPUs) have been devoted for our tests, resulting in 32 physical cores. All programs
are compiled for maximum speed. Note, that the same computing cluster has been
used in all presented MPI tests of this book. The hostfile is:
k1:4 k2:4 k3:4 k4:4 k5:4 k6:4 k7:4 k8:4
where k1. . . k8 are names of 8 cluster computing nodes.

Because, in the 7 test case program, there is no significant communication load,
and because two threads/core are available, we expect practically ideal speedup up
to 64 MPI processes. Then, if more processes are generated, the speedup is not so
predictable. We will try to explain the results after performing all experiments.

The program is compiled with:

>mpicc.mpich -03 MPIPI.c -o MPIPI

Parallel program performances are tested on MPICH MPI with various options for
mpirun.mpich. First, we runnp = 1...128 experiments, for 1 to 128 MPI
processes, with default parameters:

206 6 Engineering: Parallel Computation of the Number

12 435
—O0— RT-D-569 [s]
' —<—RT-D5e6[s] | | .
10 [T —e— SU-D-5¢9

; —<— SU-D-5¢6

run-time [s]
speed-up

<L 20020 < ¥ i L 0
0 20 40 60 80 100 120 140
p - number of MPI processes

Fig. 6.6 Parallel run-time (RT-D) and speedup (SU-D) in computations of 7 on a cluster of 8
interconnected computers with total 32 cores and p =[1, ..., 128] MPI processes with default
parameters of mpirun.mpich

>mpirun.mpich --hostfile myhosts.mpich.txt -np $np ./MPIPi S$N

Parameters N and np are provided from bash file as N = [5e€9, 5e8, 5e7, 5e6]
and np = [1, ..., 8]. The maximum number of MPI processes, i.e., 128, was deter-
mined from the command line when running the bash file:

>./run.sh 128 > data.txt

where data . txt is an output file for results. The obtained results for parallel run-
times, in seconds, with default parameters of mpirun (RT-D) and corresponding
speedups (SU-D), are shown in Fig. 6.6. For better visibility only two pairs of graphs
are shown, for largest and smallest N.

Let us look first the speedup for N = 5e9 intervals. We see that the speedup
increases up to 64 processes, where reaches its maximal value 32. For more processes,
it drops and deviates around 17. The situation is similar with thousand times smaller
number of intervals N = 5e6, however, the maximal speedup is only 5 and for more
than 64 processes there is no speedup. We expected this, because calculation load
decreases with smaller number of sub-intervals and the impact of communication
and operating system overheads prevail.

We further see that the speedup scales but not ideal. 64 MPI processes are needed
to execute the program 32 times faster as a single computer. The reason could be
in the allocation of processes along the physical and logical cores. Therefore, we
repeat experiments with mpirun parameter ~-bind-to core:1, which forces to
run just a single process on each core and possibly prevents operating system to move

6.2 MPI 207

—O0—RT-B-5¢9 [s]
—<+— RT-B-5€6 [s]
—e— SU-B-5¢9

—<—SU-B-5¢6

130

25

20

run-time [s]
[}
speed-up

2 22002 IR NI 0
0 20 40 60 80 100 120 140
p - number of MPI processes

Fig. 6.7 Parallel run-time (RT-B) and speedup (SU-B) in computations of 7z on a cluster of 8
interconnected computers for p = [1, ..., 128] MPI processes, bound to cores

processes around cores. The obtained results for parallel run-times in seconds (RT-B)
with processes bound to cores and corresponding speedups (SU-B), are shown in
Fig.6.7. The remaining execution parameters are the same as in previous experiment.

The bind parameter improves the execution performance with N = 5e9 intervals
in the sense that the speedup of 32 is achieved already with 32 processes, which is
ideal. But then the speedup falls abruptly by a factor of 2, possibly because of the
fact, that with more than 32 MPI processes, some processing cores must manage two
processes, which slows down the whole program execution.

We further see that with more than 64 processes speedups fall significantly in all
tests, which is a possible consequence of inability to use the advantage of hyper-
threading. With larger number of processes, larger than the number of cores, on
several cores run more than two processes, which slows down the whole program
by a factor of 2. Consequently, the slope of speedup scaling, with more than 32 pro-
cesses, is also reduced by 2. With this reduced slope, the speedup reaches the second
peak by 64 processes. Then the speedup falls again to an approximate value of 22.

The speedup with N = 5e6 intervals remains similar as in previous experiment
because of lower computation load. It is a matter of even more detailed analysis, why
the speedup behaves quite unstable for some cases. The reasons could be in cache
memory faults, MPI overheads, collective communication delays, interaction with
operating system, etc.

208 6 Engineering: Parallel Computation of the Number

6.3 OpenCL

If we look at Algorithm 1, we can see that it is very similar to dot product calculation
covered in Sect. 5.3.4. We use the same principle: we will use a buffer in local memory
named LocalPiValues to store each work-item’s running sum of the 7 value.
This buffer will store szLocalWorkSize partial w values so each work-item in
the work-group will have a place to store its temporary result. Then, we use the
principle of reduction to sum up all 7 values in the work-group. We now store the
final value of each work-group to an array in global memory. Because this array is
relatively small, we return control to the host and let the CPU finish the final step of
the addition. Listing 6.1 shows the kernel code for computing 7.

__kernel void CalculatePiShared (
__global float* c,
ulong iNumIntervals)

__local float LocalPiValues [256]; // work-group size = 256

// work-item global index

int iGID = get_global_id (0) ;

// work-item local index

int iLID = get_local_id (0) ;

// work-group index

int iWGID = get_group_id (0) ;

// how many work-items are in WG?
int iWGS = get_local_size (0) ;

float x = 0.0;
float yv = 0.0;
float pi = 0.0;
while (iGID < iNumIntervals) {

x = (float) (1.0f/(float) iNumIntervals) *((float)iGID-0.5f) ;
vy = (float)sgrt (1.0f - x*x);

pi += 4.0f * (float) (y/(float) iNumIntervals) ;

iGID += get_global_size (0) ;

}

//store the product
LocalPivValues [1iLID] = pi;

// wait for all threads in WG:
barrier (CLK_LOCAL_MEM_FENCE) ;

// Summation reduction:
int i = iWGS/2;
while (i!=0) {
if (iLID < 1) {
LocalPiValues [iLID] += LocalPiValues [iLID+1i];
}
barrier (CLK_LOCAL_MEM_FENCE) ;
i=1/2;
}

// store partial dot product into global memory :
if (iLID == 0) {
c[iWGID] = LocalPiValues [0];
}
}

Listing 6.1 The compute 7 kernel.

6.3 OpenCL 209

Table 6.1 Experimental No. of CPU time [s] GPU time [s] Speedup
results for OpenCL 7 intervals
computation
10° 0.01 0.0013 7.69
33 x 106 | 0.31 0.035 8.86
10° 9.83 1.07 9.18

To analyze the performance of the OpenCL program for computing 77, the sequential
version has been run on a quad-core processor Intel Core i7 6700HQ running at
2,2GHz, while the parallel version has been run on an Intel Iris Pro 5200 GPU
running at 1,1 GHz. This is a small GPU integrated on the same chip as the CPU and
has only 40 processing elements. The results are presented in Table 6.1. We run the
kernel in NDrange of size:

szLocalWorkSize = 256; // # of work-items in work-group
szGlobalWorkSize = 256*128; // total # of work-work-items

As can be seen from the measured execution times, noticeable acceleration is
achieved, although we do not achieve the ideal speedup. The main reason for that
lies in reduction summation that cannot be fully parallelized. The second reason is
the use of complex arithmetic operations (square root). The execution units usually
do not have their own unit for such a complex operation, but several execution units
share one special function unit that performs complex operations such as square root,
sine, etc.

	6 Engineering: Parallel Computation of the Number π
	6.1 OpenMP
	6.2 MPI
	6.3 OpenCL

