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Abstract. Automatic classification of 3D skeleton sequences of human
motions has applications in many domains, ranging from entertainment
to medicine. The classification is a difficult problem as the motions
belonging to the same class needn’t be well segmented and can be per-
formed by subjects of various body sizes in different styles and speeds.
The state-of-the-art recognition approaches commonly solve this prob-
lem by training recurrent neural networks to learn the contextual depen-
dency in both spatial and temporal domains. In this paper, we employ a
distance-based similarity measure, based on deep convolutional features,
to search for the k-nearest motions with respect to a query motion being
classified. The retrieved neighbors are analyzed and re-ranked by addi-
tional measures that are automatically chosen for individual queries. The
combination of deep features, dynamism in the similarity-measure selec-
tion, and a new kNN classifier brings the highest classification accuracy
on a challenging dataset with 130 classes. Moreover, the proposed app-
roach can promptly react to changing training data without any need for
a retraining process.

1 Introduction and Related Work

Motion capture (MoCap) data (shortly motion data) are sequences of skeletons
that consist of 3D positions of human body joints. These spatio-temporal data
constitute a model, that on one hand substantially simplifies the view on the
complex structure of human motion, but on the other hand enables automated
and computer-aided processing. The increasing accuracy and availability of cap-
turing devices have facilitated recording motion data in a variety of application
domains, such as military, sports, medicine, law inforcement and smarthomes.

Such application domains require computer-aided operations to analyze the
motion data automatically. One of the most fundamental operations is action
classification, sometimes referred to as action recognition. It is the problem of
inferring the kind of movement action, based on pre-classified training data. Solv-
ing this problem is challenging as the motions of the same kind can be performed
by various subjects in different styles, speeds, and initial body postures.

The key part of the classification process is an efficient extraction of robust
and sufficiently discriminative features to effectively model the spatial and tem-
poral evolutions of different actions [15]. The survey in [10] categorizes existing
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features into: (1) joint-based representations keeping the correlations among 3D
joint locations within an action, (2) mined-joint-based features learning what
subsets of body joints are more informative to discriminate a given action from
the other ones, and (3) dynamics-based representations employing the advantage
of the way the 3D joint locations move over time and modeling an action as a
set of 3D trajectories, e.g., implemented by a 2D motion image approximating
3D joint positions by specific colors of the RGB color space [6,13].

The extracted features can then be compared for similarity by distance mea-
sures, such as the Dynamic Time Warping [2], to find the most similar training
samples with respect to a query being classified. The retrieved samples are ana-
lyzed by k-nearest-neighbor classifiers to determine the class of the query [13].
On the other hand, the k-nearest neighbor (kNN) classifiers have been gradu-
ally effaced by the increasing success of deep neural networks. Several different
neural-network architectures have recently been proposed for motion classifica-
tion. Specifically, deep convolutional networks are trained by the 2D-motion-
image features that are also classified by the network [6]. Most attempts suggest
to employ the architecture of recurrent neural networks to better model the
contextual dependency in the temporal domain [8]. This architecture can be
enriched by the Long Short-Term Memory (LSTM) to better learn long-term
temporal dependencies [9,15,18]. To further handle the noise and occlusion of
skeleton sequences, gating mechanisms are integrated into LSTM to learn the
reliability of the sequential data and accordingly adjust their effect on updating
the long-term context information stored in the LSTM memory cell [8]. To ben-
efit from different network architectures at the same time, the combination of
convolutional and LSTM networks is proposed [12]. Recently, the recurrent neu-
ral networks have been enriched by attention-based mechanisms to additionally
detect the most discriminative moments within an action [1,9,15].

Our Contribution

The state-of-the-art motion-data classifiers constitute either purposely-learned
neural networks [1,6,9], or 1NN classifiers dependent on a single similarity mea-
sure [13,14]. Even if the machine-learning classifiers generally achieve a higher
accuracy, they have to be retrained each time when new classes or even only
class samples are added, which is a very time-consuming process making the
real-time processing prohibited. We plan to overcome this problem by propos-
ing new k-nearest-neighbor classifiers that can dynamically react to changing
training data, while benefiting from the similarity concept originally learned on
a deep convolutional neural network. In particular, we extend the 1NN approach
by introducing two new kNN classifiers that additionally output a probability
distribution over classes to which a query motion should belong. More impor-
tantly, we propose a third confusion-based classifier that employs the kNN-based
probability distribution to automatically select more convenient similarity mea-
sures for classifying the query motion, rather than relying only on some global
similarity. Despite reaching the best accuracy on a challenging dataset with 130
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classes, the proposed approach does not require large volumes of training data
and can react to data changes immediately in contrast to the recent approaches.

2 Representation and Similarity of Skeleton Sequences

A motion sequence (or simply motion) M is represented by a sequence of con-
sequent skeletons. The total number |M | of skeletons determines the motion
length. The t-th skeleton ∈ R

31×3 captured at the time moment t (1 ≤ t ≤ |M |)
consists of 3D coordinates of 31 tracked joints.

To compare a pair of skeleton sequences, we adopt the state-of-the-art simi-
larity measure which was originally proposed in [14] and improved in [13]. It uses
the Euclidean distance to compare 4, 096-dimensional feature vectors extracted
from motions of variable lengths. A feature vector is extracted from a motion
sequence M in the following three steps.

1. Normalization – Each skeleton is normalized to become independent of both
position and orientation in a 3D space. The skeleton size is additionally scaled
to keep the same body proportions over all motions.

2. Motion-image construction – The 3D space covering all possible normalized
skeletons is then mapped into the RGB color space to approximate any joint
position by specific color. The positions of all joints changing over time are
projected into a 2D image, so-called motion image. This image is generated
by the “WeightedJointsFixed” variant [13] to occupy 256 × |M | pixels.

3. Feature extraction – The generated motion image is finally processed by the
reference model1 of the well-known Krizhevsky’s deep convolutional neural
network [5] to extract a deep 4, 096-dimensional feature vector F 4K

M , as the
output of the last hidden network layer.

To achieve a higher descriptive power of feature vectors, the reference model
originally trained on common photographs is additionally fine-tuned by a train-
ing set of motion images, as described in the experiments. The feature extraction
and fine-tuning processes are deeply analyzed in [13,14].

The extracted 4, 096D feature vectors F 4K
M1

and F 4K
M2

of motions M1 and M2

are compared by the Euclidean distance as:

compDist4K
(
F 4K
M1

, F 4K
M2

)
=

∥
∥F 4K

M1
− F 4K

M2

∥
∥ .

We call this similarity measure as original and employ it by all the classifiers
proposed in this paper.

3 Classification Baseline

We formally define the problem of motion classification and introduce the base-
line 1NN classification approach, which has already been evaluated on the
motion-image similarity measure in [13].
1 https://github.com/BVLC/caffe/tree/master/models/bvlc reference caffenet.

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Classification is the problem of identifying a single class (sometimes referred
to as category) to which a given motion sequence belongs, based on a set of
already categorized motion sequences, i.e., training data. Formally, a general
classifier classify determining the class of a query motion is defined as:

classify : M → C, (1)

where M = {M1, . . . ,Mn} denotes the input domain of n motions, while C =
{C1, . . . , Cm} is the output domain of m classes.

3.1 1NN Classifier

To implement any search-based classifier, there is a need to retrieve the most
similar motions – nearest neighbors (NN) – with respect to a query motion.
The following 1NN function searches a training set MTR of categorized motion
sequences and returns the one that is the most similar to the query motion MQ:

1NN
(
MQ,MTR

)
=

{
M ′ ∈ MTR

∣
∣ ∀M ∈ MTR :

compDist4K
(
F 4K
MQ , F 4K

M ′
) ≤ compDist4K

(
F 4K
MQ , F 4K

M

) }
.

(2)

The 1-nearest-neighbor classifier, denoted as classify1NN, then simply assigns
the query motion the class of the most similar motion:

classify1NN
(
MQ

)
= getClass

(
1NN

(
MQ,MTR

))
, (3)

where the function getClass returns the known class Ci ∈ C (i ∈ {1, . . . ,m}) of
motion passed in the argument.

3.2 Experimental Evaluation

We first introduce the dataset and methodology that are used for evaluation
throughout this paper. Then we present the accuracy results of the 1NN classifier.

Dataset. The classification scenario is evaluated on 3D skeletal data of the
publicly available HDM05 [11] motion capture dataset. This dataset provides
the ground truth HDM05-130, which categorizes 2,345 short motion sequences
into 130 categories of specific actions, such as the turn left, sit down on a chair,
or clap with hands five times. The average action length is 2.17 s – it corresponds
to about 260 frames with the dataset sampling frequency of 120 Hz.

We select this HDM05-130 ground truth because it is very challenging – it
contains the highest number of 130 categories when compared to other datasets,
such as CMU (30 categories), NTU RGB + D (60 categories), MSR (20 cate-
gories) or MHAD (11 categories) [16]. Moreover, it is characterized with a subtle
categorization, containing for example separate classes for kicking with left or
right leg, to the front or to the side.

As suggested in [13,14], we additionally ignore 8 categories with less than
10 motion samples. Thus our resulting ground truth HDM05-122 contains 122
categories with 2,328 motions in total.
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Methodology. To be consistent with previous works [6,7,13], we use 50% of
motion sequences for training by applying the 2-fold cross validation procedure.
In particular, we randomly partition all 2,328 motion samples into halves, i.e.,
into two sets (folds) of 1,164 motions. In the first pass, the first fold is used for
training (MTR) and the second one for testing. In the second pass, the training
and test folds are swapped. For each pass, we preprocess the ground truth to:

1. Generate motion images (see Sect. 2) for both training and test motions;
2. Fine-tune the reference model of the neural network by the motion images

from the training set;
3. Extract a 4,096D feature vector for each of training and test images based on

the fine-tuned network model.

The test motions are then used as query arguments of the classify1NN classifier.
The accuracy of a single-motion classification is either 100%, or 0% based on the
fact whether the classified category equals to the category of the query motion.
The accuracy of the given pass is then measured as an average accuracy over
1,164 test queries. The accuracy of the classifier is finally expressed as an average
over both passes.

Evaluation of Classification Accuracy. As already demonstrated in [13],
the 4,096D deep features compared by the Euclidean distance achieves the 1NN
classification accuracy of 87.84%. This result serves as the baseline for other
classifiers proposed in this paper.

4 Probabilistic kNN Classifiers

Although the 1NN classifier is simple and quite accurate, it needn’t be conve-
nient when (1) the query-closest neighbors have almost the same distance while
belonging to different classes or when (2) the correct class is confusable with
another class, e.g., “grab a thing” with“deposit a thing”. In that cases, it is use-
ful to analyze the categories and similarities of more nearest neighbors, rather
than relying only on the most similar one. This additionally brings the possibil-
ity to determine a probability distribution over a set of classes that the query
should belong to. Formally, a probabilistic classifier is defined as:

classify : M → {(C × [0, 1])} . (4)

The result of classification is a set of pairs associating the classes with their
probabilities of being the correct match. Within this section, we propose two
probabilistic classifiers classifykNN and classifykNN TMC.

4.1 Weighted-Distance kNN Classifier

The idea is to classify the query by a majority vote of its nearest neighbors. We
consider not only the number of votes but also the similarity of neighbors with
respect to the query.
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To obtain the k-nearest neighbors from the categorized training set MTR to
the query MQ, the following kNN function is evaluated:

kNN
(
MQ,MTR, k

)
=

{
M ′ ∈ M′ ∣

∣ M′ ⊂ MTR, |M′| = k,

∀M ′ ∈ M′,∀M ∈ MTR/M′ :

compDist4K
(
F 4K
MQ , F 4K

M ′
) ≤ compDist4K

(
F 4K
MQ , F 4K

M

) }
.

(5)

We extend this kNN function by the additional class parameter C ∈ C to
determine the subset of nearest neighbors that belong to the specified class C:

kNN(MQ,MTR, k, C) =
{
M ∈ kNN(MQ,MTR, k) : getClass(M) = C

}
.
(6)

Relevance of Neighbors. As the k-nearest neighbors are retrieved, the rele-
vance of each neighbor for classification is determined. This relevance is com-
puted by normalizing the neighbor distance with respect to the distance of the
k-th neighbor. Such query-dependent normalization is very effective in situations
where distances of nearest neighbors vary a lot across different categories, rather
than a normalization based on the maximum possible distance. The relevance of
the neighbor M is computed by the function compRel : M → [0, 1] as:

compRel(M) = 1 − compDist4K(F 4K
MQ , F 4K

M )
kNeighborDist · kNeighborDistWeight

,

kNeighborDist = max
{
compDist4K(F 4K

MQ , F 4K
M ) : M ∈ kNN

(
MQ,MTR, k

)}
,

(7)
where kNeighborDist is the precomputed distance to the k-th neighbor and
kNeighborDistWeight ∈ [1,∞) is a user-defined parameter determining the
importance of distances to classification. We fix this parameter to 1.1 to put a
high emphasis on the distances, which at the same time decreases relevance of
the k-th neighbor a lot.

The result relevance approaching the value 1 denotes a high importance of
the specific neighbor and with a decreasing value, the neighbor importance goes
down.

Aggregation of Relevances of Neighbors. To compute classification prob-
abilities, relevances of neighbors belonging to the same class are summed and
finally normalized across all categories. The following compRels function returns
the pairs associating the summed relevance ri with the class Ci:

compRels
(
MQ,MTR, k

)
=

{
(Ci, ri)

∣
∣
∣ Ci ∈ C,

ri =
∑

M∈kNN(MQ,MTR,k,Ci)

compRel(M)
}
.

(8)



56 J. Sedmidubsky and P. Zezula

To normalize the relevances into probabilities, the following normRels function
is employed:

normRels ({(C1, r1), . . . , (Cm, rm)}) =
{

(Ci, pi)
∣
∣ i ∈ [1,m], pi = ri/

∑m
j=1 rj

}
.

(9)

It transforms the relevance ri of each class Ci into probability pi ∈ [0, 1], com-
puted as a ratio between the class relevance and the sum of relevances of all the
classes. Such normalization additionally ensures that the sum of probabilities of
all the classes is equal to 1. The classifier returning such probabilities of classes
is denoted as weighted-distance classifier (classifykNN) and defined as:

classifykNN
(
MQ,MTR, k

)
= normRels

(
compRels

(
MQ,MTR, k

))
. (10)

4.2 Training-Class-Sizes kNN Classifier

The disadvantage of the previous weighted-distance classifier is that the com-
puted class probabilities can be influenced by different sizes of categories, in
terms of the number of training samples. For example, assume that the query
MQ should be assigned to the class C1 and that the classes C1 and C2 contain 1
and 100 training samples, respectively. Then by considering k = 15, the 15 near-
est neighbors to MQ are retrieved. Even if the most similar neighbor belongs to
the correct class C1, the class C2 is evaluated as the most probable because next
14 neighbors belonging to C2 overweight just one sample. This can arise when
the sizes of training classes are not balanced.

In order to avoid such situation, we compute for each class the ratio between
the number of its samples being among the k-nearest neighbors and the number
of the available training samples of that class. The function updRels updates
the originally-computed relevances ri by the square root of such ratios in order
to calculate new relevances r′

i as:

updRels
(
MQ,MTR, k

)
=

{
(Ci, r

′
i)

∣
∣
∣ (Ci, ri) ∈ compRels

(
MQ,MTR, k

)
,

r′
i = ri ·

√
|kNN(MQ,MTR, k, Ci)|

|{M ∈ MTR : getClass(M) = Ci}|
}
.

(11)
The classifier considering the sizes of classes is denoted as training-class-sizes

classifier (classifykNN TCS) and formally defined as:

classifykNN TCS
(
MQ,MTR, k

)
= normRels

(
updRels

(
MQ,MTR, k

))
. (12)

4.3 Evaluation of Classification Accuracy

Both the proposed kNN classifiers (classifykNN and classifykNN TCS) compute
the probabilities of classes of being the correct match. To evaluate the classifi-
cation scenario, we consider the class of the highest probability. Figure 1a illus-
trates the differences between the classifiers depending on an increasing value of
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(b) kNN_TCS multi-label classification

Best 2 classes
Best 3 classes
Best 4 classes

Fig. 1. Accuracy of kNN classification based on a varying value of k: (a) Accuracy
of classifykNN and classifykNN TCS classifiers. (b) Accuracy of the classifykNN TCS

classifier when the correct match is among the two/three/four highest-probable classes.

k. As expected, the differences are relatively small due to a quite balanced sizes
of training classes. In particular, the differences are negligible up to the value
k = 15, which is the number approaching the average number of class samples.
With the value k > 15, the sizes of training classes play a more important role,
which leads to a slightly better accuracy of the classifykNN TCS classifier.

Both classifiers reach the highest accuracy when k = 1 and with an increasing
value, their accuracy decreases. Even the results do not outperform the baseline
1NN classifier (the accuracy of 87.84%), the probabilities of individual classes
bring new possibilities for enhancements. Based on these kNN classifiers, the
confusion-based kNN classifier is proposed in next section.

5 Confusion-Based Classifier

In case there is no clear decision on what class is a query motion, the kNN
classifiers provide more classes ranked by their probabilities of being the correct
match. If we tolerate that the correct match is among the two top ranked classes
(instead of considering only the highest-probable class), the classification accu-
racy can significantly increase. Figure 1b illustrates the kNN TCS classification
accuracies when the correct match is included in the two/three/four top ranked
classes. We can see that for k = 15, the achieved accuracy is higher than 95%,
even when only the two top ranked classes are considered.

To significantly improve the accuracy from the baseline value of 87.84% up
to 95%, we would need a magic stick choosing the correct class from the two top
ranked classes obtained by the 15NN TCS classifier. The idea of approximating
the magic stick is to re-rank the k-nearest neighbors based on different similarity
measures which can better separate the two top ranked classes, than the original
measure presented in Sect. 2. Such suitable measures are automatically selected
for each pair of classes based on confusion matrices learned from the training
data. The class of the neighbor with the smallest re-ranked distance is finally
considered as the classification result.
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5.1 Training Phase: Learning Confusion Matrices

To increase the classification accuracy, additional distance measures can be pro-
vided. We consider the set D of additional descriptors {D1, . . . , Dd} to rep-
resent each motion M by additional feature vectors FD1

M , . . . , FDd

M . For the i-
th descriptor Di (i ∈ [1, d]), the similarity of feature vectors FDi

M1
and FDi

M2
of

motions M1 and M2 is calculated using a predefined distance measure, denoted
as compDistDi .

Within the training phase, the confusion matrix cmDi is calculated for each
of the measures. Each matrix has the size of m × m elements, where m is the
number of training classes. The element cmDi [Cx, Cy] ∈ [0, 1] of the matrix
expresses how much the class Cx is confusable with the class Cy (x, y ∈ [1,m]),
with respect to the distance measure compDistDi . The value of 0 means that
the measure perfectly separates the training motions of both classes and with an
increasing value, separability decreases. We compute such value by evaluating
the average 1NN classification accuracy over all training motions categorized in
both classes. Formally, we compute the value as:

cmDi [Cx, Cy ] =

∣
∣
{
M ∈ MCx

∣
∣ getClass(M) �= classify1NN(M,MCxy/{M})}∣

∣

|MCx | ,

MCx =
{

M ∈ MTR
∣
∣ getClass(M) = Cx

}

,

MCxy =
{

M ∈ MTR
∣
∣ getClass(M) ∈ {Cx, Cy}

}

,

(13)

where MCx denotes the training motions belonging to the class Cx, while MCxy

represents motions of both classes Cx and Cy.
The way of matrix calculation does not guarantee the symmetry, i.e., it may

happen that cmDi [Cx, Cy] �= cmDi [Cy, Cx]. Since this is not convenient for fur-
ther processing, we make the matrix symmetric by considering the maximum
value, which can increase the confusion value of both classes:

cmDi [Cx, Cy] = cmDi [Cy, Cx] = max
{
cmDi [Cx, Cy], cmDi [Cy, Cx]

}
. (14)

5.2 Classification Phase: Analyzing the Nearest Neighbors

Within the classification phase, the k-nearest neighbors are retrieved and clas-
sified by the classifykNN TCS classifier. The correct match is considered to be
among the two top ranked classes. Based on the confusion values of these two
classes, the weights of the additionally provided similarity measures are com-
puted. These weights are used to re-rank the nearest neighbors. The whole pro-
cess is described in the following paragraphs.
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Identifying the Most Ranked Classes. The two top ranked classes C ′ and
C ′′ (C ′, C ′′ ∈ C) are selected from the classifykNN TCS classification result as:

get2MostRankedClasses
(
MQ,MTR, k

)
=

{
C ′, C ′′

∣
∣
∣

(C ′, p′), (C ′′, p′′) ∈ classifykNN TCS(MQ,MTR, k) : p′ ≥ p′′,

∀(Ci, pi) ∈ classifykNN TCS(MQ,MTR, k)/{(C ′, p′)} : p′′ ≥ pi

}
.

(15)

Weighting Similarity Measures. The most suitable similarity measure(s)
for re-ranking should have the lowest (ideally zero) confusion value for the
two top ranked classes C ′ and C ′′ – the lower the value cmDi [C ′, C ′′], the
better separation ability of the Di descriptor. Such lowest confusion value,
denoted as minConf , can be easily obtained by this formula: minConf =
mind

i=1 cm
Di [C ′, C ′′].

The lowest confusion value is used to determine the weight wDi ∈ [0, 1] for
each descriptor Di. Since there can be a high number of provided descriptors, we
select only the best one(s) of the lowest confusion value in order not to suppress
important movement features by aggregating many measures. At the same time,
the best-available descriptor(s) for the query motion needn’t be still optimal and
can have a quite low weight, i.e., the two top ranked classes cannot be simply
separated by any of the additionally provided measures. For these reasons, we
decrease the weight to the power of 3 to more suppress the influence of the
best-available measure(s) having “lower” weights. The descriptor weight wDi is
finally determined as:

wDi =
{

0 cmDi [C ′, C ′′] > minConf,

(1 − minConf)3 cmDi [C ′, C ′′] = minConf.
(16)

If the best-available measure(s) have a “low” weight, the original motion-
image similarity measure is more important. The weight w4K of such original
measure is determined as:

w4K = max
{(

1 − cm4K[C ′, C ′′]
)3

, 1 − (1 − minConf)3
}
. (17)

This value is the maximum between the weight computed based on the confusion
matrix of the original descriptor and the inverse value of the weight of the best-
available additional measure. In other words, the original similarity measure is
preferred if it well separates the two top ranked classes or in cases when a strong
additional descriptor is not available.

Re-ranking and Classifying Neighbors. The calculated weights of the origi-
nal similarity measure and additional measures are used to re-rank the list of the
retrieved neighbors. The re-ranking process is based on weighting and normal-
izing the distances separately for each descriptor and summing such updated
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distances together. Formally, to re-rank the neighbor M with respect to the
query MQ, the following reRank function is applied:

reRank(MQ,M) =w4K · compDist4K(F 4K
MQ , F

4K
M )/md4K[C ′, C ′′]+

d∑

i=1

(
wDi · compDistDi(FDi

MQ , F
Di

M )/mdDi [C ′, C ′′]
)
,
(18)

where mdDi is the matrix of class-pairwise maximum distances. In particular,
the value mdDi [C ′, C ′′] is the maximum of distances computed among all pairs
of training motions belonging to classes C ′ or C ′′, with respect to the distance
measure compDistDi . Such matrices are simply precomputed for the original
motion-image measure (matrix md4K) and each additional measure (matrices
mdDi) in the training phase as:

mdDi [C ′, C ′′] = max
{
compDistD

i

(FDi

M1
, FDi

M2
)

∣
∣ M1 ∈ C ′,M2 ∈ C ′′

}
. (19)

The maximum distances computed separately for each pair of classes more
effectively normalize the distances, rather than considering a global maximum.
The neighbors are than sorted based on their re-ranked distance and the class
of that with the lowest distance is considered as the final classification result.
We call this approach as the confusion-based classifier classifyCONF and define
it formally as:

classifyCONF
(
MQ,MTR, k

)
= getClass

({
M ′ ∈ kNN(MQ,MTR, k)

∣
∣

∀M ∈ kNN(MQ,MTR, k) : reRank
(
MQ,M ′) ≤ reRank

(
MQ,M

) })
.

(20)

Due to the concentration on the first re-ranked neighbor only, the confusion-
based classifier does not support probabilistic classification. However, it would
be possible if the re-ranked list was processed by another kNN classifier.

5.3 Experimental Evaluation

We describe the additional three measures used for re-ranking, evaluate the
accuracy of the confusion-based classifier, and outline the efficiency results.

Description of Additional Similarity Measures. To verify the suitabil-
ity of the confusion-based classifier, we implement the following three simple
descriptors whose features are compared by the Manhattan distance, i.e., L1

metric.

– Joint trajectory length (D1) – the 31D feature vector, where each dimension
corresponds to the total length of the trajectory of the specific joint (out
of 31 joints). The trajectory length is computed by summing the Euclidean
distances between the 3D joint positions in consecutive skeletons.
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Fig. 2. Accuracy between kNN-based and confusion-based classifiers.

– Normalized joint trajectory length (D2) – the 31D feature vector constructed
in the same way as the previous D1 descriptor. The total trajectory lengths
are additionally normalized by the length of the motion sequence, i.e., by the
number of captured skeletons.

– Maximum axis distance (D3) – the 93D feature vector whose dimensions
correspond to the maximum reachable coordinate separately in the x/y/z
axis of each joint. When comparing with the feature of another motion, only
the differences in the 8 most distant dimensions are considered, which implies
that this similarity measure is not symmetric.

While the first two descriptors (D1 and D2) are computed based on the original
motion data, the third descriptor (D3) is extracted from normalized skeleton-
centric view-invariant data, described in Sect. 2.

Classification Accuracy. Figure 2 illustrates the contrast between the accu-
racies of both kNN classifiers (introduced in Sect. 4) and the confusion-based
classifier. The confusion-based classifier increases the accuracy with an increas-
ing value of k up to k = 15 and then the accuracy slightly decreases. When
k = 15, the classification reaches the 89.09% accuracy. When compared to the
baseline 1NN accuracy of 87.84%, the error in classification is decreased by 10%.

Efficiency of Learning and Classification. To pre-compute a confusion
matrix cmDi (m × m) for a given descriptor Di, there is a need to evaluate m2

confusion values, where m denotes the number of provided classes. Assuming
that all the classes contain approximately the same number of |MTR|/m train-
ing motion samples, a single matrix cell requires ((|MTR| − 1)/m) · |MTR|/m
evaluations of the Di distance measure. In total, the following number of:

m2 ·
( |MTR| − 1

m
· |MTR|

m

)
∼= |MTR|2

compDistDi distance computations is performed in the training phase. Since in
our case |MTR| = 1,164, we perform about 1.4 M distance computations for the
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original as well as each of the three additional descriptors. The total time needed
to learn all the matrices takes only about 10 s. For example, the clearly most
expensive compDist4K measure applied to the 4,096D features needs roughly 7 s
on commodity hardware (i7 960 at 3.2 GHz).

The mdDi matrix keeping the maximum class-pairwise distances can be com-
puted during the process of calculation of the confusion matrix.

Also the classification time is not much influenced by additional descriptors
that need roughly 1 ms in total for re-ranking. The most expensive operation is
the searching for k-nearest neighbors, which requires 6 ms. However, this time
can be further decreased by indexing the original features by any metric-based
structure [17] to scale to large databases of training samples. Sometimes, the
feature extraction process is included in classification time, mainly when queries
cannot be preprocessed in advance. In our case, the extraction of all the features,
also including the original 4,096D feature, takes about 30 ms per a query motion.

6 Comparison with the State-of-the-Art Approaches

We compare the accuracy of the best-performing confusion-based classifier with
the most recent approaches [4,6,7,13,14] that evaluate the same 2-fold cross
validation procedure on the challenging HDM05 ground truth with 122 or 130
categories. Table 1 shows that we beat not only the 1NN classifiers based on
the motion-image concept [13,14] but even the most recent purposely-trained
classifiers [4,6,7] based on neural networks. From the recognition-error point of
view, we decrease the error by 54%, 33%, 15%, 10%, and 19% with respect to
the methods in [4,6,7,13,14], respectively.

Table 1. Comparison with the state-of-the-art methods using the 2-fold cross valida-
tion (i.e., using 50% of training data).

Method Accuracy (%)

HDM05-122 HDM05-130

Huang et al. [4] N/A 75.78

Laraba et al. [6] N/A 83.33

Sedmidubsky et al. [14] 87.24 N/A

Sedmidubsky et al. [13] 87.84 N/A

Li et al. [7] N/A 86.17

Our approach 89.09 88.78

Although there are other well-performing classifiers, such as [1,3,9,12,15],
they do not evaluate the recognition accuracy on the challenging set of 122
or 130 HDM05 categories. One of the reasons is probably a limited amount of
training data, with less than twenty samples per a single class. Moreover, such
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approaches pay a little attention to efficiency and applicability issues. Specifi-
cally, our confusion-based classifier has the following advantages when compared
to the state-of-the-art classifiers.

– Dynamic measure selection – additional similarity measures are dynamically
and automatically weighted to select the best possible one(s) for re-ranking,
with respect to a query motion being classified. It is much more convenient
than training a single descriptor that needs to recognize any class, as used in
existing works.

– Robustness – if there are some misclassified training samples, they can degrade
the classification accuracy. In our approach, the class of such samples can
simply be repaired causing the immediate impact on classification, without
the necessity of any long-term retraining like in [9,12].

– Limited amount of training data – the original descriptor does not need large
amounts of training data due to the utilization of pre-trained neural net-
work on a different image domain. Additional measures can also separate
well classes having a limited number of training samples. In particular, we
use 50% of the dataset for training in comparison with other approaches
utilizing, e.g., 80% or 90% [14] of data for training.

– Efficiency and indexability – the comparison of the original 4,096D feature
vectors by the Euclidean distance enables indexing such features by any
metric-based structure [17] to efficiently evaluate k-nearest neighbor queries,
even in very large databases of training samples.

7 Conclusions

The state-of-the-art similarity measure for motion data [13,14], based on 4,096D
deep features extracted using a convolutional neural network, achieves a high
accuracy even when used with the baseline 1NN classifier. In this paper, we
employ this original measure to search for the k-nearest training samples with
respect to an unlabeled query. The retrieved neighbors are analyzed by the pro-
posed kNN TCS classifier to determine the two top probable classes for the
processed query. To select the correct class, we employ additional simple similar-
ity measures. Based on class-pairwise confusion matrices automatically learned
for each similarity measure, the correct class is selected in 94% of cases. This
helps decrease the error in classification by 10% on the challenging HDM05-122
dataset, when compared to the baseline 1NN classifier.

The proposed approach, despite being very effective in classification, has
several other advantages in comparison with existing classifiers. In particular,
the training sample set can be (1) small (less than 10 samples per class) to
reach a high classification accuracy or (2) large to search the k-nearest neigh-
bors efficiently due to indexability of the original similarity measure, and (3)
dynamic (even in sense of adding samples of new classes) with the immediate
impact to classification, without any time-consuming retraining process. More-
over, the additional similarity measures are dynamically utilized in classification
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only when the original measure does not provide clear results. The provided addi-
tional measures are automatically integrated into the confusion-based classifier,
without any need of supervision.
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3. Bütepage, J., Black, M.J., Kragic, D., Kjellström, H.: Deep representation learning
for human motion prediction and classification. CoRR abs/1702.07486 (2017)

4. Huang, Z., Wan, C., Probst, T., Gool, L.V.: Deep learning on lie groups for
skeleton-based action recognition. CoRR abs/1612.05877 (2016)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

6. Laraba, S., Brahimi, M., Tilmanne, J., Dutoit, T.: 3D skeleton-based action recog-
nition by representing motion capture sequences as 2D-RGB images. Comput.
Anim. Virtual Worlds 28(3–4), e1782 (2017)

7. Li, C., Cui, Z., Zheng, W., Xu, C., Yang, J.: Spatio-temporal graph convolution
for skeleton based action recognition. In: 32nd Conference on Artificial Intelligence
(AAAI 2018). AAAI Press (2018)

8. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates
for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46487-9 50

9. Liu, J., Wang, G., Duan, L., Hu, P., Kot, A.C.: Skeleton based human action recog-
nition with global context-aware attention LSTM networks. IEEE Trans. Image
Process. 27(4), 1586–1599 (2018)

10. Lo Presti, L., La Cascia, M.: 3D skeleton-based human action classification. Pattern
Recognit. 53(C), 130–147 (2016)
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