
ScaleSCAN: Scalable Density-Based
Graph Clustering

Hiroaki Shiokawa1,2(B), Tomokatsu Takahashi3, and Hiroyuki Kitagawa1,2

1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
{shiokawa,kitagawa}@cs.tsukuba.ac.jp

2 Center for Artificial Intelligence Research,
University of Tsukuba, Tsukuba, Japan

3 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

shihakata@kde.cs.tsukuba.ac.jp

Abstract. How can we efficiently find clusters (a.k.a. communities)
included in a graph with millions or even billions of edges? Density-
based graph clustering SCAN is one of the fundamental graph clustering
algorithms that can find densely connected nodes as clusters. Although
SCAN is used in many applications due to its effectiveness, it is compu-
tationally expensive to apply SCAN to large-scale graphs since SCAN
needs to compute all nodes and edges. In this paper, we propose a novel
density-based graph clustering algorithm named ScaleSCAN for tackling
this problem on a multicore CPU. Towards the problem, ScaleSCAN inte-
grates efficient node pruning methods and parallel computation schemes
on the multicore CPU for avoiding the exhaustive nodes and edges com-
putations. As a result, ScaleSCAN detects exactly same clusters as those
of SCAN with much shorter computation time. Extensive experiments on
both real-world and synthetic graphs demonstrate that the performance
superiority of ScaleSCAN over the state-of-the-art methods.

Keywords: Graph mining · Density-based clustering
Manycore processor

1 Introduction

How can we efficiently find clusters (a.k.a. communities) included in a graph
with millions or even billions of edges? Graph is a fundamental data structure
that has helped us to understand complex systems and schema-less data in
the real-world [1,7,13]. One important aspect of graphs is cluster structures
where nodes in the same cluster have denser edge-connections than nodes in the
different clusters. One of the most successful clustering method is density-based
clustering algorithm, named SCAN, proposed by Xu et al. [20]. The main concept
of SCAN is that densely connected nodes should be in the same cluster; SCAN
excludes nodes with sparse connections from clusters, and SCAN classifies them

c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11029, pp. 18–34, 2018.
https://doi.org/10.1007/978-3-319-98809-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98809-2_2&domain=pdf

ScaleSCAN: Scalable Density-Based Graph Clustering 19

as either hubs or outliers. In contrast to most traditional clustering algorithms
such as graph partitioning [19], spectral algorithm [14], and modularity-based
method [15] that only study the problem of the cluster detection and so ignore
hubs and outliers, SCAN successfully finds not only clusters but also hubs and
outliers. As a result, SCAN has been used in many applications [5,12].

Although SCAN is effective in finding highly accurate results, SCAN has
a serious weakness; it requires high computational costs for large-scale graphs.
This is because SCAN has to find all clusters prior to identifying hubs and
outliers; it finds densely connected subgraphs as clusters. It then classifies the
remaining non-clustered nodes into hubs or outliers. This clustering procedure
entails exhaustive density evaluations for all adjacent node pairs included in the
large-scale graphs. Furthermore, in order to evaluate the density, SCAN employs
a criteria, called structural similarity, that incurs a set intersection for each edge.
Thus, SCAN requires O(m1.5) in the worst case [3].

Existing Approaches and Challenges: To address the expensive time-
complexity of SCAN, many efforts have been made for the recent few years,
especially in the database and data mining communities. One of the major
approaches is nodes/edge pruning: SCAN++ [16] and pSCAN [3] are the most
representative methods. Although these algorithms certainly succeeded in reduc-
ing the time complexity of SCAN for the real-world graphs, the computation
time for large-scale graphs (i.e. graphs with more than 100 million edges) is still
large. Thus, it is a challenging task to improving the computational efficiency for
the structural graph clustering. Especially, most of existing approaches perform
as a single-threaded algorithms; they do not fully exploit parallel computation
architectures but this is time-consuming.

Our Approaches and Contributions: We focus on the problem of speeding
up SCAN for large-scale graphs. We present a novel parallel-computing algo-
rithm, ScaleSCAN, that is designed to efficiently perform on shared memory
architectures with the multicore CPU. The modern multicore CPU equips a lot of
physical cores on a chip, and each core highlights vector processing units (VPUs)
for powerful data-parallel processing, e.g., SIMD instructions. Thus, ScaleSCAN
employs thread-parallel algorithm and data-parallel algorithm in order to fully
exploit the performance of the multicore CPU. In addition, we also integrates
existing node pruning techniques [3] and our parallel algorithm. By pruning
unnecessary nodes in the parallel computation manner, we attempt to achieve
further improvement of the clustering speed. As a result, ScaleSCAN has the
following attractive characteristics:

1. Efficient: Compared with the existing approaches [3,16,18], ScaleSCAN
achieves high speed clustering by using the above approaches for density com-
putations; ScaleSCAN can avoid computing densities for the whole graph.

2. Scalable: ScaleSCAN shows near-linear speeding up as increasing of the num-
ber of threads. ScaleSCAN is also scalable to the dataset size.

3. Exact: While our approach achieves efficient and scalable clustering, it does
not to sacrifice the clustering accuracy; it returns exact clusters as SCAN.

20 H. Shiokawa et al.

Our extensive experiments showed that ScaleSCAN runs ×500 faster than SCAN
without sacrificing the clustering quality. Also, ScaleSCAN achieved from ×17.3
to ×90.2 clustering speed improvements compared with the state-of-the-art algo-
rithms [3,18]. In specific, ScaleSCAN can compute graphs, which have more than
1.4 billion edges, within 6.4 s while SCAN did not finish even after 24 h. Even
though SCAN is effective in enhancing application quality, it has been difficult to
apply SCAN to large-scale graphs due to its performance limitations. However,
by providing our scalable approach that suits the identification of clusters, hubs
and outliers, ScaleSCAN will help to improve the effectiveness of a wider range
of applications.

Organization: The rest of this paper is organized as follows: Sect. 2 describes
a brief background of this work. Section 3 introduces our proposed approach
ScaleSCAN, and we report the experimental results in Sect. 4. In Sect. 5, we
briefly review the related work, and we conclude this paper in Sect. 6.

2 Preliminary

We first briefly review the baseline algorithm SCAN [20]. Then, we introduce
the data-parallel computation scheme that we used in our proposal.

2.1 The Density-Based Graph Clustering: SCAN

The density-based graph clustering SCAN [20] is one of the most popular graph
clustering method; it successfully detects not only clusters but also hubs and
outliers unlike traditional algorithms. Given an unweighted and undirected graph
G = (V,E), where V is the set of nodes and E is the set of edges, SCAN detects
not only the set of clusters C but also the set of hubs H and outliers O at the
same time. We denote the number of nodes and edges in G by n = |V | and
m = |E|, respectively.

SCAN extracts clusters as the sets of nodes that have dense internal connec-
tions; it identifies the other non-clustered nodes as hubs or outliers. Thus, prior
to identifying hubs and outliers, SCAN finds all clusters in a given graph G.
SCAN assigns two adjacent nodes into a same cluster according to how strong
the two nodes are densely connected with each other through their shared neigh-
borhoods. Let Nu be a set of neighbors of node u, so called structural neighbor-
hood defined in Definition 1, SCAN evaluates structural similarity between two
adjacent nodes u and v defined as follows:

Definition 1 (Structural neighborhood). The structural neighborhood of a
node u, denoted by Nu, is defined as Nu = {v ∈ V |(u, v) ∈ E} ∪ {u}.
Definition 2 (Structural similarity). The structural similarity σ(u, v)
between node u and v is defined as σ(u, v) = |Nu ∩Nv|/√

dudv, where du = |Nu|
and dv = |Nv|.

ScaleSCAN: Scalable Density-Based Graph Clustering 21

Algorithm 1. Baseline algorithm: SCAN(G, ε, μ) [20]
1: for each edge (u, v) ∈ E do
2: Compute σ(u, v) by Definition 2;

3: C = ∅;
4: for each unvisited node u ∈ V do
5: C = {u};
6: for each unvisited node v ∈ C do
7: if |N ε

v | ≥ μ then
8: C = C ∪ N ε

v ;
9: Mark v as visited;

10: if |C| ≥ 2 then
11: C = C ∪ C;

We denote nodes u and v are similar if σ(u, v) ≥ ε; otherwise, the nodes are
dissimilar.

SCAN detects a special class of node, called core node, that plays as the seed
of a cluster, and SCAN then expands the cluster from the core node. Given a
similarity threshold ε ∈ R and a minimum size of a cluster μ ∈ N, core node
is a node that has μ neighbors with a structural similarity that exceeds the
threshold ε.

Definition 3 (Core node). Given a similarity threshold 0 ≤ ε ≤ 1 and an
integer μ ≥ 2, a node u is a core node iff |N ε

u| ≥ μ. Note that N ε
u, so called

ε-neighborhood of u, is defined as N ε
u = {v ∈ Nu|σ(u, v) ≥ ε}.

When node u is a core node, SCAN assigns all nodes in N ε
u to the same

cluster as node u, and it expands the cluster by checking whether each node in
the cluster is a core node or not.

Definition 4 (Cluster). Let a node u be a core node that belongs to a cluster
C ∈ C, the cluster C is defined as C = {w ∈ N ε

v |v ∈ C}, where C is initially set
to C = {u}.

Finally, SCAN classifies non-clustered nodes (i.e. nodes that belong to no
clusters) as hubs or outliers. If a node u is not in any clusters and its neighbors
belong to two or more clusters, SCAN regards node u as a hub, and it is an
outlier otherwise. Given the set of clusters, it is straightforward to obtain hubs
and outliers in O(n + m) time. Hereafter, we thus focus on only extracting the
set of clusters in G.

Algorithm 1 overviews the pseudo code of SCAN. SCAN first evaluates struc-
tural similarities for all edges in G, and then constructs clusters by traversing
all nodes. As proven in [3], Algorithm 1 is essentially based on the problem of
triangle enumeration on G since each node w ∈ {Nu ∩ Nv}\{u, v} forms a tri-
angle with u and v when we compute σ(u, v) = |Nu ∩ Nv|/√

dudv. This triangle
enumeration basically involves O(α(G) · m), where α(G) is the arboricity of G
such that α(G) ≤ √

m. Thus, the time complexity of SCAN is O(m1.5) and is
worst-case optimal [3].

22 H. Shiokawa et al.

2.2 Data-Parallel Instructions

In our proposed method, we employ the data-parallel computation schemes [17]
for improving clustering speed. Thus, we briefly introduce the data-parallel
instructions.

Data-parallel instructions are the fundamental instructions included in mod-
ern CPUs (e.g., SSE, AVX, AVX2 in x86 architecture). By using the data-parallel
instructions, we can perform the same operation on multiple data elements simul-
taneously. CPU usually loads only one element into for each CPU register in
non-data-parallel computation scheme, whereas the data-parallel instructions
enables to load multiple elements for each CPU register, and simultaneously
perform an operation on the loaded elements.

The maximum number of elements that can be loaded on a register is deter-
mined by the size of the register and each element. For example, if a CPU
supports 126-bit wide registers, we can load four 32-bit integers for each reg-
ister. Also, CPUs with AVX2 and AVX-512 enable to perform eight and 16
integers simultaneously since the CPUs have 256-bit and 512-bit wide registers,
respectively.

3 Proposed Method: ScaleSCAN

Our goal is to find exactly the same clustering results as those of SCAN from
large-scale graphs within short runtimes. In this section, we present details of
our proposal, ScaleSCAN. We first overview the ideas underlying ScaleSCAN
and then give a full description of our proposed approaches.

3.1 Overview

The basic idea underlying ScaleSCAN is to reduce the computational cost for
the structural similarity computations from algorithmic and parallel processing
perspectives. Specifically, we first integrate the node pruning algorithms [3] into
massively parallel computation scheme on the modern multicore CPU. We then
propose the data-parallel algorithm for each structural similarity computation
for further improving the clustering efficiency. By combining the node pruning
and parallel computing nature, we design ScaleSCAN so as to compute only
necessary pairs of nodes.

Algorithm 2 shows the pseudocode of ScaleSCAN. For efficiently detecting
nodes that can be pruned, we maintain two integer values sd (similar-degree) [3]
and ed (effective-degree) [3]. Formally, sd and ed are defined as follows:

Definition 5 (Similar-degree). The similar-degree of node u, denoted sd[u],
is the number of neighbor nodes in Nu that have been determined to be structure-
similar to node u, i.e., σ(u, v) ≥ ε for v ∈ Nu.

Definition 6 (Effective-degree). The effective-degree of node u, denoted
ed[u], is du minus the number of neighbor nodes in N [u] that have been deter-
mined to be not structure-similar to node u, i.e., σ(u, v) < ε for v ∈ Nu.

ScaleSCAN: Scalable Density-Based Graph Clustering 23

Algorithm 2. Proposed algorithm: ScaleSCAN(G, ε, μ)

� Step 0: Initialization
1: for each node u ∈ V do in thread-parallel
2: sd[u] ← 0, and ed[u] ← du;

� Step 1: Pre-pruning
3: for each edge (u, v) ∈ E do in thread-parallel
4: Get L[(u, v)] by Definition 7;
5: if L[(u, v)] �= unknown then UpdateSdEd(L[(u, v)]);

6: Eunknown ← {(u, v) ∈ E|L[(u, v)] = unknown}
� Step 2: Core detection
7: for each (u, v) ∈ Eunknown do in thread-parallel
8: if sd[u] < μ and ed[u] ≥ μ then
9: L[(u, v)] ←PStructuralSimilarity((u, v), ε);

10: UpdateSdEd(L[(u, v)]);

11: Ecore ← {(u, v) ∈ E|sd[u] ≥ μ and sd[v] ≥ μ};

� Step 3: Cluster construction
12: for each (u, v) ∈ Ecore do in thread-parallel
13: if find(u) �= find(v) then
14: if L[(u, v)] = unknown then L[(u, v)] ←PStructuralSimilarity((u, v), ε);

15: if L[(u, v)] = similar then cas union(u, v);

16: Eborder ← {(u, v) ∈ E\Ecore|sd[u] ≥ μ or sd[v] ≥ μ};
17: for each (u, v) ∈ Eborder do in thread-parallel
18: if find(u) �= find(v) then
19: if L[(u, v)] = unknown then L[(u, v)] ←PStructuralSimilarity((u, v), ε);

20: if L[(u, v)] = similar then cas union(u, v);

In the beginning of ScaleSCAN shown in Algorithm2 (Lines 1–2), ScaleSCAN
first initializes sd and ed for all nodes. By comparing the two values sd and
ed, we determine whether a node should be prune or not in the thread-parallel
manner. We describe the details of the node pruning techniques based on sd and
ed in Sect. 3.3.

After the initialization, the algorithm consists of three main thread-parallel
steps: (Step 1) pre-pruning, (Step 2) core detection, and (Step 3) cluster con-
struction. In the pre-pruning, ScaleSCAN first reduces the size of given graph
G in the thread-parallel manner; it prunes edges from E what are obviously
either similar or dissimilar without computing the structural similarity. Then,
ScaleSCAN extracts all core nodes in the core detection step that is the most
time-consuming part in the density-based graph clustering. In order to reduce
the computation time for the core detection, ScaleSCAN combines the nodes
pruning techniques proposed by Chang et al. [3] and the thread-parallelization
using the multicore processor. In addition, for further improving the efficiency
of the core detection step, we also propose a novel structural similarity compu-
tation technique, named PStructuralSimilarity, by using the data-parallel instruc-
tions. Finally, in the cluster construction step, ScaleSCAN finds clusters based on

24 H. Shiokawa et al.

Algorithm 3. UpdateSdEd(L[(u, v)])
1: if L[(u, v)] = similar then
2: sd[u] ← sd[u] + 1 with atomic operation;
3: sd[v] ← sd[v] + 1 with atomic operation;
4: else if L[(u, v)] = dissimilar then
5: ed[u] ← ed[u] − 1 with atomic operation;
6: ed[v] ← ed[v] − 1 with atomic operation;

Definition 4 by employing union-find tree shown in Sect. 3.4. In the following sec-
tions, we describe the details of each thread-parallel step.

3.2 Pre-pruning

In this step, ScaleSCAN reduces the size of graph G by removing (u, v) ∈ E
what can be either σ(u, v) ≥ ε or σ(u, v) < ε without computing the structural
similarity defined in Definition 2. Specifically, let (u, v) ∈ E, we always have
σ(u, v) ≥ ε when 2√

dudv
≥ ε since |Nu ∩ Nv| ≥ 2 from Definition 1. Meanwhile,

we also have σ(u, v) < ε when du < ε2dv (or dv < ε2du), because if du < ε2dv

then σ(u, v) < du√
dudv

< ε. Clearly, we can check both 2√
dudv

≥ ε and du < ε2dv

(or dv < ε2du) in O(1). Thus, we can efficiently remove such edges from a given
graph.

Based on the above discussion, we maintain edge similarity label L[(u, v)] for
each edge (u, v) ∈ E; an edge (u, v) takes one of the three edge similarity labels,
i.e., similar, dissimilar, and unknown.

Definition 7 (Edge similarity label). Let (u, v) ∈ E, ScaleSCAN assigns
the following edge similarity label L[(u, v)] for (u, v):

L[(u, v)] =

⎧
⎪⎨

⎪⎩

similar (if 2√
dudv

≥ ε)

dissimilar (if du < ε2dv or dv < ε2du)
unknown (Otherwise)

(1)

If an edge (u, v) is determined to have σ(u, v) ≥ ε or σ(u, v) < ε, we assign
L[(u, v)] as similar or dissimilar, respectively; otherwise, we label the edge as
unknown. If L[(u, v)] = unknown, we can not verify the edge becomes σ(u, v) ≥ ε
or not without computing its structural similarity. Thus, we compute the struc-
tural similarity only for Eunknown = {(u, v) ∈ E|L[(u, v)] = unknown} in the
subsequent procedure.

The pseudocode of the pre-pruning step is shown in Algorithm2 (Lines 3–6).
In this step, we assign each edge to each thread on the multicore CPU. For each
edge (u, v) (Line 3), we first apply Definition 7, and obtain the edge similarity
label L[(u, v)] (Line 4). If L[(u, v)] �= unknown, we invoke UpdateSdEd(L[(u, v)])
(Line 5) for updating sd and ed values according to L[(u, v)] (Lines 1–6 in Algo-
rithm3). Note that sd and ed are shared by all threads, and thus UpdateS-
dEd(L[(u, v)]) has a possibility to cause write conflicts. Hence, to avoid the write

ScaleSCAN: Scalable Density-Based Graph Clustering 25

conflicts, we use atomic operation (e.g., omp atomic in OpenMP) for updating
sd and ed values (Lines 2–3 and Lines 5–6 in Algorithm3). After the pre-pruning
procedure, we extract a set of edges Eunknown whose edge similarity label are
unknown (Line 6).

3.3 Core Detection

As we described in Sect. 2, core detection step is the most time-consuming part
since the original algorithm SCAN needs to compute all edges in E. Thus, to
speed up the core detection step, we propose a thread-parallel algorithm with
the node pruning and data-parallel similarity computation method PStructural-
Similarity.

(1) Thread-Parallel Node Pruning: The pseudocode of the thread-parallel
node pruning is shown in Algorithm2 (Lines 7–12). Algorithm2 (Lines 7–12)
detects all core nodes included in G by using the node pruning technique in
the thread-parallel manner. As shown in (Line 7) in Algorithm2, we first assign
each edge in Eunknown to each thread. In the threads, we compute the structural
similarity only for the nodes such that (1) they have not been core or non-
core, and (2) they have a possibility to be a core node. Clearly, if sd[u] ≥ μ
then node u satisfies the core node condition shown in Definition 3, and also if
ed[u] < μ then node u never satisfies the core node condition; otherwise, we
need to compute structural similarities between node u and its neighbor nodes
to determine whether node u is core node or not. Hence, once we determine
node u is either core or non-core, we stop to compute structural similarities
between node u and its neighbor nodes (Line 6). Meanwhile, in the case of
sd[u] < μ and ed[u] ≥ μ (Line 6), we compute structural similarities for node u
by PStructuralSimilarity (Line 7), and we finally update sd and ed by UpdateSdEd
according to L[(u, v)] (Line 8).

(2) Data-Parallel Similarity Computation: In the structural similarity
computation, we propose a novel algorithm PStructuralSimilarity for further
improving the efficiency of the core detection step. As we described in Sect. 2.2,
each physical core on the modern multicore CPU equips the data-parallel instruc-
tions [17] (e.g., SSE, AVX, AVX2 in x86 architecture); data-parallel instruc-
tions enable to compute multiple data elements simultaneously by using a single
instruction. Our proposal, PStructuralSimilarity, reduces the computation time
consumed in the structural similarity computations by using such data-parallel
instructions.

Algorithm 4 shows the pseudocode of PStructuralSimilarity. For ease of expla-
nation, we hereafter suppose that 256-bit wide registers are available, and we
use 32-bit integer for representing each node in Algorithm4. That is, we can
pack eight nodes into each register. In addition, we suppose that nodes in Nu

are stored in ascending order, and we denote Nu[i] to specify i-th element in
Nu. Given an edge (u, v) and the parameter ε, Algorithm 4 returns whether

26 H. Shiokawa et al.

L[(u, v)] = similar or dissimilar based on the structural similarity σ(u, v). In
the structural similarity computations, the set intersection (i.e., |Nu ∩ Nv|) is
obviously the most time-consuming part since it requires O(min{du, dv}) for
obtaining σ(u, v) = |Nu∩Nv|√

dudv
while the other part (i.e.,

√
dudv) can be done in

O(1). Hence, in PStructuralSimilarity, we employ the data-parallel instructions to
improve the set intersection efficiency.

Algorithm 4 (Lines 6–11) shows our data-parallel set intersection algorithm
that is consisted of the following three phases:

Phase 1. We load α and β nodes from Nu and Nv as blocks, respectively, and
pack the blocks into the 256-bit wide registers, regu and regv (Lines 7–8). Since
we need to compare all possible α×β pairs of nodes in the data-parallel manner,
we should select α and β so that α × β = 8. That is, we have only two choices:
α = 8 and β = 1, or α = 4 and β = 2. Thus, we set α = 8 and β = 1 if
du and dv are significantly different, otherwise α = 4 and β = 2 (Lines 2–5).
dp load permute permute nodes in the blocks in the order of permutation arrays
πα and πβ .

Example. If we have sets of loaded nodes {u1, u2, u3, u4} and a permutation
array πα = [4, 3, 2, 1, 4, 3, 2, 1], dp load permute(πα, {u1, u2, u3, u4}) loads [u4,
u3, u2, u1, u4, u3, u2, u1] into regu. Also, dp load permute(πβ , {v1, v2}) loads
[v2, v2, v2, v2, v1, v1, v1, v1] into regv for {v1, v2} and πβ = [2, 2, 2, 2, 1, 1, 1, 1].

Phase 2. We compare the α × β pairs of nodes by dp compare in the data-
parallel manner. dp compare compares each pair of nodes in the corresponding
position of regu and regv. If each pair of nodes has same node it then outputs
1, otherwise 0.

Example. Let regu = [u4, u3, u2, u1, u4, u3, u2, u1] and regv = [v2, v2, v2, v2,
v1, v1, v1, v1], where u1 = v1 and u2 = v2, dp compare outputs [0, 0, 1, 0, 0, 0, 0, 1].

Phase 3. We update the blocks (Lines 10–11) and repeat these phases until we
can not load any blocks from Nu or Nv (Line 6).

After the termination, we count the number of common nodes 	 by (Line
12) in Algorithm 4. Finally, we obtain L[(u, v)] based on 	 ≥ ε

√
dudv or not

(Lines 13–16).

3.4 Cluster Construction

ScaleSCAN finally constructs clusters in the thread-parallel manner. For effi-
ciently maintaining clusters, we use union-find tree [4], which can efficiently
keep set of nodes partitioned into disjoint clusters. The union-find tree supports
two fundamental operations: find(u) and union(u, v). find(u) is an operation to
check which cluster does node u belong to, and union(u, v) merges two clusters,
which are node u and v belong to. It is known that each operation can be done in
Ω(A(n)) where A is Ackermann function, thus we can check and merge clusters
efficiently.

ScaleSCAN: Scalable Density-Based Graph Clustering 27

Algorithm 4. PStructuralSimilarity((u, v), ε)
� Step 0: Initialization
1: � ← 0, pu ← 0, pv ← 0, and regadd ← dp load([0, 0, 0, 0, 0, 0, 0, 0]);
2: if du > 2dv (or dv > 2du) then
3: α = 8, β = 1, πα ← [1, 2, 3, 4, 5, 6, 7, 8], and πβ ← [1, 1, 1, 1, 1, 1, 1, 1];
4: else
5: α = 4, β = 2, πα ← [4, 3, 2, 1, 4, 3, 2, 1], and πβ ← [1, 1, 1, 1, 2, 2, 2, 2];

� Step 1: Data-parallel set intersection
6: while pu < du and pv < dv do
7: regu ← dp load permute(πα, [Nu[pu], · · · , Nu[pu + α − 1]]);
8: regv ← dp load permute(πβ , [Nu[pv], · · · , Nu[pv + β − 1]]);
9: regadd ← dp add(regadd, dp compare(regu, regv));

10: if Nu[pu + α − 1] ≥ Nv[pv + β − 1] then pv ← pv + β;

11: if Nu[pu + α − 1] ≤ Nv[pv + β − 1] then pu ← pu + α;

� Step 2: Edge similarity label assignment
12: � ← � + dp horizontal add(regadd);
13: if � < ε

√
dudv then � ← � + |{Nu[pu], . . . , Nu[du]} ∩ {Nv[pv], · · · , Nv[dv]}|;

14: if � ≥ ε
√

dudv then L[(u, v)] = similar;
15: else L[(u, v)] = dissimilar;

16: return L[(u, v)];

Algorithm 2 (Lines 12–20) shows our parallel cluster construction. We first
constructs clusters by using only core nodes (Lines 12–15), and then we
attach non-core nodes to the clusters (Lines 16–20). Recall that this cluster-
ing process is done in the thread-parallel manner. For avoiding conflicts among
multiple threads, we thus propose a multi-threading aware union operation,
cas union(u, v). can union employs compare-and-swap (CAS) atomic operation [8]
before merging two clusters.

4 Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of ScaleSCAN.
We designed our experiments to demonstrate that:

– Efficient and Scalable: ScaleSCAN outperforms the state-of-the-art algo-
rithms pSCAN and SCAN-XP by over one order of magnitude for all datasets.
Also, SacaleSCAN is scalable to the number of threads and edges (Sect. 4.2).

– Effectiveness: The key techniques of ScaleSCAN, parallel node-pruning and
data-parallel similarity computation, are effective for improving the clustering
speed on large-scale graphs (Sect. 4.3).

– Exactness: Regardless of parallel nodes pruning techniques, ScaleSCAN
always returns exactly same clustering results as those of SCAN (Sect. 4.4).

28 H. Shiokawa et al.

Table 1. Statistics of real-world datasets

Dataset name # of nodes # of edges Data source

DB 317,080 1,049,866 com-DBLP [9]

LJ 4,847,571 68,993,773 soc-livejournal1 [9]

OK 3,072,441 117,185,083 com-orkut [9]

FS 65,608,366 141,874,960 com-friendster [9]

WB 118,142,155 1,019,903,190 webbase-2001 [2]

TW 41,652,230 1,468,365,182 twitter-2010 [2]

4.1 Experimental Setup

We compared ScaleSCAN with the baseline method SCAN [20], the state-of-
the-art sequential algorithm pSCAN [3], and the state-of-the-art thread-parallel
algorithm SCAN-XP [18]. All algorithms were implemented in g++ using -O3
option1. All experiments were conducted on a CentOS server with an Intel(R)
Xeon(R) E5-2690 2.60 GHz GPU and 128 GB RAM. The CPU has 14 physical
cores, we thus used threads for up to 14 in the experiments. Since each physical
core equips 256-bit wide registers, 256-bit wide data-parallel instructions were
also available. Unless otherwise stated, we used default parameters ε = 0.4 and
μ = 5.

Datasets: We evaluated the algorithms on six real-world graphs, which are
downloaded from the Stanford Network Analysis Platform (SNAP) [9] and the
Laboratory for Web Algorithmics (LAW) [2]. Table 1 summarizes the statistics of
real-world datasets. In addition to the real-world graphs, we also used synthetic
graphs generated by LFR benchmark [6], which is considered as the de facto
standard model for generating graphs. The settings will be detailed later.

4.2 Efficiency and Scalability

Efficiency: In Fig. 1, we evaluated the clustering speed on the real-world graphs
through wall clock time by varying ε. In this evaluation we used 14 threads for the
thread-parallel algorithms, i.e., ScaleSCAN and SCAN-XP. Note that SCAN did
not finish its clustering for WB and TW with in 24 h, so we omitted the results
from Fig. 1. Overall, ScaleSCAN outperforms SCAN-XP, pSCAN, and SCAN.
On average, ScaleSCAN achieves ×17.3 and ×90.2 faster than the state-of-the-
art methods SCAN-XP and pSCAN, respectively; also, ScaleSCAN is approxi-
mately ×500 faster than the baseline method SCAN. In particular, ScaleSCAN
can compute TW with 1.4 billion edges within 6.4 s. Although pSCAN slightly
improves its efficiency as ε increases, these improvements are negligible.

In Fig. 2, we also evaluated the clustering speeds on FS by varying the param-
eter μ. As well as Fig. 1, we used 14 threads for ScaleSCAN and SCAN-XP. We

1 We opened our source codes of ScaleSCAN on our website.

ScaleSCAN: Scalable Density-Based Graph Clustering 29

Fig. 1. Runtimes of each algorithm by varying ε.

omitted the results for the other datasets since they show very similar results to
Fig. 2. As shown in Fig. 2, ScaleSCAN also outperforms the other algorithms that
we examined even though ScaleSCAN and pSCAN slightly increase runtimes as
μ increases.

Scalability: We assessed scalability tests of ScaleSCAN in Fig. 3a and b by
increasing the number of threads and edges, respectively. In Fig. 3a, we used
the real-world dataset TW. Meanwhile, in Fig. 3b, we generated four synthetic
datasets by using LFR benchmark; we varied the number of nodes from 105

to 108 with the average degree 30. As we can see from Fig. 3, the runtimes of
ScaleSCAN has near-linear in terms of the number of threads and edges. These
results verify that ScaleSCAN is scalable for large-scale graphs.

4.3 Effectiveness of the Key Techniques

As mentioned in Sect. 3.3, we employed thread-parallel node pruning and data-
parallel similarity computation to prune unnecessary computations. In the fol-
lowing experiments, we examined the effectiveness of the key techniques of
ScaleSCAN.

Thread-Parallel Node Pruning. ScaleSCAN prunes nodes that have already
been determined as core or non-core nodes in the thread-parallel manner. As
mentioned in Sect. 3.3, ScaleSCAN specifies the nodes to be pruned by checking
the two integer values sd and ed; ScaleSCAN prunes a node u from its subsequent
procedure if sd[u] ≥ μ or ed[u] < μ since it is determined as core or non-core,
respectively.

30 H. Shiokawa et al.

Fig. 2. Runtimes by varying
μ on FS.

Fig. 3. Scalability test.

To show the effectiveness, we compared the runtimes of ScaleSCAN with and
without the node-pruning techniques. We set the number of threads as 14 for
each algorithm. Figure 4 shows the wall clock time of each algorithm for the real-
world graphs. Figure 4 shows that ScaleSCAN is faster than ScaleSCAN without
the node pruning by over one order of magnitude for all datasets. These results
indicate that the node pruning significantly contributes the efficiency of ScaleS-
CAN even though it requires several synchronization (i.e., atomic operations)
among threads for maintaining sd and ed.

Fig. 4. Effects of the
node pruning.

Fig. 5. Effects of PStruc-
turalSimilarity.

Fig. 6. Evaluate exact-
ness of ScaleSCAN.

Data-Parallel Similarity Computation. As shown in Algorithm 4, ScaleS-
CAN computes the structural similarity by using the data-parallel algorithm
PStructuralSimilarity. That is, ScaleSCAN compares two neighbor node sets Nu

and Nv whether they share same nodes or not in the data-parallel manner. In
order to confirm the impact of the data-parallel instructions, we evaluated the
running time of a variant of ScaleSCAN that did not use PStructuralSimilarity
for obtaining σ(u, v).

Figure 5 shows the wall clock time comparisons between ScaleSCAN with
and without using PStructuralSimilarity. As shown in Fig. 5, PStructuralSimilarity
achieved significant improvements in several datasets, e.g. DB, OK, WB, and
TW. On the other hand, the improvements seems to be moderated in LJ and
FS. More specifically, ScaleSCAN is ×20 faster than ScaleSCAN without PStruc-
turalSimilarity on average for DB, OK, WB and TW. Meanwhile, ScaleSCAN is
limited to approximately ×2 improvements in LJ and FS.

ScaleSCAN: Scalable Density-Based Graph Clustering 31

(a) LJ

heterophily-edges

(b) WB

heterophily-edges

(c) TW

Fig. 7. Distribution of degree ratio λ(u,v)

For further discussing about this point, we measured the degree ratio λ(u,v) =
max{du

dv
, dv

du
} of each edge (u, v) ∈ E for LJ, WB, and TW. Figure 7 shows the

distributions of the degree ratio for each dataset; horizontal and vertical axis
show the degree ratio λ(u,v) and the number of edges with the corresponding
ratio. In Fig. 7, we can observe that WB has large number of edges with large
λ(u,v) values while LJ does not have such edges. This indicates that, differ from
LJ, edges in WB prefer to connect nodes with different size of degree. Here, let
us say an edge with large λ(u,v) value as heterophily-edge, PStructuralSimilarity
can perform efficiently if a graph has many heterophily-edges. This is because
that, as shown in Algorithm4 (Lines 2–3), we can load a lot of nodes from Nu

(or Nv) to the 256-bit wise registers at the same time since we set α = 8 and
beta = 1 for the heterophily-edges. In addition, by setting such imbalanced α
and beta, PStructuralSimilarity is expected to terminate earlier since the while
loop in Algorithm 4 (Lines 6–11) stops when pu ≥ du or pv ≥ dv. As a result,
PStructuralSimilarity thus performs efficiently for the heterophily-edges.

We observed that large-scale graphs tend to have a lot of heterophily-edges
because their structure grows more complicated when the graphs become more
larger. For example, TW shown in Fig. 7c has a peak around λ(u,v) = 105 values
(heterophily-edges), and ScaleSCAN gains large improvements on this dataset
(Fig. 5). Thus, these results imply that our approach is effective for large-scale
graphs.

4.4 Exactness of the Clustering Results

Finally, we experimentally confirm the exactness of clustering results produced
by ScaleSCAN. In order to measure the exactness, we employed the information-
theoretic metric, NMI (normalized mutual information) [11], that returns 1 if
two clustering results are completely same, otherwise 0. In Fig. 6, we compared
the clustering results produced by the original method SCAN and our proposed
method ScaleSCAN. Since SCAN did not finish in WB and TW within 24 h, we
omitted the results from Fig. 6. As we can see from Fig. 6, ScaleSCAN shows 1 for
all conditions we examined. Thus, we experimentally confirmed that ScaleSCAN
produces exactly same clustering results as those of SCAN.

32 H. Shiokawa et al.

5 Related Work

The original density-based graph clustering method SCAN requires O(m1.5)
times and it is known as worst-case optimal [3]. To address the expensive time-
complexity, many efforts have been made for the recent few years, especially
from sequential and parallel computing perspectives. Here, we briefly review the
most successful algorithms.

Sequential Algorithms. One of the major approaches for improving clustering
speed is the node/edge pruning techniques: SCAN++ [16] and pSCAN [3] are the
representative algorithms. SCAN++ is designed to handle the property of real-
world graphs; a node and its two-hop-away nodes tend to have lots of common
neighbor nodes since real-world graphs have high clustering coefficients [16].
Based on this property, SCAN++ effectively reduces the number of structural
similarity computations. Chang et al. proposed pSCAN that employs a new
paradigm based on the observations in real-world graphs [3]. By following the
observations, pSCAN employs several the nodes pruning techniques and their
optimizations for reducing the number of structural similarity computations. To
the best of our knowledge pSCAN is the state-of-the-art sequential algorithm
that achieves high performance and exact clustering results at the same time.
However, SCAN++ and pSCAN ignore the thread-parallel and the data-parallel
computation schemes, and thus their performance improvements are still limited.
Our work is different from these algorithms in that provides not only the node
pruning techniques but also both thread-parallel and data-parallel algorithms.
Our experimental analysis in Sect. 4 show that ScaleSCAN is approximately ×90
faster clustering than pSCAN.

Parallel Algorithms. In a recent few years, several thread-parallel algorithms
have been proposed for improving the clustering speed of SCAN. To the best
of our knowledge, AnySCAN [10], proposed by Son et al. in 2017, is the first
solution that performs SCAN algorithm on the multicore CPUs. Similar to
SCAN++ [16], they applied randomized algorithm in order to avoid unnecessary
structural similarity computations. By performing the randomized algorithm in
the thread-parallel manner, AnySCAN achieved almost similar efficiency on the
multicore CPU compared with pSCAN [3]. Although AnySCAN is scalable on
large-scale graphs, it basically produces approximated clustering results due to
its randomized algorithm nature.

Takahashi et al. recently proposed SCAN-XP [18] that exploits massively
parallel processing hardware for the density-based graph clustering. As far as
we know, SCAN-XP is the state-of-the-art parallel algorithm that achieves the
fastest clustering without sacrificing clustering quality for graphs with millions or
even billions of edges. However, different from our proposed method ScaleSCAN,
SCAN-XP does not have any node pruning techniques; it need to compute all
nodes and edges included in a graph. As shown in Sect. 4, our ScaleSCAN is
much faster than SCAN-XP; ScaleSCAN outperforms SCAN-XP by over one
order of magnitude for the large datasets.

ScaleSCAN: Scalable Density-Based Graph Clustering 33

6 Conclusion

We developed a novel parallel algorithm ScaleSCAN for density-based graph
clustering using the multicore CPU. We proposed thread-parallel and data-
parallel approaches that combines parallel computation capabilities and efficient
node pruning techniques. Our experimental evaluations showed that ScaleSCAN
outperforms the state-of-the-art algorithms over one order of magnitude even
though ScaleSCAN does not sacrifice its clustering qualities. The density-based
graph clustering is now a fundamental graph mining tool to current and prospec-
tive applications in various disciplines. By providing our scalable algorithm, it
will help to improve the effectiveness of future applications.

Acknowledgement. This work was supported by JSPS KAKENHI Early-Career Sci-
entists Grant Number JP18K18057, JST ACT-I, and Interdisciplinary Computational
Science Program in CCS, University of Tsukuba.

References

1. Arai, J., Shiokawa, H., Yamamuro, T., Onizuka, M., Iwamura, S.: Rabbit order:
just-in-time parallel reordering for fast graph analysis. In: Proceedings of the 2016
IEEE International Parallel and Distributed Processing Symposium, pp. 22–31
(2016)

2. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Pro-
ceedings of the 13th International Conference on World Wide Web, pp. 595–601
(2004)

3. Chang, L., Li, W., Qin, L., Zhang, W., Yang, S.: pSCAN: fast and exact structural
graph clustering. IEEE Trans. Knowl. Data Eng. 29(2), 387–401 (2017)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2009)

5. Ding, Y., et al.: atBioNet–an integrated network analysis tool for genomics and
biomarker discovery. BMC Genom. 13(1), 1–12 (2012)

6. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative
analysis. In: Proceedings of the 4th International ICST Conference on Performance
Evaluation Methodologies and Tools, pp. 27:1–27:2 (2009)

7. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Ida, Y., Toyoda, M.: Adaptive message
update for fast affinity propagation. In: Proceedings of the 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 309–318
(2015)

8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

9. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collec-
tion, June 2014. http://snap.stanford.edu/data

10. Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kristensen, J., Birk, M.: Scalable
and interactive graph clustering algorithm on multicore CPUs. In: Proceedings of
the 33rd IEEE International Conference on Data Engineering, pp. 349–360 (2017)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

http://snap.stanford.edu/data

34 H. Shiokawa et al.

12. Naik, A., Maeda, H., Kanojia, V., Fujita, S.: Scalable Twitter user clustering app-
roach boosted by personalized PageRank. In: Kim, J., Shim, K., Cao, L., Lee,
J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS, vol. 10234, pp. 472–485.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7 37

13. Sato, T., Shiokawa, H., Yamaguchi, Y., Kitagawa, H.: FORank: fast ObjectRank
for large heterogeneous graphs. In: Companion Proceedings of the the Web Con-
ference, pp. 103–104 (2018)

14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

15. Shiokawa, H., Fujiwara, Y., Onizuka, M.: Fast algorithm for modularity-based
graph clustering. In: Proceedings of the 27th AAAI Conference on Artificial Intel-
ligence, pp. 1170–1176 (2013)

16. Shiokawa, H., Fujiwara, Y., Onizuka, M.: SCAN++: efficient algorithm for finding
clusters, hubs and outliers on large-scale graphs. Proc. Very Large Data Bases
8(11), 1178–1189 (2015)

17. Solihin, Y.: Fundamentals of Parallel Multicore Architecture, 1st edn. Chapman
& Hall/CRC, Boca Raton (2015)

18. Takahashi, T., Shiokawa, H., Kitagawa, H.: SCAN-XP: parallel structural graph
clustering algorithm on Intel Xeon Phi coprocessors. In: Proceedings of the 2nd
International Workshop on Network Data Analytics, pp. 6:1–6:7 (2017)

19. Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In:
Proceedings of the IEEE 30th International Conference on Data Engineering, pp.
568–579 (2014)

20. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering
algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)

https://doi.org/10.1007/978-3-319-57454-7_37

	ScaleSCAN: Scalable Density-Based Graph Clustering
	1 Introduction
	2 Preliminary
	2.1 The Density-Based Graph Clustering: SCAN
	2.2 Data-Parallel Instructions

	3 Proposed Method: ScaleSCAN
	3.1 Overview
	3.2 Pre-pruning
	3.3 Core Detection
	3.4 Cluster Construction

	4 Experimental Analysis
	4.1 Experimental Setup
	4.2 Efficiency and Scalability
	4.3 Effectiveness of the Key Techniques
	4.4 Exactness of the Clustering Results

	5 Related Work
	6 Conclusion
	References

