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Abstract. Knowledge graphs encode semantics that describes entities
in terms of several characteristics, e.g., attributes, neighbors, class hier-
archies, or association degrees. Several data-driven tasks, e.g., rank-
ing, clustering, or link discovery, require for determining the relatedness
between knowledge graph entities. However, state-of-the-art similarity
measures may not consider all the characteristics of an entity to deter-
mine entity relatedness. We address the problem of similarity assessment
between knowledge graph entities and devise GARUM, a semantic sim-
ilarity measure for knowledge graphs. GARUM relies on similarities of
entity characteristics and computes similarity values considering simulta-
neously several entity characteristics. This combination can be manually
or automatically defined with the help of a machine learning approach.
We empirically evaluate the accuracy of GARUM on knowledge graphs
from different domains, e.g., networks of proteins and media news. In the
experimental study, GARUM exhibits higher correlation with gold stan-
dards than studied existing approaches. Thus, these results suggest that
similarity measures should not consider entity characteristics in isolation;
contrary, combinations of these characteristics are required to precisely
determine relatedness among entities in a knowledge graph. Further, the
combination functions found by a machine learning approach outperform
the results obtained by the manually defined aggregation functions.

1 Introduction

Semantic Web and Linked Data communities foster the publication of large
volumes of data in the form of semantically annotated knowledge graphs. For
example, knowledge graphs like DBpedia1, Wikidata or Yago2, represent general
domain concepts such as musicians, actors, or sports, using RDF vocabularies.

1 http://dbpedia.org.
2 http://yago-knowledge.org.
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Additionally, domain specific communities like Life Sciences and the financial
domain, have also enthusiastically supported the collaborative development of
diverse ontologies and semantic vocabularies to enhance the description of knowl-
edge graph entities and reduce the ambiguity in such descriptions, e.g., the Gene
Ontology (GO) [2], the Human Phenotype Ontology (HPO) [10], or the Financial
Industry Business Ontology (FIBO)3. Knowledge graphs encode semantics that
describe entities in terms of several entity characteristics, e.g., class hierarchies,
neighbors, attributes, and association degrees. During the last years, several
semantic similarity measures for knowledge graph entities have been proposed,
e.g., GBSS [15], HeteSim [22], and PathSim [24]. However, these measures do
not consider all the entity characteristics represented in a knowledge graph at
the same time in a aggregated fashion. The importance of precisely determining
relatedness in data-driven tasks, e.g., knowledge discovery, and the increasing
size of existing knowledge graphs, introduce the challenge of defining semantic
similarity measures able to exploit all the information described in knowledge
graphs, i.e., all the characteristics of the represented entities.

We present GARUM, a GrAph entity Regression sUpported similarity
Measure. GARUM exploits knowledge encoded in characteristics of an entity,
i.e., ancestors or hierarchies, neighborhoods, associations, or shared information,
and literals or attributes. GARUM receives a knowledge graph and two entities
to be compared. As a result, GARUM returns a similarity value that aggre-
gates similarity values computed based on the different entity characteristics;
a domain-dependent aggregation function α combines similarity values specific
for each entity characteristic. The function α can be either manually defined
or predicted by a regression machine learning approach. The intuition is that
knowledge represented in entity characteristics, precisely describes entities and
allows for determining more accurate similarity values.

We conduct an empirical study with the aim of analyzing the impact of con-
sidering entity characteristics in the accuracy of a similarity measure over a
knowledge graph. GARUM is evaluated over entities of three different knowl-
edge graphs: The first knowledge graph describes news articles annotated with
DBpedia entities; and the other two graphs describe proteins annotated with the
Gene Ontology. GARUM is compared with state-of-the-art similarity measures
with the goal of determining if GARUM similarity values are more correlated to
the gold standards. Our experimental results suggest that: (i) Considering all
entity characteristics allow for computing more accurate similarity values; (ii)
GARUM is able to outperform state-of-art approaches obtaining higher values
of correlation; and (iii) Machine learning approaches are able to predict aggre-
gation functions that outperform the manually functions defined by humans.

The remainder of this article is structured as follows: Sect. 2 motivates our
approach using a subgraph from DBpedia. Section 3 describes GARUM and
Sect. 4 summarizes experimental results. Related work is presented in Sect. 5,
and finally, Sect. 6 concludes and give insights for future work.

3 https://www.w3.org/community/fibo/.

https://www.w3.org/community/fibo/
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Fig. 1. Motivating Example. Two subgraphs from DBpedia. The above graph describes
swimming events and entities related to these events, while the other graph represents
a hierarchy of the properties in DBpedia.

2 Motivating Example

We motivate our work with a real-world knowledge graph extracted from DBpe-
dia (Fig. 1); it describes swimming events in olympic games. Each event is related
to other entities, e.g., athletes, locations, or years, using different relations or
RDF properties, e.g., goldMedalist or venue. These RDF properties are also
described in terms of the RDF property rdf:type as depicted in Fig. 1. Relat-
edness between entities is determined based on different entity characteristics,
i.e., class hierarchy, neighbors, shared associations, and properties.

Consider entities Swimming at the 2012 Summer Olympics - Women’s
100m backstroke, Swimming at the 2012 Summer Olympics - Women’s 4x100m
freestyle relay, and Swimming at the 2012 Summer Olympics - Women’s 4x100m
medley relay. For the sake of clarity we rename them as Women’s 100m back-
stroke, Women’s 4x100m freestyle, and Women’s 4x100m medley relay, respec-
tively. The entity hierarchy is induced by the rdf:type property, which describes
an entity as instance of an RDF class. Particularly, these swimming events are
described as instances of the OlympicEvent class, which is at the fifth level of
depth in the DBpedia ontology hierarchy. Thus, based on the knowledge encoded
in this hierarchy, these entities are highly similar. Additionally, these entities
share exactly the same set of neighbors that is formed by the entities Emily See-
bohm, Missy Franklin, and London Aquatic Centre. However, the relations with
Emily Seebohm and Missy Franklin are different. Women’s 4x100m freestyle and
Women’s 100m backstroke are related with Emily Seebohm through properties
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goldMedalist and silverMedalist, respectively, and with Missy Franklin through
properties bronzeMedalist and goldMedalist. Nevertheless, Women’s 4x100m
medley relay is related with Missy Franklin through the property bronzeMedalist,
and with Emily Seebohm through olympicAthlete. Considering only the entities
in these neighborhoods, they are identical since they share exactly the same
set of neighbors. However, whenever properties labels and the property hierar-
chy are considered, we observe that Women’s 4x100m freestyle and Women’s
100m backstroke are more similar since in both events Missy Franklin and
Emily Seebohm are medalists, while in Women’s 4x100m medley relay only
Missy Franklin is medalist. Furthermore, swimming events are also related with
attributes through datatype properties. For the sake of clarity, we only include
a portion of these attributes in Fig. 1. Considering these attributes, 84 ath-
letes participated in Women’s 4x100m medley relay, while only 80 participated
in Women’s 4x100m freestyle. Finally, the node degree or shared information
is different for each entity in the graph. Entities with a high node degree are
considered abstract entities, while others with low node degree are considered
specific. For instance, in Fig. 1, the entity London Aquatic Centre has five inci-
dent edges, while Emily Seebohm has four edges and Missy Franklin has only
three incident edges. Thus, the entity London Aquatic Centre is less specific than
Emily Seebohm, which is also less specific than Missy Franklin.

According to these observations, the similarity between two knowledge graph
entities cannot be estimated only considering one entity characteristic. Hence,
combinations of them may have to be taken into account to precisely determine
relatedness between entities in a knowledge graph.

3 Our Approach: GARUM

We propose GARUM, a semantic similarity measure for determining relatedness
between entities represented in knowledge graphs. GARUM considers the knowl-
edge encoded in entity characteristics, e.g., hierarchies, neighborhoods, shared
information, and attributes to accurately compute similarity values between enti-
ties in a knowledge graph. GARUM calculates values of similarity for each entity
characteristic independently and combines these values to produce an aggregated
similarity value between the compared entities. Figure 2 depicts the GARUM
architecture. GARUM receives as input a knowledge graph G and two enti-
ties e1, e2 to be compared. Entity characteristics of the compared entities are
extracted from the knowledge graph and compared as isolated elements.

Definition 1. Knowledge graph. Given a set of entities V , a set of edges E,
and a set of property labels L, a knowledge graph G is defined as G = (V,E,L).
An edge corresponds to a triple (v1, r, v2), where v1, v2 ∈ V are entities in the
graph, and r ∈ L is a property label.

Definition 2. Individual similarity measure. Given a knowledge graph G =
(V,E,L), two entities e1 and e2 in V , and an entity characteristic EC of e1
and e2 in G, an individual similarity measure SimEC(e1, e2) corresponds to a
similarity function defined in terms of EC for e1 and e2.
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Fig. 2. The GARUM Architecture. GARUM receives a knowledge graph G and two
entities to be compared (red nodes). Based on semantics encoded in the knowledge
graph (blue nodes), GARUM computes similarity values in terms of class hierarchies,
neighborhoods, shared information and the attributes of the input entities. Generated
similarity values, Simhier, Simneigh, Simshared, Simattr, are combined using a function
α. The aggregated value is returned as output. (Color figure online)

The hierarchical similarity Simhier(e1, e2) or the neighborhood similarity
Simneigh(e1, e2) are examples of individual similarity measures. These individ-
ual similarity measures are combined using an aggregation function α. Next, we
describe the four considered individual similarity measures.

Hierarchical Similarity: Given a knowledge graph G, a hierarchy is induced
by a set of hierarchical edges HE = {(vi, r, vj)|(vi, r, vj) ∈ E ∧ Hierarchical(r)}.
HE is a subset of edges in the knowledge graph whose property labels refer to
a hierarchical relation, e.g., rdf:type, rdfs:subClassOf, or skos:broader. Generally,
every relation that presents an entity as a generalization (ancestor) or an speci-
fication (successor) of another entity is a hierarchical relation. GARUM relies on
existing hierarchical distance measures, e.g., dtax [1] and dps [16] to determine
the hierarchical similarity between entities; it is defined as follows:

Simhier(e1, e2) =
{

1 − dtax(e1, e2)
1 − dps(e1, e2)

(1)

Neighborhood Similarity: The neighborhood of an entity e ∈ V is defined
as the set of relation-entity pairs N(e) whose entities are at one-hop distance of
e, i.e., N(e) = {(r, ei)|(e, r, ei) ∈ E). With this definition of neighborhood, we
can consider the neighbor entity and the relation type of the edge at the same
time. GARUM uses the knowledge encoded in the relation and class hierarchies
of the knowledge graph to compare two pairs p1 = (r1, e1) and p2 = (r2, e2).
The similarity between two pairs p1 and p2 is computed as Simpair(p1, p2) =
Simhier(e1, e2) · Simhier(r1, r2). Note that Simhier can be used with any entity of
the knowledge graph, regardless of it is an instance, a class or a relation. In order
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to maximize the similarity between two neighborhoods, GARUM combines pair
comparisons using the following formula:

Simneigh(e1, e2) =

|N(e1)|∑
i=0

max
px∈N(e2)

Simpair(pi, px) +
|N(e2)|∑
j=0

max
py∈N(e1)

Simpair(pj , py)

|N(e1)| + |N(e2)|
(2)

In Fig. 1, the neighborhoods of Women’s 100m backstroke and Women’s
4x100m freestyle are {(venue, London Aquatic Centre), (silverMedalist, Emily
Seebohm), (goldMedalist, Missy Franklin)} and {(venue, London Aquatic Cen-
tre), (goldMedalist, Emily Seebohm), (bronzeMedalist, Missy Franklin)}, respec-
tively. Let Simhier(e1, e2) = 1 − dtax(e1, e2). The most similar pair to (venue,
London Aquatic Centre) is itself and with similarity value of 1.0. The most
similar pair to (silverMedalist, Emily Seebohm) is (goldMedalist, Emily See-
bohm) with a similarity value of 0.5. This similarity value is result of the prod-
uct between Simhier(Emily Seebohm, Emily Seebohm), whose result is 1.0, and
Simhier(goldMedalist, silverMedalist), whose result is 0.5. Similarly, the most sim-
ilar pair to (goldMedalist, Missy Franklin) is (bronzeMedalist, Missy Franklin)
with a similarity value of 0.5. Thus, the similarity between neighborhoods
of Women’s 100m backstroke and Women’s 4x100m freestyle is computed as
Simneigh = (1+0.5+0.5)+(1+0.5+0.5)

3+3 = 4
6 = 0.667.

Shared Information: Beyond the hierarchical similarity, the amount of infor-
mation shared by two entities in a knowledge graph can be measured examining
the human use of such entities. Two entities are considered to share information
whenever they are used in a corpus similarly. Considering the knowledge graph as
a corpus, the information shared by two entities x and y is directly proportional
to the amount of entities that have x and y together in their neighborhood, i.e.,
the co-occurrences of x and y in the neighborhoods of the entities in the knowl-
edge graph. Let G = (V,E,L) be a knowledge graph and e ∈ V an entity in the
knowledge graph. The set of entities that have e in their neighborhood is defined
as Incident(e) = {ei|(ei, r, e) ∈ E}. Then, GARUM computes the information
shared by two entities using the following formula:

Simshared(e1, e2) =
|Incident(e1) ∩ Incident(e2)|
|Incident(e1) ∪ Incident(e2)| , (3)

The values depends on how much informative or specific are the compared
entities. For example, an entity representing London Aquatic Centre is included
in several neighborhoods in a knowledge graph like DBpedia. This means that
London Aquatic Centre is not a specific entity. This is reflected in the denomina-
tor of Simshared. Thus, abstract or non-specific entities require a greater amount
of co-occurrences in order to obtain a high value of similarity. In Fig. 1, entities
Emily Seebohm, Missy Franklin, and London Aquatic Centre have incident edges.
London Aquatic Centre have five incident edges, while Emily Seebohm and Missy
Franklin have four and three, respectively. Emily Seebohm and Missy Franklin
co-occurs in three neighborhoods. Thus, Simshared returns a value of 3

4 = 0.75.
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London Aquatic Centre is included in five neighborhoods in sub-graph showed
in Fig. 1. However, it is included in the neighborhood of each sport event located
in this venue in the full graph of DBpedia.

Attributes: Entities in knowledge graphs are related with other entities
and with attributes through datatype properties, e.g., temperature or protein
sequence. GARUM considers only shared attributes, i.e., attributes connected
to entities through the same datatype property. Given that attributes can be
compared with domain similarity measures, e.g., SeqSim [23] for genes or Jaro-
Winkler for strings, GARUM does not rely on a specific measure to compare
attributes. Depending on the domain, users should choose a similarity measure
for each type of attribute. Figure 1 depicts the entity representing Women’s
4x100m medley relay ; it has attributes competitors and games, while Women’s
4x100m freestyle has only the attribute competitors. Thus, Simattr between these
entities only considers the attribute competitors.

Aggregation Functions: GARUM combines four individual similarity mea-
sures and returns a similarity value that aggregates the relatedness among two
compared entities. The aggregation function can be manually defined or com-
puted by a supervised machine learning algorithm like a regression algorithm. A
regression algorithm receives a set of input variables or predictors and an output
or dependent variable. In the case of GARUM, the predictors are the individual
similarity measures, i.e., Simhier, Simneigh, Simshared and Simattr. The dependent
variable is defined by a gold standard similarity measure, e.g., a crowd-funded
similarity value. Thus, a regression algorithm produces as output a function
α : Xn → Y , where Xn represents the predictors and Y corresponds to the
dependent variable. Hence, GARUM is defined in terms of a function α:

GARUM(e1, e2) = α(Simhier,Simneigh,Simshared,Simattr) (4)

Depending on the regression type, α can be a linear or a non-linear combination
of the predictors. In both cases and regardless the used regression algorithm,
α is computed by minimizing a loss function. In the case of GARUM, the loss
function is the mean squared error (MSE) defined as follows:

MSE =
1
n

n∑
i=1

(Ŷi − Yi)2, (5)

Y is a vector of n observed values, i.e., gold standard values, and Ŷ is a vector of
n predictions, i.e., Ŷ corresponds to results of the computed function α. Hence,
the regression algorithm implemented in GARUM learns from a training dataset
how to combine the individual similarity measures by means of a function α,
such that the MSE among the results produced by α and the corresponding gold
standard (e.g., SeqSim, ECC) is minimized. However, gold standards are usually
defined for annotation sets, i.e., sets of knowledge graph entities, instead of for
pairs of knowledge graph entities. CESSM [18], and Lee50 [13] datasets are good
examples of this phenomenon, where real world entities (proteins or texts) are
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(a) Combination function for input matrices. For each
matrix a 10-positions vector with the corresponding den-
sity value is generated. GT represents the ground truth.

(b) Workflow of the supervised regression algorithm

Fig. 3. Training Phase of the GARUM Similarity Measure. (a) Training workflow using
a regression algorithm; (b) Transformation of the input matrices into an aggregated
value representing the combination of similarity measures

annotated with terms from ontologies, e.g., the Gene Ontology or the DBpedia
ontology. Thus, the regression approach receives as input two sets of knowledge
graph entities as showed in Fig. 3(b). Based on these sets, a similarity matrix
for each individual similarity measure is computed. The output represents the
aggregated similarity value computed by the estimated regression function α.
Classical machine learning algorithms have a fix number of input features. How-
ever, the dimensions of the matrices depend on the cardinality of the compared
sets. Hence, the matrices cannot be directly used, but a transformation to a fixed
structure is required. Figure 3(a) introduces the matrix transformation. For each
matrix, a density histogram with 10 bins is created. Thus, the input dimensions
are fixed to 10×|Individual similarity measures|. In Fig. 3(b), the input consists
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of an array with 40 features. Finally, the transformed data is used to train the
regression algorithm. This algorithm learns, based on the input, how to combine
the value of the histograms to minimize the MSE with respect to the ground
truth (i.e., GT in Fig. 3(a)).

4 Experimental Results

We empirically evaluate the accuracy of GARUM in three different knowledge
graphs. We compare GARUM with state-of-the-art approaches and measure
the effectiveness comparing our results with available gold standards. For each
knowledge graph, we provide a manually defined aggregation function α, as well
as the results obtained using Support Vector Machines as supervised machine
learning approach to compute the aggregation function automatically.

Research Questions: We aim at answering the following research questions:
(RQ1) Does semantics encoded in entity characteristics improve the accuracy of
similarity values between entities in a knowledge graph? (RQ2) Is GARUM able
to outperform state-of-the-art similarity measures comparing knowledge graph
entities from different domains?

Datasets. GARUM is evaluated on three knowledge graphs: Lee504, CESSM-
20085, and CESSM-20146. Lee50 is a knowledge graph defined by Paul et al. [15]
that describes 50 news articles 8 (collected by Lee et al. [13]) with DBpedia
entities. Each article has a length among 51 and 126 words, and is described
on average with 10 DBpedia entities. The similarity value of each pair of news
articles has been rated multiple times by humans. For each pair, we consider
the average of human rates as gold standard. CESSM-2008 [18] (see footnote 5)
and CESSM-2014 (see footnote 6) consist of proteins described in a knowledge
graph with Gene Ontology (GO) entities. CESSM-2008 contains 13,430 pairs
of proteins from UniProt with 1,039 distinct proteins, while the CESSM 2014
collection comprises 22,302 pairs with 1,559 distinct proteins. The knowledge
graph of CESSM-2008 contains 1,908 distinct GO entities and the graph of 2014
includes 3,909 GO entities. The quality of the similarity measures is estimated by
means the Pearson’s coefficient with respect to three gold standards: SeqSim [23],
Pfam [18], and ECC [5] (Table 1).

Implementation. GARUM is implemented in Java 1.8 and Python 2.7; as
machine learning approaches, we used the support vector regression (SVR)
implemented in the scikit-learn library7 and a neural network of three layers
implemented with the Keras8 library, both in Python. The experimental study

4 https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe ann
otated xLisa.json.

5 http://xldb.di.fc.ul.pt/tools/cessm/index.php.
6 http://xldb.fc.ul.pt/biotools/cessm2014/index.html.
7 http://scikit-learn.org/stable/index.html.
8 https://keras.io/.

https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe_annotated_xLisa.json
https://github.com/chrispau1/SemRelDocSearch/blob/master/data/Pincombe_annotated_xLisa.json
http://xldb.di.fc.ul.pt/tools/cessm/index.php
http://xldb.fc.ul.pt/biotools/cessm2014/index.html
http://scikit-learn.org/stable/index.html
https://keras.io/
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Table 1. Properties of the knowledge graphs used during the evaluation.

Datasets Comparisons Ontology

CESSM 2008 13,430 Gene Ontology

CESSM 2014 22,302 Gene Ontology

Lee50 1,225 DBpedia

was executed on an Ubuntu 14.04 64 bits machine with CPU: Intel(R) Core(TM)
i5-4300U 1.9 GHz (4 physical cores) and 8 GB RAM. To ensure the quality and
correctness of the evaluation, both datasets are split following a 10-cross fold
validation strategy. Apart from the machine learning based strategy, since enti-
ties (proteins and documents) are described with ontology terms from the Gene
ontology or the DBpedia ontology, we manually define two aggregation strate-
gies. Let A ⊆ V and B ⊆ V be set of knowledge graph entities. In the first
aggregation strategy, we maximize the similarity value of sim(A, B) using the
following formula:

sim(A,B) =
|A|∑

i=0
max
ex∈B

GARUM(ei, ex)+
|B|∑

j=0
max
ex∈A

GARUM(ej , ex)

|A|+ |B|

In the second aggregation strategy, we perform a 1-1 maximum matching imple-
mented with the Hungarian algorithm [11], such that each knowledge graph
entity ei in A is matched with one and only one knowledge graph entity ej in B;
the following formula of sim(A, B) is maximized:

sim(A,B) =

2 · ∑
(ei,ej)∈1-1 Matching

GARUM(ei, ej)

|A| + |B|
The first aggregation strategy is used in knowledge graphs Lee50, while the

1-1 matching strategy is used in CESSM-2008 and CESSM-2014.

4.1 Lee50: News Articles Comparison

We compare pairwise the 50 news articles included in Lee50, and consider the
knowledge encoded in the hierarchy, the neighbors, and the shared information.
Knowledge encoded in attributes is not taken into account. Particularly, we
define the aggregation function α(e1, e2) as follows:

α(e1, e2) =
Simhier(e1, e2) · Simshared(e1, e2) + Simneigh(e1, e2)

2
(6)

where Simhier = 1 − dtax.
Results in Table 2 suggest that GARUM outperforms the evaluated similarity

measures in terms of correlation. Though dps obtains alone better results than
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dtax, its combination with the other two individual similarity measures delivers
worse results. Further, we observe that the aggregation function obtained by the
SVR and NN approaches outperforms the manually defined aggregation function.

Table 2. Comparison of Similarity Measures. Pearson’s coefficient of similarity mea-
sures on the Lee et al. knowledge graph [13]; highest values in bold

Similarity
measure

Pearson’s
coefficient

LSA [12] 0.696

SSA [7] 0.684

GED [20] 0.63

ESA [6] 0.656

dps [16] 0.692

dtax [1] 0.652

GBSSr=1 [15] 0.7

GBSSr=2 [15] 0.714

GBSSr=3 [15] 0.704

GARUM 0.727

GARUM SVR 0.73

GARUM NN 0.74

4.2 CESSM: Protein Comparison

CESSM knowledge graphs are used to compare proteins based on their asso-
ciated GO annotations. GARUM considers the hierarchy, the neighborhoods,
and the shared information as entity characteristics. In this knowledge graph,
the different characteristics are combined automatically by SVR and with the
following manually defined function:

α(e1, e2) = Simhier(e1, e2) · Simneigh(e1, e2) · Simshared(e1, e2),

where Simhier = 1 − dtax.
Table 3 reports on the correlation between state-of-the-art similarity mea-

sures and GARUM with the gold standards ECC, Pfam, and SeqSim on CESSM
2008 and 2014. The correlation is measured with the Pearson’s coefficient. The
top-5 values are highlighted in gray, and the highest correlation with respect to
each gold standard is highlighted in bold. We observe that GARUM SVR and
GARUM are the most correlated measures with respect to the three gold stan-
dard measures in both versions of the knowledge graph, 2008 and 2014. However,
GARUM SVR obtains the highest correlation coefficient in CESSM 2008, while
GARUM NN has the highest correlation coefficient for SeqSim in 20149.
9 Due to the lack of training data GARUM could not be evaluated in CESSM 2014

with ECC and Pfam.
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Table 3. Comparison of Similarity Measures. Pearson’s correlation coefficient between
three gold standards and eleven similarity measures of CESSM. The Top-5 correlations
are highlighted in gray, and the highest correlation with respect to each gold standard
is highlighted in bold. The similarity measures are: simUI (UI), simGIC (GI), Resnik’s
Average (RA), Resnik’s Maximum (RM), Resnik’s Best-Match Average (RB/RG),
Lin’s Average (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang
& Conrath’s Average (JA), Jiang & Conrath’s Maximum (JM), Jiang & Conrath’s
Best-Match Average (JB). GARUM SVR and NN could not be executed for ECC and
Pfam in CESSM 2014 due to lack of training data.

Similarity 2008 2014
measure SeqSim ECC Pfam SeqSim ECC Pfam

GI [17] 0.773 0.398 0.454 0.799 0.458 0.421
UI [17] 0.730 0.402 0.450 0.776 0.470 0.436
RA [19] 0.406 0.302 0.323 0.411 0.308 0.264
RM [21] 0.302 0.307 0.262 0.448 0.436 0.297
RB [3] 0.739 0.444 0.458 0.794 0.513 0.424
LA [14] 0.340 0.304 0.286 0.446 0.325 0.263
LM [21] 0.254 0.313 0.206 0.350 0.460 0.252
LB [3] 0.636 0.435 0.372 0.715 0.511 0.364
JA [8] 0.216 0.193 0.173 0.517 0.268 0.261
JM [21] 0.234 0.251 0.164 0.342 0.390 0.214
JB [3] 0.586 0.370 0.331 0.715 0.451 0.355
dtax [1] 0.650 0.388 0.459 0.682 0.434 0.407
dps [16] 0.714 0.424 0.502 0.75 0.48 0.45
OnSim [26] 0.733 0.378 0.514 0.774 0.455 0.457
IC-OnSim [25] 0.779 0.443 0.539 0.81 0.513 0.489
GARUM 0.78 0.446 0.539 0.812 0.515 0.49
GARUM SVR 0.86 0.7 0.7 0.864 - -
GARUM NN 0.85 0.6 0.696 0.878 - -

5 Related Work

Several similarity measures have been proposed in the literature to determine the
relatedness between knowledge graph entities; they exploit knowledge encoded
in different entity characteristics in the knowledge graph including: hierarchies,
length and amount of the paths among entities, or information content.

The measures dtax [1] and dps [16] only consider hierarchies of a knowledge
graph during the comparison of knowledge graph entities. These measures com-
pute similarity values based on the relative distance of entities to their lowest
common ancestor. Depending on the knowledge graph, different relation types
may represent hierarchical relations. In OWL ontologies owl:subClassOf and
rdf:type are considered the main hierarchical relations. However, in some knowl-
edge graphs such as DBpedia [4], other relations like dct:subject, can be also
regarded as hierarchical relations. PathSim [24] and HeteSim [22] among others
consider only the neighbors during the computation of the similarity between
two entities in a knowledge graph. They compute the similarity between two
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entities based on the number of existing paths between them. The similarity
value is proportional to the number of paths between the compared entities.
Unlike GARUM, PathSim and HeteSim do not distinguish between relation
types and consider all relation types in the same manner, i.e., knowledge graphs
are regarded as pairs G = (V,E), where edges are not labeled. GBSS [15] con-
siders two of the identified entity characteristics: the hierarchy and the neigh-
bors. Unlike PathSim and HeteSim, GBSS distinguishes between hierarchical
and transversal relations10; they also consider the length of the paths during
the computation of the similarity. The similarity between two entities is directly
proportional to the number of paths between these entities. Shorter paths have
higher weight during the computation of the similarity. Unlike GARUM, GBSS
does not take into account the property types that relate entities with their
neighbors.

Information Content based similarity measures rely on specificity and hier-
archical information [8,14,19]. These measures determine relatedness between
two entities based on the Information Content of their lowest common ancestor.
The Information Content is a measure to represent the generality or specificity
of a certain entity in a dataset. The greater the usage frequency, the more gen-
eral is the entity and lower is the respective Information Content value. Con-
trary to GARUM, these measures do not consider knowledge encoded in other
entity characteristics like neighborhood. OnSim and IC-OnSim [25,26] compare
ontology-based annotated entities. Though both measures rely on neighborhoods
of entities and relation types, they require the execution of an OWL reasoner to
obtain inferred axioms and their justifications. These justifications are taken into
account for determining relatedness of two annotated entities. Thus, OnSim and
IC-OnSim can be costly in terms of computational complexity. The worst case
for the classification task with an OWL2 reasoner is 2NEXP-Time [9]. GARUM
does not make use of justifications, which reduces significantly the execution
time and allows for its use in non-OWL graphs.

6 Conclusions and Future Work

We define GARUM a new semantic similarity measure for entities in knowledge
graphs. GARUM relies on knowledge encoded in entity characteristics to com-
pute similarity values between entities and is able to determine automatically
aggregation functions based on individual similarity measures and a supervised
machine learning algorithm. Experimental results suggest that GARUM is able
to outperform state-of-the-art similarity measures obtaining more accurate simi-
larity values. Further, observed results show that the machine learning approach
is able to find better combination functions than the manually defined functions.

In the future, we will evaluate the impact of GARUM in data-driven tasks
like clustering or search and in to enhance knowledge graph quality, e.g., link
discovery, knowledge graph integration, and association discovery.

10 Transversal relations correspond to object properties in the knowledge graph.
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